LAUTERBACH A

Simulator for ARC

Simulator for ARC

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
TRACE32 Instruction Set SIMulators ... e r—~
£330 01 F= 1 o g o Y = 1O 1
L 1= (o 4
Lo T o 11 T T o 4
Supported ARC Cores 4
Brief Overview of Documents for New Users 5
Demo and Start-up Scripts 6
TRACES32 LICENSEcccceeiiiiiimiirissssmssiissssss s sssssms s s sss s e sssms s e s ssms s s henssams s s sanssmns s nnssssnnnssnnssnn 6
TroubleShOOtiNgooiiiiiiiii s ms e s e 7
£ O 7
QUICK STart ... e 8
Configure the Debugger to Use the ARCINT Interfaceccccccieimiiecmmnisninssnnsssnssesnnnnens 12
Use T32Start 12
Modify an Existing Configuration File 13
Create a New Configuration File 13
ARCINT specific SYStem Commandsccccooiiciiiiiicirecccmrrrrirrsessssssssssssesssssssssesssssssssssssmnnes 14
SYStem.LIBrary Set path to debug driver of simulator 14
SYStem.PROPertieS Control properties of the used simulator (usually nSIM) 15
SYStem.PROPertieS.ADD Add a property to configure the simulator 15
SYStem.PROPertieS.Delete Remove a property to configure the simulator 15
SYStem.PROPertieS.List Show all property sets to configure the simulator 16
SYStem.PROPertieS.Modify Change property set to configure simulator 16
ACCESS ClasSSScooiiiiiiiiiiiiimimiie e s e e e s s mmmms e s e e e e e e e s a e e ammmRmeeeneneeeeanannnnnnn 17
CPU specific SETUP COMMANGccmmiiiiiimiiiiissssssssmsmssssnssssssssssssssssmsssssssssssssssssssssssnmsmsssnssnns 18
SETUP.DIS Disassembler configuration 18
CPU specific SYStem Commandscccccciiiiimiiimmiiisinss s ssssss s ssssss sassssssssss s sssmsssssnes 19
SYStem.CPU Select CPU type 19
SYStem.MemAccess Select run-time memory access method 20
SYStem.Mode Select target reset mode 21
SYStem.Option Set a target-specific option 22
©1989-2024 Lauterbach Simulator for ARC 2

SYStem.Option.detectOTrace Disable auto-detection of on-chip trace 22
SYStem.Option.Endianness Set the target endianness 22
SYStem.Option.HotBreakPoints Set breakp. when CPU is running 23
SYStem.Option.IMASKASM Disable interrupts while single stepping 23
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 24
SYStem.Option.LimmBreakPoints Software breakpoints with extra NOPs 24
SYStem.Option. MMUSPACES Separate address spaces by space IDs 25
SYStem.Option.OVERLAY Enable overlay support 26
SYStem.Option.RegNames Enable trivial names for core registers 26
SYStem.Option. TIMEOUT Define maximum time for core response 27
SYStem.state Show SYStem settings window 27
On-chip Breakpoints/Actionpointscccciiiiiicccccise s e 28
Using On-chip Breakpoints 28
Breakpoints in a ROM Area 28
Limitations 29
TrOnchip.CONVert Allow extension of address range of breakpoint 30
TrOnchip.VarCONVert Convert breakpoints on scalar variables 32
TrOnchip.OnchipBP Number of on-chip breakpoints used by debugger 33
TrOnchip.RESet Set on-chip trigger to default state 34
TrOnchip.state Display on-chip trigger window 34
TrOnchip.MCD MCD API specific on-chip triggers 35
TrOnchip.MCD.McdBreakPoints Set onchip breakpoint via MCD API 35
TrOnchip.MCD.CoreHalted Workaround to detect core-halt via MCD API 35
TrOnchip.MCD.CoreRunning Workaround to start/step core via MCD API 36
CPU specific MMU COMMANAS ccoiiiiiiicmmiiinsinims s ssssssssssssssssssssssss s sss s sssasssssssssassns snssnns 37
MMU.DUMP Page wise display of MMU translation table 37
MMU.List Compact display of MMU translation table 39
MMU.SCAN Load MMU table from CPU 40
MMU.Init Invalidate TLB entries 41
MMU.Set Set an MMU TLB entry 41
©1989-2024 Lauterbach Simulator for ARC 3

Simulator for ARC

Version 06-Jun-2024

History

17-Jan-23 Added SETUPDIS command.

20-Jul-22 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second

parameter.

Introduction

This manual describes how to debug a simulator connected to the Lauterbach debugger TRACE32 via the
ARCINT interface such as the nSIM simulator from Synopsys.

At the time of release of this document, a TRACES32 internal instruction set simulator was not yet available.
As soon as a TRACE32 internal instruction set simulator is available, it will be also described in this manual.

For using TRACES2 with a virtual prototype such as the Synopsys Virtualizer, please see the “Virtual
Targets User’s Guide” (virtual_targets.pdf).

This manual is for debugging nSIM

This manual is for debugging any target via the ARCINT interface
This is not for the TRACE32 internal instruction set simulator
This is not for debugging virtual prototypes

This is not for debugging via the MCD interface

Supported ARC Cores

The following ARC cores from Synopsys are supported:

ARC-HS family : HS34, HS36, HS38, HS47D
ARC-EM family : EM4, EM6, EM5D, EM7D, EM9D, EM11D
ARC 700 core family : ARC710D, ARC725D, ARC750D, ARC770D

ARC 600 core family : ARC601, ARC605, ARC610D, ARC652D, ARC630D,
AS211SFX, AS221BD

©1989-2024 Lauterbach Simulator for ARC | 4

J ARCtangent-A5 cores (see note below)

J ARCtangent-A4 cores (see note below)

If you require support of any other ARC core, please contact support@lauterbach.com

Legacy ARCtangent-A4 and A5 cores are not supported by
the nSIM simulator from Synopsys.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.
J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

J “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

To get started with the most important manuals, use the Welcome to TRACE32! dialog (WELCOME.view):
£3) Welcome to TRACE32! =N Eoh(

TRACES2 PowerView for ARC J ARCint Interface

Before you can start debugging. the debug environment needs to be setup.
This setup is usually done by a start-up script. Click "Start with examples” to
search for an example star-up script foryour target.

Example scripts can be modified to fit your exact system setup and configuration.

Felated manuals

3 Simulator for ARC
i3 Debugger Basics - Training
i3 Training Script Language PRACTICE

¥ Show this dialog at start | T Help | [#4 Start with examples

©1989-2024 Lauterbach Simulator for ARC | 5

Demo and Start-up Scripts

Lauterbach provides ready-to-run PRACTICE start-up scripts and examples.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

#1 Search for scripts... EI@
Search Selection Manuals
ARC-EM 3% J[#3Ssarch | 12 demo files found,
Filter

@ Mone Chip Board

Search for newest scripts at - hitpcwww lauterbach.com/scripts.html

[ZconFIG | [& Tree view | (28 LISTCONFIG]

Title v Chip Board |
Minimalist GNO C Example for ARC ARC-24 ARC—ASL ARCh**x ARCTxk ARC-FEM* | — -
MetaWare HostLink Demo for ARC ARCE*% ARC7#* ARC-EbMx* ARC-HS¥* A52| —

HetaWare Hello—World deme for ARC ARC-EM%* ARC-HS%% ARCH¥* ARCH** ASZ | —

Load of Target Program to Access Memory wia memory class USR |ARC-A4 ARC-ADL ARCO** ARCY*% ARC-EM* | —

Generic HetaWare C++ Example for ARC ARC—24 ARC-A5 ARCH** ARC7*% ARC-EM* | —

Generic MetaWare C Example rumning on nSIM simulateor wia SCIT |ARCo%* ARC7** ARC—EM** ARC-HS** AS2 |Synopsys nSIM simu
Generic Metaware C Example rumning on n5IM simulater ARCO** ARC?** ARC-EM** ARC-HS** ASZ2 |Synopsys nSIM simu
Generic Metaware C Example for ARC ARC-244 ARC-A5 ARCO** ARCT*% ARC-EM* | —

FreeRTOS Deme for TRACE3Z RTOS Debugger ARC-EM7D ARC EM Starter Kit
Code Overlay Demo for ARC Core ARCH** ARC#* ARC-EM¥* AS2% -

C Example for ARC EM Starter Kit ARC—EM#** ARC EM Starter Kit

C Example for ARC AXS Software Development Platform A5221RD ARCH25D ARC770D ARC-EMb ARC

You can also manually navigate in the ~~/demo/arc/ subfolder of the system directory of TRACES32.

TRACE32 License

To use TRACE32 for debugging via the ARCINT interface (e.g. to debug nSIM) you require a TRACE32
front-end license for ARC.

Please order the LA-8903L floating license.
Contact your local Lauterbach representative for questions regarding licenses and orders.

Independently of the licenses for the TRACE32 debugger you will need a license for the external simulator
you like to debug via the ARCINT interface. E.g.: Get in touch with Synopsys for a license of the nSIM
simulator.

©1989-2024 Lauterbach Simulator for ARC | 6

Troubleshooting

No information available until yet.

FAQ

Please refer to hitps://support.lauterbach.com/kb.

©1989-2024 Lauterbach Simulator forARC | 7

https://support.lauterbach.com/kb

Quick Start

This chapter should give you a quick overview to start the debugging of an ARC core simulator by an SIM
simulator.

For some applications additional steps might be necessary, that are not described in this Quick Start section.

1. Configure the Debugger to Use the ARCINT Interface

Before starting the TRACES32 software (t32marc.exe) you have to configure the type of the interface used by
the debugger.

To use the ARCINT interface you have to set PBI=ARCINT in the TRACE32 configuration file (config.t32).

For more details on how to configure TRACE32 for ARCINT, see “Configure the Debugger to Use the
ARCINT Interface”, page 12.

Start TRACES32 for ARC (t32marc.exe).

2. Set the Path to the ARCINT Interface Library

TRACE32 communicates with the ARCINT compatible debug backend over a shared library file (*.dll / *.s0).

Use command SYStem.LIBrary * to set up the path to the shared library provided with your debug
backend.

E.g. in case of a direct connection to nSIM use the command

SYStem.LIBrary "C:\ARC\ARC_2016-06\nSIM\nSIM_ 64\1ib\libsim.dll"

Please ensure to

use the 64-bit version of TRACE32 (C:\T32\bin\windows64\t32marc.exe)
if you use a shared library compiled for a 64-bit host operating system,
while you have to

use the 32-bit version of TRACES32 (C:\T32\bin\windows\t32marc.exe)
if you use a shared library compiled for 32-bit host operating system.

By default SYStem.LIBrary points to $NSIM_HOME%\1ib\1libsim.dll in case you are using the 32-bit
version of TRACES32 while it points to $NSIM_HOME%\..\1ib_64\1libsim.dll. in case you are using
the 64-bit version of TRACE32.

Thus, in case you are using nSIM you usually don’t have to use the command SYStem.LIBrary explicitly.

©1989-2024 Lauterbach Simulator for ARC | 8

3. Configure your Simulator

Most simulators have to be configure to know what hardware they actually should simulate.
E.g. you have to tell nSIM which ARC core with which configuration it should provide.

Configure your simulator’s properties via the command:

SYStem.PROPertieS.ADD "<prop_name>=<prop_value>"

Look up you simulators manual for suitable property names and values.
E.g. in case of debugging an ARC-EM simulated by nSIM you can configure the simulator like this:

SYStem.PROPertieS.ADD "nsim isa_family=av2em"
SYStem.PROPertieS.ADD "nsim isa_core=1"
SYStem.PROPertieS.ADD "nsim isa_code_density_option=2"
SYStem.PROPertieS.ADD "nsim isa_shift_option=2"
SYStem.PROPertieS.ADD "nsim_isa_num_actionpoints=8"
SYStem.PROPertieS.ADD "nsim_ isa_aps_feature=1"

In case you have a TCF of your ARC core configuration (and using nSIM) you can do the whole
configuration with the following single command:

SYStem.PROPertieS.ADD "nsim_tcf=<path to your tcf file>"

4. Select the CPU Type

SYStem.CPU AUTO

AUTO works usually fine with nSIM.

5. Enter Debug Mode

SYStem.Up ; Connect to ARC core, stop the core and
; jump to reset vector

This command resets the CPU, enters debug mode and jumps to the break address of the debugged core.
After this command is executed, it is possible to access memory and registers.

©1989-2024 Lauterbach Simulator for ARC | 9

6. Load your Application Program

When the core is prepared the code can be downloaded. This can be done with the command
Data.Load.<file_format> <file>.

Data.lLoad.Elf <file>.elf ; load application file

The options of the Data.LOAD command depend on the file format generated by the compiler. A detailed
description of the Data.LOAD command is given in “General Commands Reference”.

7. Initialize Program Counter and Stackpointer (if required)

In a ready-to-run compiled ELF file, these settings are in the start-up code of the ELF file. In this case
nothing has to be done. You can check the contents of Program Counter and Stack Pointer in the Register
window, which provides the contents of all CPU Registers. Use CPU Registers in the CPU menu to open
this window or use the command Register.

The Program Counter and the Stackpointer and all other registers can be set with the commands
Register.Set PC <value> and Register.Set SP <value>. Here is an example of how to use these

commands:
Register.Set PC 0xc000 ; Set the Program Counter to address 0xC000
Register.Set SP Oxbff ; Set the Stack Pointer to address Oxbff
Register.Set PC main ; Set the PC to a label (here: function main)

8. View the Source Code

Use the command Data.List to view the source code at the location of the Program Counter.
Now the quick start is done. If you were successful you can start to debug.

To reach the main() function use the command Go main

©1989-2024 Lauterbach Simulator for ARC | 10

9. Create a PRACTICE Script

Lauterbach recommends to prepare a PRACTICE script (*.cmm, ASCII file format) to be able to do all the
necessary actions with only one command. Here is a typical start sequence:

WinClear ; Clear all windows
RESet ; Reset all setting set before

PRIVATE &nSIM
&nSimHome=0S .ENV (NSIM_HOME) ; get base directory of nSIM
IF SOFTWARE.64BIT ()

&nSimHome="& (nSIM)_64"

SYStem.LIBrary "&nSIM/libsim.dll" ; Set path to nSIM DLL

SYStem.PROPertieS.ADD "nsim_ tcf" \ ; Configure nSIM via TCF file
"&nSIM/etc/tcf/templates/arc610d. tcf"

SYStem.CPU AUTO ; Enable CPU auto-detection
SYStem.Up ; Connect to simulated CPU
Data.LOAD.El1f demo.elf ; Load the application
Data.List ; View sourcecode/disassembly *)
Register.view ; View core register *)
Var .Frame /Args /Locals ; View call stack *)
Var.Ref $HEX %DECIMAL ; Auto-watch local variables *)
Break.Set 0x400 ; Set breakpoint on fixed addr.
Break.Set main ; Set breakpoint on main() func.

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

For information about how to build a PRACTICE script file (*.cmm file), refer to “Training Basic
Debugging” (training_debugger.pdf). There you can also find some information on basic actions with the
debugger.

©1989-2024 Lauterbach Simulator for ARC | 11

Configure the Debugger to Use the ARCINT Interface

Before starting the TRACES32 software (t32marc.exe) you have to configure the type of the interface used by
the debugger.

Choose one of the following options:

Use T32Start (Windows only)
Modify an existing configuration file

Create a new configuration file

Use T32Start

By the release of this document T32Start was only available for Microsoft Windows. Linux, and Mac users
have to create or modify a configuration file manually.

1.

2
3.
4

Start T32Start (t32start.exe)
Click on Configuration Tree (top of the shown tree) and click on Add > Configuration
Click on the new created configuration and click on Add > Simulator

Open the Simulator entry inside your new configuration (by double clicking on it), select Target
and change the target from ARM/XScale/Janus to ARC.

B Configuration29
E-/A 1: Simulator
Target: ARC 4—
+ Advanced Settings
B Intertace: ARCINT

Open entry Simulator entry inside your new configuration (by double clicking on it), select
“Interface” and change the interface from SIM to ARCINT.

B Configuration29
E-/A 1: Simulator
@ Target ARC
---E| Advanced Settings

] Interface: ARCINT 4—.

Select again Simulator inside your new configuration and click Start. TRACE32 for ARC should
open.

For more on the configuration tool T32Start, see “T32Start” (app_t32start.pdf).

©1989-2024 Lauterbach Simulator for ARC | 12

Modify an Existing Configuration File

1. First, open the configuration file you are already using to start TRACE32 for ARC in a text editor.
If you haven’t specified a special file on the command line than it’s most likely the file ‘config.t32’
in you TRACES32 system directory. E.g. C:\T32\config.t32
You can also use the TRACE32 command PRINT OS.PresentConfigurationFile() to display the
configuration file used by an active TRACE32 PowerView GUI.

Go to the line starting with PBI= and change it {0 PBI=ARCINT.

Example of existing config.t32
for using PowerDebug via USB

Example of new config.t32 for
debugging nSIM via ARCINT

0s=
SYS=C:\T32
HELP=C:\T32\pdf

PBI=
USB

PRINTER=WINDOWS

0S=
SYS=C:\T32
HELP=C:\T32\pdf

PBI=ARCINT

PRINTER=WINDOWS

3. Start (or restart) TRACE32

Create a New Configuration File

1. Open a text editor and create a file with the following content:
Windows Linux
0S= 0S=
ID=T32_ARCINT 01 ID=T32_ARCINT 01

SYS=C:\T32
HELP=C:\T32\pdf

PBI=ARCINT

PRINTER=WINDOWS

SYS=/opt/t32
HELP=/opt/t32/pdf

PBI=ARCINT

PRINTER=PS

2. Save the file in your TRACES32 system directory with the name configARCINT.t132

3. Launch TRACES32 for ARC (t32marc.exe) with the command line argument -¢ <path of

configARCINT.132>

E.g.: C:\T32\bin\windows64\t32marc.exe -c¢ C:\T32\configARCINT.t32

©1989-2024 Lauterbach

Simulator for ARC

13

ARCINT specific SYStem Commands

SYStem.LIBrary Set path to debug driver of simulator

Format: SYStem.LIBrary <file>

TRACE32 communicates with the ARCINT compatible debug backend over a shared library file (*.dll / *.s0).
The command SYStem.LIBrary sets the path to the shared library provided with your debug backend.
Use this command only before executing SYStem.Mode Up

E.g. in case of a direct connection to nSIM running on a 64-bit version of Windows use the command

SYStem.LIBrary "C:\ARC\ARC_2016-06\nSIM\nSIM 64\1ib\libsim.dll"

E.g. in case use are using a DLL to access a SCIT backend (by Snyopsys) use command

SYStem.LIBrary "C:\ARC\ARC_2016-06\MetaWare\arc\bin\arccli.dll"

Please ensure to

use the 64-bit version of TRACE32 (C:\T32\bin\windows64\t32marc.exe)
if you use a shared library compiled for a 64-bit host operating system,
while you have to

use the 32-bit version of TRACE32 (C:\T32\bin\windows\t32marc.exe)
if you use a shared library compiled for 32-bit host operating system.

By default SYStem.LIBrary points to $NSIM_HOME%\1ib\libsim.d11l in case you are using the 32-bit
version of TRACE32,m while it points to $NSIM_HOME%\ . .\1ib_64\1libsim.dl1 in case you are using
the 64-bit version of TRACE32.

Thus, in case you are using nSIM you usually don’t have to use the command SYStem.LIBrary explicitly.

©1989-2024 Lauterbach Simulator for ARC | 14

SYStem.PROPertieS Control properties of the used simulator (usually nSIM)

SYStem.PROPertieS.ADD

Add a property to configure the simulator

Format 1:

Format 2:

SYStem.PROPertieS.ADD "<property _name>" "<value>"

SYStem.PROPertieS.ADD "<property_name>=<value>"

Most simulators have to be configure to know what hardware they actually should simulate.
E.g. you have to tell nSIM which ARC core with which configuration it should provide.

The command COMmand.PROPertieS.ADD tells TRACES32 to configure the simulator with the given
property when connecting to it. Use this command only before executing SYStem.Mode Up

Look up you simulators manual for suitable property names and values.

E.g. in case of debugging an ARC-EM simulated by nSIM you can configure the simulator like this:

SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.

PROPertieS.
.ADD
.ADD

PROPertieS
PROPertieS

PROPertieS.
.ADD
.ADD

PROPertieS
PROPertieS

ADD

ADD

"nsim_isa_family=av2em"
"nsim_isa_core=1"
"nsim_isa_code_density_option=2"
"nsim_isa_shift_option=2"
"nsim_isa_num_actionpoints=8"
"nsim_isa_aps_feature=1"

In case you have a TCF of your ARC core configuration (and using nSIM) you can do the whole
configuration with the following single command:

SYStem.PROPertieS.ADD "nsim_tcf=<path_to_your_tcf_file>"

SYStem.PROPertieS.Delete Remove a property to configure the simulator

Format:

SYStem.PROPertieS.Delete "<property_name>"

Removes a previously added property which would otherwise configure the simulator when connecting to it.
Use this command only before executing SYStem.Mode Up

©1989-2024 Laute

rbach

Simulator for ARC | 15

SYStem.PROPertieS.List Show all property sets to configure the simulator

Format: SYStem.PROPertieS.List

Opens a window which shows all the properties which have been added in TRACES2 to configure the
external simulator (which gets debugged via ARCINT).

SYStem.PROPertieS.Modify Change property set to configure simulator
Format 1: SYStem.PROPertieS.Modify "<property name>" "<value>"
Format 2: SYStem.PROPertieS.Modify "<property name>=<value>"

Changes the value of a previously added property which gets used to configure the simulator when
connecting to it. Use this command only before executing SYStem.Mode Up

Look up your simulators manual for suitable property names and values.

©1989-2024 Lauterbach Simulator for ARC | 16

Access Classes

Access Class Description

P: Program Memory.

D: Data Memory.

C: Program or Data Memory (unspecified)

AUX: Auxiliary Register Space. Accesses to this memory class allows you to read and
write Auxiliary Registers and read Build Registers.

A: Absolute addressing (physical address) on SoCs with Memory Management Unit

AP:, AD: (MMU)

E Access memory while the CPU is running.
See SYStem.CpuAccess and SYStem.MemAccess.
Any memory class can be prefixed with E, if the memory class supports access
while the CPU is running.

USR: Access to special memory via user-defined target program.
See Data.USRACCESS.

ovs: On systems with code overlays, OVS allows to access in-active overlay
segments located at the memory where it gets loaded from (storage) via the
addresses where it gets executed.
See sYmbol.OVERLAY.

JSEQ: Access data via JTAG sequences registered with
JTAG.SEQuence.MemAccess.ADD

VM: Virtual Memory (memory on the debug system).

Currently the cache is

bypassed with any access. Thus, the debugger updates the memory from the cache

before any memory gets accessed. After each memory access the debugger invalidates the cache.

©1989-2024 Lauterbach

Simulator for ARC | 17

CPU specific SETUP Command

SETUP.DIS Disassembler configuration
Format: SETUP.DIS [<fields> [<bar>]] [<constants>] [<keywords>]
<keywords>: [RegNames | Generic]
[AddressOffset.auto | AddressOffset.Signed | AddressOffset.Unsinged]

Sets default values for configuring the disassembler output of newly opened windows. Affected windows
and commands are List.Asm, Register.view, and Register.Set.

The command does not affect existing windows containing disassembler output.

<fields>, <bar>, For a description of the generic arguments, see SETUP.DIS in
<constants> general_ref_s.pdf.

RegNames Use the ABI (application binary interface) naming scheme for the names
(default) of the ARC general purpose registers (e.g. “sp” instead of “r28” for the

stack pointer.).
This setting is equivalent with SYStem.Option.RegNames ON.

Generic Use the register number (x0, x1, ..., x31) naming scheme for the names
of the ARC general purpose registers. (e.g. “r28” instead of “sp” for the
stack pointer.).

This setting is equivalent with SYStem.Option.RegNames OFF.

AddressOffset.auto Automatically choose a probably suitable format for the address offsets in
(default) load and store instructions. E.g.: For LD <dst>, [<reg>, <offset>]
the offset is displayed as a signed number if the offset is smaller +/- 255
of if reg is gp/fp/sp/pcl, or as an unsigned hex-number otherwise.

AddressOff- Force the display of the address offsets in load and store instructions as
set.Signed signed. E.g.: For LD <dst>, [<reg>, <offset>] the offsetis always
displayed as a signed number.

AddressOff- Force the display of the address offsets in load and store instructions as
set.Unsinged unsigned. E.g.: For LD <dst>, [<reg>, <offset>] the offsetis
always displayed as a unsigned hexadecimal number.

©1989-2024 Lauterbach Simulator for ARC | 18

CPU specific SYStem Commands

SYStem.CPU Select CPU type
Format: SYStem.CPU <cpu>
<cpu>: AUTO |

ARCtangent-A4 |

ARCtangent-A5 |

ARC600 | ARC601

ARC700

ARC-EM | ARC-EM-1r0 |

ARC-HS |

ARC-EV6x | ARC-EV7x | ARC-VPXS5 |

Default: AUTO.

Selects the processor type.

AUTO reads out the IDENTITY auxiliary register after a SYStem.Up or SYStem.Mode Attach, and sets the
system CPU to the detected core accordingly.

©1989-2024 Lauterbach

Simulator for ARC

19

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess Enable | Denied | StopAndGo
SYStem.ACCESS (deprecated)

Enable Memory access during program execution to target is enabled.
CPU (deprecated)

Denied Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

For more information, see below.

This option declares if an non-intrusive memory access can take place while the CPU is executing code.
Although the CPU is not halted, run-time memory access creates an additional load on the processor’s
internal data bus.

If SYStem.MemAccess is not Denied, it is possible to read from memory, to write to memory and to set
software breakpoints while the CPU is executing the program.

If specific windows that display memory or variables should be updated while the program is running, select
the memory class prefix E: or the format option %E.

Data.dump ED:0x100
Data.List EP:main

Var.View %E first

©1989-2024 Lauterbach Simulator for ARC | 20

SYStem.Mode Select target reset mode

Format: SYStem.Mode <mode>

SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
Up

Down The debugger disconnects from the backend.
The state of the CPU remains unchanged. Debug mode is not active.
In this mode the target behaves as if the debugger is not connected.

Up Initializes the debug interface, enters debug mode, stops the core and
initializes several registers to their reset value. The debugger sets the
program counter to the reset address of the core.

NOTE: SYStem.Down is an abbreviation for SYStem.Mode Down.
SYStem.Up is an abbreviation for SYStem.Mode Up.

©1989-2024 Lauterbach Simulator for ARC | 21

SYStem.Option Set a target-specific option

Format: SYStem.Option <option> <value>

Set target-specific options, e.g. SYStem.Option.Endianness or SYStem.Option.IMASKHLL.
See the description of the available options below.

SYStem.Option.detectOTrace Disable auto-detection of on-chip trace
Format: SYStem.Option.detectOTrace [ON | OFF]
Default: OFF.

When connecting the debugger to the ARC core via commands SYStem.Mode Attach or

SYStem.Mode Up the debugger tries to detect if the ARC on-chip trace (SmaRT) by reading auxiliary
register 255 (AUX:0xFF).

For some reason some rare core implementations without SmaRT seem to have a fatal side-effect on
AUX:0xFF. For these cores use this option to avoid the read of AUX:0xFF during SYStem.Mode Attach or
SYStem.Mode Up.

SYStem.Option.Endianness Set the target endianness

Format: SYStem.Option.Endianness [Big | Little | AUTO]

Default: AUTO.

This option selects the target byte ordering mechanism (endianness). It effects the way data is read from or
written to the target CPU.

In AUTO mode the debugger sets the endianness corresponding to the “ARC Build Registers”, when the
debugger is attached to the target. AUTO mode is not available for ARCtangent-A4 cores.

Consider that the compiler, the ARC core and the debugger should all use the same endianness.

©1989-2024 Lauterbach Simulator for ARC | 22

SYStem.Option.HotBreakPoints Set breakp. when CPU is running

Format: SYStem.Option.HotBreakPoints [AUTO | ON | OFF]

Default: AUTO.

This option controls how software breakpoints are set to a running ARC core:

ON The debugger tries to set a software breakpoint while the CPU is running, if
SYStem.MemAccess is set to CPU.

OFF To set a software breakpoint, the debugger tries to stop the CPU temporarily, if
SYStem.CpuAccess is set to ENABLED.

AUTO To set a software breakpoint, the debugger stops the CPU temporarily if the CPU
has an Instruction Cache (requires SYStem.CpuAccess set to ENABLED)
otherwise the debugger tries to set a software breakpoint while the CPU is running
(requires SYStem.MemAccess set to CPU).

SYStem.Option.IMASKASM Disable interrupts while single stepping
Format: SYStem.Option.IMASKASM [ON | OFF]
Default: OFF.

If enabled, the debug core will disable all interrupts for the CPU, when single stepping assembler
instructions. No hardware interrupt will be executed during single-step operations. When you execute a Go
command, the hardware interrupts will be enabled again, according to the system control registers.

©1989-2024 Lauterbach Simulator for ARC | 23

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Format: SYStem.Option.IMASKHLL [ON | OFF]

Default: OFF.

If enabled, the debug core will disable all interrupts for the CPU, during HLL single-step operations. When
you execute a Go command, the hardware interrupts will be enabled again, according to the system control
registers. This option should be used in conjunction with IMASKASM.

SYStem.Option.LimmBreakPoints Software breakpoints with extra NOPs

Format: SYStem.Option.LimmBreakPoints [ON | OFF]

Default: OFF.

Any ARC instruction set allows instructions with so-called Long Immediate Data (LIMM). These instructions
have a total length of 6 or 8 bytes. When setting a software breakpoint the instruction at the address of the
software breakpoints gets replaced by a BRK or BRK_S instruction. The BRK instruction has a length of 4
byte and the BRK_S has a length of 2 bytes. When SYStem.Option.LimmBreakPoints is set to ON the
remaining 2 or 4 bytes of a LIMM instruction are overwritten with NOP_S instructions when setting a
software breakpoint on them.

This option helps to workaround a buggy implementation of an ARC core.

©1989-2024 Lauterbach Simulator for ARC | 24

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.
Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

©1989-2024 Lauterbach Simulator for ARC | 25

SYStem.Option.OVERLAY Enable overlay support

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]
Default: OFF.
ON Activates the overlay extension and extends the address scheme of the

debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACES32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes to
the execution area. For using this option, the storage area must be readable
and writable for the debugger.

Example:

SYStem.Option.OVERLAY ON

Data.List 0x2:0x11c4 ; Data.List <overlay_ id>:<address>
SYStem.Option.RegNames Enable trivial names for core registers
Format: SYStem.Option.RegNames [ON | OFF]
Default: ON.

This option just effects the way core registers are displayed e.g. in the Register.view window or in
disassembled memory. If the option is enabled some core registers are displayed by their trivial names
describing the registers function e.g. “blink” for core register 31. When disabled the systematic name is used
corresponding tho the register number e.g. “r31” for core register 31.

©1989-2024 Lauterbach Simulator for ARC | 26

SYStem.Option.TIMEOUT Define maximum time for core response

Format: SYStem.Option.TIMEOUT <time>

Default: 1000.ms

After each JTAG transaction the debugger has to wait until the ARC core acknowledges the successful
transaction.

With this option you can specify how long the debugger waits until the debugger has to assume that the core
does no longer respond. You have to use this option only if you what to debug a unusual slow core.

SYStem.state Show SYStem settings window

Format: SYStem.state

Opens a window which enables you to view and modify CPU specific system settings.

©1989-2024 Lauterbach Simulator for ARC | 27

On-chip Breakpoints/Actionpoints

“On-chip Breakpoints” and “Actionpoints” are two names for the same thing: A mechanism provided by the
on-chip debug logic to stop the core when an instruction is fetched form a specific address or data is read
from or written to a specific memory location. This enables you to set breakpoints even if your not able to
modify the code on the fly e.g. in a Read Only Memory.

“Actionpoints” is the name used by Synopsys in the ARC manuals, while “On-chip Breakpoints” is the
generic name used by Lauterbach. In the rest of the documentation we’ll speak only about “On-chip
Breakpoints”.

An ARC core can have 2, 4, 8 or none on-chip breakpoints. The debugger detects the number of available
breakpoints after you’ve connected to your target CPU with SYStem.Up or SYStem.Mode Attach. To find
out how many on-chip breakpoints are available execute PER.view, "Build" and check the value at
“AP_BUILD".

Using On-chip Breakpoints

See chapters Break and On-chip Breakpoints in the “General Commands Reference Guide B”. .

When a read or write breakpoint triggers, any ARC CPU stops with an
additional delay after the instructions, which causes the trigger.

The delay is 1 cycle for ARC700 and 3 cycles for ARC600. For memory reads
there is an extra delay corresponding to the memory latency.

(However program breakpoints always stop before executing the instruction.)

On ARCB600 you can set on-chip breakpoints only when the core is stopped. You can set
SYStem.CpuAccess to Enable to allow the debugger to stop and restart the core to set on-chip
breakpoints.

On ARC700 you can set on-chip breakpoints also while the core is running, when you've set
SYStem.MemAccess to CPU.

Breakpoints in a ROM Area

With the command MAP.BOnchip <range> it is possible to tell the debugger where you have ROM / FLASH
on the target. If a breakpoint is set into a location mapped as BOnchip, it gets automatically implemented as
an on-chip breakpoint.

©1989-2024 Lauterbach Simulator for ARC | 28

Limitations

Due to limitations in the ARC core logic, some common features for on-chip breakpoint are not available.

ARC600 and ARC700 cores do not provide resources to set on-chip breakpoints for arbitrary
address or data ranges. Instead they use bit masks. If a given range can’t be programmed with a
bit mask, the next larger range will be used, if TrOnchip.CONVert is active.

You can check the address ranges actually set by the debugger inside the Break.List /Onchip
window.

While normal read breakpoints are available, which stop the core on the read of a given address,
so-called “read data breakpoints” area not available. So you can’t stop the core, when specific
data is read from a given address.

(“Write data breakpoints” are available.)

On ARC700 you can use “Write data breakpoints” together with address ranges only for 32-bit
wide data.

For ARC600 using on-chip program breakpoints together with instruction data is not supported,
since the on-chip logic of an ARC600 does not align the fetched instruction before comparing it to
the value, which make this feature useless.

On ARC600 you can’t set on-chip breakpoints, while the core is running.

©1989-2024 Lauterbach Simulator for ARC | 29

TrOnchip.CONVert Allow extension of address range of breakpoint

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

Controls for all on-chip read/write breakpoints whether the debugger is allowed to change the user-defined
address range of a breakpoint (see Break.Set <address_range> in the figure below).

e unmodified range >

Range fits
Break.Set <addr_range> to debug
logic?
Program
debug logic
o modified range >
TrOnchip.
CONVert
Error
The debug logic of a processor may be implemented in one of the following three ways:
1. The debug logic does not allow to set range breakpoints, but only single address breakpoints.

Consequently the debugger cannot set range breakpoints and returns an error message.

2. The debugger can set any user-defined range breakpoint because the debug logic accepts this
range breakpoint.

3. The debug logic accepts only certain range breakpoints. The debugger calculates the range that
comes closest to the user-defined breakpoint range (see “modified range” in the figure above).

©1989-2024 Lauterbach Simulator for ARC | 30

The TrOnchip.CONVert command covers case 3. For case 3) the user may decide whether the debugger is
allowed to change the user-defined address range of a breakpoint or not by setting TrOnchip.CONVert to

ON or OFF.
ON If TrOnchip.Convert is set to ON and a breakpoint is set to a range which
(default) cannot be exactly implemented, this range is automatically extended to

the next possible range. In most cases, the breakpoint now marks a wider
address range (see “modified range” in the figure above).

OFF If TrOnchip.Convert is set to OFF, the debugger will only accept
breakpoints which exactly fit to the debug logic (see “unmodified range”
in the figure above).

If the user enters an address range that does not fit to the debug logic, an
error will be returned by the debugger.

In the Break.List window, you can view the requested address range for all breakpoints, whereas in the
Break.List /Onchip window you can view the actual address range used for the on-chip breakpoints.

©1989-2024 Lauterbach Simulator for ARC | 31

TrOnchip.VarCONVert Convert breakpoints on scalar variables

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

Controls for all scalar variables whether the debugger sets an HLL breakpoint with Var.Break.Set only on
the start address of the scalar variable or on the entire address range covered by this scalar variable.

o single address >

TrOnchip.
Var.Break.Set <scalar> > VarCONVert

Program

debug logic
< unmodified range > it

addr range
©)
')

Range fits
to debug
logic?

o modified range >

TrOnchip.
CONVert

Error

©1989-2024 Lauterbach Simulator for ARC | 32

ON If TrOnchip.VarCONVert is set to ON and a breakpoint is set to a scalar
variable (int, float, double), then the breakpoint is set only to the start
address of the scalar variable.

] Allocates only one single on-chip breakpoint resource.

] Program will not stop on accesses to the variable’s address space.
OFF If TrOnchip.VarCONVert is set to OFF and a breakpoint is set to a scalar
(default) variable (int, float, double), then the breakpoint is set to the entire

address range that stores the scalar variable value.

. The program execution stops also on any unintentional accesses

to the variable’s address space.
. Allocates up to two on-chip breakpoint resources for a single

range breakpoint.
NOTE: The address range of the scalar variable may not fit to the debug
logic and has to be converted by the debugger, see TrOnchip.CONVert.

In the Break.List window, you can view the requested address range for all breakpoints, whereas in the
Break.List /Onchip window you can view the actual address range used for the on-chip breakpoints.

TrOnchip.OnchipBP Number of on-chip breakpoints used by debugger

Format: TrOnchip.OnchipBP [<number> | AUTO]

Default: AUTO.

An ARC core has between 0 and 8 on-chip breakpoint resources (Called “Actionpoints” in the ARC core
documentation). These resources are normally completely controlled by the debugger and are modified e.g.
when you set on-chip breakpoints e.g. via Break.Set <address>/Onchip /Write.

Sometimes you might want to control the breakpoint resources (AUX:0x220--0x237) or parts of it by you
own. With TrOnchip.OnchipBP you can tell the debugger how many on-chip breakpoint registers the
debugger may control, leaving the rest of them untouched.

E.g.: If you have an ARC core with 4 on-chip breakpoints but you want control one breakpoint by your own,
set TrOnchip.OnchipBP to 3. The registers you can control then by your own are those of the fourth
breakpoint (AUX:0x229--0x22b).

NOTE: This option is only for advanced users which have a good knowledge of the
Actionpoint Auxiliary Registers described in the ARC600 Ancillary Components
Reference or the ARC700 System Components Reference.

©1989-2024 Lauterbach Simulator for ARC | 33

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

©1989-2024 Lauterbach Simulator for ARC | 34

TrOnchip.MCD MCD API specific on-chip triggers

TrOnchip.MCD.McdBreakPoints Set onchip breakpoint via MCD API
Format: TrOnchip.MCD.McdBreakPoints [ON | OFF]
Default: ON

This command is only available when debugging via the MCD interface.

When debugging via the MCD interface Onchip breakpoints are set by default via the dedicated API
function. By setting TrOnchip.MCD.McdBreakPoints to OFF, onchip breakpoints are set instead via the ARC
auxiliary registers to control Actionpoints.

You might want to try TrOnchip.MCD.McdBreakPoints OFF, if onchip breakpoints do not work as expected.
Otherwise leave the setting as ON.

If you set TrOnchip.MCD.McdBreakPoints to OFF, you might have to set both TrOnchip.MCD.CoreHalted
and TrOnchip.MCD.CoreRunning to ON, to ensure that the debugger detects a stop on an onchip
breakpoint and is able to restart the core from there.

TrOnchip.MCD.CoreHalted Workaround to detect core-halt via MCD API
Format: TrOnchip.MCD.CoreHalted [ON | OFF]
Default: OFF

This command is only available when debugging via the MCD interface.

By setting TrOnchip.MCD.CoreHalted to ON, TRACE32 will enable trigger resource "CoreHalted". This is
required on some MCD implementations, to detect at any time, that the core is halted.

You might want to try TrOnchip.MCD.CoreHalted ON, if TRACES32 does not show your core as stopped,
although you know that it has stopped. Otherwise leave the setting as OFF.

©1989-2024 Lauterbach Simulator for ARC | 35

TrOnchip.MCD.CoreRunning Workaround to start/step core via MCD API

Format: TrOnchip.MCD.CoreRunning [ON | OFF]

Default: OFF

This command is only available when debugging via the MCD interface.

By setting TrOnchip.MCD.CoreRunning to ON, TRACES32 will explicitly clear the HALT bit of the ARC
STATUS32 register when the core should be started (e.g. via command Go.direct) or stepped (e.g. via

command Step.Asm).

You might want to try TrOnchip.MCD.CoreRunning ON, if starting or stepping your ARC core does not work
as expected. Otherwise leave the setting as OFF.

©1989-2024 Lauterbach Simulator for ARC | 36

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table
Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>]
MMU. <table>.dump (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

Displays the contents of the CPU specific MMU translation table.

. If called without parameters, the complete table will be displayed.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable

Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID: displays the translation
table of the specified process

. else, this command displays the table the CPU currently uses for
MMU translation.

©1989-2024 Lauterbach

Simulator for ARC | 37

KernelPageTable

Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

CPU specific Tables in MMU.DUMP <table>

ITLB Displays the contents of the Instruction Translation Lookaside Buffer.
DTLB Displays the contents of the Data Translation Lookaside Buffer.

TLB Displays the contents of the Translation Lookaside Buffer.

TLBO Displays the contents of the Translation Lookaside Buffer 0.

STLB Displays the contents of the STLB.

©1989-2024 Lauterbach

Simulator for ARC |

38

MMU.List Compact display of MMU translation table
Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
MMU.<table>.List (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

Lists the address translation of the CPU-specific MMU table.

J If called without address or range parameters, the complete table will be displayed.

J If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range> Limit the address range displayed to either an address range

<address> or to addresses larger or equal to <address>.
For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Lists the entries of an MMU translation table.

. if <range> or <address> have a space ID: list the translation table
of the specified process

o else, this command lists the table the CPU currently uses for MMU
translation.

KernelPageTable

Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.
©1989-2024 Lauterbach Simulator for ARC | 39

MMU.SCAN Load MMU table from CPU

Format: MMU.SCAN <table> [<range> <address>]
MMU. <table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]
<cpu_specific_tables>

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

J If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
J if <range> or <address> have a space ID: loads the translation table
of the specified process
. else, this command loads the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach Simulator for ARC | 40

KernelPageTable

Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the table
of the kernel and copies its address translation into the debugger-internal
static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static translation
table.

o For information about the first three parameters, see “What to know
about the Task Parameters” (general_ref_t.pdf).
J See also the appropriate OS Awareness Manual.
ALL [Clear] Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the debugger-
internal static translation table.
See also the appropriate OS Awareness Manual.
Clear: This option allows to clear the static translations list before reading
it from all page translation tables.

MMU.Init Invalidate TLB entries

Format: MMU.Init TLB | STLB

Invalidates all entries of the given TLB.

MMU.Set Set an MMU TLB entry
Format: MMU.Set <tlb> <index> <pd0> <pd1>
<tlb> TLB | STLB

Sets the specified MMU TLB entry.

©1989-2024 Lauterbach

Simulator for ARC | 41

	Simulator for ARC
	History
	Introduction
	Supported ARC Cores
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	TRACE32 License
	Troubleshooting
	FAQ
	Quick Start
	Configure the Debugger to Use the ARCINT Interface
	Use T32Start
	Modify an Existing Configuration File
	Create a New Configuration File

	ARCINT specific SYStem Commands
	SYStem.LIBrary Set path to debug driver of simulator
	SYStem.PROPertieS Control properties of the used simulator (usually nSIM)
	SYStem.PROPertieS.ADD Add a property to configure the simulator
	SYStem.PROPertieS.Delete Remove a property to configure the simulator
	SYStem.PROPertieS.List Show all property sets to configure the simulator
	SYStem.PROPertieS.Modify Change property set to configure simulator

	Access Classes
	CPU specific SETUP Command
	SETUP.DIS Disassembler configuration

	CPU specific SYStem Commands
	SYStem.CPU Select CPU type
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Select target reset mode
	SYStem.Option Set a target-specific option
	SYStem.Option.detectOTrace Disable auto-detection of on-chip trace
	SYStem.Option.Endianness Set the target endianness
	SYStem.Option.HotBreakPoints Set breakp. when CPU is running
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.LimmBreakPoints Software breakpoints with extra NOPs
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.RegNames Enable trivial names for core registers
	SYStem.Option.TIMEOUT Define maximum time for core response
	SYStem.state Show SYStem settings window

	On-chip Breakpoints/Actionpoints
	Using On-chip Breakpoints
	Breakpoints in a ROM Area
	Limitations
	TrOnchip.CONVert Allow extension of address range of breakpoint
	TrOnchip.VarCONVert Convert breakpoints on scalar variables
	TrOnchip.OnchipBP Number of on-chip breakpoints used by debugger
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.state Display on-chip trigger window
	TrOnchip.MCD MCD API specific on-chip triggers
	TrOnchip.MCD.McdBreakPoints Set onchip breakpoint via MCD API
	TrOnchip.MCD.CoreHalted Workaround to detect core-halt via MCD API
	TrOnchip.MCD.CoreRunning Workaround to start/step core via MCD API

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU
	MMU.Init Invalidate TLB entries
	MMU.Set Set an MMU TLB entry

