LAUTERBACH A

Training Basic SMP Debugging
for Intel® x86/x64

Training Basic SMP Debugging for Intel® x86/x64

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES32 TraiNinNg .cicccccceriiiisssrriiiissssiisisssssiassssss s sasssssss s sssssss s sas s sss s easssssssseasssssss sassssnsnsenssssnsnnsansan =
Training INTEI® X86/X64cerveeeririerriiss i s s san s s s s s s s e s e an e s n e e e nmnnnaan r—~
Training Basic SMP Debugging for Intel® X86/X64ccuurcmmrnimrmnsssmnssessisss s ssssmsssssnes 1
Debug Configurationsccccciiiiiimmmiiinrriinrs s s s mmn s 5
CombiProbe 2 MIP160-Cv2 6
MIP160-Cv2 Configuration 6
MIP160-Cv2 Features 7
On-Chip Core Trace 9
Off-Chip System/Core Trace 9
Starting a TRACE32 PowerView INStanCeccoccemiiiimmmnnsmss s ssssssmss s ssssssssens 10
Basic TRACE32 PowerView Parameters 10
Configuration File 10
Standard Parameters 11
Examples for Configuration Files 12
Additional Parameters 14
Application Properties (Windows only) 15
Configuration via T32Start (Windows only) 16
About TRACE32 17
Version Information (Debug Cable) 17
Prepare Full Information for a Support Email 19
Establish your Debug SeSSIONcccccciiiiiiimminnsmnrinnssss s ssms s s s smms s sssssmmssseas 20
Course of Action 20
Run the Boot Loader until the Target Configuration is Done 22
Establish the Debug Communication 22

Load the Debug Symbols for the Application and/or the OS 26
Configure the TRACES32 OS Awareness for Your OS 27

Stop the Program Execution 27
Start-Up Script 28
Write a Start-Up Script 28

Run a Start-up Script 29
Automated Start-up Scripts 30
TRACESB2 POWEIVIEWceeiiiieniiiesnissesssssasssssessssss s s sas s sass s s sas s ms s s sas s s sans s s s ams sasans sansnnnsnen 31
SMP Concept 31
TRACE32 PowerView Components 35
©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 2

Main Menu Bar and Accelerators 36
Main Tool Bar 38
Window Area 40
Command Line 43
Message Line 47
Softkeys 48
State Line 49
Further Documentation 50
Basic Debugging (SMP) ... s e s s s e e 51
Go/Break 51
Single Stepping on Assembler Level 53
Single Stepping on High-Level Language Level 54
=T TS (=] 56
Core Registers 56
Display the Core Registers 56
Colored Display of Changed Registers 57
Modify the Contents of a Core Register 58
Further Register Sets 59
Special Function Register 60
Display the Special Function Registers 60
The PER Definition File 63
Modify a Special Function Register 64
Memory Display and Modification ..o s 65
The Data.dump Window 67
Basics 67
Modify the Memory Contents 72
Run-time Memory Access 73
Colored Display of Changed Memory Contents 77
The List Window 78
Displays the Source Listing Around the PC 78
Displays the Source Listing of a Selected Function 79

T == | o o T] | 81
Breakpoint Implementations 81
Software Breakpoints in RAM (Program) 81
Onchip Breakpoints in NOR Flash (Program) 82
Onchip Breakpoints (Read/Write) 84
Onchip Breakpoints for Intel® x86/x64 85
Breakpoint Types 86
Program Breakpoints 87
Read/Write Breakpoints 89
Breakpoint BERAVIOFcccciiiiismmrimiissssrinissssssnssssssssnssssss s s sssssssss e s ss s s sssmss s easssmmns s nnsssnmnnnnas 91
Breakpoint Setting at Run-time 91
©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 3

Breakpoints after Reset/Power Cycle 92

Onchip Breakpoints Changed by Target Program 94
Breakpoint Handlingcccoriiemmmmmiie s s sss s s s e smmne s 95
Real-time Breakpoints vs. Intrusive Breakpoints 95
ProgramPass/ProgramFail Breakpoints 97
Break.Set Dialog Box 100
The HLL Check Box 101
Implementations 105
Actions 106
Options 107
DATA Breakpoints 111
Advanced Breakpoints 115
TASK-aware Breakpoints 116
Counter 119
CONDition 122
CMD 128
Display a List of all Set Breakpoints 131
Delete Breakpoints 131
Enable/Disable Breakpoints 132
Store Breakpoint Settings 133
D 1= ¢ 11 T o T] T 134
Basic Debug Control 134
Debugging of Optimized Code 147
Document your RESUISccccceiiiiiiiemsimniessr s s s s e ssm s e mmn s e sammn e s 150
Settings 150
Print 151
Clipboard 151
File 152
Quick Output 153
Advanced Output 155

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 4

Training Basic SMP Debugging for Intel® x86/x64

Version 06-Jun-2024

Debug Configurations

An Intel® x86/x64 chip can provide the following debug features:
. Extended debugging

. System trace

A system trace provides visibility of various events/states inside the chip. Trace data can be
generated by instrumented application code and/or by hardware modules within the chip.

. Core traces

A core trace provides detailed visibility of the program execution on a core. Trace data are
generated for the instruction execution sequence.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 5

CombiProbe 2 MIPI60-Cv2

MIPI60-Cv2 Configuration

A TRACES2 configuration consists of:
. Universal debugger hardware e.g. PowerDebug Module USB 3.0

. CombiProbe 2 Intel® x86/x64 MIPI60-Cv2

PC or
Workstation

UsB
Cable

POWER DEBUG USB INTERFACE / USB 3
LAUTERBACH.

POWER DEBUG INTERFACE / USB 3

Wall Mount
e
Power Supply

Deprecated module:

. CombiProbe Intef®? x86/x64 MIPI60-C
. Debug Cable for Intel® x86/x64 XDP60

T

CombiProbe

Target

L

g
()
S £
o
o

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

6

MIPI60-Cv2 Features

Signal
VREF_DEBUG
TCKO

TDI

PMODE/Reset In

TRST_N
PRDY_N
PTI_0_CLK
GND

GND
PTI_0_DATA[O]
PTI_0_DATA[1]
PTI_0_DATA[2]
PTI_0_DATA[3]
PTI_0_DATA[4]
PTI_0_DATA[5]
PTI_0_DATA[6]
PTI_0_DATA[7]
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
TCKA1

HOOK]9]
HOOK]8]

GND

No Connect

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
41 42
43 44
45 46
47 48
49 50
51 52
53 54
55 56
57 58
59 60

The features of the CombiProbe 2 MIPI60-Cv2 can be derived from the connected pins:

Signal

TMS

TDO

Reset Out

No Connect
PREQ_N
VREF_TRACE
PTI_1_CLK
GND
PTI_1_DATA[O]
PTI_1_DATA[1]
PTI_1_DATA[2]
PTI_1_DATA[3]
No Connect
No Connect
No Connect
No Connect
No Connect
Boot Stall

CPU Boot Stall
Power Button
PWRGOOD
No Connect
No Connect
12C_SCL
12C_SDA
reserved by TRACE32
DBG_UART_TX
DBG_UART_RX
GND

No Connect

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

7

. Standard JTAG
o PRDY/PREQ
- PREQ: allows the debugger to stop the core(s)
- PRDY: signals the debugger that the core(s) stopped
. HOOK pins
- PWRGOOD: VTREF + PWRGOOD indicate that the JTAG power domain is powered.
- Power Button: allows the debugger to control the target power (command SYStem.POWER).

- CPU Boot Stall: allows the debugger to stop in CPU boot stall mode after power on. For
details refer to the command TrOnchip.Set CpuBootStall.

- Boot Stall: allows the debugger to stop in boot stall mode after power on. For details refer to
the command TrOnchip.Set BootStall.

- Reset In: allows the debugger to reset the platform/SOC/cores (command SYStem.Mode
Go).

- Reset Out: signals the debugger that the platform was reset.
. PTI_O

8-bit System Trace, can be selected with command CAnalyzer.TracePORT TracePortA.
. PTI_1

4-bit System Trace, can be selected with command CAnalyzer.TracePORT TracePortB.
. UART

Function currently not specified.
. 12C

Allows the debugger to control 12C bus (command group 12C).

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 8

On-Chip Core Trace

Core trace information can be generated and routed to SDRAM. Details on the features and the tool
configuration for core tracing are provided by “Intel® Processor Trace Training” (training_ipt_trace.pdf).

Off-Chip System/Core Trace

Core trace information can be generated and routed to a System Trace Module. The STM merges the core
trace information with the system trace information and exports it via 8/16 trace data pins. Details on the
features and the tool configuration for off-chip core tracing are provided by “Intel® Processor Trace
Training” (training_ipt_trace.pdf).

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 |

9

Starting a TRACE32 PowerView Instance

Basic TRACE32 PowerView Parameters

This chapter describes the basic parameters required to start a TRACE32 PowerView instance.

The parameters are defined in the configuration file. By default the configuration file is named config.t32. It
is located in the TRACE32 system directory (parameter SYS).

Configuration File

Open the file config.t32 from the system directory (default c: \T32\config. t32) with any ASCII editor.

| File Edit Format View Help

; Environment variables -
05=

ID=T3Z

TMP=C: % temp

| =Y RN o)

'; Interface to TERZCE3IZ hardware
FEI=
TsB

; Font settings
SCEREEN=
s FONT=2MALL

; Printer settings
FRINTEE=WINDOWS

The following rules apply to the configuration file:

J Parameters are defined paragraph by paragraph.

. The first line/headline defines the parameter type.

. Each parameter definition ends with an empty line.

. If no parameter is defined, the default parameter will be used.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 10

Standard Parameters

Parameter

Syntax

Description

Host interface

PBI=
<host _interface>

Host interface type of TRACES32 tool
hardware (USB or ethernet)

Environment 0S=
variables ID=<identifier> (ID) Prefix for all files which are saved by
TMP=<temp_directory> the TRACES32 PowerView instance into the
SYS=<system_directory> TMP directory
HELP=<help_directory>
(TMP) Temporary directory used by the
TRACES32 PowerView instance (*)
(SYS) System directory for all TRACE32
files
(HELP) Directory for the TRACES32 help
PDFs (**)
Printer PRINTER=WINDOWS The standard Windows printer can be used
definition from TRACE32 PowerView
License file LICENSE=<license_directory> Directory for the TRACES32 license file

(not required for new tools)

(*) In order to display source code information TRACE32 PowerView creates a
copy of all loaded source files and saves them into the TMP directory.

(™) The TRACES32 online help is PDF-based.

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 |

11

Examples for Configuration Files

Configuration File for USB

; Host interface
PBI=
USB

; Environment variables

0S=

ID=T32

TMP=c: \temp ; temporary directory for TRACE32
SYS=c:\t32 ; system directory for TRACE32
HELP=c:\t32\pdf ; help directory for TRACE32

; Printer settings
PRINTER=WINDOWS ; standard Windows printer can be
used from TRACE32 PowerView

Remote Control for POWER DEBUG INTERFACE / USB

TRACES32 allows to communicate with a POWER DEBUG INTERFACE USB from a remote PC. For an

example, see “Example: Remote Control for POWER DEBUG INTERFACE / USB” in TRACE32
Installation Guide, page 48 (installation.pdf).

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64

12

Configuration File for Ethernet

; Host interface
PBI=

NET
NODE=trainingl

; Environment variables

0S=

ID=T32

TMP=c: \temp ; temporary directory for TRACE32
SYS=c:\t32 ; system directory for TRACE32
HELP=c:\t32\pdf ; help directory for TRACE32

; Printer settings
PRINTER=WINDOWS ; standard Windows printer can be
; used from TRACE32 PowerView

Ethernet Configuration and Operation Profile

Trace Perff Cov INTELSC

& Frequency Counter éb B:IFCONFIG EI@

- ip address —————y — host ip address ——————
10.7.22.254

@ Runtime -

8 Memory Map — ethernet address ——— — host ethernet address ——
00-C0-BA-81-22-64

& Flash Programming

“Choose Colors.. — device name ——— —HEE—,——

53? Tools ol 2648.

e — ethernet settings ———— 4976.
[CIrARP 0.
[ClsooTp s 0.
DHCP (via device name) 0.
[Cfull duplex errars 0.
I — configuration: USR2
S
I IFCONFIG Display and change information for the Ethernet interface

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 13

Additional Parameters

Changing the font size can be helpful for a

; Screen settings
SCREEN=
FONT=SMALL

Display with normal fonts:

more comfortable display of TRACE32 windows.

; Use small fonts

= [BaList] = 5
[PisStep |[M over]@Diverge][Retun | @up | pco || mEBreak |[#|Mode | Find: sieve.c
addr /Tine |source | | =
int sieve(void) * sieve of erathostenes #/ o~
701
register 1nt 1, prime, |
int count;
755 count = 0;
757 for (1 =0 ; i == SIZE ; flags[i++] = TRUE) ;
759 for (1. =0; 1 «— SI7E; i33) I 4
760 if (flags[i]) { -
AR m 2
Display with small fonts:
=] (Bsist) = e =]
[Mistep |[M over]LDwerge][queturn][¢up | »co | mnBreak |[#|Mode | Find: sieve.c
il Tel ares sl = /= .
Tnt sTewvel oTdl * sieve of erathosteres = o
i register int 1, prime, k;
int count;
755 count = 0;
757 for (i =0 ; i <= SIZE ; flags[i++] = TRUE } ;
759 for (i =0; 1 <= SIZE)
760 if (Flags[i1) £
7el rime = i +3 4 3 —
762 =7+ r1~e_ |_|
763 while k =
764 ags[k = FALSE; i
1+ | i L

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

14

Application Properties (Windows only)

The properties window allows you to configure some basic settings for the TRACES32 software.

I A t32mxbd.exe - Shortcut Propertie:
| Details | MNovell Version I Previous Versions

P Shotcut | Compatibiity | Securty

a t32moe64.exe - Shortcut

Target type: Application

Target location: windows64

Target: 564t 12mxhd exe Ic c::"-n'ryt:orrfigs"-;::orrfig_usb.tEZi Configuration File

Start in: C:training_x64 \demo'xb4 Working Directory
Shortcut key: MNone

Run: [Maximized '] WindOW Size

Comment:

Open File Location] [Change lcon...] [Advanced...]

oK | [Cancel |[ooy |

Definition of the Configuration File

By default the configuration file config.t32 in the TRACE32 system directory (parameter SYS) is used. The
option -¢ allows you to define your own location and name for the configuration file.

C:\training x64\bin\windows64\t32mx64.exe -c j:\and\config debug.t32

Definition of a Working Directory

After its start TRACES32 PowerView is using the specified working directory. It is recommended not to work in
the system directory.

I PWD TRACES32 command to display the current working directory

Definition of the Window Size for TRACE32 PowerView

You can choose between Normal window, Minimized and Maximized.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 15

Configuration via T32Start (Windows only)

The basic parameters can also be set up in an intuitive way via T32Start.

A detailed online help for t32start.exe is available via the Help button or in “T32Start” (app_t32start.pdf).

4 -7 Configuration Tree

Parameters —pp|

< |

> -1 Settings
»-fi] Example Configuration

a == 1: Podbus Device Chain
4 -[i58) 1: Power Debug USE 3
@] ConnectionT ype: USE
» -] USE Settings
a4k 1: Core
i@ Target: Intel «86 B4
4 -3 Advanced Settings
Paths
E: \WorkingPath: C:\raining_s64%demotx64
SystemPath: C:hraining_x64

HelpPath: C:\braining_sE44pdf
-[] LicenseFile:
H EQ Usze only 32-bit executable: no
> -] Interfaces
> -1 Display
>~ StartupScript

I

Instances...
Information...
Save and Exit
Save

Help

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 | 16

About TRACE32

If you want to contact your local Lauterbach support, it might be helpful to provide some basis information
about your TRACES2 tool.

Version Information (Debug Cable)

% Contents
;;Elndex
4 Find
-E; Tree /A B:VERSION EI@
ﬁ TRACE32 PowerView User Manual
TRACE32 PowerView for Intel x86 (64 bit)
ﬁ Processor Architecture Manual
ol Debugger User Guide MICROPROCESSOR DEVELOPMENT SYSTEM
Copyright (c) 1989-2015 Lauterbach GmbH
Software: Interim Build (64-bit)
Software Version: 5.2015.05.000062760 1
Build: 62760. 05/2015
ﬁTraining Manuals L4
f"] Demo Scripts License:
& Welcome to TRACE32 Cable: Intel x86 [ATOM) 07/2016 2
Lastbachibapenane Hardware: PowerDebug USE 3.0
Support ’ Debug Cable: C15040204848 XDP Debug Cable 3
Environment: Windows 7
SYS: C:\training_x64
TMP: C:ATMP
CONFIG: C:\TMP\T32_1000179.t32
The VERSION window informs you about:
1. the version of the TRACE32 software.
2. the debug license(s) programmed into the debug cable, the expiration date of your software

guarantee respectively the expiration date of your software warranty.

3. the serial number of the debug cable.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 17

Version Information (CombiProbe)

% Contents
;;Elndex
§3Find ik B:VERSION f=lfe =
-E; Tree
piz] TRACE32 PowerView User Manual TRACE32 PowerView for Intel x86 (64 bit)
ﬁ Processor Architecture Manual
ol Debugger User Guide MICROPROCESSOR DEVELOPMENT SYSTEM
Copyright (c) 1989-2015 Lauterbach GmbH
Software: Interim Build (64-bit)
Software Version: S.2015.05.000062760 1
Build: 62760. 05/2015
ﬁTraining Manuals L4 T—
#3 Demo Scripts Cable: Intel x86 (ATOM) 06/2016 2
& Welcome to TRACE32
Lauterbach Homepage Hardware: PowerDebug USE 3.0
Support L4 Debug Cable: C15030203129 CombiProbe 3
Environment: Windows 7
SYS: C:\training_x64
TMP: C:\TMP
CONFIG: C:\TMP\T32_1000179.t32
The VERSION window informs you about:
1. the version of the TRACE32 software
2. the debug license(s) programmed into the CombiProbe, the expiration date of your software
guarantee respectively the expiration date of your software warranty.
3. the serial number of the CombiProbe.
Command summary
VERSION.view Display the VERSION window.
VERSION.HARDWARE Display more details about the TRACES32 hardware modules.
VERSION.SOFTWARE Display more details about the TRACES32 software.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 18

Prepare Full Information for a Support Email

Be sure to include detailed system information about your TRACE32 configuration.

1. To generate a TRACES32 information report, choose Help > Support > Systeminfo

% Contents
5 Index

ﬁ TRACE32 PowerView User Manual

ﬁ Processor Architecture Manual
ﬁ Debugger User Guide

E‘[-‘

ﬁTralmng Manuals L4

#3 Demo Scripts
& Welcome to TRACE32

Lauterbach Hornepage)
i
& About TRACE32... | /& Online Support
"é (=] Contact Lauterbach

Program maintenance license into cable...

éy Generate TRACE32 Support Information EI@
Press the following button to get help on how to generate Support Information:
Company: Lauterbach GmbH Department: Training
Prefix:
Firstname: Andrea
Surname: Martin
Street: Altlaufstr. 40 P.0. Box:
City: Hoehenkirchen ZIP Code: 85635
Country: Germany
Telephone: ++49 8102 9876 188
eMail: training@lzuterbach.com

Product.: POWER DEBUG INTERFACE / USB 3
Target CPU: ATOMZISXX

Hostsystem: [PC Windows 7 ']
Compiler: GNU

Realtime0S: Linux

Safe Mode: [

Generate Support Information: | Save to Clipboard | | SavetoFle |

2. Preferred: click Save to File, and send the information as an attachment to your e-mail.

3. Click Save to Clipboard, and then paste the information into your e-mail.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 19

Establish your Debug Session

Before you can start debugging, the debug environment has to be set up.

Course of Action

The setup procedure described on the following pages assumes that the application (and/or the operating
system) under debug are running out of RAM and a ready-to-run boot loader configures the target system
and especially the RAM for this debug scenario.

*Considering the circumstance that a process has to be started manually e.g. via a TERMinal window

Run the boot loader until the target
configuration is done

¢

Establish the debug communication

'

Load debug symbols for application

and/or OS

Configure the TRACE32 OS Awareness

for your OS

Stop the program execution

¢

*Ready for debug

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

20

An AREA window can be opened to monitor the start-up process.

Sy p e =)

<[

I AREA.view Open an AREA window

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 21

Run the Boot Loader until the Target Configuration is Done

When the target reset is released the boot loader starts to configure the target.

Establish the Debug Communication

Before the debug communication can be established, the debugger needs to know the target chip. The
recommended method is to use the auto detection feature:

Misc Trace Pedf Cov IN &B‘.:S\"Stem EI@
Change Frame L4 . .
Mode MemAccess Option Option
M CPU Registers @ Down CPU [l MAsKASM RESetMode
FPU Registers *) NoDebug @ Denied [T IMASKHLL @ WARM
MMX Registers (©) Prepare CpuAccess [T coHold) coLp
SSE Registers _ _)
AVX Registers [: | Go :) Ena}.JIe [CliTAGONlY F_&ESeiDetecton
B MMU/Segment Registers -:-Attach 0 Denied NoReBoot © OFF
MMU Tables » _! StandBy (! Nonstop [C] STepINToEXC @ HOOK
o Peripherals Prepare (StandBy) () PMODE
_Up
PCH
NONE [oerect || | [corestaTes| | | [TmMmGs
I Target Reset CPU Jtagflock
Reset CPU Registers 3Gz M
&B‘.:S\"Stem EI@
Mode MemAccess Option Option
@ Down CPU [Clmaskasm RESetMode
(2) NoDebug @ Denied [C] MASKHLL @ WARM
_) Prepare CpuAccess [T coHold) coLp
0 Go (©) Enable [CliTAGONlY RESetDetection
©) Attach @ Denied NoReBoot @ OFF
(0) StandBy (©) Nonstop [C] STepINToEXC) HoOK
Prepare (StandBy) () PMODE
D up
PCH
SUNRISEPOINT | | [DETECT || | [cORESTATES| | | [TMmGS
CPU JtagClock

SYStem.DETECT TARGET

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

22

Then the options required for your chip have to be set.

éy B::5YStem
— Mode

@ Down

(2) NoDebug
) Prepare

Up (StandBy)
©up

— CPU

ATOMZSKK

— MemAccess ——
CPU
@ Denied
— CpuAccess —
(2 Enable
@ Denied

(©) Nonstop

JtagClock
’7 5.0MHz -

i~ Option
[l mASKASM
[C] MASKHLL
[T coHold
[Cl3TAGONlY
NoReBoot

[C] sTepINTEXC
[T 5TandB YAttach

CORESTATES

CONFIG

For details on the available options, refer to “Intel® x86/x64 Debugger” (debugger_x86.pdf).

Contents
Index

$3Find

-E; Tree

ﬁ TRACE32 PowerView User Manual

#3 Demo Scripts

Support

@ Tirning &nalyzer User ka
@ Pawer Prabe User Manuall|
@ Stirnuli Generator User k4

ﬁTraining Manuals

/& Welcome to TRACE32

Lauterbach Homepage

JA About TRACE3Z...

7 debugger x86.p
File Edit View Window Help

wr Processor Architecture Manual

ﬁ Debugger User Guide
g MCDS User Guide
@ Analyzer User Manual

+@— Additional options

[Eoe [Rene- B ERFH|e0o3bBEE

Customize ~ ‘ Iz‘ |

@ [1]se | RO | = @[] S

Comment l

Intel x86/x64 Debugger

»
e =
¢
&z

P Intel x86/x64 Debugger

{7 Brief Overview of Documents for New
Users

F Warning

[P Quick Start

r Troubleshooting

I Fag

[P General S¥Stem Settings

P cpu specific SYStem Settings
P cpu specific MMU Commands

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index
TRACE32

ICD In-Circuit Debugger

Manuals

Xx86

Intel x86/x64

Brief Overview of D for New Users

Warning

Quick Start

s o s 0000

708x985in 4|

T

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

23

Choose the Attach radio button to establish the communication between the debugger and the target chip.

— Mode ———— — MemAccess —— — Option
@ Down CPU IMASKASM
() NoDebug @ Denied [V] MASKHLL
) Prepare - CpuAccess ——| COHold
© Go) Enable ITAGOnly
() Attach @ Denied NoReBoot
() StandBy) Nonstop STepINTEXC
Up (StandBy) STandBYAttach
Cup
CORESTATES
— CPU JtagClock
SANDYERIDGEDUAL ’7 5.0MHz —v‘ CONFIG

TRACE32 PowerView selects the radio button Up to indicate that the communication between the debugger

and the target chip is established.

The running in Debug field of the TRACE32 State Line indicates that the boot loader is still running.

(M k& + e »n[E 28 @l =:

" e)
— Mode —
) Down IMASKASM
(©) NoDebug IMASKHLL
() Prepare COHold
© Go ITAGOnly
() Attach NoReBoot
() StandBy STepINTEXC
Up (StandBy) STandBYAttach
Up

CORESTATES

JtagClock
20.0MHz - CONFIG

Data |[var |[ust [other |[previous |

o M | | e e

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64

24

SYStem.Attach

Establish the communication between the debugger and the target

chip.

Alternative way to establish the communication between the debugger and the
target chip might be available depending on the used platform and the used
TRACE32 debug tool. For details refer to SYStem.Mode.

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

25

Load the Debug Symbols for the Application and/or the OS

TRACE32 supports a wide range of compilers and compiler output formats. Refer to the Compilers section
of your Processor Architecture Manual for details.

| debuggerfx.‘}ﬁ. df -

File Edit View Window Hel
|Eoer [Bee- | BB ZH| @R D customize ~ | [¢7]
i Ir /61 | W | — -|- ‘ | Tools | Fill 8Sign | Comment
:E]Bmhmb [« [+ Compilers |
EP [Eg B ® Language Compiler Company Option Comment
= [P Intel x86/%64 Debugger = [+ GNU-C Free Software DBX
7l Foundation, Inc.
(é? IF Brief Overview of Documents for New [GNU-C Free Software ELF/DWARF2
Users Foundation, Inc
T EF § C GCC388 Greenhills Software Inc. | COFF
- Warning [¥] 1C386 Intel Corporation OMF-386
[Quick Start C iC286 Tntel Corporation OMF-286
o [¥] MCCa86 Mentor Graphics EOMF-386
[F Troubleshooting Corporat\onp
[P FAQ [¥] MSVC-1.5 Microsoft Corporation | EOMF-386 Pharlap ETS
i C MSVC Microsoft Corporation | EXE/CV
IF General SYStem Settings o MSVC Wicrosoll Corporation |OMF-386/GV_ | 551 Linkags
{F cru specific SYStem Settings C MSVC/CSI Microsoft Corporation |EOMF-386
== [¥] SCO-UNIX-CC SCO COFF
¥ cpu specific MMU Commands | T TiCase Synopeys, Ine ONE386/5PF
[¥ Onchip Triggers 1 5] HIGHC Synopsys, Inc ELF/DWARF
[T cpU specific Events for the ON and G+ BORLAND-C gz':sgims;ﬂwam EXEBCS
GLOBALON Command Crr ORGANON CAD-UL OMF386++
[cpu specific BenchmarkCounter é'E?LD"‘CSEWWES
C d o
i C++ GNU-C++ Free Software DBX
F cru Specific Onchip Trace Commands Foundation, Inc
C++ MSVC Microsoft Corporation |EXE/CV4
P
ol el Ct++ HC3a6 Synopsys, Inc OMF/SPF
I cpu Specific Functions Ct++ HIGH-C++ Synopsys, Inc ELF/DWARF
[P JTAG Connector
e Support
[P Available Tools ©1080.2015 Lauterbach GmbH e
I Compilers Intel x86/x64 Debugger 56 Support
[Realtime Operating System - .

I Data.LOAD.<sub_cmd> <file> INoCODE [/<option>]

; Load debug symbols from ELF file sieve_x86.elf

Data.LOAD.El1f sieve_x86.elf /NoCODE

; Load debug symbols from ELF file
; open file browser to select file
Data.LOAD.E1f * /NoCODE

A in-depth introduction to the Data.LOAD command is given in the chapter “Load the Application

Program” in Training HLL Debugging, page 4 (training_hll.pdf).

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

26

Configure the TRACE32 OS Awareness for Your OS

Please refer to “Training Linux Debugging for Intel® x86/x64” (training_rtos_linux_x86.pdf) on how to
activate the TRACE32 Linux awareness on your target.

Please refer to “OS Awareness Manual Windows Standard” (rtos_windows.pdf) on how to activate the
TRACE32 Windows awareness on your target.

If you use a different OS refer to the corresponding target OS Awareness Manual (rtos_<os>.pdf).

Stop the Program Execution

The program execution can be stopped by pushing the Break button.

[\ TRACE32 PowerView Intel 64

File Edit View Var Break Run CPU Misc Trace Pef Cov INTELCOUGARPOINT Window Help

mwalseerfu]Een o ous ueE B i o

| Break b

I Break Stop the program execution

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 27

Start-Up Script

It is strongly recommended to summarize the commands, that are used to set up the debug environment, in
a start-up script. The script language PRACTICE is provided for this purpose.

The standard extension for a script file is . cmm.

Write a Start-Up Script

The debugger provides an ASCII editor, that allows to write, to run and to debug a start-up script.

I PEDIT <file> Create <file> and open it with the script editor

PEDIT my_ startup

The debugger provides two commands, that allow you to convert debugger configuration information to a

script.
STOre <file> {<item>} Generate a script that allows to reproduce the current settings
ClipSTOre {<item>} Generate a command list in the clip-text that allows to reproduce the
current settings
STOre system_settings SYStem ; Generate a script that allows you
; to reproduce the settings of the
; SYStem window at any time
PEDIT system_settings ; Open the file system settings
ClipSTOre SYStem ; Generate a command list that

; allows you to reproduce the

; settings of the SYStem window

; at any time

; The generated command list can be
; pasted in any editor

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 28

Run a Start-up Script

- Edit View Var Break Run C

[Edit Script...
4 Search for Script...

g Open File...
2 Load File...
Type File...
4] Dump File...

@ Stop Command R X g — ot ®
fm Desktop * Name Date modified Type
_ ¢ Printer Settings... || DiaPortable i ;
% Window Print... R i J kernel 04.05.2015 09:09 File folder
Window Screenshot to File] =] start_eb.crmm 27.04.201513:55 CMM File
4 Downloads
X exit L+ Favorites
1. httpget
& Links
2 My Documents
o My Music
=| My Pictures
B My Videos
1. rechnung_thai-Dateien - ([T m | b
File name: start_eb.cm - ’Cunent (*.cmm) ']
’ Open |v] ’ Cancel]
I DO <filename> Run a start-up script

DO start_eb

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 29

Automated Start-up Scripts

There a two ways to define a start-up script, that is automatically started, when the debugger is started.

1. Define start-up script in conjunction with the executable.

The debugger-executable can be started with the start-up script as parameters.

c:\t32\t32mx64.exe -s g:\and\training\start.cmm

2. Use T32Start to define an automated start-up script.

4 -7 Configuration Tree
»-F] Settings
»-[3] Example Configuration
7] SANDYERIDGEDUAL
a == 1: Podbus Device Chain
4 -[i5#) 1: Power Debug USE 3
@] ConnectionType: USE
-] USE Settings
a4k 1: Core
i@ Target: Intel «86 B4
4 -3 Advanced Settings
» -] Paths
> -] Interfaces
-] Dizplay

» (1 File: C:Mbraining_xB4%\demo’=E44start_eb.crmm
Parameters:

Instances...
Information...
Save and Exit
Save

Help

1D: //Configuration2

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

30

TRACE32 PowerView

SMP Concept

One TRACE32 PowerView instance is opened to control all cores and to visualize all system information.

File Edit View Var Break Run CPU Misc Trace Perf Cov Window Help
(ML eernE e o BHBdSs @ L2
List o |[&)= z:List /COREQ o || &)=
[Mstep || Mover | MADiverge || ¢ Return | @up || »Go | HBreak |[[Z]Mode | M Step || M over |[MDiverge)[¢f Return|| @ up |[P Go | 1 Break [#2]Mode
addr /Tine |source | addr /Tine |source |
int sieve(void) sieve of erathostenes * . int max_restart = MAX_SOFTIRQ RESTART;
751 . ; . ; int cpu;
register int i, prime, k; . . :
int count; 214 pending = local_softirq pending(};
] 215 account_system_vtime(current);
755] count = 0; . T —
= 5 5 : 217 __Tocal_bh_disable((unsigned long)__bu
o for.ld =0 d.x= SIZE : flags[ittt 1. = TRUE J..; : SOFTIRQ _OFFSET
5 : 3 2 219 lockdep_softirg_enter();
® 759 for (i = 0; i <= SIZE; i++) { 2
760 if (flags[i]) { 221 cpu = smp_processor_id();
761) Er'img =t restart: : :
762 =i + prime; Reset the pencjmg bitmask before en
2] 763 while (k <= SIZE) { 224 set_softirg_pending(0);
764 flags(k] = FALSE; :
765 k += prime; 226 local_irg_enable();
767 Eount++; - 228 h = softirg_vec; -
J 4 I s m s
el e
0003028 80002FB8 - T P F23AB180 F23AB180 .
80002FE8 0A iLaling) | F Do @args 0 F23AB180 [
800030FC BFFFFAQC— —000|[s1eve() 82 C12438EQ
0 0 ~001jjmain{argc = 1, argv = 0x 0 0
0 0 — of fra 0 0
0 0 0 0
0 0 0 0
BFFFF928 BFFFFI0C F2B11FF8 F2811FC4
) 0296 80000E4B ~ 82 C12438FE ~
RN i > A m s
N @ e:preacLict = |[® [= | | & B:Frame/CORED [=
(3% Delete All [O Disable All (@ Enable Al @ Init][& Impl... |[E2store... || ZLoad... | K [wtaup.] [3 Down
address types impl data 1 | [F000)|__do_softirg()
N:03EE:0000000080000E79][Program SOFT s1eve\10 ~ | [-001}|do_softirg()
N:03EE:00000000800030EC--00000000800030EF fwrite ONCHIP |LONG 0x4D2 ast. count -002|irg_exit ()
N:03EE:0000000080004723--0000000080004723 |[Readvrite [ONCHIP \\sieve\Global\flags[3] = | |-003]|smp_apic_timer_
4 " —* |exception
004 [NP:0x0: 0xF2BI6B
‘B: :
emulate trigger { devices J I trace I { Data J I Var I { List J I PERF I { SYStem J I Step I { Go J I Break I { other J I previous
MNP:03EE:0000000080000E48 \\sieve\sieve\sieve+0x1B sieve 1 |stopped HLL UP

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

In TRACE32 PowerView one core is the selected one.

|B::

emulate trigger | [devices |[tace |[Dat J[var |[ust |[PERF][S¥stem |[step |[other |[previous |

NP:0000000008048CBC \\sieve_x86\sieve\sieve+0x36 0 |stopped HLL |UP

The Cores field in the TRACE32 PowerView State Line displays the
number of the currently selected core

The fact that one core is the selected one has the following consequences:

J By default system information is visualized from the perspective of the selected core.

; core 0 is the selected core

List ; display a source listing around
; the program counter of core 0

Register.view ; display the core registers of
; core O
. System information from the perspective of another core can be visualized by using the option

CORE <number>.

List /CORE 1. ; display a source listing around
; the program counter of core 1

Register.view /CORE 1. ; display the core registers of
; core 1

The selected core can be change by selecting another core via the Cores pull-down menu or via the
CORE.select command:

|B::

emulate trigger { devices H trace H Data H Var H List |I PERF H SYStem H Step H other H previous

NP:0000000008048CBC \\sieve_xB86\sieve\sieve+0x56 0 _lstonned HLL UP
Cores

¥ 0
1

I CORE.select <number> Select a different core

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 |

32

TRACE32 PowerView distinguishes two types of information:

J Core-specific information which is displayed on a colored background.

Typical core-specific information are: register contents, source listing of the code currently
executed by the core, the stack frame.

TRACE32 PowerView uses predefined color settings for the cores.

Trace Probe Pef Cov

| & Frequency Counter - | 7 B=SETUP.COLOR EI
r q b usage 1
45 default [_ change -—- default ——- -
46 default | _ change --- default ---
{#) Runtime 47 default | _ change --- default --- | Block marker
52 default | _ change - ge;auqt - W'in$ow bqrger bord
M M 53 default __change --- default --- Dralog window border
@ Memory Map 54 default | _ change ge;auqt -—- | _Sticker Background
: 55 default | _ change efault -—— | Core O
B 56 default | _ change - ge;auqt -—— | Core 1
P7 o - 57 default | _ change -—- default ——- | Core 2
4 E.hoose(.olo... Lo 58 default | _ change --- default --- | Core 3
2 Interface Config.. 59| —_default | _ change --- default --- | Core 4 |E|
& Tools » 60 default | _ change --- default --- | Core 5 .
61 default chanae -—— default --- | Core 6 %
Japanese Menu J | [l | +
. Information common for all cores which is displayed on a white background.

Typical common information are: memory contents, values of variables, breakpoint setting.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 33

File Edit View Var

Break Run CPU Misc Trace Pedf Cov Window Help

(MR AldeernE e oSN Mes @z
] BuLis (S (@[] | W8 e:Register [oE][=
[bistep JT_ 3 over J[oboverge [o7 retum & 0p_J_# o[ioresk :] Gy EEL FIIEIR
addr/1ine |source o 82 RDI 124380
int cpu; = T 0 R9 0 |5
s s 0 RI1 0
FOS——R T | pending = local_softirg, pendmgx), T 0 RI13 0
215 account_system_vtime(current) hE 0 RLS 0
D F2811FF8 RSP F2811FC4
217 __local_bh_disable((unsigned Tong)__builtin_return ol 82 RIP C12438FE
SOFTIRQ_OFFSET); L 0
219 lockdep_softirg_enter (J; T 80050038 0
T Rt 425C5000 0
221 cpu = smp_processor_id(); v _ 01F80000 0
restart: f B i A 00100708 0
= Reset the pending bitmask before enabling irgs 0 FFFFOFFOQ
224 set_softirg_pending(0); 0 04
ikl (T b < n b
@ B:Break List = [E][(=
| 3 Delete All|[O Disable Al @Enable]| @ mit || Zimpl...]Ei,,smre |8Luad || Easet..
address type: mp1 data
N:03EE:0000000080000E79 Prugram SOFT sieve 10 -
N:03EE :00000000800030EC --00000000800030EF {Write (ONCHIP LONG 0x4D2 ast.co
N:03EE :0000000080004723--0000000080004723 [Readwrite (ONCHIP \‘Sweve\ﬁ1uba'\\1"\aqs[3] e
<«)
bof] BiiVarView ast 81 B::Date.dump (Flags) /DIALOG o= =
5 laﬁo:d(_ 0x0, + || ND:0x3EE:0%80004720 [#1Find...] [Modify..] | [eyte = [Track [@Hex [Ascii
-jcount = 12346 address [0 1 2 3 4 5 6 7 8 9 A B C D E F _0123456789ABCDEF
@ left = 03«30003055 ND:03EE :0000000080004720]»01 01 01 00 01 01 00 0L 01 00 0L 00 00 O1 01 00 B
@right = 0x0, ND:03EE :0000000080004730 (00 01 00 01 01 00 01 00 00 01 00 00 01 O1 00 00 =l
- fieldl = -1, ND:03EE : 0000000080004740| 01 00 01 01 00 00 01 00 01 00 00 01 00 00 00 01 |
. field? = 2 - ND:03EE : 0000000080004750 | 00 01 01 00 01 01 00 O1 00 00 00 0O 0O 00 01 00 %
)
«) 4
fCORE1 | = @][£ || B¥ B:Register /COREL
[pistep || Wover |[MiDiverge|[¢ Retun | @up | PpGo || I Break |[¥¥Mode 5 3888%235 BOOOZng =
addr /1ine |source ! A 800030FC BFFFFAOC &
int Count; A : 0 0
755 count = 0; 2 X X
Z £ 1. 0 0
5 for.(i.=.0.;.d.<= SIZE. ;. flags[.i++ % BFFFF928 BFFFF90C
& 759 for (i = 0; i <= SIZE; i++) { 0 0236 goooocte
760 if ﬂags['\]‘ { 80050038 0
7611 rime = 1 + i + 3; o 4283750 0
762 =i + prime; =
. e . 26095000 0
764 ”“95["] = F % 7 0 FFFF4FFD ~
g I « i v
|B: :
[emuiate | devices trace][paw |[wvar |[ust |[pere][svstem][step][Go [other][previous
NF 0C12438FE \lvmlinux\softirg__do_softirg+0x1E kwiorker/0:6 "*”C"'""* finide line) HLL P
ores
v
1

Core-specific
information
(here for the
currently
selected one)

Information
common
for all cores

Core-specific
information
(here for the
core 1)

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 |

34

TRACE32 PowerView Components

- S -_
k‘ TRACE32 PowerView for x86/ATOM

.

File Edit View Var Break Run CPU Misc Trace Perf Cov

INTEL945 Window Help

Main Menu Bar

|>|n|¢.;¢| e O 5SS @ L2

Main Tool Bar ||

i

M Step || ¥ Over || ¥ next || ¢ Return ||

} Go][IIBreak] yﬂ s

¢|UP I

anzahl
for (1 =0 ;
hoE e =0
AF! Gk
{

Lg%al Buttons—

i <= SIZE ; flags[i++] = TRUE)} ;

1 <= SIZE ; i++)

lags[i] D

+ GoTill

Program Address

s
(

rimz;
<= SIZE)

flags[k] = FALSE;

-

aﬁreakpoims 4 k += primz; a3
{5 Display Memory 5 4 f
ﬁ%Eookmark... c BT o
@E Toggle Bookmark g
B B:Register #f¢ Set PC Here T (= E]=]
Cy _ RAX B Edit Source Q 0 Py 00000000 -
Bl iR ey P 21 +04 00000025
sc T RsI £ Viewlnfo - 0 +08 00000036 E
7r _ RS 0 R9 0 +0C 00000003
SHEREERIO 0 Ril 0 +10 00000037
i B 0 R13 0 +14 0000002C
TR 0 R1S 0 +15 00000000
DGR 0001FF98 RSP 0001FF7C +1C OOO1FFF8
B RE 7002 RIP 08048CA7 +20 08048C64 -
4 n L
|s: :; Command Line EE
Message Line 3
emulate trigger [dewoes][trace][Data][Var][List][FERF][other][previons]—
NP:0000000008048CA7 \\sieve_x86\sieve\sieve-+0x41 b |stopped State Line | HL UP

The structure and functionality of TRACE32 PowerView is largely defined by the
file £t32.men which is located in the TRACE32 system directory.

TRACE32 allows you to modify the GUI so it will better fit to your requirements.
Refer to “Training Menu Programming” (training_menu.pdf) for details.

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 |

35

Main Menu Bar and Accelerators

The main menu bar provides all important TRACE32 commands sorted by functional groups.

For often used commands accelerators are defined.

File Edit View Var Break [Run| CPU Misc Trace Perf Cov Window Help
[M % A+ & | » St Rl eiee @ L&
W Step Over Call F3
A Step Diverge Path F4
+ Go Next
& Go Return F5
e Golp F6
+ GoTill.
> Go 0 [— Accelerators
Il Break F&
%Mode

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 36

A user specific menu can be defined very easily:

MENU.AddMenu <name> <command> Add a user menu

MENU.RESet Reset menu to default

MENU.AddMenu "Set PC to main" "Register.Set PC main"

; user menu with accelerator
MENU.AddMenu "Set PC to main, ALT+Fl0" "Register.Set PC main"

File Edit View Var Break Run CPU Misc Trace Perf Cov [User| Window Help

MR A0 2N O Hue
| = eaLisn [=][=] X]

[M Step][W Over]@Diverge][+ Return][¢ up][b Go][1] Break] ¥ Mode]
| addr/1ine |source i
1”t main(int argc, char **argv) -
T —————]
int 1:
short int 1nc, sign;
char *p;
647 func_sin();
ey .. [@
649 if ((argc = 1) && (argv[1][0] = 't—
650 " j = sieve(); User Menu
i K r— R ’

E::MENU. AddMenu "Set PC main, ALT+F10" "Register.Set PC main"

[[ok]][Program][ReProgram][AddMenu][AddTool][other][previous

NF:03H [sieve 1 |stopped HLL UP

For more complex changes to the main menu bar refer to “Training Menu
Programming” (training_menu.pdf).

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 37

Main Tool Bar

The main tool bar provides fast access to often used commands.

The user can add his own buttons very easily:

MENU.AddTool <tooltip text> <tool image> <command> Add a button to the toolbar
MENU.RESet Reset menu to default

MENU.AddTool "Set PC to main" "PM,X" "Register.Set PC main"

File Edit View Var B Run CPU Misc
(M NS »n|E e ol 8umscs @z 2| PH User specific

| = Betist é Set PC to main button

[Mistep |[M over]@Diverge][SRetun | @up || poo [mEBreak]%Mode | Find:

addr/1ine |source

int main(int argc, char **argv)

6421

: 1 ;
short int 1nc, si gn;
“p;

char

647 func_sin();

649 if ((argc > 1) && (argv[1][0] = 't')) {
650 j = sieve();

J4| i

::MENU. AddTool "Set PC to main" "PM,X" "Register.Set PC main"

prvios

NP.03EE000000008 Sieve HLL UP

Information on the <tool image> can be found in Help -> Contents

TRACE32 Documents -> PowerView User Interface -> PowerView User’s Guide -> MENU ->
Programming Commands -> TOOLITEM.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 38

All predefined TRACES32 icons can be inspected as follows:

Trace Perff Cov INTEL94.

& Frequency Counter
@ Runtime
@ Memory Map
* Flash Programming
% Choose Colors...
éylnterface Config...
Japanese Menu I Display internal icon library
B::|
[:colorpurple]
emulate trigger [devices] [trace] [
NP:0000000008048A22 \\sieve_xB86\sieve\main
ChDir.DO ~~/demo/menu/internal_icons.cmm

The predefined icons can easily be used to create new icons.

; overprint the icon colorpurple with the character v in White color
Menu.AddTool "Set PC to main" "v,W,colorpurple" "Register.Set PC main"

For more complex changes to the main tool bar refer to “Training Menu
Programming” (training_menu.pdf).

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 39

Window Area

Save Page Layout

No information about the page layout is saved when you exit TRACE32 PowerView. To save the window
layout use the Store Window to ... command in the Window menu.

W Help
5 Cascade

= Tile Horizontally
00 Tile Vertically

oo Arrange Icons

Create Duplicate window
¥ Clear Windows on Page
2 Clear all Windows

7F Store Windows to ...
E Load Windows from ...

A B:BuSTOre * Win

Store Windows to ... generates a script, that
allows you to reactivate the window-configuration
at any time.

Organize » New folder e @
, A4902Logs - MName Date modified Type
. CAEPRG 3
= go.cmm 19.12.2013 10:48 CMM File
s Contacts)
e =] load_x86.crnm 10.06.2013 15:55 CMM File
ju Desktop)
= || setup_protected_mode.cmm 24.04.201310:42 CMM File
. dosbox 1
&4 Downloads
i Favorites
Links
| My Documents
W' My Music
=| My Pictures 4 I b
File name: -
Save as type: ’Cunent (*.emm) v]
“ Hide Folders I Save I ’ Cancel]

// andT32_1000003 Sat Jul 21 16:59:55 2012
IBER:

TOOLBAR ON
STATUSBAR ON

FramePOS 68.0 5.2857 107. 45.
WinPAGE.RESet

WinCLEAR

WinPOS 0.0 0.0 80. 16. 15. 1. WO000
WinTABS 10. 10. 25. 62.

List

WinPOS 0.0 21.643 80. 5. 25. 1. w001l
WinTABS 13. 0. 0. 0. 0. 0. O.

Break.List

WinPAGE.select P000

ENDDO

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 | 40

Edit View Var Break Run CI

4 Search for Script...

g Open File...
2 Load File...
Type File...
4] Dump File...

@ Stop C d

¢ Printer Settings.
8 Window Print...
Window Screens|

Organize » MNew folder
¥ exit

) A4902Logs “ Name Date modified
|| CAEPRG

ﬁ Contacts

__H Desktop

. dosbox

l, Downleads

,j'} Faveorites

@ Links

E My Documents
_w My Music

EI My Pictures

{8 My Videos Sla| v

=] go.cmm 19.12.2013 10:48
@ load_xf6.cmm 10.06.2013 15:55
m setup_protected_mode.cmm 24,04.201310:42
| || window_config.cmm 13.01.2014 10:58

No preview available.

File name: window_config.crmm - ’Cunent (*.cmm)

| Open | ’

Run the script to reactivate the stored
window-configuration

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 41

Modify Window

File Edit View Var Break Run CPU Misc Trace Pef Cov MSRCPUID Window Help

(M| I e/ rn|E e aollsagdads @ 22|
CCPCE TP EEEE PP EEEE TR EE TR TR T Pl)

int sieve(void) . .
—— A The Window Header
1st 1Nt 1, ime, k; .
de i displays the
command which was
executed to open the
window

755 count = 0;
757 for (1 =0 ; i <= 5IZE ; flags[i++] =

759 for (i = 0; 1 <= SIZE; i++) {

J 4 1

B::B::List /SOrder

| [ok] H Mark || Track || TDrdmrder H MarkPC || other || previous

NP.OIEE000000008! sieve stopped at breakpsi HLL UP

By clicking with the right
mouse button to the window
header, the command which
was executed to open the
window is re-displayed in the
command line and can be
modified there

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 42

Command Line

File Edit View Var Break Run CPU Misc Trace Pef Cov MSRCPUID Window Help

([deec/rngEevaollaumddas @ :sp
= [BuList] oo ==

[Mstep | m over |Ié[}iverge|| SRetun | @up || »co |[meBreak [mode |
addr/1ine |source i
char fTags[SIZE+1]; o~
int sieve(void) * sieve of erathostenes */
Z51)
register int 1, prime, k;
int count;
755 count = 0;
757 for (i =0 ; 1 == SIZE ; flags[i++] = TRUE) ;
£ 759 for (i =0; i1 <= SIZE; i++) {
760 if (flags[i]) {
761 rime = i + 1 + 3;
762 =1 + prime;
3 763 while (k <= SIZE) {
764 flags[k] = FALSE;
765 ; k += prime;
767 / &0unt++;
iE - ;
‘B:: - Command line
emulate trigger | devices | | trace | | Data | | other | | previous
NP.03H sieve 1 |stopped at breakpoint HLL UP

Command Structure

Device Prompt

Selects the command set used by the TRACE32:

no device prompt TRACES32 PowerView commands

B:: command set for Debugger
(B stands for BDM which was the first on-chip
debug interface supported by Lauterbach)

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 43

Command Examples

Data Command group to display, modify ... memory
Data.dump Displays a hex dump

Data.Set Modify memory

Data.LOAD.auto Loads code to the target memory

Break Command group to set, list, delete ... breakpoints
Break.Set Sets a breakpoint

Break.List Lists all set breakpoint

Break.Delete Deletes a breakpoint

Each command can be abbreviated. The significant letters are always written in upper case letters.

Data.dump 0x1000--0x2000 /Byte

‘ L Option
Parameter

Subcommand
——— Command group

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 44

The Online Help for a Specific Command

E =
[File Edt View Window Hep 1
R DESH| 2e3RBBE K
[‘ TRACE22 PowerView for | @ @ :’155 W] | @ @ | @ Tools Comment Share
I File Edit View Var Bd Bookmarks : A
(Mw|4e&e] Y Data.dump Memory dump
D EB- m BB
={F General Commands ;
@ e Format: Data.dump [<address> | <range>] [l<option- ...]
[P Data <options: Byte | Word | Long | Guad | TByte | TWord E
iz [DTM (Data Trace e g:nl.rl;; 1 DecimalU
Module)
MNoHex | Hex
MNoAscii | Ascii
<options: DIALOG
{standard) Track
CORE <number>
Orient | NoOrient
SpotLight | NeSpotLight
STRING
WIDTH [<columns>]
ICache | DCache | L2Cache
Mark <break=
|
B::Data. dump
| [<rangex || <addvess> || options || I I I | [Lprevious |
st | [[o

Enter the command to the command line.
Add one blank.
Push F1 to get the online help for the specified command.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 45

Standard Parameter Syntax

I RADIX.<mode>

Define parameter syntax

The RADIX defines the input format for numeric values.

RADIX.Hex Number base is hex and C-like operators are used (default).
RADIX.Decimal Number base is decimal and C-like operators are used.
Examples:

Data.dump 100
Data.dump 100.

Data.dump 0x100

Decimal Hex

100d 100h
1004 100d
100h 100h

To check the currently used parameter syntax, type RADIX. to the command line.

E::RADIX.|
radixmode: Hex

[[ok] H Hex H Decimal H

Classic

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

46

Message Line

; - - - - - - - - " Message Area

ARNING: PwrGood 15 low
Error accessing the CPU TAP
ile "j:\ROW\intel'\x86_sieve_example'\SMP\sieve_x86.e1f"' (ELF/DWARF2) Tloaded.

arning: Target reset detected
ARNING: PwrGood is low
Error accessing the CPU TAP

Message Line

. Message line for system and error messages

. Message Area window for the display of the last system and error messages

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 47

Softkeys

The softkey line allows to enter a specific command step by step.

Select the command group, here Data.

IB::|

trigger][devices |[trace [Data [war |[st |[PERF][svstem

Select the subcommand, here dump.

‘B: :|DATA.|

[.[o.k]][.d.l.{r.np.][View].[Print].[List .].[Set][Assemble.][PR[}GRAM.

Angle brackets request an entry from the user,
here e.g. the entry of a <range> or an <address>.

B: :DATA. DUMP |

(ot (wcrmpene] |soddmssn) (woptinose)

The display of the hex. dump can be adjusted to your needs by an option.

IB: :[DATA. DUMP 0x1000--0x1fff

[[ok]][options]

Select the option formats to get a list of all format options.

IB: :[DATA. DUMP 0x1000--0x1fff /|

[[okl |[formats |[™ark][Track][wmtH |[orient |[NoOrient |[STRING

Select a format option, here Byte.

IB: :[DATA. DUMP 0x1000--0x1fff /

[[ok]][HoHex][Decimal][Decimalu][Hex][Byte][Waord][Long

The command is complete now.

IB::|DATA. DUMP 0x1000--0Ox1fff /BYTE |

[[ok]][options]

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 48

State Line

‘B::

emulate trigger [devices H trace H Data H Var H List H other H previous

NP:0000000008048CD8 \\sieve_x86\sieve\sieve+0x72 |0 |stopped HLL UP

Cursor Debug
field field

The Cursor field provides:

. Boot information (Booting ..., Initializing ... etc.).

J Information on the item selected by one of the TRACE32 PowerView cursors.

The Debug field provides:
J Information on the debug communication (system down, system ready etc.)

J Information on the state of the debugger (running, stopped, stopped at breakpoint etc.)

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 49

‘B::

emulate trigger [devices H trace H Data H Var H List H other H previous

NP:0000000008048CD8 \\sieve_x86\sieve\sieve+0x72 |0 |stopped HLL UP

Mode
field

The Mode field indicates the debug mode. The debug mode defines how source code information is

displayed.

. Asm = assembler code

. HIl = programming language code/high level language
. Mix = a mixture of both

It also defines how single stepping is performed (assembler line-wise or programming language line-wise).

The debug mode can be changed by using the Mode pull-down.

‘B::

emulate trigger [devices H trace H Data H Var H List H other H previous

NP:0000000008048A22 \\sieve_x86\sieve\main 0 |stopped HLL P
Meode
Asm
Mizx

v HIl

Further Documentation

The following PDFs provide detailed information on TRACE32 PowerView:
. “PowerView User’s Guide” (ide_user.pdf)

J “PowerView Command Reference” (ide_ref.pdf)

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 50

Basic Debugging (SMP)

Go/Break

On an SMP systems the program execution is started on all cores with Go and is stopped on all cores with

File Edit View Var Break Run CPU Misc Trace Perf Cov MSRCPUID Window Help

Mk +eeDdn e o aus e @ : 2

B D Aru-N

MStep || M over || MDiverge| # Return || e@up | kGo || NBreak || #mode | Find: sieve.c
addr /1ine |source |
323 vbfield. T = -1; -
324 vbfield.g = -1;
325 vbf‘ie]d.a 1;
326 vbfield. 1;
327 vbfield.j = -1;
328 vbfield.k = -1 & 0Ox01; Z
< i v
[Mstep || W over |[MuDiverge|| « Retun [& up || »Go [mBreak || #mode | Find: bitops.h
addr/1ine source i
: return ((1UL << (nr % BITS_PER_LONG)) & °
® 312 | (addr [nr / BITS_PER_LONG])) != 0;
§tat1‘c inline int variable test _bit(int nr, volatile const unsigned long *addr)
" int oldbit; =
® 31‘3J asm volatile("bt %2,%1\n\t" 2
« I v
‘B: :
emulate trigger I devices I { frace J I Data I { Var J I List I { PERF J I other I { previous
| T T

File Edit View War Break Run CPU Misc Trace Perf Cov MSRCPUID Window Help

(ks e/l ev o anp das @z 2

£ Bulict Break [=]E]=]
[Mstep | M over | JhuDiverge | Return] @up | »Go | mBresk | [ZIMode | Find: sieve.c
addr /Tine |source |
] 763 while (k <= SIZE) { -~
flags[k] = FALSE;
> k += prime;
Eount++;
4 T ¥
E] BuList /CORED. == EoH)
Mstep || W over || MDiverge| ¢ Retun | @up || ko || Il Break | {Emode | Find: bitops.h

addr/1ine source

((1uL << (nr % BITS_PER_LONG)) &
{addr[nr / BITS_PER_LONG]}) != 0;

return
= 312

static inline int variable_test_bit(int nr, volatile const unsigned Tong *addr)

int oldbit; £
& 319 asm volatile("bt %2,%1\n\t" hd
e 1 »
|B: :
emulate trigger | devices] ‘ trace J | Data | ‘ Var J | List] ‘ FERF J | other | ‘ previous
NP:03EE0000000080000E89 (siewelsieelsie+sl sieve 1 stopped HLL UP

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 | 51

If a breakpoint is hit, TRACE32 makes the core the selected one on which the breakpoint occurred.

File Edit View War Break Run CPU Misc Trace Perff Cov MSRCPUID Window Help

EEIEI o OEEEE T I v

List /CORE 1. [[=@]=]

MStep |[M over |[AcDiverge|| ¢ Return|[@up || pGo |[M Break || mode | Find: sieve.c
addr/1ine |source |
] 763 while (k <= SIZE) { ~
764] flags[k] = FALSE;
765 9 k += prime;
767 - count++;
1« ” i 5
‘=] Balist /CORED. [aE=]
| M Step ” B Over]lé[)iverge]l 4+ Return ” ¢ up ” b Go ” 11 Break] ¥|Mode | Find: bitops.h
addr/Tine |source
return ((1UL << (nr % BITS_PER_LONG)) & ‘
& 312 {addr[nr./ BITS PER_LONG])). !=.0;
sr.tat‘i c inline int variable_test_bit{(int nr, volatile const unsigned long *addr)
int oldbit; £
=] 319 asm volatile("bt %2,%1\n\t" -
T —— - :
180 B:Break List E=R =R
[Delete All|[O Disable Al [@ Encble Al @it |[Pimpl... |[E2Store... || S Load... || Edset.. |
address types impl
N:03EE : 0000000080000B60[Program SOFT [Funci3 B
z »
‘B: :
emulate trigger | devices] ‘ trace ‘ | Data I | Var] ‘ List J | PERF I | other] ‘ previous
NP:0000:0000000001556571 \wmiinundjnte!_idleljnte!_idl swapper/0 Estnpped HLL |uP

CORE 0 is the selected one when the program execution is started.

File Edit WView War Break Lm CPU Misc Trace Peff Cov MSRCPUID Window Help

([MK+ pnE e ol das @i @

{5 BrList /COREL, [=@r=]
Mstep |[M over I@Dl\rerge][SReturn | ¢up |[koo | M Break || ¥mode | Find: sieve.c
addr/1ine |source |

int funcl3(int a, int c, int e) /= arguments and locals stack- a
482
int b, d, T; a3
485 b = a+c+e; B
486 ¥+ = b+a; -
iEN m 3
Bx:List /CORE Q. [S][E]f=]

[Mstep || W over |[Abiverge| ¢ Retun | @up || pGo || WiBreak || EjMode | Find: trace_irq.
addr/line |[source |
494 1T (!preempt_trace() && Trg_trace()) -

i start_critical_timing(CALLER_ADDRO, CALLER_ADDR1);
b
EXPORT_SYMBOL (trace_hardirgs_off);
void trace_hardirgs_on_caller(unsigned long caller_addr)
500 |{ |
501 if (lpreempt_trace() && irg_trace())
502 | stop_critical_timing(CALLER_ADDRO, caller_addr);
503 |1 .
4 n »
18 B:Break List E=mEc
[Delete All | O Disable Al (@ Enabls all || @it][2 impl... || 52 Store... || S Load... || Eliset.. |
address types impl
N:03EE : 0000000080000860[[Program [SOFT [funci3 B
4 13

‘B: :

emulate trigger [devices] [trace] [Data] [Var] [List] [PERF] [other] [previous
NP.O3IEE: B6D \\siewelsieelfuncld sieve stopped at breakpoint HLL |UP
L.

The breakpoint was hit on CORE 1. So CORE 1 is the selected one after the

program execution stopped.

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

52

Single Stepping on Assembler Level

Assembler single steps are only performed on the selected core.

File Edit View Var Bresk Run CPU Misc Trace Pef Cov MSRCPUID Window Help

(M| dee/ru|E e O|ldumSdoa @ Lo

Bulist /CORE L. EE=]
Mstep || W Over ”.&DwergEI[& Retum || ¢Up JL_ »Go][MBreak || mode | Find: sieve.c
addr

Tine code abel mnemonic comment.
Tnt funcl3(int a. int ¢, int e /= arguments and Tocals st ~

482

i i 144 funcl3: push ebp
NP :03EE : 0000000080000B61 lea ebp, [esp]
i i
I
:List /CORED. [E=men =
Mstep][B Over][J-Dwerge][quemrn Jl_ @up][»Go][ereak || #IMode | Find core.c
addr label mnemonic comment y
NP:0000: DDDDDDDO(IZGA[AD -
933
NP : 0000 : 00000000C126ACAE) call OxC12BE940
934 add - add device tu de rice hierarchy.

eax, 0xL |
0xC1491480 add_p
20

NP : 0000 : 00000000C126ACB3

000 : 00000000C1 26ACEBD
NP :0000:00000000C126ACC2
NP :0000:00000000C126ACCT

1F6FF

esi,D

eax, [eax* -‘+0~<_1EDOD20] 5
A m v

'B :Register /CORE. /Spotlight [al=@]= la Register /CORE 1. /Spotlight [ell=]=]

5 F325eF00 . |y — RAX 80003054 REX S0002FES .

P F32637F5 03 2RO 80002FB8 RDX 03162256 [

~ C1E26F20 0 = i RST 800030E8 RDI BFFFFAOC —
z 0 0 4 R8 0 RY 0
5 0 0 _ RIO 0 RIL 0
Z 0 0 12 0 R13 0
2 0 0 I R4 0 RL5 0
= C1E23E24 C1E23E00 _ Rep BFFFF868 RSP BFFFF7EC

i 46 C126ACBE - ZURE 0202 RiP 80000860 -
m ¥ m] »

[emmzre] trigger [d»evtces][trace H Da?a][Var] List [PERF][SYSten.1.][oiher] previous

NP:D3EE:0000000080000860 \\sieve\sieve\funcls sieve |- [opped)
=

File Edit View Var el Cuv MSR[PUID Window el

D+ ¢e ruigieno gnslasgs @@

E{ single Step f1.
[Mstep]| W over |[uMeDiverge|| #Retun || @up][»Go][nsreak || HEMode | Find: sieve.
addr/Tine |code Tabel mnemonic comment i 1
NP :03EE : 0000000080000B68][0E - mov eax, [ebp-OX0C] -
s03ees oy :j:;%:gwﬂxﬂ] = Only the program counter
mov eax, [ebp+0x10 -
] » . | of core 1 has changed
:List /CORED. [=l @ ==
Mstep || W Over][.A.Dwerge” JReturn JL ¢up | »eo | mereak || #mode | Find: core.c
addr /Tine Tabel mnemonic " Jcomment - ;
NP :0000: 00000000C L Z6ACAD -
933
NP :0000: 00000000C1 26ACAE 500 call 0xC12BE940
Gt Uil o e L
NP :0000: 00000000C126ACES |2501000000 eax, 0x1 &
EEE3608200 - 0xC1A91M0 . add_preempt_count
NP 50000+ 000000001 26ACBD
NP :0000: 00000000CLZ6ACC2 |EE esi, OxCIFErFo
NP :0000: 00000000C1 26ACCT |5804 eax, [eax*4+0xC1EDOD20] -
< j v
. B:Register /CORE 0. /SpotLight [= (=@ |[#2] | W B:Register /COREL. /Spotlight [=[=])=]
— RAX T Rex F325eF00 - |y _ RA S0002F58 -
P RCX F32637F8 RO 0 @ 80002FB5 03162256 [
— RsI C1lE26F20 RDI [3131 800030E8 BFFFFAOC —
7 R8 0 R9 0 i 0 0
_ R10 0 RIL 0 & 0 0
C R12 0 R13 0 _ 0 0
_ R4 0 RI5 0 I 0 0
— REP C1E23E24 RSP C1E23E00 i35 BFFFF7ES8 BFFFF7CO
_ RF 46 RIP C126ACBS - i 0202 80000868 ~
.] 5 . 3
emulate] trigger [devices trace][Data][Var H List][PERF][SYstem][other][previous]
13+0:08 sieve 1 |stopped MIX |uP
U
Mode.Mix Select Mix mode for debugging and perform a single step on the
Step selected core.
Step.Asm Perform an assembler single step on the selected core.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 53

Single Stepping on High-Level Language Level

An HLL single step is performed on the selected core. All other cores are started and will stop, when this
HLL single step is done.

File Edit View Var Break Run CPU Misc Trace Pef Cov MSRCPU

D Window Help

Pl s vernizienolane seal il

| single Step Jg1

(=)

Mstep [W over | Adiverge | ¢ Retum || dup | pGo

JL_mBreak || [#mode | Find:

addr/Tine |source

sieve.c

ifle>0

return cte+d;

c += tuncl3(b, £, e-1);

d
490
492
« i

BuList /CORED

cup || PGo

J[nBreak || #Mode | Find:

MStep | M Over |[.ADiverge || ¢ Return |
addr/

Tine |source

| " asm volatile("cli": :
b

asm volatile("sti": :

:'memory");

static inline void native_irg_enable(void)

: "memory™) ;

v

Registe /CORE. Spotlight [l = | 5| | B esRegimerscoREL fSpotighe =
— RAX 0 RBX F325eF00 . _ RAX 2A RBX B0002FBE .
P RCX F32637F8 RDX 0 | o 80002FBE RDX i
RS 0506 RDI F32637F8 — o 800030E8 RDI BFFFFAQC —
— - RB o R9 0 _ R8 0 RrR9 0
5 R10 0 RIL 0 - R0 0 RI1 0
2 R1Z 0 R13 0 R 0 R13 0
_ R4 0 R15 0 I R14 0 R15 0
P, ClE23F74 RSP C1E23F50 — RBP BFFFF7E8 RSP BFFFF7CO
i RE 86 RIP C126ACAD ~ RE: 0202 RIP 8000088D ~
i 3 i ’
[emulate] trigger [devices] [trace] [Data] [var] [List] [PERF] [SYStem] [other] previous
134000 sieve 1 stopped P

File Edit View Var Break Run CPU Misc Trace Perf Cov MSRCPUID Winow Help.

(M3 &) »n|B 28 @l

T

B:List /COREL. [S=]=]
| Mstep | Mover |[MApiverge| ¢ Retum | @up [pGo || Mereak | #mMode | Find: sieve.c
addr /1ine [source |
485 b = a+cte; -
d f = b+a;
487 d = fb; -
et m b
I
:List /COREO, [=M=a]=]
Mstep | W over |[WMDiverge|| # Return|[@up || PGo |[I Break | Pmode | Find: acpi_pm.c
addr/Tine source |
7 return (cycle_tiread pmtmr(); =
) 64
static struct clocksource clocksource_ acpi_pm = { @
e
“rating = 200,
iead i
_mask = (cycle_t)ACPI_PM_MASK,
.f'lags = CLOCK_SOURCE_IS_CONTINUOUS, ko
Hio i '
[B:Register /CORE 0. /SpotLight = |[@][52 | | I B:Register [CORE 1. /Spotlight
[T TR) y _ RaX RBX
RCX sssssbRfldRld RDY sl B RCX 80002FB8 RDX
— RsI @E0E RDI fldg — |JAc _— RSI 800030E8 RDI
L R8 0 R9 1] r _ R8 0 R9
— RI0 0 Ril o _ K10 0 Ril 1]
2 R12 0 Ri3 o S R12 0 R13 1]
& R4 0 R15 o I R14 0 R15]
~ REP meeeshlSlaed RSP mEsssERAGN _ RBP BFEFE7B RSP BEEFF790
=5 & GARANSE - 0206 1 80000878
m b [m »
[emutate | [trigger][devices][trace [patm [wvar |[ust][Pere][svstem][other][previous
NP:03EE:0000000080000878 Visie e'si 3018 sieve 1 |stopped HLL uP
L

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

54

Mode.HIl Select High-level language mode for debugging and perform a

Step single step.

Step.HlIl Perform an HLL single step.

SETUP.StepWithinTask ON When ON all HLL stepping is performed only in the currently
active task.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 55

Registers

Core Registers

Display the Core Registers

Trace Perf Cov INTEL945 Window Help

LA Feoiter ARNRS R TR Y- - Ay

=] List Source [B::Register
a4 Watch Cy RAX
5 Referenced Var

ﬂ Locals

@ Stackframe with Locals
@ Stackframe

M Peripherals

% Symbols

L 0
00020004 ! 64F448D9
0 0

n

0
0001FFF& 0001FF9C
7006 RIF 08048837

o]] o el e e~

W OOHANNE O

1

1ii Groups

gl Bookmarks [B::Register.view /CORE 1. EI@

Trace List
Message Area

0 X 7F57E178 -
000E4000 0
00DE4000 000E4COC

0

T A

7F6D5010
000E413C

SO H =N T
] e i el s ~ 1

-

‘B::

emulate trigger | devices || trace || Data || Var || List || other || previous

NP:0000000008048837 \\sieve_x86\sieve\funcl3 0 |stopped at breakpoint HLL UP

The core register contents is core-specific information. It is printed on a colored background.

Please be aware that all menus and buttons apply to the currently selected core.

Register.view ; display core register contents of
; currently selected core
; (here core 0)

Register.view /CORE 1. ; display core register contents of
; core 1

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 56

Colored Display of Changed Registers

Register.view /SpotLight

[} B:Register /SpotLight EI@
_ RAX REX 0 -
B RCX 00020004 RDX 64F448D9
B RSI 0 RDI 0=
e DRI 0
R B R 0
e bk 0 R13 0
SRl 0 R15 0
SRR 0001FF50 RSP 0001FF34
2iiRE eiOAf RIP 5

1 b

Establish /SpotLight as default option

Break Run CPU M
@Wgtch...

@Eiew...

3, Data View...
aﬁreakpoint...

E’J Show Function...

ﬁﬂ Show Watch

ﬂ Show Locals

@ Show Stack

@ Show Current Vars

P Eormat...

& B:SETUP Var =N =R
Cradi - format — | pointer ———
[7] Decimal [¥] Compact [T] string

[T Hex [T] Fixed [T wideString
[C]Bmary [V TREE [C] sYmbol

[C] Ascii [¥] sHow [C]poumP

] DUMP | open — | | Recursive —|
SCALED s ||| [oFe -

— display — other

[T ndex [¥] INherited [C15Paces

[Type [[IHIdden]

[Location [MEthods
[¥] Name

Ok] [Apply] [Cancel

SETUP.Var %SpotLight

The registers changed by the last
step are marked in dark red.

The registers changed by the
step before the last step are

marked a little bit lighter.

This works up to a level of 4.

Establish the option SpotLight as default setting for

- all Variable windows
- Register window

- PERipheral window
- the HLL Stack Frame
- Data.dump window

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 | 57

Modify the Contents of a Core Register

00020004
0

0
0
0

0
0001FF50
.. 7008

1 |

|E::R.5 [RE OxE76AFEE

(oo (siaddmon) (asivoiten \loatoe) (moptiossn|h

previous

0 [stopped

Register.Set <register> <value>

By double clicking to the register contents
a Register.Set command is automatically displayed
in the command line.
Enter the new value and press Return to modify the
register contents.

Modify core register of selected core

Register.Set <register> <value>/CORE <n> Modify core register of specified core

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

58

Further Register Sets

TRACE32 PowerView supports also the display and modification of all other register sets available for the
core under debug.

]
Change Frame L4
CPU Registers

EPU Registers
MM Registers
SSE Registers
AVX Registers
&% MMU/Segment Registers
MMU Tables L4
o Peripherals

éb System Settings...

In Target Reset
Reset CPU Registers

A list of all other supported register sets is also provided by the softkey line.

[Frame |/ Register |[FPU J[mmx][sse][aAwx AVX512 other | [previous

XP:000000000Q400E78 \sieve_xb4 sieve | main-+in21 0 |stopped HLL UP

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 59

Special Function Register

Display the Special Function Registers

TRACE32 supports a free configurable window to display/manipulate configuration registers and on-chip
peripheral registers at a logical level.

The so-called PER file describes these registers. The PER file is either provided by Lauterbach or by the
chip manufacturer.

In an SMP system all cores can usually access the commonly used external interfaces. So TRACE32
PowerView regards all these registers as common resources and thus displayed them on a white
background.

But not all configuration registers are common resources. Exceptions are the core-related registers e.g.
CPUID registers, MSR registers ...

ower\ie

File Edit View Var Break Run CPU Misc Trace Pef Cov MSRCPUID Window Help

(M I e/ pn[Eeaollsmdads @ 22|

#® Buper, "MSR (Model-Specific Registers)” /CORE 0.

B MSR_(Model-Specific Registers)
i 0000000000000000
0000000000000000
0000000000000040
00001257 8F1E31AE
000400009814124C Processor Flag 1
00000000FEEQDIOD 00000000FEEQDDOD
B5P b
4 1 [
" Buper, "MSR (Model-Specific Registers)" /CORE L. = = |-
B MSR_(Mode|-Specific Registers) -
0000000000000000
0000000000000000
0000000000000040
00001257 8EDC5957
000400009814124C Processor Flag 1
00000000FEEQDE0D 00000000FEEQDDOD
Not BSP b
4 1 [
F::
emulate trigger | devices H trace H Data H Var H other H previous
NE:03EE000000008000 |Sieve 1 |stopped HLL UP

TRACE32 PowerView provides the /CORE <n> option in order to display details on core-related
configuration registers:

PER.view , /CORE 1.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 |

Tree Display

The individual configuration registers/on-chip peripherals are organized by TRACE32 PowerView in a tree

structure. On demand, details about a selected register can be displayed.

Misc Trace Perf Cov IN

Change Frame L4

8 CPU Registers
FPU Registers
MM/ XMM Registers
B MMU/Segment Registers
MMU Tables 4

- Peripherals |
w

éb System Settings...

é ™ B:PER.view, "MSR (Model-Specific Registers)”

B MSR_(Mode|-Specific Registers)

@ Architectural MSRs

@ Atom MSRs

B CPUID (CPU Identification)

® I/0 Mapped Registers

E Host Bridge Device 0

B DRAM Controller Device 0

< |

I

Platform menu

INTEL945

CPUID (CPU Identification)

MSR (Model-5pecific Registers,

/O Mapped Registers

Host Bridge Device 0

DRAM Controller Device 0
PCI Express Graphics Device 1

Internal Graphics Device 2

Platform menu provides

direct access to specific

registers

™ B:PER.view, "MSR (Model-Specific Registers)”

B MSR_(Mode|-Specific Registers)

B Architectural MSRs

IA32_P5_MC_ADDR

32_PLATFORM_ID
A32_APIC_BASE

TA32_FEATURE_CONTROL

ITOR_FILTER_SIZE
_TIME_STAMP_COUNTER

UOUOOUOUODUOUO 0T
0000000000000000
0000000000000040
00000F578CB58358

000800008026CC1LE PLATFORM_ID

00000000FEEDO900 APIC_BASE
B5SP
0000000000000000 SENTER_EN

SENTER_F5_EN
SENTER_F2_EN
VMX_IN_SMX_EN

Processor Flag 2
00000000FEEQOOOO

BSP

Disabled
Disabled
Disabled
Disabled

4

n

APIC_EN

SENTER_F7_EN
SENTER_F4_EN
SENTER_F1_EN
LOCK

Enabled

Disabled
Disabled
Disabled
Not locked

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

61

Details about a Single Configuration Register

(MK + e v ewC | DuEN o @ 22

:PER.view , "MSR (Model-Specific Registers)” fofE =
i eqisters) -
0000000000000000
0000000000000000
0000000000000040
000013AC&7590D1C
000800008026CC1E Processor Flag 2
00000000FEEDO900 00000000FEEQODOD APIC_EN Enabled
BSP
0000000000000000 Disabled EN Disabled
b | ed {_EN Disabled
| Disal S EN Disabled
| D1 sab| SENTER Local Function 5 Enable Not Tocked %
| « . b
emulate trigger | [devices |[tace |[Dat [var][ust |[PERF][S¥stem |[other |[previous
| MSR:000000000000003A 12--12 SENTER Local Function 5 Enable 0 stopped HLL UP

Select the content of a configuration register:
The access class, address, bit position and the full name of the selected item are
displayed in the state line; the full name of the selected item is taken from the

processor/chip manual.

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

62

The PER Definition File

The layout of the PER window is described by a PER definition file.
The definition can be changed to fit to your requirements using the PER command group.

The path and the version of the currently used PER definition file can be displayed by using:

I VERSION.SOFTWARE

A B:VERSION.SOFTWARE EI@

TRACE32 PowerView for Intel x86 (64 bit)
Interim Build (64-bit)

Software Version: 5.2013.12.000049963
Build: 49963.

it32usbamdé4. sys
Jan 29 2013 use
C:\T32_Atom\fcc.t32
Dec 20 2013 Podbus (49963)
C:\T32_Atom\bin‘windows64'\t32mx64. exe
Dec 20 2013 Host
Dec 20 2013 Operation System
Dec 20 2013 Debugger
C:\T32_Atom\fccixB6.t32

Dec 20 2013 Controller
IC:\T32_Atom\perintel945. per

Apr 08 2013 Default Per File -

I PER.view [<filename>] [<tree-search-item>] Display the configuration registers/on-chip peripherals

PER.view C:\T32\perintel948.per ; Use the peripheral file
; perintel948 instead of the default
; PER definition file

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 63

Modify a Special Function Register

You can modify the contents of a configuration/on-chip peripheral register:

. By pressing the right mouse button and selecting one of the predefined values from the pull-
down menu.
< B:PER.view, "MSR (Model-Specific Registers)” =] ==

B MSR_(Mode [-Specific Registers)

SENTER_F2_EN

b leq
Disablec

0000000000000000

0000000000000000

0000000000000040

00001444B0286D88

000800008026CC1E Processor Flag 2

00000000FEEDOS00 A 00000000FEEDODO0 APIC_EN Enabled
BS BSP

TA32_FEATURE_CONTROL 0000000000000000 SEWTER_EN Disabled SENTER_F7_EN Disabled

SENTER_F5_EN ==4TER_F4_EN Disabled

Disabled

v Disabled I TER_F1_EN
WVME_IN_SM¥_EN Disabl K Not locked 5
. . isableg ot Tocke :
. By a double-click to a numeric value. A PER.Set command to change the contents of the

selected register is displayed in the command line. Enter the new value and confirm it with return.

File Edit View Var Break Run CPU Misc Trace Perf Cov INTEL945 Window Help
(M3 rn[Z2e o =uEacs @z
|| < B:PER.view, "MSR (Model-Specific Registers)” | = || =] || E3 |
= M5R_(Model-5pecific Registers) -
B Architectural MSRs 4 1
| 0000000000000000
| 0000000000000000
E 0000000000000040
| 000014531DC4B594
| 000800008026CC1E Processor Flag 2
00000000FEEQOS00 00000000FEEODOOOD Enabled
I BSP
| 0000000000000000 Disabled Disabled
| Disabled Disabled
| Disabled Disabled
| Disabled Not locked -
! 4 1 | L3
|
B: :PER.S |MSR:0x3A %QUAD |
[[okl][formats | [<dara> | [<swing>][options
I MSR:000000000000003A Control Features in Intel 64 Processor 0 |stopped HLL UP

PER.Set.simple <address>|<range> [Y%<format>] <string>

Data.Set <address>l<range> [Y%o<format>] <string>

PER.Set.simple D:0xF87FFF10 %Long 0x00000b02

Modify configuration register/on-

chip peripheral

Modify memory

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 |

64

Memory Display and Modification

This training section introduces the most often used methods to display and modify memory:

. The Data.dump window, that displays a hex dump of a memory range, and
the Data.Set command that allows to modify the contents of a memory address.

. The List (former Data.List) window, that displays the memory contents as source code listing.

Shared memory is a characteristics of an SMP system. This is the reason why the Data.dump window is
regarded as common information and is displayed therefore on a white background. TRACE32 PowerView
assumes that cache coherency is maintained in an SMP system.

Cache coherency: In a shared memory with a separate cache for each core, it is possible to have many
copies of one data: one copy in the main memory and one in each cache. When one copy of this data is
changed, the other copies of the data must be changed also. Cache coherence ensures that changes in the
values of a data are propagated throughout the system.

To provide flexibility the CORE <n> option is provided also for the Data.dump command.

File Edit View Var Break Run CPU Misc Trace Pef Cov SRCPUID Linux Window Help

wdee/rn(Eew o8 dads @z 2

! 144 B:Data.dump ND:0x0:0xC1E2B4ED [@] =]

address 0 01234567 89ABCDEF

ND:0000:00000000C1EZB4E0 [»CI1EZB500 00000001 00000000 00000000 TELSHTLLLLLLL -
ND:0000:00000000C1E2B4F0 | 00000000 00000000 00000000 00000000 WHWEHLEL LY = I

‘Il ND:0000:00000000C1E2B500 | C1D444C1 C12213F0 00000000 €1221310 S0A555"54HIN95"S !

"l| ~ND:0000:00000000C1EZB510 | C1221320 00000001 00000001 €1221300 §"S%i%0aiiiLs"s
ND:0000:00000000C1E2B520 | 00000000 00000800 C1221440 C1221430 YUY NLELLE@E 408" *
ND:0000:00000000C1E2B530 | C1221540 C121E120 C1221390 C12214D0 @L"5.5!5%%"5%%"S ~

4 2
13 B:Data.dump ND:0x0:0xC1E2B4E0 /CORE 1. == =] |
address 0 4 8 C 01234567 89ABCDEF
ND:0000:00000000C1EZB4E0 [»CIEZB500 00000001 00000000 00000000 TELSHTLLLLLLL - [
ND:0000:00000000C1E2B4F0 | 00000000 00000000 00000000 00000000 WHWEHLEL LY =
ND:0000:00000000C1E2B500 | C1D444C1 C12213F0 00000000 €1221310 $0%555 "SHUM0ES Y —
ND:0000:00000000C1E2B510 | €1221320 00000001 00000001 €1221300 §"SibLNatbLLs"s
ND:0000:00000000C1E2B520 | 00000000 00000800 C1221440 C1221430 YUY NLELLE@E 108" |
ND:0000:00000000C1E2B530 | C1221540 C121E120 €1221390 C12214D0 @"5.5!15%5"5%%"Y ~ ||
4 2 f
‘B: :
emulate trigger [devices][trace][Data][Var][other][previous
NP:0000:00000000CL |swapper/0 0 |stopped MI{ UP

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 65

Since the List (former Data.List) window is mainly used to display a source code listing around the

current program counter it is regarded as core-specific information and is therefore displayed on a

colored background.

r—
Ik ra

=

sl @ L2

EﬂB::L\st
M sStep][M Over][+ Next][+ Return][¢ up][P Go][11 Break]] Mode] Find: bitops.h
addr /1ine |code label mnemoni c comment i
(addr[nr / BITS_PER_LONG])) '= 0; -
|..NP:0000:00000000C153657L | 52070 mov eax, [EdX+UX3]
__mwait(eax, ecx);
#if defined (CONFIG_INTEL_ATOM_MDFLD_POW ER \
defined (CONFIG_INTEL ATOM CLV_POWER) ! A
637 if (Ineed_resched() &% '|s '|r'q pending() = 0)
NP :0000:00000000C1556574 test al,0x8
NP : 0000 :00000000C1556576 jne OxC15565B5 =
L | 3
=] BuList /CORE 1. o ==
[Mistep |[Mover || ¥ mMext || & Return | QUp][» Go || MBreak ||]Mode | Fing: bitops.h
addr/1ine ;ode mnemonic comment i
; return ((1UL << (nr % BITS_PER_LONG)) &
312 (addr[nr / BITS_PER_LONG])) != 0;
|...NP:0000:00000000C1556571. |°5-200 moy eax, [EdX+0X3]
mwa'lt (eax, ecx) H
i d{CONFIG_INTEL_ATOM J DFLD_POW EF
ined (CONFTG_INTEL_ATON_CIV_POWER) _
3 if (Ineed_resched() && is_irg_pending() = 0)
NP :0000:00000000€1556574 test ,0x8 |
NP :0000:00000000€1556576 jne OxClEEE-EE
NP : 0000 :00000000C1556578 mow ehx,0x200
NP : 0000 :00000000C155657D lea esi, [esi+0x0]
extern atomic _t init_deasserted;
extjrn int wakeup_secondary_cpu_via_nmi(int apicid, unsigned Tong start_eip);
#enait v
J < i | r
‘B: :
emulate trigger [devices][trace][Data][Var][List][PERF][SYStem][other][previous
NP:0000:0000000001 556571 \\wmiinuodintel_idleinte! idle-+0xaL swapper/0 0 stopped MIX UP

A so-called access class is always displayed together with a memory address. Examples:

NP:1000

Protected Mode Program (32-bit) address 0x1000

ND:6814

Protected Mode Data (32-bit) address 0x6814

For a list of all access classes provided for the Intel® x86/x64 architecture refer to “Intel® x86/x64

Debugger” (debugger_x86.pdf).

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

66

The Data.dump Window

Basics

[View] Var Break Run CPU |
¥ Registers

£} List Source

ﬁﬂ Watch

@ Referenced Var

ﬂ Locals

@ Stackframe with Locals

@ Stackframe

™ Peripherals 1#i{ B:Data.dump EI@
& Symbols 4 Address [Expression

il Groups - [CIHLL
‘ Bookmarks

=t Width Access Options Flag
|MessageArea | ® default ® default [Track Read
©) Byte @E Orient Write
©) Word [¥] Ascii
) Long [T] Spotlight

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 67

Use an Address to Specify the Start Address for the Data.dump Window

144 B:Data.dump

Address [Expression

Oxcle2b505 -
Width Access Options Flag
@ default @ default Read
_ Byte JE Write
_ Word
' Long
Cancel
13} B:Data.dump (0xc1e2b505) /DIALOG |-
ND:0x0:0xC1E2B505 [(#)Find.. | [Modify.. | | [Long ~| FIE [Track [@lHex
address 0 4 8 C 0123456789ABCDEF y
ND:0000:00000000C1E2B500 | C1D444CI#C12213F0 00000000 C1221310 GD0%30% G0 0iinE 1 -
ND:0000:00000000C1E2B510 | €1221320 00000001 00000001 €1221300 §"Sib00atbLLs"s =
ND:0000:00000000C1E2B520 | 00000000 00000800 C1221440 c1221430 W4 WLELL@E"S05"S =
ND:0000:00000000C1E2B530 | C1221540 C121E120 C€1221390 C12214D0 @ "5, 515%%"5%%"S
ND:0000:00000000C1E2B540 | 00000000 C1221500 C€1221450 00000000 W44 "2PE LY z

4 3

Please be aware, that TRACE32 permanently updates all windows. The default
update rate is 10 times per second.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 68

Use an Address Range to Specify the Addresses for the Data.dump Window

If you enter an address range, only data for the specified address range are displayed. This is useful if a

memory area close to memory-mapped /O registers should be
PowerView to generate read cycles for the 1/O registers.

Conventions for address ranges:
o <start address>--<end_address>
<start address>..<end_address>

<start address>++<offset_in_byte>

1} BaData.dump [F=5 EoR 55
Address [Expression
Oxc1e2b505++0x - | £ HLL
Width Access Options Flag
@ default @ default Track Read
Byte E | Orient Write
Word | Ascii
Long SpotLight
Cancel

displayed and you do not want TRACE32

144 B:Data.dump (0xcle2b505++0xf) /DIALOG

(=[O el

ND:0x0:0xC1E2B505

[#1Find... | [Modify... |

[Lon_q '] [[ETrack [Hex

address

C 0123456789ABCDEF

ND: 0000 : 00000000C1EZB500

ND:0000:00000000C1EZ2B510 | C1221320

4

|

0 4 8
$C1221377 00000000 C1221310

MCRARRD P
lvuuuL 1

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

| 69

Use a Symbol to Specify the Start Address for the Data.dump Window

Use 1 to select any symbol name or label known to TRACE32 PowerView.

— Address [Expression

144 B:Data.dump

symbol

Wldth Access Optlons Flag

@ default @ default [CITrack Read

7 Byte ©E Orient Write

© Word Ascii

) Long

" | Z BrowseSymbols =0 |EeE
[j W= ILIEITYFIE Symbols +| [C]Source

address

apbt_virt_address
aperture_resource

|
ND: 0000 : 00000000C1F8A688--00000000C1FB8AGEE .
ND:0000:00000000C203E804--00000000C203E807
ND:0000:00000000C1E2B4E0--00000000C1E2B4E3
ND: 0000 : 00000000C1E2B500--00000000C1E2B5BF
:0000:00000000C1EE47 3A--00000000C1EE47AL

1} BaData.dump [F=5 EoR 55
Address [Expression
apic_default - T HLL
Width Access Options Flag
@ default @ default [CITrack Read
©) Byte @E Orient Write
©) word [¥] Ascii
) Long [T] Spotlight

By default an oriented display

is used (line break at 2%).

A small arrow indicates
the specified dump address.

18] B:Data.dump (apic_default) /DIALOG o=
ND:0x0:0%C1E2B500 v [#3Find...]| [Modify... | | [ong ~| e [ElTrack [#Hex
address 0 4 8 C 01234567 89ABCDEF .
ND:0000:00000000C1E2B500 [PC1D444C1 C12213F0 00000000 C1221310 S05505 Shuhiia g
ND:0000:00000000C1E2B510 | C1221320 00000001 00000001 C1221300 _§"S3i%53ihiNs"S
ND:0000:00000000C1E2E520 | 00000000 00000800 C1221440 C1221430 %iY5HEhNEs 505" =
ND:0000:00000000C1E2B530 | C1221540 C121E120 C1221390 C12214D0 @%"5.5!15%5"5%%"
4 13

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 |

70

I Data.dump <address> | <range> [{/<option>}]

Data .dump

Data .dump

Data .dump

Data .dump

Data .dump

Data .dump

Data .dump

0xC1E2B4EOQ

0xC1lE2B4EO--0xClE2B4EF

0xC1E2B4EQ. .0xC1E2B4EF

0xC1lE2B4EQ0++0x7

ND:0x88:0xC1lE2B4EQ

apic_default

apic_default /Byte

Display a hex dump of the memory

Display a hex dump starting at
logical address 0xC1lE2B4EQO in the
current address space

Display a hex dump of the
specified address range

Display a hex dump of the
specified address range

Display a hex dump of the
specified address range

Display a hex dump starting at
logical address O0xClE2B4EO in the
address space of the process with
the space ID 0x88

Display a hex dump starting at
the address of the label
apic_default

Display a hex dump starting at
the address of the label
apic_default in byte format

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 | 71

Modify the Memory Contents

File Edit View Var Break Run

RTINS

CPU Misc Trace Perf Cov MSRCPUID Linux Window Help

EHmN s @z P

144 B:Data.dump (apic_default) /DIALOG L= . 4
ND:0x0:0xC1E2B500 [#3Find...] [Modify... | | [ong ~| [[ETrack [#Hex
address 0 4 8 C 0123456789ABCDEF
f ND:0000:00000000C1E2B500 [CID444C1 C 00000000 C1221310 505555 ainnis 1 =
ND:0000:00000000C1E2B510 | C1221320 [§ 00000001 €1221300 §"53000300ENS"S =
ND:0000:00000000C1E2B520 | 00000000 C1221440 1221430 Hi4NELEEE"908"
ND:0000:00000000C1E2B530 | C1221544QC121E120 1221390 C12214D0 @L"5.515%5"5%%"%
ND:0000:00000000C1E2B540 | 00000090 C1221500 1221450 00000000 %444HYE"SPE "IN =
ND:0000:00000000C1E2B550 | C1221420 00000000 1221350 00000000 _g"S%b4h%Ps siiht -
4 2
7
B::D.5 |ND:0x0:0xClE2B514 ¥LE %ijyz Oxcchb
[[ok]][formats <data=]qung)][options
NC:0000:00000000Q E2B514 |swapper/0 0 |stopped MI{ |UP
e \ V4

V

By a left mouse double-click to the memory contents
a Data.Set command is automatically
displayed in the command line,
you can enter the new value and
confirm it with Return.

I Data.Set <address>|<range> [Y%o<format>] [[<option>]

Data.Set 0xClE2B4EO0 0x0000aaaa 9
Data.Set 0xClE2B4EQ0 %Long Oxaaaa 8
Data.Set 0x6814 %LE %Long Oxaaaa 8
Data.Set ND:0x88:0xC1lE2B4E0 Oxaaaa 9

Modify the memory contents

Write 0x0000aaaa to the logical
address 0xC1lE2B4EO in the current
address space

Write Oxaaaa as a 32 bit value to
the address 0xClE2B4EO0, add the
leading zeros automatically

Write Oxaaaa as a 32 bit value to
the address O0xClE2B4EO, add the
leading zeros automatically

Use Little Endian mode

Write Oxaaaa to the logical
address 0xClE2B4EO0 of the
process with the space ID 0x88

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 |

72

Run-time Memory Access

TRACES32 PowerView updates the displayed memory contents by default only if the cores are stopped.

File Edit View Var Brea isc Trace Perf Cov INTEILMS

(M| d /v ol 2umecs @ 28]
L DA RIS L e - A hatched window frame
ND:OXB0490AC [#iFind...| [Modify... | = [long ~| [JE [DTrack #Hex indicates that the

address 0 4 8 C 01234567 8IABCDEF i i i i
NG :00000000080490A0 | 60810C80 BDZEA58A GEZAJOBOFLCEFG3ER information dISplay IS

A3y
0000303A 080490AC EFYDDCFA FEEFADES :(0f

68002050 08F50EL1Ll 99F7DA21 DDBF1AEF P.}

35031B12 6FBGOEGO F3ES537BD 7FFF23F7 5%

0000000080490ED | 80108E44 2EF68840 FD51145B 7AAFEEBC D%
0000000080490F0 | 05C54801 CCD6CIBS DC38CCDD CFDDFECE 5H
:0000000008049100 | 10067023 23D9FD02 EB911FB2 6F37737C #p

Il [

frozen because the cores
are executing the program.

=R IR

‘B::

|| emulate trigger [devices][trace][Data][Var][other][p{evious]

g || Mx_ie

File Edit View Var

~ Break Run | CPU| Misc Perf Cov INTELM5 Window Help
(MR I ve/rn[E 20 Humeidcs @ L2

144 B:Data.dump (ast) /DIALOG

Trace

The plain window frame
indicates that the
information is updated,
because the program
execution is stopped.

ND:0x80490AC [#1Find... | [Modify... | | [Long =] [IE [ITrack [@Hex

address 0 4 8 C 0123456?89ABCDEF

ND: 00000000080490A0 | 60810CE0 SDZE458A GEZAS9BOPSCEFG3EE TE% qE
ND:0000000008049080 | 00003034 080490AC EF9DDCFA FEEFADEY :0%%%d
ND:00000000080490C0 | 68002050 08F50E11 99F7DA21 DDBFLAGF Pu"u
ND:00000000080490D0 | 35031B12 6FBBOE6D F3ES37BD 7FFF23F7 $%55°
ND:00000000080490€E0 | 80108E44 2EF68840 FD51145B 7AAFEESC DazL
T
i
K

4[] »

ND: 000000000804 90F0 | 05C54801 CCD6CLIBY DC38CCDD CFDDFECE 3H
ND:0000000008049100 | 10067023 23D9FD02 EB911FB2 6F37737C #p

7| 3

O R T T
3

‘B::

emulate trigger [devices][trace][Data][Var][other][previous

NF:0000000008MB0E \isiee_sB6isieeisiee+068 0 |stopped MI{ |UP

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 73

Intrusive Run-Time Memory Access

The Intel® x86/x64 architecture doesn't allow a debugger to read or write memory while the cores are
executing the program, but you can activate an intrusive run-time memory access if required.

ébB‘.:S\"Stem EI@
Mode MemAccess Option
*) Down CPU [l MAsKASM
*) NoDebug @ Denied [C] MASKHLL
_! Prepare CpuAccess [T coHold
7 Go 9 Enable ~agf——=5FAGony CpuAccess Enable allows an
_) Attach) Denied [/ NoReBoot intrusive run-time memory access
_) StandBy _! Monstop
Up (StandBy)
@ Up CORESTATES
CPU JtagClock
ATOM230 5.0MHz ~ CONFIG

If an intrusive run-time memory access is activated, TRACE32 stops the program execution periodically to
read/write the specified memory area. Each update takes at least 50 us per core.

S L
cores are cores are stopped to allow
executing the program TRACE32 PowerView to read/write

the specified memory

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 74

Enable the E check box to switch
the run-time memory access to ON

Trace Perf Cov INTEL945 Windo

IEELICETIL Y

File Edit View Var Break Run CPU Misc

[M B[+ & » | 2w

| 134 B::Data.dump e:(flags) /DIALOG

END:0x8049308 e [CTrack [#]Hex

C D EF
01 01
B3
DE
FE
EA
FF
5B
FE
77
53

7]

[Byte

[#1Find... | [Modify... |
0 1 2 3 4
24 90
01 00
48 04
8C DC
10 06
23 73
08 88
0c cC
10 11
03 1B

address
0000000008049300
0000000008049310
0000000008049320
0000000008049330
0000000008049340
0000000008049350
0000000008049360
0000000008049370
0000000008049380
0000000008049390

END:
END:
END:
END:
END:
END:
END:
END:
END:
END:

] [previous

HLL

up

A red S in the state line indicates, that a TRACE32 feature
is activated, that requires short-time stops
of the program execution

Write accesses to the memory work correspondingly:

[File Edit View Var Bresk Run CPU Misc Trace Perf Cov INTEL945 Window Help

MR I ve/rn[E R O HuN s @ 2L

'l 38 B:Data.dump e:(flags) /DIALOG

[=][=] =]

E [CTrack Hex

C D EF il
01 01 '
B3 BB
DE A9
FE DD
EA CF
FF E7
58 7E
FE ED
77 Al
53 F5

END:0xB049308 [#3Find...] [Modify... | | [Byte ~]
0 1 2 3 4
24 90
01 00
48 04
8C DC
10 06
23 73
08 88
0c cc
10 11
03 1B

4

address
0000000008049300
0000000008049310
0000000008049320
0000000008049330
0000000008049340
0000000008049350
0000000008049360
0000000008049370
0000000008049380
0000000008049390

END:
END:
END:
END:
END:
END:
END:
END:
END:
END:

|[B::[D.5 END:0x8049327 %LE Oxff]

previous

HLL UP

[[okI

][formats][<data=][<string=][options]

o P W

A plain window frame
indicates that the
information is updated
while the cores are
executing the program

Data.Set via run-time
memory access with short
stop of the program
execution

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 |

75

SYStem.CpulAccess Enable ; Enable the intrusive
; run-time memory access

Go ; Start program execution

Data.dump E:0x6814 ; Display a hex dump starting at
; address 0x6814 via an intrusive
; run-time memory access

Data.Set E:0x6814 OxAA ; Write OxAA to the address
; 0x6814 via an intrusive
; run-time memory access

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 76

Colored Display of Changed Memory Contents

Var Break Run CPU |

¥ Registers
104
i=] List Source
@Watch
%‘ Referenced Var Eﬂ Bx:Data.dump EI@
Locals
& . Address [Expression
@ Stackframe with Locals 5
@ Stackframe flags M mLE
o Peripherals
% Symbals » Width Access Options Flag
iii Groups @ default @ default [CITrack Read
g Bookmarks) Byte ©E Orient Write
Trace List ©) Word [¥] Ascii
| MessageArea | © Long [¥] SpotLight
+

Enable the option SpotLight to mark the
memory contents changed by the last 4 single
steps in orange, older changes being lighter.

{4} B::Data.dump flags /SpotLight /DIALOG ==]
ND:0x8049308 [#3Find...] [Modify... | | [Byte ~| [JE [ETrack [Hex

address |0 1 2 3 4 5 6 7 &8 9 A B C D E F i
ND:0000000008049300 | 24 AC 40 90 63 C1 43 04»01 01 01 00 01 01 00 01 -
ND:0000000008049310 | 01 00 01 01 00 01 01 00 01 01 @@ FB B3 BB DB 77 =
ND:0000000008049320 | 48 86 20 04 00 26 5D FF 51 DF B4 69 DE A9 AF C8 =
ND:0000000008049330 | 8C 04 CC DC 8C CD CC 76 E4 99 EE AA FE DD FD BC
ND:0000000008049340 | 10 48 18 06 AD 11 04 52 F6 EF 58 7F 76 CF 5F BB z

4 [}

Data.dump flags /SpotLight ; Display a hex dump starting at
; the address of the label flags

; Mark changes

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 77

The List Window

Displays the Source Listing Around the PC

[View] Var Break Run CPU |
| B Registers
| §# Dump...

File Edit View Var Br CPU Misc Trace

o =il = P
4 Watch EE e i e
@ Referenced Var s
&l Locals = [BaList] [E=H EeE
@ Stackframe with Locals [M Step][B Over][+ Next][4 Return][¢ up][» Go][1l Break] ¥|Mode | Find: intel_idle.c
i addr/Tine |[code label mnemoni c comment |
@Stack‘frame | L __mwait(eax, ecx); -
= #1 et 1ned (CONFIG_INTEL_ATOM_MDFLD_POWER)
o Peripherals defined (CONFIG_INTEL_ATOM_CLV_POWER)
2 Symbols 4 637 if (!need_resched() && is_irg_pending() == 0)
== NP :0000:00000000C1556574 [as08 test al,0x8
1ii Groups : : ine DEC1556535
Bookmark NP :0000:00000000C1556578 mov ebx,0x200
if Boo marks NP 0000 : 00000000C155657D Tea 251, [esi+0x0]
Trace List Pt
extern atomic_t init_deasserted;
g e extgr? int wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip);
#endi
#ifdef CONFIG_XB6_LOCAL_APIC @
: gtatw‘c inline u32 apic_read(u32 reg)
221 | return apic-»>read(reg);
| NP :0000:00000000C1556580 SEOB4E2C mov edx, [0xCLE2B4EQ]
NP :0000:00000000C1556586 mov eax, ebx
NP : 0000:00000000C1556588 |F 0000000 call dword Etr' [edx+0xA0]
440 if (apic_read(base + *0x10) != 0}
NP :0000:00000000C155658E test eax, eax =
iEN 1 "
‘B: :
emulate trigger | [devices |[tace |[Data][wvar |[ust |[PERF |[SrStem |[other | [previous
NP:0000;00000000Q1556576 \\wmiimedinte!_idlelinte!_idle+0x6 swapper/0 0 |stopped at breakpoint MIX UP

If MIX mode is selected for debugging,
assembler and HLL information is display

File Edit View Var race Pef Cov MSRCPUID Linux Window

(M k[+ee|rnE e aolcgnmnedas @z

Baist =0 =R
[Ml Step][W Over][¥ Mext][{fﬁetum][¢ up][» Go][1] Break] ¥Mode | Find: intel_idle.c

addr/Tine |source

if (Ineed_resched()) ~
__mwait(eax, ecx);

T de‘r_‘ir1eq-Z:CONF_:G_:N':’EL_;_ON DFLD_POWER) |
defined (CONFIG_INTEL_ATOM_CLV_POWER) -
63 if (!need_resched() && 15__‘1rq__pend1n$_() =.0)
638 ; __get_cpu_var (update_buckets) = 0;
Fendif
042 start_critical_timings();
B44 if (!(lapic_timer_reliable_states & (1 << (cstate))))
645 clockevents_notify(CLOCK_EVT NOTIFY_BROADCAST EXIT, &cpu);
647 | return index; !
648 |}
static void __setup_broadcast_timer{void #*arg)
651 |{ . :
unsigned long reason = (unsigned Tong)arg;
653 int cpu = smp_processor_id();
655 reason = reason ? %
I J <] n 3
emulate trigger [devices][trace]I Data][Var][List]I PERF][SYStem][other]I previous]
NP.00D0:0000000001556576 T\miinusdintel_idlelintel_idle+0xt6 swapper/0 0 stopped at breakpoint HLL |UP

T

If HLL mode is selected for debugging,
only HLL information is displayed

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 78

Displays the Source Listing of a Selected Function

Var Break Run CPU b
¥ Registers :
{4 Dump...

E’J List Source

ﬁﬂ Watch
@ Referenced Var
ﬂ Locals
@ Stackframe with Locals
@ Stackframe
o Peripherals

il Groups
‘ Bookmarks
| Trace List
= | Message Area

Browse

Browse Modules

Browse Variables

Browse Types

Symbols Tree View
Symbols by name
Symbols by address
Sections

Source Search Paths
Overview

Details of Symbol

Browse Functions

Select the function you
want to display

& BusYmbol Browse Function

E=N NOR xS

W

symbol

55

scs1_trace_parse_cdb
scsi_track_gueue_full
scsi_try_bus_device_reset
scsi_try_bus_reset

Type: / Functions ~| [[]Source
Ty]] addre
nar -)

int

I |
:00000000C1693330--00000000C169399F .
:00000000C1686F 50--00000000C1686FED
:00000000C1689AA0--00000000C1683AEA
:00000000C168A5A0--00000000C168A663
:00000000C168A720--00000000C168A7E3

scs‘l_trg_target_reset nt () NP :0000: 00000000C168A7FO--00000000C168A866 | |

scsi_unblock_requests) NP : 0000 :00000000C168E050--00000000C168E065

scsi_unregfto

L] =] BuList scsi_try_host_reset E@
[M step][W Over][+ Next][+ Return][¢ up][» Go][11 Break] ¥ Mode] Find: cS1_error.c

addr/1line |source

* scsi_try_host_reset - ask host adapter to reset itself
@scmd: SCSI cmd to send hsot reset.
static int scsi_try_host_reset({struct scsi_cmnd *scmd}
543
unsigned long flags;
int rtn;
546 struct Scsi_Host *host = scmd->device->host;
547 struct scsi_host_template *hostt = host->hostt;
SCSI_LOG_ERROR_RECOVERY(3, printk{"%s: Snd Host RST\n",
__func__));
552 if (lhostt-»eh_host_reset_handler) -
JIEN

[| 2

List [<address>] [/<option>]

List [<address>] ICORE <n> [/<option>]

Display source listing from the perspective
of the selected core

Display source listing from the perspective
of the specified core

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 | 79

List ; Display a source listing
; around the PC of the selected
; core

List * ; Open the symbol browser to
; select a function for display

List scsi_try host_reset ; Display a source listing of
; the function scsi_try host_reset

List /CORE 1 ; Display a source listing
; around the PC of core 1

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 80

Breakpoints

Breakpoint Implementations

A debugger has two methods to realize breakpoints: Software breakpoints and Onchip Breakpoints.

Software Breakpoints in RAM (Program)

The default implementation for breakpoints on instructions is a Software breakpoint. If a Software breakpoint
is set the original instruction at the breakpoint address is patched by a special instruction to stop the program
and return the control to the debugger.

The number of software breakpoints is unlimited.

=1 [BuData.List] oo =
[Mistep |[M over |@Diverge [#Retun || @up || »Go | miBreak || mode | Find: sieve.c
addr/1ine |source i
747 vitriplearray[0][0][0] = 1;
748 vitriplearray[1][0][0] = 2;
749 viriplearray[0][1][0] = 3;
750 viriplearray[0][0][1] = 4;
[
7521 func2 ()
753 func
754 func
755 func2d(
J 4 m 3
Break | Run CPU Misc Tr
il Set...
éylmplementation...
2K Delete All
ZF Trigger Bus...
& OnChip Trigger...
e B::Break.List ===
: [Delete All (O Disable All [@ Enable All|[@ it [Z1mpl... || S store... || Sload... || Kilset... |
Jlzoegii=et address types imp note i
X:0000000000400F4?Kpr0gram ‘SOFT ‘Va'l'ld ‘ main,29
13

Please be aware that TRACE32 PowerView always tries to set an Onchip
breakpoint, when the setting of a Software Breakpoint fails.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 81

Onchip Breakpoints in NOR Flash (Program)

Intel® x86/x64 cores provide a small number of onchip breakpoints in form of breakpoint registers. These
onchip breakpoints can be used to set breakpoints to instructions in read-only memory like NOR FLASH.

That fact that the debugger does not know on which core of the SMP system a program section is
running, has the consequence that the debugger programs the same onchip breakpoint to all cores.

So you can say from the debugger perspective there is only one break logic shared by all cores of the SMP
system. This is the reason why breakpoints are regarded as common resource and therefore the Break.List
window has a white background.

=1 [BuData.List] oo =
[Mistep |[M over |@Diverge“ SRetun [@up || »Go][MnBreak || EMode | Find: sieve.c
addr/1ine |source i
747 vitriplearray[0][0][0] = 1;
748 vitriplearray[1][0][0] = 2;
749 viriplearray[0][1][0] = 3;
750 viriplearray[0][0][1] = 4;
[i
7521 func2 ()
753 func2al
754 func2b|
755 func2d(
Jf m 3
Break | Run CPU Misc Tr
il Set...
éylmplementation...
2K Delete All
ZF Trigger Bus... A
e @ skl B
(& Delete All (O Disable All (@ Enable All|[@ it | Z1mpl... || E2store... || SLoad... || Bilset... |
address types imp]l note i
¥:0000000000400F47 [[Program ONCHIP ‘Va'l'ld ‘ main,29 »
Trigger Reset - . o

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 82

0OS Comment

If an SMP operating system that uses dynamic memory management to handle processes/tasks (e.g. Linux
or Windows) is used, the instruction address within TRACE32 PowerView consists of:

. The access class
. The memory-space ID of the process
J The logical address

<access_class>:<space_id>:<logical_address>
NP:0088:00000000C168A720

The onchip breakpoints of Intel® x86/x64 cores store only the logical address, but not the memory space ID.
As a result an identical logical address within another process can also result in a breakpoint hit.

For details on the TRACE32 PowerView address scheme of operating systems that uses dynamic memory
management to handle processes/tasks refer to your OS manual (rtos_<os>.pdf).

Additional details on this issue are provided when task-aware breakpoints are introduced.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 83

Onchip Breakpoints (Read/Write)

Onchip breakpoints can be used to stop the core(s) at a write access or a read or write access to a memory

location.
=1 [Bdata.list] =8 |EER
[Mstep |[Mover || $MNext |[#Return] @up |[pGo | mBreak |[¥¥mode | Find:
addr/1ine |source i
575 vtripplearray[0] [1] [0] e -
576 ripplearray[0][0]] = 4;
i Varlable
578 func2(); 65 Add to Watch Window
580 func2a(); frof| View in Window
&% Set Value...
.
°82 funeEhi, #5* Modify Value...
584 func2d(); + GoTil »
586 funcptr = func3; & Breakpoint..
@ Advanced Breakpoint L4
B e -
589 ast Terey Beakpolnis ReadWrite
590 ast.fieldl = 1; | iaf Display Memory | Read
591 ast.field? = 2;] Display Trace 3 m
593 ast = func4(ast) j‘j Grep in Sourcefiles spot
: 1 i other 4
595 j = (*funcptr)(); Alpha
start: Beta
598 j = func5({ (int) j, (char) 2, (long) 3); Charly
| ——— T R— | g
Echo
I BuBreak List =0 =)

[Delete All (O Disable All (@ Enable All|[@ Init || Z1mpl... |[52 store... [aLoad [Eiset...

address 1 i
N : 00000000080452D0--000000000 ﬂ492DDer¥Ete—'WgHIP ‘ viripplearray[0][0][1] -
4 3

Again, this breakpoint is programmed identically in all cores. And again write accesses to an identical logical
address result in a breakpoint hit.

Additional details on this issue are provided when task-aware breakpoints are introduced.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 84

Onchip Breakpoints for Intel® x86/x64

The list on this page gives an overview of the availability and the usage of the onchip breakpoints. The
following notations are used:

. Onchip breakpoints: Total amount of available onchip breakpoints.

J Program breakpoints: Number of onchip breakpoints that can be used to set Program break-
points into NOR FLASH.

. Read/Write breakpoints: Number of onchip breakpoints that stop the program when a write or
read/write to a certain address happens.

. Data value breakpoint: Number of onchip data breakpoints that stop the program when a spe-

cific data value is written to an address or when a specific data value is read from an address.

single address or
ranges up to
8 bytes (aligned)

Onchip Instruction Read/Write Data Value
Family Breakpoints Breakpoints Breakpoint Breakpoints
Intel® 4 4 4 —
x86/x64 single address
Write or
Read/Write

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 |

85

Breakpoint Types

TRACE32 PowerView provides the following breakpoint types for standard debugging.

Breakpoint Types Possible Implementations
Program Software (Default)

Onchip
Write, Onchip (Default)
ReadWrite

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 86

Program Breakpoints

—>

Set a Program breakpoint
by a left mouse
double-click

to the instruction

=1 [B:Data.List]

(=[O]

[Mistep |[® over]@Diverge” & Return ||

¢up | »co | mEBresk]%Mode |

addr/1ine |source

The red program breakpoint indicator marks all code lines for which a Program breakpoint is set.

744 plotl = plotl + sign * inc; -

745 plot2 = 25000 * sign;

747 vitriplearray[0][0][0] = 1;

748 viriplearray[1][0][0] = 2;

749 viriplearray[0][1][0] = 3;

750 viriplearray[0][0][1] = 4;

753 unc2al);

754 func2b();

755 func2d();

757 funcptr = (int (*) (J) 0;

758 | ~ funcptr = func3; ¥
4 m 3

The program stops before the instruction marked by the breakpoint is executed (break-before-make).

Disable the Program
breakpoint by a

left mouse double-click
to the red program
breakpoint indicator.
The program breakpoint
indicator becomes grey.

Break.Set <address> /Program [/DISable]

=] [Bi:Data List] =0 =R
[M Step ” W Over]@Diverge” + Return ” ¢ up ” b Go ” 1] Break] ¥ Mode]
addr/1ine |source i
744 plotl = plotl + sign * inc; -
745 plotZ = 25000 * sign;
747 viriplearray[0][0][0] = 1;
748 viriplearray[1][0][0] = 2;
749 viriplearray[0][1][0] = 3;
750 viriplearray[0][0][1] = 4;
| 752] func2();
753 func2a();
754 func2b();
755 func2d();
757 funcptr = (int (*) (J) O;
758 funcptr = func3; -
J 4 | m 3

Set a Program breakpoint to the specified address.
The Program breakpoint can be disabled if required.

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

87

Break.

Break.

Break.

Break.

Break.

Break.

Set 0xA34f /Program

Set funcl /Program

Set funcl+0xlc /Program

Set funcll\7

Set funcl7 /Program /DISable

List

set a Program breakpoint to
address 0xA34f

set a Program breakpoint to the
entry of function funcl
(first address of function funcl)

set a Program breakpoint to the
instruction at address
funcl plus 28 bytes

set a Program breakpoint to the
7th line of code of the function
funcll

(line in compiled program)

set a Program breakpoint to the
entry of function funcl?
diable Program breakpoint

list all breakpoints

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 | 88

Read/Write Breakpoints

= [BuList] = ESR5
[Mistep || over]@Diverge][SReturn | ¢up | J[_1n Break]%Mode | Find:
addr /Tine |source | | | =
836 Eor (1 =0; 1 <= 5IZE; i++) °
838 if (GEFEIRID
{ ; Wariable
&0 P" 1 g Add to Watch Window
842 whi ﬁﬁ‘u’iewinWindow
{ &3 Set Value...
gad &5 Modify Value...
;| & GoTill y All cores are stopped
847 cou . X
} . L after a write access
i 3 .
: d"”“’ e L — to the variable
851 return count; L cadiite / (break-after-make)
852 |+ 4 Read
1+ | i G i § ’
+7 Grep in Sourcefiles Spot
other L4
Alpha
Beta

Please be aware that you have to use a ReadWrite breakpoint if you want to stop the program execution on
a read access if you use the Intel® x86/x64 architecture. Pure Read breakpoints are not provided.

=] [BuList] o[-
[Mistep |[M oOver]LDwerge][queturn JL eup | || 1n Break]%Mode | Find:
addr/1ine |source Loy
836 for (i = 0; i «= S5IZE; i++) °
838 if (AFGEAERD 020 :
{ Variable |
g:g g4 Add to Watch Window
8472 ff} View in Window
= Set Value...
844 g Modify Value... ==
+ GoTill ’
847 i Breakpoint.. All cores are stopped
} Advancd Breakpoint ,. after a read or write
&3) return count access to the variable
D (break-after-make)
< 4 Grep in Sourcefiles
other

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 | 89

&f| Br:VarView flags EI@
- If an HLL variable is displayed,

a small red breakpoint indicator

- marks an active Read/Write breakpoint.
-

o

= o=
—
—
[t=]

[

|

A small grey breakpoint indicator
marks a disabled Read/Write breakpoint.

el s el et =l el el el

e

[
1

(%2}
T
[L U T T T TR TR T}

=
i
Tt
LV I 1 1

Break.Set <address> | <range> /Write | /ReadWrite [/DISable]

; allow HLL expression to specify breakpoint
Var.Break.Set <hll_expression> /Write | /ReadWrite [/DiSable]

Break.Set 0x0B56 /ReadWrite

Break.Set ast /Write

Break.Set vpchar+5 /ReadWrite /DISable

Var .Break.Set flags[3..5] /ReadWrite

Var .Break.Set ast->count /ReadWrite /DISable

Break.List

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 90

Breakpoint Behavior

Breakpoint Setting at Run-time

éy B::5YStem
Mode
) Down
©) NoDebug
() Prepare
) Go
() Attach
() StandBy
Up (StandBy)
@ up

CFU

ATOMZITHX

MemAccess
CPU

@ Denied

CpuAccess

(©) Enable
@ Denied

(©) Nonstop

JtagClock
10.0MHz

-

=0 ESH =
Option

[V] MASKASM
[C] MASKHLL

[¥] coHold
[C3TAGONlY

[¥] NoReBaot

CORESTATES

CONFIG

If MemAccess and CPUAccess is Denied breakpoints can only be set when the program execution is

stopped.

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

91

Breakpoints after Reset/Power Cycle

To understand this topic you have to be aware of the following:
J TRACERS2 can only set breakpoints when the program execution is stopped.

. The onchip breakpoint logic is reset on a chip reset/power cycle. As a result the currently set
onchip breakpoints are lost.

. If the target under debug is reset/re-powered all software breakpoints are lost.

TRACES32 has the following standard behavior: The breakpoint list in TRACE32 PowerView is not
deleted, when TRACES32 detects a reset/power cycle. Thus TRACE32 can set all listed breakpoints again
when the program execution is stopped and restarted.

If TRACES2 detects a reset/power cycle and the core(s) immediately starts the program execution, it is
highly likely that all listed breakpoints are lost.

To indicate this loss, TRACE32 changes the state of the breakpoints from Valid to Unknown State. The
state of the breakpoints is displayed in the note field of the breakpoint listing.

All listed breakpoints become Valid again, when the program execution is stopped the next time.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 92

Example:

W B::Break List
[Delete All|[O Disable Al (@ Enable Al @ Wit |[& 1mpl...]Lﬁstore][Sload... || EilSet...
address types note i
¥: 00000000004 00EGC [[Program SOFT valid matny,
¥:0000000000602E31--0000000000602E31 ||Write ONCHIP |valid viri p-l earray[1][1][1]
F

If breakpoints are listed within TRACE32 PowerView they change to the Unknown State when TRACE32
detects that the target is reset/re-powered and the core(s) immediately starts the program execution.

Fie Edt View Var Brek Run CPU Misc Trace Perf Cov INTELCOUGARPOINT Window Help
kLl deern|g o o dum e @12
3 B::Break List

[Delete All|[O Disable All|(@ Enable all|[© nit][ﬁﬂmpl]Lﬁstore][aLoad |[K#set...

address note
X : 00000000004 00E6C Program SOFT Unknown State | main'\6
X: 0000000000602E31——0000000000602E31 Write ONCHIP |Unknown State | vtriplearray[1][1][1]

][pata [wvar [ust J[pere][Svstem |[other][previous

g || b e

As soon as the program execution is stopped, all listed breakpoints become Valid again, because they will
be set again when the program execution is restarted.

File Edit View Var Break Run CPU Misc Trace Perf Cov INTELCOUGARPOINT Window Help

(M A+ »nE e o 8B Sas @ 312

| @ BuBreakList e

A elete All][O Disable Al @ Encble All[__ @ mit][Z1mpl... || EZstore... | BLoad...][GAset... |

address types imp]l note
¥ : 00000000004 00EGC [[Program SOFT valid mainy6
X: 0000000000602E3l——0000000000602E3l Write ONCHIP |valid wtri p-l earray[1][1][1]

iB::i

trigger [devioes][trace][Data][Var List][SYStem][other][previous
XP:000000003A4AA693

Fl 3

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 93

Onchip Breakpoints Changed by Target Program

Both, the debugger and the program running on the target can set/delete the onchip breakpoints.

3 B::Break.List = ESRS5
[Delete Al][O Disable Al @ Enable All][@ it [P impl... | S store... [S Load... || Edset... |

ddress e i ote ——
¥:0000000000602E31--0000000000602E31 [Wr1te ONCHIP ‘Va'l'ld ‘ viripTearray[1]T1]T1] -

If the program execution stops and TRACES32 detects an inconsistent programming of an onchip breakpoint,
the error message Onchip breakpoints modified by target program is displayed in the Break.List
window. The TRACE32 Message area provides details.

If TRACES32 stops due to an onchip breakpoint set by the target program, stopped by DRx breakpoint is
displayed in the Debug field of the TRACES32 state line

A TRACE32 PowerView for Intel x86/x6:

File Edit View Var Break Run CPU Misc Trace Pef Cov INTELCOUGARPOINT Window Help

[wLfdee»u/E oo HuNdas @ iQ

e B::Break.List
[Delete All||O Disable Al @ Enable All] @ it || P impl... | EZstore... [B Load... || Edset... |

address types impl note
¥ :0000000000602E31--0000000000602E31 [Wr1te ONCHIP ‘Va'l'ld ‘ viriplearray[1]T1]T1]

trigger [devices][trace][Data][Var][List][PERF][SYStem][other][previous

XP:0000000000400DD5 \\sieve_x64\sieve\encode+0x28 0 |stopped (inside line) HLL UP

== ——

Please be aware that TRACE32 programs all listed breakpoints every time the program execution is stopped
and restarted. If you want to keep the onchip breakpoints set by the target program you have to
delete/disable all onchip breakpoints within TRACE32.

If you want to use the onchip breakpoints by the target program for another purpose than debugging, use
SYStem.Option.IGnoreDEbugReDirections ON to advise TRACE32 to ignore the onchip breakpoints.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 94

Breakpoint Handling

Real-time Breakpoints vs. Intrusive Breakpoints

TRACE32 PowerView offers in addition to the basic breakpoints (Program/Read/Write) also complex
breakpoints. Whenever possible these breakpoints are implemented as real-time breakpoints.

Real-time breakpoints do not disturb the real-time program execution on the cores, but they require a
complex on-chip breakpoint logic.

If the onchip breakpoint logic of a core does not provide the required features or if Software breakpoints are
used, TRACE32 has to implement an intrusive breakpoint.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 95

Intrusive breakpoints

The usage of these breakpoints influence the real-time behavior. Intrusive breakpoint perform as follows:

Y

Program execution

Program restart

Stop at breakpoint

Check not ok

Check ok

Stay stopped

Each Stop at breakpoint suspends the program execution for at least 1 ms.

‘B::

trigger [devices][trace][Data][Var][other][previous
I Mx_up

The (short-time) display of a red S in the Debug Activity field of the TRACES32 state line indicates that an
intrusive breakpoint was hit.

Intrusive breakpoints are marked by a special breakpoint indicator:

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 96

ProgramPass/ProgramFail Breakpoints

ProgramPass If a breakpoint is set to a conditional instruction, the program
execution is only stopped, if the condition is satisfied (pass).

ProgramFail If a breakpoint is set to a conditional instruction, the program
execution is only stopped, if the condition fails.

Example: Stop the program execution, when the instruction je 0x401266 instruction passes (indicated by

Zero Flag).
= Bulist =N R
[Pistep |[M over]@Diverge][“Retun | @up | PGo | MBreak || ¥mode | Find: . sieve.c
addr/1ine |code 1abel |mnemonic |comment Loy
if (flags[i]) ~
XP:0000000000401234 [4863C3 movsxd rax, ebx
XP:0000000000401237 (OFE6E0E0ZEG000 movZx eax,byte ptr [rax+0x602BEQ]

XP:000000000040123E |84C0

840
XP:0000000000401242 |S0041E
XP:0000000000401245 |44806803

841
XP:0000000000401249 46802428

842
XP:000000000040124D |EEOD

test

Al a
XP:0000000000401240 |7424] e 0x401266
Program Address |

¥ GoTil [rbx+rbx]
il Breakpoint... . rax+0x3

Program I

ProgramFail

ﬁ% Bookmark...

<

g Toggle Bookmark
4f Set PC Here

g Edit Source
& ViewInfo

* GoTill There

£| List There
Assemble here ...
Meodify here ...
Patch here ...

1 B::Break List

(=[O

[Delete Al][O Disable Al @ Enable All][@ it [Pimpl... | S store... [B Load... || Edset... |

address type
¥:0000000000401240Prog

s
ramPass

imp]l note
SOFT ‘Va'l 1d

|
‘ s1eve 10+0x0C o

x
\
N

Intrusive breakpoints are marked with an
intrusive breakpoint indicator

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

97

The ProgramPass breakpoint behaves as follows:

breakpoint

Involved status flags not set

Check

Program execution is stopped at ProgramPass

status flags

Involved status flags set

Stay stopped

g Continue program
execution

Each suspend to check the status flags takes at least 1. ms. This is why the red S is displayed in the

Debugger Activity field of the TRACE32 PowerView state line.

it Wiew Var Break Run CPU Misc Trace Perf Cov INTELCOUGARPOINT Window Help
(MWL d e[ru|E o ol S6a @8
=] Balist [Forl-E- | | B B:Registe
i [Ml Step][» D'ver.]@Dwerge][quetum.][¢ up][» GD.][11 Break] ¥ Mode ,,_E‘ﬂ E’E i ;é
addr /1ine code 1abel Imnemoni c |comm_ sk _ RS
838 1 ags (1 ~MlF _ Rr8
XP:0000000000401234 |4863C3 movsxd rax,ebx Rl R
XP:0000000000401237 |0FEGE0E0ZE6000 movzx eax,byte ptr [rax+ e Rl
XP:000000000040123E |54C0 test al,a FE R
| XP:0000000000401240F " je 0x401266 bF _ RB
E B i | sl
prime = i + 1 + 3; PL 0 —|
XP:0000000000401242 |2D041E lea eax, [rbx+rbx] NT . CR
XP :0000000000401245 |#4806803 Tea r13d,rax+0x3 ke R cR
841 k =1 + prime; WM _ (R
XP:0000000000401249 |4650242B ea ri2d, [rbp+rbx] —MWilsc _ cr
while (k <= SIZE) 4 CR
XP:000000000040124D |EEOD { jmp 0x40125C XC
B | I | 3 E
WP
‘ B::Break.List K
[Deletz All [O Disable Al @ Enable All][@ it || &mpl... | E3store... || Bload... || Kiset...]______ ';E—
address types impl note S
®:0000000000401240ProgramPass |SOFT valid s1eve\10+0x0C i)
- 4 4
B::|
trigger [devices] [trace] [Data] [Var] [List] [PERF] [other] [previous]
o | (- < [op

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

98

File Edit View War Break Run CPU Misc Trace Perf Cov INTELCOUGARPOINT Window Help
[k Ll eern B ol HuN dalse @2
i=] BrList EI I B:Registe
i [Mstep || W over]@Dwerge][SRetun | @up || pGo | HBreak || ¥jMode]ﬂ EE B Eé
addr/1ine |code |Tabel mnemoni c |comm | laF _ RS
838 if (fTags[i ~WMEF B RS
XP:0000000000401234 |4863C3 movsxd rax,ebx SRl
XP:0000000000401237 |OFE6B0E02B6000 movzx eax,byte ptr [rax+ i |
XP:000000000040123E |54C0 test al,a F T Rl
| XP:0000000000401240§ '/ ie 0x401266 DF _ RB
i j 5 | R
prime = i + 1 + 33 ol
XP:0000000000401242 |2D041E Tea eax, [rbx+rbx] NT _ CR
XP:0000000000401245 [44806803 Tea ri3d,rax+0x3 RE R CR
841 k =1 + prime; WM _ CR
XP :0000000000401249 |4680247E ea ri2d, [rbperbx] —llac T cr
while (k <= SIZE) 3 CR
XP:000000000040124D |EE0D : jmp 0x40125¢C e
i EN! m | 3 E
WP
e B::Break.List F
(3% Delete All (O Disable Al (@ Enable Al @ Wit |[B 1mpl... |52 Store... || ELoad... || Eiset... | ';rc
address types impl note Sl\r‘:
X:0000000000401240 ProgramPass |SOFT vaTlid 57eve \10+0x0C]
4 4
|B: :|
trigger [devices] [trace] [Data] [Var] [List] [PERF] [other] [previous]
XP0000000000401240 sere y64 St H0AC b stopped RN M |uP

Break.Set <address>l<range> /ProgramPass

Break.Set <address>l<range> /ProgramFail

Break.Set 0x401240 /ProgramPass

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

99

Break.Set Dialog Box

There are two standard ways to open a Break.Set dialog.

[Break] Run CPU Misc Tr '%&:m =N =
” [M ostep | ﬁ{}verl][4 Next |[¢ Return || lQUp JL_»Go | I Break | ;'fﬂhk)dell

. addr/1ine |source |
éb Implementation...

—1

-

2% Delete All | Program Address
- or 651 + Go Till il b=
ZF Trigger Bus...
i ol OHChipTrigger--- 83 Breakpoints
Event Trigger.., i Display Memory 4

External Trigger.., g Toggle Bookmark

* Set PC Here
% Edit Source
i Wiew Info

Trigger Reset

&
/* job for ba~
b

il B::Break Set
— address [expression
|

— type options —implementation —
@ Program [T Exclude [CITemporary
) ReadWrite [T nOMARK [C] p1sable — action
©) Read [p1SableHIT stop -
) Write DATA
© default [~]| | [¥ advanced]
P T [Add | [Dpeete] [cancel |

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 100

The HLL Check Box

Function Name/HLL Check Box OFF

sYmbol .INFO func2

; display symbol information
; for function func2

3 BusYmbolINFO func2

[& symbols|[fiffoump |[Elust |[Cview || $8mmu |

[address info
F: RSP+00000008

function

s1eve_xb4hs1eve \FuncZ

function info

XP:0000000000400163--00000000004001FC global static

64b1t size: 4. push: [] use: [RAX,RBX,RCX,RDX,REP,RSI,RDI]

module info

returns: XP:00000000004001FC

anguage: ELF-C
prod "1 GNU C 4.6.2

vel\sieve. c

source: mnth locallsoftware'sies

type

(void (J) (function returns void)
(void) void
4 F
€ BuBreakSet [F=5 Eol 5
addressf’ expression - -
funcz - [T HLL
- type - Uptlons - Implemenmhon
@ Program [T Exclude [CITemporary
) Readwrite [CInoMARK [T p1sable - action ——— {
) Read [T D1SableHIT stop -
-:-Write - DATA . I —
* default [|| | [¥ advanced |
FoT— [—r— [Delete | [cancel | v

Break.Set func2

Program breakpoint is set to the function entry (first address of the function)

183 B::Break.List = ESR (5
[Delete All|[O Disable Al @ Enable All] @ it || P impl.. | S store... [B Load... || Edset... |

address types imp]l note i
X:0000000000400163?Pr0gram SOFT ‘Va'l'ld ‘ func2 -
4 2

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 | 101

Program Line Number/HLL Check Box OFF

sYmbol .INFO func2\17 ; display symbol information
; for 17th program line in
; function func2

& Bus¥mbolINFO func2\17 =N EER(

[% symbols| fHoump | Sust || Qview || $8wmmu |

jaddress _info
F: REP+00000010

Tine

ws1eve_x64is1eve 171--173 1:\EVBYIntel\Core'sieve'sieve.cC (source: “mnthTocallsoftware\sievesieve.c)

XP:00000000004001E9--00000000004001CC

module info

anguage: ELF-C

producer: GNU C 4.6.2 _ _

source: \mntYlocal\software\sieve\sieve.c

¢

€ BuBreakSet [F=5 R 5
address;" expression - —
func2\17 - [T HLL

- type Uptlons Implemenmhon -
@ Program [[] Exclude [CITemporary
) ReadWrite [T nOMARK [C]p1sable — action ——— {
) Read [“] p1SableHIT stop -
-:-Write — DATA . S '
* default [~|| | [¥ advanced |

ok] —r—| [Delete | [cancel | v

Program breakpoint is set to the first assembler instruction
generated for the program line number

W B::Break List = & ==

[Delete Al][O Disable Al @ Enable All] @ it [Pimpl... | EZstore... [B Load... || Edset... |

address types imp]l note i
X:0000000000400139?Pr0gram SOFT ‘Va'l'ld ‘ func2'\17 -
4

Break.Set func2\17

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64

102

Variable/HLL Check Box OFF

sYmbol.INFO flags ; display symbol information
for variable flags

7

4 BusYmbolINFO flags =n =R
|[& symbols|[ftioump |[Eust || Qview | $8mmu |
laddress info .
F: REP+00000010

ariable

Vhs1eve_x64%GlobaT \FTags

XD:0000000000602BE0--0000000000602BF2 global static

type
(char T197) (array of char, 19 bytes, 0..18)

(char) (signed & bits)

4

G B:Break Set (=[O el
address,|r express|0n -
flags - [CTHLL

- implementation -

- type - options

) Program [C] Exclude [CITemporary

) Readwrite [CInoMARK [C] p1sable - action ——— {

) Read [“] D1SableHIT stop -

-@-Write —DATA ———— — N |

© default [|| | [¥ advanced |
Ok] [Add] [Delete] [Cancel]

\

Selected breakpoint is set to the start address of the variable

3 B::Break.List = | EeR5c
[Delete All|[O Disable Al @ Enable All] @ it || P impl... | S store... [B Load... || Edset... |

address types imp]l note i
X:OOOOOOOOOOGOZBEO?WMte ONCHIP ‘Va'l'ld ‘ tTags -
4 F

Break.Set flags

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64

103

Variable/HLL Check Box Must Be ON

sYmbol .INFO flags

4 BusYmbolINFO flags

(| & symbols| foump [Eust || Coview || $8wmmu |

laddress info

display symbol information
for variable flags

F: REP+00000010
ariable
Visieve_x64\GlobaT\FTags
XD:0000000000602BE0--0000000000602BF2 global static
type
(char T197) (array of char, 19 bytes, 0..18)
(char) (signed 8 bits)
. Intel® x86/x64: The on-chip breakpoint logic supports ranges of the following sizes for Write and

ReadWrite breakpoints: 1-, 2-, 4-, 8-bytes (aligned). If the specified breakpoint fulfills this
requirement, the breakpoint is accepted.

il B::Break Set ==]
address f expressiopn ——————————————————— S .
- type UptIUI"IS ”-nplemenmtlon
) Program [Exclude [C]Temporary
) Readwrite [CInoMARK [TIp1sable - action ——— {
) Read [T D1SableHIT stop -
-@-Write D sy =
© default [|| | [¥ advanced |
Ok] [Add] [Delete] [Cancel] v
Selected breakpoint is set to the address range used by the HLL-expression
M B:Break List oo =)
(% Delete All|[O Disable All @ Enable all|[@ it |[&Impl... || store... || S Load... || Biset.. |
address types imp]l note |
X:OOOOOOOOO06OZBE3——OOOOOOOOOOSOZBE3f‘w'r'lte ONCHIP |Vahd | FTags[3] P
4 ¥
Var.Break.Set flags[3]
. otherwise the breakpoint is rejected with an error message.
B::|
aqdress = oint resource
trigger [devices] [trace] [Data] [Var] [List
XP:0000000000400F47 \\sieve_x64\sieve\main+0xED
©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 104

Implementations

il B::Break.Set ===
[~ address / expression 1
| flags[3] - FHL |
type 1 OptiDI"IS 1 implemenmtion
| © Program || [Exclude [[ITemporary | | ‘<— Implementation
| © Readwrite | | [C]NOMARK [Cp1Sable R auto
| = || || S0FT |
é-.:-Read | | [T p1SableHIT | onchip I
| @ write | ~DATA i1 j
| © default [- [¥ advanced | |
Ok] [Add] [Delete] [Cancel]
Implementation
auto Use breakpoint implementation predefined in TRACE32 PowerView.
SOFT Implement breakpoint as Software breakpoint.
Onchip Implement breakpoint as Onchip breakpoint.

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 |

105

Actions

[l B::Break.Set

address [expression

type options
* Program
*) ReadWrite
") Read

@ Write DATA
O default

implementation

Temporary auto ~

DISable action

oo | | [
stop b

B | A
Alpha

Beta
| [Delete | Charly t
Delta

By default the program execution is stopped when a breakpoint is hit (action stop). TRACE32 PowerView
provides the following additional reactions on a breakpoint hit:

Action (debugger)

Spot The program execution is stopped shortly (50..100ms) at a breakpoint hit to
update the screen. As soon as the screen is updated, the program execution
continues.

Alpha Set an Alpha breakpoint.

Beta Set a Beta breakpoint.

Charly Set a Charly breakpoint.

Delta Set a Delta breakpoint.

Echo Set an Echo breakpoint.

Alpha, Beta, Charly, De

lta and Echo breakpoints are not used for Intel® x86/x64.

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 |

106

Options

il B::Break Set = &=
address [expression
» [&]0OH

type options implementation
@ Program [[] Exclude [CITemporary
) ReadWrite [CInomARK [TIp1sable action
) Read [”] DISableHIT stop -
©) Write DATA
© default || | [¥ advanced |

Ok] [Add] [Defete] [Cancel]

Options
Temporary OFF: Set a permanent breakpoint (default).

ON: Set a temporary breakpoint. All temporary breakpoints are
deleted the next time the core(s) stops the program execution.

DISable OFF: Breakpoint is enabled (default).
ON: Set breakpoint, but disabled.

DISableHIT ON: Disable the breakpoint after the breakpoint was hit.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 107

Example for the Option Temporary

Temporary breakpoints are usually not set via the Break.Set dialog, but they are often used while debugging.

Examples:
. Go Till
] BList] = e
[Mstep || W over | MDiverge|[¢ Return|[@ up |[PGo | INBreak || ¥mode | Find: sieve.c
addr/1ine |source I
static int * Tunc8() /* nested local variables =/ -

3

static int statl = 0;
register int regl;

int autol; 2
[
344 autol = statl;
346 for (regl =0 ; regl < 2 ; regl++)
{
static int stat? = 0;
register 1nt reg?; Program Address | i
a Breakpoint...
° Breakpoints 4
@ Display Memory 4

E% Bookmark...

‘ Toggle Bookmark
4 Set PC Here

% Edit Source

& ViewInfo

I Go <address> [address> ...]

; set a temporary Program breakpoint to
; the entry of the function func4

; and start the program execution

Go func4

; set a temporary Program breakpoints to

; the entries of the functions func4, func8 and func9
; and start the program execution

Go func4 func8 funcH9

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 108

. Go Till -> Write

I Var.Go <hll_expression> [[Write]

= [BaList]]
[M Step][W Over]@Dwerge][+ Return][¢ up][b Go][11 Break] ¥ Mode] Find: sieve.c

addr/Tine |source | | | "
726 datas.b[0] = Ox1Z; o~
727 Jill = Ox12:
728 CIéltas. . [2] Variable
729 atas.b[3] ot add to Watch Wind
730 datas.w[0] i) _o éc indow
731 datas.w([1] o] View in Window
;g% gatas. ; ;g; 65/ Set Value..

atas.b|0] .
734 datas. b[1] 63 Modiy Value..
735 datas.b[2] ReadWrite
;;? S:E:§:5=g= a Breakpoint... Read
738 datas.w[1] Bl Advanced Breakpoint 3 |
739 datas. 1[0] e Breakpoints » -
< iad| Display Memory 4 :I o
i isplay Trace L4
4 Grep in Sourcefiles
other L4

; set a temporary write breakpoint to the variable datas.b[1]
; and start the program execution
Var.Go datas.b[1l] /Write

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

109

. Go.Return and similar commands

addr/1ine |source

Irr1 ¢UpI [

sieve.c
[l

=] [BuList] =0
M Step ¥ Over .A.Divergel « Retu I »Go || M Break || [#|Mode | Find:

?tat'lc vold funcl(int * intptr) 7=

static function */

!

it (lintptr)
(void) sieve();

(Fintptr)++;

I

-

I Go.Return

; set a temporary breakpoint to the last instruction

; function and start the program execution
Go.Return

of the current

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

110

DATA Breakpoints

The DATA field offers the possibility to combine a Read/Write breakpoint with a specific data value. Data

breakpoints are implemented as intrusive breakpoints for Intel® x86/x64. TRACE32 PowerView allows
inverted data values for intrusive data value breakpoints.

An intrusive DATA breakpoint behaves as follows:

Restart program

Program execution

'

Breakpoint hit at intrusive
data value breakpoint

'

Debugger reads data
value at read/write address

No

Specified
data value?

Stay stopped

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 111

Example 1: Stop the program execution if a 1 is written to flags[3].

il B::Break Set
— address [expression
flags[3] - [IHLL

— type ———— |~ options —implementation —
) Program [C Exclude [CITemparary
) ReadWrite [T nOMARK [C] p1sable — action
) Read [p1SableHIT stop -
@ Write — DATA
© default 1 [||| [¥ advanced]
| S—T—— [Add | [Delete] [cancel |

File

Edit View Var

Break

Run

CPU Misc Trace

Perf Cov INTELCOUGARPOINT Window Help

(M AMl+ e B2 o N s @ 1 2

] BaList o [= = Viewflagsl3] [| & |
[_Mstep | mover |[ADiverge| #fReturn | @up || pGo | I Break |[}]Mode | Find: -iflags[3] =1 =
addr /Tine |source | | | =
832 count = 0; - |
i il e e . U, 0 LU O L e o 1] 1 = L I
i 836 for (i = 0; i <= SIZE; i++)
838 gf (flags[i1)
840 rime = i + 1 + 3;
841 =1 + prime; B
842 while (k == SIZE) - =
(I i | Pl r
e B::Break.List EI@
[Delete All (O Disable Al [@ Enable All|[@ Init | Z1mpl... || S store... || SLoad... || Bilset... |
address types imp]l data note Ly
X:0000000000602BE3--0000000000602BE3 Write ONCHIP |BYTE Ox1 valid fTags[3] B
< ro
|B: |
trigger [devices] [trace] [Data] [Var] [List] [PERF] [SYStem] [Step] [other] [previous]
XP:0000000000401225 \\sieve_x64\sieve\sieve+0x21 o Stopped byrjw breakpaint] HLL P

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 |

112

If an HLL expression is used TRACE32 PowerView gets the information if the data is written via a byte, word,
long or quad access from the symbol information.

If an address or symbol is used the user has to specify the access width.

il Change Breakpoint X:0:602BE3 = & |
address [expression
0x602be3 + (&) BHe
type options implementation
7 Program [Exclude [CITemporary
*) ReadWrite [CINOMARK [Clp1sable action
") Read [T p1SableHIT stop -
2 Write DATA
_) default 0x1 [Qu.ad. '] [¥ advanced |
o) [(DO
‘Long
Quad
TByte
PByte
HByte
SByte

Units

Byte 8-bit

Word 16-bit

Long 32-bit

Quad 64-bit

TByte 24-bit (TriByte)
PByte 40-bit (PentaByte)
HByte 48-bit (HexaByte)
SByte 56-bit (SeptuaByte)

Var.Break.Set <hll_expression> [[Write | ReadWrite] /DATA.auto <value>
Break.Set <address> | <range> [[Write | ReadWrite] /DATA.[Byte | Word | Quad] <value>

Var .Break.Set flags[3]

/Write /DATA.auto 1.

Break.Set 0x602be3 /Write /DATA.Byte 0x1

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

113

Example: Stop the program execution if !1 is written to flags[3].

[l B::Break.Set = e
address [expression S— S—
flags[3] - (2] @Hu

~type ———— i ———— -implementation
(©) Program [EXclude [ClTemporary
() ReadWrite [C] NOMARK [7] pISable o ——
) Read [T D1SableHIT stop -
© write (DA —
© default 1. [|| | [¥ advanced |

Ok] [Add] [Delete] [Cancel]

File Edit View Var Break Run
Ik Lfdee»u/E 2o

CPU Misc Trace Perf Cov INTELCOUGARPOINT Window Help

Hul o see @i 2

{ BaList (o [@][] | el Bavarview .. [|[E][
| [Mstep || M over |[ADiverge| ¢ Return | @up || »Go | N Break |[¥]Mode | Find: "iflags[3] =0 :
addr/1ine |source |
842 1;.'F1'|'Ie (k <= SIZE) s
844 flags[k] = FALSE;
T T TR =iy 1 1 | L R———
847 Eount++;
851 | return count;
852 |}
int backgroundl{void) job for ba
856 |{ - _
_J < | L} + 4 b
| @ B:BreakList =l e s
|| {3 elete All] (O Disable All @ Enable Al @ mit || & 1mpl... |[SZstore... | BLoad... || Edset... |
address types imp data note |
¥: 0000000000602EE3--0000000000602EE3 {write ONCHIP FYTE 10x1 valid ‘ tTags[3] -
4 F)
| ‘B: :
trigger [devices][trace][Data][Var][List][PERF][SYStem][Step][other][previous
XP:0000000000401259 \\sieve_ x64\sieve\sieve+0x55 0 stopped byr/w breakpoint HLL UP

Var.Break.Set <hll_expression> [[Write | ReadWrite] /DATA.auto !<value>
Break.Set <address> | <range> I[[Write | ReadWrite] /DATA.[Byte | Word | Quad] !<value>

Var.Break.Set flags[3] /Write /DATA.auto !1.

Break.Set 0x602be3 /Write /DATA.Byte !0x1

EE I

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 |

114

Advanced Breakpoints

il B::Break Set ==
address [expression
- [CIHLL
type options implementation
@ Program [[] Exclude [CITemporary
©) ReadWrite [T nOMARK [C]p1sable action
) Read [T p1SableHIT stop -
) Write DATA
O default [v] [A advanced |
Ok] [Add] [Delete] [Cancel]
memory [register [var
(©) ProgramPass P HLL
) ProgramFail
Memony TASK COUNT
MemoryRead 1.
MemoryWri
Rexgistes te CONDition
RegisterRead WIHLL [kt
RegisterWrite CMD

+ [V|RESUME

If the advanced button is pushed
additional input fields are appended

to the Break.Set dialog box to provide
advanced breakpoint features

Advanced breakpoint input fields

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 | 115

TASK-aware Breakpoints

TASK-aware breakpoints allow to stop the program execution at a breakpoint if the specified task/process is
running.

TASK-aware breakpoints are implemented as intrusive breakpoints.

Processing:

Program execution is stopped at TASK-aware
¢ breakpoint

Specified
task
running?

No
pp- Restart program
execution

Yes

Stay stopped

Each stop at the TASK-aware breakpoint takes at least 1. ms. This is why the red S is displayed in the
Debugger Activity field of the TRACE32 PowerView state line whenever the breakpoint is hit.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 116

Example: Stop the program execution at a write access to the variable flags[3] only when the process
“sieve” is performing this write access.

il B::Break Set =l -E 2]
addressf’ expression - -
flags[3] - [&] @Hu
- type UptiUnSimplemenmtion -
) Program [[Exclude [l Temparary
©) ReadWrite [T nOMARK [CIp1Sable — action —————|
) Read ["] p1SableHIT stop -
@ Write oATA— 4
*) default [v] [A advanced |
Ok] [Add] [Delete] [Cancel]
- memUrYJ" register JII L
~) ProgramPass P HLL
) ProgramFail —
Memonfe: TASK — COUNT
"sieve" - 1.
: o cowpition —
RegisterRead [FIHLL [kt
RegisterWrite ~ CMD
+ [V|RESUME
W B::Break List =[]
(& Delete All (O Disable Al @ Enable All|[@ Init || Z1mpl... || S store... || SLoad... || Kilset... |
address types imp] task i
N:03D4 : 0000000080004723--0000000080004723 Jwrite ONCHIP ‘“S'I eve” s1eveyGlobaT yFlags[3] &
F

File Edit Wiew War Break Run

(M k|3 & | 2K

CPU Misc Trace Peff Cov MSRCPUID Linux Window Help

[[Eum e @ L2

= Bulist

[=]=]
Mstep |[M over |[AcDiverge|| ¢ Return|[@up || pGo |[M Break || Emode | Find: sieve.c
addr/line |source |
757, dabelodemaleedecsn sl EasaflageldahdusalBUE D -
] 759 for (i =0; 1 — SIZF; i++) {
760 if (flags[il) {
761 prime = i + 1 + 3; 5
« n v
‘B::Braak‘_\st | = || = || £T |
$&Delste All|[© Disabis Al @ Enable &l @ it || & impl... |[52 store... || S Load... || Eilset... |
address ‘types impl task |
N:03D4 : 0000000080004723--0000000080004723 [Wwrite ONCHIP |"s1eve" \\sieve\GlobaT\fTags[3] -
i f

&% BuTASK.Process

= o |
|@q1c command #thr [state spaceld [pids |
F1344200 sh - [sTeeping 03BF 959, .
FOBEF900 |[® com. android.musi | 10. s ing 03c4 964. 968. 969. 970. 971. 972. 973. 974. 975. 976.
FOBEAGSO sieve - |current(2) | 03D4 980.
FOIEEBO0 @ zygote running 03e3 995. 999. 1000. 1001. 1002. 1003. 1004. -
« 1 r
‘B: :
emulate trigger I devices] [trace 1 [Data I I Var] [List] [PERF I I SYStem] [other 1 [previous
NP:03D4:0000000080000E5C \\sievesieve\sieve+0x2C sieve 2 stopped byr/w breakpoint HLL |uP

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 117

Break.Set <address> | <range> /[[Program | Write | ReadWrite] /TASK <task_name> | <task_id> |
<task_magic>

Var.Break.Set <hlil_expression> [[Write | ReadWrite] /TASK <task_name> | <task_id> |
<task_magic>

; use task ID to specify task
Break.Set 0x602be3 /Program /TASK 223.

; use task name to specify task
Var.Break.Set flags[3] /Write /TASK "sieve"

| 118

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64

Counter

Allows to stop the program execution on the n th hit of a breakpoint.

The onchip breakpoint logic of Intel® x86/x64 does not provide counters, so counters are implemented as

software counters.

Processing:

Counter breakpoint

Increment
counter

Counter No

Program execution stops at

reached final
value?

Yes

Stay stopped

Restart program
- execution

Each stop at a Counter breakpoint takes at least 1.ms. This is why the red S is displayed in the Debugger
Activity field of the TRACE32 PowerView state line whenever the breakpoint is hit.

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

119

Example: Stop the program execution after the function sieve was entered 1000. times.

— address [expression

sieve - (2] FHu
— type ———— |~ options —implementation —
@ Program EXclude Temporary auto -
©) ReadWrite NOMARK DISable — action
) Read DISableHIT stop -
) Write — DATA
© default [|| | [~ advanced |

[ok] [add | [Dpeete] [cancel |
— memory [register [var

(©) ProgramPass |

(©) ProgramFail
MemonReadWrite | — TASK — COUNT
MemoryRead | v| 1000.
Memory\Write
RegisterReadWiit | — COMNDition
ReqisterRead FIHLL [Ckteg
RegisterWrite — CMD

+ [VIRESUME

[XD;:lete A.II][O Disable All | @Enable All || @ it |[& Impl... |[E2store... || BLoad... || EilSet...
address imp]l |count note

types
N : 000000000804 BCRE{Program SOFT ‘0. /1000, Valid

4

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 120

File Edit View War Break Run CPU Misc Trace Peff Cov MSRCPUID Window Help

(MK AL+ run[EH 20 N 6 @i 2

B o e e | E
M Step][W Over]@Diverge][« Return][¢ up][» Go][n Break] ¥|Mode | Find: sieve.c

addr/Tine |source |

P
i static int * func9() /* nested local variables */
323 |1
static statl = 0;
register regl;
auto autol;

328 autol = statl;
-

330 for' (regl =0 ; regl < 2 ; regl++)

static stat?2 = 0;
a (I

‘ Bu:Break.List

contents is

([Delete All|[O Disable Al @ Enable Al @ Init || 2impl... |[E2store... || Sl || Kilset...
address types impl count ote |
N:0000000008048C66 JProgram SOFT |209./100CI. ‘Va‘lwd ‘ sieve -
4 »
‘B: :
trigger | [devices |[trace |[pata |[wvar |[ust][PERF][System][other |[previous

o TR

The red S indicates an

intrusive breakpoint

File Edit View War Break Run CPU Misc Trace Pef Cov MSRCPUID Window Help

!Enw.hrel P 2R O HEE eS| 8 2

] Bulist = (==
Mstep |[M over I@Dwerge][Return | ¢up || »Go | IlBreak]ﬂmode | Find: sieve.c
addr/1ine |source Ty
f gint sieve() /* sieve of erathostenes */ ‘
ﬂc%{
register int 1, primz, k;
int anzahl;
654 anzahl = 0;
656 for (i =0 ; 1 == 51z ; flags[i++] = TRUE) ;
658 for (1 =0 ; i < SIZE ; i++) e
I[Es | I r
aB::Ereak.Llst = |EI|E
|[#% Delete Al (O Disable All (@ Enable Al @ Init_ || & 1mpl... |[E2Store... || P Load... || BiSet... |
address types impl count note 1
N:0000000008048C66 |Program SOFT 0. /1000. 'valid sieve -
; 4)
iB: ;|
trigger [devices][trace][Data][Var][List][PERF][SYStem][other][previous]
NP:0000000008048C66 \\sieve_xB6\sieve\sieve b0 |stopped at breakpoint | | | [T

Break.Set <address> | <range> I[[Program | Write | ReadWrite] /COUNT <number>

Var.Break.Set <hl|_expression> [[Write | ReadWrite] /COUNT <number>

Break.Set sieve /COUNT 1000.

The current counter

permanently updated

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

121

CONDition

The program execution is stopped at the breakpoint only if the defined condition is true.
CONDition breakpoints are always intrusive.

Processing:

Program execution is suspended
at a CONDition breakpoint

AfterStep No
check box

ON?

Yes

Perform assembler
single step

y

Evaluate
condition

Condition No . ,
is p Continue with program
true? execution

Stop program execution

Each suspend at a CONDition breakpoint takes at least 1.ms. This is why the red S is displayed in the

Debugger Activity field of the TRACE32 PowerView state line whenever the breakpoint is hit.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64

122

Example: Stop the program execution on a write to flags[3] only if flags[12] is equal to O when the

breakpoint is hit.

il B::Break Set
— address [expression
flags[3] - IHLL
— type ——— [~ options —implementation —
) Program [T Exclude [ITemporary
©) ReadWrite [T nOMARK [“] p1sable — action
) Read ["] D1SableHIT stop -
@ Write — DATA
O default [v] [A advanced |
 —— [Add | [Dpeete | [cancel |
— memory [register [var
(©) ProgramPass x HLL
(©) ProgramFail
MemonReadWrite | — TASK COUNT
MemoryRead ’7 1.
Memory\Write
RegisterReadWiite | I— CONDition
ReqgisterRead | | flags[12]==0 FIHLL [CAteg
RegisterWrite =X eil1]
+ [VIRESUME

File Edit View Var Break Run (Misc Trace Cov INTE
M &+ 22N D e e | @
=] Br:Data.List E@
[Mstep || M over]@Dwerge][“Rewm | Gup || pGo | HHBreak]ﬁmode | Find: sieve.c
addr/1ine |source | | [=
832 count = 0; A
8 doGeldemaBuiniucsns P bl ans it asul BRI
836 for (i =0; 1 <= SIZE; i++)
838 %‘F (flags[il)
840 rime =i + 1 + 3;
841 =1 + prime; K|
842 \{'.'h'i'le (k <= SIZE)
< | 1 3
‘ B::Break.List EI@
[Delete All (O Disable Al @ Enable All|[@ it |[& 1mpl... |[E3Store... || P Load... || Eset.. |
address types impl condition a note | =
X :0000000000602BE3--0000000000602BE3 {Write ONCHIP [TTags[12]=0 ‘Va'hd | Tlags[3] -
1K L]
o BxVar.View flags[3] flags(12]
iflags[3] =1 -
flags[12] = 0
4 »
||E9: [
trigger [devices][trace ” Data][Var][List ” PERF][SYStem][other][previous I
XP:0000000000401225 \\sieve_x64\sieve\sieve+0x21 0 topped byt besipoint I | T T

The red S indicates
an intrusive breakpoint

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

123

I Var.Break.Set <hll_expression> [[Program | Write | ReadWrite] /VarCONDition <hl/l_condition>

Var .Break.Set flags[3] /Write /VarCONDition (flags[12]==0)

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 124

Conditions not in HLL Syntax

It is also possible to write register-based or memory-based conditions.

Examples: Stop the program executions on a write to address flags if Register R11 is equal to 1.

a B::Break.5et EI@
address [expression
flags > [&]EHu
type options implementation
() Program [Exclude [CITemporary
) ReadWrite [T nOMARK [C]p1sable action
) Read [T p1SableHIT stop -
@ Write DATA
O default [v] [A advanced |
Switch HLL OFF ->
ok] [_Add | [Dpelete]| [cancel] TRACE32 syntax can be used
memory / register / var to set the breakpoint
©) ProgramPass x HLL
(©) ProgramFail
() MemonRead\irite TASK COUNT
(©) MemoryRead 1.
©) MemoryWrite ,
RegisterReadWrite CONDition
RegisterRead Register(R11)==0x1 [ETHLL | [ke
RegisterWrite CMD
+ [VIRESUME

I Break.Set <address> | <range> I[[Program | Write | ReadWrite] /CONDition <condition>

; stop the program execution at a write to the address flags if the
; register R11 is equal to 1

Break.Set flags /Write /CONDition Register (R1l1l)==0x1

; stop program execution at a write to the address flags if the long
; at address ND:0x1000 is larger then 0x12345
Break.Set flags /Write /CONDition Data.Long(ND:0x1000)>0x12345

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 125

AfterStep Option

Example: Stop the program execution if an register-indirect call calls the function func3.

= [BuList]

[Mistep |[M over]@Diverge][& Return ||

eup |

sieve.c

addr/1ine |code

label mnemonic

595

NP : 000000000804 8BOF](ALF4920408

NP : 0000000008048B14 |FFDO

NP :0000000008048B16 [5945EC

i = (*funcptr) O;

mo ebp-0x14],eax Program Address
start: % GoTil 3
598 j = func5((int) j, (char) 2, (long) 3); Breakpoint...
NP : 0000000008048B19 |C7442408030000.. start: mow dword ptr [esp+ Breakpoints 3 i
‘| . | i Display Memory L4 '
F Bookmark...
A Toggle Bookmark
4§ Set PC Here
Kl B::Break.Set NP:0x2048B14 /DIALOG o == % ET;LS;::E
address [expression 3 -
NP:0xB8048B14 - [CIHLL
Assemble here ...
type options implementation Madify here ..
@ Program [C] Exclude [CITemparary Patch here .
©) ReadWrite [T nOMARK [C] p1sable action
) Read [T D1SableHIT stop -
) Write DATA
_) default [v] [A advanced |
(Ok] [Add] [Delete] [Cancel]
memory [register [var
*) ProgramPass x HLL
) ProgramFail
Memon ez TASK COUNT
MemoryRead 1.
Memory\Write
RegisterReadWiite CONDition
RegisterRead Register(RIP)==ADDRESS.OFFSET(fun [CIHLL [V]#testa
RegisterWrite CMD
+ [VIRESUME
G B::Break List o= =)
[Delete All| O Disable All [@ Encble All|[@ it |[& Impl... |52 store... || Bload... | Eliset... |]
address types imp]l condition a note i
N:0000000008048814jwogram |SOFT Register (RIP)==ADDRESS.OFFSET (func3) A|Va'hd | main\28+0x5 >

A indicates that TRACES32 performs an assembler step before it

evaluates the condition when the program execution is suspended
at the CONDition breakpoint.

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 | 126

["& TRACE32 PowerView

File Edit VYiew Var Break Run CPU Misc Trace Pedf Cov MSRCPUID Window Help

(kA3 e rn[E 2 TN sdcs @ i

= Brlist = ==
[M Step][W Over]&Diverge][+ Return][¢ up][b Go][Il Break] ¥ Mode] Find: funcptr sieve.c |
addr/Tine |code |Tabel |mnemonic |comment |
2572 [T -
~ 55 func3: push ebp
NP :0000000008048204 [59E5 mov ebp,esp
253 return 5; [
NP :0000000008048206 ?805000000 mowv eax,0x5 =
254
NP :0000000008048208 (50 pop ebp
NP :000000000804820C [C3 ret
K [1n b
B B::Break. List = =R
(9% Delete All|[© Disable Al @ Enable All] | @ it [& Impl... || store... || ELoad... | Biset... |
address |types impl |condition a [note Ly
N: 000000000804 8614 {|Program SOFT Ftemster(RIP):ADDRESS.UH-M—_IU’unc3) A [valid main\Z28+0x5 -
[P
!B: |
trigger || devices][trace |[Data J[wvar |[st [PeRF][SvStem][step [Go
NP:0000000008048203 \\sieve_x@6\sieve\funca [stopped at breakpoint | |

I Break.Set <address> | <range> [[Program | Write | ReadWrite] /CONDition <cond.> /AfterStep

Break.Set main\44+0x7 /Program
/CONDition Register (RIP)==ADDRESS.OFFSET (func3) /AfterStep

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 127

CMD

The field CMD allows to specify one or more commands that are executed when the breakpoint is hit.

Example: Write the contents of flags[12] to a file whenever the write breakpoint at flags[12] is hit.

OPEN #1 outflags.txt /Create

a B::Break.5et EI@
address [expression
flags[12] + (2] #He
type options implementation
Program EXclude Temporary |aut0 v|
ReadWrite NOMARK DISable action
Read DISableHIT |st0p v|
2 Write DATA
default | ~|| | [A advanced |
Ok] [Add | | Delete | | cancel |
memory [register [var
ProgramPass
ProgramFail
TASK
Fe e CONDition

VIHLL [Atasty

RegisterRead
RegisterWrite CMD

L "flags[12]=" Var.VALUE(flags[12]) = [V|RESUME

;open the file for writing

The specified command(s) is executed
whenever the breakpoint is hit. With RESUME
ON the program execution will continue after
the execution of the command(s) is finished.

The emd field in the Break.List window
informs the user which command(s) is
associated with the breakpoint. R indicates
that RESUME is ON.

180 B::Break.List

(& Delete All O Disable Al @ Enable all| @ mit || & 1mpl...][E?;St‘ore...][S load... || Eiset.. |

v o e

address types imp] cmd r |note |
N:0000000008049314”0000000008049314%Wr'lte ONCHIP ‘WRITE #1 "tlags[12]=" var.VALUE(TTags[1Z]) R [valid | flags[12] =
4 »

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 128

It is recommended to set RESUME to OFF, if CMD

starts a PRACTICE script with the command DO

commands are used that open processing windows like
Trace.STATistic.Func or Trace.Chart.sYmbol

because the program execution is restarted before these commands are finished.

File Edit View War Break Run CPU Misc Trace Perf Cov MSRCPUID

Window Help
(M Al dee|ru[E 28 S Seic @i
= Bulist E=R|ESE
M Step][W Over]@Diverge][« Return][¢ up][b Go][11 Break] ¥|Mode | Find: funcptr sieve.c
addr/Tine Tabel mnemonic comment |
NP : 0000000008048C7F [CEE00ED mov byte ptr [eax+0x80493087,0x1 ~
0 I add dword ptr [ebp-0x1C],+0x1
NP : 000000000804 8C8A cmp dword ptr [ebp-0x1C],+0x12
NP : 000000000804 8CEE jle 0xB8048C7C
658 for (1 =0; 1 <= SIZE ; i++)
NP : 000000000804 8C30 | 0000000 mov dword ptr [ebp-0x1C],0x0 |
NP : 000000000804 8CS7 iz jmp 0x8048CDC P
i EN . m | ’
| @ B:Break List [EE=]
[Delete All O Disable Al [@ Enable all | @ it |[& 1mpl... || 52 store... || S Load... || Elset.. |
address types imp cmd r note |
N:0000000008049314**0000000008049314ﬂ'lr1te |0KHIP |'HR1TE #1 "fTags[12]=" var.vALUE(TTags[12]) R ‘Va11d ‘ fTags[12] -
....... . .
18: :|
trigger [devices] [trace] [Data] [Var] [List] [PERF] [SYStem] [Step] [Go] [Break] [other] [previous
NP:0000000008048C86 \\sieve_x86\sieve\sieve+0x20 0 lgoing MIX UP

CLOSE #1

T~

The state of the debugger toggles between
going and stopped

; close the file when you are done

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 |

129

Display the result:

Edit View Var Break Run C
¥ Run Script...

[Edit Script...
4 Search for Script...

% Open File...
2 Load File...

B Type File...

4] Dump File...
@ Stop Command
E Printer Settings...

8 Window Print...
Window Screenshot to File...

B::TYPE C:\T32_Atomn\baylake\baylake-132-003\t32\outflags.tt == =]

1.

of 1989.

(=] (=] CTrack

tlags
tlags
tlags
tlags
tlags
tlags
tlags
tlags
tlags
tlags
tlags
tlags
tlags
tlags
tlags

Fl

[12]=1
[12]=0
[12]=1
[12]=0
[12]=1
[12]=0
[12]=1
[12]=0
[12]=1
[12]=0
[12]=1
[12]=0
[12]=1
[12]=0
[12]=1

Break.Set <address> | <range> I[[Program | Write | ReadWrite] /CMD {<command>} [[RESUME]

Var.Break.Set <hll_expression> [[Write | ReadWrite] /CMD {<command>} [[RESUME]

Var.Break.Set flags[1l2]
/CMD "WRITE #1 ""flags[l2]="" Var.VALUE(flags[12])" /RESUME

/Write

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

130

Display a List of all Set Breakpoints

[Break| Run CPU Misc Tr

il Set...

2K Delete All

ZF Trigger Bus...
& OnChip Trigger...

Trigger Reset
@ ot (=] s
K Delete Al (O Disable All [@ Enable Al @ Init_|[& Impl... |[E2 Store... || ELoad... || ESet... |
address types dimpl count cmd r |note L
X:0000000000401204 {Program SOFT 0. /100. Valid s1eve P
X:0000000000401262 |Program SOFT valid sievel19
X :0000000000602790--00000000006027 91 [Readwrite |ONCHIP valid (datas)--(datas+0x1)
X:0000000000602BEC--0000000000602BEC jwrite ONCHIP WRITE #1 "flags[12]=" Var.VALUE(flags[12]) R |valid flags[12]
4 L3

I Break.List List all breakpoints

Delete Breakpoints

@oseniin B
[Delete All (O Disable Al @ Enable All][@ it | Z1mpl... || S store... || Sload... || Kilset... |
address types imp] count note |
¥ : 0000000000400F47 JProgram SOFT Valid main'29 -
X:0000000000401204 |Program 0.,/1000.
X:00000000004012C4 |Program SOFT Breakpoint ackgroundll4
¥:0000000000401313 |Program SOFT i ch background2'14
X:0000000000602BE3--00000000006028E3 [write ONCHIP ange.. flags[3]
:
v Enable »

here L4

Break.Delete <address>|<address_range> [[<type>] [I<implem.>] [I<option>] Delete breakpoint

Var.Break.Delete <hl|_expression> [[<type>] [[<implem.>] [/<option>] Delete HLL breakpoint

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 131

Enable/Disable Breakpoints

W B::Break List ==
[Delete All (O Disable Al (@ Enable All][@ Init | & 1mpl... || S store... || SLoad... || Kilset... |
address types imp]l count note |
X:0000000000400F47 SOFT Valid main,29 =
X:00000000004012C4 SOFT valid backgroundl'14
X:0000000000401313 |Program SOFT valid background2',14
X:0000000000602BE 3--0000000000602BE 3 |Write e na:&_
a Change... =
¥ Delete b
here 4
Break.ENable [<address>|<address_range>] [/<option>] Enable breakpoint
Break.DISable [<address>|<address_range>] [/<option>] Disable breakpoint

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

132

Store Breakpoint Settings

3 B::Break.List
[Delete All (O Disable Al @ Enable All|[@ Init || Z1mpl... | S store... | Sload... || Bilset... |
address types Tmp count note Ly
¥:0000000000400F47 [[Program SOFT Valid mainy29 o
¥:00000000004012C4 |Program SOFT valid backgroundl'14
¥:0000000000401313 |Program SOFT valid background2'14
¥:0000000000602BE3--0000000000602BE3 |Write ONCHIP valid flags[3] -
4 3

= Search 32
Organize » New folder
s Contacts Mame Date modified

j Desktop i :
|| baylake.cmm 23.01.2014 07:47 CMM File

|| baylake-test.cmm 15.01.2014 14:05 CMM File

J dosbox
4 Downloads
o Favorites
Links
| My Documents
Jf My Music
= My Pictures
2 My Videos
- 4

rarhnina thaiNata

File name: m

Save as type: ’Cunent (*.cmm)

Hide Folders

// T32_1000143 Thu Jan 23 12:02:56 2014

B::

Break.RESet

Break. Set main\48 /Program /DISable

Var .Break.Set plotl; /Read /Write /TASK "sieve"
Var .Break.Set datas.b[2]; /Write

ENDDO

I STOre <filename> Break Generate a script for breakpoint settings

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 133

Debugging

Basic Debug Control

There are local buttons in the List window for all basic debug commands:

File Edit View Var Break Run CPU Misc Trace Pef Cov MSRCPUID Linux Window Help
IRy u[E D e eE @ Lo

= BuList =0 E=H
I MStep § M Over [@Diverge [#Return][@up][»Go | HBreak]%Mode | Find: sieve.c

addr/1ine |source |
int sieve(void) /* sieve of erathostenes =/ -
751 |{
register int i, prime, k;
int count;
i3 count.=.0;
757 for (1 =0 ; i <= SIZE ; flags[i++] = TRUE) ;
759 for (1 = 0; 1 <= SIZE; i++) { =
4 | L 2
"
‘B::
emulate trigger [devices][trace][Data][Var][List][PERF][other][previous
NP:03R%:0000000060000E \siewisiewisieetinid |sieve 3 |stopped HLL UP
Step Single stepping (command: Step)

Please remember that assembler single steps are only performed on the
selected core.

Over Step over the call (command Step.Over)
Diverge Exit loops or fast forward to not yet stepped code lines. Step.Over is performed
repeatedly.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 134

More details on Step.Diverge

TRACE32 maintains a list of all assembler/HLL lines which were already reached by a Step. These reached
lines are marked with a slim grey line in the List window.

= [BuList] = EoR5c
[Mistep |[M oOver]@Diverge][Retun [@up [»Go][I0Break |[Mode | Find: sieve.c
addr/1ine |source i
char TTags[SIZE+1]; o~
static int sieve(void) /* sieve of erathostenes */
828 |1
register int i, prime, k;
int count;
S-t count = 0;
525] for (1 =0 ; 1 «= 5IZE ; flags[i++] = TRUE) ;
for (i =0; i <= S5IZE; i++)
' iflCETaqs TR
i rime = i + 1 + 3;
=1 + prime; =
832 ; ;
224

The following command allows you to get more details:

List.auto /DIVERGE

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

135

=] BuList /DIVERGE

=N Noh

[M step][B Over]@Diverge][SReturn [¢up |

sieve.c

b Go |[INBreak]%Mode | Find:

s state 1 addr/1ine |source i
h stop 828 |1 o~
register int i, prime, k;
int count;
h done 832 count = 0;
h done 834 for (i =0 ; i == SIZE ; flags[i++] = TRUE) ;
h done [836 for (i = 0; i <= SIZE; 1i++)
target 836 for (i =0; i <= SIZE; i++)
h done 838 ; if (flags[i])
hit 840 | " cime. =i +.i.+.3;
841 =1 + prime;
= 842 1;.'h'i'|e (k <= SIZE)
844 flags[k] = FALSE;
845 k += prime;
847 ?_ount++;

4 | L} F

Drag this handle to see the DIVERGE details

i£] B:List /DIVERGE = o <
[Mistep |[M oOver]@Diverge || #Return][@up || »Go || mBreak || F¥Mode | Find: sieve.c
s state 1 addr/1ine |code label mriemonic comment i
a done 834 for (1 =0 ; 1 <= S5IZE ; flags[1++] = TRUE) ; -
a done XP:0000000000401214 [BE00000000 mow ebx, 0x0
a done ¥P :0000000000401219] jmp 0x401228
XP:000000000040121B movsxd rax,ebx
XP:000000000040121E [mov bgte ptr [rax+0x602BE0],Ox1
XP:0000000000401225 | add ebx,+0x1
a done ¥P :0000000000401228]|53 cmp ebx,+0x12
hit XP jle 0x40121E
i = 0; 1 <= SIZE; i++) |
XP:000000000040122D (EEOOO0OOOC mov ebx,0x0 [E |
XP:0000000000401232 [EB35 jmp 0x401269
I »

Column layout

s Step type performed on this line
a: Step on assembler level was started from this code line
h: Step on HLL level was started from this code line
state done: code line was reached by a Step and a Step was started from

this code line.

hit: code line was reached by a Step.

target: code line is a possible destination of an already started Step,
but was not reached yet (mostly caused by conditional branches).

stop: program execution stopped at code line.

indirect branch taken
(return instructions are not marked).

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 | 136

Example 1: Diverge through function sieve.

1. Run program execution until entry to function sieve.
=1 [BuList /DIVERGE | =0 |EER 5
[Mistep |[M over]@Diverge][SRetun | @up || »co |[nBreak |[#|Mode | Find: sieve.c
s state 1 addr/1ine |source | | | Loy
char Tlags[SIZE+1]; o
L B T e ot erathostenes *
828 Program Address
register int |
Hhal i aBreakpoint...
832 count = 0; eﬁreakpoints 4
834 toriiiai=i0: ¢EDi5playMem°W " & TRUE iz
! j ﬁE Bookmark...
836 for (i =0; i <= gf Toggle Bookmark
838 if (flags|#e SetPCHere
{ %EditSource
840 ol
841 E a View Info
842 whiTe WK == S1ZE)

i£] BuList /DIVERGE

[
stop indicates that the
program execution was
stopped at this code line

2.

Start a Step.Diverge command.

[Mistep |[M over]@Diverge][SRetun [@up || »co |[mnBreak |[#|Mode | Find:
s state 1 addr/1ine |source
#define SIZE 18
char flags[SIZE+1];
static int sieve(void) /* s
e
register 1nt 1, prime, k;
int count;
832 count = 0;
834 for (1 =0 ; i <= S5IZE ; flags[i++
836 for (i =0; i «= SIZE; i++)
1

i£] BuList /DIVERGE

h indicates that a Step

command in HLL mode was
started in this line

L =
—

hit indicates that this
code line was reached by
Step command

[Mstep || M over | AiDiverge | Return | Gup | »Go || NBreak || FEMode | Find:
s state 1 o addr/1ine |source
#define SIZE 18
char flags[SIZE+1];
static int sieve(void) /* si
+h stop 828)|{
register int i, prime, k;
int count;
S 832 count = 0;
834 for (1 =0 ; i == SIZE ; flags[i++
836 Eor (i =0; i <= SIZE; i++)
838 gf (flags[il)
840 rime = i + i + 3;
841 = 1 + prime;
842 while (k <= SIZE)
844 f'lags[k:[= F£

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 |

137

3. Continue with Step.Diverge.

i£] BuList /DIVERGE
[MisStep |[M over]@Diverge][Retun [@up || »co | mEBreak]%Mode | Find:
s state 1 addr/1ine |source | |
#define SIZE 18
char flags[SIZE+1];
static int sieve(void) /% s
h stop 8281|1
register int i, prime, k;
int count;
|—> h done 832 count = 0;
done indicates that the it & foClodomouin il STZE 0. Ll 205 Ludis
code line was reached by 836 for (i = 0; i <= SIZE; i++)
a Step command and that 838 if (flags[i])
a Step command was 840 { cme - DL
i i 841 =1 + prime;
started from this code line 247 ‘g‘*‘”e AL, T
1+ | i |

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 138

i£] BuList /DIVERGE

[MisStep |[M over]@Diverge][Retun [@up || »co | mEBreak]%Mode | Find:
s state 1 addr/Tine |source | |
#define SIZE 18
char flags[SIZE+1];
The tree button o : :
. static int sieve(void) sie
indicates that two or h stop 828 (. L
register 1nt 1, prime, k;
more detached blocks of Led il
assembler code are h done s o
generated for an HLL , Q DR R R R R T
. Ll or =0.;.0.<= sl i+t
code line | d ags
|t 836 for (i = 0; i <= SIZE; i++)
838 gf (flags[i1)
840 prime =i + 1 + 3;
4, Continue with Step.Diverge.

|—>

The drill-down tree is
expanded and the HLL
code line representing

=] BuList /DIVERGE

[Mistep |[M over]@Dwerge][+ Return |

e |

s state 1 addr/line

source

b Go |[Il Break]%Mode | Find:
| |

#define SIZE 18
char flags[SIZE+1];

static int sieve(void) /* siev
h stop 828/|4
register int i, prime, k;
int count;
h done 832 count = 0;
h done 834 for (1 =0 ; i1 «= SIZE ; flags[i++] :
| hit 8 BB de = STZE Lo dicit)
L 836 for (1 = 0; 1 <= SIZE; 1++)
838 ?‘ (flags[il)
840 rime = i + i + 3;
841 =1 + prime;
842

1%.'h'i'|e (k <= SIZE)

the reached block of

1] |

assembler code is marked as hit

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 |

139

This assembler code generated
for the HLL line includes a
conditional branch

] BuList /DIVERGE

[Mstep || ®over | MDiverge] « Return| eup |

][11 Break]%Mode]F|_nd
|

s state 1 addr/1ine |source
#define SIZE 18
char flags[SIZE+1];
static int sieve(void)
h stop 828/|4
register int i, prime, k;
int count;
h done 832 count = 0;
h done 834 for (1 =0 ; i1 == SIZE ; flags][i
| hit 8 BB de = STZE Lo dicit)
L 836 Eor (1 =0; 1 <= SIZE; 1++)
] [BrList.Mix /Track] = =]
[Mistep |[M oOver]LDwerge][+ Return][¢ up][»Go || I Break || Mode]
addr/1ine |code label |mnemonic |col-—
i 836 for (1 = 0; 1 == SIZE; i++)
L i EEC0000000 mov ebx, 0x0 i
XP:0000000000401232 |EEZ35 I Jmp 0x401269 L
1+ | - i | r

5. Continue with Step.Diverge.

|
The reached code line is
marked as hit

The not-reached code line is
marked as target

=] BuList /DIVERGE
[Mistep |[M over]@Diverge][+ Return][eup |

s state 1 addr/1ine |source |
static int s‘leve(vo‘ld) /

h stop 828 |4
register int i, prime, k;
int count;
h done 832 count = 0;
h done 834 for (i =0 ; i == SIZE ; flags[
h done [836 for (i = 0; i <= S5IZE; i++)
836 for (i = 0; i <= SIZE; i++)

gf (flags[il)

840 rime = i + 1 + 3
841 = 1 + prime;

842 while (k == SIZE)
844 flags[k]
845 k += prin
847 count++;

}
}
.» target 851 return count;

852 |}

4 1

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 | 140

6. Continue with Step.Diverge (several times).

=Y [B:List /DIVERGE]
[Mistep |[® over !ﬁDivergeI “Retun || @up || »co | miBreak || ¥Mode | |
s state 1 addr/1ine |source
static int sieve(void)
—P» h stop 828 |{
register int i, prime, k;
int count;
h done 832 count = 0;
h done 834 for (1 =0 ; i == SIZE ; flag
h done [836 for (i 0; i <= SIZE; i++)
. target 836 for (i = 0; i <= SIZE; i++)
All code lines are now { e .
either marked as done, DGl EL AR L AR
i h done 840 7 rime = i + 1
hit or target h done 841 = 1 + prime;
h done = 842 @hi]e (k <= 5L
h done 844 ; flags[
hit 845 | . k += 7]
P | target 847 __ counts+;
target 851 | return count;
852 |}
J | T

7. Continue with Step.Diverge.

=Y [B:List /DIVERGE]
[Mistep |[M over]@Diverge][Retun | @up | »co | meBreak || ¥mode | Finc
s state 1 addr/Tine |source
static int sieve(void)
h stop 828 |1
register int i, prime, k;
int count;
h done 832 count = 0;
h done 834 for (1 =0 ; i == SIZE ; flags[
h done [836 for (i = 0; i1 <= SIZE; i++)
target 836 for (i =0; i <= SIZE; i++)
h done 838 : if (flags[il)
E gone 840 ; rime =3 + 1 + :
. 841 = ime;
A code line former marked s 842 GRTE = ST
as targt_at changes to hit h done - Flags (k]
when it is reached h done 845 ; k += prin
I it —
target 851 | return count;
852 |}
_J 4| i

When all reachable code lines are marked as done, the following message is displayed:

trigger [devices][trace][Data][Var][List

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 141

The DIVERGE marking is cleared when you use the Go.direct command without address or the Break
command while the program execution is stopped.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 142

Example 2: Exit a loop.

DIVERGE marking is
done whenever you
single step.

If all code lines of

a loop are marked as
done/hit, a
Step.Diverge will

exit the loop

=1 [BuList /DIVERGE |

[Mistep |[M oOver]LﬁDiverqel # Return ||

¢up || »Go | MBreak || Mode | Find:

s state 1

addr/1ine |source

#define

char flags [SIEE+1] =

SIZE 18

static int sieve(void) /% sit
h stop 828 |1
register int i, prime, k;
int count;
h done 832 count = 0;
h done 834 for (i =0; i <= 5I1ZE ; flags[i++ |
h done [836 for (i = 0; i <= SIZE; i++)
target 836 Eor (i =0; i <= SIZE; i++)
h done 838 '%F (flags[i])
h done 840 rime = i + i + 3;
h done 841 =1 + prime;
h done 842 while (k == SIZE)
h done 844 flags[k] = Fal
i : += prime; .
target 847) count++;

n

=1 [BuList /DIVERGE |

[Mistep |[M over]@Diverge][Retun [@up | »co || mnBreak |[¥|Mode | Find:
s state 1 addr/1ine |source
static int sieve(void) /E s

h stop 828 |1

register int i, prime, k;

int count;
h done 832 count = 0;
h done 834 for (1 =0 ; i1 == SIZE ; flags[i++
h done [836 for (i = 0; i <= SIZE; i++)

target 836 Eor (i =0; i <= SIZE; i++)
h done 838 ‘%f (flags[i])
h done 840 rime = i + 1 + 3;
h done 841 =1 + prime;
h done 842 while (k <= SIZE)
h done 844 flags[k] = FAl
h done 845 k += prime;
P hit - count+;
}
target 851 return count;
852 [}
J<| i

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 | 143

Return Return sets a temporary breakpoint to the function exit and starts the program
execution (command: Go.Return)
= [BuList] = EoR
[MsStep |[M oOver]@Diverge | ¢returnl up || pGo || mBreak || Mode | Find: sieve.c
addr/1ine |source i
int sieve(void) /% sieve of erathostenes */ o~
751 |{
register int i, prime, k;
int count;
755 count = 0;
757 for (1 =0 ; i == 5IZE ; flags[i++] = TRUE) ;
759 for (i = 0; i <= SIZE; i++) {
760 if (flags[i]1) {
761 rime = i + 1 + 3;
762 = 1 + prime;
) 763 while (k == SIZE) i
764 tlags[k] = FALSE;
765 k += prime;
767 :;_ount++;
771 return count; B
772 |F i
J 4 | 1 2
= [BuList] = EoR
[Mistep || over]@Diverge][Retun [@up || »co |[mnBreak |[#|Mode | Find: sieve.c
addr/1ine |source i
int sieve(void) /= sieve of erathostenes =/ p
751 |{
register int i, prime, k;
int count;
755 count = 0;
757 for (1 =0 ; i1 == SIZE ; flags[i++] = TRUE) ;
= 759 for (i = 0; i «= SIZE; i++) {
760 if (flags[i]) {
761 rime = 1 + 1 + 3;
762 =1 + prime;
+ 763 while (k <= SIZE) {
764 flags[k] = FALSE;
765 k += prime;
767 :;_ount++;
771 return count;
Ll t
J 1 [; m 5

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

144

Var Break Run CPU I

¥ Registers

1 44 Dump...

E’J List Source

ﬁﬂ Watch

@ Referenced Var

ﬂ Locals

@ Stackframe with Locals

o Peripherals
& Symbols
1il Groups
‘ Bookmarks
£ Trace List

= | Message Area

Display the HLL stack to
see the function nesting

@ B::Frame EI @

"% Down [“largs [Jiocals [Icaller

= BuList
[MisStep |[M over]@Diverge][Return [@up | »co][mEBreak |[#|Mode | Find:
addr/1ine |source i
721 vshortrecord = funcZ28(vshortrecord); s
723 encode(p);
724 sieve();
datas.b[0] = Ox12;
727 datas.b[1] = Ox12;
728 datas.b[2] = 0x12;
729 datas.b[3] = p[0];
730 datas.w[0] = 0x1234;
731 datas.w[1] = Ox1234;
732 datas.1[0] = 0x12345678; E
733 datas.b[0] = Ox11; E |
734 datas.b[1] = Ox11;
735 datas.b[2] = Ox11; -
1+ | i L

Up Up is used to return to the function that called the current function. For this a
temporary breakpoint is set to the instruction directly after the function call. Then
the program execution is started. (command: Go.Up)

= [BuList] = EoR
[MsStep |[M oOver]@Diverge][+ Return]I ¢up | pco | mEBresk]%Mode | Find: sieve.c
addr/Tine source e |
int sieve(void) /= sieve of erathostenes =/ o~
751 [{
register int i, prime, k;
int count;
755 count = 0;
757 for (1 =0 ; i == 5IZE ; flags[i++] = TRUE) ;
759 for (i = 0; 1 <= SIZE; i++) {
760 if (Flags[i1) {
761 rime = i + 1 + 3;
762 = 1 + prime;
5 763 while (k. <= SIZE). i
764 tlags[k] = FALSE;
765 s k += prime;
767 - court++;
} - -
771 return count; u
772 [} =
1+ | i L

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

145

The following commands are performed on the currently selected core if single stepping is performed on
assembler level. Otherwise all cores are executing code.

Step <count> Single step is performed <count> times
Step.Change <expression> Step until <expression> changes
Step.Till <condition> Step until <condition>becomes true
Var.Step.Change <hll_expression> Step until <hll_expression> changes
Var.Step.Till <hll_condition> Step until <hll_condition>becomes true

; step 1000. times
Step 1000.

; step until the contents of register R9 changes
Step.Change Register (R9)

; step until byte at address ND:80004723 is 1
Step.Till Data.Byte(ND:80004723)==

; step until the contents of the variable mstaticl changes
Var.Step.Change mstaticl

; step until the variable mstatic2 is larger the 3 and
; the variable flags[3] is unequal 1
Var.Step.Till (mstatic2>3)&&(flags[3]!=1)

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 146

Debugging of Optimized Code

HLL mode and MIX mode debugging is simple, if the compiler generates a continuous block of assembler
code for each HLL code line.

If compiler optimization flags are turned on, it is highly likely that two or more detached blocks of assembler
code are generated for individual HLL code lines. This complicates debugging.

TRACES32 PowerView displays a tree button, whenever two or more detached blocks of assembler code are
generated for an HLL code line.

] [BaList] =&
[Mstep |[M over |[\ADiverge| ¢ Return || @up || »Go | mnBreak || mode | Find: sieve.c
addr/1ine |source i
static int sieve(void) /= sieve of erathostenes */
828 |1
register int i, prime, k;
int count;
832 count = 0;
834 for (1 =0 ; i «= SIZE ; flags[i++] = TRUE) ;
3 836 for (i =0; i <= SIZE; i++)
838 / if (flags[il)
840 : rime = i + i + 3;
841 =1 + prime;
+ 842 '.j:'l1'i'|e (k <= SIZE)
844 : flags[k] = FALSE;
845 : k += prime;
847 " Eount++;
851 return count; -
Jf n »

tree button

The following background information is fundamental if you want to debug optimized code:

J In HLL debug mode the HLL code lines are displayed as written in the compiled program (source
line order).
. In MIX debug mode the target code is disassembled and the HLL code lines are displayed

together with their assembler code blocks (target line order). This means if two or more detached
blocks of assembler code are generated for an HLL code line, this HLL code line is displayed
more than once in a MIX mode source listing.

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 147

The expansion of the tree button shows how many detached blocks of assembler code are generated for the
HLL line (e.g. two in the example below).

List.HII Display source listing, display HLL code lines only.

List.Mix /Track Display source listing, display disassembled code and the assigned
HLL code lines.

The blue cursor in the MIX mode display follows the cursor movement
of the HLL mode display (Track option).

= [BaList]
[Mistep |[M oOver]@Dlverge][Retun [@up || »co |[mEBreak |[#|Mode | Find: _sieve.c
addr /Tine |source | | | =
static int sieve(void) /* sieve of erathostenes */ ‘
24
register 1nt 1, prime, k;
int count;
832 count = 0;
834 for (1 =0 ; i1 == SIZE ; flags[i++] = TRUE) ;
E 836 :’u:{or E'I = 0; 1 <= SIZE; '|++§ |
838 if (flags[i]) -
1+ 1] v

] BuList.Mix /Track
[M Step][W Over]@Diverge][+ Return][¢ up][b Go][1l Break] ¥ Mode] Find:
addr/1ine |code 1abel |mnemonic |comment
B 836 for (i = 0; i <= SIZE; 1i++)

XP:000000000040122D |BBOOC0O000O mov
XP:0000000000401232 |EBZ25 . Jmp 0x401269

838 if (flags[i])
XP:0000000000401234 [4863C3 movsxd rax,ebx
XP:0000000000401237 (OFE6E0E0ZEG000 movzx eax,byte ptr [rax+0x602BEQ]
XP:000000000040123E |54C0 test al,al
XP:0000000000401240 |7424 . je 0x401266

840 prime = 1 + 1 + 3;
XP:0000000000401242 (S0041E lea eax, [rbx+rbx]
XP:0000000000401245 |44806803 lea ri3d,rax+0x3

841 k=1 + prime;
XP:0000000000401249 |468D24 28 lea riz2d, [rbp+rbx]

842 while (k == SIZE)
XP:000000000040124D |EEOD jmp 0x40125C

844 flags[k] = FALSE;
XP:000000000040124F [4963c4 movsxd rax . rl2d
XP:0000000000401252 [C680E02E600000 mov byte ptr [rax+0x602BE0],0x0

845 k += prime;
XP:0000000000401259 |4501EC add ri2d,rl3d

842 while (k == SIZE)
XP:000000000040125C |[4183FC12 cmp ri2d,+0x12
XP:0000000000401260 |7EED jle Ox40124F

count++;
XP:0000000000401262 (8345401 add dword ptr [rbp-0x1C],+0x1
» 836 for (i = 0; i <= SIZE; i++)]
XP:0000000000401266 |52C301 add ebx,+0x1
XP:0000000000401269 [53FB12 cmp ebx,+0x12
XP:000000000040126C |7ECH) jle Ox401234
< T | v

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 148

To keep track when debugging optimized code, it is recommended to work with an HLL mode and a MIX
mode display of the source listing in parallel.

List.H11

List.Mix

Please be aware of the following:

If a Program breakpoint is set to an HLL code line for which two or more detached blocks of assembler code
are generated, a Program breakpoint is set to the start address of each assembler block.

= Bulist =8 EeR
[Mistep |[M oOver]@Diverge][Return [@up || »Go | mEBreak]%Mode | Find: sieve.c
addr/1ine |source i
static int sieve(void) nostenes ‘
8281
register int 1, prime, k;
int count;
832 count = 0;
834 for (i =0 ; i «= SIZE ; flags[i++] = TRUE) ;
[
836 for (i =0; i <= S5IZE; i++)
838 ' it (flagslip) .
J | . [Tl b
W B::Break List o <
[Delete All (O Disable Al @ Enable All|[@ Init | Z1mpl... || S store... || SLoad... || Bilset... |
address t i i
¥:000000000040122D|Program s1eve'd B
¥:0000000000401266 |Program sievel19+0x4
I3

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 | 149

Document your Results

Settings

TRACE32 PowerView supports the following ways to document your results:

. Sending them to a printer
o Transferring them via the clipboard to other applications
. Saving them to a file

The output way and the output format is configured via the Printer Settings ... dialog.

|[File] Edit View Var Break Run Ci
¥ Run Batchfile...
[Edit Batchfile...

% Open...

E Load...

Type...

144 Dump...

@ Stop Command

8 Window Print...
Window Screenshot to File...

¥ exit

_ ¢ B:PRinTer

() ClipBoard

O FILE

ype e

[W]N (Windows Default)

ClipType

[AS CIE (ASCII ENHANCED)

FileType

[AS CIE (ASCII ENHANCED)

t32-001.Ist

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

150

Print

_ ¢ B:PRinTer
type

@ printer WIN (Windows Default)

WIN (Windows Default

WINS6 (Windows Swiss 6pt)

WINSS (Windows Swiss 8pt)

WINS10 (Windows Swiss 10pt)

S FILE WINS12 (Windows Swiss 12pt)
WINC6 (Windows Courier 6pt)
WINCS (Windows Courier 8pt)
WINC10 (Windows Courier 10pt)
WINC12 (Windows Courier 12pt)
WINLE (Windows Lucida 6pt)
WINLS (Windows Lucida 8pt)
WINL1O (Windows Lucida 10pt)
WINL12 (Windows Lucida 12pt)

() ClipBoard

If you send your results to a printer, you can select Windows Default or other font sizes and families

supported by your printer.

Clipboard
=) B::PRinTer o ==
I type
| © printer [win_(windows Default) -
! ClipType

| @ CipBoard [ASCIIE (ASCILENHANCED)

| ASCIIE (ASCII ENHANCED

CSV {Comma Separated Value)
XML (Extensible Markup Language)

£32-001.1st

brawse... | |

If you use the clipboard you can select ASCII ENANCED, Comma-Separated Values or XML.

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

151

File

i B::PRinTer
type

) printer [win_(windows Default)

ClipType

) CipBoard |ASCIIE (ASCI ENHANCED)

File Type

@ FILE ASCIIE (ASCI ENHAMCED)

ASCIIE (ASCII ENHANCED

ASCII (ASCII)

ASCIIP (ASCII PAGED)

CSV {Comma Separated Value)

WS (WORDSTAR)

WSX (WORDSTAR SPECIAL)

XML (Extensible Markup Language)
PSP10 (POSTSCRIPT/P COURIER 10cpi)
PSP12 (POSTSCRIPT/P COURIER 12cpi)
PSP15 (POSTSCRIPT/P COURIER 15cpi)
PSP20 (POSTSCRIPT/P COURIER 20cpi)
PSL10 (POSTSCRIPT/L COURIER 10cpi)
PSL12 (POSTSCRIPT/L COURIER 12cpi)
PSL15 (POSTSCRIPT/L COURIER 15cpi)
PSL20 (POSTSCRIPT/L COURIER 20cpi)
PSPS10 (POSTSCRIPT/P SWISS 10cpi)
PSPS12 (POSTSCRIPT/P SWISS 12cpi)
PSPS15 (POSTSCRIPT/P SWISS 15cpi)
PSPT10 (POSTSCRIPT/P TIMES 10cpi)
PSPT12 (POSTSCRIPT/P TIMES 12cpi)
PSPT15 (POSTSCRIPT/P TIMES 15cpi)

If you save your result to a file, you can choose between various ASCII formats, Comma-Separated Value,

HML and various POSTSCRIPT formats.

_ ¢ B:PRinTer EI@
........................... type S
@ printer [W]N (Windows Default) ']

................................ C“pTYpe

© Clipgoard [ASCIE (ASCIT ENHANCED) -

O FILE |ASCIE (ASCIT ENHANCED) -
t32-001.Ist browse

If the file name contains numbers, the backmost number is incremented with each output.

If the file name does not contain a number, it is overwritten with each output.

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

152

Quick Output

&f| Br:VarView flash_table
Restore
Maove
Size
- Minimize
o Maximize
x Close
Mext

Command Line
Reset Position

Freeze

Freeze Parameter

Transparent

Small Font
v Medium Font
Large Font

Ctrl+F4

Ctrl+F6

m

1266713089, config2 = 327809,

199604225, config2 = 327809,

1333821953, config2 = 327809, ~
b

Print

Print all

To Clipboard
To Clipboard all

Window Screenshot to File...

Window Screenshot to Clipboard

Store Command

Print Send window contents as visible to the selected output.
Print all Send window contents
- horizontal as visible
- vertical all information
to the selected output.
(see explanation on next page)
To Clipboard Send window contents as visible to clipboard.
To Clipboard all Send window contents

- horizontal as visible
- vertical all information
to clipboard.

Window Screenshot to
File ...

Make screenshot of window contents as visible and save it to file
(various output formats supported).

Window Screenshot to
Clipboard

Make screenshot of window contents as visible and send it to
clipboard.

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 |

153

More details on Print all:

Print all prints the visible horizontal information, but all vertical information (see picture below).

&f| Br:Var.View flash_table
= flash_table = (o~

- strapping
- configl
- config? = 10420353,

- config3 2709823571,
- writel = 2936013824,

=0,
1082327936,

- page_size ,

= addr_mask 3,

- total_size = 65536,

name = 0xC1D3DD99),
(strapping = 134217730, configl = 1266713089, config2 = 327809
(strapping = 67108865, configl = 1199604225, config2 = 327809,
(strapping = 201326595, configl = 1333821953, config2 = 327809 -

4 | i 3

Visible horizontal information,
all vertical information

displayed in the window.

Examples:

Var.View $MultilLine flash_table[3..7]

Data.dump flags++0x1ff

To limit the output (especially when using a printer) it is recommended to limit the information

display only
flash table[3]

to flash_ table[7]
in window

display hex dump from
flags to flags+0x1ff
in window

©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64 | 154

Advanced Output

To send the complete output of a command to the selected output, use:
I WinPrint.<command>
The horizontal size is currently 4K.

WinPrint.Var.View %$MultiLine flash_ table[3..7]

WinPrint.Data.dump flags++0x1ff

Complete script example:

PRinTer.FILE my_array_ 01
PRinTer.FileType CSV

WinPrint.Var.View $MultiLine flash_table[3..7]

B::|
printout sent to: file j:\and\my_array_01.1st (C5V)

emulate trigger [devices H trace H Data H Var H List H PERF H SYStem H other H previous

NP:03FB:0000000080000E6E \\sieve\sieve\sieve+0x3B sieve 3 |stopped in MWAIT MI{ UP

If you want to collect several results in one file, use:

PRinTer.OPEN /<filename>] Open permanent output file
PRinTer.CLOSE Close permanent output file

PRinTer.OPEN my_array

PRinTer.FileType CSV

WinPrint.Var.View $Multiline flash_table[3..7]
Go

Break

WinPrint.Var.View $Multiline flash_table[3..7]

7 eee

PRinTer .CLOSE

©1989-2024 Lauterbach Training Basic SMP Debugging for Intel® x86/x64 | 155

	Training Basic SMP Debugging for Intel® x86/x64
	Debug Configurations
	CombiProbe 2 MIPI60-Cv2
	MIPI60-Cv2 Configuration
	MIPI60-Cv2 Features

	On-Chip Core Trace
	Off-Chip System/Core Trace

	Starting a TRACE32 PowerView Instance
	Basic TRACE32 PowerView Parameters
	Configuration File
	Standard Parameters
	Examples for Configuration Files
	Additional Parameters

	Application Properties (Windows only)
	Configuration via T32Start (Windows only)
	About TRACE32
	Version Information (Debug Cable)
	Version Information (CombiProbe)
	Prepare Full Information for a Support Email

	Establish your Debug Session
	Course of Action
	Run the Boot Loader until the Target Configuration is Done
	Establish the Debug Communication
	Load the Debug Symbols for the Application and/or the OS
	Configure the TRACE32 OS Awareness for Your OS
	Stop the Program Execution

	Start-Up Script
	Write a Start-Up Script
	Run a Start-up Script
	Automated Start-up Scripts

	TRACE32 PowerView
	SMP Concept
	TRACE32 PowerView Components
	Main Menu Bar and Accelerators
	Main Tool Bar
	Window Area
	Command Line
	Message Line
	Softkeys
	State Line

	Further Documentation

	Basic Debugging (SMP)
	Go/Break
	Single Stepping on Assembler Level
	Single Stepping on High-Level Language Level

	Registers
	Core Registers
	Display the Core Registers
	Colored Display of Changed Registers
	Modify the Contents of a Core Register

	Further Register Sets
	Special Function Register
	Display the Special Function Registers
	The PER Definition File
	Modify a Special Function Register

	Memory Display and Modification
	The Data.dump Window
	Basics
	Modify the Memory Contents
	Run-time Memory Access
	Colored Display of Changed Memory Contents

	The List Window
	Displays the Source Listing Around the PC
	Displays the Source Listing of a Selected Function

	Breakpoints
	Breakpoint Implementations
	Software Breakpoints in RAM (Program)
	Onchip Breakpoints in NOR Flash (Program)
	Onchip Breakpoints (Read/Write)

	Onchip Breakpoints for Intel® x86/x64
	Breakpoint Types
	Program Breakpoints
	Read/Write Breakpoints

	Breakpoint Behavior
	Breakpoint Setting at Run-time
	Breakpoints after Reset/Power Cycle
	Onchip Breakpoints Changed by Target Program

	Breakpoint Handling
	Real-time Breakpoints vs. Intrusive Breakpoints
	ProgramPass/ProgramFail Breakpoints

	Break.Set Dialog Box
	The HLL Check Box
	Implementations
	Actions
	Options
	DATA Breakpoints

	Advanced Breakpoints
	TASK-aware Breakpoints
	Counter
	CONDition
	CMD

	Display a List of all Set Breakpoints
	Delete Breakpoints
	Enable/Disable Breakpoints
	Store Breakpoint Settings

	Debugging
	Basic Debug Control
	Debugging of Optimized Code

	Document your Results
	Settings
	Print
	Clipboard
	File

	Quick Output
	Advanced Output

