
MANUAL

OS Awareness Manual
OSE Epsilon

OS Awareness Manual OSE Epsilon

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual OSE Epsilon .. 1

 History .. 3

 Overview .. 3

 Terminology 3

 Brief Overview of Documents for New Users 4

 Supported Versions 4

 Configuration ... 5

 Quick Configuration Guide 6

 Hooks & Internals in OSE Epsilon 6

 Features ... 7

 Display of Kernel Resources 7

 Task Runtime Statistics 7

 Task State Analysis 8

 Function Runtime Statistics 9

 Task Stack Coverage 10

 OSE Epsilon specific Menu 12

 OSE Epsilon Commands .. 13

 TASK.DProc Display processes 13

 TASK.DQueue Display signal queue 13

 OSE Epsilon PRACTICE Functions ... 15

 TASK.CONFIG() OS Awareness configuration information 15
OS Awareness Manual OSE Epsilon | 2©1989-2024 Lauterbach

OS Awareness Manual OSE Epsilon

Version 06-Jun-2024

History

04-Feb-21 Removing legacy command TASK.TASKState.

Overview

The OS Awareness for OSE Epsilon contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

Terminology

OSE Epsilon uses the term “process”. If not otherwise specified, the TRACE32 term “task” corresponds to
OSE Epsilon process.
OS Awareness Manual OSE Epsilon | 3©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently OSE Epsilon is supported for the following versions:

• OS166 on C167 with small or large memory model.

• OSARM on ARM7.
OS Awareness Manual OSE Epsilon | 4©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “ose<proc>.t32” (directory
“~~/demo/<processor>/kernel/oseepsilon”). It contains all necessary extensions.

Automatic configuration tries to locate the OSE Epsilon internals automatically. For this purpose all symbol
tables must be loaded and accessible at any time the OS Awareness is used.

If you want to have dual port access for the display functions (display “On The Fly”), you have to map
emulation or shadow memory to the address space of all used system tables.

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

Examples:

See also the example “~~/demo/<processor>/kernel/oseepsilon/osee.cmm”

Format: TASK.CONFIG ose<proc>

TASK.CONFIG osearmE ; OSE Epsilon awareness for AR

TASK.CONFIG oseC16x ; OSE Epsilon awareness for C16x
OS Awareness Manual OSE Epsilon | 5©1989-2024 Lauterbach

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for OSE Epsilon with your application, follow the
following roadmap:

1. Copy the files ose<proc>.t32 and osee.men to your project directory
(from TRACE32 directory “~~/demo/<processor>/kernel/oseepsilon”).

2. Start the TRACE32 Debugger.

3. Load your application as normal.

4. Execute the command TASK.CONFIG ose<proc>
(See “Configuration”).

5. Execute the command MENU.ReProgram osee
(See “OSE Epsilon Specific Menu”).

6. Start your application.

Now you can access the OSE Epsilon extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in OSE Epsilon

No hooks are used in the kernel.

For detecting the current running task, the kernel symbol “ZZ_CUR_PCB” is used.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols. Ensure that
access to those symbols is possible every time when features of the OS Awareness are used.
OS Awareness Manual OSE Epsilon | 6©1989-2024 Lauterbach

Features

The OS Awareness for OSE Epsilon supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following OSE
Epsilon components can be displayed:

For a description of the commands, refer to chapter “OSE Epsilon Commands”.

When working with emulation memory or shadow memory, these resources can be displayed “On The Fly”,
i.e. while the target application is running, without any intrusion to the application. If using this dual port
memory feature, be sure that emulation memory is mapped to all places, where OSE Epsilon holds its
tables.

When working only with target memory, the information will only be displayed if the target application is
stopped.

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

TASK.DProc Processes

TASK.DQueue Signal queues

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically
OS Awareness Manual OSE Epsilon | 7©1989-2024 Lauterbach

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Task State Analysis

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:

• All accesses to the status words of all tasks

• Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).
OS Awareness Manual OSE Epsilon | 8©1989-2024 Lauterbach

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

Break.Set Var.RANGE(TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state timechart

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData
OS Awareness Manual OSE Epsilon | 9©1989-2024 Lauterbach

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual OSE Epsilon | 10©1989-2024 Lauterbach

OS Awareness Manual OSE Epsilon | 11©1989-2024 Lauterbach

OSE Epsilon specific Menu

The menu file “osee.men” contains a menu with OSE Epsilon specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called OSE Epsilon.

• The Display menu items launch the kernel resource display windows.

• The Stack Coverage submenu starts and resets the OSE Epsilon specific stack coverage and
provides an easy way to add or remove processes from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

• The Perf menu contains additional submenus for process runtime statistics, process related
function runtime statistics or statistics on process states.
OS Awareness Manual OSE Epsilon | 12©1989-2024 Lauterbach

OSE Epsilon Commands

TASK.DProc Display processes

Displays the process table of OS166 and OSARM.
.

“magic” is a unique ID, used by the OS Awareness to identify a specific process (address of the PCB).

The state column shows the current state of each process.

The in_q column shows the number of current signals in the process queue. The sigwait column shows the
signal on which the process is waiting.

Double-clicking on the magic or on a number of the in_q column opens a separate TASK.DQueue window,
showing a detailed list of the signals in queue of that process

NOTE for OSI166: While running in real time, the state 'running' cannot be detected and is displayed as
'ready'.

TASK.DQueue Display signal queue

Displays the signal queue table of the specified process.
Specify the process by its magic number or by its name.

Double click on the address to get the signal structure displayed.

Format: TASK.DProc

Format: TASK.DQueue <process>
OS Awareness Manual OSE Epsilon | 13©1989-2024 Lauterbach

Signal Structure Display

When double-clicking on the address of a signal inside the TASK.DQueue window, the Debugger tries to
display the signal as “union ALL_SIGNALS” over all signal structures. The perl script sigdb.pl (available in
~~/demo/<processor>/kernel/oseepsilon) generates this union automatically and writes it into a file called
all_sig.c. This C file must be linked into your application. In the directory, where all your signal source files
are located, type: “sigdb.pl *.sig >all_sig.c”. The perl script needs a perl interpreter installed on
your host.
OS Awareness Manual OSE Epsilon | 14©1989-2024 Lauterbach

OSE Epsilon PRACTICE Functions

There are special definitions for OSE Epsilon specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.CONFIG(magic | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).
OS Awareness Manual OSE Epsilon | 15©1989-2024 Lauterbach

	OS Awareness Manual OSE Epsilon
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in OSE Epsilon

	Features
	Display of Kernel Resources
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	Task Stack Coverage
	OSE Epsilon specific Menu

	OSE Epsilon Commands
	TASK.DProc Display processes
	TASK.DQueue Display signal queue

	OSE Epsilon PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

