LAUTERBACH A

OS Awareness Manual
SYS/BIOS

OS Awareness Manual SYS/BIOS

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns r—
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual SYS/BIOS ... coirirrsrccrrresssmerrssss e s sesssmmesesssssmssssssssmmsssesssanmssseas 1
0 Y= = 3
Brief Overview of Documents for New Users 4
Supported Versions 4
ConfiguIration ... 5
Quick Configuration Guide 5
Hooks & Internals in SYS/BIOS 6
== T == 7
Display of Kernel Resources 7
Task Stack Coverage 7
Task-Related Breakpoints 8
Task Context Display 9
Dynamic Task Performance Measurement 10
Task Runtime Statistics 11
Function Runtime Statistics 11
SYS/BIOS Specific Menu 13
SYS/BIOS COMMANASceemmimmiiiriiiiisisssssssnmsnmssesssssssssssssssssmmmsssssssssssssssssssnnsmmmssnssssssnssnssssssnnnnns 14
TASK.CLocK Display clocks 14
TASK.EVenT Display events 14
TASK.HeapMem Display heap memories 15
TASK.HWI Display HWIs 15
TASK.MailBoX Display mailboxes 16
TASK.MODule Display used modules 16
TASK.SEMaphore Display semaphores 17
TASK.SWI Display SWIs 17
TASK.SYSMIN Display SysMin buffer 18
TASK.TaSK Display tasks 18
SYS/BIOS PRACTICE FUNCHIONScociiiiiemnrinemss s s s ssssms s ssmms s s ssmms s sssssmens 19
TASK.CONFIG() OS Awareness configuration information 19
©1989-2024 Lauterbach OS Awareness Manual SYS/BIOS 2

OS Awareness Manual SYS/BIOS

Overview

Version 06-Jun-2024

Perf Cov 5SYS/BIOS Window Help

File Edit View Var Break Run CPU Misc Trace

I VRS B A [it

IR D/ EnBSsSE @RI MEE @ P

function |
00003968 t1_sysbios_knl_Idle_loop_E
00000FE2 taskl

| .. | =2

runtime: 100% |

|[name |ratio 1% 2% 5% 10% 20% 50% 100

t1_sysbios_knT_IdTe_Toop | 56.294%

task2 23.776%

taskl 19.930%

1K

B::[TASK.| 50
| Task || cock || EvenT || MaiBoX ||SEMaphorel| Sswi || MoDule || SysMm || | | | [ioss |
[NSR:80005538 \\minimal_AM3359_CortexA\rain\taskFxn taskFxn Istopped at breakpoint | [[MIX [UP

The OS Awareness for SYS/BIOS contains special extensions to the TRACE32 Debugger. This manual

describes the additional features, such as additional commands and statistic evaluations.

©1989-2024 Lauterbach

OS Awareness Manual SYS/BIOS

3

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently SYS/BIOS is supported for the following versions:
. SYS/BIOS V6.x on ARM/Cortex and TMS320C64xx

©1989-2024 Lauterbach OS Awareness Manual SYS/BIOS | 4

Configuration

The TASK.CONFIG command loads an extension definition file called “sysbios.t32” (directory
“~~/demo/<processor>/kernel/sysbios”). It contains all necessary extensions.

Automatic configuration tries to locate the SYS/BIOS internals automatically. For this purpose all symbol
tables must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

Format: TASK.CONFIG sysbios

See also “Hooks & Internals” for details on the used symbols.

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for SYS/BIOS with your application, follow the
following roadmap:

1. Copy the files “sysbios.t32” and “sysbios.men” to your project directory
(from TRACE32 directory “~~/demo/<processor>/kernel/sysbios”).

2. Start the TRACE32 Debugger.
3. Load your application as normal.

4, Execute the command “TASK.CONFIG sysbios”
(See “Configuration”).

5. Execute the command “MENU.ReProgram sysbios”
(See “SYS/BIOS Specific Menu”).

6. Start your application.
Now you can access the SYS/BIOS extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

©1989-2024 Lauterbach OS Awareness Manual SYS/BIOS | 5

Hooks & Internals in SYS/BIOS

No hooks are used in the kernel.

For retrieving the kernel data and structures, the OS Awareness uses the global kernel symbols and
structure definitions (ti_sysbios_knl*). Ensure that access to those structures is possible every time when
features of the OS Awareness are used.

Be sure that your application is compiled and linked with debugging symbols switched on.

SYS/BIOS supports object names, if configured. In the configuration script, enable instance names with:
Task.common$.namedInstance = true;

(see BIOS User Guide, Chapter 3.5.5.6 "Task Hooks Example")

and ensure that text strings are loaded on the target:

var Text = xdc.useModule('xdc.runtime.Text');
Text.isLoaded = true;

(see BIOS User Guide, Chapter D.2.5 "Leaving Text Strings Off the Target")

©1989-2024 Lauterbach OS Awareness Manual SYS/BIOS | 6

Features

The OS Awareness for SYS/BIOS supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
SYS/BIOS components can be displayed:

TASK.CLocK Clocks

TASK.EVenT Events

TASK.MailBoX Mailboxes

TASK.MODule Used modules
TASK.SEMaphore Semaphores

TASK.SWI SWis

TASK.SYSMIN Display system output buffer
TASK.TaSK Tasks

For a description of the commands, refer to chapter “SYS/BIOS Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual SYS/BIOS | 7

&b BTASK.STacK =N =R)

name [Tow high s % lowest spare max 0 10 20 30
knT_IdTe_Toop__E [B000E/00 BOODEFOD |30 0 2% |B000EES4 00000734 6 | m— A

writer |8000B858 8000C058 |20 9% [B000BF1C 000006C4 15%
reader (3000C0B0 8000CBB0 |50 15% |8000C7eC Q00006BC 15%

< >

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [[<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextlD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK . List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,

©1989-2024 Lauterbach OS Awareness Manual SYS/BIOS | 8

you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

a B::Break.List EI@
K ekte Al O Dssbe Al @ Eabie Al @ it || L 1mpl... |52 Store...| o Load... | EdiSet...
address types impl taszk |

SOFT
SOFT

NR :800017D0{Program

"taskFxn™ t1_sysbios_knT_Task_sTeep__E
NR : 80006ED4 | Program

"ti_sysbios_kn1_Idle_loop | xdc_runtime_System_printf_E

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:
1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

©1989-2024 Lauterbach OS Awareness Manual SYS/BIOS | 9

&t BuFrame /Task "taskFxn" EI@

1. Up Down Args [Locals Caller Task: | "taskFxn" |
-000[[t1 _sysbios_knT_Task_sTeep_ E(timeout = 0)

~
taszkFxn(a0 = 0, al = 0)

Task_sTleep(10);
ti_sysbios_knl_Task_exit__E()

— [end of frame v

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

= B:PERF.LTASK = =R

& ... | 88 @fig... | A Goto...|= Detaied| 3, View || iy/Profle | @ Init | O DIsable| @ Arm
runtime: 100%

name ratio 1% 2% 5% 10% 20% 50% 100 |

1_sysbios_knl_Idle_loop 56.294%i

ask2 23.??6%|

askl 19.930% |

©1989-2024 Lauterbach OS Awareness Manual SYS/BIOS | 10

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spentin
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

©1989-2024 Lauterbach OS Awareness Manual SYS/BIOS | 11

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual SYS/BIOS | 12

SYS/BIOS Specific Menu

The menu file “sysbios.men” contains a menu with SYS/BIOS specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called SYS/BIOS.

Cortex-M3 |~ SY5/BIOS Window Help

| 6% & &5 Display Tasks
T Display Clocks

Display Events
Display Mailboxes
Display Semaphores
Display SWis
Clock

Stack Coverage L4
Swi

. The Display menu items launch the kernel resource display windows.

J The Stack Coverage submenu starts and resets the SYS/BIOS specific stack coverage and
provides an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

. The Perf menu contains additional submenus for task runtime statistics and statistics on task
states.

©1989-2024 Lauterbach OS Awareness Manual SYS/BIOS | 13

SYS/BIOS Commands

TASK.CLocK Display clocks

Format: TASK.CLocK

Displays the clock table of SYS/BIOS.
&% BuTASK.CLocK =N =R)

magic timeout period [started [remaining periodic function
BO0D7ED4 [7320. [7320. [yes [7320. [ves [80006918 ti_sysbhios_TamiTy_arm_a8_Timest. a
£

v
>

“magic” is a unique ID, used by the OS Awareness to identify a specific clock (address of the clock object's
structure).

The fields “magic” and “function” are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.EVenT Display events

Format: TASK.EVenT

Displays the event table of SYS/BIOS.
o BrTASK.EVenT [E=N =R

magic posted [task state andMask orMask timeout |
BO0DBTSE [0, [reader |waiting for clock ticks [00000003 [D0000004 [1Z. ~
£

v
>

“magic” is a unique ID, used by the OS Awareness to identify a specific event (address of the event object’s
structure).

The fields “magic” and “task” are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual SYS/BIOS | 14

TASK.HeapMem Display heap memories

Format: TASK.HWI

Displays the heap memory objects of SYS/BIOS.

b B:TASK HeapMem =N =R
magic butter minalign total size [fotal free [largest free |
80020540 [50026430 | &. 00004000 [0000ZE30 [DO00ZE3D ~

v
£ >

“magic” is a unique ID, used by the OS Awareness to identify a specific heap memory (address of the
HeapMem object).

The fields “magic” and “function” are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.HWI Display HWIs

Format: TASK.HWI

Displays the SWI table of SYS/BIOS.

S BTASCHW B
mag1 type [intnum [prio function
IRQ 0. 224, [BOO1BGFO t1_sysbios_ftamily_arm_al5_smp_C.. (0OxD0000000) A

IRQ 1. [224. |BO0O166F0 ti_syshios_family_arm_als_smp_C.. (0x00000001)
IRQ 2. [224. |BOO166F0 ti_syshios_family_arm_als_smp_C.. (0x00000002)
IRQ | 7O. 224, |BOOL7BF4 ti_sysbios_timers_dmtimer_Timer.. (0x8002043C)
IRQ | 30. 224. |BOOL18F44 ti_sysbios_family_arm_systimer_.. (0x80020460)
IRQ | 78. 224, |BOOL7BF4 ti_sysbios_timers_dmtimer_Timer.. (0x800275C0)

“magic” is a unique ID, used by the OS Awareness to identify a specific HWI (address of the HWI object).

The fields “magic” and “function” are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual SYS/BIOS | 15

TASK.MailBoX

Display mailboxes

Format:

TASK.MailBoX

Displays the mailbox table of SYS/BIOS.

o8 B:TASK.MailBoX

Lo 8)

magic msgsize nummsgs curmsgs treeslots [pending |
80006790 |8. Z. 0. [ER ~
£ >

2 [

v

“magic” is a unique ID, used by the OS Awareness to identify a specific mailbox (address of the mailbox

object’s structure).

The fields “magic” and “pending” are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.MODule

Display used modules

Format:

TASK.MODule TaSK | CLocK | SWI

Displays information about an used SYS/BIOS module.

&% B:TASK.MODule.TasK

(o8)

unTocked
0ooo0003
no

3.
20000028 taskl

o B:TASKMODule.Clock [= |[& |23

clock module

ticks:

timer handle:
timer id:

=wi priority:
tick period:

0.
2000504C
32.

15.

32.

<

&% B:TASK.MODule.SWI

=R o
clock module

scheduTer state: unlocked
ready q mask: 00000000
current swi: none
current fxn:

< >

©1989-2024 Lauterbach

OS Awareness Manual SYS/BIOS | 16

TASK.SEMaphore Display semaphores

Format: TASK.SEMaphore

Displays the semaphore table of SYS/BIOS.

&b B:TASK SEMaphore =8 =R
magic event eventid mode count [pending state |
20003338 1. counting [4. none A
20003358 |20003290 |2. binary 0. timed out

£ >

“magic” is a unique ID, used by the OS Awareness to identify a specific semaphore (address of the
semaphore’s object’s structure).

The fields “magic”, “event” and “pending” are mouse sensitive, double clicking on them opens appropriate
windows. Right clicking on them will show a local menu.

TASK.SWI Display SWiIs

Format: TASK.SWI

Displays the SWI table of SYS/BIOS.

&b B TASKSWI =8 Eo
magic state prio [init |curr [function |
B002060C [1dle 15. [0. 0. BO00F4CO ti_sysbios_knT_Clock_workFunc_E .
BO0Z7578 idle 15 0. 0. 800054C0 swiOFxn (0x00000000, 0x00000000)

v

“magic” is a unique ID, used by the OS Awareness to identify a specific SWI (address of the SWI object).

The fields “magic” and “function” are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual SYS/BIOS | 17

TASK.SYSMIN Display SysMin buffer

Format: TASK.SYSMEM

Displays the output buffer of the SYS/BIOS SysMem module.
b BaTASK.SYSMIN [s

SysMin output buffer |
enter main()

enter taskFxn()

exit taskFxn()

TASK.TaSK Display tasks

Format: TASK.TaSK

Displays the task table of SYS/BIOS.
o BuTASK.TASK = =R

magic prio_mode function
20005123

0.
1.
2.

ready
running
blocked

00003968 ti1_sysbios_knl_Idle_loop_E ~
00000FBZ taskl
00001004 task2

20000880
W

< >

“magic” is a unique ID, used by the OS Awareness to identify a specific task (address of the task object).

The fields “magic” and “function” are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual SYS/BIOS | 18

SYS/BIOS PRACTICE Functions

There are special definitions for SYS/BIOS specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual SYS/BIOS | 19

	OS Awareness Manual SYS/BIOS
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in SYS/BIOS

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	SYS/BIOS Specific Menu

	SYS/BIOS Commands
	TASK.CLocK Display clocks
	TASK.EVenT Display events
	TASK.HeapMem Display heap memories
	TASK.HWI Display HWIs
	TASK.MailBoX Display mailboxes
	TASK.MODule Display used modules
	TASK.SEMaphore Display semaphores
	TASK.SWI Display SWIs
	TASK.SYSMIN Display SysMin buffer
	TASK.TaSK Display tasks

	SYS/BIOS PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

