LAUTERBACH A

OS Awareness Manual
MTOS-UX

OS Awareness Manual MTOS-UX

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns r—
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual MTOS-UXccciiiirrmrrrssscerresssssmerrssssmesssssssmmessesssmmsssssssnmsssesssanmssseas 1
L 1= (o 4

O oY = 4
Brief Overview of Documents for New Users 4
Supported Versions 5
L0704} T 11T = Lo o 6
Manual Configuration 6
Automatic Configuration 7
Hooks & Internals of MTOS-UX 7
== LT == 8
SYSC Terminal Emulation 8
Display of Kernel Resources 9
Task Stack Coverage 9
Task Runtime Statistics 10
Task State Analysis 10
Function Runtime Statistics 11
MTOS-UX specific Menu 12
MTOS-UX COMMANMAS cooiiiiiuiiriiiissemrrisssssmsssisssssssssssssssss s ssssssmssssesssamss s essssmsesssasssmmsssnssssmmnnnnas 13
TASK.DispEvent Display global event flags 13
TASK.DispFixed Display fixed pools 13
TASK.DispmBuff Display message buffers 14
TASK.DispMbx Display mailboxes 14
TASK.DispPool Display common pools 15
TASK.DispSem Display semaphores 16
TASK.DispsVar Display shared variables 16
TASK.DispTask Display tasks 17
TASK.DispTIme Display time & TOD 18
TASK.DispUnit Display peripheral units 18
TASK.MAP Mapping suggestion 18
MTOS-UX PRACTICE FUNCLIONSceiiiiiieirrinisemnnssssssss s s s sssms s s ssmms s sssssmms s s sssssmmnnnnas 19
TASK.CONFIG() OS Awareness configuration information 19
©1989-2024 Lauterbach OS Awareness Manual MTOS-UX 2

©1989-2024 Lauterbach OS Awareness Manual MTOS-UX | 3

OS Awareness Manual MTOS-UX

Version 06-Jun-2024

History

04-Feb-21 Removed legacy command TASK.TASKState.

Overview

The OS Awareness for MTOS-UX contains special extensions to the TRACE32 Debugger. This chapter
describes the additional features, such as additional commands and statistic evaluations.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

. “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach OS Awareness Manual MTOS-UX | 4

Supported Versions

Currently MTOS-UX is supported for the version MTOS-UX/68k V 3.6 on the Freescale Semiconductor
68332/376.

©1989-2024 Lauterbach OS Awareness Manual MTOS-UX | 5

Configuration

Manual Configuration

TASK.CONFIG mtos <magic_address> <args>

Format:

Specifies a memory location that contains the current running task. This

<magic_address>
address can be found at the label “L.CLBAS”.

The configuration requires one additional argument that specifies an MTOS-

<args>
UX internal table. Give the label “GBLBAS”.

This command configures the OS Awareness for MTOS-UX with manual setup.

The TASK.CONFIG command loads an extension definition file called “mtos.t32” (directory
“~~/demo/m68k/kernel/mtosux”). It contains all necessary extensions.

; manual configuration for MTOS-UX support
TASK.CONFIG mtos LCLBAS GBLBAS

If you want to have dual port access for the display functions (display ’On The Fly’), you have to map
emulation memory to the address space of all used system tables. See also TASK.MAP.

See also the example “~~/demo/m68k/kernel/mtosux/mtos.cmm”

6

©1989-2024 Lauterbach OS Awareness Manual MTOS-UX

Automatic Configuration

Format: TASK.CONFIG mtos

This command configures the OS Awareness for MTOS-UX with automatic setup.

The TASK.CONFIG command loads an extension definition file called “mtos.t32” (directory
“~~/demo/m68k/kernel/mtosux”). It contains all necessary extensions.

This configuration tries to locate the MTOS-UX internals automatically. For this purpose the symbols
'‘LCLBAS’ and 'GBLBAS’ must be loaded and accessible at any time, the OS Awareness is used.

Each TASK.CONFIG argument can be substituted by ’0’, which means, that this argument will be searched
and configured automatically. For a full automatic configuration omit all arguments to the command:

; full automatic configuration for MTOS-UX support
TASK.CONFIG mtos

If a system symbol is not available, or if another address should be used for a specific system variable, then
the corresponding argument must be set manually with the appropriate address.

If you want to have dual port access for the display functions (display ’On The Fly’), you have to map
emulation memory to the address space of all used system tables. See also TASK.MAP.

See also the example “~~/demo/m68k/kernel/mtosux/mtos.cmm”

Hooks & Internals of MTOS-UX

The local ram data table (LCL) is used for determination of the current running task. The global ram data
table (GBL) and its referenced tables are used for detecting all MTS-UX system resources.

©1989-2024 Lauterbach OS Awareness Manual MTOS-UX | 7

Features

The OS Awareness for MTOS_UX supports the following features.

SYSC Terminal Emulation

The Terminal Emulation window can be used to communicate with the target system console, called ’'SYSC'.

The communication is done via two memory cells, requiring no external hardware interface. See the TERM
command for a description of the terminal emulation.

On request LAUTERBACH can provide you with the source code for the target interface routine.

The example (“~~/demo/m68k/kernel/mtosux/mtos.cmm”) contains this interface and the terminal emulation
for output messages. The example also contains the MTOS-UX dynamic debugger, which uses the system

console, too. Invoke the MTOS-UX dynamic debugger by pressing CTRL-D inside the system console
window.

©1989-2024 Lauterbach OS Awareness Manual MTOS-UX | 8

Display of Kernel Resources

The extension defines new PRACTICE commands to display various kernel resources. The following
information can be displayed:

tasks (DispTask)
time & TOD (DispTIme)
global event flag groups (DispEvent)
common memory pools (DispPool)
fixed block memory pools (DispFixed)
message buffers (DispmBuff)
mailboxes (DispMbx)
semaphores (DispSem)
controlled shared variables (DispsVar)
physical I/O units (DispUnit)

For a detailed description of each command refer to the chapter “MTOS-UX PRACTICE Commands”.

When working with emulation memory or shadow memory, these resources can be displayed “On The Fly”,
i.e. while the target application is running, without any intrusion to the application. If using this dual port
memory feature, be sure that emulation memory is mapped to all places, where MTOS-UX holds its tables.

When working only with target memory, the information will only be displayed, if the target application is
stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual MTOS-UX | 9

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spentin
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.
Task State Analysis
NOTE: This feature is only available, if your debug environment is able to trace task

switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

©1989-2024 Lauterbach OS Awareness Manual MTOS-UX | 10

This feature requires that the following data accesses are recorded:
J All accesses to the status words of all tasks

J Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart. TASKState Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

©1989-2024 Lauterbach OS Awareness Manual MTOS-UX | 11

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

MTOS-UX specific Menu

The menu file “mtos.men” contains a menu with MTOS-UX specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called MTOS-UX.

. The item “SYSC Terminal” brigs up a terminal emulation window, which communicates with the
preconfigured MTOS-UX system console. The “Break to .SYSD” item initiates a <CTRL-D> key
to the system console and thus starts the MTOS-UX dynamic debugger.

o The “Display” Topics launch the kernel resource display windows.

J The “Stack Coverage” submenu starts and resets the MTOS-UX specific stack coverage, and
provides an easy way to add or remove tasks from the stack coverage window.

. The Analyzer->List pull-down menu is changed. You can additionally choose for an analyzer list
window showing only task switches (if any) or task switches and defaults.

o The “Perf” menu contains the additional submenus for task runtime statistics, task related
function runtime statistics and statistics on task states. For the function runtime statistics, a
prepare command file called “men_ptfp.cmm” is used. This command file must be adapted to
your application.

©1989-2024 Lauterbach OS Awareness Manual MTOS-UX | 12

MTOS-UX Commands

TASK.DispEvent

Display global event flags

Format:

TASK.DispEvent

Displays a table with all created global event flag groups.

Lo 8)

waiting

none ~
none

none

&% B:TASK DispEvent

magic key |value
31D7E EFG3 0001
37AFA EFGL (0000
3781A EFGM |FOOO

v

TASK.DispFixed

Display fixed pools

Format:

TASK.DispFixed

Displays a table with all created fixed block memory pools.

&% B:TASK DispFixed

(o] 8)

mag c key [Tirst [last [pid [first avail

0043A9F4

38846 |FMP2 [0043A9F (0043AE (0.
0. GOECBOEC

37D7E FMP1 |0000010 |00000A

Ll

v

©1989-2024 Lauterbach

OS Awareness Manual MTOS-UX | 13

TASK.DispmBuff

Display message buffers

Format: TASK.DispmBuff

&b B:TASK.DispmBuff [E=N =R
magic key |max num__ pid pool waiting |
3AADA [MSBZ [77. 0. globa [.GTA [none ~
3AB0A [MSB1 |77. 16. globa |.GTA |none

v

TASK.DispMbx

Displays a table with all created message buffers.

Display mailboxes

Format: TASK.DispMbx

Displays a table with all created mailboxes

&% B:TASK DispMbx

(o8)

num-s num-r

act-s act-r opn-s opn-r
0. 1 no ves
ves ves
ves ves

1.
1.

1.
1.

Ll

©1989-2024 Lauterbach

OS Awareness Manual MTOS-UX | 14

TASK.DispPool Display common pools

Format: TASK.DispPool

Displays a table with all created common memory pools.

% B:TASK DispPool = =R
magic key address numblk blkTen pid |
376AA .GTA 00435900 127. 00000100 O. ~

v

©1989-2024 Lauterbach OS Awareness Manual MTOS-UX | 15

TASK.DispSem

Display semaphores

Format:

TASK.DispSem

Displays a table with all created semaphores.

&% B:TASK DispSem

(o] 8)

magic key |used by

requests |
0.

37B1A |SFOZ [O.
377BE SFOL |0.

-
3 |

v

TASK.DispsVar

Display shared variables

Format:

TASK.DispsVar

Displays a table with all created controlled shared variables

&b BiTASK DispsVar (o] 8)
mag c key [Tength reswvd |waiting |
3AplE C5V3 (00000050

3A518
3A418

C5v2
C5V1

00000032
00000064

none
none

none ‘ ~

©1989-2024 Lauterbach

OS Awareness Manual MTOS-UX | 16

TASK.DispTask Display tasks

Format: TASK.DispTask [<task>]

<task>: <magic_number> | <task_key>

Displays a table with all MTOS-UX tasks or one task in detail.

Without any parameters, a summary table of all created tasks is shown.

&% B:TASK DispTask [rolE-]

magic key entry pc pri__ status |
004365EA INIT 00419186 O0041FBBZ 200. wait-pio
004364DE .SYE O00416EAD 00416EAD 0. dormant
00436302 .SYD 00415086 00415086 0. dormant

v
< >

The magic number is a unique ID to the OS Awareness to specify a specific task. It is equal to the MTOS-UX
task ID. A double click on the magic number or on the key opens the detailed task window. A double click on
the entry address or on the pc address opens a Data.List window on this address.

If you specify a task magic number or a task key as parameter, this task is shown in detailed. An given task
magic number is not checked for validation.

o8 B:TASK DispTask "INIT" EI@

magic key entry pc pri__ status |
004365EA INIT 00419186 O0041FES2 200. wait-pio

key = 494E4954 dnh pri = 200. Tlang = 1.

lef = 0000 cop = 0000 flg = 0000=.....0cvuvucnnnn

attr = global, durable, absolute, application

cseg = 00000000 dseg = O0OOODOO wuseg = Q0ODOOOO stak = 00439200
clen = 00000000 dlen = 00000000 wuwlen = 00000000 slen = OOOOLOOO
D0 = 004362C6 D1 = 00000000 D2 = 00000000 D3 = 00000000

04 = 004362C6 D5 = 00000000 D6 = 00000065 DF = 00000065

AD = 0043AZ200 Al = 004365EA AZ = 00000000 A3 = 00000000

A4 = 00000000 AS = 00000000 A6 = 00000000 A7 = 0043A140

©1989-2024 Lauterbach OS Awareness Manual MTOS-UX | 17

TASK.DispTime Display time & TOD

Format: TASK.DispTIme

Displays a window with the milliseconds since MTOS-UX start and with the time-of-day string, reported by
MTOS-UX.

&% B:TASK DispTime =8 E=R =
milliseconds time-of-day
000000000000 140MOVL19930158:13:48

TASK.DispUnit Display peripheral units

Format: TASK.DispUnit

Displays a table with all created peripheral I/O units.
&% B:TASK DispUnit =N SR

magic key status reswvd avail regs uns SVC
£

|
362C6 SYSC Dusy 0. 1. INIT O041E514 svcent A
v

>

TASK.MAP Mapping suggestion

Format: TASK.MAP

Display a mapping suggestion to have dual port access.

To display the MTOS-UX resources in real-time (“On-The-Fly”), emulation memory must be mapped to the
MTOS-UX internal tables. If you do not know, where these tables are located (magics!), this command gives
you a suggestion, which memory areas to map.

While leaving the window open, and creating more objects, the memory usage will be accumulated to the
addresses used while running.

Itis recommended to map more memory than suggested, this increases the chance, that new created object
will be in the mapped memory area.

©1989-2024 Lauterbach OS Awareness Manual MTOS-UX | 18

MTOS-UX PRACTICE Functions

There are special definitions for MTOS-UX specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual MTOS-UX | 19

	OS Awareness Manual MTOS-UX
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Manual Configuration
	Automatic Configuration
	Hooks & Internals of MTOS-UX

	Features
	SYSC Terminal Emulation
	Display of Kernel Resources
	Task Stack Coverage
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	MTOS-UX specific Menu

	MTOS-UX Commands
	TASK.DispEvent Display global event flags
	TASK.DispFixed Display fixed pools
	TASK.DispmBuff Display message buffers
	TASK.DispMbx Display mailboxes
	TASK.DispPool Display common pools
	TASK.DispSem Display semaphores
	TASK.DispsVar Display shared variables
	TASK.DispTask Display tasks
	TASK.DispTIme Display time & TOD
	TASK.DispUnit Display peripheral units
	TASK.MAP Mapping suggestion

	MTOS-UX PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

