LAUTERBACH A

OS Awareness Manual
MicroC3/Standard

OS Awareness Manual MicroC3/Standard

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual MicroC3/Standardccccceiiiinminsnmnnrns s 1
L 1= (o 4

O oY = 4
Brief Overview of Documents for New Users 5
Supported Versions 5
L0704} T 11T = Lo o 6
Quick Configuration Guide 7
Hooks & Internals in MicroC3/Std 7
=Y 1 = 8
Display of Kernel Resources 8
Task-Related Breakpoints 9
Dynamic Task Performance Measurement 10
Task Runtime Statistics 10
Function Runtime Statistics 11
MicroC3/Std specific Menu 12

[T [Te 0T 03 757 o JK 00T 1 11T T4 Lo £ 13
TASK.ALarM Display alarm handlers 13
TASK.CYClic Display cyclic handlers 13
TASK.DaTaQueue Display data queues 14
TASK.FLaG Display event flags 14
TASK.ISR Display interrupt service routines 15
TASK.MailBoX Display mailboxes 15
TASK.MemPoolF Display fixed memory pools 16
TASK.MemPoolL Display variable memory pools 16
TASK.MsgBuFfer Display message buffers 17
TASK.MuTeX Display mutexes 17
TASK.PORt Display rendezvous ports 18
TASK.SEMaphore Display semaphores 18
TASK.TaSK Display tasks 19
MicroC3/Std PRACTICE FUNCHIONScooiiiiriiiin s s ssms s s ssmss s s s ssmmn s s 20
TASK.CONFIG() OS Awareness configuration information 20
©1989-2024 Lauterbach OS Awareness Manual MicroC3/Standard 2

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Standard | 3

OS Awareness Manual MicroC3/Standard

Version 06-Jun-2024

History

28-Aug-18 The title of the manual was changed from “RTOS Debugger for <x>" to “OS Awareness
Manual <x>”.

Overview

A TRACE32 for uC3/Standard f=lfE ==

File Edit View Var Break Run CPU Misc Trace Pef Cov ARM926 uC35td Window Help

M |deeernFE e all2umscs @ 20

-
% BiTASK.TasK [= =][# || & B:TASKSEMaphore (o= =]
agic 1d state prio [name | agic 1d count |max waiting |name |
BOBF1728 6. walt dly tmo:1l. 1. [ComTask L BOBF17FE 7. 1. Z. A
BOBF16ED 7. |dormant 0. |SubTask BOBF17ED 8. |0, 1.
BOBF1638 8. |[running 3. MainTask
] 1 r “ 1 ¢
I
B SELE ELaI s TS TS TTETTET | 8, B:TASK.MemPoolF (x808F17A0 = ER
agic 1d state prio [name |
Pg— agic 1d blkent [bTksize waiting [name |
B08F1638 | 8. [running [3. MainTask - %%Fl?ﬂ\o T 8. [z0. 1zs. T pF "
wait obj timeout -
— attributes
o watt TFIFO
prio base dnitial buffer cize
EEE R 50501165 0D0DOADD
counter activation wakeup suspension .
0. 0. 0. o L1 s
-
entry point extra info symbol 5 = e sz
50000465 00000000 MainTas Lo — L= 0 %)
agic 1d count |max waiting |name |
=tack size pointer BOBF1873 7. |0. 32. | ~
B08711B8 00000400 00000000 BOBF1850 8. |0. 16.
exception pattern status routine
nane o B:TASK.CYClic =n| Wl <
tew Tocke a Teft handTer |
b ocked 00000096 |800004B0 cychdrl =
= 00000064 |B00004B0 cychdrl
d il 1 ¢
E::task.|
[Task | [sEMaphore| [FlaG | paTaQueud [MaiBoX | [MuTeX | [MsaBuFfer|[PORt || other | [previous
SB0000500 1| Armadillo- 4401 main| MainT asks Ix108 Main Task stopped at breakpoint HLL |UP

The OS Awareness for yC3/Standard contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Standard | 4

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently pC3/Standard is supported for the following versions:

. pC3/Standard on ARM architecture.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Standard | 5

Configuration

The TASK.CONFIG command loads an extension definition file called “uc3std.t32” (directory
“~~/demo/<processor>/kernel/uc3std”). It contains all necessary extensions.

Automatic configuration tries to locate the pC3/Std internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

Format: TASK.CONFIG uc3std

See also “Hooks & Internals” for details on the used symbols.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Standard | 6

Quick Configuration Guide

To get a quick access to the features of the yC3/Std OS Awareness with your application, follow the following
roadmap:

1. Start the TRACE32 Debugger.
2. Load your application as normal.

3. Execute the command “TASK.CONFIG ~~/demo/<cpu>/kernel/uc3std/uc3std.t32”
(See “Configuration”).

4. Execute the command “MENU . ReProgram ~~/demo/<cpu>/kernel/uc3std/uc3std.men”
(See “RTOS Specific Menu”).

5. Start your application.
Now you can access the uC3/Std extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in MicroC3/Std

No hooks are used in the kernel.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used. The pC3/Std kernel must be compiled with debug information.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Standard | 7

Features

The OS Awareness for yC3/Std supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
pC3/Std components can be displayed:

TASK.TaSK Tasks

TASK.SEMaphore Semaphores
TASK.FLaG Event flags
TASK.DaTaQueue Data queues
TASK.MailBoX Mailboxes
TASK.MsgBuFfer Message buffers
TASK.MuTeX Mutexes

TASK.PORt Rendezvous ports
TASK.MemPoolF Fixed sized memory pools
TASK.MemPoolL Variable sized memory pools
TASK.CYClic Cyclic handlers
TASK.ALarM Alarm handlers
TASK.ISR Interrupt service routines

For a description of the commands, refer to chapter “MicorC3/Std Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Standard |

8

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK . List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Standard | 9

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the

PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide

P” (general_ref_p.pdf).

Task Runtime Statistics

NOTE:

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in

a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display trace buffer and task switches
Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

©1989-2024 Lauterbach

OS Awareness Manual MicroC3/Standard | 10

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Standard | 11

MicroC3/Std specific Menu

The menu file “uc3std.men” contains a menu with pC3/Std specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called uC3Stc.

. The Display menu items launch the kernel resource display windows.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

J The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

o The Perf menu contains additional submenus for task runtime statistics.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Standard | 12

MicroC3/Std Commands

TASK.ALarM Display alarm handlers

Format: TASK.ALarM

Displays the table of installed alarm handlers.

B B:TASK.ALarM =l e =]

magic 1d time handTer
B08F1ELD 7. |00000000 00000000 B00004AC almhdrz ~
B0OBF1AES] 8. |00000000 (00000000 |300004A8 almhdrl

4 T b

The fields “id” and “handler” are mouse sensitive. Double-clicking on them open appropriate windows. Right
clicking on them will show local menu.

TASK.CYClic Display cyclic handlers

Format: TASK.CYClic

Displays the table of installed cyclic handlers.

o B:TASK.CYClic =n| Wl <
magic 1d eriod Teft handTer

B08F1E63 7. |00DODOS7 [00000096 [BDODD4E0 cychdrl
BO8F1E33 8. |0000O0G5 |00000064 |BO0004B0 cychdrl

-

4 T b

The fields “id” and “handler” are mouse sensitive. Double-clicking on them open appropriate windows. Right
clicking on them will show local menu.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Standard | 13

TASK.DaTaQueue Display data queues

Format: TASK.DaTaQueue [<queue>]

Displays the data queue table of uC3/Std or detailed information about one specific data queue.

Without any arguments, a table with all created data queues will be shown. Specify a data queue ID or name
to display detailed information on that data queue.

5?. B::TASK.DaTaQueue EI@
magic 1d count |max waiting name | |
BOBF1E78 7. |0, 32. ~
BOBF1850 8. |0. 16.

4 1 2

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

TASK.FLaG Display event flags

Format: TASK.FLaG [<flag>]

Displays the event flag table of pC3/Std or detailed information about one specific event flag.
Without any arguments, a table with all created event flags will be shown. Specify a flag ID or name to
display detailed information on that flag.

o B:TASK.FLaG 0x808FL5F8 =n| Wl <

magic 1d attern waitin name

’TIEI_FO CLR W56l

4 1 2

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Standard | 14

TASK.ISR Display interrupt service routines

Format: TASK.ISR

Displays the table of installed interrupt service routines.

o B:TASKISR =n| Wl <
magic intno |handler

B08F1e10 (32, B0002B54 _ddr_mx25uart_intr ~
BOSF15ED |28, BO000FCC _ddr_fs_mx25epit_isr

4 1 2

The fields “id” and “handler” are mouse sensitive. Double-clicking on them open appropriate windows. Right
clicking on them will show local menu.

TASK.MailBoX Display mailboxes

Format: TASK.MailBoX [<mailbox>]

Displays the mailbox table of pC3/Std or detailed information about one specific mailbox.

Without any arguments, a table with all created mailboxes will be shown.
Specify a mailbox ID or name to display detailed information on that mailbox.

o B:TASK.MailBeX Ox.. [= |[& |[w23]

magic id waiting [name [
BOGFL17CE | 8. | Mbx .

FIFO MFIFO
4 m }

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Standard | 15

TASK.MemPoolF Display fixed memory pools

Format: TASK.MemPoolF [<mempool]

Displays the fixed size memory pool table of uC3/Std or detailed information about one specific memory
pool.

Without any arguments, a table with all created memory pools will be shown.
Specify a pool ID or name to display detailed information on that memory pool.

o B:TASK.MemPoolF 0:808F17A0 =n| Wl <

magic 1d blkent [blksize waiting name [
B0GFL17A0 | 8. |20. [128. | Mpt .

4 1 2

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

TASK.MemPoolL Display variable memory pools

Format: TASK.MemPoolL [<mempool]

Displays the variable size memory pool table of pC3/Std or detailed information about one specific memory
pool.

Without any arguments, a table with all created memory pools will be shown.
Specify a pool ID or name to display detailed information on that memory pool.

o B:TASK.MemPooll =n| Wl <

magic id size |waiting [name [
BOBF1ABD 7. |1Z8. ~
BOBF1AS 5] 8. |64,

4 1 2

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Standard | 16

TASK.MsgBuFfer Display message buffers

Format: TASK.MsgBuFfer [<msgbuffers]

Displays the message buffer table of pC3/Std or detailed information about one specific message buffer.

Without any arguments, a table with all created message buffers will be shown. Specify a message buffer ID
or name to display detailed information on that message buffer.

o B:TASK.MsgBuFfer =n| Wl <
magic 1d size free |msgsize waiting |name |
BOBF19638 7. |32 32. 4. ~
BOBF193 5] 5. |64, 64. 8.

4 1 2

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

TASK.MuTeX Display mutexes

Format: TASK.MuTeX [<mutex>]

Displays the mutex table of yC3/Std or detailed information about one specific mutex.

Without any arguments, a table with all created mutexes will be shown.
Specify a mutex ID or name to display detailed information on that mutex.

o B:TASK.MuTeX 0x208F18E0 =n| Wl <

magic 1d prio | locked waiting |[name
B0SF18E0 | 8. |31. |no T T P

“locked” shows the task ID that locked this mutex.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Standard | 17

TASK.PORt Display rendezvous ports

Format: TASK.PORt [<port>]

Displays the rendezvous port table of pC3/Std or detailed information about one specific port.
Without any arguments, a table with all created port will be shown. Specify a port ID or name to display
detailed information on that port.

o5 B:TASK.PORt =l e =]

magic 1d maxcmsz maxrmsz |accept [call name
. |4, [

4 1 b

“accept” shows the task ID that is waiting for accepting this rendezvous.
The “call” column shows the task IDs waiting for calling the rendezvous.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

TASK.SEMaphore Display semaphores

Format: TASK.SEMaphore [<semaphore>]

Displays the semaphore table of yC3/Std or detailed information about one specific semaphore.

Without any arguments, a table with all created semaphores will be shown. Specify a semaphore ID or
name to display detailed information on that semaphore.

o B:TASK.SEMaphore =n| Wl <
magic 1d count |ma waiting |name | |
BOBF17FS 7. 1. 2. ~
BOBF17ED 8. |0. 1.

4 10 3

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Standard | 18

TASK.TaSK

Display tasks

Format:

TASK.TaSK [<task>]

Displays the task table of pC3/Std or detailed information about one specific task.

Without any arguments, a table with all created tasks will be shown.
Specify a task magic, ID or name to display detailed information on that task.

b BuTASK.TaSK

(=[O el

magic id [state

prio name

BOBF1728
BOBF16ED
BOBF1638

6.
7.
8.

dormant
running

4

walt dly tmo:1.

1. [ComTask L
0. [SubTask
3. MainTask

b B TASK. TaSK 0:808F1728

(=[O el

state

prio name

magic 1d
B08F17258 | 6. |walt dly tmo:1.

wait obj timeout
0. 1.

|
[1. [ComTask .

prio base dnitial

1. 1. 1.

counter activation wakeup suspension
0. 0. 0.

entry point

extra info

m

LQLOOLDOOD

ComTask

nter

BO00037C
stack
50871963

eption

size
oooo0400

pattern

808710458

status

routine

N

locked

mutex

none
4

I

The fields “id” and “entry” are mouse sensitive, double clicking on them opens appropriate windows. Right
clicking on them will show a local menu.

©1989-2024 Lauterbach

OS Awareness Manual MicroC3/Standard | 19

MicroC3/Std PRACTICE Functions

There are special definitions for yC3/Std specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual MicroC3/Standard | 20

	OS Awareness Manual MicroC3/Standard
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in MicroC3/Std

	Features
	Display of Kernel Resources
	Task-Related Breakpoints
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	MicroC3/Std specific Menu

	MicroC3/Std Commands
	TASK.ALarM Display alarm handlers
	TASK.CYClic Display cyclic handlers
	TASK.DaTaQueue Display data queues
	TASK.FLaG Display event flags
	TASK.ISR Display interrupt service routines
	TASK.MailBoX Display mailboxes
	TASK.MemPoolF Display fixed memory pools
	TASK.MemPoolL Display variable memory pools
	TASK.MsgBuFfer Display message buffers
	TASK.MuTeX Display mutexes
	TASK.PORt Display rendezvous ports
	TASK.SEMaphore Display semaphores
	TASK.TaSK Display tasks

	MicroC3/Std PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

