LAUTERBACH A

OS Awareness Manual
MicroC/OS-lI

OS Awareness Manual MicroC/OS-lI

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual MicroC/OS-Il ... s s 1
L 1= (o 4

O oY = 5
Brief Overview of Documents for New Users 6
Supported Versions 6
L0704} T 11T = Lo o 7
Manual Configuration 7
Automatic Configuration 9
Quick Configuration Guide 9
Hooks & Internals in uC/OS-II 9
=Y 1 = 11
Display of Kernel Resources 11
Task Stack Coverage 11
Task-Related Breakpoints 12
Task Context Display 13
Dynamic Task Performance Measurement 13
Task Runtime Statistics 14
Task State Analysis 15
Function Runtime Statistics 16
HC/OS-II specific Menu 17
[EL07 0 1S |00 14 4T 1 T 18
TASK.Event Display events 18
TASK.Flag Display flags 18
TASK.Memory Display memory partitions 19
TASK.PARtition Display space patrtitions 19
TASK.PROCess Display MPU processes 20
TASK.Task Display tasks 20
TASK.TImer Display timers 21
HC/OS-Il PRACTICE FUNCHONSceoiiiiiiiiininiisinems s s s s s s s sms s s ssns sasmmsssnns 22
TASK.CONFIG() OS Awareness configuration information 22
TASK.PAR.AVAIL() Space partitions 22
©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-II 2

TASK.PROC.AVAIL() MPU processes 22
TASK.STRUCT() Symbol type name of the TCB structure 23

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 3

OS Awareness Manual MicroC/OS-lI

Version 06-Jun-2024

History

04-Feb-21 Removing legacy command TASK. TASKState.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 4

Overview

A TRACE32 for uC/05-T e =]

File Edit View Var Break Run CPU Misc Trace Pef Cov MPC5SXXX pC/OS Window Help

(M I e/ pun[E e aollsamdads @ 22|

% BiTASK.Task (=== F [
id_|prio [state event msg delay |name o BuTASK Event (===
3. | 20. |SEM 40001010 |00000000 . |ca.ulls o~ agic type count tr waitin
1. | 15. |DELAY 00000000 |00000000 . |ca.uls OO0O0OEES |SEM 1. |oo000000 0. n
2. | 10. |DELAY 00000000 |00000000 . |ca.o100ms D000FEEC |SEM 0. |oooooo00 1.
55. 0. |[SUSPEND (00000000 |00000000 . |5tartTask 0001010 |SEM 0. |oooooo00 1.
65533. | 42. |5EM 40000FFC (00000000 . |UC/05-II.Tmr 0001024 |UNUSED 0. |40001038 0.
65535. | 63. |[RUNNING |00000000 [00000000 . [uC/05-II.Idle 0001038 |UNUSED 0. |4000104C 0.
kv 000104C |UNUSED 0. |40001060 0.
] 1 3 0001060 |UNUSED 0. |40001074 0.
P 0001074 |UNUSED 0. |40001088 0.
T _ -)) 0001088 |UNUSED 0. |4000109C 0.
£| B:Trace.STATistic. TASK total min max ratio bar -
=ex = = = - 4 1 3
[& seup...][m(}mps]@ Config... || E | Detaiied | E]Nesting #{Chart || Bl Profile
tasks: 9. total: 13.107ms
range total min max ratio® [|1% 2% 5% 10% 20% 50% |
StartTask 1.637ms 0. 300us 1.635ms | 12.486% ~
(unknown) 5.901ms 1.090ms 4.811ms | 45.020%
ca. 100ms 43, 000us 43, 000us 43, 000us 0.328% |+
ca. 1s 45.600us 45.600us 45. 607
ca. 10s 53.600us 53.600us 53.60 -
uC/05-II Tmr | 54.200us | 54.200us| 54.24 i BiTrace. Chart TASK [= e e
uC/05-II Idle| 16.400us - 16.40 | B seryp,., |[11 Goups.. || 38 Config... (I Goto...|[F3Find... | 4 In |[»4 0ut]|[MMFul]
4 |.500ﬂs -2.000ms -1.500ms -1.000ms -500.000us 0.00
nge | |
StartTaski|
Cunknown) Hx |
ca. 100msHH|
- T IS
o BrTASK.STack
name | low % [lowest spare max |0

igh
ca. 10s [40002FE0 400037E0
ca. 1s 40002760 40002FBO
ca. 100ms [40001FB0 40002760
StartTask |[40001C98 40001F98
uC/05-II Tmr (40001450 40001C50

32% (40003510 00000560 32% |e—
32% 40002010 00000560 325 |e—
32% 40002510 00000560 325 |e—
86% 40001000 00000068 86%
33% 400019

uC/05-II Idle (40000158 40000958 15% |400006|
o B:TASK TImer =n| Wl <
1 m agic ztate |period left option callback |name
000118C |active | 100. | 100. |periodic |000069CC [Togglenlimer =
4 I 2
B::|
emulate trigger | [devices || trace][Data J[wvar [st][PERF | [s5vstem][Step |[other | [previous
SP:00006504 \\MPC5554_port\os_cpu_c\0STaskIdleHook uC/0S-1I Idle stopped at breakpoint MIX |UP

The OS Awareness for yC/OS-II contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 5

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently yC/OS-ll is supported for the following versions:

. puC/OS-ll V2.5 to 2.93 on Andes, ARC, ARM, Blackfin, C16x, C2xxx, C6xxx, ColdFire,
HCO08/HC12, MIPS, Niosll, PowerPC, RISC-V, TriCore, V850 and Xtensa.

. pHC/OS-II V2.92 with partitioning on PowerPC
. pHC/OS-1l wV2.92 with MPU and certification on ARM

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 6

Configuration

The TASK.CONFIG command loads an extension definition file called “ucos.t32” (directory
“~~/demo/<processor>/kernel/ucos”). It contains all necessary extensions.

Automatic configuration tries to locate the uyC/OS-Il internals automatically. For this purpose all symbol
tables must be loaded and accessible at any time the OS Awareness is used.

If a system symbol is not available or if another address should be used for a specific system variable, then
the corresponding argument must be set manually with the appropriate address. This can be done by
manual configuration which can require some additional arguments.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

Manual Configuration

Manual configuration for the pC/OS OS Awareness can be used to explicitly define some memory locations.
It is recommended to use automatic configuration.

Format: TASK.CONFIG ucos <magic_address> <args>

<magic_address> Specifies a memory location that contains the current running task. This
address can be found at “0STCBCur”. Specify 0 to automatically search for
this symbol.

<args> <task_name_indirection> <task_name_offset>

See below for details.

Since pC/OS-II version 2.60, it supports task names. If you'd like to have task names, use the OS internal
mechanisms for this purpose. The OS Awareness for uC/OS-II detects those task names automatically.

For versions before 2.60, you can implement task names in a way, that is supported by the OS Awareness
for uC/OS:

OS_TASK_CREATE_EXT_EN must be defined to enable task names, and OSTCBExtPtr must point to the
TCB extension of the task.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 7

There are two possibilities to configure task names:
1. The TCB Extension contains the name itself.

Specify “1” for the task name indirection. Specify additionally the offset, where the first character of
the task name can be found in the TCB extension. E.g.

OSTCBExXtPtr points to OSTCBExXtPtr points to OSTCBExtPtr points
struct struct directly to name
struct { struct { char name[] =
INT16U someval; char name [8] ; "'Taskl’’;
char name [8] ; INT16U someval;
INT16U someval?2; INT16U someval2;
} }
task.config 0 1 2 task.config 0 1 0 task.config 0 1 0
2. The TCB Extension contains a pointer to the task name.

Specify “2” for the task name indirection. Specify additionally the offset, where the pointer to the task
name can be found in the TCB extension. E.g.

OSTCBExtPtr points to struct OSTCBExtPtr points to struct
struct { struct {
INT16U someval; char* name;
char* name; INT16U someval;
INT16U someval2; INT16U someval2l;
} }
task.config 0 2 2 task.config 0 2 0

Specifying “0” to both naming arguments means, that no task name is evaluated.

NOTE: There is one exception on this. If the naming arguments are “0”, or if they are committed, a special
case is searched automatically: If the TCB Extension structure is named TASK_USER_DATA, and if it
contains (not points to) the task name in a member variable called TaskName, then this is automatically
found and configured. If, for any reason, this automatic evaluation leads to wrong displays, you can either
configure it manually as described above, or disable it by “task.config 0 0 1"

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 8

Automatic Configuration

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration,
omit all arguments:

Format: TASK.CONFIG ucos

Task names are automatically found, if the OS internal mechanisms are used (since version 2.60), or if the
TCB Extension structure is named TASK_USER_DATA, and if it contains (not points to) the task name in a
member variable called TaskName .

If a system symbol is not available, or if another value should be used for a specific system variable, then the
corresponding argument must be set manually with the appropriate value (see Manual Configuration).

Quick Configuration Guide

To access all features of the OS Awareness you should follow the following roadmap:

1. Run the PRACTICE demo script (~~/demo/<processor>/kernel/ucos/ucos.cmm). Start the demo
with *do ucos” and “go”. The result should be a list of tasks, which continuously change their
state.

2. Make a copy of the PRACTICE script file “ucos.cmm”. Modify the file according to your
application.

3. Run the modified version in your application. This should allow you to display the kernel
resources and use the trace functions (if available).

Hooks & Internals in uyC/OS-II

No hooks are used in the kernel.

To retrieve information on kernel objects, the OS Awareness uses the global pC/OS Variables and the
structures defined in the ucos-ii.h file. Be sure that your application is compiled and linked with debugging
symbols switched on.

Note for 68HC08 COSMIC compilers:

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 9

The compiler does not export symbol information on typedefs to unnamed structures. You have to change
them (in the ucos-ii.h file) to become named structures:

Original ucos-ii.h Change to:
typedef struct { typedef struct os_event {
} OS_EVENT; } OS_EVENT;

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 10

Features

The OS Awareness for pC/OS-II supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
pC/OS-Il components can be displayed:

TASK.Task Tasks

TASK.Event Intertask Communication
TASK.Flag Event Flags
TASK.TImer Timers

TASK.Memory Memory Partitions
TASK.PARtition Space Partitions
TASK.PROCess MPU Processes

For a description of the commands, refer to chapter “UC/OS-Il Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

Task Stack Coverage is only available, if you enabled 0S_TASK_CREATE_EXT_EN, and if you created your
tasks with 0STaskCreateExt (). To ensure proper stack calculation, specify 0S_TASK_OPT_STK_CLR
as an create option.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 11

Note for C166 using Tasking Compiler:
The version 1.0 of the Tasking C166 port (author: K. Wannenmacher) lacks the updating of the
OSTCBStkPtr variable. This causes, that the “current stack pointer” is displayed wrong.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [[<option>] [TASK <task> Set task-related breakpoint.

. Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextlD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 12

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:
1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

The TASK.TASK <task> window contains a button (“context”) to execute this command with the displayed
task, and to switch back to the current context (“current”).

Not available for C166!

The version 1.0 of the Tasking C166 port (author: K. Wannenmacher) lacks the updating of the
OSTCBStkPtr variable. This disables the usage of this feature, as we are not able to find the context of the
task.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 13

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide

P” (general_ref_p.pdf).

Task Runtime Statistics

NOTE:

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in

a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display trace buffer and task switches
Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

©1989-2024 Lauterbach

OS Awareness Manual MicroC/OS-Il | 14

Task State Analysis

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:
. All accesses to the status words of all tasks

J Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array) /Write /TraceData
Break.Set TASK.CONFIG (magic) /Write /TraceData

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart.TASKState Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All kernel activities added to the calling task.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 15

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 16

pC/OS-ll specific Menu

The menu file “ucos.men” contains a menu with pC/OS-II specific menu items. Load this menu with the
MENU.ReProgram command.

NOTE: Load firstthe application symbols, then the pC/OS-Il specific menu. The loading
of the menu evaluates the existence of some pyC/OS-II objects and creates the
menu accordingly.

You will find a new menu called pC/OS.
. The Display menu items launch the appropriate kernel resource display windows.

J The Stack Coverage submenu starts and resets the uC/OS specific stack coverage and provides
an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

J The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

. The Perf menu contains additional submenus for task runtime statistics and statistics on task
states.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 17

HC/OS-Il Commands

TASK.Event Display events

Format: TASK.Event <event>

Displays the event table of uC/OS-Il or detailed information about one specific event. The event table holds
all intertask communication mechanisms.

Without any arguments, a table with all created events will be shown. Specify a event magic number to
display detailed information on that event.

&b B:TASK.Event [E=%(ECR =3
type count ptr waiting name |
SEM 00000000 Seml ~

DAZ20
00020A5C
00020458 |UNUSED 00020474
00020474 |UNUSED 00020490
4 1 2

SEM
UNUSED

0Qo00000
000Z0A58

?

j=R=R= Rl

(=Rl]

7
7
7

“magic” is a unique ID, used by the OS Awareness to identify a specific event (address of the OS_EVENT
structure).

The fields “magic”, “ptr” and several fields in the detailed window are mouse sensitive, double clicking on
them opens appropriate windows.

TASK.Flag Display flags

Format: TASK.Flag <flag>

Displays the flag table of yC/OS-Il or detailed information about one specific flag

Without any arguments, a table with all created flags will be shown. Specify a flag magic number to display
detailed information on that flag.

“magic” is a unique ID, used by the OS Awareness to identify a specific flag (address of the OS_FLAG_GRP
structure). The field “magic”, and the task fields in the detailed window are mouse sensitive, double clicking
on them opens appropriate windows.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 18

TASK.Memory

Display memory partitions

Format:

TASK.Memory

Displays the table of all created memory partitions of pC/OS-I.

“magic” is a unique ID, used by the OS Awareness to identify a specific memory partition (address of the

OS_MEM).

The field “address” is mouse sensitive, double clicking on it opens the appropriate window.

TASK.PARtition

Display space partitions

Format:

TASK.PARtition

Displays the table of all created space partitions of uC/OS-II.

o B:TASK.PARTition =n| Wl <
magic 1d [prio [state phazez |seems to be <tocus> |
00102500 0. [20. [core 0. [pC/05-II vZ.86 |** Tocused =+
00102514 1. | 21. |empty 0. |RTS 23.01.2008 focus

00102528 2. | 22. |empty 0. |pC/05-II v2.86 oCcus

4

o B:TASK. PARtltlon 0102528 =n| Wl <
prio [state phases zeems to be <tocus> |
00102528 | 2 [22, [empty WC/05-IT vZ.86 | _focus L

data start size physical
00100000 00100000 00400000 00800000 00080000 00500000

4 T

“magic” is a unique ID, used by the OS Awareness to identify a specific space partition.

©1989-2024 Lauterbach

OS Awareness Manual MicroC/OS-Il | 19

TASK.PROCess Display MPU processes

Format: TASK.PROCess

Displays the table of all created MPU processes of uC/OS-II.
o B:TASK.PROCess =n| Wl <

1d [start end |
0. 20000400 |200013FF i
1. (00000000 00000000
2. 20001800 |20001BFF
5. [20001c00 [20001FFF || o BHTASKPROCess 0:200028D8 [= |[= [[=5]
1. |20001400 |200017FF || jnagic id [start end
0.

M

-

task magic id name
20000470 85533, uC/05-II.Tmr
2000042C 65535. uC/05-II.Idle

1

4 T b

“magic” is a unique ID, used by the OS Awareness to identify a specific process.

TASK.Task Display tasks

Format: TASK.Task <task>

Displays the task table of uC/OS-Il or detailed information about one specific task.

Without any arguments, a table with all created tasks will be shown.
Specify a task magic number to display detailed information on that task.

b BuTASK Task o -E =]

1d [prio [state event msg
3. | 20. |SEM 40001010 |00000000
1. | 15. |DELAY 0ooo0o000 (00000000

2. | 10. |DELAY 00000000 |00000000
55. 0. [SUSPEND |00000000 |00000000
65533. | 42. |5EM 40000FFC (00000000
65535. | 63. |RUNNING 00000000 00000000

b BTASK Task 0x:40000448
rio state

r: 40002510 context current

4 T b

“magic” is a unique ID, used by the OS Awareness to identify a specific task (address of the TCB).

” o«

The fields “magic”, “event”, “msg” and “stack ptr’ are mouse sensitive, double clicking on them opens

appropriate windows. “magic” has a context sensitive menu, too.

Pressing the “context” button changes the register context to this task. “current” resets it to the current
context. See “Task Context Display”.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 20

TASK.TImer Display timers

Format: TASK.TImer <timer>

Displays the timer table of uC/OS (since 2.80) or detailed information about one specific timer.

o B:TASK. Timer 0x4000118C =n| Wl <
magic ztate |period left option callback |name |
000118C [active | 100. [100. [periodic [D00069CC [TogglenTimer

argument s

callback = ymbol
000063CC 00000000 ToggleCallBack

4 i 3

Without any arguments, a table with all created timers will be shown. Specify a timer magic number to
display detailed information on that timer.

“magic” is a unique ID, used by the OS Awareness to identify a specific timer (address of the OS_TMR
structure). The fields “magic”, and “callback” are mouse sensitive, double clicking on them opens
appropriate windows.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 21

HC/OS-Il PRACTICE Functions

There are special definitions for uC/OS specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

TASK.PAR.AVAIL() Space partitions

Syntax: TASK.PAR.AVAIL()

Returns 1 if space partitions are configured.

Return Value Type: Hex value.

TASK.PROC.AVAIL() MPU processes

Syntax: TASK.PROC.AVAIL()

Returns 1 if MPU processes are configured.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 22

TASK.STRUCT() Symbol type name of the TCB structure

Syntax: TASK.STRUCT(tcb)

Returns the symbol type name of the TCB structure.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Il | 23

	OS Awareness Manual MicroC/OS-II
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Manual Configuration
	Automatic Configuration
	Quick Configuration Guide
	Hooks & Internals in µC/OS-II

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	µC/OS-II specific Menu

	µC/OS-II Commands
	TASK.Event Display events
	TASK.Flag Display flags
	TASK.Memory Display memory partitions
	TASK.PARtition Display space partitions
	TASK.PROCess Display MPU processes
	TASK.Task Display tasks
	TASK.TImer Display timers

	µC/OS-II PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.PAR.AVAIL() Space partitions
	TASK.PROC.AVAIL() MPU processes
	TASK.STRUCT() Symbol type name of the TCB structure

