
MANUAL

Simulator for MIPS

Simulator for MIPS

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 TRACE32 Instruction Set Simulators .. 

 Simulator for MIPS ... 1

 TRACE32 Simulator License .. 5

 Quick Start of the Simulator ... 6

 Peripheral Simulation ... 8

 Troubleshooting .. 9

 FAQ ... 9

 Memory Classes .. 10

 Belated Trace Analysis ... 11

 MIPS specific SYStem Commands .. 12

 SYStem.CONFIG Configure debugger according to target topology 12

 SYStem.CPU Select the used CPU 12

 SYStem.LOCK Lock and tristate the debug port 12

 SYStem.MemAccess Select run-time memory access method 13

 SYStem.Option.OVERLAY Enable overlay support 13

 SYStem.Option.MMUSPACES Separate address spaces by space IDs 14

 SYStem.Mode Establish the communication with the target 15

 SYStem.Option.Address32 Use 32-bit addresses 15

 SYStem.Option.DisMode Define disassembler mode 16

 SYStem.Option.Endianness Define endianness of target memory 17

 SYStem.Option.IMASKASM Disable interrupts while ASM single stepping 17

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 17

 SYStem.RESetOut CPU reset command 17

 CPU specific MMU Commands .. 18

 MMU.DUMP Page wise display of MMU translation table 18

 MMU.FORMAT Define MMU table structure 19

 MMU.List Compact display of MMU translation table 23

 MMU.SCAN Load MMU table from CPU 24

 TrOnchip Commands .. 26

 TrOnchip.state Display on-chip trigger window 26

 TrOnchip.RESet Set on-chip trigger to default state 26
Simulator for MIPS | 2©1989-2024 Lauterbach

Simulator for MIPS | 3©1989-2024 Lauterbach

Simulator for MIPS

Version 06-Jun-2024

All general commands are described in the “PowerView Command Reference” (ide_ref.pdf) and
“General Commands Reference”.
Simulator for MIPS | 4©1989-2024 Lauterbach

TRACE32 Simulator License

[build 68859 - DVD 02/2016]

The extensive use of the TRACE32 Instruction Set Simulator requires a TRACE32 Simulator License.

For more information, see www.lauterbach.com/sim_license.html.
Simulator for MIPS | 5©1989-2024 Lauterbach

www.lauterbach.com/sim_license.html

Quick Start of the Simulator

To start the simulator, proceed as follows:

1. Select the device prompt for the Simulator and reset the system.

The device prompt B:: is normally already selected in the TRACE32 command line. If this is not the
case, enter B:: to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting TRACE32.

2. Specify the CPU specific settings.

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

B::

RESet

SYStem.CPU <cpu_name>
Simulator for MIPS | 6©1989-2024 Lauterbach

3. Enter debug mode.

This command resets the CPU and enters debug mode. After this command is executed it is possible
to access memory and registers.

4. Load the program.

See the Data.LOAD command reference for a list of supported file formats. If uncertain about the
required format, try Data.LOAD.auto.

A detailed description of the Data.LOAD command and all available options is given in the reference
guide.

5. Start-up example

A typical start sequence is shown below. This sequence can be written to a PRACTICE script file
(*.cmm, ASCII format) and executed with the command DO <file>.

*) These commands open windows on the screen. The window position can be specified with the
WinPOS command.

SYStem.Up

Data.LOAD.<file_format> <file> ; load program and symbols

B:: ; Select the ICD device prompt

WinCLEAR ; Clear all windows

SYStem.CPU <cpu_name> ; Select CPU type

SYStem.Up ; Reset the target and enter
; debug mode

Data.LOAD.<file_format> <file> ; Load the application

Register.Set pc main ; Set the PC to function main

PER.view ; Show clearly arranged
; peripherals in window *)

List.Mix ; Open source code window *)

Register.view /SpotLight ; Open register window *)

Frame.view /Locals /Caller ; Open the stack frame with
; local variables *)

Var.Watch %Spotlight flags ast ; Open watch window for
; variables *)
Simulator for MIPS | 7©1989-2024 Lauterbach

Peripheral Simulation

For more information, see “API for TRACE32 Instruction Set Simulator” (simulator_api.pdf).
Simulator for MIPS | 8©1989-2024 Lauterbach

Troubleshooting

No information available.

FAQ

Please refer to https://support.lauterbach.com/kb.
Simulator for MIPS | 9©1989-2024 Lauterbach

https://support.lauterbach.com/kb

Memory Classes

The following MIPS specific memory classes are available.

To access a memory class, write the class in front of the address.

Examples:

’Data.dump CP0:0--3’ displays the register 0 (Index), 1 (Random), 2 (EntryLo0), 3 (EntryLo1) of the System
Control Coprocessor (=CP0).

The register number can have values between 0 and 31. The value of “select” must be multiplied by 32 and
added to the register number. “Data.dump CP0:0x30--0x30” displays the Config1 register (register number:
0x10; select: 0x01). Select is 0 for the registers mentioned above.

ICD-MIPS64: For the memory classes CPx and DBG are only 64-bit (QUAD) write accesses possible.

Memory Class Description

P Program Memory

D Data Memory

CP0 Coprocessor 0 Register

CP1 Coprocessor 1 Register (if implemented)

CP2 Coprocessor 2 Register (if implemented)

CP3 Coprocessor 3 Register (if implemented)

DBG Debug Memory Class (gives additional information)

E Emulation Memory, Pseudo Dualport Access to Memory
(see SYStem.CpuAccess)

VM Virtual Memory (memory on the debug system)
Simulator for MIPS | 10©1989-2024 Lauterbach

Belated Trace Analysis

The following commands are required for a belated trace analysis:

TCB.Version <number> Inform the TRACE32 Instruction Set Simulator which trace
cell version was used to record the loaded trace information.

TCB.SourceSizeBits <number> Inform the TRACE32 Instruction Set Simulator how much bits
were used in the loaded trace information to identify the
source core.

TCB.ThreadSizeBits <number> Inform the TRACE32 Instruction Set Simulator how much bits
were used in the loaded trace information to identify the
source thread context.

TCB.InsCompSizeBits <number> Inform the TRACE32 Instruction Set Simulator how much bits
were used for instruction completion information.

TCB.FCR ON | OFF Inform the TRACE32 Instruction Set Simulator about
existence of optional function call - return bit.

TCB.IM ON | OFF Inform the TRACE32 Instruction Set Simulator about
existence of optional Instruction cache miss bit.

TCB.LSM ON | OFF Inform the TRACE32 Instruction Set Simulator about
existence of optional data cache load store miss bit.

TCB.Type <number> Inform the TRACE32 Instruction Set Simulator on the used
Trace Control Block Type.
Simulator for MIPS | 11©1989-2024 Lauterbach

MIPS specific SYStem Commands

SYStem.CONFIG Configure debugger according to target topology

The SYStem.CONFIG commands have no effect on the simulator. They are only provided to allow the user
to run PRACTICE scripts written for the debugger within the simulator without modifications.

SYStem.CPU Select the used CPU

SYStem.LOCK Lock and tristate the debug port

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool. The command has no effect for the simulator.

Format: SYStem.CPU <cpu>

<cpu>: AUTO
MIPS4K
RC32334
F731940
MIPS5K

Format: SYStem.LOCK [ON | OFF]
Simulator for MIPS | 12©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

SYStem.Option.OVERLAY Enable overlay support

Default: OFF.

Example:

Format: SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)

Enable
CPU (deprecated)

Memory access during program execution to target is enabled.

Denied Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]

ON Activates the overlay extension and extends the address scheme of the
debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACE32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes
to the execution area. For using this option, the storage area must be
readable and writable for the debugger.

SYStem.Option.OVERLAY ON
Data.List 0x2:0x11c4 ; Data.List <overlay_id>:<address>
Simulator for MIPS | 13©1989-2024 Lauterbach

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACE32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

Examples:

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.

2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A
Simulator for MIPS | 14©1989-2024 Lauterbach

SYStem.Mode Establish the communication with the target

SYStem.Option.Address32 Use 32-bit addresses

Default: OFF.

This option is functionable for 64bit architectures only, not for 32bit architectures.

Enable Address32 if you want to work with 32bit addresses on a 64bit MIPS CPU. If enabled, TRACE32
accepts and displays only 32bit addresses. Internally, they are sign-extended to 64bit addresses before they
are used on the CPU. This results in a mapping as follows:

As a result, with Address32 ON, only the 32bit Compatibility Address Spaces 0x0000 0000 0000 0000 -
0x0000 0000 7FFF FFFF and 0xFFFF FFFF 8000 0000 - 0xFFFF FFFF FFFF FFFF can be accessed.
This option is helpful if you debug a 32bit Linux kernel on a 64bit MIPS CPU.
Careful: if 64bit addresses are used in TRACE32 with Address32 ON, bits 32-63 will truncated. Turn this
option off if you need to access real 64bit addresses.

Format: SYStem.Mode <mode>

SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
Up

Down (Disables the debugger and keeps the CPU in reset. (default)

Up Resets the target and sets the CPU to debug mode. After the execution of this
command the CPU is stopped and all registers are set to the default level.

Format: SYStem.Option.Address32 [ON | OFF]

Address used in TRACE32 Mapped to address on 64bit CPU

0x0000 0000 - 0x7FFF FFFF 0x0000 0000 0000 0000 - 0x0000 0000 7FFF FFFF

0x8000 0000 - 0xFFFF FFFF 0xFFFF FFFF 8000 0000 - 0xFFFF FFFF FFFF FFFF
Simulator for MIPS | 15©1989-2024 Lauterbach

SYStem.Option.DisMode Define disassembler mode

This command specifies the selected disassembler.

Default: AUTO.

Format: SYStem.Option.DisMode <mode>

<mode>: AUTO
ACCESS
MIPS32
MIPS16
MICROMIPS
NANOMIPS
MIPSR6

AUTO Automatic selection of disassembler mode. The information provided by the
compiler output format is used for the disassembler selection. If no information
is available it has the same behavior as ACCESS. (default)

ACCESS Disassembler mode will be selected by entered access class.

MIPS32 The MIPS32 disassembler is used.

MIPS16 The MIPS16 disassembler is used.

MICROMIPS The microMIPS disassembler is used.

NANOMIPS The nanoMIPS disassembler is used.

MIPSR6 The MIPS R6 disassembler is used.
Simulator for MIPS | 16©1989-2024 Lauterbach

SYStem.Option.Endianness Define endianness of target memory

Default: AUTO.

This option selects the byte ordering mechanism. If it is set to AUTO, the kernel mode endianness will be
detected and selected.

SYStem.Option.IMASKASM Disable interrupts while ASM single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the interrupt mask bits of the cpu will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

SYStem.RESetOut CPU reset command

The command asserts nRESET on the JTAG connector in the TRACE32 In-Circuit Debugger (ICD) but is
ignored by the TRACE32 Instruction Set Simulator. However, the command is allowed in the simulator so
that you can run scripts which have actually been made for the debugger. For more information about the
effect in the debugger, refer to your Processor Architecture Manual (debugger_<arch>.pdf).

Format: SYStem.Option.Endianness [AUTO | Little | Big]

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]
Simulator for MIPS | 17©1989-2024 Lauterbach

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table

Displays the contents of the CPU specific MMU translation table.

• If called without parameters, the complete table will be displayed.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
 <address> <root>]
MMU.<table>.dump (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Displays the entries of an MMU translation table.
• if <range> or <address> have a space ID: displays the translation

table of the specified process
• else, this command displays the table the CPU currently uses for

MMU translation.
Simulator for MIPS | 18©1989-2024 Lauterbach

CPU specific tables for MMU.DUMP

MMU.FORMAT Define MMU table structure
[Examples]

Default <format>: STD.

Defines the information needed for the page table walks, which are performed by TRACE32 for debugger
address translation, page table dumps, or page table scans.

Format 1 is the normal, CPU-architecture independent command syntax. This format does not require the
additional input parameter <base_address_highrange> of format 2.

Format 2: For MIPS64, there are four MMU.FORMAT <format> keywords which require the additional input
parameter <base_address_highrange>. These keywords are LINUX64, LINUX64RIXI, LINUX64HTLB, and
LINUX64HTLBP16.

KernelPageTable Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.

TLB Displays the contents of the Translation Lookaside Buffer.

Format 1: MMU.FORMAT <format> [<base_address> [<logical_kernel_address_range>
 <physical_kernel_address>]]

Format 2:
MIPS64 only

MMU.FORMAT <format> [<base_address> [<base_address_highrange>
 [<logical_kernel_address_range> <physical_kernel_address>]]]
Simulator for MIPS | 19©1989-2024 Lauterbach

<format>

<format> is to be replaced with a CPU architecture specific keyword which defines the structure of the MMU
page tables used by the kernel. By default, TRACE32 assumes that the MMU format is STD, unless you
specify the MMU.FORMAT <format> explicitly.

The table below indicates if a <format> requires the additional parameter <base_address_highrange>.

<format> Description

EXTENSION Table walk performed by a TRACE32 extension that
a) was developed by the customer and
b) defines table walk callback functions.

LINUX32 Linux 32-bit, page size 4kB

LINUX32P16 Linux 32-bit, page size 16kB

LINUX32P16R2 Linux 32-bit, page size 16kB, used on MIPS32 R2 or R6 (internally
identical to format LINUX32P16R41)

LINUX32P16R2 Deprecated: internally identical to format LINUX32P16R41

LINUX32R4K Linux 32-bit, page size 4kB, like LINUX32 but different page flags

LINUX32RIXI Linux 32-bit with RI/XI bits

LINUX64 Linux 64-bit with 64-bit PTEs, page size 4kB. Separate page table for high
address range can be specified with optional extra parameter
<base_address_highrange>.

LINUX64HTLB Linux 64-bit with 64-bit PTEs, page size 4kB for huge TLB. Uses separate
sub table for addresses > 0xFFFFFFFFC0000000.

LINUX64HTLBP16 Linux 64-bit like LINUX64HTLB but pag esize 16kB.

LINUX64P16 Linux 64-bit with 64-bit PTEs, page size 16kB. Depth 3 levels.

LINUX64P64 Linux 64-bit with 64-bit PTEs, page size 64kB. Depth 3 levels.

LINUX64P64LT Linux 64-bit with 64-bit PTEs, page size 64kB. Depth 2 levels with large
level 1 table (used for BROADCOM(R) XLP SDK 3.7.10 and alike)

LINUX64RIXI Linux 64-bit with 64-bit PTEs with RI/XI bits, page size 4kB. Separate
page table for high address range can be specified with optional extra
parameter <base_address_highrange>.

LINUXBIG Linux 32-bit with 64-bit PTEs on MIPS32

LINUXBIG64 Linux 32-bit with 64-bit PTEs on MIPS64

STD Standard format defined by the CPU

WINCE6 Format used by Windows CE6
Simulator for MIPS | 20©1989-2024 Lauterbach

<base_address>

<base_address> defines the start address of the default page table which is usually the kernel page table.
The kernel page table contains translations for mapped address ranges owned by the kernel.

The debugger address translation uses the default page table if no process specific page table (task
page table) is available to translate an address.

<base_address> can be left empty by typing a comma or set to zero if there is no default page table
available in the system.

<base_address_highrange>

Using <base_address_highrange>, you can specify a second page table responsible for the translation of
addresses >= 0xFFFFFFFF00000000. Then, two page tables are in use:

• Addresses in range 0x0--0xFFFFFFFEFFFFFFFF will be translated with the page table defined
by the argument <base_address>.

• Addresses in range 0xFFFFFFFF00000000--0xFFFFFFFFFFFFFFFF will be translated with the
page table defined by the argument <base_address_highrange>.

<logical_kernel_address_range> and <physical_kernel_address> for the Default Translation

The arguments <logical_kernel_address_range> and <physical_kernel_address> define a linear logical-to-
physical address translation for the kernel addresses, called kernel translation or default translation. This
translation should cover all statically mapped logical address ranges of kernel code or kernel data.

For the <physical_kernel_address> you just need to specify the start address.

Examples

Examples of Format 1:

NOTE: If no kernel translation is specified for a given memory access, TRACE32 tries to
use static address translations defined by the command TRANSlation.Create. The
kernel translation is shown in the TRANSlation.List window.

NOTE: A backslash \ is used as a line continuation character in PRACTICE script files
(*.cmm). No white space permitted after the backslash.

; <format> <base_address> <logical_range> <phys_range>
MMU.FORMAT LINUX swapper_pg_dir

MMU.FORMAT LINUX swapper_pg_dir \
 0xC000000000000000--0xc00000007FFFFFFF 0x20000000
Simulator for MIPS | 21©1989-2024 Lauterbach

Examples of Format 2 with <base_address_highrange>:

Examples of Format 2 without <base_address_highrange>:

In this example, not only the <base_address_highrange> is omitted but also all remaining parameters.

If you need all parameters of Format 2 except for <base_address_highrange>, then use two commas to
specify an empty input parameter.

; <format> <base_address> <base_address_highrange>
MMU.FORMAT LINUX64 swapper_pg_dir module_pg_dir

MMU.FORMAT LINUX64 swapper_pg_dir module_pg_dir \
 0xC000000000000000--0xc00000007FFFFFFF 0x20000000
; <logical_range> <phys_range>

; <format> <base_address> <base_address_highrange>
MMU.FORMAT LINUX64 swapper_pg_dir

; <format> <base_address> <base_address_highrange>
MMU.FORMAT LINUX64 swapper_pg_dir

MMU.FORMAT LINUX64 swapper_pg_dir ,, \
 0xC000000000000000--0xC00000007FFFFFFF 0x20000000
; <logical_range> <phys_range>
Simulator for MIPS | 22©1989-2024 Lauterbach

MMU.List Compact display of MMU translation table

Lists the address translation of the CPU-specific MMU table.

• If called without address or range parameters, the complete table will be displayed.

• If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSlation.List.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display
a page table located anywhere in memory.

PageTable Lists the current MMU translation of the CPU.
This command reads all tables the CPU currently uses for MMU
translation and lists the address translation.

KernelPageTable Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.
Simulator for MIPS | 23©1989-2024 Lauterbach

MMU.SCAN Load MMU table from CPU

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

• If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSlation.List.

• If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSlation.ON to enable the debugger-internal MMU table.

Format: MMU.SCAN <table> [<range> <address>]
MMU.<table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL
<cpu_specific_tables>

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
• if <range> or <address> have a space ID: loads the translation

table of the specified process
• else, this command loads the table the CPU currently uses for

MMU translation.

KernelPageTable Loads the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
table of the kernel and copies its address translation into the debugger-
internal static translation table.
Simulator for MIPS | 24©1989-2024 Lauterbach

CPU specific Tables in MMU.SCAN <table>

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static
translation table.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manual.

ALL Loads all known MMU address translations.
This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the
debugger-internal static translation table.
See also the appropriate OS Awareness Manual.

TLB Loads the translation table from the CPU to the debugger-internal translation
table.
Simulator for MIPS | 25©1989-2024 Lauterbach

TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Opens the TrOnchip.state window.

TrOnchip.RESet Set on-chip trigger to default state

Sets the TrOnchip settings and trigger module to the default settings.

Format: TrOnchip.state

Format: TrOnchip.RESet
Simulator for MIPS | 26©1989-2024 Lauterbach

	Simulator for MIPS
	TRACE32 Simulator License
	Quick Start of the Simulator
	Peripheral Simulation
	Troubleshooting
	FAQ
	Memory Classes
	Belated Trace Analysis
	MIPS specific SYStem Commands
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CPU Select the used CPU
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Mode Establish the communication with the target
	SYStem.Option.Address32 Use 32-bit addresses
	SYStem.Option.DisMode Define disassembler mode
	SYStem.Option.Endianness Define endianness of target memory
	SYStem.Option.IMASKASM Disable interrupts while ASM single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.RESetOut CPU reset command

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.FORMAT Define MMU table structure
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU

	TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.RESet Set on-chip trigger to default state

