LAUTERBACH A

PRACTICE Script Language
User's Guide

PRACTICE Script Language User’s Guide

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
PRACTICE Script LANQUAQJEcccceceriiiismmrriisssmmsssisssmsssssssssmsssssssssmssssssssmssssssssnmssssssssnmssssssssmnmssnnas r—~
PRACTICE Script Language User's GUILeccciiiimmiismminimmnnsssinss s s s sssssssssasssssas 1

L 1= (o 3
Why Use PRACTICE SCIHPES ...cccccciriiiimriiniemsr s ssssssms s sssssssss s s sssms s s sssssmss s sssssssss s snsssmmens 3
Related DOCUMENTSccccceeerriiiemrrrriisssssrrnssssss s s s s s sss s e s s s e s s s e e amm e nee s mm e e e ammnnnnas 3
PRACTICE ScCript STFUCTUIEcoiiiiieiiiiiieiisiiisesss s s s ssss s s sms s ssmms s sssssmmnnnnas 4
Function 4
Difference between Variables and PRACTICE Macros 4
PRACTICE Script Elements 5
Script Flow 6
Conditional Script Flow 7
Script Nesting 7
Block Structures 8
PRACTICE Macros 9
Switching PRACTICE Macro Expansion ON or OFF 11
Parameter Passing 12

Input and Output 13

T L=T 0 o T =T o 1o T 14
Automatic Start-Up SCrPtS ... e e 15
Logging the Call Hierarchy of PRACTICE ScCriptSccccccmiiemmnssnminsmnses s sssessssessnsesens 17
Debugging PRACTICE SCIPtS ...ccccccerrmisssmmrmmisssssmmnsssssssssssssssssssssssss s sssssssssssssssssnsssasssssnas 19

/1 o o =T g T |G - N 21
How to Run Demo Scripts Copied from the PDF Manuals 21
Demo Scripts in the TRACE32 Demo Folder 24
©1989-2024 Lauterbach PRACTICE Script Language User's Guide | 2

PRACTICE Script Language User’s Guide

Version 06-Jun-2024

History

02-Nov-2022 In the chapter ‘Related Documents' a reference to ide_user.pdf has been added.

Why Use PRACTICE Scripts

Using PRACTICE scripts (*.cmm) in TRACES32 will help you to:

Execute commands right on start of the debugger

Customize the TRACE32 PowerView user interface to your project requirements

Set up the debugger with settings for the target board

Standardize repetitive and complex actions

Initialize the target (e.g. the memory to load an application)

Load the application and / or the symbols

Add your own and extend available features

Speed up debugging through automation

Share the debugger methods with other users and empower them to work more efficiently

Make debug actions reproducible for verification purposes and regression tests

Related Documents

“PowerView User’s Guide” (ide_user.pdf): In the chapter Operands and Operators you will find
everything that you need to know about operands and operators.

“Training Script Language PRACTICE?” (training_practice.pdf): Describes how to run and create
PRACTICE script files (*.cmm).

“PRACTICE Script Language Reference Guide” (practice_ref.pdf)

PRACTICE Reference Card (support.lauterbach.com/downloads/files/practice-reference-card-
pdf-2)

Video Tutorials (support.lauterbach.com/kb/articles/practice-tutorial)

©1989-2024 Lauterbach PRACTICE Script Language User's Guide | 3

https://support.lauterbach.com/downloads/files/practice-reference-card-pdf-2
https://support.lauterbach.com/kb/articles/practice-tutorial

PRACTICE Script Structure

Function

PRACTICE is a line-oriented test language which can be used to solve all usual problems of digital
measurement engineering. PRACTICE-Il is an enhanced version of this test language, first developed in
1984 for in-circuit emulators.

The test language allows interactive script development with the possibility of a quick error removal and an
immediate script execution. The execution of PRACTICE testing scripts can be stopped and restarted at any
time.

PRACTICE contains an extremely powerful concept for handling script variables and command parameters.

This macro concept allows to substitute parameters at any point within the commands. Since PRACTICE
variables can only occur as PRACTICE macros, conflicts between target program names are ruled out.

Difference between Variables and PRACTICE Macros

PRACTICE macros are based on a simple text replacement mechanism similar to C preprocessor macros.
However, in contrast to C preprocessor macros, a PRACTICE macro can change its contents during it’s life
time by simply assigning a new value.

Each time the PRACTICE interpreter encounters a macro it is replaced with the corresponding character
sequence. Only after performing all text replacements the resulting line is interpreted (just like the C compiler
only works on the fully preprocessed text).

PRACTICE macros are declared using the commands PRIVATE or LOCAL or GLOBAL.

The visibility of PRACTICE macros differs notably from other script languages (unless declared using the
PRIVATE command): they are accessible from all subsequently executed code while they are alive e.qg. in:

. Subroutines (GOSUB ... RETURN)
. Sub-scripts (DO ... ENDDO)
. Sub-blocks (IF ..., RePeaT, WHILE, etc.)

NOTE: PRACTICE does not know the concept of variables with a corresponding type
like uint32 or uint8 in C.

©1989-2024 Lauterbach PRACTICE Script Language User's Guide | 4

PRACTICE Script Elements

PRACTICE scripts consist of labels, commands, and comments:

;example -
/ /example -
start: N
Step -
GOTO start R

B: :Data.dump N

Labels

comment starting with ;

comment starting with 7/

label

command

command and label

command to change the default device
command preceded by a device selector

Labels always start in the first column and are always followed by a colon. Labels are case sensitive.

Comments

Comments are prefaced by a semicolon

; or two forward slashes / /.

Inline comments for Var.* commands must start with two forward slashes //.

Var.set func7(1.5,2.5) //execute a function in the target

Line Continuation Character

To continue a string on the next line, a backslash \ is used to indicate a line continuation in a
PRACTICE script (*.cmm). No white space permitted after the backslash. If the line continuation character
is used at the end of a comment line, then the next line is interpreted as a comment line as well.

DIALOG.OK "Please switch ON the TRACE32 debugger first"+\
" and then switch ON the target board."

©1989-2024 Lauterbach

PRACTICE Script Language User’s Guide

5

Script Flow

Several commands allow to control the script flow. Scripts may be divided in several modules. Subroutines
within a module are called by the GOSUB command, another module is called by the DO command.

STOP Stop temporarily

END Terminate script and clear stack
CONTinue Continue with script execution

DO Call script module

ENDDO Terminate script module

RUN Clear PRACTICE stack and call module
GOSsuB Call subroutine

RETURN Return from subroutine

GOTO Branch within module

JUMPTO Branch to other module

©1989-2024 Lauterbach PRACTICE Script Language User's Guide | 6

Conditional Script Flow

Conditional script execution is made by several commands:

IF
ELSE
WHILE
RePeaT
ON
GLOBALON
WAIT
IF OS.FILE (data.tst)
PRINT "File exists"
ELSE
PRINT "File doesn't exist"

WHILE Register (pc)==0x1000

Step
RePeaT 100. Step
RePeaT 0. Step

ON ERROR GOTO errorexit

Conditional block execution

Block that is only compiled when the IF condition is
false

Conditional script loop

Repetitive script loop

Event-controlled PRACTICE script execution
Global event-controlled PRACTICE script execution

Wait for event or delay time

; step until pc = 1000H

; step 100 times

; step endless

For detailed information on logical operations refer to chapter “Operators” in “PowerView User’s Guide”

(ide_user.pdf).

Script Nesting

PRACTICE scripts can be nested hierarchically. A second script may be called as a subroutine from the
initial script. This subroutine on its part may call up a third script as a subroutine. This allows a structured,

modular script development.

; Script containing two script calls

PRINT "Start"
DO modull
DO modul2

ENDDO

; Execute script module 1

; Execute script module 2

; the file extension (*.cmm)
; omitted

can be

©1989-2024 Lauterbach

PRACTICE Script Language User’s Guide |

7

Block Structures

Several PRACTICE commands can be combined to form a block. A block is a collection of commands,
which are always executed simultaneously. Blocks usually require IF, WHILE, or RePeaT statements. They
can, however, be implemented anywhere in order to mark connective blocks. Blocks are marked by round

parentheses.

You can jump out of a block, but not into a block.

; Block nesting

start:
IF &abc
(
PRINT "Function 1"
DO funcl
)
ELSE
(
PRINT "Function 2"
DO func?2
IF &xyz GOTO start
)
ENDDO

;jump out of the block to the label

‘start’

©1989-2024 Lauterbach

PRACTICE Script Language User’s Guide

8

PRACTICE Macros

PRACTICE macros are character sequences with a maximum size of 4KB. The character sequence is
interpreted in the context where it is used. For a command, a PRACTICE macro can be interpreted e.g. as a
number, boolean expression, parameter, or simply as a string. PRACTICE macros can be expanded to
complete commands, too.

PRACTICE macros are generated by an allocation. PRACTICE macros found in a script file line are
replaced by the text they contain (except special commands, e.g. ENTRY). The macros can be put into
parentheses, if necessary. The double ampersand form ('&&’) of the assignment forces a recursive macro
resolution if the resolved value still contains macro names. Macros may be defined and modified inside the
interactive command line.

Macro names in PRACTICE always start with an ampersand sign (‘&’), followed by a sequence of letters (a-
z, A-Z), numbers (0-9), and the underscore sign (’_’). The first character after the & sign must not be a
number. Macro names are case sensitive, so &a is different from &A.

Macro expansion does NOT take place inside the TRACE32 command line!

e.g. PRINT ¯oname or

Data.List &my_startaddress

Macro expansion only works in PRACTICE scripts (*.cmm):

normal: &<macroname>=<expression>

recursive: &&<macroname>=<expression>

&int=1

&int=&int+1 ; increment current value of &int

&text="This is a test"
&command="Data.dump Register (PC)"
&float=1.4el3
&range="0x1000--0x1fff"
&address=func5
&addressrange=P:0x1234..0x5555
&boolean=SYStem.Up ()

PRINT &int

PRINT "&int" ; after replacement: 0x2
PRINT "& (int)nd" ; after replacement: "2nd"
ENDDO

©1989-2024 Lauterbach PRACTICE Script Language User's Guide | 9

PRACTICE macros can be declared as GLOBAL or LOCAL or PRIVATE macros.

LOCAL Declare local macros

GLOBAL Declare global macros

PRIVATE Declare private macros
GLOBAL Macros

PRACTICE macros declared with GLOBAL are accessible at every script level and have an unlimited life-
time.

LOCAL Macros

PRACTICE macros declared with LOCAL are visible in all subsequently executed code within their life-time
(unless hidden by later macro declarations). In particular they are visible in:

Yes Subroutines (GOSUB ...RETURN)
Yes Sub-scripts (DO...ENDDO)
Yes Sub-blocks (IF..., RePeaT, WHILE, etc.)

PRIVATE Macros

PRACTICE macros declared with PRIVATE exist inside the declaring block and are erased when the block
ends. They are only visible in:

Yes The declaring block and all sub-blocks (e.g. IF..., RePeaT..., WHILE..., etc.)
No Subroutines (GOSUB...RETURN)
No Sub-scripts (DO...ENDDO)

NOTE: If a value is assigned to a macro which does not yet exist on the PRACTICE stack
or is an inaccessible PRIVATE macro, then the macro is implicitly created as a
LOCAL macro.

©1989-2024 Lauterbach PRACTICE Script Language User's Guide | 10

Switching PRACTICE Macro Expansion ON or OFF

You can switch the PRACTICE macro expansion ON or OFF in the following embedded script blocks:

. DIALOG.view blocks embedded in PRACTICE script files (*.cmm), as shown in the example

below.

. MENU.ReProgram blocks embedded in PRACTICE script files (*.cmm)

J PRACTICE script block embedded in dialog files (*.dIg)

J PRACTICE script block embedded in menu files (*.men)

An embedded block is delimited by opening round brackets “(”, “(&”, “(&+” or “(&-" and closed by closing
round brackets “)”.

ON Use (& or (&+ as opening block delimiter to switch ON macro expansion for this
block and its sub-blocks.
OFF Use (&- as opening block delimiter to switch OFF macro expansion for this block

and its sub-blocks.

Switching macro expansion ON is useful, for example, if you want to make a button text configurable.

Example: To try, simply copy this script to a test . cmm, and then run it in TRACE32 (See “How to...”).

LOCAL &btn

&btn="BUTTON ""Macro is expanded when script is loaded"" \
nn PRINT mmonuon It Works! mmwuwonmnn

DIALOG.view

(&+

STOP

;macro expansion of the macro &btn needs to be

;switched on in this DIALOG.view block, which is embedded in
;a PRACTICE script

POS 0. 0. 35. 1.

BUTTON "Hardcoded button text"

;in this sub-block, macro expansion is switched off
&btn="No expansion here"
PRINT "&btn"

©1989-2024 Lauterbach PRACTICE Script Language User's Guide | 11

Parameter Passing

Parameters can be passed to a subroutine with a parameter list. The parameters are assigned to local
PRACTICE macros, using the ENTRY command within the subroutine.

Subroutines can also be called up interactively by parameters. Arguments can be passed by the commands
DO, ENDDO, RUN, GOSUB, RETURN. They can also be the result of calling a command extension or
invoking the driver program on the host with arguments.

White spaces before or after operators inside expressions are interpreted as separators of
consecutive parameters.

I ENTRY Parameter passing

SYStem.Up
GOSUB myTEST 0x0--0xfff
ENDDO

;by calling the subroutine myTEST, a memory test of the address range
;0x0--0xfff can be executed

myTEST :
ENTRY &range
Data.Test &range
RETURN

©1989-2024 Lauterbach PRACTICE Script Language User’'s Guide | 12

Input and Output

Several input and output commands allow interaction with the user. Input is normally done through an AREA
window. All print operations are displayed on the TRACE32 message line. The AREA window A000 is
displayed by default. Inputs and outputs can be re-routed to another AREA window.

PRINT
BEEP
ENTER
INKEY

PRINT "The PC address is
BEEP
INKEY

INKEY &char

IF &char=='A'
GOSUB func_a

IF &char=='B'
GOSUB func_b

AREA.Create IO-Area
AREA.Select IO-Area
AREA.view IO-Area

PRINT "Set the PC value"
ENTER &pc

Register.Set pc &pc
WINClear TOP

AREA.RESet
ENDDO

Print to screen
Stimulate sound generator
Window based input

Character input

Register (pc) ; print message
; end acoustic signal
; wait for keystroke

; wait for keystroke

; create a window named
; I0-Area

; select this window for
; PRACTICE I/O

; open this window

; print text
; get value
; set register PC

; delete I/0 window
; reset AREA system

The screen update may be controlled by the SCREEN commands.

SCREEN.display
SCREEN.ALways
SCREEN.ON
SCREEN.OFF
SCREEN.WAIT

Update screen now

Update screen after every command line
Update screen on print commands

Don’t update screen as long as script is running

Halt PRACTICE script execution until the data to be
displayed in a window has been processed.

©1989-2024 Lauterbach

PRACTICE Script Language User’'s Guide | 13

File Operations

Test data can be written to and read from files. Files must be opened first before accessing them.

OPEN
CLOSE
READ
WRITE
APPEND

Open file

Close file

Read data from file
Write data to file

Append data to file

Example 1: A new file called test.dat is created, and register information is written to the newly created file.

The result is then displayed in a TYPE window.

OPEN #1 test.dat /Create
WRITE #1 "PC: " Register (pc)
WRITE #1 "SP: " Register(sp)
CLOSE #1

TYPE test.dat

ENDDO

B:TYPE test.dat

(=[O el

& (=) Fimia)

1. of 2.

Track

PC: 2260
SP: OFE4

Example 2: The test.dat file is opened for reading. Two lines are read from this file and stored in two

PRACTICE macros, which are then printed to the TRACE32 message line.

OPEN #1 test.dat /Read

READ #1 SLINE &pc ;line 1 of file
READ #1 %LINE &sp ;line 2 of file
CLOSE #1

PRINT "&pc " "&sp"

ENDDO

B::
PC: 2260 SP: OFE4

emulate trigzer | davicas | | trace | | Data | |

SR:00002260 ‘\\armle\arm\sieve+0x38

©1989-2024 Lauterbach

PRACTICE Script Language User’s Guide

14

Automatic Start-up Scripts

When the TRACES2 software is installed, the script autostart.cmm is copied to the TRACE32 system
directory. The autostart.cmm is always automatically executed after TRACE32 has booted. It provides
various convenience features defined by Lauterbach.

It is recommended not to change the autostart.cmm, because every software update from Lauterbach will
restore the file autostart.cmm to its default content.

The autostart.cmm calls the following scripts if they exist:

~~[system-settings.cmm, where ~~ represents the TRACES32 system directory.

It is recommended to add here extra TRACES32 settings that should be available to all users of a
TRACERS2 installation. Typical extra settings are menu/toolbar extensions or user-defined
dialogs.

UAD/user-settings.cmm, where UAD represents the user-specific application data directory. The
TRACES2 function VERSION.ENVironment(UAD) returns the path of this directory.

Users can add all their preferred extra TRACES32 settings to the user-settings.cmm script.
Typical extra settings are all settings of the SETUP command group and personal menu/toolbar
extensions.

Jwork-settings.cmm, where the leading “.” represents the working directory from where
TRACERS2 was started.

NOTE: If you don’t use the command line option -s <startup_script> and don’t have the

file autostart.cmm either, TRACE32 will fall back to a legacy mode and execute
the script t32.cmm from the working directory or from the TRACE32 system
directory if the t32.cmm does not exist in the working directory.

What to Know about all Other Start-up Scripts

If you have a script that sets up your debug environment and if this script should be executed automatically
after autostart.cmm is done, you can specify this script as parameter for the TRACES32 executable.

c:\t32\t32arm.exe -s g:\and\arm\start_up.cmm

It is possible to pass parameters directly to the start-up script.

c:\t32\t32arm.exe -s g:\and\arm\start_up.cmm paraml param2 param3

Parameters can be read by the start-up script as described in “Parameter Passing”, page 12.

©1989-2024 Lauterbach PRACTICE Script Language User's Guide | 15

The command line option --t32-safestart suppresses the execution of the autostart.cmm and of any other
start-up script.

©1989-2024 Lauterbach PRACTICE Script Language User's Guide | 16

Logging the Call Hierarchy of PRACTICE Scripts

The call hierarchy of PRACTICE scripts (*.cmm) can be logged automatically or manually. In either case, the
log mechanism is based on the LOG.DO command.

During start-up of TRACES32, the PRACTICE script calls are always logged automatically. The log file
contents are output to an autostart log file in the temporary directory of TRACE32. On every start-up of
TRACE32, the previous autostart log file is overwritten and a new one is generated. The current autostart
log is accessible via the File menu in TRACES32.

In addition, you can manually log PRACTICE script calls at any time after TRACES32 has started. When you
initiate the log, you can choose folder and file name. To display the log file, use the TYPE or the EDIT
command on the TRACE32 command line.

To enable logging, use one of the following options:

o autostart.cmm: On start-up of TRACE32, the autostart.cmm is called automatically, and the
LOG.DO command in the autostart.cmm generates the autostart log file.

. --t32-logautostart: This command line option starts LOG.DO internally to generate an autostart
log file.

- This option is only needed (a) if you do not have the autostart.cmm or (b) if the script block
with the LOG.DO command has been deleted from the autostart.cmm.

- For a description of the command line options and an example for -t32-logautostart, refer to
“Command Line Arguments for Starting TRACE32” in TRACES2 Installation Guide, page
54 (installation.pdf).

Tip: To explicitly disable all PRACTICE script calls on start-up, use --t32-safestart.

J TRACE32 command line: Use the LOG.DO <file> command to generate your log file.

To access the autostart log file in TRACE32:
1. Start TRACE32 via T32Start.
The autostart.cmm generates the autostart log file automatically.

2. Choose File menu > Automatic Scripts on Start > View Autostart log.

The file opens in the TYPE window. The screenshot shows an example of an autostart log file:

(2] =
B:TYPE c:\temp\t32_1000383_t32marm64_00_autostart.log /LineNumbers | B =n| Wl <
of 9. =[] [#End | Track B

// L0G.DO, Started via C:%\T32%autostart.cmm?® TRACE32 for ARME4, GUI ID: T32_1000383, Date: -
oo () // (added by autostart.cmm)
DO C:\T32\autostart.cmm // (added by autostart.cmm)
AutoSTOre C:M\TEMP\T32_1000383store.cmm
0o C:\T32\s¥stem—sett'ings.cmm // from line 152.
D0 C:\Users'jsmith\AppData'Roaming\TRACE32\user-settings. cmm // from line 154.
D0 C:\T32\project_ci\work-settings.cmm // from line 156.
D0 C:\T32\project_ch\sieve.cmm /7 from line 2.
ENDDO -

] 1 2

(=l R N R SRRl e e

A The file name convention of the autostart log is described below.

B The log file header tells you how the autostart log was generated.

©1989-2024 Lauterbach PRACTICE Script Language User's Guide | 17

File name convention of the autostart log file: ~~~/<id>_t32m<arch>_<xx>_autostart.log

~ Path prefix of the temporary directory of TRACE32. See also
0S.PresentTemporaryDirectory().

<id> ID of the PowerView GUI that was started. See also OS.ID().

t32m<arch> Name of the PowerView executable (without file extension), e.g.
“t32marm”

<xXX> The instance number of the PowerView executable.

©1989-2024 Lauterbach PRACTICE Script Language User's Guide | 18

Debugging PRACTICE Scripts

TRACE32 supports extensive debugging features for PRACTICE scripts. The PEDIT command allows you
to create and edit PRACTICE scripts. Two basic windows show the script, the internal stack, and the

PRACTICE macros.
PEDIT Edit PRACTICE scripts
PLIST List PRACTICE script
PMACRDO.list

List PRACTICE script nesting and PRACTICE macros

In a PLIST window, you can set an unlimited number of program breakpoints to debug your PRACTICE
scripts. Double-clicking an entire line sets a breakpoint; double-clicking the same line again removes the
breakpoint. That is, you can toggle breakpoints by double-clicking a line.

Alternatively, right-click a line, and then select Toggle breakpoint from the popup menu.

PRACTICE breakpoints are listed
in the PBREAK.List window.

& eopusn (= =)
[MEstep || MEover || @ up |[£9 Continue || {IEStop || i Endde][& skip |[:GiMacros|| [Edit || 21 Breakpoints |
Enabled B
/ // start debugger
) 41|5Y5tem. Up
Disabled 'l.: 1// set endianism according to the selection
n // (data set command for 9207 and 940T only)
ASIIF (&sel&((0x1)))==0x0 .
2? 5Y5t Opti BigEndi ON Practice
em. ion 1 ndian -
[18 Data. 5et C15:2 %Long OxF8 = GoTill
D 439) 3 Set PC Here
(gg %LSE
[52 S¥Stem.Option BigEndian OFF B Breakpoint..
53 Data.5et C15:2 %lLong Ox78 v Toggle breakpoint == i
A I Enable breakpoint -
‘B: : Edit Here
[comfments] [el | Data J[wvar J[st |[PERF |[Svstem |[Step J[Go | [Break | [s¥mbol |
file: () T32\demo\a |n\compiler\arm\arm@.cmm | line: 45
Line numbers Double-clicking a line toggles a

Script nesting breakpoint (set/delete).

Enabled breakpoints are flagged with a small [l bar, disabled breakpoints are flagged with a small gray bar

in the PLIST window.
PBREAK.Set Set breakpoints in PRACTICE scripts
PBREAK.Delete Delete breakpoints
PBREAK List Display breakpoint list
PBREAK.ENable Enable breakpoint
PBREAK.DISable Disable breakpoint

©1989-2024 Lauterbach

PRACTICE Script Language User’'s Guide |

19

The PMACRYO.list window shows the script nesting, the local and global PRACTICE macros and the ON

and GLOBALON definitions:

Q4 B:PMACRO. list

(=[O el

(i Enddo || #End |[“PReset || FEFList || BfEdic || 21 Breakpoints |

|b'|0c|-< from Tine 43 to 49

-

while at Tline 42

&tmp = 500.

gosub C:“t32\test.cmm from Tine 25

Local macro

do C:ht32\test.cmm

Local macros &val2 = Ox2F

Double-click to modify the parameter.

} &vall = Ox1F

Global macros —|E§§§§l -
f@Session5Start = 13:17:48

]

N CMD TICONS DO C:\T32‘demo'menu'internal_icons.cmm -

Double-clicking a PRACTICE macro (e.g. &vall) inserts it into the TRACE32 command line, where you can

modify the parameter of the PRACTICE macro.

Scripts can be executed step by step with the PSTEP command. The Stop button in the TRACE32 main
toolbar stops any running PRACTICE script.

I PSTEP <script>

PBREAK.Set 4.
DO test.cmm
PSTEP

PSTEP

test.cmm

Start script to be debugged in single step mode

; set breakpoint
; run till line 4

; single step

©1989-2024 Lauterbach

PRACTICE Script Language User’s Guide

20

Appendix A

In this appendix:

. Here are a few suggestions how to run demo scripts you have copied from the pdf manuals:
- Create PRACTICE script on the fly [more].
- Create a permanent toolbar button for a test . cmm [more].
- Run a copied script as an embedded script [more].

. Run a demo script from the TRACE32 ~~\demo folder [more].

How to Run Demo Scripts Copied from the PDF Manuals

The pdf manuals provide a few read-to-run demo scripts (in addition to the PRACTICE script
segments). One way to try these demo scripts is to create a test . cmm in the PEDIT window, copy and
paste the demo script into the *.cmm file, and then execute it.

For how-to information, see step-by-step procedure below.

Create a PRACTICE Script on the Fly

1. At the TRACE32 command line, type:

PEDIT ~~~/test.cmm

The PRACTICE script editor PEDIT opens, displaying the test . cmm. The path prefix ~~~ expands
to the temporary directory of TRACE32.

Paste the demo script that you have copied from a manual into the test . cmm.
Append ENDDO at the end of the demo script (if ENDDO is missing from the demo script).
Click Save.

o > 0D

To step through line by line, click Debug in the PEDIT window,
and then Step in the PLIST window.

o

To execute the PRACTICE script file, click Do in the PEDIT window.
7. Optionally, click Macro to view the PRACTICE stack frame.

©1989-2024 Lauterbach PRACTICE Script Language User's Guide | 21

Create a Permanent Toolbar Button for mytest.cmm

1. Add the following to c: \t32\system-settings.cmm (create the file if it does not yet exist):

MENU .AddTool

2. Restart TRACE32.

"My test" "TS,R" "PEDIT ~~~/mytest.cmm"

3. Click the new toolbar button to open the PRACTICE script editor.

Window Help
@z &[S

—l

BuPEDIT ~~~\mytest.cmm =0 ESH =

(& setup... || 2 save |FFsave As..|[7 quit |[#3Find...|(<?)[][1T)[¥ Do [M Debug |

; Paste the demo script you have copied from the PDF manual here

ENDDO

©1989-2024 Lauterbach

PRACTICE Script Language User’s Guide

22

Run a Demo Script as an Embedded Script

To reproduce the following step-by-step procedure, we suggest that you copy this demo script:

;set a test pattern to the virtual memory of TRACE32
Data.Set VM:0--0x4f %Byte 1 0 0 O

Data.dump VM:0x0 ;open the Data.dump window
;visualize the contents of the TRACE32 virtual memory as a graph
Data.DRAWFFT %$Decimal.Byte VM:0++0x4f 2.0 512.

To run a demo script as an embedded script:

1.
2.
3.

Copy the demo script from the pdf manual.

At the TRACE32 command line, type PLIST to open a PLIST window.

Click Enddo until the PLIST window displays no script loaded.

@W/WW/////////////////////////////////////
[) Over| € Uy 2> ot 1 st [s | § s

no script Toaded

Click Step. The PLIST window displays single step.
[B e
F over] @ Up)22 Gonine 21 top i@ v [4§ Skip

“ =ingle step

Paste the demo script into the TRACE32 command line.

Result:

ZEF BPLIST o -E =]
(29 step| (9 Over][& p J(20" Gontine [I¥ Stop | W Enco 5§ Skip] (10X Mo B it | ;Baeakmums J

zet a test pattern to the wirtual memory of TRACE3Z
z Dafa Set WM:0--0x4f %Byte 1 0 0 O
3 Data dump VM:0x0 ;open the Data.dump v 1nd0
vizualize the content of the TRACE32 wirtual memory as a graph
5 Data DRAWFFT %Decimal.Byte WM: 0++0x4f 2.0 512.

Do one of the following:
- Click Continue to run the embedded script.

- Click Step to step through line by line.

©1989-2024 Lauterbach

PRACTICE Script Language User’s Guide

23

Demo Scripts in the TRACE32 Demo Folder

Using the Search for scripts window in TRACE32, you can search for PRACTICE demo scripts (*.cmm) in
your local TRACE32 demo folder as well as for the newest scripts on the Lauterbach website.

The Search for scripts window displays a brief description for each script you have selected. The
descriptions are extracted from the metadata in the script header. Double-clicking a script lets you preview
the source code of a script before running it.

To search for demo scripts in your local TRACE32 demo folder:

1. Choose File menu > Search for Script to open the window of the same name,
or at the TRACE32 command line type: WELCOME.SCRIPTS
2. Under Example search, enter what you are looking for, e.g. a chip or board name.
The wildcard (*) is supported.
3. Optionally, set the filter to Chip or Board.
4. Click Search.
The demo scripts meeting the search criteria are listed at the bottom of the window.
f“] Search for scripts... EI@
Search Selection Manuals
Example search: OMAP44* Linux
arm*t IEI 11 demo files found.
Fitter
@ None Chip Board
Search for newest scripts at http://www.lauterbach.com/scripts.html
== Config | | B Tree view @
T1t'|e Ch'lp Board |
o Tor TRACESZ RT0S De =r on the AR ARMOZ0 n
Examp'le Script File for ARI‘-'I Delve'lopm;ntjﬁoar‘d mth ARI'-'IQ40T F"ld Header‘ ARI'-'IQ40T HEI-D011E
GNU C Example for SRAM ARMS20T ARM96G6E-5 EPXAl1 EPXAL0Q
FDX Communication Demo for ARM wia DCC ARM322T Excalibur
Linux Demo for TRACE32 RTOS Debugger on the ARM Integrator Board ARMIZ0T integrator =
Linux Demo for TRACE32 RTOS Debugger on the ARM Integrator Board ARMIZ0T integrator
RTX-ARM Demo for TRACE32 RTOS Debugger ARMIZ0T -
SMX Demo for TRACE3Z RTOS Debugger ARM9Z2T -
VxWorks Demo Tor TRACE32 RTOS Debugger on Cogent Willow ARM720T Cogent-willow
Example Script File for Altera Excalibur ARM322T EPXA1 EPXAL0D EPXAL1/EPXALD Exca ™
4 m 3

A Click the hyperlink to continue your search at www.lauterbach.com/scripts.htmi.

B PRACTICE script templates are highlighted in gray, ready-to-run scripts are highlighted in
blue.

C Allows you to add your own search paths to the demo script search.

D Clicking the column header changes the sort order.

©1989-2024 Lauterbach PRACTICE Script Language User's Guide |

24

http://www.lauterbach.com/scripts.html

To preview and run a demo script:

1. Click a script to automatically switch to the Selection tab, where you can view a brief description
of the selected script [A].
f“] Search for scripts... EI@
Search Selection Manuals
File: integrator_linux.cmm Title: Linux Demo for TRACE32 RTOS Debugger on the ARM Integrator Board
chip: ARM920T This batchfile demonstrates the use of the RTOS Debugger for Linux
) A The example is generated for an ARM Integrator board using an ICD.
Board: integrator It will NOT run on any other board, but may be used as a template
N for others.

Related Documentation: Linux is downloaded to the board via ICD.

ik Config | [& Tree view
Title Chip Board |
ONX Demo Tor TRACESZ RI105 Debugger on the ARM3Z0T Integrator Board ARM9Z0T ARMIZO0T L
Example Script File for ARM Development Board with ARM340T Pid Header |[ARM340T HEI-D011E
GNU C Example for SRAM ARMS20T ARM96G6E-5 EPXAl1 EPXAL0Q L
FDX Commum cati on Demo 'For‘ ARI‘-'I via DCC ARM322T Excalibur E

or et c 1020

Linux Demo or TRACESZ RTOS Deugger‘ on the ARM Integrator Boar‘ ARMS20T integrator B
RTX-ARM Demo for TRACE32 RTOS Debugger ARMIZ0T -
SMX Demo for TRACE3Z RTOS Debugger ARM922T % Edit - -
1 n [Ii Open folder L 4

2.

33 Mew Search

To view the source code of a script in the PSTEP window, double-click the script

or right-click, and then click View/Start from the popup menu.

3.

To run the script, click Continue in the PSTEP window.

Popup Menu - Option

Description

View/Start

Opens the script in the PSTEP window.

Edit

Opens the script in the PEDIT window.

Open Folder

Opens the file explorer and selects the script file.

New Search

Switches to the Search tab, where you can start a new search.

Tree view

Displays an file-explorer-like tree view of the folders and demo scripts.

©1989-2024 Lauterbach

PRACTICE Script Language User’s Guide |

25

	PRACTICE Script Language User’s Guide
	History
	Why Use PRACTICE Scripts
	Related Documents
	PRACTICE Script Structure
	Function
	Difference between Variables and PRACTICE Macros
	PRACTICE Script Elements
	Script Flow
	Conditional Script Flow
	Script Nesting
	Block Structures
	PRACTICE Macros
	Switching PRACTICE Macro Expansion ON or OFF
	Parameter Passing
	Input and Output

	File Operations
	Automatic Start-up Scripts
	Logging the Call Hierarchy of PRACTICE Scripts
	Debugging PRACTICE Scripts
	Appendix A
	How to Run Demo Scripts Copied from the PDF Manuals
	Demo Scripts in the TRACE32 Demo Folder

