LAUTERBACH A

Simulator for MIPS

Simulator for MIPS

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
TRACE32 Instruction Set SIMulators ... e r—~
Simulator for MIPS ... rr e e s e s s re s s e e e e e m e r e e s mm e e e e s s smmn e e ea s mmn e e eassmmnnnnas 1
TRACE32 Simulator LICENSEcviiiiiiciciemeccmrenrsrnssssssssssssssssmssssssssssssssssssssmmsssssssssessnssssssnnsnns 5
Quick Start of the SIMUIAtOr ... 6
Peripheral SImulation ... s 8
Lo 10 o =T ¢ o T g T 9
L O 9
MEMOLY ClASSES ..uuueriiriisumrriisissnsrrrsassns s rnassss s e s ras s s s s ra s s s s EEa s a s e e Ee e sam R e R Ea s aRReEEa s ammReeEa s ammnnnnas 10
Belated Trace ANAIYSIScciccceriiiiismmimiiiesr s s s e smn s e mn e mmnn s 11
MIPS specific SYStem Commandsccoiciiciiiiciccmmmenrrinsssssssssssssessss s ssssssssssssssmsssssssessesses 12
SYStem.CONFIG Configure debugger according to target topology 12
SYStem.CPU Select the used CPU 12
SYStem.LOCK Lock and tristate the debug port 12
SYStem.MemAccess Select run-time memory access method 13
SYStem.Option.OVERLAY Enable overlay support 13
SYStem.Option. MMUSPACES Separate address spaces by space IDs 14
SYStem.Mode Establish the communication with the target 15
SYStem.Option.Address32 Use 32-bit addresses 15
SYStem.Option.DisMode Define disassembler mode 16
SYStem.Option.Endianness Define endianness of target memory 17
SYStem.Option.IMASKASM Disable interrupts while ASM single stepping 17
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 17
SYStem.RESetOut CPU reset command 17
CPU specific MMU COMMANAS ccccccmmimeriiiiiiisssissssssmesessssesssssssssssssssmmssssssssessssssssssnsnmsssnssnes 18
MMU.DUMP Page wise display of MMU translation table 18
MMU.FORMAT Define MMU table structure 19
MMU .List Compact display of MMU translation table 23
MMU.SCAN Load MMU table from CPU 24
TrONChIP COMMANMScoiiiiiiiei s s s e s e s s ann e an e s nasmnnnaan 26
TrOnchip.state Display on-chip trigger window 26
TrOnchip.RESet Set on-chip trigger to default state 26
©1989-2024 Lauterbach Simulator for MIPS 2

©1989-2024 Lauterbach Simulator for MIPS | 3

Simulator for MIPS

Version 06-Jun-2024

A TRACE32 PowerView for MIPS = =R
File Edit View Var Break Run CPU Misc Trace Probe Perf Cov MIPS Window Help
M A+ || 2w @l A R
[=[®@ =]
M Step | M Over JAsDiverge « Return ¢ Up b Go Il Break | % Mode &=f L. Find: taske.c
addr/1ine [source |
1534 vl7 += v3; A
1335 for (w4 =0 ; vd < 3 ; vid++)
1336 V17 += wd;
1337 for (w5 =0 ; w5 < 3 ; v5++)
1338 w17 += w5;
1339 for (w6 =0 ; v6 < 3 ; v+t)
L1340 VA7 += v6;
1341 Tor (w7 =0 ; w7 < 3 ; vitt)
1342 w17 += w7
1343 for (wvB =0 ; vB < 3 ; vB++)
1344 w17 += vB;
1345 for (w3 =0; v9 < 3 ; v+)
1346 w17 += v9;
1347 for (v10 =0 ; v1i0 < 3 ; vi0++)
1348 w17 += v10;
1349 for (vll =0 ; vlil < 3 ; vil++)
1350 w17 += wvll;
1351 for (w12 =0 ; vli2 < 3 ; vi2++)
1352 w17 += wvl2;
1353 for (w13 =0 ; vl3 < 3 ; vi3++)
1354 w17 += wl3;
1355 for (vld =0 ; vi4 < 3 ; vid++)
1356 vl7 += wld; W
= [= || =@ || 22 | | & B:VarWatch flags ast EIIEI
1. Up Down MArgs [Mlocals [caller | v | 2 |6 Watch| | & View X
—000|‘Fur1c10() ~ +flags = (1, 1, 1, 0, 1,1, 0, 1,1, 0,1, 0,0, 1,1, 0, 0, 1, 0)
=] = 27276 # ast = (word = 0Ox0, count = 12346, left = 0x8008383C, right = Ox0, f
-1 =
=vl =3
= w2 =3
=w3 =3
=vd = 3
=wh =3
=vE =1
= w7 = -2146944592
=vB =3
= w3 =3
= w10 = 27275 W
£ >
B:: 50
components trace Data Var List PERF SYStem Step Go Break other pravious
M:80040970 \\taskc\taskc\funcl0+0xD4 stopped HLL up

All general commands are described in the “PowerView Command Reference” (ide_ref.pdf) and

“General Commands Reference”.

©1989-2024 Lauterbach

Simulator for MIPS | 4

TRACE32 Simulator License

[build 68859 - DVD 02/2016]
The extensive use of the TRACE32 Instruction Set Simulator requires a TRACES32 Simulator License.

For more information, see www.lauterbach.com/sim_license.html.

©1989-2024 Lauterbach Simulator for MIPS | 5

www.lauterbach.com/sim_license.html

Quick Start of the Simulator

To start the simulator, proceed as follows:

1. Select the device prompt for the Simulator and reset the system.

183 3

RESet

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: : to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting TRACE32.

2. Specify the CPU specific settings.

File Edit Wiew Var Break Run||CPU |[|Misc Trace Pedf Cov Window Help

i

Change Frame r éy Bo:S¥Stem
I CPU Registers ’MDdE
FPU Registers @ Down
«# Peripherals MoDebug
Prepare
429 System Settings... ae
Attach
StandBy
Up (StandBy]
©up
In Target Reset
Reset CPU Registers reset
CPU

Cpu_name

SYStem.CPU <cpu_name>

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

©1989-2024 Lauterbach Simulator for MIPS | 6

3. Enter debug mode.

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed it is possible
to access memory and registers.

4. Load the program.

Data.LOAD.<file_format> <file> ; load program and symbols

See the Data.LOAD command reference for a list of supported file formats. If uncertain about the
required format, try Data.LOAD.auto.

A detailed description of the Data.LOAD command and all available options is given in the reference
guide.

5. Start-up example

A typical start sequence is shown below. This sequence can be written to a PRACTICE script file
(*.cmm, ASCII format) and executed with the command DO <file>.

B:: ; Select the ICD device prompt
WinCLEAR ; Clear all windows
SYStem.CPU <cpu_name> ; Select CPU type
SYStem.Up ; Reset the target and enter

; debug mode
Data.LOAD.<file_ format> <file> ; Load the application
Register.Set pc main ; Set the PC to function main
PER.view ; Show clearly arranged

; peripherals in window *)
List.Mix ; Open source code window *)
Register.view /SpotLight ; Open register window *)
Frame.view /Locals /Caller ; Open the stack frame with

; local variables *)
Var.Watch %Spotlight flags ast ; Open watch window for

; variables *)

*) These commands open windows on the screen. The window position can be specified with the
WinPOS command.

©1989-2024 Lauterbach Simulator for MIPS | 7

Peripheral Simulation

For more information, see “API for TRACE32 Instruction Set Simulator” (simulator_api.pdf).

©1989-2024 Lauterbach Simulator for MIPS | 8

Troubleshooting

No information available.

FAQ

Please refer to hitps://support.lauterbach.com/kb.

©1989-2024 Lauterbach Simulator for MIPS | 9

https://support.lauterbach.com/kb

Memory Classes

The following MIPS specific memory classes are available.

Memory Class Description

P Program Memory

D Data Memory

CPO Coprocessor 0 Register

CP1 Coprocessor 1 Register (if implemented)

CP2 Coprocessor 2 Register (if implemented)

CP3 Coprocessor 3 Register (if implemented)

DBG Debug Memory Class (gives additional information)

E Emulation Memory, Pseudo Dualport Access to Memory
(see SYStem.CpuAccess)

VM Virtual Memory (memory on the debug system)

To access a memory class, write the class in front of the address.

Examples:

'Data.dump CPO0:0--3’ displays the register 0 (Index), 1 (Random), 2 (EntryLo0), 3 (EntryLo1) of the System
Control Coprocessor (=CP0).

The register number can have values between 0 and 31. The value of “select” must be multiplied by 32 and
added to the register number. “Data.dump CP0:0x30--0x30” displays the Config1 register (register number:
0x10; select: 0x01). Select is 0 for the registers mentioned above.

ICD-MIPS64: For the memory classes CPx and DBG are only 64-bit (QUAD) write accesses possible.

©1989-2024 Lauterbach

Simulator for MIPS | 10

Belated Trace Analysis

The following commands are required for a belated trace analysis:

TCB.Version <number>

TCB.SourceSizeBits <number>

TCB.ThreadSizeBits <number>

TCB.InsCompSizeBits <number>

TCB.FCR ON | OFF

TCB.IM ON | OFF

TCB.LSM ON | OFF

TCB.Type <number>

Inform the TRACE32 Instruction Set Simulator which trace
cell version was used to record the loaded trace information.

Inform the TRACE32 Instruction Set Simulator how much bits
were used in the loaded trace information to identify the
source core.

Inform the TRACE32 Instruction Set Simulator how much bits
were used in the loaded trace information to identify the
source thread context.

Inform the TRACE32 Instruction Set Simulator how much bits
were used for instruction completion information.

Inform the TRACE32 Instruction Set Simulator about
existence of optional function call - return bit.

Inform the TRACES2 Instruction Set Simulator about
existence of optional Instruction cache miss bit.

Inform the TRACES2 Instruction Set Simulator about
existence of optional data cache load store miss bit.

Inform the TRACE32 Instruction Set Simulator on the used
Trace Control Block Type.

©1989-2024 Lauterbach

Simulator for MIPS | 11

MIPS specific SYStem Commands

SYStem.CONFIG Configure debugger according to target topology

The SYStem.CONFIG commands have no effect on the simulator. They are only provided to allow the user
to run PRACTICE scripts written for the debugger within the simulator without modifications.

SYStem.CPU Select the used CPU
Format: SYStem.CPU <cpu>
<cpu>: AUTO
MIPS4K
RC32334
F731940
MIPS5K
SYStem.LOCK Lock and tristate the debug port
Format: SYStem.LOCK [ON | OFF]
Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool. The command has no effect for the simulator.

©1989-2024 Lauterbach Simulator for MIPS | 12

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)
Enable Memory access during program execution to target is enabled.

CPU (deprecated)

Denied Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

SYStem.Option.OVERLAY Enable overlay support

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]

Default: OFF.

ON Activates the overlay extension and extends the address scheme of the
debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACE32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes
to the execution area. For using this option, the storage area must be
readable and writable for the debugger.

Example:

SYStem.Option.OVERLAY ON
Data.List 0x2:0x1lc4d ; Data.List <overlay_ id>:<address>

©1989-2024 Lauterbach

Simulator for MIPS | 13

SYStem.Option.MMUSPACES

Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE:

SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

Examples:

;Dump logical address 0xC002082A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC002082A belonging to memory space with
;Space ID 0x0203:
Data.dump D:0x0203:0xC00208A

©1989-2024 Lauterbach

Simulator for MIPS |

14

SYStem.Mode Establish the communication with the target

Format: SYStem.Mode <mode>

SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
Up
Down (Disables the debugger and keeps the CPU in reset. (default)
Up Resets the target and sets the CPU to debug mode. After the execution of this

command the CPU is stopped and all registers are set to the default level.

SYStem.Option.Address32 Use 32-bit addresses
Format: SYStem.Option.Address32 [ON | OFF]
Default: OFF.

This option is functionable for 64bit architectures only, not for 32bit architectures.

Enable Address32 if you want to work with 32bit addresses on a 64bit MIPS CPU. If enabled, TRACE32
accepts and displays only 32bit addresses. Internally, they are sign-extended to 64bit addresses before they
are used on the CPU. This results in a mapping as follows:

Address used in TRACE32 Mapped to address on 64bit CPU
0x0000 0000 - Ox7FFF FFFF 0x0000 0000 0000 0000 - 0x0000 0000 7FFF FFFF

0x8000 0000 - OxFFFF FFFF OxFFFF FFFF 8000 0000 - OxFFFF FFFF FFFF FFFF

As a result, with Address32 ON, only the 32bit Compatibility Address Spaces 0x0000 0000 0000 0000 -
0x0000 0000 7FFF FFFF and OxFFFF FFFF 8000 0000 - OxFFFF FFFF FFFF FFFF can be accessed.

This option is helpful if you debug a 32bit Linux kernel on a 64bit MIPS CPU.

Careful: if 64bit addresses are used in TRACE32 with Address32 ON, bits 32-63 will truncated. Turn this
option off if you need to access real 64bit addresses.

©1989-2024 Lauterbach Simulator for MIPS | 15

SYStem.Option.DisMode

Define disassembler mode

Format:

<mode>:

SYStem.Option.DisMode <mode>

AUTO
ACCESS
MIPS32
MIPS16
MICROMIPS
NANOMIPS
MIPSR6

This command specifies the selected disassembler.

Default: AUTO.

AUTO

ACCESS

MIPS32

MIPS16

MICROMIPS

NANOMIPS

MIPSR6

Automatic selection of disassembler mode. The information provided by the
compiler output format is used for the disassembler selection. If no information

is available it has the same behavior as ACCESS. (default)

Disassembler mode will be selected by entered access class.

The MIPS32 disassembler is used.

The MIPS16 disassembler is used.

The microMIPS disassembler is used.

The nanoMIPS disassembler is used.

The MIPS R6 disassembiler is used.

©1989-2024 Lauterbach

Simulator for MIPS

16

SYStem.Option.Endianness Define endianness of target memory

Format: SYStem.Option.Endianness [AUTO | Little | Big]

Default: AUTO.

This option selects the byte ordering mechanism. If it is set to AUTO, the kernel mode endianness will be
detected and selected.

SYStem.Option.IMASKASM Disable interrupts while ASM single stepping

Format: SYStem.Option.IMASKASM [ON | OFF]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the cpu will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

SYStem.RESetOut CPU reset command

The command asserts NRESET on the JTAG connector in the TRACE32 In-Circuit Debugger (ICD) but is
ignored by the TRACER32 Instruction Set Simulator. However, the command is allowed in the simulator so
that you can run scripts which have actually been made for the debugger. For more information about the
effect in the debugger, refer to your Processor Architecture Manual (debugger_<arch>.pdf).

©1989-2024 Lauterbach Simulator for MIPS | 17

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table
Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>]
MMU.<table>.dump (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

Displays the contents of the CPU specific MMU translation table.

. If called without parameters, the complete table will be displayed.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable

Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID: displays the translation
table of the specified process

. else, this command displays the table the CPU currently uses for
MMU translation.

©1989-2024 Lauterbach

Simulator for MIPS | 18

KernelPageTable Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable Displays the MMU translation table entries of the given process. Specify
<task_magic> | one of the TaskPageTable arguments to choose the process you want.
<task_id> | In MMU-based operating systems, each process uses its own MMU
<task_name> | translation table. This command reads the table of the specified process,
<space_id>:0x0 and displays its table entries.

. For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

CPU specific tables for MMU.DUMP

TLB Displays the contents of the Translation Lookaside Buffer.
MMU.FORMAT Define MMU table structure
[Examples]
Format 1: MMU.FORMAT <format> [<base_address> [<logical_kernel_address_range>

<physical_kernel_address>]]

Format 2: MMU.FORMAT <format> [<base_address> [<base_address_highrange>
MIPS64 only [<logical_kernel_address_range> <physical_kernel_address>]]]

Default <format>: STD.

Defines the information needed for the page table walks, which are performed by TRACES32 for debugger
address translation, page table dumps, or page table scans.

Format 1 is the normal, CPU-architecture independent command syntax. This format does not require the
additional input parameter <base_address_highrange> of format 2.

Format 2: For MIPS64, there are four MMU.FORMAT <format> keywords which require the additional input
parameter <base_address_highrange>. These keywords are LINUX64, LINUX64RIXI, LINUX64HTLB, and
LINUX64HTLBP16.

©1989-2024 Lauterbach Simulator for MIPS | 19

<format>

<format> is to be replaced with a CPU architecture specific keyword which defines the structure of the MMU
page tables used by the kernel. By default, TRACES32 assumes that the MMU format is STD, unless you
specify the MMU.FORMAT <format> explicitly.

The table below indicates if a <format> requires the additional parameter <base_address_highrange>.

<format> Description

EXTENSION Table walk performed by a TRACE32 extension that
a) was developed by the customer and
b) defines table walk callback functions.

LINUX32 Linux 32-bit, page size 4kB

LINUX32P16 Linux 32-bit, page size 16kB

LINUX32P16R2

Linux 32-bit, page size 16kB, used on MIPS32 R2 or R6 (internally
identical to format LINUX32P16R41)

LINUX32P16R2

Deprecated: internally identical to format LINUX32P16R41

LINUX32R4K Linux 32-bit, page size 4kB, like LINUX32 but different page flags
LINUX32RIXI Linux 32-bit with RI/XI bits
LINUX64 Linux 64-bit with 64-bit PTEs, page size 4kB. Separate page table for high

address range can be specified with optional extra parameter
<base_address_highrange>.

LINUX64HTLB

Linux 64-bit with 64-bit PTEs, page size 4kB for huge TLB. Uses separate
sub table for addresses > OxFFFFFFFFC0000000.

LINUX64HTLBP16

Linux 64-bit like LINUX64HTLB but pag esize 16kB.

LINUX64P16

Linux 64-bit with 64-bit PTEs, page size 16kB. Depth 3 levels.

LINUX64P64

Linux 64-bit with 64-bit PTEs, page size 64kB. Depth 3 levels.

LINUX64P64LT

Linux 64-bit with 64-bit PTEs, page size 64kB. Depth 2 levels with large
level 1 table (used for BROADCOM(R) XLP SDK 3.7.10 and alike)

LINUX64RIXI Linux 64-bit with 64-bit PTEs with RI/XI bits, page size 4kB. Separate
page table for high address range can be specified with optional extra
parameter <base_address_highrange>.

LINUXBIG Linux 32-bit with 64-bit PTEs on MIPS32

LINUXBIG64 Linux 32-bit with 64-bit PTEs on MIPS64

STD Standard format defined by the CPU

WINCE6 Format used by Windows CE6

©1989-2024 Lauterbach

Simulator for MIPS | 20

<base_address>

<base_address> defines the start address of the default page table which is usually the kernel page table.
The kernel page table contains translations for mapped address ranges owned by the kernel.

The debugger address translation uses the default page table if no process specific page table (task
page table) is available to translate an address.

<base_address> can be left empty by typing a comma or set to zero if there is no default page table
available in the system.

<base_address_highrange>

Using <base_address_highrange>, you can specify a second page table responsible for the translation of
addresses >= OxFFFFFFFFO0000000. Then, two page tables are in use:

. Addresses in range 0x0--OxFFFFFFFEFFFFFFFF will be translated with the page table defined
by the argument <base_address>.

. Addresses in range OxFFFFFFFFO0000000--0xFFFFFFFFFFFFFFFF will be translated with the
page table defined by the argument <base_address_highrange>.

<logical_kernel_address_range> and <physical_kernel_address> for the Default Translation

The arguments <logical_kernel_address_range> and <physical_kernel_address> define a linear logical-to-
physical address translation for the kernel addresses, called kernel translation or default translation. This
translation should cover all statically mapped logical address ranges of kernel code or kernel data.

For the <physical_kernel_address> you just need to specify the start address.

NOTE: If no kernel translation is specified for a given memory access, TRACE32 tries to
use static address translations defined by the command TRANSIation.Create. The
kernel translation is shown in the TRANSIation.List window.

Examples

NOTE: A backslash \ is used as a line continuation character in PRACTICE script files
(*.cmm). No white space permitted after the backslash.

Examples of Format 1:

7 <format> <base_address> <logical_range> <phys_range>
MMU.FORMAT LINUX swapper_pg_dir
MMU . FORMAT LINUX swapper_pg_dir \

0xC000000000000000--0xc00000007FFFFFFF 0x20000000

©1989-2024 Lauterbach Simulator for MIPS | 21

Examples of Format 2 with <base_address_highrange>:

<base_address_highrange>

<format> <base_address>
module_pg_dir

’

MMU . FORMAT LINUX64 swapper_pg_dir
MMU . FORMAT LINUX64 swapper_pg_dir module_pg_dir \
0xC000000000000000--0xc00000007FFFFFFF 0x20000000

<logical_range> <phys_range>

Examples of Format 2 without <base_address_highrange>:

In this example, not only the <base_address_highrange> is omitted but also all remaining parameters.

; <format> <base_address> <base_address_highrange>

MMU.FORMAT LINUX64 swapper_pg_dir

If you need all parameters of Format 2 except for <base_address_highrange>, then use two commas to
specify an empty input parameter.

<base_address_highrange>

; <format> <base_address>

MMU.FORMAT LINUX64 swapper_pg_dir

MMU . FORMAT LINUX64 swapper_pg_dir oo\
0xC000000000000000--0xCO0000007FFFFFFF 0x20000000

<logical_range> <phys_range>

Simulator for MIPS |

22

©1989-2024 Lauterbach

MMU.List Compact display of MMU translation table
Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
MMU.<table>.List (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

Lists the address translation of the CPU-specific MMU table.

J If called without address or range parameters, the complete table will be displayed.

J If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display
a page table located anywhere in memory.

PageTable Lists the current MMU translation of the CPU.

This command reads all tables the CPU currently uses for MMU
translation and lists the address translation.

KernelPageTable

Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.

. For information about the first three parameters, see “What to
know about the Task Parameters™ (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.
©1989-2024 Lauterbach Simulator for MIPS | 23

MMU.SCAN Load MMU table from CPU
Format: MMU.SCAN <table> [<range> <address>]
MMU. <table>.SCAN (deprecated)
<table>: PageTable

KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

<cpu_specific_tables>

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

J If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable

Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.

. if <range> or <address> have a space ID: loads the translation
table of the specified process
. else, this command loads the table the CPU currently uses for

MMU translation.

KernelPageTable

Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the
table of the kernel and copies its address translation into the debugger-
internal static translation table.

©1989-2024 Lauterbach

Simulator for MIPS | 24

TaskPageTable Loads the MMU address translation of the given process. Specify one of

<task_magic> | the TaskPageTable arguments to choose the process you want.

<task_id> | In MMU-based operating systems, each process uses its own MMU

<task_name> | translation table. This command reads the table of the specified process,

<space_id>:0x0 and copies its address translation into the debugger-internal static

translation table.

. For information about the first three parameters, see “What to
know about the Task Parameters™ (general_ref_t.pdf).

. See also the appropriate OS Awareness Manual.

ALL Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the
debugger-internal static translation table.

See also the appropriate OS Awareness Manual.

CPU specific Tables in MMU.SCAN <table>

TLB Loads the translation table from the CPU to the debugger-internal translation
table.

©1989-2024 Lauterbach Simulator for MIPS | 25

TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

©1989-2024 Lauterbach Simulator for MIPS | 26

	Simulator for MIPS
	TRACE32 Simulator License
	Quick Start of the Simulator
	Peripheral Simulation
	Troubleshooting
	FAQ
	Memory Classes
	Belated Trace Analysis
	MIPS specific SYStem Commands
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CPU Select the used CPU
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Mode Establish the communication with the target
	SYStem.Option.Address32 Use 32-bit addresses
	SYStem.Option.DisMode Define disassembler mode
	SYStem.Option.Endianness Define endianness of target memory
	SYStem.Option.IMASKASM Disable interrupts while ASM single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.RESetOut CPU reset command

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.FORMAT Define MMU table structure
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU

	TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.RESet Set on-chip trigger to default state

