LAUTERBACH A

OS Awareness Manual
OSE Epsilon

OS Awareness Manual OSE Epsilon

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual OSE EPSIlON ... s s s s sssssssssssas 1

L 1= (o 3

O oY = 3
Terminology 3

Brief Overview of Documents for New Users 4
Supported Versions 4
ConfiguIration ... e 5
Quick Configuration Guide 6
Hooks & Internals in OSE Epsilon 6
== LT == 7
Display of Kernel Resources 7
Task Runtime Statistics 7
Task State Analysis 8
Function Runtime Statistics 9
Task Stack Coverage 10

OSE Epsilon specific Menu 12

L0157 S o<1 o o TN 0o T3 1T .1 F- 1 o £ 13
TASK.DProc Display processes 13
TASK.DQueue Display signal queue 13

OSE Epsilon PRACTICE FUNCHIONScociiiiiceccccccrnnrsns s ss s ssmssms s s s s s s s s e s s s smmmmmssns s nneenns 15
TASK.CONFIG() OS Awareness configuration information 15
©1989-2024 Lauterbach OS Awareness Manual OSE Epsilon | 2

OS Awareness Manual OSE Epsilon

History

Version 06-Jun-2024

04-Feb-

21

Overview

Removing legacy command TASK. TASKState.

/A TRACE32 for OSE Epsilon =N =
File Edit View Var Break Run CPU Misc Trace Pef Cov ARMO OSEEpsilon Window Help
(M AL e pn B 2O NN Ses @2 E
= % (== =]
PCE Process PID type state prio fsem stop Queue curr. PC wanted Signals |
M step | B Over || A Divesge | Retum) & U [5055557 roce 255 BG ready == - 000415C9 ~
l1ine |source 0000010C motor 1 PRI rev 14 noinit 0 0 OD040E3C any signal
. 00000194 control 2 PRI running 17 noinit 0 1 00040C86
05_PROCESS (keyhand) 0000021C test 3 PRI rev 17 noinit 0 0 0O0040E3C 0005
191) L 00000244 display 4 PRI rev 17 noinit 0 0 O00040E3C any signal
union SIGNAL *sig, *sigl; 0000032C keyhand 5 PRI rev 17 noinit 0 0 O0040E3C 0006
00000384 runner & PRI ready 18 10 0 0 000410F0
0000043C bgl 7 BG ready --- noinit 0 O 000404D9
------------------------------ 000004C4 bg2 8 BG ready --- noinit 0 O 00040505
Initialize hardware v
______________________________ s o |[B]=
* Eternal name [Tow high p % [Towest _spare _max [0 10 20 30 40
------------------------------ TOLE [00080800 000B0CO0 % [00030BF8 0000OOFS 3% =
motor (00080000 00080100 15% |000S00DS 000000D8 15%
control (00080100 00080200 (O 18% |00001D0 000000DO0 18%
fnr‘(,, f test (00080200 00080300 18% |000802D0 000000D0 18%
207 receive(sel_key_hit) display (00080300 00080400 15% (D00803D8 000000DE 15% |
208 5191 = alloc(sizeof (str'uct ke keyhand (00080400 00080500 18% |000804D0 000DD0DOD 18%
209 sigl->key.ch = sig->key_hit.ch runner (00080500 00080600 18% |000805CC 000000CC 20%
210 free_buf(&sig); bgl |00080600 000B0D7O0 1% 00000101 0%
12 dtasigL,control_ ba2 |00080700
send(&sigl,contro 3 p.. " o
213 sigl = r-ecewe(sel key 3 G oa BxTASK.DQueue "control E=8 Eon ==
214 free_bufiasigl); J address id sender size content 1
} /* FOR EVER 0000054C 2 keyhand 2 EE CC 5ie5eET% ®
} /* KEYHANDL v
9 <
B:: TASK.|
DProc DQueue | TASKState previous
ST:00040C86 \\motcon\GlobalCHK_ALL+0x20 control stopped HLL UP

The OS Awareness for OSE Epsilon contains special extensions to the TRACE32 Debugger. This manual

describes the additional features, such as additional commands and statistic evaluations.

Terminology

OSE Epsilon uses the term “process”. If not otherwise specified, the TRACES32 term “task” corresponds to

OSE Epsilon process.

©1989-2024 Lauterbach

OS Awareness Manual OSE Epsilon

3

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently OSE Epsilon is supported for the following versions:
J 0S166 on C167 with small or large memory model.

o OSARM on ARM?7.

©1989-2024 Lauterbach OS Awareness Manual OSE Epsilon | 4

Configuration

The TASK.CONFIG command loads an extension definition file called “ose<proc>.t32” (directory
“~~/demo/<processor>/kernel/oseepsilon”). It contains all necessary extensions.

Automatic configuration tries to locate the OSE Epsilon internals automatically. For this purpose all symbol
tables must be loaded and accessible at any time the OS Awareness is used.

If you want to have dual port access for the display functions (display “On The Fly”), you have to map
emulation or shadow memory to the address space of all used system tables.

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

Format: TASK.CONFIG ose<proc>
Examples:
TASK.CONFIG osearmE ; OSE Epsilon awareness for AR

TASK.CONFIG oseCl6x ; OSE Epsilon awareness for Cléx

See also the example “~~/demo/<processor>/kernel/oseepsilon/osee.cmm”

©1989-2024 Lauterbach OS Awareness Manual OSE Epsilon | 5

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for OSE Epsilon with your application, follow the
following roadmap:

1. Copy the files ose<proc>.t32 and osee.men to your project directory
(from TRACE32 directory “~~/demo/<processor>/kernel/oseepsilon”).

2. Start the TRACES32 Debugger.
3. Load your application as normal.

4. Execute the command TASK.CONFIG ose<proc>
(See “Configuration”).

5. Execute the command MENU . ReProgram osee
(See “OSE Epsilon Specific Menu”).

6. Start your application.
Now you can access the OSE Epsilon extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in OSE Epsilon

No hooks are used in the kernel.
For detecting the current running task, the kernel symbol “ZZ_CUR_PCB” is used.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols. Ensure that
access to those symbols is possible every time when features of the OS Awareness are used.

©1989-2024 Lauterbach OS Awareness Manual OSE Epsilon | 6

Features

The OS Awareness for OSE Epsilon supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following OSE
Epsilon components can be displayed:

TASK.DProc Processes
TASK.DQueue Signal queues

For a description of the commands, refer to chapter “OSE Epsilon Commands”.

When working with emulation memory or shadow memory, these resources can be displayed “On The Fly”,
i.e. while the target application is running, without any intrusion to the application. If using this dual port
memory feature, be sure that emulation memory is mapped to all places, where OSE Epsilon holds its
tables.

When working only with target memory, the information will only be displayed if the target application is
stopped.

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

©1989-2024 Lauterbach OS Awareness Manual OSE Epsilon | 7

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

| B:Trace STATistic. TASK = =R
&2 setwp.. | fii Goups...|| B8 Qonfig... | = Detaiked || ¥ Nesting|| il Chart || B Profile
tasks: 7. total: 13.107ms
range [total min max avr count ratio¥ [1% 2% 5% 10% 20% |
control 4.419ms 35.700us 84. 800us 65.958uUs [33.716% A
display | 642.000us 53.500us 53.500us 53.500us 1z. 4, B98% [e—
runner 1.987ms 42.700us 47.600us 45.150us 44, 15.156%
keyhand 3.014ms 53.600us 83.400us 68.500us 44, 22.995%
test 1.868ms 84, 900us 84, 900us 84, 900us 22. 14.250%
motor 1.177ms 53.500us 53.500us 53.500us 22. 8.979%
w
< il B Trace, CHART.TASK = =R
2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full
-10.000ms -9.500ms -9.000ms -8.500ms
range iy |
control [
displayiy
runner {§
keyhand iy
testh)
motor &y
NOTE: This feature is only available, if your debug environment is able to trace task

switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated

statistically or displayed graphically.

This feature requires that the following data accesses are recorded:

o All accesses to the status words of all tasks

o Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

©1989-2024 Lauterbach

OS Awareness Manual OSE Epsilon | 8

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array)
Break.Set TASK.CONFIG (magic)

/Write /TraceData
/Write /TraceData

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic.TASKState
Trace.Chart. TASKState

Display task state statistic

Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.
! B:Trace, CHART. TASKSTATE = =R
B senp.. || 38 @nfig... | 1 Goto... | #3Find... | i Chart || @ In || »0¢ Out||EH Ful
Oms -8.500ms -8.000ms -7.500ms
rangens . | P S | P
control {y) . —_ = - ——— — = .
displayf— = = = —— = = = = o - - - -
e T
keyhand i l——— —-—— -
testh —— ——am ——am
motor § ——m- ——- —
11 £ > £ >

Function Runtime Statistics

NOTE:

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following

command:

7

Break.Set TASK.CONFIG (magic)

Enable flow trace and accesses to the magic location

/TraceData

©1989-2024 Lauterbach

OS Awareness Manual OSE Epsilon |

9

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

=% B:Trace. CHART. TASKFUNC EI@

2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full
-12.200ms -12.000ms -11.800ms -11.600ms -11.400ms -11.200ms
range Ry | | | | 1 1 i

ZZ_ARM_SWAP_IN+0x38] :] ’) ’
(root) o —— — . —— —
ZZ_ARM_SWAP_IN+0x38 BH
(root)
ZZ_ARM_SWAP_IN+0x38 e))) . . .) . .)
(root) H —-— - . - - - —
feedback HH . . . n I
ZZ_ARM_SWAP_IN+0x38 BH

(root)
ZZ_ARM_SWAP_TN+0x38 : j i i i j i i i
(root) t - — - - - —
ZZ_ARM_SWAP_TIN+0x38 BH i j i i i i i j i i i i
(root) t - - —_-— - - - - b - - - e

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual OSE Epsilon | 10

&b BTASK.STacK

name
IDLE
motor
control
test
display
keyhand
runner
bgl

bg2

J

Tow

0O0B0B00
000E0000
00080100
00080200
00080300
00080400
00080500
00080600
00080700

<

high

sp

lowest spare

L1[=]
|
L=/
[
L=]
i
L=]
ey
[=]

00080C00
00080100
00080200
00080300
00080400
00080500
00080600
00080700
00080800

O0080BFC
00080008
00080100
00080200
00080308
00080400
00080500
000806FC
000807FC

[VELTS
00080008
00080100
00080200
00080308
00080400
000805CC

000000FE
00000008
00000000
00000000
00000008
00000000
000000CC
00000101
00000101

©1989-2024 Lauterbach

OS Awareness Manual OSE Epsilon

11

OSE Epsilon specific Menu

The menu file “osee.men” contains a menu with OSE Epsilon specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called OSE Epsilon.

/A TRACE32 for OSE Epsilon — O e
File Edit View Var Break Run CPU Misc Trace Perf Cov ARMS OSEEpsilon Window Help
(M % A+ | v || 28| Gh| S 8|6y & Display Processes
Display Queue
=1 [BuList keyhand] EI@
HOZ Stack Coverage L4
Pl Sep| B Ok AgDax | ¢ an| @ Up | B Go | I1 S 122 Mok 6] B
Tine |source |
05_PROCESS (keyhand) .
191 |{
union SIGNAL *sig, *sigl;
Initialize hardware.
__ W
1< >
B: :|TASK.
DProc DQueue | | TASKState pravious
[ST00040085 || mictconGlobal| 0 ML+0¢0 |control stopped HLL |UP
. The Display menu items launch the kernel resource display windows.
J The Stack Coverage submenu starts and resets the OSE Epsilon specific stack coverage and

provides an easy way to add or remove processes from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

J The Perf menu contains additional submenus for process runtime statistics, process related
function runtime statistics or statistics on process states.

©1989-2024 Lauterbach OS Awareness Manual OSE Epsilon | 12

OSE Epsilon Commands

TASK.DProc Display processes

Format: TASK.DProc

Displays the process table of 0S166 and OSARM.

o B:TASK.DProc = =R
PCB Process PID type state prio fsem stop Queue curr. PC wanted Signals’
00000084 IDLE 255 BG ready --- --————- -——- -—- 000415C9 A
0000010C motor 1 PRI rev 14 noinit 0 0 00040E3C any signal
00000194 control 2 PRI running 17 noinit o 1 00040C86
0000021C test 3 PRI rov 17 noinit o o 00040E3C 0005
000002A4 display 4 PRI rev 17 noinit 0 0 00040E3C any signal
0000032C keyhand 5 PRI rov 17 noinit o o 00040E3C 0006
000003B4 runner & PRI ready 18 10 o o 000410F0
0000043C bgl 7 BG ready --- noinit 0 0 000404D9
000004C4 bg2 8 BG ready --- noinit o o 00040505

v

“magic” is a unique ID, used by the OS Awareness to identify a specific process (address of the PCB).
The state column shows the current state of each process.

The in_q column shows the number of current signals in the process queue. The sigwait column shows the
signal on which the process is waiting.

Double-clicking on the magic or on a number of the in_q column opens a separate TASK.DQueue window,
showing a detailed list of the signals in queue of that process

NOTE for OSI166: While running in real time, the state 'running’' cannot be detected and is displayed as
'ready'.

TASK.DQueue Display signal queue

Format: TASK.DQueue <process>

Displays the signal queue table of the specified process.
Specify the process by its magic number or by its name.

&% B:TASK.DQueue "control” EI@
address 1d sender s1ze content |
D000054C 7 keyhand 4 EE CC EL5REETS, A

v
£ >

Double click on the address to get the signal structure displayed.

©1989-2024 Lauterbach OS Awareness Manual OSE Epsilon | 13

Signal Structure Display

When double-clicking on the address of a signal inside the TASK.DQueue window, the Debugger tries to
display the signal as “union ALL_SIGNALS” over all signal structures. The perl script sigdb.pl (available in
~~/demo/<processor>/kernel/oseepsilon) generates this union automatically and writes it into a file called
all_sig.c. This C file must be linked into your application. In the directory, where all your signal source files
are located, type: “sigdb.pl *.sig >all_sig.c”. The perl script needs a perl interpreter installed on
your host.

©1989-2024 Lauterbach OS Awareness Manual OSE Epsilon | 14

OSE Epsilon PRACTICE Functions

There are special definitions for OSE Epsilon specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual OSE Epsilon | 15

	OS Awareness Manual OSE Epsilon
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in OSE Epsilon

	Features
	Display of Kernel Resources
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	Task Stack Coverage
	OSE Epsilon specific Menu

	OSE Epsilon Commands
	TASK.DProc Display processes
	TASK.DQueue Display signal queue

	OSE Epsilon PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

