LAUTERBACH A

PRACTICE Script Language
Reference Guide



PRACTICE Script Language Reference Guide

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES  ....cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
PRACTICE Script LANQUAQJE ....cccceceriiiismmrriisssmmsssisssmsssssssssmsssssssssmssssssssmssssssssnmssssssssnmssssssssmnmssnnas r—~
PRACTICE Script Language Reference GUIide ..........ccccoiiiimmnisminsmnnssinesssssess s sssssssssses 1
L 1= (o 5
Related DOCUMENLS ........oooiiiiiiiiiieemee s s e e mmmnnn e e e e e s 6
£ T I 7
APPEND Append to file 7
BEEP Acoustic signal 7
CLOSE Close file 8
CONTinue Continue PRACTICE script 8
DECRYPT Decrypts a text or binary file 9
DO Start PRACTICE script 10
DODECRYPT Execute encrypted PRACTICE script (*.cmm) 11
T 12
ECHO Write text and data to an AREA window (with format decoration) 12
ELSE Conditional script execution 14
ENCRYPT Encrypt a text or binary file 15
ENCRYPTDO Encrypt a PRACTICE script (*.cmm) 16
ENCRYPTPER Encrypt a PER file (*.per) 17
END Terminate PRACTICE scripts, etc. 18
ENDDO Return from a PRACTICE script 19
ENTER Window-based input 20
ENTRY Parameter passing 22
R o 23
GLOBAL Create global PRACTICE macro 23
GLOBALON Global event-controlled PRACTICE script execution 24
GOSuB Subroutine call 30
GOTO Local script jump 32
T 33
IF Conditional script execution 33
INKEY Character input 34
JUMPTO Global script jump 34
LOCAL Create local PRACTICE macro 35
©1989-2024 Lauterbach PRACTICE Script Language Reference Guide 2



T © P 37
ON Event-controlled PRACTICE script execution 37
OPEN Open data file 42
............................................................................................................................................... 43
PARAMETERS Parameter fetching 43
PBREAK Breakpoints in PRACTICE script files (*.cmm) 44
PBREAK.Delete Delete breakpoint 44
PBREAK.DISable Disable breakpoint 44
PBREAK.ENable Enable breakpoint 45
PBREAK.List Display breakpoint list 46
PBREAK.OFF TRACES32 disables breakpoint handling 47
PBREAK.ON TRACES32 re-enables breakpoint handling 48
PBREAK.RESet Clear all breakpoints 48
PBREAK.Set Add breakpoint 49
PEDIT Edit PRACTICE script 52
PLIST List PRACTICE script 55
PMACRO PRACTICE macros 56
PMACRO.EXPLICIT Enforce explicit PRACTICE macro declaration 56
PMACRO.IMPLICIT Implicit PRACTICE macro declaration 58
PMACRO.IMPLICITPRIVATE Hide implicit macros 59
PMACROUO.list Display PRACTICE macros 60
PMACRO.LOCK Lock PRACTICE macros 60
PMACRO.RESet Clear current PRACTICE macros 61
PMACRO.UNLOCK Unlock PRACTICE macros 62
PRINT Write text and data to an AREA window (without format decoration) 63
PRINTF Write formatted data to an AREA window 67
PRIVATE Create private PRACTICE macro 75
PSKIP Skip command or block in PRACTICE script 77
PSTEP Execute single line 78
PSTEPOUT Back to caller 79
PSTEPOVER Step over callee and stop at the next script line 80
N SR 81
READ Read from data file 81
RePeaT Loop with check at end of loop 82
RETURN Return from subroutine 84
RETURNVALUES Take return values 85
RUN Start PRACTICE script 86
N 87
SCREEN Screen updating 87
SCREEN.ALways Refresh always 87
SCREEN.display Refresh screen 88
SCREEN.OFF No refresh 88
©1989-2024 Lauterbach PRACTICE Script Language Reference Guide 3



SCREEN.ON Refresh when printing 88

SCREEN.WAIT Update screen while waiting 89
SPRINTF Write formatted data to a PRACTICE macro 91
STOP Interrupt PRACTICE script 92
SUBROUTINE Define a subroutine 93
W s Z e e e eeereesseneeeeessmeeeeeesssneeeeesssmeeeeessameeeeesssneeeessesneeressssseeeeessesneeeesseannes 94
WAIT Wait until a condition is true or a period has elapsed 94
WHILE Loop with check at start of loop 96
WRITE Write to data file 97
WRITEB Write binary data to file 98

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 4



PRACTICE Script Language Reference Guide

Version 06-Jun-2024

History

02-Nov-22 In the chapter ‘Related Documents* a reference to ide_user.pdf has been added.

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 5



Related Documents

J “PowerView User’s Guide” (ide_user.pdf): In the chapter Operands and Operators you will find
everything that you need to know about operands and operators.

For information about how to pass parameters, PRACTICE macros, etc., refer to:

J “PRACTICE Script Language User’s Guide” (practice_user.pdf)

For information about literals, operands, operators, and operator precedence, refer to:

. “PowerView User’s Guide” (ide_user.pdf). Alternatively, choose Help menu > Index, and then
enter the search item.

For information about functions, refer to:
. “PowerView Function Reference” (ide_func.pdf)

J “General Function Reference” (general_func.pdf)

For information about the purpose of functions in TRACE32, how to use functions, and the difference
between functions and commands, refer to:

J “General Function Reference” (general_func.pdf)

;To retrieve the same information via the TRACE32 command line:
HELP.Index "scripting"

HELP.Index "literals"

HELP.Index "parameter types"

HELP.Index "operands"

HELP.Index "operators"

HELP.Index "operator precedence"

HELP.Index "functions"

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 6



A..D

APPEND Append to file

Format: APPEND <file> <parameter_list>

Appends data to a file. The file is created if it does not exist.
The syntax of the command is similar to the PRINT command.
Example:

APPEND datafile.dat "Test"
See also

W CLOSE B MKTEMP H OPEN B WRITE

A ’Release Information’ in’Legacy Release History’

BEEP Acoustic signal

Format: BEEP

Generates an acoustic signal on the host computer.

See also
B SETUP.SOUND

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 7




CLOSE Close file

Format: CLOSE #<buffer_number>

Closes an input or output file.

Example:
OPEN #1 ~~~/test.dat /Write ; open file for writing
WRITE #1 "Test data" ; write data to file
CLOSE #1 ; close file
TYPE ~~~/test.dat ; optional: open file in TYPE window

The path prefix ~~~ expands to the temporary directory of TRACE32.

See also
B APPEND W OPEN B READ B WRITE
W WRITEB B Data WRITESTRING B VarWRITE
CONTinue Continue PRACTICE script
Format: CONTinue [[<line>] [<file>]]

A PRACTICE script which has been stopped will be restarted at the current PRACTICE command.
PRACTICE scripts will be stopped by the STOP command or by a breakpoint within the script.

The CONTinue command can also be used to resume a script that has been halted due to an error
condition. The wrong command may be replaced by an interactive command.

<line> Line number. Go till </ine> in the active PRACTICE script (*.cmm).

, <file> Line number is omitted. Path and file name of PRACTICE script.
Go till first executable line in the PRACTICE script <file>.

<line> <file> Go till <line> in the PRACTICE script <file>.

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 8



Example 1:

DO test.cmm ; start script

- ; script stopped at breakpoint
CONTinue ; continue

Example 2:
STOP ; stop script by STOP command
CONTinue ; continue
See also
B END B PBREAK B STOP
DECRYPT Decrypts a text or binary file
Format: DECRYPT <keystring> <encrypted_file> [<decrypted_file>)

Uses the original key string to decrypt a text or binary file previously encrypted with the ENCRYPT
command. The resulting file can get a new name or replace the old file.

See also
B ENCRYPT

A ’Encrypt/Execute Encrypted Files’ in ’'PowerView User’'s Guide’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 9



DO Start PRACTICE script

Format: DO <file> [<parameter_list>]

Starts a PRACTICE script (*.cmm). The DO command can be used on the command level to start a
PRACTICE script or within a script to run another file like a subroutine. PRACTICE files started by a DO
command should be terminated by the ENDDO command. Additional parameters may be defined which are
passed to the subroutine. The subroutine reads the parameter list using the ENTRY command.

Using the DO command even those settings saved by the STOre command can be retrieved.

<file> The default extension for <file> is *.cmm. The default extension can be
changed with the command SETUP.EXTension PRACTICE.

Examples:

; store window setting to the PRACTICE file 'test.cmm'
STOre test.cmm Win

; set up window setting by executing the script 'test.cmm'
DO test.cmm

; Endless loop with subroutine call
&count=1
WHILE TRUE ()
(
DO mem_test
PRINT "MEMTEST " &count
&count=&count+1

)

ENDDO
ChDir.DO c:\sample\x.cmm ; change to c:\sample and execute the
; file x.cmm
See also
B DODECRYPT H ChDir W END B ENDDO
H ENTRY H GLOBALON B GOSUB B JUMPTO
H ON B PSTEP B RePeaT H RUN
B STOre

A ’Release Information’ in’Legacy Release History’
A ’Introduction to Script Language PRACTICE’ in "Training Script Language PRACTICE’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 10



DODECRYPT Execute encrypted PRACTICE script (*.cmm)

Format: DODECRYPT <keystring> <encrypted_file> [<parameter_list>]

Executes a PRACTICE script (*.cmm) that was encrypted with same key string by the command
ENCRYPTDO. The key string is necessary for execution. The PRACTICE script file stays encrypted.

See also
H DO
A ’Encrypt/Execute Encrypted Files’ in ’PowerView User’s Guide’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 11



E..F

ECHO Write text and data to an AREA window (with format decoration)
[Examples]
Format: ECHO [{%<attribute>}] [{{%<format>} <data>}]
<attribute>: AREA <area_name>
CONTinue
HOME
<format>: <type>
COLOR.<color>
ERROR
WARNING
<type>: Ascii | BINary | Decimal | Hex | String
<color>: NORMAL | BLACK | MAROON | GREEN | OLIVE | NAVY | PURPLE
TEAL | SILVER | GREY | RED | LIME | YELLOW | BLUE | FUCHSIA
AQUA | WHITE

Writes the given arguments to the default AREA A000 or the selected AREA window. When writing to the
default AREA A000, the written data is also shown in the TRACES32 message line.

What is the difference between the commands ...?

ECHO

PRINT

of the data.

Writes all data decorated to indicate the format Writes all data without any format decoration

(e.g. without the prefix “0Ox” for hexadecimal
numbers).

For a comparison of the different outputs, see examples.

<attribute>,
<format>, etc.

For descriptions of the command arguments, see PRINT.

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide |

12



Examples

The following table shows the output in a message area for the same data written with ECHO and PRINT:

<data> AREA output with AREA output with
ECHO PRINT

0x042 0x42 42
%Hex 66. 0x42 42
28. 23. 23
%Decimal 0x17 23. 23
Oy110011 0y00110011 110011
%BINary 0x33 0y00110011 00110011
X' X X
%Ascii 0x58 ‘X' X
5==5 TRUE () TRUE
5==3 FALSE () FALSE
“text" text text
P:0x001000 P:0x1000 P:0x1000
500ms 0.5000000000s 0.5000000000s
DATE.MakeUnixTime(1990.,10.,3,0,0,0) 654912000. 654912000
Var.VALUE(23 * 47) 0x439 439

See also

B PRINT B PRINTF B SPRINTF

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide |

13



ELSE Conditional script execution

Format: ELSE [IF <condition>]

The command or script block following an ELSE statement will be executed, if the condition in the previous
IF statement is false.

Examples:

IF Register (PC)==ADDRESS.OFFSET (main)
PRINT "PC on start position"
ELSE
PRINT "PC not on start position"

IF Register (PC)==ADDRESS.OFFSET (main)

PRINT "PC on start position"
STOP

ELSE IF Register (PC)==ADDRESS.OFFSET (end)

PRINT "PC on end position"
STOP

ELSE
PRINT "PC neither on start nor on end position"

Register.Set PC main
STOP

See also
HmIF

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 14




ENCRYPT Encrypt a text or binary file

Format: ENCRYPT <keystring> <source_file> [<encrypted._file>]

Encrypts the contents of a text or binary file using the specified key string. If no file name for the encrypted
file is specified, the original file will be replaced by the encrypted file. The resulting file can be decrypted with
the command DECRYPT, together with the original key string.

NOTE: Do not encrypt PRACTICE scripts (*.cmm) or PER (*.per) files with ENCRYPT.
. For encrypting PRACTICE scripts use ENCRYPTDO.
. For encrypting PER files use ENCRYPTPER.

Example:

;let's write to a newly-created file and display the file [A]

OPEN #1 ~~~\original.txt /CREATE

WRITE #1 "Hello World - it is " DATE.TIME ()
CLOSE #1

TYPE ~~~\original.txt

;let's encrypt and display the file [B]
ENCRYPT "123456789" ~~~\original.txt ~~~\encrypted.txt
TYPE ~~~\encrypted. txt

;let's now decrypt and display the file [C]

DECRYPT "123456789" ~~~\encrypted.txt ~~~\decrypted.txt
TYPE ~~~\decrypted. txt
BiTYPE  ~~-~\original.bet A EI@
1. of 1. (=] 1Z] [T Track
HeTTo World - 1t 1s 17:42:19 P

B:TYPE  ~~~\encrypted.bd B EI@
1. of 1. = | = [ Track

itrace32 encrypted file
5

5" ZRa-FC 0 (In"0K —2;F (D10

BuTYPE  ~~-~\decrypted.bdt C EI@
1 of 1. = |1 = [T Track

HeTTo WorTd - it is 17:42:19

See also

B ENCRYPTDO B ENCRYPTPER B DECRYPT
A ’Encrypt/Execute Encrypted Files’ in ’PowerView User’'s Guide’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 15



ENCRYPTDO Encrypt a PRACTICE script (*.cmm)

Format: ENCRYPTDO <keystring> <source_file> [<encrypted._file>]

Encrypts a PRACTICE script using the specified key string. If no file name for the encrypted file is specified,
the original file will be replaced by the encrypted file.

The encrypted PRACTICE script can be executed with the command DODECRYPT using the original key
string. Decrypting the PRACTICE script or viewing its original file contents in plain text is not possible.

Use ENCRYPTDO to generate PRACTICE scripts which can be executed by the end user, without the
possibility to read or modify the script.

NOTE: Do not use ENCRYPTDO on already encrypted scripts!

Example:

;encrypt a PRACTICE script file in the system directory of TRACE32
ENCRYPTDO "987654321™" ~~~/secret.cmm ~~~/secret_encrypted.cmm

;execute the encrypted PRACTICE script file

DODECRYPT "987654321" ~~~/secret_encrypted.cmm
See also
B ENCRYPT B ENCRYPTPER

A ’Encrypt/Execute Encrypted Files’ in ’PowerView User’'s Guide’
A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 16



ENCRYPTPER Encrypt a PER file (*.per)

Format: ENCRYPTPER <keystring> <source_file> [<encrypted_file>]

Encrypts a PER definition file using the specified key string. If no file name for the encrypted file is specified,

the original PER file will be replaced by the encrypted PER file.

The encrypted PER file can be executed and viewed with the command PER.viewDECRYPT using the
original key string. Decrypting the PER file or viewing its original file contents in plain text is not possible.

Use ENCRYPTPER to generate PER files which can be executed by the end user, without the possibility to

read or modify the original PER file contents.

NOTE: Do not use ENCRYPTPER on already encrypted PER files!

Example:

;encrypt a PER file residing in the system directory of TRACE32
ENCRYPTPER "123456789" ~~\pera940t.per ~~\pera940t_encrypted.per

;execute the encrypted PER file, expand the section "ID Registers"

PER.viewDECRYPT "123456789" ~~\pera940t_encrypted.per "ID Registers"
See also
B ENCRYPT B ENCRYPTDO B PER.viewDECRYPT

A ’Encrypt/Execute Encrypted Files’ in ’PowerView User’'s Guide’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide

17



END Terminate PRACTICE scripts, etc.

Format: END

Executes the actions listed below and is typically used in a PRACTICE script file (*.cmm). Interactive usage
at the TRACE32 command line is needed to clear the PRACTICE stack after a stack overrun has occurred.

Actions executed by the END command:
. Terminates all PRACTICE scripts.
. Affects the PRACTICE stack, which can be viewed with PMACRO.list, as follows:

- The local PRACTICE stack is cleared, e.g. command extensions, error exits, LOCAL and
PRIVATE PRACTICE macros.

- The global PRACTICE stack is retained. That is, GLOBAL PRACTICE macros and
GLOBALON events remain on the stack, unless PMACRO.RESet is executed.

. Closes all custom dialogs.
J Closes all files opened with the OPEN command.
Example:
END
See also
W ENDDO B CONTinue B DIALOG W DO
B PMACRO.list B PMACRO.RESet B STOP B GLOBALON

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 18



ENDDO Return from a PRACTICE script

Format: ENDDO [<return_value_list>]

Ends a PRACTICE script. Execution is continued in the calling script. If no calling script file exists, the
PRACTICE script execution will be stopped.

It is recommended to end all PRACTICE script files (*.cmm) with ENDDO to remove them from the
PRACTICE stack.

Examples:

; Sub-module memory test
Data.Test 0x0--0x0fff
Data.Test 0x8000--0x0ffff
ENDDO

PRACTICE scripts can pass return values to the caller:

; script test_status.cmm

ENDDO TRUE () ; return TRUE as result
; ENDDO FALSE () ; return FALSE as result

; script enddo_param.cmm

DO test_status ;execute test_status.cmm
ENTRY &result ;read result
IF &result ;react on result
DIALOG.OK "Test passed"
ELSE
DIALOG.OK "Test failed"
ENDDO
NOTE: TRUE() and FALSE() are PRACTICE functions returning the corresponding
boolean values.
See also
H END H DO H RUN W STOP

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide |

19



ENTER

Window-based input

Format: ENTER <parlist1> | <parlist2> | <parlist3>
<parlist1>: [%LINE] <macro>

<parlist2>: {<macro>}

<parlist3>: {<macro>} %LINE <macro>

Lets you pass arguments via a special PRACTICE 1/0O window to PRACTICE macros (see the AREA
command group). Arguments are separated by blanks.

<parlist1> With the %LINE option, the entire line is read into the PRACTICE macro.

<parlist2> The number of arguments passed via the PRACTICE I/O window must
match the number of PRACTICE macros. Otherwise, an error occurs.

<parlist3> With the %LINE option, surplus arguments are assigned to the last
PRACTICE macro as one line.

Example 1: <parlist1> - without %LINE

AREA.Create IO
AREA.Select IO

AREA.view IO

PRINT "Coordinate

PRINT "x="
ENTER &x
PRINT "y="
ENTER &y

PRINT "x=" &x "

SCREEN.WAIT 1.s

WinCLEAR TOP
AREA.RESet

;create an AREA window

;select the AREA window as PRACTICE input/output window

;display the AREA window
(x y)» " ;print input request

;wait for first user input

;wait for second user input

v=" &y ;print x value and y value

;wait 1 second, and then
;close the AREA window
;reset the AREA window system

= | B:AREAview IO

oordinate (x y)7
N=78

=99
x=78 =99

4 m

(=[O el

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide | 20




Example 2: <parlist1> - with %LINE

LOCAL

&name

AREA.Select A000

AREA.view A000

PRINT
PRINT
ENTER

PRINT

"What's your lst and 2nd name? "

$LINE &name

"Hello &name!"

;declare PRACTICE macro
;let's use the default AREA
;A000 in this example

;open AREA window

;print input request
;print an empty line
;wait for user input

B:AREAview A0 [ o= | & |[=23)

B:AREAview A0 [ o= | & |[=23)

= | B:AREAview ADDD [ o= | @[]

what's your 1lst and 2Znd name?

4

John Smith

-~

what's your 1st and 2Znd name?

L what "= your 1st and Znd name? L
John Smith
v Hello John Smith! v

2 4 2

Example 3: <parlist2> - with Multiple PRACTICE Macros

LOCAL &a &b &c &d ;declare 4 PRACTICE macros
AREA.view ;open AREA window
PRINT "Enter 4 arguments separated by blanks: "
myLabel: ENTER &a &b &c &d ;prompt user for input

;all 4 macros are initialized?
IF ("&a"=="") || ("&b"=="") || ("&c"=="") || ("&d"=="")

(

PRINT SERROR "Enter 4 arguments separated by blanks: "
GOTO myLabel

)

ELSE

(
PRINT "lst argument: &a"
PRINT "2nd argument: &b"
PRINT "3rd argument: &c"
PRINT "4th argument: &d"

)

= | B:AREAview =n| Wl <

Enter 4 arguments separated by blanks: 12 81 734
Enter 4 arguments separated by blanks: 12 81 734 19 ~

4 I

3

See also

;prompt user again

;print to the AREA window

(o[ O el

12 81 734 ~
12 81 734 19

= | BuAREAview

[nter 4 arguments separated by blanks:
E

1

nter 4 arguments separated by blanks:
st argument: 12

Znd argument: 81

3rd argument: 734

th argument: 19 -
< [ +

B AREA

B INKEY

A ’1/O Commands’ in "Training Script Language PRACTICE’

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide | 21



ENTRY Parameter passing
Format: ENTRY <patrlist>
<parlist>: [%LINE] <macroname>

Passing of parameters to or from PRACTICE scripts/subroutines. Arguments are separated by blanks.
With the %LINE option the entire line is read into one PRACTICE macro.

Without a LOCAL command for defining local PRACTICE macros, existing PRACTICE macros from
preceding routines are used. Only not existing PRACTICE macros are defined automatically.

Example:

; TRACE32 PowerView command line

DO test.cmm P:0x1000

; contents of PRACTICE script test.

SYStem.Up

ENTRY &address H
GOSUB funcl &address 1. 8

ENTRY &result H
PRINT "Result=" &result

ENDDO

funcl:
LOCAL &addr &size B
ENTRY &addr &size B

&size=&size-1.
Data.Set &addr++&size 0x2 2
&retval=Data.Byte (&addr) 2

RETURN &retval 2

cmm

Take argument, here P:0x1000, from
the PRACTICE script call

Call subroutine funcl with two args

Get return value of subroutine

Define local PRACTICE macros
Get arguments from subroutine call

Execute command
Calculate return value

Return value to caller

See also
H DO H GLOBALON B GOSUB W LOCAL
B PARAMETERS H PRIVATE H RETURN B RETURNVALUES

O PRACTICE.ARG()

A ’Release Information’ in’Legacy Release History’
A ’Parameter Passing’ in "Training Script Language PRACTICE’

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide | 22



G..H

GLOBAL Create global PRACTICE macro

Format: GLOBAL {<macro>}

Creates a global macro. Global macros are visible everywhere. They are not erased when the declaring file
or block ends. That is, global macros remain in the global PRACTICE stack after execution of the procedure

or subroutine.
40§ B:PMACRO.list =n| Wl <
(i Enddo|| A End |[ P Reset || &FList | [ Edit || 215 Breakpoints |
Tock from Tine 37 to 42 n
[A] -1 pavare svalz = g

do C:3T32%global_local_private.cmm

_I &val? = Ox2F
| &vall = Ox1F
Level =
= EState = —
SessionStart = 14:11:54 =

4 I G

A Private macros B Local macros

C Global macros D Global PRACTICE stack frame

Example: This script shows how to declare and initialize global PRACTICE macros. Stepping through the
code allows you to see how global macros behave in relation to local and private macros (See “How to...”).

PMACRO.1list ;View the PRACTICE stack
GLOBAL &SessionStart &State &Level ;Declare three global macros
LOCAL &vall &val?2 ;Declare two local macros
&SessionStart=CLOCK.TIME () ;Initialize a global macro
&vall=0x1f ;Initialize the local macros
&val2=0x2f

( ;Open a sub-block

PRIVATE &vall &val2 ;Declare private macros
&vall=0x3f ;Initialize private macros
&val2=0x4f

) ;Close sub-block

See also
W LOCAL B PMACRO.EXPLICIT B PMACRO.IMPLICIT B PMACRQO.list
B PMACRO.RESet H PRIVATE B SPRINTF

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 23



GLOBALON Global event-controlled PRACTICE script execution

[<events>] [<actions>] [Examples]

Format: GLOBALON <event> [<action>]

<event>: <device_specific_events>
<practice_specific_events>
<cpu_specific_events>

<practice_ ALWAYS
specific_ ERROR
events>: STOP

CMD <command_name> <action>
TIME <delay> <action>

<action>: DO <file>
EXECute <trace32_command> (only available for CMD)

The GLOBALON command enables the automatic start or branching of the PRACTICE programs
controlled by several events. In order for events and their actions to be available, they need to be registered
in TRACE32. To register events and their actions, you can for example:

. Run the GLOBALON commands via the TRACE32 command line.

J Include the GLOBALON commands in the PRACTICE script file system-settings.cmm. As a
result, they are automatically registered when you start TRACES32. For more information, see
“Automatic Start-up Scripts” (practice_user.pdf).

. Include the GLOBALON commands in any other script. As a result, they are only registered
when you run that script.

Registered actions remain stored on the global PRACTICE stack frame. Therefore, the actions are valid for
the entire duration of the TRACE32 session, or until they are removed manually.

The currently active actions can be viewed with the PMACRO command. The outermost frame is the global
PRACTICE stack frame, as shown below.

40§ B:PMACRO.list =n| Wl <
@Enddo || #End |[ £%Reset || EList || BfEdit || 2% Breakpoints |

C .t32%gTobalon_register_events_and_actions.cmm

N CMD FNHELP DO C:'T32\globalon_emd_functionhelp. cmm
N CMD T32ICONS DO C:4T32%demo'menu'internal_icons.cmm

A Global PRACTICE stack frame with GLOBALON commands

N SYSDOWN DO C: \T32\g'|0ba'|0n sysdm\n cmm
N SYSUP DO C:\T32%globalon_sysup.cmm

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 24



Events: <practice_specific_events> for the GLOBALON Command

PRACTICE specific Descriptions

Events

ALWAYS The defined PRACTICE sequence is executed permanently, as long as no
keyboard input occurs or no normal PRACTICE script is activated.

ERROR Wiill be executed if a syntax or runtime error occurs in PRACTICE. The default
action of this event is to halt script execution.

STOP Wiill be executed, when the STOP button from the toolbar is pushed. Warning:
A PRACTICE script using this feature may hang and cannot be stopped then
by the STOP button!

CMD Definition of a user-defined command for TRACES32. The length of the

<command_name> <command_name> is limited to 9 characters and the character set [0..9],

<action> [@.7],[a..z]," ', '+'and -\
Arguments can be passed to the user-defined command.
o For available <actions>, see below.
o For examples, see below.

TIME <delay> Executes the script after a delay time.

<action> For a description of the <action> DO <file>, see below.

Events: <device_specific_events>

<device_specific_
events>

For a description of device-specific events, refer to the GLOBALON
command (general_ref_g.pdf).

Events: <cpu_specific_events>

<cpu_specific_
events>

Debuggers providing CPU-specific events are listed in the See also
block at the end of the GLOBALON command description
(general_ref_g.pdf).

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide | 25



<actions> for the GLOBALON Command

One of the following actions can be defined for any of the above events:

<trace32_commanad>

Actions Descriptions

no action An already defined action for a particular global event will be removed

specified from the global PRACTICE stack frame. See “Unregistering GLOBALON
Commands”.

DO <file> If the event occurs, the specified PRACTICE script <file> will be executed
automatically.

EXECute If the event occurs, the specified single-line <trace32_command> will be

executed automatically.

Unlike the action DO <file>, the action EXECute <trace32_command> is
only intended for frequently-used and complex single-line commands; see
example below.

The individual <actions> do not require their own dedicated PRACTICE
script files (*.cmm). Instead, you can maintain as many GLOBALON...
EXECute... commands as you want in just one PRACTICE script file.

Additionally, you can create and modify the GLOBALON... EXECute...
commands via the TRACE32 command line.

NOTE: This <action> is only available for the <practice_specific_event>
CMD.

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide | 26



Examples

The following examples show how you can use the TRACE32 command GLOBALON to create, register
and unregister your own user-defined commands.

Example 1: TICONS

This is a very simple example for demo purposes. It creates the user-defined command TICONS, which
opens the TRACES32 icon library.

Register your user-defined command TICONS, e.g. by copying and pasting the following GLOBALON CMD
into the TRACE32 command line:

; Register the user-defined command TICONS
g <command> <action>
GLOBALON CMD TICONS DO "~~/demo/menu/internal icons.cmm"

Result: Typing TICONS at the TRACE32 command line now opens the TRACES32 icon library.

NOTE: Built-in commands cannot be overwritten while the debugger is active, i.e. a
user-defined command named SYS is not possible. SYS will continue to open
the SYStem.state window.

Example 2: GLOBALON CMD without an Argument

The user-defined command SOURCE displays the HLL source code without changing your emulation
mode setting ASM, HLL, or MIX; see DEBUGMODE() and Mode.

1. Develop the action, i.e. a PRACTICE script (*.cmm), such as the following one:

;Check if the window named myWinOl already exists to prevent
;duplicate windows
IF !'WIN.EXIST (myWinO1)
(
;Additionally, assign a user-defined window position and name
WinPOS 0% 0% 100% 50% , , , myWinO1l

;Display the program in source format (HLL, high level
; language)
List.HLL /Track

)

ENDDO
2. Register your user-defined command and its action in TRACES32.
GLOBALON CMD SOURCE DO "~~~/globalon_cmd_source.cmm"

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 27




Example 3: GLOBALON CMD with an Argument

The user-defined command SOURCE?2 accepts an argument if you enter one at the TRACE32 command line
and passes it to the <action>.

1. Develop the action, i.e. a PRACTICE script (*.cmm), such as the following one:
Displays the program in source format (HLL, high-level language)

; Starts the listing at the symbol passed as an argument,
; €.g. at main

7

LOCAL &myArg
ENTRY &myArg ; Get the argument the user has entered
; at the TRACE32 command line
; Check if an argument is passed or not
IF "&myArg"==""
List.HLL /Track

ELSE
List.HLL &myArg /Track

ENDDO

2. Register your user-defined command and its action in TRACE32.

GLOBALON CMD SOURCE2 DO "~~~/globalon_cmd_source2.cmm"

Example 4: GLOBALON CMD with the EXECute <command>

The following script registers the two user-defined commands TL and LMPC on the global PRACTICE stack
frame. The TRACE32 command that is actually executed when the user types TL or LMPC at the command
line is formatted in blue. Note that the backslash \ is the line continuation character.

To try, simply copy and paste the script into the TRACE32 command line. Then type just TL or LMPC to open
a Trace.List or List.Mix window as specified in the blue command string.

GLOBALON CMD TL EXECute WinExt.WinResist.WinLarge.Trace.List \
%TimeFixed TIme.Zero DEFault /Track

GLOBALON CMD LMPC EXECute List.Mix Register (PC) /Track /MarkPC

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 28



Unregistering GLOBALON Commands

You can unregister all GLOBALON commands or just a selected GLOBALON command.

NOTE: Unregistering all GLOBALON commands from the global PRACTICE stack
frame also deletes all global PRACTICE macros.

. To unregister all GLOBALON commands, type at the TRACE32 command line:

END ; Ends all active PRACTICE scripts
PMACRO.RESet ; Unregisters all GLOBALON commands and
; deletes all global PRACTICE macros

. To unregister just a selected GLOBALON command, type at the TRACE32 command line:

END ; Ends all active PRACTICE scripts

; Unregisters the action for the user-defined command TICONS
GLOBALON CMD TICONS ; Do not include the DO <action> here!

Result: The respective line or lines are no longer displayed in global PRACTICE stack frame of the
PMACRO.list window. Thus the GLOBALON command or commands can no longer be executed.

See also

H DO B ENTRY B LOCAL H ON

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide

29



GOSUB Subroutine call

Format: GOSUB <subroutine> [<parameter_list>]

<subroutine>: <name> | <label>

The PRACTICE script continues at the defined SUBROUTINE or label. GOSUB can pass parameters to the
subroutine. The subroutine can take over the parameters using commands PARAMETERS or ENTRY. The
subroutine can return parameters using the command RETURN. The caller can take over the return
parameters using RETURNVALUES or ENTRY.

NOTE: Recommendation for new scripts:
- define subroutines using SUBROUTINE
- pass parameters as string and take over using PARAMETERS
- return the result as string and take over using RETURNVALUES

Example using SUBROUTINE, PARAMETERS and RETURNVALUES:

SUBROUTINE initMem

(
PRIVATE &address &memok
PARAMETERS &address
Data.Set &address++0x0FFF %$Long O0x55AA55AA
Data.Set &address++0x0FFF %Long O0x55AA55AA /DIFF
&memok=!FOUND ()
RETURN "&memok"

)

GOSUB initMem "0x10000"
PRIVATE &ok
RETURNVALUES &ok
IF !&ok
PRINT %ERROR "Mem init failed."

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 30



Example using label:

: <label> <parameter_list>
GOSUB mySubroutinel 0x100 10. "abc"

ENDDO

mySubroutinel:
ENTRY &address &len &string
Data.Set &address++ (&len-1) &string
RETURN
NOTES: o GOSUB accepts both labels and subroutine names as target,
therefore labels and subroutines can not have the same name.
. Labels must start in the first column of a line and end with a colon. No
preceding white space allowed.
See also
B GOTO m DO B ENTRY m JUMPTO
H ON B RETURN

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 31



GOTO

Local script jump

Format:

GOTO <l/abel>

The PRACTICE script continues to execute at the defined label. You can also jump out of script blocks. In
interactive mode, the PRACTICE command can be altered using the GOTO command.

Examples:

GOTO endloop

; label as jump destination

GOTO 102. ; line number as jump destination
&abc="1abl0" ; PRACTICE macro for variable jump
GOTO &abc ; destination
NOTE: Labels must start in the first column of a line and end with a colon. No
preceding white space allowed.
See also
B GOSUB W JUMPTO

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide

32



l...L

IF Conditional script execution

Format: IF <condition>

The command or script block following an IF statement will be executed, if the condition is true. Emulators
and debuggers have a counterpart of this command that works in the HLL syntax of the target program
(command Var.IF). The syntax for <condition> is the same as for boolean command parameter.

For detailed information on booleans, refer to “Parameter Types” in PowerView User's Guide, page 41
(ide_user.pdf).

NOTE: IF must be followed by a white space.

If the IF-body consists of just one line, then parentheses can be omitted:

IF Register (d0)>0x0
PRINT "Register not zero"

ELSE
PRINT "Register zero"

Var.IF flags[5]>35 // HLL expression in condition
STOP

ELSE
Step

IF-bodies consisting of two or more lines must be enclosed in parentheses:

IF (Register (PC) !=ADDRESS.OFFSET (main) )

(
PRINT SERROR "halted at wrong address!"
ENDDO

Please avoid the following mistake:

IF Register (d0)==0x0 ( step ) ; not allowed
See also
B ELSE 1 STATE.RUN()

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 33




INKEY Character input

Format: INKEY [<par>]

The command waits for a keystroke. The code of the key is placed in the PRACTICE macro. If no parameter
is used, the command stops script execution until any key is be pressed on the keyboard.

Examples:
INKEY ; wait until any key is pressed
INKEY &key ; wait for one key from keyboard
IF &key==0x0d ; check for carriage return

See also

B ENTER H WAIT

A ’1/O Commands’ in "Training Script Language PRACTICE’

JUMPTO Global script jump

Format: JUMPTO </abel>

The PRACTICE script continues to execute at the defined label. Subroutine calls and block nestings are
removed from the PRACTICE stack. The target label must reside in a stacked script module. The label must
reside on the top level of a module!

NOTE: Labels must start in the first column of a line and end with a colon. No
preceding white space allowed.

See also
H DO H GOSUB H GOTO

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 34



LOCAL Create local PRACTICE macro

Format: LOCAL {<macro>}

The LOCAL command is used to create an empty PRACTICE macro in the current block. The macro hides
any macro with the same name potentially created earlier (e.g. at a higher level of the PRACTICE stack).

The word local implies the life-time of the macro: it is created with the LOCAL command and erased when
the declaring block is left.

PRACTICE macros declared with LOCAL are visible in all subsequently executed code within their life-time
(unless hidden by later macro declarations). In particular they are visible in:

Yes Subroutines (GOSUB ...RETURN)
Yes Sub-scripts (DO...ENDDO)
Yes  Sub-blocks (IF..., RePeaT, WHILE, etc.)

NOTE: For creating macros only visible within their declaring block (as in the C
programming language) use the command PRIVATE.

Example 1:

LOCAL &a &b &c
ENTRY &a &b
&c=&a*&b
ENDDO &c

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 35



Example 2:

LOCAL &result

GOSUB myfunc 2. 3.
ENTRY &result

PRINT "Result is &result"
ENDDO
myfunc:
LOCAL &a &b &c
ENTRY &a &b

&c=&a*&b
RETURN &c

Example 3: This script prints two sequences of the numbers 1, 2, 3, 4:

LOCAL &I ;declare macro &I
&I=1. ;assign value

WHILE &I<=2.
(

PRINT "--Sequence #" &I "--"
GOSUB sequence
&I=&I+1.
)
ENDDO
sequence:
LOCAL &I ;hides the previously declared &I and declares new macro
&I=1.

WHILE &I<=4.

(
GOSUB output

&TI=&T+1.
)
RETURN
output:
PRINT &I ;uses the macro &I declared in subroutine 'sequence'
RETURN
See also
B ENTRY W GLOBAL H GLOBALON B PMACRO.EXPLICIT
B PMACRO.IMPLICIT W PMACRO.list H PRIVATE B SPRINTF

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 36



M..O

ON

Event-controlled PRACTICE script execution

[<events>] [<actions>] [Examples]

Format:

<event>:

<practice_
specific>:

<action>:

ON <event> [<action>]

<device_specific_events>
<practice_specific_events>
<cpu_specific_events>

ALWAYS

ERROR

STOP

CMD <command_name>
TIME <delay>

inherit

CONTinue

DO <file>

GOSUB <label> | <block>
GOTO <label> | <block>
JUMPTO <l/abel> | <block>
DEFault

The ON command enables the automatic start or branching of the PRACTICE scripts controlled by several
events. The registered actions are stored on the PRACTICE stack, therefore the command is only valid in
the block in which it was set, and in the subroutines called in this block. The currently active ON command
can be viewed with the PMACRO command. The PRACTICE script will be started and stopped
automatically, if the GOSUB action is used. If no target label is given, the line or block after the ON command
will be executed instead.

NOTE:

If you want the action to remain permanently active, use the GLOBALON

command.

Using the GLOBALON command, you can create actions for global events,
which are available for an entire TRACE32 session.

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide | 37



Events: <practice_specific_events> for the ON Command

Events Descriptions

ALWAYS The defined PRACTICE sequence is executed permanently, as long as no
keyboard input occurs or no PRACTICE script is activated.

ERROR Wiill be executed if a syntax or runtime error occurs in PRACTICE. The default
action of this event is to halt script execution.

STOP Wiill be executed, when the STOP button from the toolbar is pushed. Warning:
A PRACTICE script using this feature may hang and cannot be stopped then
by the STOP button!

CMD Definition of a new command. The TRACE32 commands can be extended

<command_name> with a user-defined command.

The length of the <command_name> is limited to 9 characters and the
character set[0..9], [@..Z], [a..z], "', '+'and -
Arguments can be passed in the usual way, see ENTRY.

TIME <delay> Executes the script after a delay time.

Events: <device_specific_events> for the ON command

<device_specific_ For a description of the device-specific events, refer to ON in the General
events> Commands Reference Guide O.

Events: <cpu_specific_events> for the ON command

<cpu_specific_ Debuggers providing CPU-specific events are listed in the See also block at
events> the end of the ON command description in the General Commands
Reference Guide O.

<actions> for the ON Command

One of the following actions can be defined for any of the above events:

Actions Descriptions

inherit An already defined action for this event in the current stack level will be
removed. If an action is registered in a higher stack level, the action of the
higher stack level will be inherited. If no action is registered in any higher
stack level, the debugger’s default action will be performed (e.g. stop on error
event).

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 38



Actions

Descriptions

CONTinue

If the event occurs, script execution will be continued. Use this option e.g. to
ignore errors which would cause the script execution to halt.

DO

If the event occurs, the PRACTICE script in the specified file will be executed.

GOSuB

If the event occurs, a subroutine call will occur. The subroutine can be
specified as a label, or inline as a PRACTICE block. With RETURN, the
subroutine will return to normal script execution. For the ERROR event, the
subroutine will return to the line after the command which caused the error.

GOTO

If the event occurs, the script execution will continue at the specified label, or
in the specified inline PRACTICE block.

JUMPTO

If the event occurs, the script execution will continue at the specified label, or in
the specified inline PRACTICE block. Subroutine calls and block nestings are
removed from the PRACTICE stack. Use this action e.g. as global
error/expection handler.

DEFault

The debugger’s default action will be performed if the specified event occurs.
Actions defined in a higher stack level for this event will be ignored. Use this
action e.g. inside an event handler subroutine to avoid re-entry while the
handler’s subroutine is active.

Example 1: Error Handler

ON ERROR JUMPTO errorhandler filenotfound ;set up error handler
Data.LOAD.ELF project.x

ON ERROR inherit ;disable error handler
ENDDO

errorhandler_ filenotfound:

PRINT
ENDDO

%ERROR "File not found!"

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide | 39



Example 2: Define a New Command

; define new command LoadEx <file>

ON CMD LoadEx GOSUB

(
LOCAL &filename ;declare local macros
ENTRY &filename ;get parameter (s)
Break.Delete
Data.LOAD.ELF "&filename"
RETURN

STOP

Example 3: Timeout on User Input

To try out this script, simply copy it to a test . cmm file, and then run it in TRACE32 (See “How to...”).

AREA.Create USRINP ;create and show message area
AREA.Select USRINP

AREA.view USRINP

PRINT "Press return (within 5 seconds) to abort configuration > "

ON TIME 5.0s GOTO no_timeout ;set up timeout

ENTER &invalue ;script waits here for user input
ON TIME 5.0s inherit ;disable timeout

PRINT "Configuration aborted."

ENDDO

no_timeout:
PRINT "Configuration starting..."
ENDDO

Example 4: Background Task in PRACTICE:

ON ALWAYS GOSUB

(
PRINT Register (PC)
RETURN

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 40



Example 5

A complex demo script is included in your TRACES32 installation. To access the script, run this command

under Windows and Unix:
B::CD.PSTEP ~~/demo/practice/event_controlled_program/dialog_ontime.cmm

See also
H DO B GLOBALON B GOSUB

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 41



OPEN Open data file

Format: OPEN #<buffer_number> <file> [I<option>]
<option>: Read | Write

Create | Append

Binary

Opens a file for reading or writing.

Write When a file is opened in write mode, the data is per default appended at the
Append end of the file (same behavior as with option /Append).
Create Creates a new file and overwrites an old one if the file already exists.

The default file format is text.

Create and Binary The options /Create /Binary create a binary file.

Example:

OPEN #1 datafile.dat /Read
READ #1 3LINE &data

CLOSE #1

See also

H APPEND B CLOSE H READ H WRITE

B WRITEB M Data. WRITESTRING W VarWRITE 1 FILE.EOF()

0 FILE.EXIST() 1 FILE.OPEN() 1 OS.FILE.DATE() 1 OS.FILE.PATH()
1 OS.FILE.readable() 1 OS.FILE.SIZE()

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 42




P..

PARAMETERS Parameter fetching

Format: PARAMETERS {<macro>}

Fetches the parameters passed by PRACTICE script/subroutine calls.
Example 1: Parameters have to be enclosed in quotes (") in the call.

PSTEP patchl.cmm "0x40000000++0xffff" "Oxaa" "Oxbb"

The PARAMETERS command first creates PRIVATE macros for all macro names not found in the current
scope (please be aware that the LOCAL macros of the caller(s) are always out of scope for the
PARAMETERS command) and then assigns the passed values to the macros.

LOCAL &my_ range
PARAMETERS &my range &my valuel &my value2

¢ Buwr.we.PMACRO = EoR5

Mstep || #over || @up | ¥ cContinue || :iEStop || MEnddo || EFList || Cimacros || [EfEdit || siBreakpoints |

do G:%SchuTung \Inha'lt_\_\EnE'I'lscF \PRACTICE'\practice_2015_mpc'patchl.cmm "0x40000000++0xFFff™ "Oxaa™ "Oxbb™ -
PRIVATE &my_value? = Oxb

PRIVATE &my_valuel = Oxaa

&my_range = 0x40000000++0xffff

4 3

Example 2:

GOSUB square "0Ox5" "5" "5._"

ENDDO
square:
PARAMETERS &xX &y &Z ;fetch parameters passed by the subroutine call
PRINT &X*&X ;result is printed as a hex value
PRINT &y*&y ;result is printed as a hex value
PRINT %Decimal &y*&y ;result is printed as a decimal value
PRINT &z*&z ;result is printed as a decimal value
RETURN
See also
W ENTRY B RETURNVALUES

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 43



PBREAK Breakpoints in PRACTICE script files (*.cmm)

Using the PBREAK command group, you can set, enable, disable, save, and clear an unlimited number of
breakpoints in PRACTICE script files (*.cmm).

These program breakpoints are set with the PBREAK.Set command. The PBREAK.List window shows an
overview of the breakpoints you have set in your PRACTICE script files (*.cmm). For compatibility reasons,
TRACES2 continues to support the breakpoint that can be set with the deprecated PBREAK.at command.

See also
B PBREAK Delete W PBREAK.DISable B PBREAK.ENable B PBREAK List
W PBREAK.OFF B PBREAK.ON B PBREAK.RESet W PBREAK Set
W PEDIT W PLIST W PSTEP W CONTinue
PBREAK.Delete Delete breakpoint
Format: PBREAK.Delete [<l/ine> [<file>]]

If no argument is passed, this command deletes all program breakpoints from the list displayed in the
PBREAK.List window.

You can delete specific breakpoints by passing the following arguments:

<line> Line number. Deletes all breakpoints at <line> for all PRACTICE scripts.
, <file> Line number is omitted; path and file name of the PRACTICE script are
specified.
Deletes all breakpoints for the PRACTICE script <file>.
<line> <file> Deletes the breakpoint at <line> for the PRACTICE script <file>.
See also
B PBREAK B PBREAK.RESet

A ’Release Information’ in’Legacy Release History’

PBREAK.DISable Disable breakpoint

Format: PBREAK.DISable [<line>] [<file>]

If no argument is passed, this command disables all program breakpoints. Disabled breakpoints are flagged
with a small gray bar in the PLIST and PSTEP windows.

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 44



You can disable specific breakpoints by passing the following arguments:

<line> Line number. Disables all breakpoints at <line> for all PRACTICE scripts.
, <file> Line number is omitted; path and file name of PRACTICE script are
specified.
Result: All breakpoints for the PRACTICE script <file> are disabled.
<line> <file> Disables the breakpoint at <line> for the PRACTICE script <file>.
See also
B PBREAK B PBREAK.ENable

A ’Release Information’ in’Legacy Release History’

PBREAK.ENable Enable breakpoint

Format: PBREAK.ENable [<l/ine>] [<file>]

If no argument is passed, this command enables all program breakpoints. Enabled breakpoints are flagged
with a small @l bar in the PLIST and PSTEP windows.

You can enable specific breakpoints by passing the following arguments:

<line> Line number. Enables all breakpoints at <line> for all PRACTICE scripts.
, <file> Line number is omitted; path and file name of PRACTICE script are
specified.

Result: All breakpoints for the PRACTICE script <file> are enabled.

<line> <file> Enables the breakpoint at <line> for the PRACTICE script <file>.
See also
B PBREAK B PBREAK.DISable

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 45



PBREAK.List Display breakpoint list

Format: PBREAK.List

Lists all program breakpoints you have created for PRACTICE script files (*.cmm).

The PBREAK.List window shown below provides the following commands via the toolbar and the popup
menu: You can delete, disable, and enable all breakpoints or a selected breakpoint. In addition, you can save
the breakpoints to file with the STOre command, and load them for the next session with the DO command.

A
<17 B:PBREAK List =n| Wl <
[ 3% Delete All|[ O Disable All|[ @ Enable Al($2 Store..|[ &2 Load.. || B set... |
type 'I1ne file action count mode
Program C:\T32 pbreak.cmm =top old mode
Program 15. C:\T37\pbreak.cmm stop
Program | 26. C:4T32pbreak. cmm Count 1000. /=
Program |+4. * stop
Program | 11. C:T32 pbreak. cmm stop cI al —cI .
C: break.
Program C:\T32pbreak. cmm Breakpoint ]
& Change... C
¥ Delete
I Enable
Bl 5o |
A Set a new breakpoint. B Breakpoints created with PBREAK.Set.
C Edit the selected breakpoint. D Open the file in the PLIST window at line number 42.

Descriptions of Columns in the PBREAK.List Window:

. type: PRACTICE supports program breakpoints. Yellow indicates that script execution has
stopped at this breakpoint. You can continue script execution with the CONTinue command.

o line: Line number of breakpoint

- An asterisk (*) in the line column indicates that a breakpoint is set at the first executable line
in this PRACTICE script.

- A dot before a line number indicates that the breakpoint was originally set to an empty line or
comment line. Such a breakpoint automatically moves to the next executable line.

. file: Lists all PRACTICE script files where breakpoints have been set.

- An asterisk (*) in the file column indicates that a breakpoint is dynamically set in any active
PRACTICE script at the specified line number (see PBREAK.Set ... /AnyFile). This is useful
for testing nested PRACTICE script files.

. action: Action of the breakpoint, i.e. stop or Count. See PBREAK.Set ... /Count.
. count:

- Counts how often the PRACTICE command has hit the counter breakpoint. Counter
breakpoints are typically set at counters in WHILE loops.

- A dot after a counter indicates that the counter limit is unspecified.
See PBREAK.Set ... /Count.

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 46



. mode:
- Old mode: This breakpoint was created with the deprecated PBREAK.at command.
- Disabled is displayed for disabled breakpoints. All other breakpoints are enabled.

- Temporary is displayed until the PRACTICE command has reached the line with the
temporary breakpoint.
A temporary breakpoint is created when you right-click a script line in a PLIST window and
select Go Till.

See also
H PBREAK

A ’Release Information’ in’Legacy Release History’

PBREAK.OFF TRACES2 disables breakpoint handling

Format: PBREAK.OFF

Disables all breakpoints for the script currently loaded on top of the PRACTICE stack. If no PRACTICE script
is running this command is locked.

TRACER32 generates a breakpoint script when you click the Store button in a PBREAK.List window. In this
script, your breakpoint settings are enclosed between the PBREAK.OFF and PBREAK.ON command. The
two commands ensure that a breakpoint script can be re-loaded without being stopped by the breakpoints it

contains.

Example:
PBREAK.RESet ;reset all PRACTICE breakpoints
PBREAK.OFF ;switch off further breakpoint checking
PBREAK.Set 5. , , /AnyFile ;set a breakpoint to line 5 in any file
PBREAK.Set 8. c:\t32\test.cmm ;set a breakpoint to line 8 in file
PBREAK.ON ;switch on breakpoint checking again

See also

H PBREAK.ON B PBREAK

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 47



PBREAK.ON TRACES32 re-enables breakpoint handling

Format: PBREAK.OFF

Re-enables all breakpoints for the script currently loaded on top of the PRACTICE stack. If no PRACTICE
script is running this command is locked.

TRACER32 generates a breakpoint script when you click the Store button in a PBREAK.List window. In this
script, your breakpoint settings are enclosed between the PBREAK.OFF and PBREAK.ON command. The
two commands ensure that a breakpoint script can be re-loaded without being stopped by the breakpoints it

contains.
See also
B PBREAK.OFF B PBREAK
PBREAK.RESet Clear all breakpoints
Format: PBREAK.RESet

Deletes all breakpoints from the list displayed in the PBREAK.List window.

See also
H PBREAK B PBREAK.Delete

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 48



PBREAK.Set

Add breakpoint

[Examples]

Format: PBREAK.Set <l/ine> <file> [/DISabled | /Count | /AnyFile | /DIALOG]
PBREAK [<line>] [<file>] (deprecated)
PBREAK.at [<line>] [<file>] (deprecated)

Sets a program breakpoint at <line> for the PRACTICE script <file>. Optionally, the PBREAK.Set dialog can
be displayed. If the specified line number refers to an empty line or a PRACTICE comment, then the
breakpoint is set at the next executable line.

By default, a program breakpoint in a PRACTICE script stops script execution. However, if a program
breakpoint is modified with the Count option, script execution continues, and breakpoint hits are counted.

The PBREAK.List window lists the breakpoints you have created with PBREAK.Set.

“K* B:PBREAK.Set 12. C\B32\demo.cmm /DIALOG [ = |[ & |[=23]
line filename
12. C:\t32\demo.cmm |:|
type options action
Program AnyFile stop =
DISabled
TeMParary
Add Delete Cancel
, <file> Line number is omitted; path and file name of PRACTICE script are
specified.
Result: A breakpoint is set at the first executable line in the PRACTICE
script <file>.
<line> Line number. Sets a breakpoint at <line> in the current PRACTICE script

or in any script if none is loaded.

<line> <file>

Sets a breakpoint at <line> in the PRACTICE script <file>.

AnyFile

Sets a breakpoint at <l/ine> in any PRACTICE script file.

You need to replace <file> with two , , (commas) when using AnyFile.
TRACE32 then applies the breakpoint to the currently active PRACTICE
script.

AnyFile is intended for testing nested PRACTICE script files. It
automatically stops script execution at the first executable line of any
PRACTICE script file that is called next. See example.

Count

The breakpoint is created as a counter which does not stop the execution
of a PRACTICE script, but counts breakpoint hits.
Useful for counters in WHILE loops. See example.

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide | 49



DIALOG Displays the PBREAK.Set dialog.

Clicking the Add button closes the dialog and makes the PRACTICE
breakpoint available in TRACE32. Available breakpoints are listed in the
PBREAK List window. See example.

DiSabled The breakpoint is created as a disabled breakpoint.

Example for the Count option: The following example is for demo purposes only. To try this script, copy it
to a test.cmm file, and then run it in TRACES32 (See “How to...”).

PBREAK.Set 7. , , /Count ;set a breakpoint in line 7. as loop counter
PBREAK.List ;display the list of breakpoints set in
; PRACTICE script files
&tmp=0.
WHILE &tmp<l1000.
(
&tmp=&tmp+1 . ;the spot breakpoint is set here
;note that the 'count' column in the
; PBREAK.List updates automatically

PRINT "looprun: &tmp" ;prints the counter to the message bar

PRINT "loop finished" ;right-click in the PLIST window, and then
;select 'Go Till'

PBREAK.Delete 7. ;delete all breakpoints at line 7. for
;all PRACTICE scripts!

Example for the AnyFile option:

PBREAK.List ;display breakpoint list for PRACTICE scripts
PBREAK.Set 1. , , /AnyFile ;set breakpoint to first executable line
;in any file

CD.DO filel.cmm ;Script execution automatically stops at the
9 | file2.cmm ;first executable line of each file
file3.cmm

I

PBREAK.RESet ;always clear all breakpoints at the end of your session

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 50



Example for the DIALOG option:

; opens

PBREAK.

the list of PRACTICE breakpoints
List

;sets a breakpoint in line 12. of the demo.cmm file and

; opens

PBREAK.

;click
;— the
;— the

the PBREAK.Set dialog

Set 12. c:\t32\demo.cmm /DIALOG

the Add button:

dialog closes

PRACTICE breakpoint appears in the list of PRACTICE breakpoints

;sets a breakpoint in line 49. for the currently active script file and

; opens

PBREAK.

;click
;— the
;— the

;the *

the PBREAK.Set dialog

Set 49. , , /DIALOG

the Add button:

dialog closes

PRACTICE breakpoint appears in the list of PRACTICE breakpoints

lets you select a script file from the file browser,

;then the PBREAK.Set dialog opens

PBREAK.

;click
;— the
;— the

See also

Set , * /DIALOG

the Add button:

dialog closes

PRACTICE breakpoint appears in the list of PRACTICE breakpoints

H PBREAK

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide |

51



PEDIT Edit PRACTICE script
[Examples]
Format: PEDIT <file> [<line>] [/<option>]
<option>: AutoSave | NoSave

Opens the TRACES32 editor window PEDIT, where you can create and edit PRACTICE script files (*.cmm).
The editor window provides syntax highlighting, configurable auto-indentation as well as multiple undo and

redo. PEDIT works in the same manner as the EDIT command.

B:PEDIT ~~\to-area.cmm

E @]@

[ & setup... || 5 Save | & Save As..|[ BF Quit |[ #3Find... |[)(][¥T)[ #%Do | 2 Debug |
IAI 4 |oPEN #1 Yemtymy-Tog. dat™ /Read
5 [READ #1 %LINE &myline
[
7 [WHILE FILE.EOFLASTREAD()==FALSE()
3
|: 9 PRINT "&myline” ;print Tine to AREA window AQQO
10 READ #1 %LINE &myline ;assigns all characters up to the
11 ;mext EOL to &myline
1z
13 |CLOSE #1
14

-

Buttons common to all TRACE32 editors:

A For button descriptions, see EDIT file.

Buttons specific to this editor:

B Execute the PRACTICE script (DO).

C Debug the PRACTICE script in a PLIST window.

<file>

The default extension for <file> is *.cmm.

<line>, <option>

For description of the arguments, see EDIT.file.

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide | 52



Tips

Tip 1: You can quickly jump to the destination of a label by right-clicking a label and selecting Goto Label
from the popup menu [D]. A similar feature exists for files [E]. These navigation features are useful in very
long PRACTICE script files.

B:PEDIT C:\T32\demo'\arm\hardware'\kinetis\kinetis_k\kb0\setup.cmm B:PEDIT C:AT32\demo'\arm\hardware\kinetis\kinetis_k\kb0\setup.cmm
[ Zsetup... || 5 save |5 save As..|[ BF quit |[#3Find... |[9)[][1] [ & setup... || %P save || save As..|[ BF Quit J[#3Find... D)
141 141

142 |; copy settings from dialog into local macros 142 |; copy settings from dialog into local macros

143 GOSUE get_from_dialog 143 GOSUE get_from_dialog

145 |; close dialog ] S A S L] 145 |; close dialog

146 DIALOG. END 146 DIALOG. END

147 & Cut CTRL+X 147

148 |; store current dialog B 148 |; store current dialog entries

149 | GOSUB write_settings Copy CTRL+C 149 | GOSUB write_settings

150 < 150

51| oo /startboard. =i Gl 151

152 152

_J . E Farrmat Selection _J

& Cut CTRL+X
Copy CTRL+C

Paste CTRL+V

E Farrmat Selection

Tip 2: You can quickly get help on an unknown command or function by right-clicking the command or
function. Then select Help for Command or Help for Function from the popup menu [F].

B:PEDIT C:AT32\demo'\arm\compiler\arm\arm8.crmm
[ & setup... || T save | save ps. | BF quit || #iFind... |[)(0e][91]
48
|: 49 ¢ = =y tion BigEndian ON
50 -5et C15:2 %lon
5103
52 %LSE
53
54 ECTRL+)(
[ Ef; ) . CTRL+C
57 <
58 [// map ram =i Gl his ARM evaluat
751[)?':&'5“ ox E Farrmat Selection
Examples
Example 1:

;open the file 'test.cmm' and place the insertion point in line 115
PEDIT test.cmm 115.

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 53



Example 2:

;- The WinExt pre-command allows you to move the PEDIT window outside the
;  TRACE32 main window.

;- The WinResist pre-command prevents the PEDIT window from being closed
; by the WinCLEAR command in your PRACTICE scripts.
WinExt .WinResist.PEDIT test.cmm

See also

B PBREAK W PLIST W PSTEP MW ClipSTOre
W EDITfile B SETUPEDITOR

A 'Text Editors’ in ’PowerView User's Guide’

A ’'Release Information’ in ’Legacy Release History’

A 'Create a PRACTICE Script’ in "Training Script Language PRACTICE’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 54



PLIST List PRACTICE script

Format: PLIST [<label> | <line>]

Lists the currently loaded PRACTICE script. Script nesting, branching and single jumping are marked in the
scale area on the left. Enabled breakpoints are flagged with a small 88 bar, disabled breakpoints are
flagged with a small gray bar in the PLIST window.

“ZF [B:PLIST] =0 ESH =
Mistep || ®over |[ up |28 Continue || ZIEStop |(iMEnddo][ §iskip |[{QiMacros|| B Edit || @Breakpoints]<

{ start debugger
41|5Y5tem. Up

// =et endianism according to the selection

/ (data set command for 9207 and 9407 only)

p— 1 Y = ——
.  aEnds Practice
47 5¥Stem.Option BigEndian ON .
[ 48 Data.Set C15:2 %Long Oxf8 T GoTil
D 49 : Set PC Here
50 |ELSE g
C 510 A
52 SYStem.Option BigEndian OFF 8 Breakpoint...
53 Data.Set C15:2 %lLong Ox78

v Toggle breakpoint <E| X
4
I Enable breakpoint

‘B: : Edit Here
[comoonsnts| [ trace 11 pam I[ war Il tier |[ PERF |[Svstem |[ Step |[ Go |[ Break |[ symbol |
@ file: C:\T32\demo\arm\compiler\arm\arm@.cmm | line: 45

A An BREBIBE breakpoint in line 41 at SYStem.Up; a disabled breakpoint in line 45 at the IF block.
B Opens the PBREAK List window, listing the PRACTICE breakpoints.
C Double-clicking a line toggles a breakpoint (set/delete).

D Click inside the PLIST window to display the file name of the script being executed. The file name is
displayed in the state line of the TRACE32 main window.

Examples:
PLIST 10. ; List as of line 10
PLIST myLabel ; List as of label ‘myLabel’
PLIST ; List as of the current program counter

; an example for PLIST

PSTEP ; Set PRACTICE script execution to
; single step mode
DO test.cmm ; Load PRACTICE script
PLIST ; List PRACTICE script for debugging
See also
H PBREAK B PEDIT B PMACRO W PSTEP

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 55



PMACRO PRACTICE macros

If a PRACTICE script is executed, the PRACTICE stack frame and the PRACTICE macros (variables) can
be visualized and the macro search priority can be manipulated by the commands of the PMACRO
command group.

See also
B PMACRO.EXPLICIT B PMACRO.IMPLICIT B PMACRO.IMPLICITPRIVATE B PMACRO.list
B PMACRO.LOCK B PMACRO.RESet B PMACRO.UNLOCK W PLIST

A ’'Release Information’ in’Legacy Release History’

PMACRO.EXPLICIT Enforce explicit PRACTICE macro declaration

[Examples - GLOBAL macros] [Examples - LOCAL macros]

Format: PMACRO.EXPLICIT

Enforces explicit declarations of PRACTICE macros. That is, macros in PRACTICE scripts (*.cmm) must be
declared with the commands GLOBAL or LOCAL or PRIVATE.

Starting a PRACTICE script with PMACRO.EXPLICIT enforces an explicit declaration of all PRACTICE
macros for the entire PRACTICE script. The explicit declaration in the parent PRACTICE script extends to all

blocks, sub-blocks (e.g. IF..., RePeaT..., WHILE..., etc.), subroutines (GOSUB...RETURN), and sub-scripts
(DO...ENDDO).

Starting a sub-block or subroutine with PMACRO.EXPLICIT enforces explicit declarations only for the sub-
block (e.g. IF..., RePeaT..., WHILE..., etc.) or subroutine (GOSUB...RETURN).

40§ B:PMACRO.list =n| Wl <
{WEnddo || #End |[ £¥Reset || SFList || BfEdit || s Breakpoints ]
gosub c:\t32%compare_pattern.cmm VM:0x0 VM:0x100 16. Trom ne 35

&eaddr = 0x0
&err = TRUE()

&size = 16.
&to = WM:0x100
&from = VM:0x0

do c:\t32%compare_pattern. cmm
&addr =
&result =

A Thick gray bar = explicit macro declaration range; here in a subroutine block (GOSUB...RETURN).

B Thin gray bar = implicit macro declaration range.

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 56



If the explicit-declaration setting is violated during PRACTICE script execution, the TRACE32 message line
informs you with an error message and script execution stops.

J If an undeclared macro is initialized, the following error message is displayed in the state line:
“explicit PRACTICE macro declaration expected”.

J If an explicitly declared macro is declared again, the following error message is displayed in the
state line: “explicitly declared PRACTICE macro already exists”.

NOTE: o Explicit macro declaration is recommended for fail-safe operation of
PRACTICE scripts.
. PMACRO.EXPLICIT together with the error messages assists you in
declaring all macros explicitly.

Examples - GLOBAL Macro

Example 1: When GLOBAL macros are declared before the PMACRO.EXPLICIT command is executed,
then the same GLOBAL macros can be re-declared at any time during a TRACES32 session (but not while
the parent script is still running). The parameter of a GLOBAL macro can re-initialized by any PRACTICE
script.

GLOBAL &ProjNamel ;declare PRACTICE macros with GLOBAL
GLOBAL &Startl

PMACRO.EXPLICIT ;enforce explicit PRACTICE macro declaration

&ProjNamel="Project 10" ;initialize the GLOBAL macros
&Startl1l=CLOCK.TIME ()

Example 2: When GLOBAL macro declarations are placed affer PMACRO.EXPLICIT, the GLOBAL
macros can be declared only once during a TRACE32 session. If they are declared again, a script error
occurs, script execution stops, and an error message is displayed. The parameter of a GLOBAL macro can
re-initialized by any PRACTICE script.

PMACRO.EXPLICIT ;enforce explicit PRACTICE macro declaration

GLOBAL &ProjName?2 ;declare PRACTICE macro explicitly with GLOBAL
GLOBAL &Start2

&ProjName2="Poject X" ;initialize the GLOBAL macro
&Start2=CLOCK.TIME ()

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 57



Examples - LOCAL Macro

Example 3: Correct explicit declaration of the PRACTICE macro LOCAL &filel

PMACRO.EXPLICIT ;enforce explicit PRACTICE macro declaration

LOCAL &filel ;declare PRACTICE macro explicitly with LOCAL
&filel=0S.PresentExecutableFile () ;initialize PRACTICE macro

PRINT "&filel™ ;print name of the currently used TRACE32 executable

Example 4: The explicit declaration of the PRACTICE macro LOCAL &£ile2 is missing, which will result in
an error message.

PMACRO .EXPLICIT ;enforce explicit PRACTICE macro declaration
;here, the explicit declaration with the LOCAL command is missing

&file2=0S.PresentExecutableFile()
;nNOow, a script error occurs, sScript execution stops,
;and the following error message is displayed:
;"explicit PRACTICE macro declaration expected"

See also

B PMACRO B PMACRO.IMPLICIT B PRIVATE B GLOBAL
W LOCAL

A ’'Release Information’ in’Legacy Release History’

PMACRO.IMPLICIT Implicit PRACTICE macro declaration

Format: PMACRO.IMPLICIT

Ends the explicit macro declaration range started with the PMACRO.EXPLICIT command.

NOTE: By default, TRACES32 declares macros implicitly if you neglected to declare
them with the commands LOCAL or PRIVATE.

See also

B PMACRO B PMACRO.EXPLICIT B PRIVATE B GLOBAL
W LOCAL

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 58




PMACRO.IMPLICITPRIVATE Hide implicit macros

[build 140146 - DVD 02/2022]

Format: PMACRO.IMPLICITPRIVATE

Per default, macros implicitly created by an assignment are visible in sub-functions and scripts called with
DO. After calling the new command PMACRO.IMPLICITPRIVATE, these implicitly created macros are
hidden in sub-functions and scripts called with DO. So, these macros behave as if they were created with the
PRIVATE command.

See also
B PMACRO

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 59



PMACRQO.list

Display PRACTICE macros

Format: PMACRDO.list

Displays the global, local, and private PRACTICE macros. In addition, the PMACRO.list window displays:

. The global PRACTICE stack frame

. Local PRACTICE stack frames

. Script nesting

J Loop commands (WHILE, RePeaT)

. User-defined ON and GLOBALON commands

Q4 B:PMACRO. list

FEnddoH A End HgReset |[ #EFList || BfEdit || sZBreakpoints |

|b'|0c|-< from Tine 43 to 4

while at Tline 42

A gosub C:“t32\test.cmm from Tine 25
&tmp = 500.

do C:ht32\test.cmm
&val2 = Ox2F
b | &vall = Ox1F

Level =
State =
SessionStart = 13:17:48

N CMD TICONS, DO C:4T32'demo'menuinternal_icons.cmm
| ot L 1 v \ \ \

: ~1

LC]
A Local PRACTICE stack frames
B Global PRACTICE stack frame

C Example of a user-defined command named TICONS

See also
B PMACRO B PRIVATE W END B GLOBAL
W LOCAL
PMACRO.LOCK Lock PRACTICE macros
Format: PMACRO.LOCK

All macros of higher nesting levels are disabled. The lock will be released automatically if the current level is

left.

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide | 60



Example:

LOCAL é&ml

&ml="Hello”

PRINT “main: ml = &ml”
GOSUB ltest World
PRINT “main: ml = &ml”
ENDDO

ltest:

PMACRO .LOCK

(

ENTRY &ml

PRINT “ltest: ml = &ml”
)

PMACRO . UNLOCK

RETURN
)
See also
B PMACRO B PMACRO.UNLOCK
PMACRO.RESet Clear current PRACTICE macros
Format: PMACRO.RESet

All macros in the current level are removed. If no PRACTICE script is running, all macros on the top level will
be erased.

See also
B PMACRO H END B GLOBAL H GLOBALON

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 61



PMACRO.UNLOCK Unlock PRACTICE macros

Format: PMACRO.UNLOCK

Re-enables the macros that were previously disabled with PMACRO.LOCK.

See also
B PMACRO B PMACRO.LOCK

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 62



PRINT Write text and data to an AREA window (without format decoration)

[Examples]

Format:

<afttribute>:

<format>:

<type>:

<color>:

PRINT [{%<attribute>}] [{ {Yo<format>} <data> }]

AREA <area_name>
CONTinue
HOME

<type>
COLOR.<color>
ERROR
WARNING

Ascii | BINary | Decimal | Hex | String

NORMAL | BLACK | MAROON | GREEN | OLIVE | NAVY | PURPLE
TEAL | SILVER | GREY | RED | LIME | YELLOW | BLUE | FUCHSIA
AQUA | WHITE

Writes the given arguments to the selected AREA window. When writing to the default AREA A000, the
written data is also shown in the TRACES32 message line.

What is the difference between the commands ...?

PRINT ECHO

Writes all data without any format decoration Writes all data decorated to indicate the format
(e.g. without the prefix “Ox” for hexadecimal of the data.

numbers).

For a comparison of the different outputs, see example 4.

<type>

Converts all following <data> to the specified format. See example 3.

AREA <area_name> Writes the message to the specified message area.

Without this attribute the message is written to the default AREA A000 or
the message area that has just been selected with the command
AREA.Select.

If the message AREA you want to write to does not yet exist, use the
command AREA.Create.

This attribute can only be used before the first <data>. (The execution of
a single PRINT command writes only to one message area.)

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide | 63



CONTinue Adds the string to the current output line in the selected AREA window or
TRACES2 message line without inserting a newline character. See
example 2.

This attribute can only be used before the first <data>.

COLOR.<color> Writes <data> in color in the AREA window. See example 1.

ERROR <data> will be written in dark red.
Only when writing to the default AREA A000, the text is also shown as an
error in the TRACE32 message line.

WARNING <data> will be written .
Only when writing to the default AREA A000, the text is also shown as a
warning in the TRACE32 message line.

HOME Writes to top line in AREA window.
This attribute can only be used before the first <data>.

Example 1

An overview of the available colors and their names is written to the AREA window:

AREA.view

PRINT %COLOR.RED "RED " %COLOR.GRAY "GRAY " %COLOR.MAROON "MAROON"
PRINT $COLOR.AQUA "AQUA " %COLOR.GREEN "GREEN " %COLOR.NORMAL "NORMAL"
PRINT $%$COLOR.BLUE "BLUE " %COLOR.OLIVE "OLIVE " %COLOR.SILVER "SILVER"
PRINT $%$COLOR.LIME "LIME " %COLOR.BLACK "BLACK " %COLOR.YELLOW "YELLOW"
PRINT $COLOR.NAVY "NAVY " $COLOR.WHITE "WHITE " $COLOR.FUCHSIA "FUCHSIA"
PRINT %COLOR.TEAL "TEAL " $%COLOR.PURPLE "PURPLE"

= | BzAREA.view f=fe ==

RED GRAY MAROON
GREEN NORMAL
BELUE OLIVE
BLACK
NAVY FUCHSIA
TEAL PURPLE i
4 [ S

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 64



Example 2

Various messages are written to a new, user-defined AREA window named OUT:

;define position, size and name of the new AREA window named OUT
WinPOS 3.5 10. 80. 6. 0. 0. oOUT

AREA.Create OUT ;create AREA window OUT

AREA.Select OUT ;select the AREA window OUT
; for printing

AREA.view ouT ;display AREA window OUT

PRINT "Text 1 "

PRINT %CONTinue "Text 2 " ;print text without line break
PRINT "" ;print an empty line

;print user-defined error message
PRINT "Data &data found at " ADDRESS.OFFSET (TRACK.ADDRESS())
PRINT %ERROR "FLASH programming failed"

;WinClear OUT ;remove AREA window OUT

= | BzAREAview OUT o -E =]
ext 1 Text 2

Data &data found at 1B8
FLASH programming failed -

< [

A This user-defined error message is not written to the TRACE32 message line, since we have re-
routed the output to the user-defined AREA window named OUT.

Example 3

;print hex values in decimal and then in binary format
PRINT %Decimal Ox1f ":" Ox2f ":" 0x3f "-" %BINary Oxlf ":" O0x2f ":" 0x3f

;print all data in certain format using PRACTICE formatting functions
PRINT FORMAT.Decimal (5., 0x1f) o= " FORMAT.BINary (10.,0x1f)

;formatted printing (includes character repetition with <<)
PRINT "="<<24.

PRINT "| " "NAME" "."<<(20.-STRing.LENgth ("NAME")) " |“

= | BzAREAview myWIN = R

31:47:63-00011111:00101111:00111111
31 - 0000011111

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 65



Example 4

The following table shows the output in a message area for the same data written with ECHO and PRINT:

<data> AREA output with AREA output with
ECHO PRINT

0x042 0x42 42
%Hex 66. 0x42 42
28. 23. 23
%Decimal 0x17 23. 23
Oy110011 0y00110011 110011
%BINary 0x33 0y00110011 00110011
X' X X
%Ascii 0x58 ‘X' X
5==5 TRUE () TRUE
5==3 FALSE () FALSE
“text" text text
P:0x001000 P:0x1000 P:0x1000
500ms 0.5000000000s 0.5000000000s
DATE.MakeUnixTime(1990.,10.,3,0,0,0) 654912000. 654912000
Var.VALUE(23 * 47) 0x439 439

See also

B PRINTF B PRinTer B AREA.CLEAR B AREA Create

B AREA.SAVE B AREA Select B AREA.view B ECHO

B SPRINTF B WinPrint

A ’'Release Information’ in’Legacy Release History’
A ’1/O Commands’ in "Training Script Language PRACTICE’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 66



PRINTF

Write formatted data to an AREA window

[Examples]

Format: PRINTF [{%<attribute>}] " <format_string>" [{<data>}]

<attribute>: AREA <area_name>
CONTinue
COLOR.<color>
ERROR
WARNING

<color>: NORMAL | BLACK | MAROON | GREEN | OLIVE | NAVY | PURPLE
TEAL | SILVER | GREY | RED | LIME | YELLOW | BLUE | FUCHSIA
AQUA | WHITE

Writes text and data to the default AREA A000 or the selected AREA window in the style of the printf()
function of C/C++. When writing to the default AREA A000, the output is also shown in the TRACE32

message line.

<attribute>

For a description of the attributes, see table below.

<format_string>

The characters of the <format_string> are written to a message area.
However the following control characters within the <format_string> have a
special meaning:

J & (ampersand)

J " (double-quotes)
. \ (backslash)

. % (percent sign)

For information about the control characters, see table below.

<data>

One <data> argument is required for each control sequence started by a
% within the <format_string>. See example.
For information about the syntax of the control sequence, click here.

<attribute>

Description

AREA <area_name>

Writes the message to the specified message area.

Without this attribute the message is written to the default AREA A000 or
the message area that has just been selected with the command
AREA.Select.

If the message AREA you want to write to does not yet exist, use the
command AREA.Create.

CONTinue

Adds the message to the last output line in the currently selected AREA
window.

COLOR.<color>,
ERROR, WARNING

For option descriptions, see PRINT.

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide | 67



Control Characters

Description

& (ampersand)

Like in any other string in TRACE32, the ampersand invokes a text-
replacement with a named PRACTICE macro. To safely output an
ampersand write &"+"

PRINTF "Jekyll&"+"Hyde" is printed as Jekyll&Hyde

" (double-quotes)

Like in any other string in TRACE32, a double-quote ends a string unless
you escape it with another double-quote.
PRINTF "She said ""Hi!""" is printed as She said "Hi!"

\ (backslash)

Unlike in C/C++ the backslash is not a special escape character inside
TRACERB2 strings. A backslash inside the <format_string> of PRINTF is
printed like a regular character.

PRINTF "north\northwest" is printed as north\northwest

NOTE: Every PRINTF command will automatically cause a line break in
the AREA window before writing to it. You can explicitly suppress the line
break with the attribute %CONTinue, which has to be placed outside the
<format_string>. (See %CONTinue)

% (percent sign)

The percent sign is the magic control character with PRINTF:

Any percent sign (%) inside the <format_string> starts a control sequence
which is replaced by the <data> arguments following the <format_string>.

For every valid control sequence, you must specify a <data> argument.

The control sequence started with the percent sign has the form:
. %[flags][width][.precision][length]specifier

The percent sign and specifier are mandatory; the rest is optional. The
length is highly optional and mainly accepted for compatibility to the
format-string in C/C++.

For information about the available flags, specifiers, etc., click the blue
hyperlinks.

To print a percent sign, you have to write %%
PRINTF "100%% safe" isprintedas 100% safe

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide | 68



Specifier | Description Output Valid Argument
Types
dori Signed decimal integer -314 Hex,
PRINTF "%i" -314.159265 Decimal,
PRINTF "%i" -0x13A ;minus sign Binary;,
PRINTF "%i" ~0x13A+1 ;tilde Boolean,
PRINTF "%hi" OxFEC6 ASCII,
For information about the h, see Length. Address,
Float,
u Unsigned decimal integer 314 Time*
o Unsigned octal integer 472
X Unsigned hexadecimal integer, lowercase digits | 13a
X Unsigned hexadecimal integer, uppercase digits | 13A
ly Unsigned binary integer (TRACE32 extension) 100111010 Hex,
Decimal,
Binary,
Boolean,
ASCII,
Address
forF Floating point in decimal notation 314.159265 Hex,
. L. . . Decimal,
e Floating point in decimal exponent notation, 3.141593e+002 Binary,
lowercase Boolean
PRINTF "%e" 314.159265 ASCIl.
E Floating point in decimal exponent notation, 3.141593E+002 F!oat;
uppercase Time
g Floating point %e or %f 314.159
Floating point %E or %F 314.159
a Floating point in hexadecimal exponent notation, | 0x1.3a28c6p+8
lowercase
A Floating point in hexadecimal exponent notation, | 0X1.3A28C6P+8
uppercase
c Character** Intel® Hex,
PRINTF "%s%c" "Intel" O0x00AE Decimal,
Binary,
ASCII
s String sample String
p Pointer: The offset of an address (alias for #x) 0x1000 Address
1A Single address (TRACE32 extension), uppercase | A:1000 Address,
PRINTF "%!A" a:100 Address range
PRINTF "$!A" a:100--a:110

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide | 69



Specifier | Description Output Valid Argument
Types
IR Address range (TRACE32 extension), uppercase | A:1000--1FFF Address range
PRINTF "%!R" a:1000--1fff
n Nothing (nothing at all) all

* A time value is output in nanosecond in case of an integer representation, while it is output in seconds in
case of a floating point representation.

** For values from 0 to 127, the result is an ASCII character on all operating systems.
For values from 128 to 255, the result depends on the font setting in the config.t32.
On Windows, the result additionally depends on the active console code page.

Flag Description Affected
Specifier
The use of flags is optional. You may use no flag, one flag, or multiple flags.
- Left align: Aligns the output to the left of the minimal output width (see| all
example).
By default the output is right-aligned within the given minimal output
width.
0 Zero padding: Left-pads numbers with zeroes instead of spaces when| d, i, o, u, x, X,
a minimal output width is given (see example). f,Fa A e E, g,
Not useful in combination with ’-’ (Left align) G
'y, p
# Affix: Prepends a format-specific decoration: X, X,
J %#x gets decoration "0x" for non-zero values o,
o %#X gets decoration "0X" for non-zero values ly,
J %#0o gets decoration "0"  for non-zero values f,Fg, G
. %i#ly gets decoration "0y" for non-zero values A, IR
. %#!A gets decoration "Ox"
For floating point representations, a decimal point is forced. Decimal
numbers do not get a decimal point.
In addresses (%!A and %!R) all offsets a prefixed by "Ox".
This flag is mainly useful with addresses.
PRINTF "$!y" 0x42 ;result: 1000010
PRINTF "S#!y" 0x42 ;result: 0y1000010
+ Force algebraic sign: d, i,
. Positive numbers are prefixed by a plus sign (+). f,Fa A eE, g,
J Negative numbers are prefixed by a minus sign (-). G
(space) Positive numbers are prefixed by a space character. d, i,
Negative numbers are prefixed by a minus sign (-). f,Fa A eE, g,
G

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide |

70




Width

Description

The optional width specifies the minimum output width and is either a decimal number or an asterisk:

<number>

The minimum number of characters to be written including an optional algebraic sign or
prefix/suffix (with flag #).

. If the representation of the data uses fewer characters, the output is usually pad-
ded with blank spaces.

J If flag 0 is used, the output is padded with zeroes instead.

J If the representation of the data requires more characters, it is not truncated.

PRINTF "%08x" 0x42

By using an asterisk inside the <format_string>, the value for the minimum output width is
taken from an additional <data> argument. This additional argument precedes the argument
that has to be formatted (and also precedes any possible argument for the precision).
PRINTF "%0*x" 8 0x42

Precision

Specifier Description

The meaning of the optional precision depends on the specifier at the end of the control sequence. It is
either a number or an asterisk:

. <hum-
ber>

d,i, u, The minimum number of digits to be written. If the written number has
o, X, X, fewer digits than specified with the precision, the remaining digits are
ly, p padded with leading zeroes.

f,Fa A eE The number of digits after the decimal point.

g, G The maximum number of significant digits to be written.

s The maximum number of characters to be written.

c,n No effect. Precision value is ignored.

IA, IR The minimum number of digits for the address offset.

With addresses, you may also specify one or two additional precision
values - each starting with a decimal point:
U %[flags][width][.precision[.precision[.precision]]][length]specifier

See example.
The precision values specify the minimum number of digits for the

memory segment and/or machine ID, if the address contains a
memory segment and/or machine ID.

By using an asterisk inside the <format_string>, the value for the precision is taken from
an additional <data> argument. This additional argument precedes the argument that has to
be formatted.

PRINTF "%*.*x" 8 4 0x42

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 71




Length Description Affected
Specifier

The optional length is mainly accepted for compatibility to format strings used with printf() in C/C++.
However, the length has a slightly different meaning in TRACE32 than with C/C++. In TRACE32 the length
can specify a bit limit for integer representations. The default length for all integer values is 64-bit.

h Truncate the output value to 16-bit. d,i,u, 0 x X, ly
hh Truncate the output value to 8-bit. d,i,u, 0, x, X, ly
| Truncate the output value to 32-bit. d,i,u,0,x X, ly
| Truncate the output value to 64-bit (default). d,i,u,0,x, X, ly
L,jz Silently ignored length specifiers (for compatibility to format strings all

ort used with printf() in C/C++)

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 72



Example 1

;print hex values in decimal and in binary format
: <format_string> <data>
PRINTF "%i. %i. %i. / %$#!y S#!y S#!y" Ox1lf 0x2f O0x3f Ox1f O0x2f O0x3f

% = Control character  i= Specifier #=Flag !y = Specifier

= Postfix for decimal values, see SETUP.RADIX.

Output:
B::AREA.view =n| Wl <

47. 63. / Oyl111l 0y101111 Oy111111

[
[y

-~

I 2

Example 2

PRIVATE &hll_variable ;declare a PRACTICE macro
Data.Load.ELF "~~/demo/arm/compiler/gnu/sieve.elf" /RelPATH

;assign name of HLL variable from *.elf file to the PRACTICE macro
&hll_variable="plotl"

;strings padded to a column width of 15 characters
PRINTF %COLOR.RED "%-15s: %s" "HLL Var. Name" "&hll_variable"

PRINTF "%-15s: %s" "Symbol Path" sYmbol .NAME (&hll variable)

PRINTF "%-15s: %#!A" "Address™" Var .ADDRESS (&hll_variable)

PRINTF "%-15s: %i. Bytes" "Size" Var.SIZEOF (&hll_variable)

PRINTF "%-15s: %+i." "Value" Var.Value (&hll_variable)
% = Control character -=Flag 15=Width s = Specifier; for result, see [A] below.

% = Control character #=Flag !A = Specifier; for result, see [B] below.

Output:
= | B:AREA.view EI@

HLL Var. Name : plotl
Symbol Path : Wisieve'Globalyplotl

ddress D:0x0:0ng&a?C
Size : 2. Bytes
I ‘alue I: -15000. B v
2

A Left-aligned column with a width of 15 characters (%-15s)

B Single address in upper case with the prefix 0x (%#!A)

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 73



Example 3

Random data and space IDs from the TRACE32 virtual memory (VM:) are printed in fixed columns.

PRIVATE &i &addr
&i=0
&addr=VM: 0x10200

SYStem.Option.MMUSPACES ON ;enable space IDs for logical addresses
Data.PATTERN &addr++0xFF /RANDOM ;create a random pattern
WHILE &1<0x100

(
PRINTF "Address %.8.4!A contains 0x%08X" &addr+&i Data.LONG (&addr+é&i)

&i=&1+4

% = Control character  .8.4 = Precision  !A = Specifier; for result, see [A] below.

% = Control character 0 = Flag 8 = Width X = Specifier; for result, see [B] below.
Output:

= | BuAREAview =n| Wl <

ddress WM:0000:000102E4 contains OxD10F8572 L

ddress VM:0000:000102E8 contains Ox70C10C42
ddress VM:0000:000102EC contains O0x00432D3D
ddress VM:0000:000102F0 contains OxE506B616
ddress VM:0000:000102F4 contains Ox8A02AF28
ddress, VM:0000:000102F8 ~ontains, Ox703767FE

ddres:| VM £ 0000 : 000102FC J-ontain:| oxapasaznn | -

4 [0 S

T B R EE R

Ml
[A] (&]
A Prints an address with an offset of at least 8 characters and its space ID of at least 4 characters
(%.8.4!A)

B Prints data in hexadecimal form with at least 8 characters. The data is left-padded with zeros if the
data has less than 8 characters (%08X).

See also
H PRINT B ECHO B SPRINTF

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 74



PRIVATE Create private PRACTICE macro

[Example]

Format: PRIVATE {<macro>}

Creates a private macro. PRACTICE macros declared with PRIVATE exist inside the declaring block and are
erased when the block ends. They are only visible in:

Yes The declaring block and all sub-blocks (e.g. IF..., RePeaT..., WHILE..., etc.)
No  Subroutines (GOSUB...RETURN)
No  Sub-scripts (DO...ENDDO)

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 75



Example: The following script is just intended to illustrate the usage of private macros. To try this demo
script, simply copy the script to a test . cmm file, and then step through the script (See “How to...”).

LOCAL &msg //declare LOCAL macro
&msg="Hello World!"

PRINT "&msg" //show LOCAL macro
GOSUB childil //call a subroutine
PRINT "&msg" //show LOCAL macro
ENDDO

childl:

PRIVATE &msg //declare PRIVATE macro
&msg="This comes from a private macro"

//show PRIVATE macro defined in childl
PRINT "childl says: &msg"

//PRIVATE macros are visible inside a sub-block:
&msg="This comes again from the private macro"
PRINT "&msg"

)
GOSUB grandchildl

//show PRIVATE macro defined in childl
PRINT "childl says: &msg"
RETURN
grandchildl:
//LOCAL macros visible in any subroutine:
//show again LOCAL macro defined in the beginning of the script
PRINT "grandchildl says: &msg"
&msg="Hello Universe!"

RETURN
See also
B PMACRO.EXPLICIT B PMACRO.IMPLICIT B PMACRQO.list W ENTRY
B GLOBAL B LOCAL B SPRINTF

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 76



PSKIP

Skip command or block in PRACTICE script

Format: PSKIP

Skips the current command or block in a PRACTICE script without executing command or block. The PC
moves to the next executable PRACTICE script line, but does not execute it.

ZEF [B:PLIST]

[AREA.Create ADOO
65 |AREA. view

150.

ADOOD ;ADOD to 150.

OPEN #1 ~t32.cmm /Read
READ #1 %LINE &myTline

WHILE FILE.EOFLASTREAD()==FALSE()

(
)
76.|CLOSE #1

J;

= 72 PRINT "&myTline” ;print Tine to AREA
A 73 READ #1 %LINE &myline ;assigns all
— 74 ;next EOL to &myline

[ sistep |[ Mover |[ @ up | ¥ continue || ZIEStop ][@Enddcli@l‘dacros][ B Edit | 21 Breakpoints |

;extend the default AREA window called
Tines and open it

vindow A00O
characters up to the

(o )[O el

-

A Clicking Skip in line 71 skips the block without executing it and moves the PC to line 76.

As an alternative to PSKIP, you can right-click the command where you want to continue the PRACTICE
script execution, and then select Set PC here from the popup menu.

What is the difference between ...?

PSKIP

Set PC here

Automatically moves the PC to the next
executable line.

Lets you place the PC to an executable line where
you want to continue.

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide | 77




PSTEP Execute single line

Format: PSTEP [<file> [<parameter _list>]]

If no PRACTICE script is loaded, the command will toggle the run mode. If the run mode is switched to
single step, the next started PRACTICE script will stop at the first line and can be executed in single step
mode in the PSTEP window.

“E [B:PSTEP ~~\demo\arm\compiler\armiarmd.crmm ] EI@
¥ over [ @ up [ 2 ontinue | Z1E Stop || S Enddo || 462 Skip |[5GiMaaus [ B Edit ][ Breakpoints]
/initialize system i

32 [5Y5tem.RESet

{ =elect CPU type
35 |5¥5tem.CPU ARMS40T

{ s=et AMBA option (for BUS-RiscTrace)
38 [SYStem.Option AMBA ON

{ start debugger
41 [5¥Stem. Up

] [}

PSTEP ; sets PRACTICE script execution to
; single step mode

DO test ; starts PRACTICE script

PSTEP ; single step in PRACTICE script

With a given PRACTICE script file name the DO command will be superfluous.

PSTEP test.cmm Ox1fff ; sets PRACTICE script execution to
; single step mode and starts the
; PRACTICE script

See also
W PSTEPOUT B PSTEPOVER H PBREAK W PEDIT
W PLIST H DO H RUN

A ’'Release Information’ in’Legacy Release History’
A ’Debugging of PRACTICE Script’ in "Training Script Language PRACTICE

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 78



PSTEPOUT Back to caller

Format: PSTEPOUT

Executes all PRACTICE script lines of a callee, returns to the caller, and stops PRACTICE script execution
at the next executable script line of the caller. A callee can be a PRACTICE subroutine (GOSUB...RETURN)
or a sub-script (DO...ENDDO).

Prerequisite: You have run the PSTEP command to switch to the PRACTICE script single-step mode.

Clicking the Up button in the PRACTICE script windows PLIST, PSTEP, or PMACRO.list
executes the PSTEPOUT command via the user interface:

2} [B:PLIST] =0 =R
M Step @Dver!l@(:ontinue |[ #1Estop || {MEEnddo || §Eskip |[:GiMacros|| BfEdit || 7 Breakpoints |

64 [AREA. view

65 [PRINT %COLOR.RED "This is the caller.”™

67 [GOSUE __AnyCallee ;call a subroutine
>69 [PRINT %COLOR.RED "We are back in the caller.” —
71 |ENDDO

AnyCallee:

75 PRINT %COLOR.NAVY “This is the subroutine:”

77 RePeaT 10.

78

= PRINT %COLOR.MNAVY "Hello TRACE32!"

30 )
81 [RETURN -
4 I3

A PSTEPOUT runs the subroutine to completion, returns to the caller and stops PRACTICE script
execution at the next executable script line of the caller.

See also
B PSTEPOVER B PSTEP

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 79



PSTEPOVER Step over callee and stop at the next script line

Format: PSTEPOVER

Executes a PRACTICE script line and stops script execution at the next executable script line. A callee such
as a PRACTICE subroutine (GOSUB...RETURN) or sub-script (DO...ENDDO) is run to completion without
leaving the caller.

Prerequisite: You have run the PSTEP command to switch to the single-step mode for PRACTICE scripts.

NOTE: If there is an active breakpoint in the callee you are trying to step over, then
script execution will stop at the breakpoint (see also PBREAK).

A PSTEPOVER will also be stopped by the following commands in a callee:

- ENTER
e INKEY
.  STOP

Clicking the [ #¥over | Over button in the PRACTICE script windows PLIST, PSTEP, or PMACRO.list
executes the PSTEPOVER command via the user interface:

ZEF [B:PLIST] o -E =]

( @Stepllmll @ up |[ ¥ continue || AIEStop |[:MEEnddo | Giskip |[:{CiMacros|| F{Edit || 2Breakpoints |
64 [AREA. view i
65 [PRINT %COLOR.RED "This is the caller.”™
(6? GOSUB __AnyCallee ;call a subroutine
69 [PRINT %COLOR.RED "We have never left the caller.”
71 |ENDDO il
Ik .

A PSTEPOVER runs the subroutine to completion without leaving the caller, and stops PRACTICE script
execution at the next executable script line of the caller.

See also
W PSTEPOUT B PSTEP

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 80



Q..R

READ Read from data file

Format: READ #<buffer_number> [%LINE] <parameter_list>

Read data from an open file. Arguments in the file are separated by blanks.

LINE With the LINE option a complete line is read into a PRACTICE macro.
Examples:

LOCAL &offset &data &headerline
OPEN #1 datafile.dat /Read

READ #1 SLINE &headerline
PRINT "&headerline"

// script for newer software versions

RePeaT 10.
(
READ #1 &offset &data
IF EOF ()
GOTO endloop
Data.Set &offset &data

endloop: CLOSE #1

// for older software versions than 2008.03.03
RePeaT 10.
(

READ #1 &offset &data

IF "&offset"==""

GOTO endloop

Data.Set &offset &data

)
endloop: CLOSE #1

See also
B CLOSE W OPEN H WRITE

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 81



RePeaT Loop with check at end of loop

Format 1: RePeaT <count> <command>
Format 2: RePeaT [<count>]
<block>
Format 3: REPEAT
<block>
WHILE <condition>

The command or script block following a RePeaT command will be executed <count>times (format 1 and 2)
or once and then as long as the <condition> is true (format 3).

If <count>is set to 0, the loop is executed as an endless loop.

Example of format 1: The execution of a single command is repeated 10 times. The RePeaT command
may be started interactively from the command line.

AREA.view
RePeaT 10. PRINT "X"

Example of format 2:

Var.Break.Set flags /Write ; set a Write breakpoint to array

; flags
; repeat the following 10. times
; start program and wait until program execution is stopped at breakpoint

; export contents of array flags to file flags_export.csv in CSV format
REPEAT 10.

(
Go
WAIT !STATE.RUN ()
Var .EXPORT "flags_export.csv" flags /Append

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 82



Example of format 3:

read line from file my_strings.txt
write not-empty lines to file my_strings_noempty.txt

’

’

PRIVATE &CurrentLine
OPEN #1 my_strings.txt /Read
OPEN #2 my_strings_noempty.txt /Create

RePeaT

(
READ #1 %LINE &CurrentLine

IF (!FILE.EOFLASTREAD ()&& ("&CurrentLine"!=""))
WRITE #2 "&CurrentLine"

)
WHILE !FILE.EOFLASTREAD /()

CLOSE #1
CLOSE #2

The following command sequence will generate an error message when the script is started:

; below command sequence is illegal and throws an error!
RePeaT <count>

<block>
WHILE <condition>

<block>

to separate RePeal from WHILE comman

ReaT <count> 0 / WHILE <condition> 1s deprecated! Use empty
PERF H SYStem H Step H Go H Break H sYmbol H Frame ]E

mmponents“ trace H Data H var H List H

SF:40001284 \\diabc\diabc\sieve+0x3C

The following workaround solves this problem:

RePeaT <count>
<block>
(

; empty block to separate RePeaT command from WHILE command

WHILE <condition>
<block>

See also

m DO B WHILE

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide |

83



RETURN Return from subroutine

Format: RETURN [<parameter_list>]

The subroutine is finished. Optionally, parameters may be passed, which can be taken over using the
ENTRY command.

Example:

GOSUB subr2
ENTRY &portval

subr?2 :
&result=Data.Byte(sd:0x100)
RETURN &result

See also
B ENTRY B GOSUB

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 84



RETURNVALUES Take return values

Format: RETURNVALUES {<macro>}

Takes the return values of a PRACTICE script/subroutine. The return values have to be enclosed in quotes
(") in the call. An error message is generated, if a macro name is used, that cannot be found in the current
scope.

Examples:

PRIVATE &srl_dec &srl_hex &srl_string

GOSUB sr_1
RETURNVALUES &srl dec &srl hex &srl_string
ENDDO
sr_1:
(
RETURN "5." "0x55" "Okay"

PRIVATE &range &boolean &symbol &vall &val2 &strA
GOSUB AnySubroutine

; take the return values passed by the subroutine
RETURNVALUES &range &boolean &symbol &vall &val2 &strA

PRINT "&range &boolean &symbol &vall &val2 &strA"

ENDDO

AnySubroutine:
PRIVATE &my_ rng &my bool &my symb &my vall &my val2 &my strA

&my_ rng="0x40000000++0xffff" ;any range
&my_bool=FOUND () ;any boolean expression
&my_symb="\MCC\sieve" ;any symbol
&my_vall="10." ;any decimal wvalue

&my val2="0xA" ;any hex value

&my_ strA="Hello TRACE32!" ;any string

RETURN "&my rng" "&my bool" "&my_ symb" "&my vall" "&my_val2" "&my strA"

See also
B ENTRY B PARAMETERS

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 85




RUN Start PRACTICE script

Format: RUN <file> [<parameter_list>]

Starts a PRACTICE script after clearing the old PRACTICE stack. Additional parameters may be defined
which are passed to the subroutine. The command is identical to the DO command, except that it clears the
old stack before starting the PRACTICE module.

See also
H DO H ENDDO W PSTEP

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 86



S..T

SCREEN Screen updating

If PRACTICE scripts are executed, the screen is normally not updated. The SCREEN commands allow
updating of the screen manually or automatically. The command has no effect on the screen update, while
PRACTICE is not running, e.g. the update at spot points.

See also

B SCREEN.ALways B SCREEN.display B SCREEN.OFF B SCREEN.ON
B SCREEN.WAIT

SCREEN.ALways Refresh always

Format: SCREEN.ALways

Refreshes the screen after every PRACTICE line. This slows down the execution speed, but allows tracing
the script flow.

Example:
PLIST ; display script state

SCREEN.ALways
DO test.cmm ; run

See also
B SCREEN

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 87



SCREEN.display Refresh screen

Format: SCREEN.display

Updates the screen.
Example:

SCREEN.OFF ; turn refresh off for fast printing
PRINT " Screen Mask: A"

PRINT " B"

PRINT ..

SCREEN ; update the screen

See also
B SCREEN

SCREEN.OFF No refresh

Format: SCREEN.OFF

No refreshing of the screen is done, while PRACTICE scripts are running (except SCREEN.display
commands). This allows PRACTICE scripts to execute very fast, but the results will not be seen on the
screen during script execution.

See also
B SCREEN

SCREEN.ON Refresh when printing

Format: SCREEN.ON

Refreshes the screen after every PRINT command.

See also
B SCREEN

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 88



SCREEN.WAIT

Update screen while waiting

Format: SCREEN.WAIT [<condition> | <period>]

Same as WAIT, but updates the screen while waiting. If you use a terminal window or if you display variables
with run-time memory access, this might be required.

If the command SCREEN.WAIT is used without parameters, the PRACTICE script waits until all processing
windows are completed before the next PRACTICE instruction is interpreted. Examples of processing
windows are: Trace.STATistic.Func, Trace.Chart.sYmbol or CTS.List.

<condition> PRACTICE functions that return the boolean values TRUE or FALSE.
<period> Min.: 1ms
Max.: 100000s
Without unit of measurement, the specified value will be interpreted as
seconds and must be an integer. See below.
Example 1:
; configure TERMinal window
TERM.view ; display TERMinal window
Go ; start program

SCREEN.WAIT 5.s

; waliting

wait 5.s and update screen while

©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide |

89



Example 2:

Go ; start program execution

WAIT !STATE.RUN() ; walt until program execution
; stopped

Trace.Chart.sYmbol ; perform a flat function run-time
; analysis

SCREEN.WAIT ; update screen and wait until

; flat function run-time analysis
; 1s completed

; continue PRACTICE script
; execution

See also
B SCREEN B PRinTer.OPEN B TIMEOUT H WAIT

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 90



SPRINTF Write formatted data to a PRACTICE macro

Format: SPRINTF <macro> "<format_string>" [{<data>}]

Writes text and formatted data to a PRACTICE macro in the style of the sprintf() function of C/C++.

<macro> If a PRACTICE macro with the given name does not exist, then it is created
on the local PRACTICE stack.

<format_string> The characters of the <format_string> are written to the PRACTICE
<macro>.
% Each percent sign (%) inside the <format_string> starts a control sequence

which is replaced by the <data> arguments following the <format_string>.

The control sequence started with the percent sign has the form:
o %[flags][width][.precision][length]specifier

For details on the control sequence and other special characters inside the
<format_string>, see the PRINTF command.

Example:
PRIVATE &str ;declare a PRACTICE macro of the type PRIVATE
SPRINTF &str "Read 0x%08x at %10i." Data.Long(A:0x100) DATE.UnixTime ()
APPEND "~~~/mylogfile.log" "&str"

TYPE "~~~/mylogfile.log" ;display the result in the TYPE window

% = Control character 0 =Flag 8 = Width  x = Specifier; for result, see [A] below.
10 = Width i = Specifier . = Postfix for decimal values (SETUP.RADIX); for result, see [B] below.

[ BuTYPE "~~~fmy|ogfi|e|og" EIE@
of 1. _#Find... | | [ Track

Read 0xe92d4030 at 1498233565.

S

See also
H ECHO B GLOBAL H LOCAL H PRINT
Bl PRINTF H PRIVATE

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 91



STOP Interrupt PRACTICE script

Format: STOP [<parameter _list> ...]

The script is stopped, but it remains in the working storage and can be reactivated by the CONTinue
command. The arguments are displayed in the message line and AREA window (same as command
PRINT).

Example:

Data.Test 0x0--0x0ffff
IF FOUND ()
STOP "Memory error"

See also
B CONTinue W END W ENDDO H WAIT

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 92




SUBROUTINE Define a subroutine

[build 138738 - DVD 09/2021]

Format: SUBROUTINE <name>

Defines a subroutine in a PRACTICE script. A subroutine must be defined at the top level of the script, it is
not allowed to define subroutines within a block. The SUBROUTINE statement must be followed by a block.

A subroutine block should end with a RETURN statement. If no return values are required, the RETURN
statement is optional. If the block end is reached without reaching a RETURN statement, the subroutine will
return to the caller without passing return values (implicit return).

Call subroutines using GOSUB. Example:

PRINT "Performing memory test..."

SUBROUTINE BoardSetup
(
SYStem.CPU CortexAb5
SYStem.Up
;implicit RETURN

SUBROUTINE MemoryTest

(
PRIVATE &address &mem_ ok
PARAMETERS &address
Data.Set &address $%Long O0x5A5A5A5A
&mem_ok=Data .LONG (&address) ==0x5A5A5A5A
RETURN "&mem_ok" ;explicit RETURN

)

GOSUB BoardSetup

PRIVATE &testl &test2

GOSUB MemoryTest "ANC:0x1000"
RETURNVALUES &testl

GOSUB MemoryTest "ANC:0x2000"
RETURNVALUES &test2

IF (&testl)&& (&test2)
PRINT "Memory OK."

NOTE: . GOSUB accepts both labels and subroutine names as target, therefore
labels and subroutines can not have the same name.

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 93



W..Z

WAIT Wait until a condition is true or a period has elapsed

Format: WAIT [<condition>] [<period>] [/[RunTime]

Waits for the specified condition to become true or for the specified period to elapse. If both a condition and

a period are specified, then the first argument to enter the desired state terminates the command. The
granularity of period, as well as the minimum period time is 1ms. The maximum period is 100000s.

While waiting the screen is not updated. If you want the screen to be updated while waiting use the
command SCREEN.WAIT.

<condition> PRACTICE functions that return the boolean values TRUE or FALSE.

<period> Min.: 1ms

Max.: 100000s

Without unit of measurement, the specified value will be interpreted as
seconds and must be an integer. See below.

RunTime Wait period depends on the target runtime and not on the host time.

Example 1: Run target program for 1 second.

Go
WAIT 1s
Break

Example 2: Wait until core halts at a breakpoint.

Break.Set sieve
Go
WAIT !STATE.RUN ()

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide |

94



Example 3a: Wait until core halts at a breakpoint, with 2s timeout.

Go main
WAIT !STATE.RUN() 2s

IF STATE.RUN()
(

PRINT %ERROR "function main not reached!"
ENDDO

Example 3b: Wait until core halts at a breakpoint, with 2s timeout.

Go main
WAIT !STATE.RUN() 2s

IF TIMEOUT ()
(

PRINT %ERROR "function main not reached!"

ENDDO
)
See also
B WHILE B INKEY B SCREEN.WAIT B STOP
W TIMEOUT B SYStem.PAUSE a TIMEOUT()

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 95



WHILE Loop with check at start of loop

Format: WHILE [<condition>]

The command or script block following a WHILE statement will be executed as long as the condition is true.

Emulators and debuggers have an counterpart of this command that works in the HLL syntax of the target
program (command Var.WHILE).

Examples:

WHILE Register (d0)==0x0

(
Register.Set pc testprog
Go testend

Var .WHILE flags([9]!=0 ; HLL expression in condition

Step
NOTE: WHILE must be followed by a white space.
See also
B WAIT B RePeaT B VarWHILE Q FILE.EOF()
O FILE.EOFLASTREAD() O STATE.RUN()

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 96



WRITE Write to data file

Format: WRITE #<buffer_number> [Y%<format>] <parameter_list>

<format>: CONTinue

Save data in a data file. The syntax of the command is similar to the PRINT command.

CONTinue Continues to print data to the current line (and not to a new line).

Example: To test this script, simply copy it to a test . cmm file, and then run it in TRACE32 (See “How
to...”).

;create a file in the temporary directory of TRACE32 and
OPEN #1 ~~~/datafile.dat /Create ;open the file for writing

&offset=0x2228

WHILE &offset<0x22C4

( ;write data to file
WRITE #1 "At Address " &offset " is Data " Data.Long(SR:&offset)
s&offset=&offset+1

CLOSE #1 ;close the file for writing

TYPE ~~~/datafile.dat /LineNumbers ;optional: open file in TYPE win.

The path prefix ~~~ expands to the temporary directory of TRACE32.

See also
N WRITEB H APPEND B CLOSE B MKTEMP
H OPEN H READ

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 97



WRITEB Write binary data to file

Format: WRITEB #<buffer_number> [Yo<format>] <data> | <string>

<format>: Byte | Word | Long | BE | LE

Writes binary data to a file. The option /Binary for the OPEN command allows to open or create binary files.

Example:

;create a binary file in the temporary directory of TRACE32 and
;open the binary file for writing
OPEN #1 ~~~/test.bin /CREATE /BINARY

WRITEB #1 Var.VALUE (flags[0]) ;write the values of an HLL variable
WRITEB #1 Var.VALUE (flags[1]) ;to the binary file

WRITEB #1 Var.VALUE (flags[3])

WRITEB #1 Var.VALUE (flags(4])

CLOSE #1 ;close the binary file for writing

DUMP ~~~/test.bin ;display a binary file in hex
;and ASCII format.

See also
H WRITE B CLOSE H OPEN

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach PRACTICE Script Language Reference Guide | 98



	PRACTICE Script Language Reference Guide
	History
	Related Documents
	A ... D
	APPEND      Append to file
	BEEP      Acoustic signal
	CLOSE      Close file
	CONTinue      Continue PRACTICE script
	DECRYPT      Decrypts a text or binary file
	DO      Start PRACTICE script
	DODECRYPT      Execute encrypted PRACTICE script (*.cmm)

	E ... F
	ECHO      Write text and data to an AREA window (with format decoration)
	ELSE      Conditional script execution
	ENCRYPT      Encrypt a text or binary file
	ENCRYPTDO      Encrypt a PRACTICE script (*.cmm)
	ENCRYPTPER      Encrypt a PER file (*.per)
	END      Terminate PRACTICE scripts, etc.
	ENDDO      Return from a PRACTICE script
	ENTER      Window-based input
	ENTRY      Parameter passing

	G ... H
	GLOBAL      Create global PRACTICE macro
	GLOBALON      Global event-controlled PRACTICE script execution
	GOSUB      Subroutine call
	GOTO      Local script jump

	I ... L
	IF      Conditional script execution
	INKEY      Character input
	JUMPTO      Global script jump
	LOCAL      Create local PRACTICE macro

	M ... O
	ON      Event-controlled PRACTICE script execution
	OPEN      Open data file

	P ...
	PARAMETERS      Parameter fetching
	PBREAK      Breakpoints in PRACTICE script files (*.cmm)
	PBREAK.Delete      Delete breakpoint
	PBREAK.DISable      Disable breakpoint
	PBREAK.ENable      Enable breakpoint
	PBREAK.List      Display breakpoint list
	PBREAK.OFF      TRACE32 disables breakpoint handling
	PBREAK.ON      TRACE32 re-enables breakpoint handling
	PBREAK.RESet      Clear all breakpoints
	PBREAK.Set      Add breakpoint
	PEDIT      Edit PRACTICE script
	PLIST      List PRACTICE script
	PMACRO      PRACTICE macros
	PMACRO.EXPLICIT      Enforce explicit PRACTICE macro declaration
	PMACRO.IMPLICIT      Implicit PRACTICE macro declaration
	PMACRO.IMPLICITPRIVATE      Hide implicit macros
	PMACRO.list      Display PRACTICE macros
	PMACRO.LOCK      Lock PRACTICE macros
	PMACRO.RESet      Clear current PRACTICE macros
	PMACRO.UNLOCK      Unlock PRACTICE macros
	PRINT      Write text and data to an AREA window (without format decoration)
	PRINTF      Write formatted data to an AREA window
	PRIVATE      Create private PRACTICE macro
	PSKIP      Skip command or block in PRACTICE script
	PSTEP      Execute single line
	PSTEPOUT      Back to caller
	PSTEPOVER      Step over callee and stop at the next script line

	Q ... R
	READ      Read from data file
	RePeaT      Loop with check at end of loop
	RETURN      Return from subroutine
	RETURNVALUES      Take return values
	RUN      Start PRACTICE script

	S ... T
	SCREEN      Screen updating
	SCREEN.ALways      Refresh always
	SCREEN.display      Refresh screen
	SCREEN.OFF      No refresh
	SCREEN.ON      Refresh when printing
	SCREEN.WAIT      Update screen while waiting
	SPRINTF      Write formatted data to a PRACTICE macro
	STOP      Interrupt PRACTICE script
	SUBROUTINE      Define a subroutine

	W ... Z
	WAIT      Wait until a condition is true or a period has elapsed
	WHILE      Loop with check at start of loop
	WRITE      Write to data file
	WRITEB      Write binary data to file



