
MANUAL

Training Basic SMP Debugging
for Intel® x86/x64

Training Basic SMP Debugging for Intel® x86/x64

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Training .. 

 Training Intel® x86/x64 ... 

 Training Basic SMP Debugging for Intel® x86/x64 ... 1

 Debug Configurations ... 5

 CombiProbe 2 MIPI60-Cv2 6

 MIPI60-Cv2 Configuration 6

 MIPI60-Cv2 Features 7

 On-Chip Core Trace 9

 Off-Chip System/Core Trace 9

 Starting a TRACE32 PowerView Instance ... 10

 Basic TRACE32 PowerView Parameters 10

 Configuration File 10

 Standard Parameters 11

 Examples for Configuration Files 12

 Additional Parameters 14

 Application Properties (Windows only) 15

 Configuration via T32Start (Windows only) 16

 About TRACE32 17

 Version Information (Debug Cable) 17

 Prepare Full Information for a Support Email 19

 Establish your Debug Session ... 20

 Course of Action 20

 Run the Boot Loader until the Target Configuration is Done 22

 Establish the Debug Communication 22

 Load the Debug Symbols for the Application and/or the OS 26

 Configure the TRACE32 OS Awareness for Your OS 27

 Stop the Program Execution 27

 Start-Up Script 28

 Write a Start-Up Script 28

 Run a Start-up Script 29

 Automated Start-up Scripts 30

 TRACE32 PowerView .. 31

 SMP Concept 31

 TRACE32 PowerView Components 35
Training Basic SMP Debugging for Intel® x86/x64 | 2©1989-2024 Lauterbach

 Main Menu Bar and Accelerators 36

 Main Tool Bar 38

 Window Area 40

 Command Line 43

 Message Line 47

 Softkeys 48

 State Line 49

 Further Documentation 50

 Basic Debugging (SMP) .. 51

 Go/Break 51

 Single Stepping on Assembler Level 53

 Single Stepping on High-Level Language Level 54

 Registers .. 56

 Core Registers 56

 Display the Core Registers 56

 Colored Display of Changed Registers 57

 Modify the Contents of a Core Register 58

 Further Register Sets 59

 Special Function Register 60

 Display the Special Function Registers 60

 The PER Definition File 63

 Modify a Special Function Register 64

 Memory Display and Modification ... 65

 The Data.dump Window 67

 Basics 67

 Modify the Memory Contents 72

 Run-time Memory Access 73

 Colored Display of Changed Memory Contents 77

 The List Window 78

 Displays the Source Listing Around the PC 78

 Displays the Source Listing of a Selected Function 79

 Breakpoints .. 81

 Breakpoint Implementations 81

 Software Breakpoints in RAM (Program) 81

 Onchip Breakpoints in NOR Flash (Program) 82

 Onchip Breakpoints (Read/Write) 84

 Onchip Breakpoints for Intel® x86/x64 85

 Breakpoint Types 86

 Program Breakpoints 87

 Read/Write Breakpoints 89

 Breakpoint Behavior ... 91

 Breakpoint Setting at Run-time 91
Training Basic SMP Debugging for Intel® x86/x64 | 3©1989-2024 Lauterbach

 Breakpoints after Reset/Power Cycle 92

 Onchip Breakpoints Changed by Target Program 94

 Breakpoint Handling ... 95

 Real-time Breakpoints vs. Intrusive Breakpoints 95

 ProgramPass/ProgramFail Breakpoints 97

 Break.Set Dialog Box 100

 The HLL Check Box 101

 Implementations 105

 Actions 106

 Options 107

 DATA Breakpoints 111

 Advanced Breakpoints 115

 TASK-aware Breakpoints 116

 Counter 119

 CONDition 122

 CMD 128

 Display a List of all Set Breakpoints 131

 Delete Breakpoints 131

 Enable/Disable Breakpoints 132

 Store Breakpoint Settings 133

 Debugging .. 134

 Basic Debug Control 134

 Debugging of Optimized Code 147

 Document your Results .. 150

 Settings 150

 Print 151

 Clipboard 151

 File 152

 Quick Output 153

 Advanced Output 155
Training Basic SMP Debugging for Intel® x86/x64 | 4©1989-2024 Lauterbach

Training Basic SMP Debugging for Intel® x86/x64

Version 06-Jun-2024

Debug Configurations

An Intel® x86/x64 chip can provide the following debug features:

• Extended debugging

• System trace

A system trace provides visibility of various events/states inside the chip. Trace data can be
generated by instrumented application code and/or by hardware modules within the chip.

• Core traces

A core trace provides detailed visibility of the program execution on a core. Trace data are
generated for the instruction execution sequence.
Training Basic SMP Debugging for Intel® x86/x64 | 5©1989-2024 Lauterbach

CombiProbe 2 MIPI60-Cv2

MIPI60-Cv2 Configuration

A TRACE32 configuration consists of:

• Universal debugger hardware e.g. PowerDebug Module USB 3.0

• CombiProbe 2 Intel® x86/x64 MIPI60-Cv2

Deprecated module:

• CombiProbe Intel® x86/x64 MIPI60-C

• Debug Cable for Intel® x86/x64 XDP60

POWER DEBUG USB INTERFACE / USB 3

POWER DEBUG INTERFACE / USB 3

PC or
Workstation

USB
Cable

Target

V
2

M
IP

I6
0

-C
V

2

CABLE

B A

M
IP
I

Co
nn

ec
to
r

CombiProbe
Training Basic SMP Debugging for Intel® x86/x64 | 6©1989-2024 Lauterbach

MIPI60-Cv2 Features

The features of the CombiProbe 2 MIPI60-Cv2 can be derived from the connected pins:

Signal Pin Pin Signal
VREF_DEBUG 1 2 TMS
TCK0 3 4 TDO
TDI 5 6 Reset Out
PMODE/Reset In 7 8 No Connect
TRST_N 9 10 PREQ_N
PRDY_N 11 12 VREF_TRACE
PTI_0_CLK 13 14 PTI_1_CLK
GND 15 16 GND
GND 17 18 PTI_1_DATA[0]
PTI_0_DATA[0] 19 20 PTI_1_DATA[1]
PTI_0_DATA[1] 21 22 PTI_1_DATA[2]
PTI_0_DATA[2] 23 24 PTI_1_DATA[3]
PTI_0_DATA[3] 25 26 No Connect
PTI_0_DATA[4] 27 28 No Connect
PTI_0_DATA[5] 29 30 No Connect
PTI_0_DATA[6] 31 32 No Connect
PTI_0_DATA[7] 33 34 No Connect
No Connect 35 36 Boot Stall
No Connect 37 38 CPU Boot Stall
No Connect 39 40 Power Button
No Connect 41 42 PWRGOOD
No Connect 43 44 No Connect
No Connect 45 46 No Connect
No Connect 47 48 I2C_SCL
No Connect 49 50 I2C_SDA
TCK1 51 52 reserved by TRACE32
HOOK[9] 53 54 DBG_UART_TX
HOOK[8] 55 56 DBG_UART_RX
GND 57 58 GND
No Connect 59 60 No Connect
Training Basic SMP Debugging for Intel® x86/x64 | 7©1989-2024 Lauterbach

• Standard JTAG

• PRDY/PREQ

- PREQ: allows the debugger to stop the core(s)

- PRDY: signals the debugger that the core(s) stopped

• HOOK pins

- PWRGOOD: VTREF + PWRGOOD indicate that the JTAG power domain is powered.

- Power Button: allows the debugger to control the target power (command SYStem.POWER).

- CPU Boot Stall: allows the debugger to stop in CPU boot stall mode after power on. For
details refer to the command TrOnchip.Set CpuBootStall.

- Boot Stall: allows the debugger to stop in boot stall mode after power on. For details refer to
the command TrOnchip.Set BootStall.

- Reset In: allows the debugger to reset the platform/SOC/cores (command SYStem.Mode
Go).

- Reset Out: signals the debugger that the platform was reset.

• PTI_0

8-bit System Trace, can be selected with command CAnalyzer.TracePORT TracePortA.

• PTI_1

4-bit System Trace, can be selected with command CAnalyzer.TracePORT TracePortB.

• UART

Function currently not specified.

• I2C

Allows the debugger to control I2C bus (command group I2C).
Training Basic SMP Debugging for Intel® x86/x64 | 8©1989-2024 Lauterbach

On-Chip Core Trace

Core trace information can be generated and routed to SDRAM. Details on the features and the tool
configuration for core tracing are provided by “Intel® Processor Trace Training” (training_ipt_trace.pdf).

Off-Chip System/Core Trace

Core trace information can be generated and routed to a System Trace Module. The STM merges the core
trace information with the system trace information and exports it via 8/16 trace data pins. Details on the
features and the tool configuration for off-chip core tracing are provided by “Intel® Processor Trace
Training” (training_ipt_trace.pdf).
Training Basic SMP Debugging for Intel® x86/x64 | 9©1989-2024 Lauterbach

Starting a TRACE32 PowerView Instance

Basic TRACE32 PowerView Parameters

This chapter describes the basic parameters required to start a TRACE32 PowerView instance.

The parameters are defined in the configuration file. By default the configuration file is named config.t32. It
is located in the TRACE32 system directory (parameter SYS).

Configuration File

Open the file config.t32 from the system directory (default c:\T32\config.t32) with any ASCII editor.

The following rules apply to the configuration file:

• Parameters are defined paragraph by paragraph.

• The first line/headline defines the parameter type.

• Each parameter definition ends with an empty line.

• If no parameter is defined, the default parameter will be used.
Training Basic SMP Debugging for Intel® x86/x64 | 10©1989-2024 Lauterbach

Standard Parameters

Parameter Syntax Description

Host interface PBI=
<host_interface>

Host interface type of TRACE32 tool
hardware (USB or ethernet)

Environment
variables

OS=
ID=<identifier>
TMP=<temp_directory>
SYS=<system_directory>
HELP=<help_directory>

(ID) Prefix for all files which are saved by
the TRACE32 PowerView instance into the
TMP directory

(TMP) Temporary directory used by the
TRACE32 PowerView instance (*)

(SYS) System directory for all TRACE32
files

(HELP) Directory for the TRACE32 help
PDFs (**)

Printer
definition

PRINTER=WINDOWS The standard Windows printer can be used
from TRACE32 PowerView

License file LICENSE=<license_directory> Directory for the TRACE32 license file
(not required for new tools)

(*) In order to display source code information TRACE32 PowerView creates a
copy of all loaded source files and saves them into the TMP directory.

(**) The TRACE32 online help is PDF-based.
Training Basic SMP Debugging for Intel® x86/x64 | 11©1989-2024 Lauterbach

Examples for Configuration Files

Configuration File for USB

Remote Control for POWER DEBUG INTERFACE / USB

TRACE32 allows to communicate with a POWER DEBUG INTERFACE USB from a remote PC. For an
example, see “Example: Remote Control for POWER DEBUG INTERFACE / USB” in TRACE32
Installation Guide, page 48 (installation.pdf).

; Host interface
PBI=
USB

; Environment variables
OS=
ID=T32
TMP=c:\temp
SYS=c:\t32
HELP=c:\t32\pdf

; temporary directory for TRACE32
; system directory for TRACE32
; help directory for TRACE32

; Printer settings
PRINTER=WINDOWS ; standard Windows printer can be

; used from TRACE32 PowerView
Training Basic SMP Debugging for Intel® x86/x64 | 12©1989-2024 Lauterbach

Configuration File for Ethernet

Ethernet Configuration and Operation Profile

; Host interface
PBI=
NET
NODE=training1

; Environment variables
OS=
ID=T32
TMP=c:\temp
SYS=c:\t32
HELP=c:\t32\pdf

; temporary directory for TRACE32
; system directory for TRACE32
; help directory for TRACE32

; Printer settings
PRINTER=WINDOWS ; standard Windows printer can be

; used from TRACE32 PowerView

IFCONFIG Display and change information for the Ethernet interface
Training Basic SMP Debugging for Intel® x86/x64 | 13©1989-2024 Lauterbach

Additional Parameters

Changing the font size can be helpful for a more comfortable display of TRACE32 windows.

Display with normal fonts:
:

Display with small fonts:

; Screen settings
SCREEN=
FONT=SMALL ; Use small fonts
Training Basic SMP Debugging for Intel® x86/x64 | 14©1989-2024 Lauterbach

Application Properties (Windows only)

The properties window allows you to configure some basic settings for the TRACE32 software.

Definition of the Configuration File

By default the configuration file config.t32 in the TRACE32 system directory (parameter SYS) is used. The
option -c allows you to define your own location and name for the configuration file.

Definition of a Working Directory

After its start TRACE32 PowerView is using the specified working directory. It is recommended not to work in
the system directory.

Definition of the Window Size for TRACE32 PowerView

You can choose between Normal window, Minimized and Maximized.

C:\training_x64\bin\windows64\t32mx64.exe -c j:\and\config_debug.t32

PWD TRACE32 command to display the current working directory

Configuration File

Working Directory

Window Size
Training Basic SMP Debugging for Intel® x86/x64 | 15©1989-2024 Lauterbach

Configuration via T32Start (Windows only)

The basic parameters can also be set up in an intuitive way via T32Start.

A detailed online help for t32start.exe is available via the Help button or in “T32Start” (app_t32start.pdf).

Parameters
Training Basic SMP Debugging for Intel® x86/x64 | 16©1989-2024 Lauterbach

About TRACE32

If you want to contact your local Lauterbach support, it might be helpful to provide some basis information
about your TRACE32 tool.

Version Information (Debug Cable)

The VERSION window informs you about:

1. the version of the TRACE32 software.

2. the debug license(s) programmed into the debug cable, the expiration date of your software
guarantee respectively the expiration date of your software warranty.

3. the serial number of the debug cable.

1

2

3

Training Basic SMP Debugging for Intel® x86/x64 | 17©1989-2024 Lauterbach

Version Information (CombiProbe)

The VERSION window informs you about:

1. the version of the TRACE32 software

2. the debug license(s) programmed into the CombiProbe, the expiration date of your software
guarantee respectively the expiration date of your software warranty.

3. the serial number of the CombiProbe.

Command summary

VERSION.view Display the VERSION window.

VERSION.HARDWARE Display more details about the TRACE32 hardware modules.

VERSION.SOFTWARE Display more details about the TRACE32 software.

1

2

3

Training Basic SMP Debugging for Intel® x86/x64 | 18©1989-2024 Lauterbach

Prepare Full Information for a Support Email

Be sure to include detailed system information about your TRACE32 configuration.

1. To generate a TRACE32 information report, choose Help > Support > Systeminfo ….

2. Preferred: click Save to File, and send the information as an attachment to your e-mail.

3. Click Save to Clipboard, and then paste the information into your e-mail.
Training Basic SMP Debugging for Intel® x86/x64 | 19©1989-2024 Lauterbach

Establish your Debug Session

Before you can start debugging, the debug environment has to be set up.

Course of Action

The setup procedure described on the following pages assumes that the application (and/or the operating
system) under debug are running out of RAM and a ready-to-run boot loader configures the target system
and especially the RAM for this debug scenario.

*Considering the circumstance that a process has to be started manually e.g. via a TERMinal window

Run the boot loader until the target

Establish the debug communication

Load debug symbols for application
and/or OS

Configure the TRACE32 OS Awareness
for your OS

Ready for debug*

configuration is done

Stop the program execution
Training Basic SMP Debugging for Intel® x86/x64 | 20©1989-2024 Lauterbach

An AREA window can be opened to monitor the start-up process.

AREA.view Open an AREA window
Training Basic SMP Debugging for Intel® x86/x64 | 21©1989-2024 Lauterbach

Run the Boot Loader until the Target Configuration is Done

When the target reset is released the boot loader starts to configure the target.

Establish the Debug Communication

Before the debug communication can be established, the debugger needs to know the target chip. The
recommended method is to use the auto detection feature:

SYStem.DETECT TARGET
Training Basic SMP Debugging for Intel® x86/x64 | 22©1989-2024 Lauterbach

Then the options required for your chip have to be set.

For details on the available options, refer to “Intel® x86/x64 Debugger” (debugger_x86.pdf).

Additional options
Training Basic SMP Debugging for Intel® x86/x64 | 23©1989-2024 Lauterbach

Choose the Attach radio button to establish the communication between the debugger and the target chip.

TRACE32 PowerView selects the radio button Up to indicate that the communication between the debugger
and the target chip is established.

The running in Debug field of the TRACE32 State Line indicates that the boot loader is still running.
Training Basic SMP Debugging for Intel® x86/x64 | 24©1989-2024 Lauterbach

SYStem.Attach Establish the communication between the debugger and the target
chip.

Alternative way to establish the communication between the debugger and the
target chip might be available depending on the used platform and the used
TRACE32 debug tool. For details refer to SYStem.Mode.
Training Basic SMP Debugging for Intel® x86/x64 | 25©1989-2024 Lauterbach

Load the Debug Symbols for the Application and/or the OS

TRACE32 supports a wide range of compilers and compiler output formats. Refer to the Compilers section
of your Processor Architecture Manual for details.

A in-depth introduction to the Data.LOAD command is given in the chapter “Load the Application
Program” in Training HLL Debugging, page 4 (training_hll.pdf).

Data.LOAD.<sub_cmd> <file> /NoCODE [/<option>]

; Load debug symbols from ELF file sieve_x86.elf
Data.LOAD.Elf sieve_x86.elf /NoCODE

; Load debug symbols from ELF file
; open file browser to select file
Data.LOAD.Elf * /NoCODE
Training Basic SMP Debugging for Intel® x86/x64 | 26©1989-2024 Lauterbach

Configure the TRACE32 OS Awareness for Your OS

Please refer to “Training Linux Debugging for Intel® x86/x64” (training_rtos_linux_x86.pdf) on how to
activate the TRACE32 Linux awareness on your target.

Please refer to “OS Awareness Manual Windows Standard” (rtos_windows.pdf) on how to activate the
TRACE32 Windows awareness on your target.

If you use a different OS refer to the corresponding target OS Awareness Manual (rtos_<os>.pdf).

Stop the Program Execution

The program execution can be stopped by pushing the Break button.

Break Stop the program execution
Training Basic SMP Debugging for Intel® x86/x64 | 27©1989-2024 Lauterbach

Start-Up Script

It is strongly recommended to summarize the commands, that are used to set up the debug environment, in
a start-up script. The script language PRACTICE is provided for this purpose.

The standard extension for a script file is .cmm.

Write a Start-Up Script

The debugger provides an ASCII editor, that allows to write, to run and to debug a start-up script.

The debugger provides two commands, that allow you to convert debugger configuration information to a
script.

PEDIT <file> Create <file> and open it with the script editor

PEDIT my_startup

STOre <file> {<item>} Generate a script that allows to reproduce the current settings

ClipSTOre {<item>} Generate a command list in the clip-text that allows to reproduce the
current settings

STOre system_settings SYStem

PEDIT system_settings

; Generate a script that allows you
; to reproduce the settings of the
; SYStem window at any time

; Open the file system_settings

ClipSTOre SYStem ; Generate a command list that
; allows you to reproduce the
; settings of the SYStem window
; at any time
; The generated command list can be
; pasted in any editor
Training Basic SMP Debugging for Intel® x86/x64 | 28©1989-2024 Lauterbach

Run a Start-up Script

DO <filename> Run a start-up script

DO start_eb
Training Basic SMP Debugging for Intel® x86/x64 | 29©1989-2024 Lauterbach

Automated Start-up Scripts

There a two ways to define a start-up script, that is automatically started, when the debugger is started.

1. Define start-up script in conjunction with the executable.

The debugger-executable can be started with the start-up script as parameters.

2. Use T32Start to define an automated start-up script.

c:\t32\t32mx64.exe -s g:\and\training\start.cmm
Training Basic SMP Debugging for Intel® x86/x64 | 30©1989-2024 Lauterbach

TRACE32 PowerView

SMP Concept

One TRACE32 PowerView instance is opened to control all cores and to visualize all system information.
Training Basic SMP Debugging for Intel® x86/x64 | 31©1989-2024 Lauterbach

In TRACE32 PowerView one core is the selected one.

The fact that one core is the selected one has the following consequences:

• By default system information is visualized from the perspective of the selected core.

• System information from the perspective of another core can be visualized by using the option
CORE <number>.

The selected core can be change by selecting another core via the Cores pull-down menu or via the
CORE.select command:

; core 0 is the selected core

List ; display a source listing around
; the program counter of core 0

Register.view ; display the core registers of
; core 0

List /CORE 1. ; display a source listing around
; the program counter of core 1

Register.view /CORE 1. ; display the core registers of
; core 1

CORE.select <number> Select a different core

The Cores field in the TRACE32 PowerView State Line displays the
number of the currently selected core
Training Basic SMP Debugging for Intel® x86/x64 | 32©1989-2024 Lauterbach

TRACE32 PowerView distinguishes two types of information:

• Core-specific information which is displayed on a colored background.

Typical core-specific information are: register contents, source listing of the code currently
executed by the core, the stack frame.

TRACE32 PowerView uses predefined color settings for the cores.

• Information common for all cores which is displayed on a white background.

Typical common information are: memory contents, values of variables, breakpoint setting.
Training Basic SMP Debugging for Intel® x86/x64 | 33©1989-2024 Lauterbach

Core-specific
information
(here for the
currently
selected one)

Information
common
for all cores

Core-specific
information
(here for the
core 1)
Training Basic SMP Debugging for Intel® x86/x64 | 34©1989-2024 Lauterbach

TRACE32 PowerView Components

The structure and functionality of TRACE32 PowerView is largely defined by the
file t32.men which is located in the TRACE32 system directory.

TRACE32 allows you to modify the GUI so it will better fit to your requirements.
Refer to “Training Menu Programming” (training_menu.pdf) for details.

Main Menu Bar
Main Tool Bar

L
o

ca
l M

en
u

Local Buttons

W
in

d
o

w
 A

re
a

Command Line
Message Line

State Line

S
o

ft
ke

y
L

in
e
Training Basic SMP Debugging for Intel® x86/x64 | 35©1989-2024 Lauterbach

Main Menu Bar and Accelerators

The main menu bar provides all important TRACE32 commands sorted by functional groups.

For often used commands accelerators are defined.

Accelerators
Training Basic SMP Debugging for Intel® x86/x64 | 36©1989-2024 Lauterbach

A user specific menu can be defined very easily:

MENU.AddMenu <name> <command> Add a user menu

MENU.RESet Reset menu to default

MENU.AddMenu "Set PC to main" "Register.Set PC main"

; user menu with accelerator
MENU.AddMenu "Set PC to main, ALT+F10" "Register.Set PC main"

For more complex changes to the main menu bar refer to “Training Menu
Programming” (training_menu.pdf).

User Menu
Training Basic SMP Debugging for Intel® x86/x64 | 37©1989-2024 Lauterbach

Main Tool Bar

The main tool bar provides fast access to often used commands.

The user can add his own buttons very easily:

Information on the <tool image> can be found in Help -> Contents

TRACE32 Documents -> PowerView User Interface -> PowerView User’s Guide -> MENU ->
Programming Commands -> TOOLITEM.

MENU.AddTool <tooltip text> <tool image> <command> Add a button to the toolbar

MENU.RESet Reset menu to default

MENU.AddTool "Set PC to main" "PM,X" "Register.Set PC main"

User specific
button
Training Basic SMP Debugging for Intel® x86/x64 | 38©1989-2024 Lauterbach

All predefined TRACE32 icons can be inspected as follows:

The predefined icons can easily be used to create new icons.

ChDir.DO ~~/demo/menu/internal_icons.cmm

; overprint the icon colorpurple with the character v in White color
Menu.AddTool "Set PC to main" "v,W,colorpurple" "Register.Set PC main"

For more complex changes to the main tool bar refer to “Training Menu
Programming” (training_menu.pdf).
Training Basic SMP Debugging for Intel® x86/x64 | 39©1989-2024 Lauterbach

Window Area

Save Page Layout

No information about the page layout is saved when you exit TRACE32 PowerView. To save the window
layout use the Store Window to … command in the Window menu.

// andT32_1000003 Sat Jul 21 16:59:55 2012

 B::

 TOOLBAR ON
 STATUSBAR ON
 FramePOS 68.0 5.2857 107. 45.
 WinPAGE.RESet

 WinCLEAR
 WinPOS 0.0 0.0 80. 16. 15. 1. W000
 WinTABS 10. 10. 25. 62.
 List

 WinPOS 0.0 21.643 80. 5. 25. 1. W001
 WinTABS 13. 0. 0. 0. 0. 0. 0.
 Break.List

 WinPAGE.select P000

 ENDDO

Store Windows to … generates a script, that
allows you to reactivate the window-configuration
at any time.
Training Basic SMP Debugging for Intel® x86/x64 | 40©1989-2024 Lauterbach

Run the script to reactivate the stored
window-configuration
Training Basic SMP Debugging for Intel® x86/x64 | 41©1989-2024 Lauterbach

Modify Window

The Window Header
displays the
command which was
executed to open the
window

By clicking with the right
mouse button to the window
header, the command which
was executed to open the
window is re-displayed in the
command line and can be
modified there
Training Basic SMP Debugging for Intel® x86/x64 | 42©1989-2024 Lauterbach

Command Line

Command Structure

Device Prompt

Selects the command set used by the TRACE32:

no device prompt TRACE32 PowerView commands

B:: command set for Debugger
(B stands for BDM which was the first on-chip
 debug interface supported by Lauterbach)

Command line
Training Basic SMP Debugging for Intel® x86/x64 | 43©1989-2024 Lauterbach

Command Examples

Each command can be abbreviated. The significant letters are always written in upper case letters.

 Data Command group to display, modify … memory

Data.dump Displays a hex dump

Data.Set Modify memory

Data.LOAD.auto Loads code to the target memory

 Break Command group to set, list, delete … breakpoints

Break.Set Sets a breakpoint

Break.List Lists all set breakpoint

Break.Delete Deletes a breakpoint

Data.dump 0x1000--0x2000 /Byte

Command group
Subcommand

Parameter

Option
Training Basic SMP Debugging for Intel® x86/x64 | 44©1989-2024 Lauterbach

The Online Help for a Specific Command

Push F1 to get the online help for the specified command.

Add one blank.

Enter the command to the command line.
Training Basic SMP Debugging for Intel® x86/x64 | 45©1989-2024 Lauterbach

Standard Parameter Syntax

The RADIX defines the input format for numeric values.

Examples:

To check the currently used parameter syntax, type RADIX. to the command line.

RADIX.<mode> Define parameter syntax

RADIX.Hex Number base is hex and C-like operators are used (default).

RADIX.Decimal Number base is decimal and C-like operators are used.

Decimal Hex

Data.dump 100 100d 100h

Data.dump 100. 100d 100d

Data.dump 0x100 100h 100h
Training Basic SMP Debugging for Intel® x86/x64 | 46©1989-2024 Lauterbach

Message Line

• Message line for system and error messages

• Message Area window for the display of the last system and error messages

Message Line

Message Area
Training Basic SMP Debugging for Intel® x86/x64 | 47©1989-2024 Lauterbach

Softkeys

The softkey line allows to enter a specific command step by step.

Select the command group, here Data.

Select the subcommand, here dump.

Angle brackets request an entry from the user,
here e.g. the entry of a <range> or an <address>.

The display of the hex. dump can be adjusted to your needs by an option.

Select the option formats to get a list of all format options.

The command is complete now.

Select a format option, here Byte.
Training Basic SMP Debugging for Intel® x86/x64 | 48©1989-2024 Lauterbach

State Line

The Cursor field provides:

• Boot information (Booting …, Initializing … etc.).

• Information on the item selected by one of the TRACE32 PowerView cursors.

The Debug field provides:

• Information on the debug communication (system down, system ready etc.)

• Information on the state of the debugger (running, stopped, stopped at breakpoint etc.)

Cursor
field

Debug
field
Training Basic SMP Debugging for Intel® x86/x64 | 49©1989-2024 Lauterbach

The Mode field indicates the debug mode. The debug mode defines how source code information is
displayed.

• Asm = assembler code

• Hll = programming language code/high level language

• Mix = a mixture of both

 It also defines how single stepping is performed (assembler line-wise or programming language line-wise).

The debug mode can be changed by using the Mode pull-down.

Further Documentation

The following PDFs provide detailed information on TRACE32 PowerView:

• “PowerView User’s Guide” (ide_user.pdf)

• “PowerView Command Reference” (ide_ref.pdf)

Mode
field
Training Basic SMP Debugging for Intel® x86/x64 | 50©1989-2024 Lauterbach

Basic Debugging (SMP)

Go/Break

On an SMP systems the program execution is started on all cores with Go and is stopped on all cores with
Break.
Training Basic SMP Debugging for Intel® x86/x64 | 51©1989-2024 Lauterbach

If a breakpoint is hit, TRACE32 makes the core the selected one on which the breakpoint occurred.

CORE 0 is the selected one when the program execution is started.

The breakpoint was hit on CORE 1. So CORE 1 is the selected one after the
program execution stopped.
Training Basic SMP Debugging for Intel® x86/x64 | 52©1989-2024 Lauterbach

Single Stepping on Assembler Level

Assembler single steps are only performed on the selected core.

Mode.Mix
Step

Select Mix mode for debugging and perform a single step on the
selected core.

Step.Asm Perform an assembler single step on the selected core.

Only the program counter
of core 1 has changed
Training Basic SMP Debugging for Intel® x86/x64 | 53©1989-2024 Lauterbach

Single Stepping on High-Level Language Level

An HLL single step is performed on the selected core. All other cores are started and will stop, when this
HLL single step is done.
Training Basic SMP Debugging for Intel® x86/x64 | 54©1989-2024 Lauterbach

Mode.Hll
Step

Select High-level language mode for debugging and perform a
single step.

Step.Hll Perform an HLL single step.

SETUP.StepWithinTask ON When ON all HLL stepping is performed only in the currently
active task.
Training Basic SMP Debugging for Intel® x86/x64 | 55©1989-2024 Lauterbach

Registers

Core Registers

Display the Core Registers

The core register contents is core-specific information. It is printed on a colored background.

Please be aware that all menus and buttons apply to the currently selected core.

Register.view ; display core register contents of
; currently selected core
; (here core 0)

Register.view /CORE 1. ; display core register contents of
; core 1
Training Basic SMP Debugging for Intel® x86/x64 | 56©1989-2024 Lauterbach

Colored Display of Changed Registers

Establish /SpotLight as default option

Register.view /SpotLight ; The registers changed by the last
; step are marked in dark red.

; The registers changed by the
; step before the last step are
; marked a little bit lighter.

; This works up to a level of 4.

SETUP.Var %SpotLight Establish the option SpotLight as default setting for
- all Variable windows
- Register window
- PERipheral window
- the HLL Stack Frame
- Data.dump window
Training Basic SMP Debugging for Intel® x86/x64 | 57©1989-2024 Lauterbach

Modify the Contents of a Core Register

Register.Set <register> <value> Modify core register of selected core

Register.Set <register> <value> /CORE <n> Modify core register of specified core

By double clicking to the register contents
a Register.Set command is automatically displayed

in the command line.
Enter the new value and press Return to modify the

register contents.
Training Basic SMP Debugging for Intel® x86/x64 | 58©1989-2024 Lauterbach

Further Register Sets

TRACE32 PowerView supports also the display and modification of all other register sets available for the
core under debug.

A list of all other supported register sets is also provided by the softkey line.
Training Basic SMP Debugging for Intel® x86/x64 | 59©1989-2024 Lauterbach

Special Function Register

Display the Special Function Registers

TRACE32 supports a free configurable window to display/manipulate configuration registers and on-chip
peripheral registers at a logical level.

The so-called PER file describes these registers. The PER file is either provided by Lauterbach or by the
chip manufacturer.

In an SMP system all cores can usually access the commonly used external interfaces. So TRACE32
PowerView regards all these registers as common resources and thus displayed them on a white
background.

But not all configuration registers are common resources. Exceptions are the core-related registers e.g.
CPUID registers, MSR registers …

TRACE32 PowerView provides the /CORE <n> option in order to display details on core-related
configuration registers:

PER.view , /CORE 1.
Training Basic SMP Debugging for Intel® x86/x64 | 60©1989-2024 Lauterbach

Tree Display

The individual configuration registers/on-chip peripherals are organized by TRACE32 PowerView in a tree
structure. On demand, details about a selected register can be displayed.

Platform menu

Platform menu provides
direct access to specific
registers
Training Basic SMP Debugging for Intel® x86/x64 | 61©1989-2024 Lauterbach

Details about a Single Configuration Register

The access class, address, bit position and the full name of the selected item are
displayed in the state line; the full name of the selected item is taken from the
processor/chip manual.

Select the content of a configuration register:
Training Basic SMP Debugging for Intel® x86/x64 | 62©1989-2024 Lauterbach

The PER Definition File

The layout of the PER window is described by a PER definition file.

The definition can be changed to fit to your requirements using the PER command group.

The path and the version of the currently used PER definition file can be displayed by using:

VERSION.SOFTWARE

PER.view [<filename>] [<tree-search-item>] Display the configuration registers/on-chip peripherals

PER.view C:\T32\perintel948.per ; Use the peripheral file
; perintel948 instead of the default
; PER definition file
Training Basic SMP Debugging for Intel® x86/x64 | 63©1989-2024 Lauterbach

Modify a Special Function Register

You can modify the contents of a configuration/on-chip peripheral register:

• By pressing the right mouse button and selecting one of the predefined values from the pull-
down menu.

• By a double-click to a numeric value. A PER.Set command to change the contents of the
selected register is displayed in the command line. Enter the new value and confirm it with return.

PER.Set.simple <address>|<range> [%<format>] <string> Modify configuration register/on-
chip peripheral

Data.Set <address>|<range> [%<format>] <string> Modify memory

PER.Set.simple D:0xF87FFF10 %Long 0x00000b02
Training Basic SMP Debugging for Intel® x86/x64 | 64©1989-2024 Lauterbach

Memory Display and Modification

This training section introduces the most often used methods to display and modify memory:

• The Data.dump window, that displays a hex dump of a memory range, and
the Data.Set command that allows to modify the contents of a memory address.

• The List (former Data.List) window, that displays the memory contents as source code listing.

Shared memory is a characteristics of an SMP system. This is the reason why the Data.dump window is
regarded as common information and is displayed therefore on a white background. TRACE32 PowerView
assumes that cache coherency is maintained in an SMP system.

Cache coherency: In a shared memory with a separate cache for each core, it is possible to have many
copies of one data: one copy in the main memory and one in each cache. When one copy of this data is
changed, the other copies of the data must be changed also. Cache coherence ensures that changes in the
values of a data are propagated throughout the system.

To provide flexibility the CORE <n> option is provided also for the Data.dump command.
Training Basic SMP Debugging for Intel® x86/x64 | 65©1989-2024 Lauterbach

Since the List (former Data.List) window is mainly used to display a source code listing around the
current program counter it is regarded as core-specific information and is therefore displayed on a
colored background.

A so-called access class is always displayed together with a memory address. Examples:

For a list of all access classes provided for the Intel® x86/x64 architecture refer to “Intel® x86/x64
Debugger” (debugger_x86.pdf).

NP:1000 Protected Mode Program (32-bit) address 0x1000

ND:6814 Protected Mode Data (32-bit) address 0x6814
Training Basic SMP Debugging for Intel® x86/x64 | 66©1989-2024 Lauterbach

The Data.dump Window

Basics
Training Basic SMP Debugging for Intel® x86/x64 | 67©1989-2024 Lauterbach

Use an Address to Specify the Start Address for the Data.dump Window

Please be aware, that TRACE32 permanently updates all windows. The default
update rate is 10 times per second.
Training Basic SMP Debugging for Intel® x86/x64 | 68©1989-2024 Lauterbach

Use an Address Range to Specify the Addresses for the Data.dump Window

If you enter an address range, only data for the specified address range are displayed. This is useful if a
memory area close to memory-mapped I/O registers should be displayed and you do not want TRACE32
PowerView to generate read cycles for the I/O registers.

Conventions for address ranges:

• <start address>--<end_address>

• <start address>..<end_address>

• <start address>++<offset_in_byte>
Training Basic SMP Debugging for Intel® x86/x64 | 69©1989-2024 Lauterbach

Use a Symbol to Specify the Start Address for the Data.dump Window

Use i to select any symbol name or label known to TRACE32 PowerView.

By default an oriented display
is used (line break at 2x).
A small arrow indicates
the specified dump address.
Training Basic SMP Debugging for Intel® x86/x64 | 70©1989-2024 Lauterbach

Data.dump <address> | <range> [{/<option>}] Display a hex dump of the memory

Data.dump 0xC1E2B4E0 ; Display a hex dump starting at
; logical address 0xC1E2B4E0 in the
; current address space

Data.dump 0xC1E2B4E0--0xC1E2B4EF ; Display a hex dump of the
; specified address range

Data.dump 0xC1E2B4E0..0xC1E2B4EF ; Display a hex dump of the
; specified address range

Data.dump 0xC1E2B4E0++0x7 ; Display a hex dump of the
; specified address range

Data.dump ND:0x88:0xC1E2B4E0 ; Display a hex dump starting at
; logical address 0xC1E2B4E0 in the
; address space of the process with
; the space ID 0x88

Data.dump apic_default ; Display a hex dump starting at
; the address of the label
; apic_default

Data.dump apic_default /Byte ; Display a hex dump starting at
; the address of the label
; apic_default in byte format
Training Basic SMP Debugging for Intel® x86/x64 | 71©1989-2024 Lauterbach

Modify the Memory Contents

Data.Set <address>|<range> [%<format>] [/<option>] Modify the memory contents

Data.Set 0xC1E2B4E0 0x0000aaaa ; Write 0x0000aaaa to the logical
; address 0xC1E2B4E0 in the current
; address space

Data.Set 0xC1E2B4E0 %Long 0xaaaa ; Write 0xaaaa as a 32 bit value to
; the address 0xC1E2B4E0, add the
; leading zeros automatically

Data.Set 0x6814 %LE %Long 0xaaaa ; Write 0xaaaa as a 32 bit value to
; the address 0xC1E2B4E0, add the
; leading zeros automatically

; Use Little Endian mode

Data.Set ND:0x88:0xC1E2B4E0 0xaaaa ; Write 0xaaaa to the logical
; address 0xC1E2B4E0 of the
; process with the space ID 0x88

By a left mouse double-click to the memory contents
 a Data.Set command is automatically

displayed in the command line,
you can enter the new value and

confirm it with Return.
Training Basic SMP Debugging for Intel® x86/x64 | 72©1989-2024 Lauterbach

Run-time Memory Access

TRACE32 PowerView updates the displayed memory contents by default only if the cores are stopped.

A hatched window frame
indicates that the
information display is
frozen because the cores
are executing the program.

The plain window frame

information is updated,
because the program
execution is stopped.

indicates that the
Training Basic SMP Debugging for Intel® x86/x64 | 73©1989-2024 Lauterbach

Intrusive Run-Time Memory Access

The Intel® x86/x64 architecture doesn’t allow a debugger to read or write memory while the cores are
executing the program, but you can activate an intrusive run-time memory access if required.

If an intrusive run-time memory access is activated, TRACE32 stops the program execution periodically to
read/write the specified memory area. Each update takes at least 50 us per core.

CpuAccess Enable allows an
intrusive run-time memory access

cores are cores are stopped to allow
TRACE32 PowerView to read/write
the specified memory

executing the program
Training Basic SMP Debugging for Intel® x86/x64 | 74©1989-2024 Lauterbach

Write accesses to the memory work correspondingly:

Enable the E check box to switch
the run-time memory access to ON

A plain window frame
indicates that the
information is updated
while the cores are
executing the program

A red S in the state line indicates, that a TRACE32 feature
is activated, that requires short-time stops
of the program execution

Data.Set via run-time
memory access with short
stop of the program
execution
Training Basic SMP Debugging for Intel® x86/x64 | 75©1989-2024 Lauterbach

SYStem.CpuAccess Enable ; Enable the intrusive
; run-time memory access

;…

Go ; Start program execution

Data.dump E:0x6814 ; Display a hex dump starting at
; address 0x6814 via an intrusive
; run-time memory access

Data.Set E:0x6814 0xAA ; Write 0xAA to the address
; 0x6814 via an intrusive
; run-time memory access
Training Basic SMP Debugging for Intel® x86/x64 | 76©1989-2024 Lauterbach

Colored Display of Changed Memory Contents

Data.dump flags /SpotLight ; Display a hex dump starting at
; the address of the label flags

; Mark changes

Enable the option SpotLight to mark the
memory contents changed by the last 4 single
steps in orange, older changes being lighter.
Training Basic SMP Debugging for Intel® x86/x64 | 77©1989-2024 Lauterbach

The List Window

Displays the Source Listing Around the PC

If MIX mode is selected for debugging,
assembler and HLL information is displayed

only HLL information is displayed
If HLL mode is selected for debugging,
Training Basic SMP Debugging for Intel® x86/x64 | 78©1989-2024 Lauterbach

Displays the Source Listing of a Selected Function

List [<address>] [/<option>] Display source listing from the perspective
of the selected core

List [<address>] /CORE <n> [/<option>] Display source listing from the perspective
of the specified core

Select the function you
want to display
Training Basic SMP Debugging for Intel® x86/x64 | 79©1989-2024 Lauterbach

List ; Display a source listing
; around the PC of the selected
; core

List * ; Open the symbol browser to
; select a function for display

List scsi_try_host_reset ; Display a source listing of
; the function scsi_try_host_reset

List /CORE 1 ; Display a source listing
; around the PC of core 1
Training Basic SMP Debugging for Intel® x86/x64 | 80©1989-2024 Lauterbach

Breakpoints

Breakpoint Implementations

A debugger has two methods to realize breakpoints: Software breakpoints and Onchip Breakpoints.

Software Breakpoints in RAM (Program)

The default implementation for breakpoints on instructions is a Software breakpoint. If a Software breakpoint
is set the original instruction at the breakpoint address is patched by a special instruction to stop the program
and return the control to the debugger.

The number of software breakpoints is unlimited.

Please be aware that TRACE32 PowerView always tries to set an Onchip
breakpoint, when the setting of a Software Breakpoint fails.
Training Basic SMP Debugging for Intel® x86/x64 | 81©1989-2024 Lauterbach

Onchip Breakpoints in NOR Flash (Program)

Intel® x86/x64 cores provide a small number of onchip breakpoints in form of breakpoint registers. These
onchip breakpoints can be used to set breakpoints to instructions in read-only memory like NOR FLASH.

That fact that the debugger does not know on which core of the SMP system a program section is
running, has the consequence that the debugger programs the same onchip breakpoint to all cores.

So you can say from the debugger perspective there is only one break logic shared by all cores of the SMP
system. This is the reason why breakpoints are regarded as common resource and therefore the Break.List
window has a white background.
Training Basic SMP Debugging for Intel® x86/x64 | 82©1989-2024 Lauterbach

OS Comment

If an SMP operating system that uses dynamic memory management to handle processes/tasks (e.g. Linux
or Windows) is used, the instruction address within TRACE32 PowerView consists of:

• The access class

• The memory-space ID of the process

• The logical address

The onchip breakpoints of Intel® x86/x64 cores store only the logical address, but not the memory space ID.
As a result an identical logical address within another process can also result in a breakpoint hit.

For details on the TRACE32 PowerView address scheme of operating systems that uses dynamic memory
management to handle processes/tasks refer to your OS manual (rtos_<os>.pdf).

Additional details on this issue are provided when task-aware breakpoints are introduced.

<access_class>:<space_id>:<logical_address>
 NP:0088:00000000C168A720
Training Basic SMP Debugging for Intel® x86/x64 | 83©1989-2024 Lauterbach

Onchip Breakpoints (Read/Write)

Onchip breakpoints can be used to stop the core(s) at a write access or a read or write access to a memory
location.

Again, this breakpoint is programmed identically in all cores. And again write accesses to an identical logical
address result in a breakpoint hit.

Additional details on this issue are provided when task-aware breakpoints are introduced.
Training Basic SMP Debugging for Intel® x86/x64 | 84©1989-2024 Lauterbach

Onchip Breakpoints for Intel® x86/x64

The list on this page gives an overview of the availability and the usage of the onchip breakpoints. The
following notations are used:

• Onchip breakpoints: Total amount of available onchip breakpoints.

• Program breakpoints: Number of onchip breakpoints that can be used to set Program break-
points into NOR FLASH.

• Read/Write breakpoints: Number of onchip breakpoints that stop the program when a write or
read/write to a certain address happens.

• Data value breakpoint: Number of onchip data breakpoints that stop the program when a spe-
cific data value is written to an address or when a specific data value is read from an address.

Family
Onchip
Breakpoints

Instruction
Breakpoints

Read/Write
Breakpoint

Data Value
Breakpoints

Intel®
x86/x64

4 4
single address

4

Write or
Read/Write

single address or
ranges up to
8 bytes (aligned)

—

Training Basic SMP Debugging for Intel® x86/x64 | 85©1989-2024 Lauterbach

Breakpoint Types

TRACE32 PowerView provides the following breakpoint types for standard debugging.

Breakpoint Types Possible Implementations

Program Software (Default)
Onchip

Write,
ReadWrite

Onchip (Default)
Training Basic SMP Debugging for Intel® x86/x64 | 86©1989-2024 Lauterbach

Program Breakpoints

The program stops before the instruction marked by the breakpoint is executed (break-before-make).

Break.Set <address> /Program [/DISable] Set a Program breakpoint to the specified address.
The Program breakpoint can be disabled if required.

Set a Program breakpoint
by a left mouse
double-click
to the instruction

The red program breakpoint indicator marks all code lines for which a Program breakpoint is set.

double-click

Disable the Program
breakpoint by a
left mouse double-click
to the red program
breakpoint indicator.
The program breakpoint
indicator becomes grey.
Training Basic SMP Debugging for Intel® x86/x64 | 87©1989-2024 Lauterbach

Break.Set 0xA34f /Program ; set a Program breakpoint to
; address 0xA34f

Break.Set func1 /Program ; set a Program breakpoint to the
; entry of function func1
; (first address of function func1)

Break.Set func1+0x1c /Program ; set a Program breakpoint to the
; instruction at address
; func1 plus 28 bytes

Break.Set func11\7 ; set a Program breakpoint to the
; 7th line of code of the function
; func11
; (line in compiled program)

Break.Set func17 /Program /DISable ; set a Program breakpoint to the
; entry of function func17
; diable Program breakpoint

Break.List ; list all breakpoints
Training Basic SMP Debugging for Intel® x86/x64 | 88©1989-2024 Lauterbach

Read/Write Breakpoints

Please be aware that you have to use a ReadWrite breakpoint if you want to stop the program execution on

a read access if you use the Intel® x86/x64 architecture. Pure Read breakpoints are not provided.

All cores are stopped
after a write access
to the variable
(break-after-make)

All cores are stopped
after a read or write
access to the variable
(break-after-make)
Training Basic SMP Debugging for Intel® x86/x64 | 89©1989-2024 Lauterbach

Break.Set <address> | <range> /Write | /ReadWrite [/DISable]

; allow HLL expression to specify breakpoint
Var.Break.Set <hll_expression> /Write | /ReadWrite [/DISable]

Break.Set 0x0B56 /ReadWrite

Break.Set ast /Write

Break.Set vpchar+5 /ReadWrite /DISable

Var.Break.Set flags[3..5] /ReadWrite

Var.Break.Set ast->count /ReadWrite /DISable

Break.List

If an HLL variable is displayed,
a small red breakpoint indicator

A small grey breakpoint indicator

marks an active Read/Write breakpoint.

marks a disabled Read/Write breakpoint.
Training Basic SMP Debugging for Intel® x86/x64 | 90©1989-2024 Lauterbach

Breakpoint Behavior

Breakpoint Setting at Run-time

If MemAccess and CPUAccess is Denied breakpoints can only be set when the program execution is
stopped.
Training Basic SMP Debugging for Intel® x86/x64 | 91©1989-2024 Lauterbach

Breakpoints after Reset/Power Cycle

To understand this topic you have to be aware of the following:

• TRACE32 can only set breakpoints when the program execution is stopped.

• The onchip breakpoint logic is reset on a chip reset/power cycle. As a result the currently set
onchip breakpoints are lost.

• If the target under debug is reset/re-powered all software breakpoints are lost.

TRACE32 has the following standard behavior: The breakpoint list in TRACE32 PowerView is not
deleted, when TRACE32 detects a reset/power cycle. Thus TRACE32 can set all listed breakpoints again
when the program execution is stopped and restarted.

If TRACE32 detects a reset/power cycle and the core(s) immediately starts the program execution, it is
highly likely that all listed breakpoints are lost.

To indicate this loss, TRACE32 changes the state of the breakpoints from Valid to Unknown State. The
state of the breakpoints is displayed in the note field of the breakpoint listing.

All listed breakpoints become Valid again, when the program execution is stopped the next time.
Training Basic SMP Debugging for Intel® x86/x64 | 92©1989-2024 Lauterbach

Example:

If breakpoints are listed within TRACE32 PowerView they change to the Unknown State when TRACE32
detects that the target is reset/re-powered and the core(s) immediately starts the program execution.

As soon as the program execution is stopped, all listed breakpoints become Valid again, because they will
be set again when the program execution is restarted.
Training Basic SMP Debugging for Intel® x86/x64 | 93©1989-2024 Lauterbach

Onchip Breakpoints Changed by Target Program

Both, the debugger and the program running on the target can set/delete the onchip breakpoints.

If the program execution stops and TRACE32 detects an inconsistent programming of an onchip breakpoint,
the error message Onchip breakpoints modified by target program is displayed in the Break.List
window. The TRACE32 Message area provides details.

If TRACE32 stops due to an onchip breakpoint set by the target program, stopped by DRx breakpoint is
displayed in the Debug field of the TRACE32 state line

Please be aware that TRACE32 programs all listed breakpoints every time the program execution is stopped
and restarted. If you want to keep the onchip breakpoints set by the target program you have to
delete/disable all onchip breakpoints within TRACE32.

If you want to use the onchip breakpoints by the target program for another purpose than debugging, use
SYStem.Option.IGnoreDEbugReDirections ON to advise TRACE32 to ignore the onchip breakpoints.
Training Basic SMP Debugging for Intel® x86/x64 | 94©1989-2024 Lauterbach

Breakpoint Handling

Real-time Breakpoints vs. Intrusive Breakpoints

TRACE32 PowerView offers in addition to the basic breakpoints (Program/Read/Write) also complex
breakpoints. Whenever possible these breakpoints are implemented as real-time breakpoints.

Real-time breakpoints do not disturb the real-time program execution on the cores, but they require a
complex on-chip breakpoint logic.

If the onchip breakpoint logic of a core does not provide the required features or if Software breakpoints are
used, TRACE32 has to implement an intrusive breakpoint.
Training Basic SMP Debugging for Intel® x86/x64 | 95©1989-2024 Lauterbach

Intrusive breakpoints

The usage of these breakpoints influence the real-time behavior. Intrusive breakpoint perform as follows:

Each Stop at breakpoint suspends the program execution for at least 1 ms.

The (short-time) display of a red S in the Debug Activity field of the TRACE32 state line indicates that an
intrusive breakpoint was hit.

Intrusive breakpoints are marked by a special breakpoint indicator:

Perform
check

Check not ok

Check ok

Program execution

Stop at breakpoint

Stay stopped

Program restart
Training Basic SMP Debugging for Intel® x86/x64 | 96©1989-2024 Lauterbach

ProgramPass/ProgramFail Breakpoints

Example: Stop the program execution, when the instruction je 0x401266 instruction passes (indicated by
Zero Flag).

ProgramPass If a breakpoint is set to a conditional instruction, the program
execution is only stopped, if the condition is satisfied (pass).

ProgramFail If a breakpoint is set to a conditional instruction, the program
execution is only stopped, if the condition fails.

Intrusive breakpoints are marked with an
intrusive breakpoint indicator
Training Basic SMP Debugging for Intel® x86/x64 | 97©1989-2024 Lauterbach

The ProgramPass breakpoint behaves as follows:

Each suspend to check the status flags takes at least 1. ms. This is why the red S is displayed in the
Debugger Activity field of the TRACE32 PowerView state line.

Program execution is stopped at ProgramPass
breakpoint

Involved status flags not set
Continue program
execution

Stay stopped

Involved status flags set

Check
status flags
Training Basic SMP Debugging for Intel® x86/x64 | 98©1989-2024 Lauterbach

Break.Set <address>|<range> /ProgramPass

Break.Set <address>|<range> /ProgramFail

Break.Set 0x401240 /ProgramPass
Training Basic SMP Debugging for Intel® x86/x64 | 99©1989-2024 Lauterbach

Break.Set Dialog Box

There are two standard ways to open a Break.Set dialog.

or
Training Basic SMP Debugging for Intel® x86/x64 | 100©1989-2024 Lauterbach

The HLL Check Box

Function Name/HLL Check Box OFF

sYmbol.INFO func2 ; display symbol information
; for function func2

Break.Set func2

Program breakpoint is set to the function entry (first address of the function)
Training Basic SMP Debugging for Intel® x86/x64 | 101©1989-2024 Lauterbach

Program Line Number/HLL Check Box OFF

sYmbol.INFO func2\17 ; display symbol information
; for 17th program line in
; function func2

Break.Set func2\17

Program breakpoint is set to the first assembler instruction
generated for the program line number
Training Basic SMP Debugging for Intel® x86/x64 | 102©1989-2024 Lauterbach

Variable/HLL Check Box OFF

sYmbol.INFO flags ; display symbol information
; for variable flags

Break.Set flags

Selected breakpoint is set to the start address of the variable
Training Basic SMP Debugging for Intel® x86/x64 | 103©1989-2024 Lauterbach

Variable/HLL Check Box Must Be ON

• Intel® x86/x64: The on-chip breakpoint logic supports ranges of the following sizes for Write and
ReadWrite breakpoints: 1-, 2-, 4-, 8-bytes (aligned). If the specified breakpoint fulfills this
requirement, the breakpoint is accepted.

• otherwise the breakpoint is rejected with an error message.

sYmbol.INFO flags ; display symbol information
; for variable flags

Var.Break.Set flags[3]

Selected breakpoint is set to the address range used by the HLL-expression
Training Basic SMP Debugging for Intel® x86/x64 | 104©1989-2024 Lauterbach

Implementations

Implementation

auto Use breakpoint implementation predefined in TRACE32 PowerView.

SOFT Implement breakpoint as Software breakpoint.

Onchip Implement breakpoint as Onchip breakpoint.

Implementation
Training Basic SMP Debugging for Intel® x86/x64 | 105©1989-2024 Lauterbach

Actions

By default the program execution is stopped when a breakpoint is hit (action stop). TRACE32 PowerView
provides the following additional reactions on a breakpoint hit:

Alpha, Beta, Charly, Delta and Echo breakpoints are not used for Intel® x86/x64.

Action (debugger)

Spot The program execution is stopped shortly (50..100ms) at a breakpoint hit to
update the screen. As soon as the screen is updated, the program execution
continues.

Alpha Set an Alpha breakpoint.

Beta Set a Beta breakpoint.

Charly Set a Charly breakpoint.

Delta Set a Delta breakpoint.

Echo Set an Echo breakpoint.
Training Basic SMP Debugging for Intel® x86/x64 | 106©1989-2024 Lauterbach

Options

Temporary OFF: Set a permanent breakpoint (default).
ON: Set a temporary breakpoint. All temporary breakpoints are
 deleted the next time the core(s) stops the program execution.

DISable OFF: Breakpoint is enabled (default).
ON: Set breakpoint, but disabled.

DISableHIT ON: Disable the breakpoint after the breakpoint was hit.

Options
Training Basic SMP Debugging for Intel® x86/x64 | 107©1989-2024 Lauterbach

Example for the Option Temporary

Temporary breakpoints are usually not set via the Break.Set dialog, but they are often used while debugging.

Examples:

• Go Till

Go <address> [address> …]

; set a temporary Program breakpoint to
; the entry of the function func4
; and start the program execution
Go func4

; set a temporary Program breakpoints to
; the entries of the functions func4, func8 and func9
; and start the program execution
Go func4 func8 func9
Training Basic SMP Debugging for Intel® x86/x64 | 108©1989-2024 Lauterbach

• Go Till -> Write

Var.Go <hll_expression> [/Write]

; set a temporary write breakpoint to the variable datas.b[1]
; and start the program execution
Var.Go datas.b[1] /Write
Training Basic SMP Debugging for Intel® x86/x64 | 109©1989-2024 Lauterbach

• Go.Return and similar commands

Go.Return

; set a temporary breakpoint to the last instruction of the current
; function and start the program execution
Go.Return
Training Basic SMP Debugging for Intel® x86/x64 | 110©1989-2024 Lauterbach

DATA Breakpoints

The DATA field offers the possibility to combine a Read/Write breakpoint with a specific data value. Data

breakpoints are implemented as intrusive breakpoints for Intel® x86/x64. TRACE32 PowerView allows
inverted data values for intrusive data value breakpoints.

An intrusive DATA breakpoint behaves as follows:

Specified
data value?

No

Yes

Program execution

Breakpoint hit at intrusive

Stay stopped

Restart program

data value breakpoint

Debugger reads data
value at read/write address
Training Basic SMP Debugging for Intel® x86/x64 | 111©1989-2024 Lauterbach

Example 1: Stop the program execution if a 1 is written to flags[3].
Training Basic SMP Debugging for Intel® x86/x64 | 112©1989-2024 Lauterbach

If an HLL expression is used TRACE32 PowerView gets the information if the data is written via a byte, word,
long or quad access from the symbol information.

If an address or symbol is used the user has to specify the access width.

Units

Byte 8-bit

Word 16-bit

Long 32-bit

Quad 64-bit

TByte 24-bit (TriByte)

PByte 40-bit (PentaByte)

HByte 48-bit (HexaByte)

SByte 56-bit (SeptuaByte)

Var.Break.Set <hll_expression> /[Write | ReadWrite] /DATA.auto <value>

Break.Set <address> | <range> /[Write | ReadWrite] /DATA.[Byte | Word | Quad] <value>

Var.Break.Set flags[3] /Write /DATA.auto 1.

Break.Set 0x602be3 /Write /DATA.Byte 0x1
Training Basic SMP Debugging for Intel® x86/x64 | 113©1989-2024 Lauterbach

Example: Stop the program execution if !1 is written to flags[3].

Var.Break.Set <hll_expression> /[Write | ReadWrite] /DATA.auto !<value>

Break.Set <address> | <range> /[Write | ReadWrite] /DATA.[Byte | Word | Quad] !<value>

Var.Break.Set flags[3] /Write /DATA.auto !1.

Break.Set 0x602be3 /Write /DATA.Byte !0x1
Training Basic SMP Debugging for Intel® x86/x64 | 114©1989-2024 Lauterbach

Advanced Breakpoints

If the advanced button is pushed

to the Break.Set dialog box to provide
advanced breakpoint features

Advanced breakpoint input fields

additional input fields are appended

Training Basic SMP Debugging for Intel® x86/x64 | 115©1989-2024 Lauterbach

TASK-aware Breakpoints

TASK-aware breakpoints allow to stop the program execution at a breakpoint if the specified task/process is
running.

TASK-aware breakpoints are implemented as intrusive breakpoints.

Processing:

Each stop at the TASK-aware breakpoint takes at least 1. ms. This is why the red S is displayed in the
Debugger Activity field of the TRACE32 PowerView state line whenever the breakpoint is hit.

Program execution is stopped at TASK-aware
breakpoint

No
Restart program
execution

Stay stopped

Yes

Specified
task

running?
Training Basic SMP Debugging for Intel® x86/x64 | 116©1989-2024 Lauterbach

Example: Stop the program execution at a write access to the variable flags[3] only when the process
“sieve” is performing this write access.
Training Basic SMP Debugging for Intel® x86/x64 | 117©1989-2024 Lauterbach

Break.Set <address> | <range> /[Program | Write | ReadWrite] /TASK <task_name> | <task_id> |
 <task_magic>

Var.Break.Set <hll_expression> /[Write | ReadWrite] /TASK <task_name> | <task_id> |
 <task_magic>

; use task ID to specify task
Break.Set 0x602be3 /Program /TASK 223.

; use task name to specify task
Var.Break.Set flags[3] /Write /TASK "sieve"
Training Basic SMP Debugging for Intel® x86/x64 | 118©1989-2024 Lauterbach

Counter

Allows to stop the program execution on the n th hit of a breakpoint.

The onchip breakpoint logic of Intel® x86/x64 does not provide counters, so counters are implemented as
software counters.

Processing:

Each stop at a Counter breakpoint takes at least 1.ms. This is why the red S is displayed in the Debugger
Activity field of the TRACE32 PowerView state line whenever the breakpoint is hit.

Program execution stops at
Counter breakpoint

No Restart program
execution

Stay stopped

Yes

Counter
reached final

value?

Increment
counter
Training Basic SMP Debugging for Intel® x86/x64 | 119©1989-2024 Lauterbach

Example: Stop the program execution after the function sieve was entered 1000. times.
Training Basic SMP Debugging for Intel® x86/x64 | 120©1989-2024 Lauterbach

Break.Set <address> | <range> /[Program | Write | ReadWrite] /COUNT <number>

Var.Break.Set <hll_expression> /[Write | ReadWrite] /COUNT <number>

Break.Set sieve /COUNT 1000.

The red S indicates an
intrusive breakpoint

The current counter
contents is
permanently updated
Training Basic SMP Debugging for Intel® x86/x64 | 121©1989-2024 Lauterbach

CONDition

The program execution is stopped at the breakpoint only if the defined condition is true.

CONDition breakpoints are always intrusive.

Processing:

Each suspend at a CONDition breakpoint takes at least 1.ms. This is why the red S is displayed in the
Debugger Activity field of the TRACE32 PowerView state line whenever the breakpoint is hit.

Program execution is suspended
at a CONDition breakpoint

No
Continue with program

Stop program execution

Yes

Condition
is

true?

Evaluate
condition

execution

AfterStep
check box

Yes

Perform assembler
 single step

No

ON?
Training Basic SMP Debugging for Intel® x86/x64 | 122©1989-2024 Lauterbach

Example: Stop the program execution on a write to flags[3] only if flags[12] is equal to 0 when the
breakpoint is hit.

The red S indicates
an intrusive breakpoint
Training Basic SMP Debugging for Intel® x86/x64 | 123©1989-2024 Lauterbach

Var.Break.Set <hll_expression> /[Program | Write | ReadWrite] /VarCONDition <hll_condition>

Var.Break.Set flags[3] /Write /VarCONDition (flags[12]==0)
Training Basic SMP Debugging for Intel® x86/x64 | 124©1989-2024 Lauterbach

Conditions not in HLL Syntax

It is also possible to write register-based or memory-based conditions.

Examples: Stop the program executions on a write to address flags if Register R11 is equal to 1.

Break.Set <address> | <range> /[Program | Write | ReadWrite] /CONDition <condition>

; stop the program execution at a write to the address flags if the
; register R11 is equal to 1
Break.Set flags /Write /CONDition Register(R11)==0x1

; stop program execution at a write to the address flags if the long
; at address ND:0x1000 is larger then 0x12345
Break.Set flags /Write /CONDition Data.Long(ND:0x1000)>0x12345

Switch HLL OFF ->
TRACE32 syntax can be used
to set the breakpoint
Training Basic SMP Debugging for Intel® x86/x64 | 125©1989-2024 Lauterbach

AfterStep Option

Example: Stop the program execution if an register-indirect call calls the function func3.

A indicates that TRACE32 performs an assembler step before it
evaluates the condition when the program execution is suspended
at the CONDition breakpoint.
Training Basic SMP Debugging for Intel® x86/x64 | 126©1989-2024 Lauterbach

Break.Set <address> | <range> /[Program | Write | ReadWrite] /CONDition <cond.> /AfterStep

Break.Set main\44+0x7 /Program
/CONDition Register(RIP)==ADDRESS.OFFSET(func3) /AfterStep
Training Basic SMP Debugging for Intel® x86/x64 | 127©1989-2024 Lauterbach

CMD

The field CMD allows to specify one or more commands that are executed when the breakpoint is hit.

Example: Write the contents of flags[12] to a file whenever the write breakpoint at flags[12] is hit.

OPEN #1 outflags.txt /Create ;open the file for writing

The specified command(s) is executed
whenever the breakpoint is hit. With RESUME
ON the program execution will continue after
the execution of the command(s) is finished.

The cmd field in the Break.List window
informs the user which command(s) is
associated with the breakpoint. R indicates
that RESUME is ON.
Training Basic SMP Debugging for Intel® x86/x64 | 128©1989-2024 Lauterbach

It is recommended to set RESUME to OFF, if CMD

• starts a PRACTICE script with the command DO

• commands are used that open processing windows like
Trace.STATistic.Func or Trace.Chart.sYmbol

because the program execution is restarted before these commands are finished.

CLOSE #1 ; close the file when you are done

The state of the debugger toggles between
going and stopped
Training Basic SMP Debugging for Intel® x86/x64 | 129©1989-2024 Lauterbach

Display the result:

Break.Set <address> | <range> /[Program | Write | ReadWrite] /CMD {<command>} [/RESUME]

Var.Break.Set <hll_expression> /[Write | ReadWrite] /CMD {<command>} [/RESUME]

Var.Break.Set flags[12] /Write
/CMD "WRITE #1 ""flags[12]="" Var.VALUE(flags[12])" /RESUME
Training Basic SMP Debugging for Intel® x86/x64 | 130©1989-2024 Lauterbach

Display a List of all Set Breakpoints

Delete Breakpoints

Break.List List all breakpoints

Break.Delete <address>|<address_range> [/<type>] [/<implem.>] [/<option>] Delete breakpoint

Var.Break.Delete <hll_expression> [/<type>] [/<implem.>] [/<option>] Delete HLL breakpoint
Training Basic SMP Debugging for Intel® x86/x64 | 131©1989-2024 Lauterbach

Enable/Disable Breakpoints

Break.ENable [<address>|<address_range>] [/<option>] Enable breakpoint

Break.DISable [<address>|<address_range>] [/<option>] Disable breakpoint
Training Basic SMP Debugging for Intel® x86/x64 | 132©1989-2024 Lauterbach

Store Breakpoint Settings

// T32_1000143 Thu Jan 23 12:02:56 2014

 B::

 Break.RESet
 Break.Set main\48 /Program /DISable
 Var.Break.Set plot1; /Read /Write /TASK "sieve"
 Var.Break.Set datas.b[2]; /Write

 ENDDO

STOre <filename> Break Generate a script for breakpoint settings
Training Basic SMP Debugging for Intel® x86/x64 | 133©1989-2024 Lauterbach

Debugging

Basic Debug Control

There are local buttons in the List window for all basic debug commands:

Step Single stepping (command: Step)
Please remember that assembler single steps are only performed on the
selected core.

Over Step over the call (command Step.Over)

Diverge Exit loops or fast forward to not yet stepped code lines. Step.Over is performed
repeatedly.
Training Basic SMP Debugging for Intel® x86/x64 | 134©1989-2024 Lauterbach

More details on Step.Diverge

TRACE32 maintains a list of all assembler/HLL lines which were already reached by a Step. These reached
lines are marked with a slim grey line in the List window.

The following command allows you to get more details:

List.auto /DIVERGE
Training Basic SMP Debugging for Intel® x86/x64 | 135©1989-2024 Lauterbach

Column layout

s Step type performed on this line
a: Step on assembler level was started from this code line
h: Step on HLL level was started from this code line

state done: code line was reached by a Step and a Step was started from
this code line.
hit: code line was reached by a Step.
target: code line is a possible destination of an already started Step,
but was not reached yet (mostly caused by conditional branches).

stop: program execution stopped at code line.

i indirect branch taken
(return instructions are not marked).

Drag this handle to see the DIVERGE details
Training Basic SMP Debugging for Intel® x86/x64 | 136©1989-2024 Lauterbach

Example 1: Diverge through function sieve.

1. Run program execution until entry to function sieve.

2. Start a Step.Diverge command.
L

stop indicates that the
program execution was
stopped at this code line

h indicates that a Step

started in this line

hit indicates that this
code line was reached by

command in HLL mode was

Step command

Training Basic SMP Debugging for Intel® x86/x64 | 137©1989-2024 Lauterbach

3. Continue with Step.Diverge.

done indicates that the
code line was reached by
a Step command and that
a Step command was
started from this code line
Training Basic SMP Debugging for Intel® x86/x64 | 138©1989-2024 Lauterbach

4. Continue with Step.Diverge.

The tree button
indicates that two or
more detached blocks of
assembler code are
generated for an HLL
code line

The drill-down tree is
expanded and the HLL
code line representing
the reached block of
assembler code is marked as hit
Training Basic SMP Debugging for Intel® x86/x64 | 139©1989-2024 Lauterbach

5. Continue with Step.Diverge.

This assembler code generated

conditional branch
for the HLL line includes a

The reached code line is
marked as hit

The not-reached code line is
marked as target
Training Basic SMP Debugging for Intel® x86/x64 | 140©1989-2024 Lauterbach

6. Continue with Step.Diverge (several times).

7. Continue with Step.Diverge.

When all reachable code lines are marked as done, the following message is displayed:

All code lines are now
either marked as done,
hit or target

A code line former marked
as target changes to hit
when it is reached
Training Basic SMP Debugging for Intel® x86/x64 | 141©1989-2024 Lauterbach

The DIVERGE marking is cleared when you use the Go.direct command without address or the Break
command while the program execution is stopped.
Training Basic SMP Debugging for Intel® x86/x64 | 142©1989-2024 Lauterbach

Example 2: Exit a loop.

DIVERGE marking is
done whenever you
single step.

If all code lines of
a loop are marked as
done/hit, a
Step.Diverge will
exit the loop
Training Basic SMP Debugging for Intel® x86/x64 | 143©1989-2024 Lauterbach

Return Return sets a temporary breakpoint to the function exit and starts the program
execution (command: Go.Return)
Training Basic SMP Debugging for Intel® x86/x64 | 144©1989-2024 Lauterbach

Up Up is used to return to the function that called the current function. For this a
temporary breakpoint is set to the instruction directly after the function call. Then
the program execution is started. (command: Go.Up)

Display the HLL stack to
see the function nesting
Training Basic SMP Debugging for Intel® x86/x64 | 145©1989-2024 Lauterbach

The following commands are performed on the currently selected core if single stepping is performed on
assembler level. Otherwise all cores are executing code.

Step <count> Single step is performed <count> times

Step.Change <expression> Step until <expression> changes

Step.Till <condition> Step until <condition> becomes true

Var.Step.Change <hll_expression> Step until <hll_expression> changes

Var.Step.Till <hll_condition> Step until <hll_condition> becomes true

; step 1000. times
Step 1000.

; step until the contents of register R9 changes
Step.Change Register(R9)

; step until byte at address ND:80004723 is 1
Step.Till Data.Byte(ND:80004723)==1

; step until the contents of the variable mstatic1 changes
Var.Step.Change mstatic1

; step until the variable mstatic2 is larger the 3 and
; the variable flags[3] is unequal 1
Var.Step.Till (mstatic2>3)&&(flags[3]!=1)
Training Basic SMP Debugging for Intel® x86/x64 | 146©1989-2024 Lauterbach

Debugging of Optimized Code

HLL mode and MIX mode debugging is simple, if the compiler generates a continuous block of assembler
code for each HLL code line.

If compiler optimization flags are turned on, it is highly likely that two or more detached blocks of assembler
code are generated for individual HLL code lines. This complicates debugging.

TRACE32 PowerView displays a tree button, whenever two or more detached blocks of assembler code are
generated for an HLL code line.

The following background information is fundamental if you want to debug optimized code:

• In HLL debug mode the HLL code lines are displayed as written in the compiled program (source
line order).

• In MIX debug mode the target code is disassembled and the HLL code lines are displayed
together with their assembler code blocks (target line order). This means if two or more detached
blocks of assembler code are generated for an HLL code line, this HLL code line is displayed
more than once in a MIX mode source listing.

tree button
Training Basic SMP Debugging for Intel® x86/x64 | 147©1989-2024 Lauterbach

The expansion of the tree button shows how many detached blocks of assembler code are generated for the
HLL line (e.g. two in the example below).

List.Hll Display source listing, display HLL code lines only.

List.Mix /Track Display source listing, display disassembled code and the assigned
HLL code lines.

The blue cursor in the MIX mode display follows the cursor movement
of the HLL mode display (Track option).
Training Basic SMP Debugging for Intel® x86/x64 | 148©1989-2024 Lauterbach

To keep track when debugging optimized code, it is recommended to work with an HLL mode and a MIX
mode display of the source listing in parallel.

Please be aware of the following:

If a Program breakpoint is set to an HLL code line for which two or more detached blocks of assembler code
are generated, a Program breakpoint is set to the start address of each assembler block.

List.Hll

List.Mix
Training Basic SMP Debugging for Intel® x86/x64 | 149©1989-2024 Lauterbach

Document your Results

Settings

TRACE32 PowerView supports the following ways to document your results:

• Sending them to a printer

• Transferring them via the clipboard to other applications

• Saving them to a file

The output way and the output format is configured via the Printer Settings … dialog.
Training Basic SMP Debugging for Intel® x86/x64 | 150©1989-2024 Lauterbach

Print

If you send your results to a printer, you can select Windows Default or other font sizes and families
supported by your printer.

Clipboard

If you use the clipboard you can select ASCII ENANCED, Comma-Separated Values or XML.
Training Basic SMP Debugging for Intel® x86/x64 | 151©1989-2024 Lauterbach

File

If you save your result to a file, you can choose between various ASCII formats, Comma-Separated Value,
HML and various POSTSCRIPT formats.

If the file name contains numbers, the backmost number is incremented with each output.

If the file name does not contain a number, it is overwritten with each output.
Training Basic SMP Debugging for Intel® x86/x64 | 152©1989-2024 Lauterbach

Quick Output

Print Send window contents as visible to the selected output.

Print all Send window contents
- horizontal as visible
- vertical all information
to the selected output.
(see explanation on next page)

To Clipboard Send window contents as visible to clipboard.

To Clipboard all Send window contents
- horizontal as visible
- vertical all information
to clipboard.

Window Screenshot to
File …

Make screenshot of window contents as visible and save it to file
(various output formats supported).

Window Screenshot to
Clipboard

Make screenshot of window contents as visible and send it to
clipboard.
Training Basic SMP Debugging for Intel® x86/x64 | 153©1989-2024 Lauterbach

More details on Print all:

• Print all prints the visible horizontal information, but all vertical information (see picture below).

• To limit the output (especially when using a printer) it is recommended to limit the information
displayed in the window.

Examples:

Var.View %MultiLine flash_table[3..7] ; display only
; flash_table[3]
; to flash_table[7]
; in window

Data.dump flags++0x1ff ; display hex dump from
; flags to flags+0x1ff
; in window

Visible horizontal information,
all vertical information
Training Basic SMP Debugging for Intel® x86/x64 | 154©1989-2024 Lauterbach

Advanced Output

To send the complete output of a command to the selected output, use:

The horizontal size is currently 4K.

Complete script example:

If you want to collect several results in one file, use:

WinPrint.<command>

WinPrint.Var.View %MultiLine flash_table[3..7]

WinPrint.Data.dump flags++0x1ff

PRinTer.FILE my_array_01

PRinTer.FileType CSV

WinPrint.Var.View %MultiLine flash_table[3..7]

PRinTer.OPEN [<filename>] Open permanent output file

PRinTer.CLOSE Close permanent output file

PRinTer.OPEN my_array

PRinTer.FileType CSV

WinPrint.Var.View %MultiLine flash_table[3..7]

Go

Break

WinPrint.Var.View %MultiLine flash_table[3..7]

;…

PRinTer.CLOSE
Training Basic SMP Debugging for Intel® x86/x64 | 155©1989-2024 Lauterbach

	Training Basic SMP Debugging for Intel® x86/x64
	Debug Configurations
	CombiProbe 2 MIPI60-Cv2
	MIPI60-Cv2 Configuration
	MIPI60-Cv2 Features

	On-Chip Core Trace
	Off-Chip System/Core Trace

	Starting a TRACE32 PowerView Instance
	Basic TRACE32 PowerView Parameters
	Configuration File
	Standard Parameters
	Examples for Configuration Files
	Additional Parameters

	Application Properties (Windows only)
	Configuration via T32Start (Windows only)
	About TRACE32
	Version Information (Debug Cable)
	Version Information (CombiProbe)
	Prepare Full Information for a Support Email

	Establish your Debug Session
	Course of Action
	Run the Boot Loader until the Target Configuration is Done
	Establish the Debug Communication
	Load the Debug Symbols for the Application and/or the OS
	Configure the TRACE32 OS Awareness for Your OS
	Stop the Program Execution

	Start-Up Script
	Write a Start-Up Script
	Run a Start-up Script
	Automated Start-up Scripts

	TRACE32 PowerView
	SMP Concept
	TRACE32 PowerView Components
	Main Menu Bar and Accelerators
	Main Tool Bar
	Window Area
	Command Line
	Message Line
	Softkeys
	State Line

	Further Documentation

	Basic Debugging (SMP)
	Go/Break
	Single Stepping on Assembler Level
	Single Stepping on High-Level Language Level

	Registers
	Core Registers
	Display the Core Registers
	Colored Display of Changed Registers
	Modify the Contents of a Core Register

	Further Register Sets
	Special Function Register
	Display the Special Function Registers
	The PER Definition File
	Modify a Special Function Register

	Memory Display and Modification
	The Data.dump Window
	Basics
	Modify the Memory Contents
	Run-time Memory Access
	Colored Display of Changed Memory Contents

	The List Window
	Displays the Source Listing Around the PC
	Displays the Source Listing of a Selected Function

	Breakpoints
	Breakpoint Implementations
	Software Breakpoints in RAM (Program)
	Onchip Breakpoints in NOR Flash (Program)
	Onchip Breakpoints (Read/Write)

	Onchip Breakpoints for Intel® x86/x64
	Breakpoint Types
	Program Breakpoints
	Read/Write Breakpoints

	Breakpoint Behavior
	Breakpoint Setting at Run-time
	Breakpoints after Reset/Power Cycle
	Onchip Breakpoints Changed by Target Program

	Breakpoint Handling
	Real-time Breakpoints vs. Intrusive Breakpoints
	ProgramPass/ProgramFail Breakpoints

	Break.Set Dialog Box
	The HLL Check Box
	Implementations
	Actions
	Options
	DATA Breakpoints

	Advanced Breakpoints
	TASK-aware Breakpoints
	Counter
	CONDition
	CMD

	Display a List of all Set Breakpoints
	Delete Breakpoints
	Enable/Disable Breakpoints
	Store Breakpoint Settings

	Debugging
	Basic Debug Control
	Debugging of Optimized Code

	Document your Results
	Settings
	Print
	Clipboard
	File

	Quick Output
	Advanced Output

