
MANUAL

PRACTICE Script Language
Reference Guide

PRACTICE Script Language Reference Guide

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 PRACTICE Script Language ... 

 PRACTICE Script Language Reference Guide .. 1

 History .. 5

 Related Documents ... 6

 A ... D .. 7

 APPEND Append to file 7

 BEEP Acoustic signal 7

 CLOSE Close file 8

 CONTinue Continue PRACTICE script 8

 DECRYPT Decrypts a text or binary file 9

 DO Start PRACTICE script 10

 DODECRYPT Execute encrypted PRACTICE script (*.cmm) 11

 E ... F ... 12

 ECHO Write text and data to an AREA window (with format decoration) 12

 ELSE Conditional script execution 14

 ENCRYPT Encrypt a text or binary file 15

 ENCRYPTDO Encrypt a PRACTICE script (*.cmm) 16

 ENCRYPTPER Encrypt a PER file (*.per) 17

 END Terminate PRACTICE scripts, etc. 18

 ENDDO Return from a PRACTICE script 19

 ENTER Window-based input 20

 ENTRY Parameter passing 22

 G ... H .. 23

 GLOBAL Create global PRACTICE macro 23

 GLOBALON Global event-controlled PRACTICE script execution 24

 GOSUB Subroutine call 30

 GOTO Local script jump 32

 I ... L .. 33

 IF Conditional script execution 33

 INKEY Character input 34

 JUMPTO Global script jump 34

 LOCAL Create local PRACTICE macro 35
PRACTICE Script Language Reference Guide | 2©1989-2024 Lauterbach

 M ... O .. 37

 ON Event-controlled PRACTICE script execution 37

 OPEN Open data file 42

 P 43

 PARAMETERS Parameter fetching 43

 PBREAK Breakpoints in PRACTICE script files (*.cmm) 44

 PBREAK.Delete Delete breakpoint 44

 PBREAK.DISable Disable breakpoint 44

 PBREAK.ENable Enable breakpoint 45

 PBREAK.List Display breakpoint list 46

 PBREAK.OFF TRACE32 disables breakpoint handling 47

 PBREAK.ON TRACE32 re-enables breakpoint handling 48

 PBREAK.RESet Clear all breakpoints 48

 PBREAK.Set Add breakpoint 49

 PEDIT Edit PRACTICE script 52

 PLIST List PRACTICE script 55

 PMACRO PRACTICE macros 56

 PMACRO.EXPLICIT Enforce explicit PRACTICE macro declaration 56

 PMACRO.IMPLICIT Implicit PRACTICE macro declaration 58

 PMACRO.IMPLICITPRIVATE Hide implicit macros 59

 PMACRO.list Display PRACTICE macros 60

 PMACRO.LOCK Lock PRACTICE macros 60

 PMACRO.RESet Clear current PRACTICE macros 61

 PMACRO.UNLOCK Unlock PRACTICE macros 62

 PRINT Write text and data to an AREA window (without format decoration) 63

 PRINTF Write formatted data to an AREA window 67

 PRIVATE Create private PRACTICE macro 75

 PSKIP Skip command or block in PRACTICE script 77

 PSTEP Execute single line 78

 PSTEPOUT Back to caller 79

 PSTEPOVER Step over callee and stop at the next script line 80

 Q ... R .. 81

 READ Read from data file 81

 RePeaT Loop with check at end of loop 82

 RETURN Return from subroutine 84

 RETURNVALUES Take return values 85

 RUN Start PRACTICE script 86

 S ... T ... 87

 SCREEN Screen updating 87

 SCREEN.ALways Refresh always 87

 SCREEN.display Refresh screen 88

 SCREEN.OFF No refresh 88
PRACTICE Script Language Reference Guide | 3©1989-2024 Lauterbach

 SCREEN.ON Refresh when printing 88

 SCREEN.WAIT Update screen while waiting 89

 SPRINTF Write formatted data to a PRACTICE macro 91

 STOP Interrupt PRACTICE script 92

 SUBROUTINE Define a subroutine 93

 W ... Z .. 94

 WAIT Wait until a condition is true or a period has elapsed 94

 WHILE Loop with check at start of loop 96

 WRITE Write to data file 97

 WRITEB Write binary data to file 98
PRACTICE Script Language Reference Guide | 4©1989-2024 Lauterbach

PRACTICE Script Language Reference Guide

Version 06-Jun-2024

History

02-Nov-22 In the chapter ‘Related Documents‘ a reference to ide_user.pdf has been added.
PRACTICE Script Language Reference Guide | 5©1989-2024 Lauterbach

Related Documents

• “PowerView User’s Guide” (ide_user.pdf): In the chapter Operands and Operators you will find
everything that you need to know about operands and operators.

For information about how to pass parameters, PRACTICE macros, etc., refer to:

• “PRACTICE Script Language User’s Guide” (practice_user.pdf)

For information about literals, operands, operators, and operator precedence, refer to:

• “PowerView User’s Guide” (ide_user.pdf). Alternatively, choose Help menu > Index, and then
enter the search item.

For information about functions, refer to:

• “PowerView Function Reference” (ide_func.pdf)

• “General Function Reference” (general_func.pdf)

For information about the purpose of functions in TRACE32, how to use functions, and the difference
between functions and commands, refer to:

• “General Function Reference” (general_func.pdf)

;To retrieve the same information via the TRACE32 command line:
HELP.Index "scripting"
HELP.Index "literals"
HELP.Index "parameter types"
HELP.Index "operands"
HELP.Index "operators"
HELP.Index "operator precedence"
HELP.Index "functions"
PRACTICE Script Language Reference Guide | 6©1989-2024 Lauterbach

A ... D

APPEND Append to file

Appends data to a file. The file is created if it does not exist.

The syntax of the command is similar to the PRINT command.

Example:

See also

■ CLOSE ■ MKTEMP ■ OPEN ■ WRITE

▲ ’Release Information’ in ’Legacy Release History’

BEEP Acoustic signal

Generates an acoustic signal on the host computer.

See also

■ SETUP.SOUND

Format: APPEND <file> <parameter_list>

APPEND datafile.dat "Test"

Format: BEEP
PRACTICE Script Language Reference Guide | 7©1989-2024 Lauterbach

CLOSE Close file

Closes an input or output file.

Example:

The path prefix ~~~ expands to the temporary directory of TRACE32.

See also

■ APPEND ■ OPEN ■ READ ■ WRITE
■ WRITEB ■ Data.WRITESTRING ■ Var.WRITE

CONTinue Continue PRACTICE script

A PRACTICE script which has been stopped will be restarted at the current PRACTICE command.
PRACTICE scripts will be stopped by the STOP command or by a breakpoint within the script.

The CONTinue command can also be used to resume a script that has been halted due to an error
condition. The wrong command may be replaced by an interactive command.

Format: CLOSE #<buffer_number>

OPEN #1 ~~~/test.dat /Write ; open file for writing
WRITE #1 "Test data" ; write data to file
CLOSE #1 ; close file

TYPE ~~~/test.dat ; optional: open file in TYPE window

Format: CONTinue [[<line>] [<file>]]

<line> Line number. Go till <line> in the active PRACTICE script (*.cmm).

, <file> Line number is omitted. Path and file name of PRACTICE script.
Go till first executable line in the PRACTICE script <file>.

<line> <file> Go till <line> in the PRACTICE script <file>.
PRACTICE Script Language Reference Guide | 8©1989-2024 Lauterbach

Example 1:

Example 2:

See also

■ END ■ PBREAK ■ STOP

DECRYPT Decrypts a text or binary file

Uses the original key string to decrypt a text or binary file previously encrypted with the ENCRYPT
command. The resulting file can get a new name or replace the old file.

See also

■ ENCRYPT

▲ ’Encrypt/Execute Encrypted Files’ in ’PowerView User’s Guide’

DO test.cmm
…
…
…
CONTinue

; start script

; script stopped at breakpoint
; continue

…
STOP
…
…
CONTinue

; stop script by STOP command

; continue

Format: DECRYPT <keystring> <encrypted_file> [<decrypted_file>]
PRACTICE Script Language Reference Guide | 9©1989-2024 Lauterbach

DO Start PRACTICE script

Starts a PRACTICE script (*.cmm). The DO command can be used on the command level to start a
PRACTICE script or within a script to run another file like a subroutine. PRACTICE files started by a DO
command should be terminated by the ENDDO command. Additional parameters may be defined which are
passed to the subroutine. The subroutine reads the parameter list using the ENTRY command.

Using the DO command even those settings saved by the STOre command can be retrieved.

Examples:

See also

■ DODECRYPT ■ ChDir ■ END ■ ENDDO
■ ENTRY ■ GLOBALON ■ GOSUB ■ JUMPTO
■ ON ■ PSTEP ■ RePeaT ■ RUN
■ STOre

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Introduction to Script Language PRACTICE’ in ’Training Script Language PRACTICE’

Format: DO <file> [<parameter_list>]

<file> The default extension for <file> is *.cmm. The default extension can be
changed with the command SETUP.EXTension PRACTICE.

; store window setting to the PRACTICE file 'test.cmm'
STOre test.cmm Win

; set up window setting by executing the script 'test.cmm'
DO test.cmm

; Endless loop with subroutine call
&count=1
WHILE TRUE()
(
 DO mem_test
 PRINT "MEMTEST " &count
 &count=&count+1
)
ENDDO

ChDir.DO c:\sample\x.cmm ; change to c:\sample and execute the
 ; file x.cmm
PRACTICE Script Language Reference Guide | 10©1989-2024 Lauterbach

DODECRYPT Execute encrypted PRACTICE script (*.cmm)

Executes a PRACTICE script (*.cmm) that was encrypted with same key string by the command
ENCRYPTDO. The key string is necessary for execution. The PRACTICE script file stays encrypted.

See also

■ DO

▲ ’Encrypt/Execute Encrypted Files’ in ’PowerView User’s Guide’

Format: DODECRYPT <keystring> <encrypted_file> [<parameter_list>]
PRACTICE Script Language Reference Guide | 11©1989-2024 Lauterbach

E ... F

ECHO Write text and data to an AREA window (with format decoration)
[Examples]

Writes the given arguments to the default AREA A000 or the selected AREA window. When writing to the
default AREA A000, the written data is also shown in the TRACE32 message line.

What is the difference between the commands ...?

Format: ECHO [{%<attribute>}] [{{%<format>} <data>}]

<attribute>: AREA <area_name>
CONTinue
HOME

<format>: <type>
COLOR.<color>
ERROR
WARNING

<type>: Ascii | BINary | Decimal | Hex | String

<color>: NORMAL | BLACK | MAROON | GREEN | OLIVE | NAVY | PURPLE
TEAL | SILVER | GREY | RED | LIME | YELLOW | BLUE | FUCHSIA
AQUA | WHITE

ECHO PRINT

Writes all data decorated to indicate the format
of the data.

Writes all data without any format decoration
(e.g. without the prefix “0x” for hexadecimal
numbers).

For a comparison of the different outputs, see examples.

<attribute>,
<format>, etc.

For descriptions of the command arguments, see PRINT.
PRACTICE Script Language Reference Guide | 12©1989-2024 Lauterbach

Examples

The following table shows the output in a message area for the same data written with ECHO and PRINT:

See also

■ PRINT ■ PRINTF ■ SPRINTF

▲ ’Release Information’ in ’Legacy Release History’

<data> AREA output with
ECHO

AREA output with
PRINT

0x042 0x42 42

%Hex 66. 0x42 42

23. 23. 23

%Decimal 0x17 23. 23

0y110011 0y00110011 110011

%BINary 0x33 0y00110011 00110011

'X' 'X' X

%Ascii 0x58 'X' X

5==5 TRUE() TRUE

5==3 FALSE() FALSE

"text" text text

P:0x001000 P:0x1000 P:0x1000

500ms 0.5000000000s 0.5000000000s

DATE.MakeUnixTime(1990.,10.,3,0,0,0) 654912000. 654912000

Var.VALUE(23 * 47) 0x439 439
PRACTICE Script Language Reference Guide | 13©1989-2024 Lauterbach

ELSE Conditional script execution

The command or script block following an ELSE statement will be executed, if the condition in the previous
IF statement is false.

Examples:

See also

■ IF

Format: ELSE [IF <condition>]

IF Register(PC)==ADDRESS.OFFSET(main)
 PRINT "PC on start position"
ELSE
 PRINT "PC not on start position"
…

IF Register(PC)==ADDRESS.OFFSET(main)
(
 PRINT "PC on start position"
 STOP
)
ELSE IF Register(PC)==ADDRESS.OFFSET(end)
(
 PRINT "PC on end position"
 STOP
)
ELSE
(
 PRINT "PC neither on start nor on end position"
 Register.Set PC main
 STOP
)

PRACTICE Script Language Reference Guide | 14©1989-2024 Lauterbach

ENCRYPT Encrypt a text or binary file

Encrypts the contents of a text or binary file using the specified key string. If no file name for the encrypted
file is specified, the original file will be replaced by the encrypted file. The resulting file can be decrypted with
the command DECRYPT, together with the original key string.

Example:

See also

■ ENCRYPTDO ■ ENCRYPTPER ■ DECRYPT

▲ ’Encrypt/Execute Encrypted Files’ in ’PowerView User’s Guide’

Format: ENCRYPT <keystring> <source_file> [<encrypted_file>]

NOTE: Do not encrypt PRACTICE scripts (*.cmm) or PER (*.per) files with ENCRYPT.
• For encrypting PRACTICE scripts use ENCRYPTDO.
• For encrypting PER files use ENCRYPTPER.

;let's write to a newly-created file and display the file [A]
OPEN #1 ~~~\original.txt /CREATE
WRITE #1 "Hello World - it is " DATE.TIME()
CLOSE #1
TYPE ~~~\original.txt

;let's encrypt and display the file [B]
ENCRYPT "123456789" ~~~\original.txt ~~~\encrypted.txt
TYPE ~~~\encrypted.txt

;let's now decrypt and display the file [C]
DECRYPT "123456789" ~~~\encrypted.txt ~~~\decrypted.txt
TYPE ~~~\decrypted.txt

A

B

C

PRACTICE Script Language Reference Guide | 15©1989-2024 Lauterbach

ENCRYPTDO Encrypt a PRACTICE script (*.cmm)

Encrypts a PRACTICE script using the specified key string. If no file name for the encrypted file is specified,
the original file will be replaced by the encrypted file.

The encrypted PRACTICE script can be executed with the command DODECRYPT using the original key
string. Decrypting the PRACTICE script or viewing its original file contents in plain text is not possible.

Use ENCRYPTDO to generate PRACTICE scripts which can be executed by the end user, without the
possibility to read or modify the script.

Example:

See also

■ ENCRYPT ■ ENCRYPTPER

▲ ’Encrypt/Execute Encrypted Files’ in ’PowerView User’s Guide’
▲ ’Release Information’ in ’Legacy Release History’

Format: ENCRYPTDO <keystring> <source_file> [<encrypted_file>]

NOTE: Do not use ENCRYPTDO on already encrypted scripts!

;encrypt a PRACTICE script file in the system directory of TRACE32
ENCRYPTDO "987654321" ~~~/secret.cmm ~~~/secret_encrypted.cmm

;execute the encrypted PRACTICE script file
DODECRYPT "987654321" ~~~/secret_encrypted.cmm
PRACTICE Script Language Reference Guide | 16©1989-2024 Lauterbach

ENCRYPTPER Encrypt a PER file (*.per)

Encrypts a PER definition file using the specified key string. If no file name for the encrypted file is specified,
the original PER file will be replaced by the encrypted PER file.

The encrypted PER file can be executed and viewed with the command PER.viewDECRYPT using the
original key string. Decrypting the PER file or viewing its original file contents in plain text is not possible.

Use ENCRYPTPER to generate PER files which can be executed by the end user, without the possibility to
read or modify the original PER file contents.

Example:

See also

■ ENCRYPT ■ ENCRYPTDO ■ PER.viewDECRYPT

▲ ’Encrypt/Execute Encrypted Files’ in ’PowerView User’s Guide’

Format: ENCRYPTPER <keystring> <source_file> [<encrypted_file>]

NOTE: Do not use ENCRYPTPER on already encrypted PER files!

;encrypt a PER file residing in the system directory of TRACE32
ENCRYPTPER "123456789" ~~\pera940t.per ~~\pera940t_encrypted.per

;execute the encrypted PER file, expand the section "ID Registers"
PER.viewDECRYPT "123456789" ~~\pera940t_encrypted.per "ID Registers"
PRACTICE Script Language Reference Guide | 17©1989-2024 Lauterbach

END Terminate PRACTICE scripts, etc.

Executes the actions listed below and is typically used in a PRACTICE script file (*.cmm). Interactive usage
at the TRACE32 command line is needed to clear the PRACTICE stack after a stack overrun has occurred.

Actions executed by the END command:

• Terminates all PRACTICE scripts.

• Affects the PRACTICE stack, which can be viewed with PMACRO.list, as follows:

- The local PRACTICE stack is cleared, e.g. command extensions, error exits, LOCAL and
PRIVATE PRACTICE macros.

- The global PRACTICE stack is retained. That is, GLOBAL PRACTICE macros and
GLOBALON events remain on the stack, unless PMACRO.RESet is executed.

• Closes all custom dialogs.

• Closes all files opened with the OPEN command.

Example:

See also

■ ENDDO ■ CONTinue ■ DIALOG ■ DO
■ PMACRO.list ■ PMACRO.RESet ■ STOP ■ GLOBALON

Format: END

END
PRACTICE Script Language Reference Guide | 18©1989-2024 Lauterbach

ENDDO Return from a PRACTICE script

Ends a PRACTICE script. Execution is continued in the calling script. If no calling script file exists, the
PRACTICE script execution will be stopped.

It is recommended to end all PRACTICE script files (*.cmm) with ENDDO to remove them from the
PRACTICE stack.

Examples:

PRACTICE scripts can pass return values to the caller:

See also

■ END ■ DO ■ RUN ■ STOP

Format: ENDDO [<return_value_list>]

; Sub-module memory test
Data.Test 0x0--0x0fff
Data.Test 0x8000--0x0ffff
ENDDO

; script test_status.cmm

ENDDO TRUE()
; ENDDO FALSE()

; return TRUE as result
; return FALSE as result

; script enddo_param.cmm

DO test_status
ENTRY &result

IF &result
DIALOG.OK "Test passed"

ELSE
DIALOG.OK "Test failed"

ENDDO

;execute test_status.cmm
;read result

;react on result

NOTE: TRUE() and FALSE() are PRACTICE functions returning the corresponding
boolean values.
PRACTICE Script Language Reference Guide | 19©1989-2024 Lauterbach

ENTER Window-based input

Lets you pass arguments via a special PRACTICE I/O window to PRACTICE macros (see the AREA
command group). Arguments are separated by blanks.

Example 1: <parlist1> - without %LINE

Format: ENTER <parlist1> | <parlist2> | <parlist3>

<parlist1>: [%LINE] <macro>

<parlist2>: {<macro>}

<parlist3>: {<macro>} %LINE <macro>

<parlist1> With the %LINE option, the entire line is read into the PRACTICE macro.

<parlist2> The number of arguments passed via the PRACTICE I/O window must
match the number of PRACTICE macros. Otherwise, an error occurs.

<parlist3> With the %LINE option, surplus arguments are assigned to the last
PRACTICE macro as one line.

AREA.Create IO ;create an AREA window
AREA.Select IO ;select the AREA window as PRACTICE input/output window

AREA.view IO ;display the AREA window
PRINT "Coordinate (x y)? " ;print input request

PRINT "x="
ENTER &x ;wait for first user input
PRINT "y="
ENTER &y ;wait for second user input

PRINT "x=" &x " y=" &y ;print x value and y value

SCREEN.WAIT 1.s ;wait 1 second, and then
WinCLEAR TOP ;close the AREA window
AREA.RESet ;reset the AREA window system
PRACTICE Script Language Reference Guide | 20©1989-2024 Lauterbach

Example 2: <parlist1> - with %LINE

Example 3: <parlist2> - with Multiple PRACTICE Macros

See also

■ AREA ■ INKEY

▲ ’I/O Commands’ in ’Training Script Language PRACTICE’

LOCAL &name ;declare PRACTICE macro
AREA.Select A000 ;let's use the default AREA
 ;A000 in this example
AREA.view A000 ;open AREA window

PRINT "What's your 1st and 2nd name? " ;print input request
PRINT "" ;print an empty line
ENTER %LINE &name ;wait for user input

PRINT "Hello &name!"

LOCAL &a &b &c &d ;declare 4 PRACTICE macros
AREA.view ;open AREA window

PRINT "Enter 4 arguments separated by blanks: "
myLabel: ENTER &a &b &c &d ;prompt user for input
 ;all 4 macros are initialized?
IF ("&a"=="")||("&b"=="")||("&c"=="")||("&d"=="")
(
 PRINT %ERROR "Enter 4 arguments separated by blanks: "
 GOTO myLabel ;prompt user again
)
ELSE
(;print to the AREA window
 PRINT "1st argument: &a"
 PRINT "2nd argument: &b"
 PRINT "3rd argument: &c"
 PRINT "4th argument: &d"
)

PRACTICE Script Language Reference Guide | 21©1989-2024 Lauterbach

ENTRY Parameter passing

Passing of parameters to or from PRACTICE scripts/subroutines. Arguments are separated by blanks.
With the %LINE option the entire line is read into one PRACTICE macro.

Without a LOCAL command for defining local PRACTICE macros, existing PRACTICE macros from
preceding routines are used. Only not existing PRACTICE macros are defined automatically.

Example:

See also

■ DO ■ GLOBALON ■ GOSUB ■ LOCAL
■ PARAMETERS ■ PRIVATE ■ RETURN ■ RETURNVALUES
❏ PRACTICE.ARG()

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Parameter Passing’ in ’Training Script Language PRACTICE’

Format: ENTRY <parlist>

<parlist>: [%LINE] <macroname>

; TRACE32 PowerView command line

DO test.cmm P:0x1000

; contents of PRACTICE script test.cmm

SYStem.Up
;...
ENTRY &address

GOSUB func1 &address 1.

ENTRY &result
PRINT "Result=" &result

ENDDO

; Take argument, here P:0x1000, from
; the PRACTICE script call

; Call subroutine func1 with two args

; Get return value of subroutine

func1:
 LOCAL &addr &size
 ENTRY &addr &size

 &size=&size-1.
 Data.Set &addr++&size 0x2
 &retval=Data.Byte(&addr)

 RETURN &retval

; Define local PRACTICE macros
; Get arguments from subroutine call

; Execute command
; Calculate return value

; Return value to caller
PRACTICE Script Language Reference Guide | 22©1989-2024 Lauterbach

G ... H

GLOBAL Create global PRACTICE macro

Creates a global macro. Global macros are visible everywhere. They are not erased when the declaring file
or block ends. That is, global macros remain in the global PRACTICE stack after execution of the procedure
or subroutine.

Example: This script shows how to declare and initialize global PRACTICE macros. Stepping through the
code allows you to see how global macros behave in relation to local and private macros (See “How to...”).

See also

■ LOCAL ■ PMACRO.EXPLICIT ■ PMACRO.IMPLICIT ■ PMACRO.list
■ PMACRO.RESet ■ PRIVATE ■ SPRINTF

Format: GLOBAL {<macro>}

A Private macros B Local macros

C Global macros D Global PRACTICE stack frame

PMACRO.list ;View the PRACTICE stack

GLOBAL &SessionStart &State &Level ;Declare three global macros
LOCAL &val1 &val2 ;Declare two local macros

&SessionStart=CLOCK.TIME() ;Initialize a global macro
&val1=0x1f ;Initialize the local macros
&val2=0x2f

(;Open a sub-block
 PRIVATE &val1 &val2 ;Declare private macros

 &val1=0x3f ;Initialize private macros
 &val2=0x4f
) ;Close sub-block

A

B

C D
PRACTICE Script Language Reference Guide | 23©1989-2024 Lauterbach

GLOBALON Global event-controlled PRACTICE script execution
[<events>] [<actions>] [Examples]

The GLOBALON command enables the automatic start or branching of the PRACTICE programs
controlled by several events. In order for events and their actions to be available, they need to be registered
in TRACE32. To register events and their actions, you can for example:

• Run the GLOBALON commands via the TRACE32 command line.

• Include the GLOBALON commands in the PRACTICE script file system-settings.cmm. As a
result, they are automatically registered when you start TRACE32. For more information, see
“Automatic Start-up Scripts” (practice_user.pdf).

• Include the GLOBALON commands in any other script. As a result, they are only registered
when you run that script.

Registered actions remain stored on the global PRACTICE stack frame. Therefore, the actions are valid for
the entire duration of the TRACE32 session, or until they are removed manually.

The currently active actions can be viewed with the PMACRO command. The outermost frame is the global
PRACTICE stack frame, as shown below.

Format: GLOBALON <event> [<action>]

<event>: <device_specific_events>
<practice_specific_events>
<cpu_specific_events>

<practice_
specific_
events>:

ALWAYS
ERROR
STOP
CMD <command_name> <action>
TIME <delay> <action>

<action>: DO <file>
EXECute <trace32_command> (only available for CMD)

A Global PRACTICE stack frame with GLOBALON commands

A

PRACTICE Script Language Reference Guide | 24©1989-2024 Lauterbach

Events: <practice_specific_events> for the GLOBALON Command

Events: <device_specific_events>

Events: <cpu_specific_events>

PRACTICE specific
Events

Descriptions

ALWAYS The defined PRACTICE sequence is executed permanently, as long as no
keyboard input occurs or no normal PRACTICE script is activated.

ERROR Will be executed if a syntax or runtime error occurs in PRACTICE. The default
action of this event is to halt script execution.

STOP Will be executed, when the STOP button from the toolbar is pushed. Warning:
A PRACTICE script using this feature may hang and cannot be stopped then
by the STOP button!

CMD
<command_name>
<action>

Definition of a user-defined command for TRACE32. The length of the
<command_name> is limited to 9 characters and the character set [0..9],
[@..Z], [a..z], '_', '+' and '-'.

Arguments can be passed to the user-defined command.
• For available <actions>, see below.
• For examples, see below.

TIME <delay>
<action>

Executes the script after a delay time.
For a description of the <action> DO <file>, see below.

<device_specific_
events>

For a description of device-specific events, refer to the GLOBALON
command (general_ref_g.pdf).

<cpu_specific_
events>

Debuggers providing CPU-specific events are listed in the See also
block at the end of the GLOBALON command description
(general_ref_g.pdf).
PRACTICE Script Language Reference Guide | 25©1989-2024 Lauterbach

<actions> for the GLOBALON Command

One of the following actions can be defined for any of the above events:

Actions Descriptions

no action
specified

An already defined action for a particular global event will be removed
from the global PRACTICE stack frame. See “Unregistering GLOBALON
Commands”.

DO <file> If the event occurs, the specified PRACTICE script <file> will be executed
automatically.

EXECute
<trace32_command>

If the event occurs, the specified single-line <trace32_command> will be
executed automatically.

Unlike the action DO <file>, the action EXECute <trace32_command> is
only intended for frequently-used and complex single-line commands; see
example below.
The individual <actions> do not require their own dedicated PRACTICE
script files (*.cmm). Instead, you can maintain as many GLOBALON…
EXECute… commands as you want in just one PRACTICE script file.

Additionally, you can create and modify the GLOBALON… EXECute…
commands via the TRACE32 command line.

NOTE: This <action> is only available for the <practice_specific_event>
CMD.
PRACTICE Script Language Reference Guide | 26©1989-2024 Lauterbach

Examples

The following examples show how you can use the TRACE32 command GLOBALON to create, register
and unregister your own user-defined commands.

Example 1: TICONS

This is a very simple example for demo purposes. It creates the user-defined command TICONS, which
opens the TRACE32 icon library.

Register your user-defined command TICONS, e.g. by copying and pasting the following GLOBALON CMD
into the TRACE32 command line:

Result: Typing TICONS at the TRACE32 command line now opens the TRACE32 icon library.

Example 2: GLOBALON CMD without an Argument

The user-defined command SOURCE displays the HLL source code without changing your emulation
mode setting ASM, HLL, or MIX; see DEBUGMODE() and Mode.

1. Develop the action, i.e. a PRACTICE script (*.cmm), such as the following one:

2. Register your user-defined command and its action in TRACE32.

; Register the user-defined command TICONS
; <command> <action>
GLOBALON CMD TICONS DO "~~/demo/menu/internal_icons.cmm"

NOTE: Built-in commands cannot be overwritten while the debugger is active, i.e. a
user-defined command named SYS is not possible. SYS will continue to open
the SYStem.state window.

;Check if the window named myWin01 already exists to prevent
;duplicate windows
IF !WIN.EXIST(myWin01)
(

;Additionally, assign a user-defined window position and name
WinPOS 0% 0% 100% 50% , , , myWin01

;Display the program in source format (HLL, high level
;language)
List.HLL /Track

)
ENDDO

GLOBALON CMD SOURCE DO "~~~/globalon_cmd_source.cmm"
PRACTICE Script Language Reference Guide | 27©1989-2024 Lauterbach

Example 3: GLOBALON CMD with an Argument

The user-defined command SOURCE2 accepts an argument if you enter one at the TRACE32 command line
and passes it to the <action>.

1. Develop the action, i.e. a PRACTICE script (*.cmm), such as the following one:

2. Register your user-defined command and its action in TRACE32.

Example 4: GLOBALON CMD with the EXECute <command>

The following script registers the two user-defined commands TL and LMPC on the global PRACTICE stack
frame. The TRACE32 command that is actually executed when the user types TL or LMPC at the command
line is formatted in blue. Note that the backslash \ is the line continuation character.

To try, simply copy and paste the script into the TRACE32 command line. Then type just TL or LMPC to open
a Trace.List or List.Mix window as specified in the blue command string.

; Displays the program in source format (HLL, high-level language)
; Starts the listing at the symbol passed as an argument,
; e.g. at main

LOCAL &myArg
ENTRY &myArg ; Get the argument the user has entered
 ; at the TRACE32 command line

; Check if an argument is passed or not
IF "&myArg"==""
 List.HLL /Track
ELSE
 List.HLL &myArg /Track

ENDDO

GLOBALON CMD SOURCE2 DO "~~~/globalon_cmd_source2.cmm"

GLOBALON CMD TL EXECute WinExt.WinResist.WinLarge.Trace.List \
%TimeFixed TIme.Zero DEFault /Track

GLOBALON CMD LMPC EXECute List.Mix Register(PC) /Track /MarkPC
PRACTICE Script Language Reference Guide | 28©1989-2024 Lauterbach

Unregistering GLOBALON Commands

You can unregister all GLOBALON commands or just a selected GLOBALON command.

• To unregister all GLOBALON commands, type at the TRACE32 command line:

• To unregister just a selected GLOBALON command, type at the TRACE32 command line:

Result: The respective line or lines are no longer displayed in global PRACTICE stack frame of the
PMACRO.list window. Thus the GLOBALON command or commands can no longer be executed.

See also

■ DO ■ ENTRY ■ LOCAL ■ ON

NOTE: Unregistering all GLOBALON commands from the global PRACTICE stack
frame also deletes all global PRACTICE macros.

END ; Ends all active PRACTICE scripts
PMACRO.RESet ; Unregisters all GLOBALON commands and
 ; deletes all global PRACTICE macros

END ; Ends all active PRACTICE scripts

; Unregisters the action for the user-defined command TICONS
GLOBALON CMD TICONS ; Do not include the DO <action> here!
PRACTICE Script Language Reference Guide | 29©1989-2024 Lauterbach

GOSUB Subroutine call

The PRACTICE script continues at the defined SUBROUTINE or label. GOSUB can pass parameters to the
subroutine. The subroutine can take over the parameters using commands PARAMETERS or ENTRY. The
subroutine can return parameters using the command RETURN. The caller can take over the return
parameters using RETURNVALUES or ENTRY.

Example using SUBROUTINE, PARAMETERS and RETURNVALUES:

Format: GOSUB <subroutine> [<parameter_list>]

<subroutine>: <name> | <label>

NOTE: Recommendation for new scripts:
- define subroutines using SUBROUTINE
- pass parameters as string and take over using PARAMETERS
- return the result as string and take over using RETURNVALUES

SUBROUTINE initMem
(
 PRIVATE &address &memok
 PARAMETERS &address
 Data.Set &address++0x0FFF %Long 0x55AA55AA
 Data.Set &address++0x0FFF %Long 0x55AA55AA /DIFF
 &memok=!FOUND()
 RETURN "&memok"
)

GOSUB initMem "0x10000"
PRIVATE &ok
RETURNVALUES &ok
IF !&ok
 PRINT %ERROR "Mem init failed."
PRACTICE Script Language Reference Guide | 30©1989-2024 Lauterbach

Example using label:

See also

■ GOTO ■ DO ■ ENTRY ■ JUMPTO
■ ON ■ RETURN

; <label> <parameter_list>
GOSUB mySubroutine1 0x100 10. "abc"
…
ENDDO

mySubroutine1:
ENTRY &address &len &string
Data.Set &address++(&len-1) &string
RETURN

NOTES: • GOSUB accepts both labels and subroutine names as target,
therefore labels and subroutines can not have the same name.

• Labels must start in the first column of a line and end with a colon. No
preceding white space allowed.
PRACTICE Script Language Reference Guide | 31©1989-2024 Lauterbach

GOTO Local script jump

The PRACTICE script continues to execute at the defined label. You can also jump out of script blocks. In
interactive mode, the PRACTICE command can be altered using the GOTO command.

Examples:

See also

■ GOSUB ■ JUMPTO

▲ ’Release Information’ in ’Legacy Release History’

Format: GOTO <label>

GOTO endloop

GOTO 102.

&abc="lab10"
GOTO &abc

; label as jump destination

; line number as jump destination

; PRACTICE macro for variable jump
; destination

NOTE: Labels must start in the first column of a line and end with a colon. No
preceding white space allowed.
PRACTICE Script Language Reference Guide | 32©1989-2024 Lauterbach

I ... L

IF Conditional script execution

The command or script block following an IF statement will be executed, if the condition is true. Emulators
and debuggers have a counterpart of this command that works in the HLL syntax of the target program
(command Var.IF). The syntax for <condition> is the same as for boolean command parameter.
For detailed information on booleans, refer to “Parameter Types” in PowerView User’s Guide, page 41
(ide_user.pdf).

If the IF-body consists of just one line, then parentheses can be omitted:

IF-bodies consisting of two or more lines must be enclosed in parentheses:

Please avoid the following mistake:

See also

■ ELSE ❏ STATE.RUN()

▲ ’Release Information’ in ’Legacy Release History’

Format: IF <condition>

NOTE: IF must be followed by a white space.

IF Register(d0)>0x0
PRINT "Register not zero"

ELSE
PRINT "Register zero"

Var.IF flags[5]>35
STOP

ELSE
Step

// HLL expression in condition

IF (Register(PC)!=ADDRESS.OFFSET(main))
(
 PRINT %ERROR "halted at wrong address!"
 ENDDO
)

IF Register(d0)==0x0 (step) ; not allowed
PRACTICE Script Language Reference Guide | 33©1989-2024 Lauterbach

INKEY Character input

The command waits for a keystroke. The code of the key is placed in the PRACTICE macro. If no parameter
is used, the command stops script execution until any key is be pressed on the keyboard.

Examples:

See also

■ ENTER ■ WAIT

▲ ’I/O Commands’ in ’Training Script Language PRACTICE’

JUMPTO Global script jump

The PRACTICE script continues to execute at the defined label. Subroutine calls and block nestings are
removed from the PRACTICE stack. The target label must reside in a stacked script module. The label must
reside on the top level of a module!

See also

■ DO ■ GOSUB ■ GOTO

Format: INKEY [<par>]

INKEY ; wait until any key is pressed

INKEY &key
IF &key==0x0d

; wait for one key from keyboard
; check for carriage return

Format: JUMPTO <label>

NOTE: Labels must start in the first column of a line and end with a colon. No
preceding white space allowed.
PRACTICE Script Language Reference Guide | 34©1989-2024 Lauterbach

LOCAL Create local PRACTICE macro

The LOCAL command is used to create an empty PRACTICE macro in the current block. The macro hides
any macro with the same name potentially created earlier (e.g. at a higher level of the PRACTICE stack).

The word local implies the life-time of the macro: it is created with the LOCAL command and erased when
the declaring block is left.

PRACTICE macros declared with LOCAL are visible in all subsequently executed code within their life-time
(unless hidden by later macro declarations). In particular they are visible in:

Example 1:

Format: LOCAL {<macro>}

Yes Subroutines (GOSUB ...RETURN)

Yes Sub-scripts (DO...ENDDO)

Yes Sub-blocks (IF..., RePeaT, WHILE, etc.)

NOTE: For creating macros only visible within their declaring block (as in the C
programming language) use the command PRIVATE.

LOCAL &a &b &c
ENTRY &a &b
&c=&a*&b
ENDDO &c
PRACTICE Script Language Reference Guide | 35©1989-2024 Lauterbach

Example 2:

Example 3: This script prints two sequences of the numbers 1, 2, 3, 4:

See also

■ ENTRY ■ GLOBAL ■ GLOBALON ■ PMACRO.EXPLICIT
■ PMACRO.IMPLICIT ■ PMACRO.list ■ PRIVATE ■ SPRINTF

LOCAL &result

GOSUB myfunc 2. 3.
ENTRY &result

PRINT "Result is &result"

ENDDO

myfunc:
 LOCAL &a &b &c
 ENTRY &a &b
 &c=&a*&b
 RETURN &c

LOCAL &I ;declare macro &I
&I=1. ;assign value

WHILE &I<=2.
(
 PRINT "--Sequence #" &I "--"
 GOSUB sequence
 &I=&I+1.
)

ENDDO

sequence:
 LOCAL &I ;hides the previously declared &I and declares new macro
 &I=1.
 WHILE &I<=4.
 (
 GOSUB output
 &I=&I+1.
)
 RETURN

output:
 PRINT &I ;uses the macro &I declared in subroutine 'sequence'
 RETURN
PRACTICE Script Language Reference Guide | 36©1989-2024 Lauterbach

M ... O

ON Event-controlled PRACTICE script execution
[<events>] [<actions>] [Examples]

The ON command enables the automatic start or branching of the PRACTICE scripts controlled by several
events. The registered actions are stored on the PRACTICE stack, therefore the command is only valid in
the block in which it was set, and in the subroutines called in this block. The currently active ON command
can be viewed with the PMACRO command. The PRACTICE script will be started and stopped
automatically, if the GOSUB action is used. If no target label is given, the line or block after the ON command
will be executed instead.

Format: ON <event> [<action>]

<event>: <device_specific_events>
<practice_specific_events>
<cpu_specific_events>

<practice_
specific>:

ALWAYS
ERROR
STOP
CMD <command_name>
TIME <delay>

<action>: inherit
CONTinue
DO <file>
GOSUB <label> | <block>
GOTO <label> | <block>
JUMPTO <label> | <block>
DEFault

NOTE: If you want the action to remain permanently active, use the GLOBALON
command.

Using the GLOBALON command, you can create actions for global events,
which are available for an entire TRACE32 session.
PRACTICE Script Language Reference Guide | 37©1989-2024 Lauterbach

Events: <practice_specific_events> for the ON Command

Events: <device_specific_events> for the ON command

Events: <cpu_specific_events> for the ON command

<actions> for the ON Command

One of the following actions can be defined for any of the above events:

Events Descriptions

ALWAYS The defined PRACTICE sequence is executed permanently, as long as no
keyboard input occurs or no PRACTICE script is activated.

ERROR Will be executed if a syntax or runtime error occurs in PRACTICE. The default
action of this event is to halt script execution.

STOP Will be executed, when the STOP button from the toolbar is pushed. Warning:
A PRACTICE script using this feature may hang and cannot be stopped then
by the STOP button!

CMD
<command_name>

Definition of a new command. The TRACE32 commands can be extended
with a user-defined command.
The length of the <command_name> is limited to 9 characters and the
character set [0..9], [@..Z], [a..z], '_', '+' and '-'.
Arguments can be passed in the usual way, see ENTRY.

TIME <delay> Executes the script after a delay time.

<device_specific_
events>

For a description of the device-specific events, refer to ON in the General
Commands Reference Guide O.

<cpu_specific_
events>

Debuggers providing CPU-specific events are listed in the See also block at
the end of the ON command description in the General Commands
Reference Guide O.

Actions Descriptions

inherit An already defined action for this event in the current stack level will be
removed. If an action is registered in a higher stack level, the action of the
higher stack level will be inherited. If no action is registered in any higher
stack level, the debugger’s default action will be performed (e.g. stop on error
event).
PRACTICE Script Language Reference Guide | 38©1989-2024 Lauterbach

Example 1: Error Handler

CONTinue If the event occurs, script execution will be continued. Use this option e.g. to
ignore errors which would cause the script execution to halt.

DO If the event occurs, the PRACTICE script in the specified file will be executed.

GOSUB If the event occurs, a subroutine call will occur. The subroutine can be
specified as a label, or inline as a PRACTICE block. With RETURN, the
subroutine will return to normal script execution. For the ERROR event, the
subroutine will return to the line after the command which caused the error.

GOTO If the event occurs, the script execution will continue at the specified label, or
in the specified inline PRACTICE block.

JUMPTO If the event occurs, the script execution will continue at the specified label, or in
the specified inline PRACTICE block. Subroutine calls and block nestings are
removed from the PRACTICE stack. Use this action e.g. as global
error/expection handler.

DEFault The debugger’s default action will be performed if the specified event occurs.
Actions defined in a higher stack level for this event will be ignored. Use this
action e.g. inside an event handler subroutine to avoid re-entry while the
handler’s subroutine is active.

ON ERROR JUMPTO errorhandler_filenotfound ;set up error handler
Data.LOAD.ELF project.x
ON ERROR inherit ;disable error handler
…
ENDDO

errorhandler_filenotfound:
PRINT %ERROR "File not found!"
ENDDO

Actions Descriptions
PRACTICE Script Language Reference Guide | 39©1989-2024 Lauterbach

Example 2: Define a New Command

Example 3: Timeout on User Input

To try out this script, simply copy it to a test.cmm file, and then run it in TRACE32 (See “How to...”).

Example 4: Background Task in PRACTICE:

; define new command LoadEx <file>
ON CMD LoadEx GOSUB
(

LOCAL &filename ;declare local macros
ENTRY &filename ;get parameter(s)
Break.Delete
Data.LOAD.ELF "&filename"
RETURN

)
STOP

AREA.Create USRINP ;create and show message area
AREA.Select USRINP
AREA.view USRINP
PRINT "Press return (within 5 seconds) to abort configuration > "

ON TIME 5.0s GOTO no_timeout ;set up timeout
ENTER &invalue ;script waits here for user input

ON TIME 5.0s inherit ;disable timeout
PRINT "Configuration aborted."
ENDDO

no_timeout:
 PRINT "Configuration starting..."
 ENDDO

ON ALWAYS GOSUB
(

PRINT Register(PC)
RETURN

)

PRACTICE Script Language Reference Guide | 40©1989-2024 Lauterbach

Example 5

A complex demo script is included in your TRACE32 installation. To access the script, run this command
under Windows and Unix:
B::CD.PSTEP ~~/demo/practice/event_controlled_program/dialog_ontime.cmm

See also

■ DO ■ GLOBALON ■ GOSUB
PRACTICE Script Language Reference Guide | 41©1989-2024 Lauterbach

OPEN Open data file

Opens a file for reading or writing.

Example:

See also

■ APPEND ■ CLOSE ■ READ ■ WRITE
■ WRITEB ■ Data.WRITESTRING ■ Var.WRITE ❏ FILE.EOF()
❏ FILE.EXIST() ❏ FILE.OPEN() ❏ OS.FILE.DATE() ❏ OS.FILE.PATH()
❏ OS.FILE.readable() ❏ OS.FILE.SIZE()

▲ ’Release Information’ in ’Legacy Release History’

Format: OPEN #<buffer_number> <file> [/<option>]

<option>: Read | Write
Create | Append
Binary

Write
Append

When a file is opened in write mode, the data is per default appended at the
end of the file (same behavior as with option /Append).

Create Creates a new file and overwrites an old one if the file already exists.
The default file format is text.

Create and Binary The options /Create /Binary create a binary file.

OPEN #1 datafile.dat /Read
READ #1 %LINE &data
…
CLOSE #1
PRACTICE Script Language Reference Guide | 42©1989-2024 Lauterbach

P...

PARAMETERS Parameter fetching

Fetches the parameters passed by PRACTICE script/subroutine calls.

Example 1: Parameters have to be enclosed in quotes (") in the call.

The PARAMETERS command first creates PRIVATE macros for all macro names not found in the current
scope (please be aware that the LOCAL macros of the caller(s) are always out of scope for the
PARAMETERS command) and then assigns the passed values to the macros.

Example 2:

See also

■ ENTRY ■ RETURNVALUES

▲ ’Release Information’ in ’Legacy Release History’

Format: PARAMETERS {<macro>}

PSTEP patch1.cmm "0x40000000++0xffff" "0xaa" "0xbb"

LOCAL &my_range
PARAMETERS &my_range &my_value1 &my_value2

GOSUB square "0x5" "5" "5."
ENDDO

square:
PARAMETERS &x &y &z ;fetch parameters passed by the subroutine call

 PRINT &x*&x ;result is printed as a hex value
 PRINT &y*&y ;result is printed as a hex value
 PRINT %Decimal &y*&y ;result is printed as a decimal value
 PRINT &z*&z ;result is printed as a decimal value
 RETURN
PRACTICE Script Language Reference Guide | 43©1989-2024 Lauterbach

PBREAK Breakpoints in PRACTICE script files (*.cmm)

Using the PBREAK command group, you can set, enable, disable, save, and clear an unlimited number of
breakpoints in PRACTICE script files (*.cmm).

These program breakpoints are set with the PBREAK.Set command. The PBREAK.List window shows an
overview of the breakpoints you have set in your PRACTICE script files (*.cmm). For compatibility reasons,
TRACE32 continues to support the breakpoint that can be set with the deprecated PBREAK.at command.

See also

■ PBREAK.Delete ■ PBREAK.DISable ■ PBREAK.ENable ■ PBREAK.List
■ PBREAK.OFF ■ PBREAK.ON ■ PBREAK.RESet ■ PBREAK.Set
■ PEDIT ■ PLIST ■ PSTEP ■ CONTinue

PBREAK.Delete Delete breakpoint

If no argument is passed, this command deletes all program breakpoints from the list displayed in the
PBREAK.List window.

You can delete specific breakpoints by passing the following arguments:

See also

■ PBREAK ■ PBREAK.RESet

▲ ’Release Information’ in ’Legacy Release History’

PBREAK.DISable Disable breakpoint

If no argument is passed, this command disables all program breakpoints. Disabled breakpoints are flagged
with a small gray bar in the PLIST and PSTEP windows.

Format: PBREAK.Delete [<line> [<file>]]

<line> Line number. Deletes all breakpoints at <line> for all PRACTICE scripts.

, <file> Line number is omitted; path and file name of the PRACTICE script are
specified.
Deletes all breakpoints for the PRACTICE script <file>.

<line> <file> Deletes the breakpoint at <line> for the PRACTICE script <file>.

Format: PBREAK.DISable [<line>] [<file>]
PRACTICE Script Language Reference Guide | 44©1989-2024 Lauterbach

You can disable specific breakpoints by passing the following arguments:

See also

■ PBREAK ■ PBREAK.ENable

▲ ’Release Information’ in ’Legacy Release History’

PBREAK.ENable Enable breakpoint

If no argument is passed, this command enables all program breakpoints. Enabled breakpoints are flagged
with a small red bar in the PLIST and PSTEP windows.

You can enable specific breakpoints by passing the following arguments:

See also

■ PBREAK ■ PBREAK.DISable

▲ ’Release Information’ in ’Legacy Release History’

<line> Line number. Disables all breakpoints at <line> for all PRACTICE scripts.

, <file> Line number is omitted; path and file name of PRACTICE script are
specified.
Result: All breakpoints for the PRACTICE script <file> are disabled.

<line> <file> Disables the breakpoint at <line> for the PRACTICE script <file>.

Format: PBREAK.ENable [<line>] [<file>]

<line> Line number. Enables all breakpoints at <line> for all PRACTICE scripts.

, <file> Line number is omitted; path and file name of PRACTICE script are
specified.
Result: All breakpoints for the PRACTICE script <file> are enabled.

<line> <file> Enables the breakpoint at <line> for the PRACTICE script <file>.
PRACTICE Script Language Reference Guide | 45©1989-2024 Lauterbach

PBREAK.List Display breakpoint list

Lists all program breakpoints you have created for PRACTICE script files (*.cmm).

The PBREAK.List window shown below provides the following commands via the toolbar and the popup
menu: You can delete, disable, and enable all breakpoints or a selected breakpoint. In addition, you can save
the breakpoints to file with the STOre command, and load them for the next session with the DO command.

Descriptions of Columns in the PBREAK.List Window:

• type: PRACTICE supports program breakpoints. Yellow indicates that script execution has
stopped at this breakpoint. You can continue script execution with the CONTinue command.

• line: Line number of breakpoint

- An asterisk (*) in the line column indicates that a breakpoint is set at the first executable line
in this PRACTICE script.

- A dot before a line number indicates that the breakpoint was originally set to an empty line or
comment line. Such a breakpoint automatically moves to the next executable line.

• file: Lists all PRACTICE script files where breakpoints have been set.

- An asterisk (*) in the file column indicates that a breakpoint is dynamically set in any active
PRACTICE script at the specified line number (see PBREAK.Set ... /AnyFile). This is useful
for testing nested PRACTICE script files.

• action: Action of the breakpoint, i.e. stop or Count. See PBREAK.Set ... /Count.

• count:

- Counts how often the PRACTICE command has hit the counter breakpoint. Counter
breakpoints are typically set at counters in WHILE loops.

- A dot after a counter indicates that the counter limit is unspecified.
See PBREAK.Set ... /Count.

Format: PBREAK.List

A Set a new breakpoint. B Breakpoints created with PBREAK.Set.

C Edit the selected breakpoint. D Open the file in the PLIST window at line number 42.

B

C

D

A

PRACTICE Script Language Reference Guide | 46©1989-2024 Lauterbach

• mode:

- Old mode: This breakpoint was created with the deprecated PBREAK.at command.

- Disabled is displayed for disabled breakpoints. All other breakpoints are enabled.

- Temporary is displayed until the PRACTICE command has reached the line with the
temporary breakpoint.
A temporary breakpoint is created when you right-click a script line in a PLIST window and
select Go Till.

See also

■ PBREAK

▲ ’Release Information’ in ’Legacy Release History’

PBREAK.OFF TRACE32 disables breakpoint handling

Disables all breakpoints for the script currently loaded on top of the PRACTICE stack. If no PRACTICE script
is running this command is locked.

TRACE32 generates a breakpoint script when you click the Store button in a PBREAK.List window. In this
script, your breakpoint settings are enclosed between the PBREAK.OFF and PBREAK.ON command. The
two commands ensure that a breakpoint script can be re-loaded without being stopped by the breakpoints it
contains.

Example:

See also

■ PBREAK.ON ■ PBREAK

Format: PBREAK.OFF

PBREAK.RESet ;reset all PRACTICE breakpoints
PBREAK.OFF ;switch off further breakpoint checking

PBREAK.Set 5. , , /AnyFile ;set a breakpoint to line 5 in any file
PBREAK.Set 8. c:\t32\test.cmm ;set a breakpoint to line 8 in file

PBREAK.ON ;switch on breakpoint checking again
PRACTICE Script Language Reference Guide | 47©1989-2024 Lauterbach

PBREAK.ON TRACE32 re-enables breakpoint handling

Re-enables all breakpoints for the script currently loaded on top of the PRACTICE stack. If no PRACTICE
script is running this command is locked.

TRACE32 generates a breakpoint script when you click the Store button in a PBREAK.List window. In this
script, your breakpoint settings are enclosed between the PBREAK.OFF and PBREAK.ON command. The
two commands ensure that a breakpoint script can be re-loaded without being stopped by the breakpoints it
contains.

See also

■ PBREAK.OFF ■ PBREAK

PBREAK.RESet Clear all breakpoints

Deletes all breakpoints from the list displayed in the PBREAK.List window.

See also

■ PBREAK ■ PBREAK.Delete

Format: PBREAK.OFF

Format: PBREAK.RESet
PRACTICE Script Language Reference Guide | 48©1989-2024 Lauterbach

PBREAK.Set Add breakpoint
[Examples]

Sets a program breakpoint at <line> for the PRACTICE script <file>. Optionally, the PBREAK.Set dialog can
be displayed. If the specified line number refers to an empty line or a PRACTICE comment, then the
breakpoint is set at the next executable line.

By default, a program breakpoint in a PRACTICE script stops script execution. However, if a program
breakpoint is modified with the Count option, script execution continues, and breakpoint hits are counted.

The PBREAK.List window lists the breakpoints you have created with PBREAK.Set.

Format: PBREAK.Set <line> <file> [/DISabled | /Count | /AnyFile | /DIALOG]
PBREAK [<line>] [<file>] (deprecated)
PBREAK.at [<line>] [<file>] (deprecated)

, <file> Line number is omitted; path and file name of PRACTICE script are
specified.
Result: A breakpoint is set at the first executable line in the PRACTICE
script <file>.

<line> Line number. Sets a breakpoint at <line> in the current PRACTICE script
or in any script if none is loaded.

<line> <file> Sets a breakpoint at <line> in the PRACTICE script <file>.

AnyFile Sets a breakpoint at <line> in any PRACTICE script file.

You need to replace <file> with two , , (commas) when using AnyFile.
TRACE32 then applies the breakpoint to the currently active PRACTICE
script.

AnyFile is intended for testing nested PRACTICE script files. It
automatically stops script execution at the first executable line of any
PRACTICE script file that is called next. See example.

Count The breakpoint is created as a counter which does not stop the execution
of a PRACTICE script, but counts breakpoint hits.
Useful for counters in WHILE loops. See example.
PRACTICE Script Language Reference Guide | 49©1989-2024 Lauterbach

Example for the Count option: The following example is for demo purposes only. To try this script, copy it
to a test.cmm file, and then run it in TRACE32 (See “How to...”).

Example for the AnyFile option:

DIALOG Displays the PBREAK.Set dialog.
Clicking the Add button closes the dialog and makes the PRACTICE
breakpoint available in TRACE32. Available breakpoints are listed in the
PBREAK.List window. See example.

DISabled The breakpoint is created as a disabled breakpoint.

PBREAK.Set 7. , , /Count ;set a breakpoint in line 7. as loop counter
PBREAK.List ;display the list of breakpoints set in
 ;PRACTICE script files
&tmp=0.
WHILE &tmp<1000.
(
 &tmp=&tmp+1. ;the spot breakpoint is set here
 ;note that the 'count' column in the
 ;PBREAK.List updates automatically

 PRINT "looprun: &tmp" ;prints the counter to the message bar
)

PRINT "loop finished" ;right-click in the PLIST window, and then
 ;select 'Go Till'

PBREAK.Delete 7. ;delete all breakpoints at line 7. for
 ;all PRACTICE scripts!

PBREAK.List ;display breakpoint list for PRACTICE scripts
PBREAK.Set 1. , , /AnyFile ;set breakpoint to first executable line
 ;in any file

CD.DO file1.cmm ;script execution automatically stops at the
; |___ file2.cmm ;first executable line of each file
; |___ file3.cmm

PBREAK.RESet ;always clear all breakpoints at the end of your session
PRACTICE Script Language Reference Guide | 50©1989-2024 Lauterbach

Example for the DIALOG option:

See also

■ PBREAK

▲ ’Release Information’ in ’Legacy Release History’

;opens the list of PRACTICE breakpoints
PBREAK.List

;sets a breakpoint in line 12. of the demo.cmm file and
;opens the PBREAK.Set dialog
PBREAK.Set 12. c:\t32\demo.cmm /DIALOG
;click the Add button:
;- the dialog closes
;- the PRACTICE breakpoint appears in the list of PRACTICE breakpoints

;sets a breakpoint in line 49. for the currently active script file and
;opens the PBREAK.Set dialog
PBREAK.Set 49. , , /DIALOG
;click the Add button:
;- the dialog closes
;- the PRACTICE breakpoint appears in the list of PRACTICE breakpoints

;the * lets you select a script file from the file browser,
;then the PBREAK.Set dialog opens
PBREAK.Set , * /DIALOG
;click the Add button:
;- the dialog closes
;- the PRACTICE breakpoint appears in the list of PRACTICE breakpoints
PRACTICE Script Language Reference Guide | 51©1989-2024 Lauterbach

PEDIT Edit PRACTICE script
[Examples]

Opens the TRACE32 editor window PEDIT, where you can create and edit PRACTICE script files (*.cmm).
The editor window provides syntax highlighting, configurable auto-indentation as well as multiple undo and
redo. PEDIT works in the same manner as the EDIT command.

Format: PEDIT <file> [<line>] [/<option>]

<option>: AutoSave | NoSave

Buttons common to all TRACE32 editors:

A For button descriptions, see EDIT.file.

Buttons specific to this editor:

B Execute the PRACTICE script (DO).

C Debug the PRACTICE script in a PLIST window.

<file> The default extension for <file> is *.cmm.

<line>, <option> For description of the arguments, see EDIT.file.

B C

A

PRACTICE Script Language Reference Guide | 52©1989-2024 Lauterbach

Tips

Tip 1: You can quickly jump to the destination of a label by right-clicking a label and selecting Goto Label
from the popup menu [D]. A similar feature exists for files [E]. These navigation features are useful in very
long PRACTICE script files.

Tip 2: You can quickly get help on an unknown command or function by right-clicking the command or
function. Then select Help for Command or Help for Function from the popup menu [F].

Examples

Example 1:

;open the file 'test.cmm' and place the insertion point in line 115
PEDIT test.cmm 115.

D

E

F

PRACTICE Script Language Reference Guide | 53©1989-2024 Lauterbach

Example 2:

See also

■ PBREAK ■ PLIST ■ PSTEP ■ ClipSTOre
■ EDIT.file ■ SETUP.EDITOR

▲ ’Text Editors’ in ’PowerView User’s Guide’
▲ ’Release Information’ in ’Legacy Release History’
▲ ’Create a PRACTICE Script’ in ’Training Script Language PRACTICE’

;- The WinExt pre-command allows you to move the PEDIT window outside the
; TRACE32 main window.
;- The WinResist pre-command prevents the PEDIT window from being closed
; by the WinCLEAR command in your PRACTICE scripts.
WinExt.WinResist.PEDIT test.cmm
PRACTICE Script Language Reference Guide | 54©1989-2024 Lauterbach

PLIST List PRACTICE script

Lists the currently loaded PRACTICE script. Script nesting, branching and single jumping are marked in the
scale area on the left. Enabled breakpoints are flagged with a small red bar, disabled breakpoints are
flagged with a small gray bar in the PLIST window.

Examples:

See also

■ PBREAK ■ PEDIT ■ PMACRO ■ PSTEP

▲ ’Release Information’ in ’Legacy Release History’

Format: PLIST [<label> | <line>]

A An enabled breakpoint in line 41 at SYStem.Up; a disabled breakpoint in line 45 at the IF block.

B Opens the PBREAK.List window, listing the PRACTICE breakpoints.

C Double-clicking a line toggles a breakpoint (set/delete).

D Click inside the PLIST window to display the file name of the script being executed. The file name is
displayed in the state line of the TRACE32 main window.

PLIST 10. ; List as of line 10

PLIST myLabel ; List as of label ‘myLabel’

PLIST ; List as of the current program counter

; an example for PLIST
PSTEP

DO test.cmm
PLIST

; Set PRACTICE script execution to
; single step mode
; Load PRACTICE script
; List PRACTICE script for debugging

C

A

D

B

PRACTICE Script Language Reference Guide | 55©1989-2024 Lauterbach

PMACRO PRACTICE macros

If a PRACTICE script is executed, the PRACTICE stack frame and the PRACTICE macros (variables) can
be visualized and the macro search priority can be manipulated by the commands of the PMACRO
command group.

See also

■ PMACRO.EXPLICIT ■ PMACRO.IMPLICIT ■ PMACRO.IMPLICITPRIVATE ■ PMACRO.list
■ PMACRO.LOCK ■ PMACRO.RESet ■ PMACRO.UNLOCK ■ PLIST

▲ ’Release Information’ in ’Legacy Release History’

PMACRO.EXPLICIT Enforce explicit PRACTICE macro declaration
[Examples - GLOBAL macros] [Examples - LOCAL macros]

Enforces explicit declarations of PRACTICE macros. That is, macros in PRACTICE scripts (*.cmm) must be
declared with the commands GLOBAL or LOCAL or PRIVATE.

Starting a PRACTICE script with PMACRO.EXPLICIT enforces an explicit declaration of all PRACTICE
macros for the entire PRACTICE script. The explicit declaration in the parent PRACTICE script extends to all
blocks, sub-blocks (e.g. IF..., RePeaT..., WHILE..., etc.), subroutines (GOSUB...RETURN), and sub-scripts
(DO...ENDDO).

Starting a sub-block or subroutine with PMACRO.EXPLICIT enforces explicit declarations only for the sub-
block (e.g. IF..., RePeaT..., WHILE..., etc.) or subroutine (GOSUB...RETURN).

Format: PMACRO.EXPLICIT

A Thick gray bar = explicit macro declaration range; here in a subroutine block (GOSUB...RETURN).

B Thin gray bar = implicit macro declaration range.

B

A

PRACTICE Script Language Reference Guide | 56©1989-2024 Lauterbach

If the explicit-declaration setting is violated during PRACTICE script execution, the TRACE32 message line
informs you with an error message and script execution stops.

• If an undeclared macro is initialized, the following error message is displayed in the state line:
“explicit PRACTICE macro declaration expected”.

• If an explicitly declared macro is declared again, the following error message is displayed in the
state line: “explicitly declared PRACTICE macro already exists”.

Examples - GLOBAL Macro

Example 1: When GLOBAL macros are declared before the PMACRO.EXPLICIT command is executed,
then the same GLOBAL macros can be re-declared at any time during a TRACE32 session (but not while
the parent script is still running). The parameter of a GLOBAL macro can re-initialized by any PRACTICE
script.

Example 2: When GLOBAL macro declarations are placed after PMACRO.EXPLICIT, the GLOBAL
macros can be declared only once during a TRACE32 session. If they are declared again, a script error
occurs, script execution stops, and an error message is displayed. The parameter of a GLOBAL macro can
re-initialized by any PRACTICE script.

NOTE: • Explicit macro declaration is recommended for fail-safe operation of
PRACTICE scripts.

• PMACRO.EXPLICIT together with the error messages assists you in
declaring all macros explicitly.

GLOBAL &ProjName1 ;declare PRACTICE macros with GLOBAL
GLOBAL &Start1

PMACRO.EXPLICIT ;enforce explicit PRACTICE macro declaration

&ProjName1="Project 10" ;initialize the GLOBAL macros
&Start1=CLOCK.TIME()

PMACRO.EXPLICIT ;enforce explicit PRACTICE macro declaration

GLOBAL &ProjName2 ;declare PRACTICE macro explicitly with GLOBAL
GLOBAL &Start2

&ProjName2="Poject X" ;initialize the GLOBAL macro
&Start2=CLOCK.TIME()
PRACTICE Script Language Reference Guide | 57©1989-2024 Lauterbach

Examples - LOCAL Macro

Example 3: Correct explicit declaration of the PRACTICE macro LOCAL &file1

Example 4: The explicit declaration of the PRACTICE macro LOCAL &file2 is missing, which will result in
an error message.

See also

■ PMACRO ■ PMACRO.IMPLICIT ■ PRIVATE ■ GLOBAL
■ LOCAL

▲ ’Release Information’ in ’Legacy Release History’

PMACRO.IMPLICIT Implicit PRACTICE macro declaration

Ends the explicit macro declaration range started with the PMACRO.EXPLICIT command.

See also

■ PMACRO ■ PMACRO.EXPLICIT ■ PRIVATE ■ GLOBAL
■ LOCAL

▲ ’Release Information’ in ’Legacy Release History’

PMACRO.EXPLICIT ;enforce explicit PRACTICE macro declaration

LOCAL &file1 ;declare PRACTICE macro explicitly with LOCAL

&file1=OS.PresentExecutableFile() ;initialize PRACTICE macro

PRINT "&file1" ;print name of the currently used TRACE32 executable

PMACRO.EXPLICIT ;enforce explicit PRACTICE macro declaration

;here, the explicit declaration with the LOCAL command is missing

&file2=OS.PresentExecutableFile()
 ;now, a script error occurs, script execution stops,
 ;and the following error message is displayed:
 ;"explicit PRACTICE macro declaration expected"

Format: PMACRO.IMPLICIT

NOTE: By default, TRACE32 declares macros implicitly if you neglected to declare
them with the commands LOCAL or PRIVATE.
PRACTICE Script Language Reference Guide | 58©1989-2024 Lauterbach

PMACRO.IMPLICITPRIVATE Hide implicit macros
[build 140146 - DVD 02/2022]

Per default, macros implicitly created by an assignment are visible in sub-functions and scripts called with
DO. After calling the new command PMACRO.IMPLICITPRIVATE, these implicitly created macros are
hidden in sub-functions and scripts called with DO. So, these macros behave as if they were created with the
PRIVATE command.

See also

■ PMACRO

Format: PMACRO.IMPLICITPRIVATE
PRACTICE Script Language Reference Guide | 59©1989-2024 Lauterbach

PMACRO.list Display PRACTICE macros

Displays the global, local, and private PRACTICE macros. In addition, the PMACRO.list window displays:

• The global PRACTICE stack frame

• Local PRACTICE stack frames

• Script nesting

• Loop commands (WHILE, RePeaT)

• User-defined ON and GLOBALON commands

See also

■ PMACRO ■ PRIVATE ■ END ■ GLOBAL
■ LOCAL

PMACRO.LOCK Lock PRACTICE macros

All macros of higher nesting levels are disabled. The lock will be released automatically if the current level is
left.

Format: PMACRO.list

A Local PRACTICE stack frames C Example of a user-defined command named TICONS

B Global PRACTICE stack frame

Format: PMACRO.LOCK

A

B

C

PRACTICE Script Language Reference Guide | 60©1989-2024 Lauterbach

Example:

See also

■ PMACRO ■ PMACRO.UNLOCK

PMACRO.RESet Clear current PRACTICE macros

All macros in the current level are removed. If no PRACTICE script is running, all macros on the top level will
be erased.

See also

■ PMACRO ■ END ■ GLOBAL ■ GLOBALON

LOCAL &m1

&m1=“Hello”
PRINT “main: m1 = &m1”
GOSUB ltest World
PRINT “main: m1 = &m1”
ENDDO

; -----------------------------------

ltest:
(
 PMACRO.LOCK
 (
 ENTRY &m1
 PRINT “ltest: m1 = &m1”
)
 PMACRO.UNLOCK
 RETURN
)

Format: PMACRO.RESet
PRACTICE Script Language Reference Guide | 61©1989-2024 Lauterbach

PMACRO.UNLOCK Unlock PRACTICE macros

Re-enables the macros that were previously disabled with PMACRO.LOCK.

See also

■ PMACRO ■ PMACRO.LOCK

Format: PMACRO.UNLOCK
PRACTICE Script Language Reference Guide | 62©1989-2024 Lauterbach

PRINT Write text and data to an AREA window (without format decoration)
[Examples]

Writes the given arguments to the selected AREA window. When writing to the default AREA A000, the
written data is also shown in the TRACE32 message line.

What is the difference between the commands ...?

Format: PRINT [{%<attribute>}] [{ {%<format>} <data> }]

<attribute>: AREA <area_name>
CONTinue
HOME

<format>: <type>
COLOR.<color>
ERROR
WARNING

<type>: Ascii | BINary | Decimal | Hex | String

<color>: NORMAL | BLACK | MAROON | GREEN | OLIVE | NAVY | PURPLE
TEAL | SILVER | GREY | RED | LIME | YELLOW | BLUE | FUCHSIA
AQUA | WHITE

PRINT ECHO

Writes all data without any format decoration
(e.g. without the prefix “0x” for hexadecimal
numbers).

Writes all data decorated to indicate the format
of the data.

For a comparison of the different outputs, see example 4.

<type> Converts all following <data> to the specified format. See example 3.

AREA <area_name> Writes the message to the specified message area.
Without this attribute the message is written to the default AREA A000 or
the message area that has just been selected with the command
AREA.Select.
If the message AREA you want to write to does not yet exist, use the
command AREA.Create.
This attribute can only be used before the first <data>. (The execution of
a single PRINT command writes only to one message area.)
PRACTICE Script Language Reference Guide | 63©1989-2024 Lauterbach

Example 1

An overview of the available colors and their names is written to the AREA window:

CONTinue Adds the string to the current output line in the selected AREA window or
TRACE32 message line without inserting a newline character. See
example 2.
This attribute can only be used before the first <data>.

COLOR.<color> Writes <data> in color in the AREA window. See example 1.

ERROR <data> will be written in dark red.
Only when writing to the default AREA A000, the text is also shown as an
error in the TRACE32 message line.

WARNING <data> will be written in orange.
Only when writing to the default AREA A000, the text is also shown as a
warning in the TRACE32 message line.

HOME Writes to top line in AREA window.
This attribute can only be used before the first <data>.

AREA.view

PRINT %COLOR.RED "RED " %COLOR.GRAY "GRAY " %COLOR.MAROON "MAROON"
PRINT %COLOR.AQUA "AQUA " %COLOR.GREEN "GREEN " %COLOR.NORMAL "NORMAL"
PRINT %COLOR.BLUE "BLUE " %COLOR.OLIVE "OLIVE " %COLOR.SILVER "SILVER"
PRINT %COLOR.LIME "LIME " %COLOR.BLACK "BLACK " %COLOR.YELLOW "YELLOW"
PRINT %COLOR.NAVY "NAVY " %COLOR.WHITE "WHITE " %COLOR.FUCHSIA "FUCHSIA"
PRINT %COLOR.TEAL "TEAL " %COLOR.PURPLE "PURPLE"
PRACTICE Script Language Reference Guide | 64©1989-2024 Lauterbach

Example 2

Various messages are written to a new, user-defined AREA window named OUT:

Example 3

;define position, size and name of the new AREA window named OUT
WinPOS 3.5 10. 80. 6. 0. 0. OUT
AREA.Create OUT ;create AREA window OUT

AREA.Select OUT ;select the AREA window OUT
 ;for printing

AREA.view OUT ;display AREA window OUT
PRINT "Text 1 "
PRINT %CONTinue "Text 2 " ;print text without line break
PRINT "" ;print an empty line

 ;print user-defined error message
PRINT "Data &data found at " ADDRESS.OFFSET(TRACK.ADDRESS())
PRINT %ERROR "FLASH programming failed"

;WinClear OUT ;remove AREA window OUT

A This user-defined error message is not written to the TRACE32 message line, since we have re-
routed the output to the user-defined AREA window named OUT.

;print hex values in decimal and then in binary format
PRINT %Decimal 0x1f ":" 0x2f ":" 0x3f "-" %BINary 0x1f ":" 0x2f ":" 0x3f

;print all data in certain format using PRACTICE formatting functions
PRINT FORMAT.Decimal(5.,0x1f) " - " FORMAT.BINary(10.,0x1f)

;formatted printing (includes character repetition with <<)
PRINT "="<<24.
PRINT "| " "NAME" "."<<(20.-STRing.LENgth("NAME")) " |"

A

PRACTICE Script Language Reference Guide | 65©1989-2024 Lauterbach

Example 4

The following table shows the output in a message area for the same data written with ECHO and PRINT:

See also

■ PRINTF ■ PRinTer ■ AREA.CLEAR ■ AREA.Create
■ AREA.SAVE ■ AREA.Select ■ AREA.view ■ ECHO
■ SPRINTF ■ WinPrint

▲ ’Release Information’ in ’Legacy Release History’
▲ ’I/O Commands’ in ’Training Script Language PRACTICE’

<data> AREA output with
ECHO

AREA output with
PRINT

0x042 0x42 42

%Hex 66. 0x42 42

23. 23. 23

%Decimal 0x17 23. 23

0y110011 0y00110011 110011

%BINary 0x33 0y00110011 00110011

'X' 'X' X

%Ascii 0x58 'X' X

5==5 TRUE() TRUE

5==3 FALSE() FALSE

"text" text text

P:0x001000 P:0x1000 P:0x1000

500ms 0.5000000000s 0.5000000000s

DATE.MakeUnixTime(1990.,10.,3,0,0,0) 654912000. 654912000

Var.VALUE(23 * 47) 0x439 439
PRACTICE Script Language Reference Guide | 66©1989-2024 Lauterbach

PRINTF Write formatted data to an AREA window
[Examples]

Writes text and data to the default AREA A000 or the selected AREA window in the style of the printf()
function of C/C++. When writing to the default AREA A000, the output is also shown in the TRACE32
message line.

Format: PRINTF [{%<attribute>}] "<format_string>" [{<data>}]

<attribute>: AREA <area_name>
CONTinue
COLOR.<color>
ERROR
WARNING

<color>: NORMAL | BLACK | MAROON | GREEN | OLIVE | NAVY | PURPLE
TEAL | SILVER | GREY | RED | LIME | YELLOW | BLUE | FUCHSIA
AQUA | WHITE

<attribute> For a description of the attributes, see table below.

<format_string> The characters of the <format_string> are written to a message area.
However the following control characters within the <format_string> have a
special meaning:
• & (ampersand)
• " (double-quotes)
• \ (backslash)
• % (percent sign)
For information about the control characters, see table below.

<data> One <data> argument is required for each control sequence started by a
% within the <format_string>. See example.
For information about the syntax of the control sequence, click here.

<attribute> Description

AREA <area_name> Writes the message to the specified message area.
Without this attribute the message is written to the default AREA A000 or
the message area that has just been selected with the command
AREA.Select.
If the message AREA you want to write to does not yet exist, use the
command AREA.Create.

CONTinue Adds the message to the last output line in the currently selected AREA
window.

COLOR.<color>,
ERROR, WARNING

For option descriptions, see PRINT.
PRACTICE Script Language Reference Guide | 67©1989-2024 Lauterbach

Control Characters Description

& (ampersand) Like in any other string in TRACE32, the ampersand invokes a text-
replacement with a named PRACTICE macro. To safely output an
ampersand write &"+"
PRINTF "Jekyll&"+"Hyde" is printed as Jekyll&Hyde

" (double-quotes) Like in any other string in TRACE32, a double-quote ends a string unless
you escape it with another double-quote.
PRINTF "She said ""Hi!""" is printed as She said "Hi!"

\ (backslash) Unlike in C/C++ the backslash is not a special escape character inside
TRACE32 strings. A backslash inside the <format_string> of PRINTF is
printed like a regular character.
PRINTF "north\northwest" is printed as north\northwest

NOTE: Every PRINTF command will automatically cause a line break in
the AREA window before writing to it. You can explicitly suppress the line
break with the attribute %CONTinue, which has to be placed outside the
<format_string>. (See %CONTinue)

% (percent sign) The percent sign is the magic control character with PRINTF:

Any percent sign (%) inside the <format_string> starts a control sequence
which is replaced by the <data> arguments following the <format_string>.

For every valid control sequence, you must specify a <data> argument.

The control sequence started with the percent sign has the form:
• %[flags][width][.precision][length]specifier

The percent sign and specifier are mandatory; the rest is optional. The
length is highly optional and mainly accepted for compatibility to the
format-string in C/C++.

For information about the available flags, specifiers, etc., click the blue
hyperlinks.

To print a percent sign, you have to write %%
PRINTF "100%% safe" is printed as 100% safe
PRACTICE Script Language Reference Guide | 68©1989-2024 Lauterbach

Specifier Description Output Valid Argument
Types

d or i Signed decimal integer
PRINTF "%i" -314.159265
PRINTF "%i" -0x13A ;minus sign
PRINTF "%i" ~0x13A+1 ;tilde
PRINTF "%hi" 0xFEC6
For information about the h, see Length.

-314 Hex,
Decimal,
Binary,
Boolean,
ASCII,
Address,
Float,
Time*u Unsigned decimal integer 314

o Unsigned octal integer 472

x Unsigned hexadecimal integer, lowercase digits 13a

X Unsigned hexadecimal integer, uppercase digits 13A

!y Unsigned binary integer (TRACE32 extension) 100111010 Hex,
Decimal,
Binary,
Boolean,
ASCII,
Address

f or F Floating point in decimal notation 314.159265 Hex,
Decimal,
Binary,
Boolean,
ASCII,
Float,
Time*

e Floating point in decimal exponent notation,
lowercase
PRINTF "%e" 314.159265

3.141593e+002

E Floating point in decimal exponent notation,
uppercase

3.141593E+002

g Floating point %e or %f 314.159

G Floating point %E or %F 314.159

a Floating point in hexadecimal exponent notation,
lowercase

0x1.3a28c6p+8

A Floating point in hexadecimal exponent notation,
uppercase

0X1.3A28C6P+8

c Character**
PRINTF "%s%c" "Intel" 0x00AE

Intel® Hex,
Decimal,
Binary,
ASCII

s String sample String

p Pointer: The offset of an address (alias for #x) 0x1000 Address

!A Single address (TRACE32 extension), uppercase
PRINTF "%!A" a:100
PRINTF "%!A" a:100--a:110

A:1000 Address,
Address range
PRACTICE Script Language Reference Guide | 69©1989-2024 Lauterbach

!R Address range (TRACE32 extension), uppercase
PRINTF "%!R" a:1000--1fff

A:1000--1FFF Address range

n Nothing (nothing at all) all

* A time value is output in nanosecond in case of an integer representation, while it is output in seconds in
case of a floating point representation.

** For values from 0 to 127, the result is an ASCII character on all operating systems.
For values from 128 to 255, the result depends on the font setting in the config.t32.
On Windows, the result additionally depends on the active console code page.

Flag Description Affected
Specifier

The use of flags is optional. You may use no flag, one flag, or multiple flags.

- Left align: Aligns the output to the left of the minimal output width (see
example).
By default the output is right-aligned within the given minimal output
width.

all

0 Zero padding: Left-pads numbers with zeroes instead of spaces when
a minimal output width is given (see example).
Not useful in combination with ’-’ (Left align)

d, i, o, u, x, X,
f, F, a, A, e, E, g,
G
!y, p

Affix: Prepends a format-specific decoration:
• %#x gets decoration "0x" for non-zero values
• %#X gets decoration "0X" for non-zero values
• %#o gets decoration "0" for non-zero values
• %#!y gets decoration "0y" for non-zero values
• %#!A gets decoration "0x"
For floating point representations, a decimal point is forced. Decimal
numbers do not get a decimal point.
In addresses (%!A and %!R) all offsets a prefixed by "0x".
This flag is mainly useful with addresses.
PRINTF "%!y" 0x42 ;result: 1000010
PRINTF "%#!y" 0x42 ;result: 0y1000010

x, X,
o,
!y,
f, F, g, G
!A, !R

+ Force algebraic sign:
• Positive numbers are prefixed by a plus sign (+).
• Negative numbers are prefixed by a minus sign (-).

d, i,
f, F, a, A, e, E, g,
G

(space) Positive numbers are prefixed by a space character.
Negative numbers are prefixed by a minus sign (-).

d, i,
f, F, a, A, e, E, g,
G

Specifier Description Output Valid Argument
Types
PRACTICE Script Language Reference Guide | 70©1989-2024 Lauterbach

Width Description

The optional width specifies the minimum output width and is either a decimal number or an asterisk:

<number> The minimum number of characters to be written including an optional algebraic sign or
prefix/suffix (with flag #).
• If the representation of the data uses fewer characters, the output is usually pad-

ded with blank spaces.
• If flag 0 is used, the output is padded with zeroes instead.
• If the representation of the data requires more characters, it is not truncated.
PRINTF "%08x" 0x42

* By using an asterisk inside the <format_string>, the value for the minimum output width is
taken from an additional <data> argument. This additional argument precedes the argument
that has to be formatted (and also precedes any possible argument for the precision).
PRINTF "%0*x" 8 0x42

Precision Specifier Description

The meaning of the optional precision depends on the specifier at the end of the control sequence. It is
either a number or an asterisk:

.<num-
ber>

d, i, u,
o, x, X,
!y, p

The minimum number of digits to be written. If the written number has
fewer digits than specified with the precision, the remaining digits are
padded with leading zeroes.

f, F, a, A, e, E The number of digits after the decimal point.

g, G The maximum number of significant digits to be written.

s The maximum number of characters to be written.

c, n No effect. Precision value is ignored.

!A, !R The minimum number of digits for the address offset.

With addresses, you may also specify one or two additional precision
values - each starting with a decimal point:
• %[flags][width][.precision[.precision[.precision]]][length]specifier

See example.

The precision values specify the minimum number of digits for the
memory segment and/or machine ID, if the address contains a
memory segment and/or machine ID.

.* By using an asterisk inside the <format_string>, the value for the precision is taken from
an additional <data> argument. This additional argument precedes the argument that has to
be formatted.
PRINTF "%*.*x" 8 4 0x42
PRACTICE Script Language Reference Guide | 71©1989-2024 Lauterbach

Length Description Affected
Specifier

The optional length is mainly accepted for compatibility to format strings used with printf() in C/C++.
However, the length has a slightly different meaning in TRACE32 than with C/C++. In TRACE32 the length
can specify a bit limit for integer representations. The default length for all integer values is 64-bit.

h Truncate the output value to 16-bit. d, i, u, o, x, X, !y

hh Truncate the output value to 8-bit. d, i, u, o, x, X, !y

l Truncate the output value to 32-bit. d, i, u, o, x, X, !y

ll Truncate the output value to 64-bit (default). d, i, u, o, x, X, !y

L, j, z
or t

Silently ignored length specifiers (for compatibility to format strings
used with printf() in C/C++)

all
PRACTICE Script Language Reference Guide | 72©1989-2024 Lauterbach

Example 1

Output:

Example 2

Output:

;print hex values in decimal and in binary format
; <format_string> <data>
PRINTF "%i. %i. %i. / %#!y %#!y %#!y" 0x1f 0x2f 0x3f 0x1f 0x2f 0x3f

% = Control character i = Specifier # = Flag !y = Specifier

. = Postfix for decimal values, see SETUP.RADIX.

PRIVATE &hll_variable ;declare a PRACTICE macro
Data.Load.ELF "~~/demo/arm/compiler/gnu/sieve.elf" /RelPATH

;assign name of HLL variable from *.elf file to the PRACTICE macro
&hll_variable="plot1"

;strings padded to a column width of 15 characters
PRINTF %COLOR.RED "%-15s: %s" "HLL Var. Name" "&hll_variable"
PRINTF "%-15s: %s" "Symbol Path" sYmbol.NAME(&hll_variable)
PRINTF "%-15s: %#!A" "Address" Var.ADDRESS(&hll_variable)
PRINTF "%-15s: %i. Bytes" "Size" Var.SIZEOF(&hll_variable)
PRINTF "%-15s: %+i." "Value" Var.Value(&hll_variable)

% = Control character - = Flag 15 = Width s = Specifier; for result, see [A] below.

% = Control character # = Flag !A = Specifier; for result, see [B] below.

A Left-aligned column with a width of 15 characters (%-15s)

B Single address in upper case with the prefix 0x (%#!A)

A

B

PRACTICE Script Language Reference Guide | 73©1989-2024 Lauterbach

Example 3

Random data and space IDs from the TRACE32 virtual memory (VM:) are printed in fixed columns.

Output:

See also

■ PRINT ■ ECHO ■ SPRINTF

▲ ’Release Information’ in ’Legacy Release History’

PRIVATE &i &addr
&i=0
&addr=VM:0x10200

SYStem.Option.MMUSPACES ON ;enable space IDs for logical addresses

Data.PATTERN &addr++0xFF /RANDOM ;create a random pattern

WHILE &i<0x100
(
 PRINTF "Address %.8.4!A contains 0x%08X" &addr+&i Data.LONG(&addr+&i)
 &i=&i+4
)

% = Control character .8.4 = Precision !A = Specifier; for result, see [A] below.

% = Control character 0 = Flag 8 = Width X = Specifier; for result, see [B] below.

A Prints an address with an offset of at least 8 characters and its space ID of at least 4 characters
(%.8.4!A)

B Prints data in hexadecimal form with at least 8 characters. The data is left-padded with zeros if the
data has less than 8 characters (%08X).

A B
PRACTICE Script Language Reference Guide | 74©1989-2024 Lauterbach

PRIVATE Create private PRACTICE macro
[Example]

Creates a private macro. PRACTICE macros declared with PRIVATE exist inside the declaring block and are
erased when the block ends. They are only visible in:

Format: PRIVATE {<macro>}

Yes The declaring block and all sub-blocks (e.g. IF..., RePeaT..., WHILE..., etc.)

No Subroutines (GOSUB...RETURN)

No Sub-scripts (DO...ENDDO)
PRACTICE Script Language Reference Guide | 75©1989-2024 Lauterbach

Example: The following script is just intended to illustrate the usage of private macros. To try this demo
script, simply copy the script to a test.cmm file, and then step through the script (See “How to...”).

See also

■ PMACRO.EXPLICIT ■ PMACRO.IMPLICIT ■ PMACRO.list ■ ENTRY
■ GLOBAL ■ LOCAL ■ SPRINTF

▲ ’Release Information’ in ’Legacy Release History’

LOCAL &msg //declare LOCAL macro
&msg="Hello World!"

PRINT "&msg" //show LOCAL macro
GOSUB child1 //call a subroutine
PRINT "&msg" //show LOCAL macro
ENDDO
;---
child1:
 PRIVATE &msg //declare PRIVATE macro
 &msg="This comes from a private macro"

 //show PRIVATE macro defined in child1
 PRINT "child1 says: &msg"

 (
 //PRIVATE macros are visible inside a sub-block:
 &msg="This comes again from the private macro"
 PRINT "&msg"
)
 GOSUB grandchild1

 //show PRIVATE macro defined in child1
 PRINT "child1 says: &msg"
 RETURN
;---
grandchild1:
 //LOCAL macros visible in any subroutine:
 //show again LOCAL macro defined in the beginning of the script
 PRINT "grandchild1 says: &msg"
 &msg="Hello Universe!"
 RETURN
PRACTICE Script Language Reference Guide | 76©1989-2024 Lauterbach

PSKIP Skip command or block in PRACTICE script

Skips the current command or block in a PRACTICE script without executing command or block. The PC
moves to the next executable PRACTICE script line, but does not execute it.

As an alternative to PSKIP, you can right-click the command where you want to continue the PRACTICE
script execution, and then select Set PC here from the popup menu.

What is the difference between ...?

Format: PSKIP

A Clicking Skip in line 71 skips the block without executing it and moves the PC to line 76.

PSKIP Set PC here

Automatically moves the PC to the next
executable line.

Lets you place the PC to an executable line where
you want to continue.

A

PRACTICE Script Language Reference Guide | 77©1989-2024 Lauterbach

PSTEP Execute single line

If no PRACTICE script is loaded, the command will toggle the run mode. If the run mode is switched to
single step, the next started PRACTICE script will stop at the first line and can be executed in single step
mode in the PSTEP window.

With a given PRACTICE script file name the DO command will be superfluous.

See also

■ PSTEPOUT ■ PSTEPOVER ■ PBREAK ■ PEDIT
■ PLIST ■ DO ■ RUN

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Debugging of PRACTICE Script’ in ’Training Script Language PRACTICE’

Format: PSTEP [<file> [<parameter_list>]]

PSTEP

DO test
PSTEP

; sets PRACTICE script execution to
; single step mode
; starts PRACTICE script
; single step in PRACTICE script

PSTEP test.cmm 0x1fff ; sets PRACTICE script execution to
; single step mode and starts the
; PRACTICE script
PRACTICE Script Language Reference Guide | 78©1989-2024 Lauterbach

PSTEPOUT Back to caller

Executes all PRACTICE script lines of a callee, returns to the caller, and stops PRACTICE script execution
at the next executable script line of the caller. A callee can be a PRACTICE subroutine (GOSUB...RETURN)
or a sub-script (DO...ENDDO).

Prerequisite: You have run the PSTEP command to switch to the PRACTICE script single-step mode.

Clicking the Up button in the PRACTICE script windows PLIST, PSTEP, or PMACRO.list
executes the PSTEPOUT command via the user interface:

See also

■ PSTEPOVER ■ PSTEP

▲ ’Release Information’ in ’Legacy Release History’

Format: PSTEPOUT

A PSTEPOUT runs the subroutine to completion, returns to the caller and stops PRACTICE script
execution at the next executable script line of the caller.

A

PRACTICE Script Language Reference Guide | 79©1989-2024 Lauterbach

PSTEPOVER Step over callee and stop at the next script line

Executes a PRACTICE script line and stops script execution at the next executable script line. A callee such
as a PRACTICE subroutine (GOSUB...RETURN) or sub-script (DO...ENDDO) is run to completion without
leaving the caller.

Prerequisite: You have run the PSTEP command to switch to the single-step mode for PRACTICE scripts.

Clicking the Over button in the PRACTICE script windows PLIST, PSTEP, or PMACRO.list
executes the PSTEPOVER command via the user interface:

See also

■ PSTEPOUT ■ PSTEP

Format: PSTEPOVER

NOTE: If there is an active breakpoint in the callee you are trying to step over, then
script execution will stop at the breakpoint (see also PBREAK).

A PSTEPOVER will also be stopped by the following commands in a callee:
• ENTER
• INKEY
• STOP

A PSTEPOVER runs the subroutine to completion without leaving the caller, and stops PRACTICE script
execution at the next executable script line of the caller.

A

PRACTICE Script Language Reference Guide | 80©1989-2024 Lauterbach

Q ... R

READ Read from data file

Read data from an open file. Arguments in the file are separated by blanks.

Examples:

See also

■ CLOSE ■ OPEN ■ WRITE

Format: READ #<buffer_number> [%LINE] <parameter_list>

LINE With the LINE option a complete line is read into a PRACTICE macro.

 LOCAL &offset &data &headerline
 OPEN #1 datafile.dat /Read

 READ #1 %LINE &headerline
 PRINT "&headerline"

 // script for newer software versions

 RePeaT 10.
 (
 READ #1 &offset &data
 IF EOF()
 GOTO endloop
 Data.Set &offset &data
)
endloop: CLOSE #1

 // for older software versions than 2008.03.03
 RePeaT 10.
 (
 READ #1 &offset &data
 IF "&offset"==""
 GOTO endloop
 Data.Set &offset &data
)
endloop: CLOSE #1
PRACTICE Script Language Reference Guide | 81©1989-2024 Lauterbach

RePeaT Loop with check at end of loop

The command or script block following a RePeaT command will be executed <count> times (format 1 and 2)
or once and then as long as the <condition> is true (format 3).

If <count> is set to 0, the loop is executed as an endless loop.

Example of format 1: The execution of a single command is repeated 10 times. The RePeaT command
may be started interactively from the command line.

Example of format 2:

Format 1: RePeaT <count> <command>

Format 2: RePeaT [<count>]
 <block>

Format 3: REPEAT
 <block>
WHILE <condition>

AREA.view
RePeaT 10. PRINT "X"

…
Var.Break.Set flags /Write ; set a Write breakpoint to array
 ; flags
; repeat the following 10. times
; start program and wait until program execution is stopped at breakpoint
; export contents of array flags to file flags_export.csv in CSV format
REPEAT 10.
(
 Go
 WAIT !STATE.RUN()
 Var.EXPORT "flags_export.csv" flags /Append
)
…

PRACTICE Script Language Reference Guide | 82©1989-2024 Lauterbach

Example of format 3:

The following command sequence will generate an error message when the script is started:

The following workaround solves this problem:

See also

■ DO ■ WHILE

▲ ’Release Information’ in ’Legacy Release History’

; read line from file my_strings.txt
; write not-empty lines to file my_strings_noempty.txt

PRIVATE &CurrentLine
OPEN #1 my_strings.txt /Read
OPEN #2 my_strings_noempty.txt /Create

RePeaT
(
 READ #1 %LINE &CurrentLine
 IF (!FILE.EOFLASTREAD()&&("&CurrentLine"!=""))
 WRITE #2 "&CurrentLine"
)
WHILE !FILE.EOFLASTREAD()
CLOSE #1
CLOSE #2

; below command sequence is illegal and throws an error!
RePeaT <count>

 <block>
WHILE <condition>
 <block>

RePeaT <count>
 <block>
 (
 ; empty block to separate RePeaT command from WHILE command
)

WHILE <condition>
 <block>
PRACTICE Script Language Reference Guide | 83©1989-2024 Lauterbach

RETURN Return from subroutine

The subroutine is finished. Optionally, parameters may be passed, which can be taken over using the
ENTRY command.

Example:

See also

■ ENTRY ■ GOSUB

Format: RETURN [<parameter_list>]

GOSUB subr2
ENTRY &portval
…

subr2:
&result=Data.Byte(sd:0x100)
RETURN &result
PRACTICE Script Language Reference Guide | 84©1989-2024 Lauterbach

RETURNVALUES Take return values

Takes the return values of a PRACTICE script/subroutine. The return values have to be enclosed in quotes
(") in the call. An error message is generated, if a macro name is used, that cannot be found in the current
scope.

Examples:

See also

■ ENTRY ■ PARAMETERS

▲ ’Release Information’ in ’Legacy Release History’

Format: RETURNVALUES {<macro>}

PRIVATE &sr1_dec &sr1_hex &sr1_string

GOSUB sr_1
RETURNVALUES &sr1_dec &sr1_hex &sr1_string
ENDDO

sr_1:
(
 RETURN "5." "0x55" "Okay"
)

PRIVATE &range &boolean &symbol &val1 &val2 &strA

GOSUB AnySubroutine

;take the return values passed by the subroutine
RETURNVALUES &range &boolean &symbol &val1 &val2 &strA

PRINT "&range &boolean &symbol &val1 &val2 &strA"
ENDDO

AnySubroutine:
PRIVATE &my_rng &my_bool &my_symb &my_val1 &my_val2 &my_strA

 &my_rng="0x40000000++0xffff" ;any range
 &my_bool=FOUND() ;any boolean expression
 &my_symb="\MCC\sieve" ;any symbol
 &my_val1="10." ;any decimal value
 &my_val2="0xA" ;any hex value
 &my_strA="Hello TRACE32!" ;any string

RETURN "&my_rng" "&my_bool" "&my_symb" "&my_val1" "&my_val2" "&my_strA"
PRACTICE Script Language Reference Guide | 85©1989-2024 Lauterbach

RUN Start PRACTICE script

Starts a PRACTICE script after clearing the old PRACTICE stack. Additional parameters may be defined
which are passed to the subroutine. The command is identical to the DO command, except that it clears the
old stack before starting the PRACTICE module.

See also

■ DO ■ ENDDO ■ PSTEP

Format: RUN <file> [<parameter_list>]
PRACTICE Script Language Reference Guide | 86©1989-2024 Lauterbach

S ... T

SCREEN Screen updating

If PRACTICE scripts are executed, the screen is normally not updated. The SCREEN commands allow
updating of the screen manually or automatically. The command has no effect on the screen update, while
PRACTICE is not running, e.g. the update at spot points.

See also

■ SCREEN.ALways ■ SCREEN.display ■ SCREEN.OFF ■ SCREEN.ON
■ SCREEN.WAIT

SCREEN.ALways Refresh always

Refreshes the screen after every PRACTICE line. This slows down the execution speed, but allows tracing
the script flow.

Example:

See also

■ SCREEN

Format: SCREEN.ALways

PLIST
SCREEN.ALways
DO test.cmm

; display script state

; run
PRACTICE Script Language Reference Guide | 87©1989-2024 Lauterbach

SCREEN.display Refresh screen

Updates the screen.

Example:

See also

■ SCREEN

SCREEN.OFF No refresh

No refreshing of the screen is done, while PRACTICE scripts are running (except SCREEN.display
commands). This allows PRACTICE scripts to execute very fast, but the results will not be seen on the
screen during script execution.

See also

■ SCREEN

SCREEN.ON Refresh when printing

Refreshes the screen after every PRINT command.

See also

■ SCREEN

Format: SCREEN.display

SCREEN.OFF
PRINT " Screen Mask: A"
PRINT " B"
PRINT …
…
SCREEN

; turn refresh off for fast printing

; update the screen

Format: SCREEN.OFF

Format: SCREEN.ON
PRACTICE Script Language Reference Guide | 88©1989-2024 Lauterbach

SCREEN.WAIT Update screen while waiting

Same as WAIT, but updates the screen while waiting. If you use a terminal window or if you display variables
with run-time memory access, this might be required.

If the command SCREEN.WAIT is used without parameters, the PRACTICE script waits until all processing
windows are completed before the next PRACTICE instruction is interpreted. Examples of processing
windows are: Trace.STATistic.Func, Trace.Chart.sYmbol or CTS.List.

Example 1:

Format: SCREEN.WAIT [<condition> | <period>]

<condition> PRACTICE functions that return the boolean values TRUE or FALSE.

<period> Min.: 1ms
Max.: 100000s
Without unit of measurement, the specified value will be interpreted as
seconds and must be an integer. See below.

… ; configure TERMinal window

TERM.view ; display TERMinal window

Go ; start program

SCREEN.WAIT 5.s ; wait 5.s and update screen while
; waiting

…

PRACTICE Script Language Reference Guide | 89©1989-2024 Lauterbach

Example 2:

See also

■ SCREEN ■ PRinTer.OPEN ■ TIMEOUT ■ WAIT

▲ ’Release Information’ in ’Legacy Release History’

…

Go ; start program execution

WAIT !STATE.RUN() ; wait until program execution
; stopped

Trace.Chart.sYmbol ; perform a flat function run-time
; analysis

SCREEN.WAIT ; update screen and wait until
; flat function run-time analysis
; is completed

… ; continue PRACTICE script
; execution
PRACTICE Script Language Reference Guide | 90©1989-2024 Lauterbach

SPRINTF Write formatted data to a PRACTICE macro

Writes text and formatted data to a PRACTICE macro in the style of the sprintf() function of C/C++.

Example:

See also

■ ECHO ■ GLOBAL ■ LOCAL ■ PRINT
■ PRINTF ■ PRIVATE

▲ ’Release Information’ in ’Legacy Release History’

Format: SPRINTF <macro> "<format_string>" [{<data>}]

<macro> If a PRACTICE macro with the given name does not exist, then it is created
on the local PRACTICE stack.

<format_string> The characters of the <format_string> are written to the PRACTICE
<macro>.

% Each percent sign (%) inside the <format_string> starts a control sequence
which is replaced by the <data> arguments following the <format_string>.

The control sequence started with the percent sign has the form:
• %[flags][width][.precision][length]specifier

For details on the control sequence and other special characters inside the
<format_string>, see the PRINTF command.

PRIVATE &str ;declare a PRACTICE macro of the type PRIVATE

SPRINTF &str "Read 0x%08x at %10i." Data.Long(A:0x100) DATE.UnixTime()

APPEND "~~~/mylogfile.log" "&str"

TYPE "~~~/mylogfile.log" ;display the result in the TYPE window

% = Control character 0 = Flag 8 = Width x = Specifier; for result, see [A] below.
10 = Width i = Specifier . = Postfix for decimal values (SETUP.RADIX); for result, see [B] below.

A B
PRACTICE Script Language Reference Guide | 91©1989-2024 Lauterbach

STOP Interrupt PRACTICE script

The script is stopped, but it remains in the working storage and can be reactivated by the CONTinue
command. The arguments are displayed in the message line and AREA window (same as command
PRINT).

Example:

See also

■ CONTinue ■ END ■ ENDDO ■ WAIT

Format: STOP [<parameter_list> …]

Data.Test 0x0--0x0ffff
IF FOUND()

STOP "Memory error"
PRACTICE Script Language Reference Guide | 92©1989-2024 Lauterbach

SUBROUTINE Define a subroutine
[build 138738 - DVD 09/2021]

Defines a subroutine in a PRACTICE script. A subroutine must be defined at the top level of the script, it is
not allowed to define subroutines within a block. The SUBROUTINE statement must be followed by a block.

A subroutine block should end with a RETURN statement. If no return values are required, the RETURN
statement is optional. If the block end is reached without reaching a RETURN statement, the subroutine will
return to the caller without passing return values (implicit return).

Call subroutines using GOSUB. Example:

Format: SUBROUTINE <name>

PRINT "Performing memory test..."

SUBROUTINE BoardSetup
(
 SYStem.CPU CortexA5
 SYStem.Up
 ;implicit RETURN
)

SUBROUTINE MemoryTest
(
 PRIVATE &address &mem_ok
 PARAMETERS &address
 Data.Set &address %Long 0x5A5A5A5A
 &mem_ok=Data.LONG(&address)==0x5A5A5A5A
 RETURN "&mem_ok" ;explicit RETURN
)

GOSUB BoardSetup
PRIVATE &test1 &test2
GOSUB MemoryTest "ANC:0x1000"
RETURNVALUES &test1
GOSUB MemoryTest "ANC:0x2000"
RETURNVALUES &test2

IF (&test1)&&(&test2)
 PRINT "Memory OK."

NOTE: • GOSUB accepts both labels and subroutine names as target, therefore
labels and subroutines can not have the same name.
PRACTICE Script Language Reference Guide | 93©1989-2024 Lauterbach

W ... Z

WAIT Wait until a condition is true or a period has elapsed

Waits for the specified condition to become true or for the specified period to elapse. If both a condition and
a period are specified, then the first argument to enter the desired state terminates the command. The
granularity of period, as well as the minimum period time is 1ms. The maximum period is 100000s.

While waiting the screen is not updated. If you want the screen to be updated while waiting use the
command SCREEN.WAIT.

Example 1: Run target program for 1 second.

Example 2: Wait until core halts at a breakpoint.

Format: WAIT [<condition>] [<period>] [/RunTime]

<condition> PRACTICE functions that return the boolean values TRUE or FALSE.

<period> Min.: 1ms
Max.: 100000s
Without unit of measurement, the specified value will be interpreted as
seconds and must be an integer. See below.

RunTime Wait period depends on the target runtime and not on the host time.

Go
WAIT 1s
Break

Break.Set sieve
Go
WAIT !STATE.RUN()
PRACTICE Script Language Reference Guide | 94©1989-2024 Lauterbach

Example 3a: Wait until core halts at a breakpoint, with 2s timeout.

Example 3b: Wait until core halts at a breakpoint, with 2s timeout.

See also

■ WHILE ■ INKEY ■ SCREEN.WAIT ■ STOP
■ TIMEOUT ■ SYStem.PAUSE ❏ TIMEOUT()

Go main
WAIT !STATE.RUN() 2s

IF STATE.RUN()
(
 PRINT %ERROR "function main not reached!"
 ENDDO
)

Go main
WAIT !STATE.RUN() 2s

IF TIMEOUT()
(
 PRINT %ERROR "function main not reached!"
 ENDDO
)

PRACTICE Script Language Reference Guide | 95©1989-2024 Lauterbach

WHILE Loop with check at start of loop

The command or script block following a WHILE statement will be executed as long as the condition is true.
Emulators and debuggers have an counterpart of this command that works in the HLL syntax of the target
program (command Var.WHILE).

Examples:

See also

■ WAIT ■ RePeaT ■ Var.WHILE ❏ FILE.EOF()
❏ FILE.EOFLASTREAD() ❏ STATE.RUN()

▲ ’Release Information’ in ’Legacy Release History’

Format: WHILE [<condition>]

WHILE Register(d0)==0x0
(

Register.Set pc testprog
Go testend

)

Var.WHILE flags[9]!=0
 Step

; HLL expression in condition

NOTE: WHILE must be followed by a white space.
PRACTICE Script Language Reference Guide | 96©1989-2024 Lauterbach

WRITE Write to data file

Save data in a data file. The syntax of the command is similar to the PRINT command.

Example: To test this script, simply copy it to a test.cmm file, and then run it in TRACE32 (See “How
to...”).

The path prefix ~~~ expands to the temporary directory of TRACE32.

See also

■ WRITEB ■ APPEND ■ CLOSE ■ MKTEMP
■ OPEN ■ READ

▲ ’Release Information’ in ’Legacy Release History’

Format: WRITE #<buffer_number> [%<format>] <parameter_list>

<format>: CONTinue

CONTinue Continues to print data to the current line (and not to a new line).

;create a file in the temporary directory of TRACE32 and
OPEN #1 ~~~/datafile.dat /Create ;open the file for writing

&offset=0x2228

WHILE &offset<0x22C4
(;write data to file
 WRITE #1 "At Address " &offset " is Data " Data.Long(SR:&offset)
 &offset=&offset+1
)

CLOSE #1 ;close the file for writing

TYPE ~~~/datafile.dat /LineNumbers ;optional: open file in TYPE win.
PRACTICE Script Language Reference Guide | 97©1989-2024 Lauterbach

WRITEB Write binary data to file

Writes binary data to a file. The option /Binary for the OPEN command allows to open or create binary files.

Example:

See also

■ WRITE ■ CLOSE ■ OPEN

▲ ’Release Information’ in ’Legacy Release History’

Format: WRITEB #<buffer_number> [%<format>] <data> | <string>

<format>: Byte | Word | Long | BE | LE

;create a binary file in the temporary directory of TRACE32 and
;open the binary file for writing
OPEN #1 ~~~/test.bin /CREATE /BINARY

WRITEB #1 Var.VALUE(flags[0]) ;write the values of an HLL variable
WRITEB #1 Var.VALUE(flags[1]) ;to the binary file
WRITEB #1 Var.VALUE(flags[3])
WRITEB #1 Var.VALUE(flags[4])

CLOSE #1 ;close the binary file for writing

DUMP ~~~/test.bin ;display a binary file in hex
 ;and ASCII format.
PRACTICE Script Language Reference Guide | 98©1989-2024 Lauterbach

	PRACTICE Script Language Reference Guide
	History
	Related Documents
	A ... D
	APPEND Append to file
	BEEP Acoustic signal
	CLOSE Close file
	CONTinue Continue PRACTICE script
	DECRYPT Decrypts a text or binary file
	DO Start PRACTICE script
	DODECRYPT Execute encrypted PRACTICE script (*.cmm)

	E ... F
	ECHO Write text and data to an AREA window (with format decoration)
	ELSE Conditional script execution
	ENCRYPT Encrypt a text or binary file
	ENCRYPTDO Encrypt a PRACTICE script (*.cmm)
	ENCRYPTPER Encrypt a PER file (*.per)
	END Terminate PRACTICE scripts, etc.
	ENDDO Return from a PRACTICE script
	ENTER Window-based input
	ENTRY Parameter passing

	G ... H
	GLOBAL Create global PRACTICE macro
	GLOBALON Global event-controlled PRACTICE script execution
	GOSUB Subroutine call
	GOTO Local script jump

	I ... L
	IF Conditional script execution
	INKEY Character input
	JUMPTO Global script jump
	LOCAL Create local PRACTICE macro

	M ... O
	ON Event-controlled PRACTICE script execution
	OPEN Open data file

	P ...
	PARAMETERS Parameter fetching
	PBREAK Breakpoints in PRACTICE script files (*.cmm)
	PBREAK.Delete Delete breakpoint
	PBREAK.DISable Disable breakpoint
	PBREAK.ENable Enable breakpoint
	PBREAK.List Display breakpoint list
	PBREAK.OFF TRACE32 disables breakpoint handling
	PBREAK.ON TRACE32 re-enables breakpoint handling
	PBREAK.RESet Clear all breakpoints
	PBREAK.Set Add breakpoint
	PEDIT Edit PRACTICE script
	PLIST List PRACTICE script
	PMACRO PRACTICE macros
	PMACRO.EXPLICIT Enforce explicit PRACTICE macro declaration
	PMACRO.IMPLICIT Implicit PRACTICE macro declaration
	PMACRO.IMPLICITPRIVATE Hide implicit macros
	PMACRO.list Display PRACTICE macros
	PMACRO.LOCK Lock PRACTICE macros
	PMACRO.RESet Clear current PRACTICE macros
	PMACRO.UNLOCK Unlock PRACTICE macros
	PRINT Write text and data to an AREA window (without format decoration)
	PRINTF Write formatted data to an AREA window
	PRIVATE Create private PRACTICE macro
	PSKIP Skip command or block in PRACTICE script
	PSTEP Execute single line
	PSTEPOUT Back to caller
	PSTEPOVER Step over callee and stop at the next script line

	Q ... R
	READ Read from data file
	RePeaT Loop with check at end of loop
	RETURN Return from subroutine
	RETURNVALUES Take return values
	RUN Start PRACTICE script

	S ... T
	SCREEN Screen updating
	SCREEN.ALways Refresh always
	SCREEN.display Refresh screen
	SCREEN.OFF No refresh
	SCREEN.ON Refresh when printing
	SCREEN.WAIT Update screen while waiting
	SPRINTF Write formatted data to a PRACTICE macro
	STOP Interrupt PRACTICE script
	SUBROUTINE Define a subroutine

	W ... Z
	WAIT Wait until a condition is true or a period has elapsed
	WHILE Loop with check at start of loop
	WRITE Write to data file
	WRITEB Write binary data to file

