
MANUAL

General Commands Reference
Guide V

General Commands Reference Guide V

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 General Commands .. 

 General Commands Reference Guide V .. 1

 History .. 5

 Var ... 6

 Var HLL variables and expressions 6

 Overview Var 6

 Symbol Prefix and Postfix 6

 Symbol Paths 7

 Search Paths 7

 Mangled Names and C++ Classes 8

 Function Return Values 8

 Special Expressions 8

 Calling Functions 11

 Display Formats 12

 Functions 23

 Var.AddSticker Add variable sticker to source listing window 23

 Var.AddWatch Add variable to Var.Watch window 24

 Var.AddWatchPATtern Add variables to Var.Watch window using wildcards 24

 Var.Assign Assignment to a variable 25

 Var.Break Breakpoint on variable 26

 Var.Break.Delete Delete breakpoint on variable 26

 Var.Break.direct Set temporary breakpoint on HLL expression 28

 Var.Break.Pass Define pass condition for breakpoint 29

 Var.Break.Set Set breakpoint to HLL expression 30

 Var.Call Call a new procedure 31

 Var.CHAIN Display linked list 32

 Var.DelWatch Delete variable from watch 33

 Var.DRAW Graphical variable display 33

 Var.DRAWXY Graphical variable display 37

 Var.DUMP Memory dump 38

 Var.Eval Evaluate high-level expression 39

 Var.EXPORT Export variables in CSV format to file 39

 Var.FixedCHAIN Display linked list 41
General Commands Reference Guide V | 2©1989-2024 Lauterbach

 Var.FixedTABle Display table 41

 Var.Go Real-time emulation 43

 Var.Go.Back Re-run program backwards until variable access (CTS) 43

 Var.Go.Change Real-time emulation till expression changes 44

 Var.Go.direct Real-time emulation with breakpoint 45

 Var.Go.Till Real-time emulation till expression true 46

 Var.IF PRACTICE conditional branching 47

 Var.INFO View information about HLL variable or HLL expression 48

 Var.Local Local variables 49

 Var.LOG Log variables 50

 Var.NEW Creates a TRACE32-internal variable 52

 Var.NEWGLOBAL Creates a global TRACE32-internal variable 53

 Var.NEWLOCAL Creates a local TRACE32-internal variable 54

 Var.OBJECT Pretty printing for C++ objects 56

 Var.PATtern Display variables allowing wildcards for symbol name and type 58

 Var.PRINT Display variables 59

 Var.PROfile Graphical display of variable 60

 Var.Ref Referenced variables 61

 Var.set Modify variable 62

 Var.Step Step 65

 Var.Step.BackChange Step back till expression changes 65

 Var.Step.BackTill Step back till expression true 65

 Var.Step.Change Step till expression changes 66

 Var.Step.Till Step till expression true 66

 Var.TABle Display table 67

 Var.TREE Display variables in the form of a tree structure 68

 Var.TYPE Display variable types 69

 Var.View Display variables 70

 Var.Watch Open Var.Watch window 72

 Var.WHILE PRACTICE loop construction 73

 Var.WRITE Write variables to file 74

 VCO ... 75

 VCO Clock generator 75

 VCO.BusFrequency Control bus clock 75

 VCO.Down Frequency down 75

 VCO.Frequency Control VCO clock 76

 VCO.Rate VCO rate 76

 VCO.RESet VCO reset 77

 VCO.state State display 77

 VCO.TimeBaseFrequency Set the time base clock 77

 VCO.Up Frequency up 78

 VCU ... 79

 VCU VCU registers (Vector Computational Unit) 79
General Commands Reference Guide V | 3©1989-2024 Lauterbach

 VCU.Init Initialize VCU registers 79

 VCU.RESet Reset VCU registers 79

 VCU.Set Set VCU register 80

 VCU.view Display VCU registers 80

 VE .. 81

 VE Virtual execution mode 81

 VE.OFF Turn off virtual execution mode 81

 VE.ON Turn on virtual execution mode 81

 VPU ... 82

 VPU Vector Processing Unit (VPU) 82

 VPU.Init Initialize VPU registers 82

 VPU.Set Modify VPU registers 83

 VPU.view Display ALTIVEC register window 84
General Commands Reference Guide V | 4©1989-2024 Lauterbach

General Commands Reference Guide V

Version 06-Jun-2024

History

23-Jan-2023 VPU commands support different architectures other than PowerPC.
General Commands Reference Guide V | 5©1989-2024 Lauterbach

Var

Var HLL variables and expressions

See also

■ Var.AddSticker ■ Var.AddWatch ■ Var.AddWatchPATtern ■ Var.Assign
■ Var.Break ■ Var.Call ■ Var.CHAIN ■ Var.DelWatch
■ Var.DRAW ■ Var.DRAWXY ■ Var.DUMP ■ Var.Eval
■ Var.EXPORT ■ Var.FixedCHAIN ■ Var.FixedTABle ■ Var.Go
■ Var.IF ■ Var.INFO ■ Var.Local ■ Var.LOG
■ Var.NEW ■ Var.NEWGLOBAL ■ Var.NEWLOCAL ■ Var.OBJECT
■ Var.PATtern ■ Var.PRINT ■ Var.PROfile ■ Var.Ref
■ Var.set ■ Var.Step ■ Var.TABle ■ Var.TREE
■ Var.TYPE ■ Var.View ■ Var.Watch ■ Var.WHILE
■ Var.WRITE ■ SETUP.Var ■ sYmbol.CASE ❏ Var.ADDRESS()
❏ Var.END() ❏ Var.RANGE() ❏ Var.SIZEOF() ❏ Var.STRing()
❏ Var.TYPEOF() ❏ Var.VALUE()

▲ ’Var Functions’ in ’General Function Reference’
▲ ’Release Information’ in ’Legacy Release History’

Overview Var

Lower and upper case letters are distinguished in symbol names. The command sYmbol.CASE switches
off this differentiation. The length of symbol names is limited to 255 characters. The maximum number of
symbols depends on the size of the system memory.

Symbol Prefix and Postfix

Most of the compilers add a special character (for example “.” or “_”) in front of or behind the users symbol
names. The user does not need to enter this character. The symbol management automatically adds the
character, if necessary.

Example for the processing of prefix/postfix characters.

Symbol Table Entry HLL-Windows Assembler windows

_vfloat _vfloat or vfloat _vfloat

vfloat
General Commands Reference Guide V | 6©1989-2024 Lauterbach

Symbol Paths

There are two modes during entry a symbol name: entering a complete symbol path or solely a symbol
name. If only a symbol name is used, the access will occur to the symbol valid for the used program part (if
symbol names are used more than once, local symbols are preferred to symbols of higher blocks).

By specifying a complete symbol path access to any symbol is possible. Each part of the symbol path is
separated by a '\'. A complete path has to begin with a '\'. The following path versions are allowed:

If the specified symbol represents a function, the access to local variables of this function and of nested
functions will be possible:

If using PASCAL, as many functions as chosen will be nested.
Line numbers can be specified in the following way:

The address of the high level language block containing the specified line number is returned by this
operation.

Search Paths

If no complete path is entered, the symbol will be searched in the following sequence

1. Local symbols (interior block … exterior block)

2. Static symbols of block

3. Static symbols of module

4. Global symbols of current program

5. All other static symbols

\modul\global …

\modul\modul-local …

\\program\modul …

…\function\local

…\function\function …

\linenumber

\linenumber\columnnumber

\module\linenumber

\\program\module\linenumber

..\function\relative_linenumber
General Commands Reference Guide V | 7©1989-2024 Lauterbach

Mangled Names and C++ Classes

The class of a method can be left out, if this method exists only in one class and the names are ANSI
mangled. The class is always required, if the constructor, destructor or an overloaded operator must be
accessed. The quotation marks can help to allow special characters if the C++ name is used in the regular
TRACE32 syntax. They are not required in the Var command group. However they can be used when
specifying a local symbol. The command sYmbol.MATCH can control the behavior if an overloaded method
is not specified with the prototype.

Function Return Values

The return value of a function is entered in the symbol list as a local variable of the function. It has always the
name 'return'.

Special Expressions

The expression interpreter accept some extensions to the language. All type checks and range checks are
handled as free as possible. Accessing data beyond the array limits is allowed.

A dereference of a plain number will assume that it is a pointer to character:

All labels (typeless symbols) can be used in expressions. They are taken as variables of the type void. They
can be cast directly to the wanted type.

List `class1::method1`
List method1 //access to same method (ANSI

// mangled)

List `class1::class1`
List `class1::~class1`

//creator of class class1
//destructor of class class1

List `class1::operator++` //overloaded operator

List `class1::operator+(int)` //overloaded operator with
// prototype

Var.set `class1::operator+(int)\i` //local variable of function

Var.set *0x2000 = 1 //set byte at location 2000 (decimal)

Var.set __HEAP
Var.set *__HEAP
Var.set (long)__HEAP

//displays nothing (if __HEAP is a label)
//assumes __HEAP as a pointer to character
//takes __HEAP as a 'long' variable
General Commands Reference Guide V | 8©1989-2024 Lauterbach

Function calls can be made to plain addresses or typeless symbols. The return value is assumed to be
'void'.

Extracts of arrays can be made with 'range' expressions. The operations allowed with such extracts is
limited. This allows display of zero sized arrays and display of pointers to arrays.

Extracts of arrays can be assigned or compared to members of the array.

Assigning strings can cause two different reactions. If the string is assigned to a NULL pointer, the target
function 'malloc' is called to gather memory for the string and the resulting address is assigned to the pointer
variable. If the string is assigned to a non zero pointer or an array, then the contents of the string are copied
over the old contents of the array.

Comparing a pointer or array against a string compares the contents of the string.

Strings used in arguments to functions are allocated on the stack.

Var.set (0x2000)(1,2,3)
Var.set __HEAP(1,2,3)

//calls the function at 2000 (hex)
//calls the function at the label __HEAP

Var.set flags[2..4]
Var.set vdblarray[2..4][i-1..i+1]

Var.set vpchar[0..19]
Var.set (&vchar)[0..19]

Var.set vpchar[0..23][0..79]

//display elements 2 to 4
//display part of two-dimensional
//array
//display array at pointer 'vpchar'
//takes the location of one element
//to build up an array
//display a two dimensional array
//at the pointer

Var.set flags[0..19]=0
Var.set flags[5..9]==0

//clears the array to 0
//results a non-zero number if all
//elements are 0

Var.set vpchar = 0
Var.set vpchar = "abc" //will call the 'malloc' function

Var.set vpchar = 0x100
Var.set vpchar = "abc" //copy the string "abc" to location 0x100

Var.Go.Till pname=="TEST" //execute program till string equal

Var.set strlen("abc") //the string will reside on the stack
General Commands Reference Guide V | 9©1989-2024 Lauterbach

A type alone can be an expression. This is especially useful for the Var.TYPE command to display the layout
of a structure or C++ class.

Elements of unions can be accessed by indexing the union like an array. The first element of the union is
accessed with index 0.

Structures or limited arrays may be assigned or compared with multiple members.

Pointers to nested C++ classes may be converted into a pointer to the most derived class of the object. If this
is not possible the operation returns the regular pointer.

The syntax for MODULA2/PASCAL expressions has been extended for type casts and hexadecimal
numbers.

Var.TYPE %Multiline Tree //displays the layout of class 'Tree'

struct
{

enum evtype type;
union
{

struct sysevent sys;
struct ioevent io;
struct winevent win;
struct lanevent lan;

}
content;

}
signal;

Var.View signal.content[signal.type]

Var.set ast=(1,2,3)

Var.IF point==(0,0)

Var.set flg[0..2]=(1,2,3)

//assigns the first three members
// values
//condition is true when first elements
// are zero
//assigns the first three elements
// values

Var.set *this
Var.set *[this]

//displays the “regular” object
//displays the most derived class of the object

Var.View flags[0] := 12H
Var.View flags[0] := 0x12

//standard MODULA hexadecimal syntax
//also accepted (like 'C')

Var.View CARDINAL(1.24)
Var.View ^CARDINAL(0x10

//typecast like 'C': (CARDINAL) 1.23
//typecast like 'C': (CARDINAL *) 0x10
General Commands Reference Guide V | 10©1989-2024 Lauterbach

Calling Functions

In expressions it is possible to call functions of the target. This feature should be used very carefully, as not
proper working code in the target may be executed with the function call. Calling functions is only possible
with the commands Var.set and Var.Call. The Var.Call command can be used to test a function with
different parameters. If a function call fails, or was stopped by a breakpoint the original values of the CPU
registers can be recalled with the Frame.SWAP command. The proper function call cannot be guaranteed
for all processors and compiler options.
General Commands Reference Guide V | 11©1989-2024 Lauterbach

Display Formats

TRACE32 provides the following <format> parameters:

The format parameters modify the input or output format of variables:

• A format parameter affects only the variables that are listed behind it.

• Multiple format parameters can be combined (e.g. %Decimal and %Hex), causing the variable
to be output in multiple formats.

• Format parameters can be turned off selectively using the .OFF postfix.

• The SETUP.Var command defines the default settings. See also DEFault below.

For an illustration of the first three rules, see example below.

[%<format>] … all
Ascii [.on | .OFF]
BINary [.on | .OFF]
Compact [.on | .OFF]
Decimal [.on | .OFF]
DEFault
DUMP [.on | .OFF]
runtimE [.on | .OFF]
Fixed [.on | .OFF]
Hex [.on | .OFF]
HIdden [.on | .OFF]
Index [.on | .OFF]
INherited [.on | .OFF]
INheritedName [.on | .OFF]
Location [.on | .OFF]
MEthods [.on | .OFF]
Multiline [.<nesting_level>][.on | .OFF]
Name [.on | .OFF]
Open [.on | .OFF | .1 | .2 | .3 | .4 | .5 | .6 | .7 | .8 | .9 | .ALL]
PDUMP [.on | .OFF]
Recursive [.on | .OFF | .2 | .3 | .4]
SCALED [.on | .OFF]
SHOW [.on | .OFF]
SPaces [.on | .OFF]
SpotLight [.on | .OFF]
STanDard
String [.on | .OFF]
sYmbol [.on | .OFF]
TREE [.on | .OFF | .OPEN]
Type [.on | .OFF]
WideString [.on | .OFF]
General Commands Reference Guide V | 12©1989-2024 Lauterbach

Example:

all

all is a set of the following format options:

• Type

• Decimal

• Hex

• Ascii

• Recursive

• String

• Index

• sYmbol

• Compact

• Multiline

You can format the display of variables with all of these format options by using just all.

See also: DEFault, STanDard

Var.Watch %Decimal.on %Hex.on i %Hex.OFF k

A Decimal and hex for variable i

B Decimal only for variable k

A

B

General Commands Reference Guide V | 13©1989-2024 Lauterbach

Ascii

Display of values as ASCII characters. This effects simple variables only. The String format can be used to
display zero-terminated strings. If multiple type base formats are defined, the formats are displayed
simultaneously.

BINary

Binary display 0y...

Compact

Produces a very compact output format in combination with Multiline.

multiple formats
(hex, decimal, ascii)
pointers are always in hex
simple variable displayed
in decimal, hex and ASCII

structure members are
displayed below the
structure name
General Commands Reference Guide V | 14©1989-2024 Lauterbach

Decimal

Display of values in decimal format.

DEFault

Applies all the format options that you have set to ON in the SETUP.Var window.

You can format the display of variables with all of these format options by using just DEFault.

See also: all, STanDard.

DUMP

Additional display of a short hex dump of each variable.

E

Access to static variables through the emulation memory. By this option global or static variables may be
displayed during the real-time emulation. As this dual-port access cannot access target memory, this option
allows 'save' memory accesses, as illegal pointer values cannot cause wrong accesses to the target.
General Commands Reference Guide V | 15©1989-2024 Lauterbach

Fixed

Fixed width fields for all numeric values. Useful for two-dimensional arrays.

Hex

Display of values in hex format.

HIdden

Displays hidden members of C++ classes. 'Hidden' members are implementation specific members of
nested classes. They are generated by the C++ 'cfront' preprocessor.

Index

Displays the index of an array element. The format is either decimal or hexadecimal. If information about the
type of the index is available, the index is displayed according to this information.
General Commands Reference Guide V | 16©1989-2024 Lauterbach

INherited

Displays members inherited from other classes (only C++).

INheritedName

Shows or hides class names of members from inherited classes. This is useful if a class name is very long.

Location

Displays the location of each variable or record element. The location can be an address or a register name.

MEthods

Displays the names and arguments of member functions (methods).
General Commands Reference Guide V | 17©1989-2024 Lauterbach

Multiline

Displays the structure elements in multiple line format. If the elements are in a multidimensional array, the
numeric parameter <nesting_level> defines the number of levels displayed.

Name

Displays the name of structure elements. This is the default. It can be turned OFF to display more structure
elements in one line.

Open

Display of structures and arrays in multiple lines. The optional number defines the depth of the nesting to be
displayed in multi-line mode. This option allows a clearly arranged display of multi dimensional arrays.
Open.ALL will open nested structures respectively unions only. Pointers will not be followed.

PDUMP

For pointers displays a short memory dump of the referenced memory.
General Commands Reference Guide V | 18©1989-2024 Lauterbach

Recursive

Display the contents of pointers. The optional number defines the depth of recursion to be displayed. The
command SETUP.VarPtr defines the valid address range for pointers. The contents of pointers outside this
range are not displayed.

SCALED

Displays the scaling information of a variable. This type of information can be added to a variable with the
sYmbol.AddInfor.Var command.

Example:

;add information to a variable
; <variable> <multiplier> <offset> <explanation>
sYmbol.AddInfo.Var vfloat Scaled 1.3 4. " mVolt"

;display scaled variable
Var.View %SCALED.on vfloat %SCALED.OFF vfloat
General Commands Reference Guide V | 19©1989-2024 Lauterbach

SHOW

SPaces

Selects if white space characters are allowed in expressions or not. When OFF, expressions must be written
compact and blanks separate expressions. If on, spaces are allowed in expressions, and only the semicolon
separates expressions.

Example:

SpotLight

Highlights changed variable elements. This format includes the TREE format. Highlighted are only elements
for the first objects of a line.

Var.View %SPaces.OFF ast->left flags[5]+i

Var.View %SPaces.on ast -> left; flags[5] + i
General Commands Reference Guide V | 20©1989-2024 Lauterbach

STanDard

The STanDard format option overrides all user-defined settings made in the SETUP.Var window. STanDard
is a set of the following format options:

• SCALED.on

• Name.on

• Compact.on

• TREE.on

• SHOW.on

• INherited.on

See also: all, DEFault.

String

Displays one byte arrays or pointers to bytes as an zero-terminated ASCII string.

A By using just STanDard, you can format the display of one or more variables with all of the format
options listed above.

B If you require other format options in addition to the ones included in STanDard, then you need to
specify these format options explicitly.

A B
General Commands Reference Guide V | 21©1989-2024 Lauterbach

sYmbol

Values of pointers are displayed symbolic.

TREE

Tree view (this is the default). Allows to change some display modes for each member of a structure or array
individually. This replaces the functionality of the Open and Recursive formats. Pressing the menu mouse
button on the “+” or “-” sign will open a pull-down menu. This pull-down allows two choose display options for
the shown elements. It is possible to show or hide the contents, display most derived classes, display the
contents as ASCII string or show the first few elements of an array. TREE.OPEN is like TREE.ON, but the
first element is already opened.

The TREE format is automatically selected when the SpotLight format is enabled.

Type

Display of the variable type.

WideString

Each character is a word, e.g. for some DSPs, or unicode.
General Commands Reference Guide V | 22©1989-2024 Lauterbach

Functions

For a list of all Var.*() functions, see “Var Functions” (general_func.pdf).

Var.AddSticker Add variable sticker to source listing window

Adds a variable sticker to the source listing window.

Example:

See also

■ Var ■ Var.set

Format: Var.AddSticker <line> [%<format>] <var>

Var.AddSticker main\10 %Hex mcount
General Commands Reference Guide V | 23©1989-2024 Lauterbach

Var.AddWatch Add variable to Var.Watch window

The specified variable is added to the top of the Var.Watch window. A new Var.Watch window is opened, if
no such window exists.

See also

■ Var ■ Var.set ■ Var.View ■ Var.Watch

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Display Variables’ in ’Training Source Level Debugging’

Var.AddWatchPATtern Add variables to Var.Watch window using wildcards

Adds variables to the Var.Watch window. For details on adding variables to a Var.Watch window, refer to the
Var.AddWatch command.

Example:

See also

■ Var ■ Var.set

Format: Var.AddWatch [%<format>] [<variable>] …

<format> Use the <format> parameters to display the variables in the desired format.
For a description of the <format> parameters, click here.

Format: Var.AddWatchPATtern [%<format>] <symbol_pattern> …

<symbol_pattern> The wildcards ‘?’ and ‘*’ are supported.

Var.AddWatchPATtern extend*
General Commands Reference Guide V | 24©1989-2024 Lauterbach

Var.Assign Assignment to a variable

In contrast to Var.set, there is no output of the result in the message line and AREA window. This way you
can assign values to a variable by a PRACTICE script without displaying something not of interest to be
seen.

See also

■ Var ■ Var.set

▲ ’Release Information’ in ’Legacy Release History’

Format: Var.Assign %<format> <variable>

<format> For a description of the <format> parameters, click here.
General Commands Reference Guide V | 25©1989-2024 Lauterbach

Var.Break Breakpoint on variable

See also

■ Var.Break.Delete ■ Var.Break.direct ■ Var.Break.Pass ■ Var.Break.Set
■ Var ■ Var.set

Var.Break.Delete Delete breakpoint on variable
[Example]

Removes the breakpoints set to the address range specified by <hll_expression>.

Format: Var.Break.Delete <hll_expression> [/<breaktype>]

<breaktype>: Program | ReadWrite | Read | Write

ProgramPass | ProgramFail
Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

TASK <task_magic> | <task_id> | <task_name>

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.

<hll_expression> Allows to specify the HLL expression in the syntax of the programming
language used (C, C++, …).

<task_magic>, etc. See also “What to know about the Task Parameters”
(general_ref_t.pdf).
General Commands Reference Guide V | 26©1989-2024 Lauterbach

Example:

See also

■ Var.Break ■ Break.Delete

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Breakpoint Handling’ in ’Training Basic Debugging’
▲ ’Breakpoint Handling’ in ’Training Basic SMP Debugging’

Var.Break.Delete flags //deletes all breakpoints set to
//the address range of variable
//flags

Var.Break.Delete flags /Write //deletes Write breakpoints set to
//the address range of variable
//flags
General Commands Reference Guide V | 27©1989-2024 Lauterbach

Var.Break.direct Set temporary breakpoint on HLL expression

Sets temporary breakpoint on address range of specified <hll_expression>.

See also

■ Var.Break ■ Break.direct

▲ ’Release Information’ in ’Legacy Release History’

Format: Var.Break.direct <hll_expression> [/<breaktype>]

<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite
DATA[.Byte | .Word | .Long] <value> …

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot
DISable | DISableHIT | DeleteHIT | NoMark | EXclude
TASK <task_magic> | <task_id> | <task_name>
MACHINE <machine_magic> | <machine_id> | <machine_name>
CORE <number>
COUNT <value>
CONDition <expression> [/AfterStep]
VarCONDition <hll_expression> [/AfterStep]
CMD <command_string>
RESUME

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.

<hll_expression> Allows to specify the HLL expression in the syntax of the programming
language used (C, C++, …).

<task_magic>, etc. See also “What to know about the Task Parameters” (general_ref_t.pdf).
General Commands Reference Guide V | 28©1989-2024 Lauterbach

Var.Break.Pass Define pass condition for breakpoint

When the program execution is stopped by a breakpoint, and the boolean expression is true, the program
execution is automatically restarted. The feature can be cleared by entering the command without
arguments.

Examples:

The following commands shows how a condition can be directly assigned to a single breakpoint.

See also

■ Var.Break

▲ ’Release Information’ in ’Legacy Release History’

Format: Var.Break.Pass [<expression>]

Var.Break.PASS vfloat<1.57

Var.Break.Set mstatic1 /Write
Go
;…
Var.Break.PASS

//automatically restart the program
//execution at a breakpoint hit, if
//the variable vfloat is lower then
//1.57

//set breakpoint

//remove the pass condition

Var.Break.Set mstatic1 /Program /VarCONDition (vfloat>1.7)

Go

Var.Break.Delete mstatic1
General Commands Reference Guide V | 29©1989-2024 Lauterbach

Var.Break.Set Set breakpoint to HLL expression
[Example]

Sets breakpoints to the address range specified by <hll_expression>. Without parameters the command
opens a dialog window for setting breakpoints.

Format: Var.Break.Set <hll_expression> [/<breaktype>]

<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite
DATA[.Byte | .Word | .Long] <value> …

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot
DISable | DISableHIT | DeleteHIT | NoMark | EXclude
TASK <task_magic> | <task_id> | <task_name>
MACHINE <machine_magic> | <machine_id> | <machine_name>
CORE <number>
COUNT <value>
CONDition <expression> [/AfterStep]
VarCONDition <hll_expression> [/AfterStep]
CMD <command_string>
RESUME

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.

<hll_expression> Allows to specify the HLL expression in the syntax of the programming
language used (C, C++, …).

<task_magic>, etc. See also “What to know about the Task Parameters”
(general_ref_t.pdf).
General Commands Reference Guide V | 30©1989-2024 Lauterbach

Example:

See also

■ Var.Break ■ Break.Set

▲ ’Release Information’ in ’Legacy Release History’

Var.Call Call a new procedure

If the expression is a function call, this function is entered and the program counter points to the first
instruction of the function. The values of the CPU registers before the function call can be recalled with the
Frame.SWAP command.

Examples:

See also

■ Var ■ Var.set

▲ ’Release Information’ in ’Legacy Release History’

Var.Break.Set struct1 //set Read/Write breakpoints to the
//structure struct1

Var.Break.Set struct1.x /Write //set Write Breakpoint to struct1
//element x

Format: Var.Call [%<format>] [<expression>]

<format> For a description of the <format> parameters, click here.

Var.Call func7(1.5,2.5) //sets the PC to the start of 'func7' and
//pushes two floating point arguments

Var.Call (0x100)(1,2,3) //sets the PC to 100 (hex) and pushes 3
//arguments

Var.Call vops+4 //assuming 'vops' is a C++ class, it sets
//the PC to the method function for the
//operator+
General Commands Reference Guide V | 31©1989-2024 Lauterbach

Var.CHAIN Display linked list

The first expression must be the first element of the list. The second expression specifies the pointer to the
next element in the first element. The other arguments specify pointers to elements of the linked list.

Example:

See also

■ Var ■ Var.set

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Display Variables’ in ’Training Source Level Debugging’

Format: Var.CHAIN [%<format>] <first> <next> [<pointer> …]]

<format> Use the <format> parameters to display the variables in the desired format.
For a description of the <format> parameters, click here.

Var.CHAIN %Open ast ast.left vpchar
General Commands Reference Guide V | 32©1989-2024 Lauterbach

Var.DelWatch Delete variable from watch

The specified formula is removed from the current Var.Watch window.

See also

■ Var ■ Var.set

▲ ’Release Information’ in ’Legacy Release History’

Var.DRAW Graphical variable display

Displays the contents of an array or a structure element graphically. The Data.DRAW command can be
used to display memory contents graphically.

Format: Var.DelWatch [<variable>] …

Format: Var.DRAW [%<format>] <hll_expression> [<scale> [<offset>]] [/<option>]

<option>: <draw_option> | Element <number> | XY | YX | Alternate <number>

<draw_
option>:

Vector | Points | Steps | Impulses | LOG

<draw_options> Vector: Connects the dots for the data values by vectors (default).
Points: Displays each data value as a dot.
Steps: Connects the dots for the data values by steps.
Impulses: Draws each data value as a single pulse.
LOG: Displays the data values in a logarithmic format.

<format> Using the <format> parameters, you can modify the display in various ways.
For a description of the format parameters, see “Display Formats”, page
12.

<hll_expression> Allows to specify the HLL expression in the syntax of the programming
language used (C, C++, …).

<offset> Offset of y-axis (floating point). Default: 0.0 See example.

<scale> Units per pixel of y-axis (floating point).

E.g. a signal has a max. height of 50 units shall be visualized window that
has a height of 400 pixels: 50 units divided by 400 pixels = 0.125

By default the scale factor is set so that the window displays the complete
possible value range for the selected variable. See example.
General Commands Reference Guide V | 33©1989-2024 Lauterbach

Example for arrays:

Alternate <number> Split the array in <number> graphs.
<number>=2
first graph display even elements
second graph displays odd element.
<number>=3
first graph displays element 0, n, 2n, …
second graph displays 1, n+1, 2n+1, …
third graph display 2, n+2, 2n+2, … See example.

Element <number> Specify the structure component to be displayed graphically. See example.

XY Allows to display two arrays graphically.
The contents of the first array is used as x-axis.
The contents for the second array is used as y-axis. See example.

YX Allows to display two arrays graphically.
The contents of the first array is used as y-axis.
The contents for the second array is used as x-axis. See example.

Var.DRAW cstr1

Var.DRAW sinewave
General Commands Reference Guide V | 34©1989-2024 Lauterbach

Example for two interdependent arrays:

Var.DRAW flags[0..16] cstr1[0..16] /XY

Var.DRAW flags[0..16] cstr1[0..16] /YX
General Commands Reference Guide V | 35©1989-2024 Lauterbach

Example for array split:

Example for structure element:

Var.DRAW flags[0..16] /Alternate 3.

Var.DRAW stra1 /Element 2.
General Commands Reference Guide V | 36©1989-2024 Lauterbach

Example for <scale> and <offset>:

See also

■ Var ■ Var.PROfile ■ Var.set ■ <trace>.DRAW
■ Data.DRAW ■ Data.DRAWFFT ■ Data.DRAWXY ■ Data.IMAGE

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Display Variables’ in ’Training Source Level Debugging’

Var.DRAWXY Graphical variable display

Displays the contents of two arrays graphically in one single window. The elements of the first array
correspond to the X-axis and the elements of the second array to the Y-axis. Please refer to the Var.DRAW
command for a description of the parameters and options.

Example:

See also

■ Var ■ Var.set

Format: Var.DRAWXY [%<format>] <hll_expression> <hll_expression> [/<option>]

<option>: <draw_option> | Element <number> | YX | Alternate <number>

<draw_
option>:

Vector | Points | Steps | Impulses | LOG

Var.DRAWXY array1 array2

<offset> = -1.0

<scale> = 0.01

<scale> = 0.005
without <scale>
General Commands Reference Guide V | 37©1989-2024 Lauterbach

Var.DUMP Memory dump

The first expression defines the address of the dump. All following expressions are treated as pointers and
marked in the dump.

See also

■ Var ■ Var.set ■ SETUP.DUMP

▲ ’Release Information’ in ’Legacy Release History’

Format: Var.DUMP [%<format>] [[&]<variable>] … [/<option>]

<format>: NoHex | NoAscii
Byte | Word | Long | Quad | TByte | HByte
BE | LE
PC8

<option>: Orient
NoOrient
COLumns [<columns>]
Mark <break>
Flag <flag>
Track
CACHE

<flag>: Read | Write | NoRead | NoWrite

<break>: Program | Hll | Spot | Read | Write | Alpha | Beta | Charly

<format> For a description of the <format> parameters, see “Display Formats”,
page 12.

<option> For a description of the options, see Data.dump.
General Commands Reference Guide V | 38©1989-2024 Lauterbach

Var.Eval Evaluate high-level expression

Evaluates a high-level language expression. The result can be returned with the EVAL() functions.

See also

■ Var ■ Var.set ■ Eval

Var.EXPORT Export variables in CSV format to file

Exports variables in CSV format (Comma-Separated Values) for import to other applications. Existing file
contents are overwritten if the file already exists.

Format: Var.Eval [%<format>] <hll_expression>

<format> Use the <format> parameters to export the variables in the desired format.
For a description of the <format> parameters, click here.

Format: Var.EXPORT <file> [%<format>] [<variable>] … [/Append]

<file> If path and file name are substituted for a comma, the default file name
t32.lst is used. The file is exported to the current working directory (see
PWD command and “Path Prefixes”).

<format> Use the <format> parameters to export the variables in the desired format.
For a description of the <format> parameters, click here.
General Commands Reference Guide V | 39©1989-2024 Lauterbach

Example:

See also

■ Var ■ Var.set ■ Var.WRITE ■ PRinTer.EXPORT

;Export as CSV and include variable type, location, and index.
;The variables to be exported are 'flags' and 'ast'.
Var.EXPORT ~~~\export.csv %Type %Location %Index flags ast

;Optional step: display the file
TYPE ~~~\export.csv

NOTE: If a text line created by this command exceeds a few thousand characters, it is
clipped. To handle long lines, consider using the format specifier %Multiline.
General Commands Reference Guide V | 40©1989-2024 Lauterbach

Var.FixedCHAIN Display linked list

The first expression must be the first element of the list. The second expression specifies the pointer to the
next element in the first element. The other arguments specify pointers to elements of the linked list. The
format parameters can modify the display in various ways. Format parameters are described at the
beginning of this chapter.

Example:

See also

■ Var ■ Var.set

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Display Variables’ in ’Training Source Level Debugging’

Var.FixedTABle Display table

Displays the first expression as an array. The command is intended for arrays of structures or arrays of
pointers to structures. The extra arguments are displayed as pointers or indexes to that array.

Example 1:

Format: Var.FixedCHAIN [%<format>] <first> <next> [<pointer> …]]

Var.FixedCHAIN %Location %Multiline ast ast.left vpchar

Format: Var.FixedTABle [%<format>] <array> {<index>} {<pointer>}

<format> Use the <format> parameters to display the variables in the desired format.
For a description of the <format> parameters, click here.

Var.FixedTABle OsIsrCfg
General Commands Reference Guide V | 41©1989-2024 Lauterbach

Example 2: The following command sequence allows you to save the variable content to a *.csv file.

Example 3:

See also

■ Var ■ Var.set

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Display Variables’ in ’Training Source Level Debugging’

PRinTer.FILE OsIsrCfg.csv CSV ; specify file name and select CSV
; as output format

WinPrint.Var.FixedTABle OsIsrCfg ; WinPrint. redirects the command
; output to specified file

Var.FixedTABle flags i k vpchar ; i and k are array indices
; vpchar is a pointer to the array
General Commands Reference Guide V | 42©1989-2024 Lauterbach

Var.Go Real-time emulation

See also

■ Var.Go.Back ■ Var.Go.Change ■ Var.Go.direct ■ Var.Go.Till
■ Var ■ Var.set

▲ ’Release Information’ in ’Legacy Release History’

Var.Go.Back Re-run program backwards until variable access (CTS)
[Example]

Re-runs the recorded program flow backwards until the specified variable is accessed.

Format: Var.Go.Back <expression> [/<breaktype>]

<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite
DATA[.Byte | .Word | .Long] <value> …

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot
DISable | DISableHIT | DeleteHIT | NoMark | EXclude
TASK <task_magic> | <task_id> | <task_name>
MACHINE <machine_magic> | <machine_id> | <machine_name>
CORE <number>
COUNT <value>
CONDition <expression> [/AfterStep]
VarCONDition <hll_expression> [/AfterStep]
CMD <command_string>
RESUME
General Commands Reference Guide V | 43©1989-2024 Lauterbach

Example:

See also

■ Var.Go ■ Var.Go.direct

▲ ’Release Information’ in ’Legacy Release History’

Var.Go.Change Real-time emulation till expression changes

The emulation is started and after each emulation stop the given expression is evaluated. If the expression
has not changed, the emulation is started again.

Example:

See also

■ Var.Go ■ Var.Go.direct

▲ ’Release Information’ in ’Legacy Release History’

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.

<task_magic>, etc. See also “What to know about the Task Parameters”
(general_ref_t.pdf).

CTS.GOTO -1209874.

Var.Go.Back flags /Write //run program backwards until a write access
//to the variable flags happens

Format: Var.Go.Change <expression>

Var.Break.Set flags /Write
Var.Go.Change flags // starts the emulation and restarts,

// if the array flags has not changed
General Commands Reference Guide V | 44©1989-2024 Lauterbach

Var.Go.direct Real-time emulation with breakpoint

Sets breakpoints to the given variable or structure element and starts the emulation. The breakpoints are
removed after the emulation has stopped again.

Format: Var.Go.direct <expression> [/<breaktype>]

<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite
DATA[.Byte | .Word | .Long] <value> …

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot
DISable | DISableHIT | DeleteHIT | NoMark | EXclude
TASK <task_magic> | <task_id> | <task_name>
MACHINE <machine_magic> | <machine_id> | <machine_name>
CORE <number>
COUNT <value>
CONDition <expression> [/AfterStep]
VarCONDition <hll_expression> [/AfterStep]
CMD <command_string>
RESUME

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.

<task_magic>, etc. See also “What to know about the Task Parameters”
(general_ref_t.pdf).
General Commands Reference Guide V | 45©1989-2024 Lauterbach

Examples:

See also

■ Var.Go ■ Var.Go.Back ■ Var.Go.Change ■ Var.Go.Till

Var.Go.Till Real-time emulation till expression true

The emulation is started and after each emulation stop the given boolean expression is evaluated. If the
expression is false, the emulation is started again.

Example:

See also

■ Var.Go ■ Var.Go.direct

▲ ’Release Information’ in ’Legacy Release History’

Var.Go.direct flags // run till any element of 'flags' is
// accessed

Var.Go.direct vfloat /Write // run till a write to 'vfloat' occurs

Format: Var.Go.Till <expression>

Var.Break.Set vfloat /Write
Var.Go.Till vfloat<=1.57

//starts the emulation and restarts, if
// the value
//of vfloat is larger than 1.57
General Commands Reference Guide V | 46©1989-2024 Lauterbach

Var.IF PRACTICE conditional branching

Executes the next command or command block only if the specified <hll_condition> is true. The Var.IF
command is the counterpart to the PRACTICE IF instruction and can also be combined with the ELSE
command.

Example:

See also

■ Var ■ Var.set

▲ ’Release Information’ in ’Legacy Release History’

Format: Var.IF <hll_condition>

<hll_condition> Allows to specify the condition in the syntax of the programming
language used (C, C++, …).

Var.IF stra2[1][0].pastruct5[0]==25
(
 PRINT "Initialization of stra2[1][0].pastruct5[0] failed."
)

General Commands Reference Guide V | 47©1989-2024 Lauterbach

Var.INFO View information about HLL variable or HLL expression

Displays all information available for a symbol or the type of an HLL expression. The physical layout of HLL
variables is displayed too.

Example:

See also

■ Var ■ Var.set ■ sYmbol.INFO

▲ ’Release Information’ in ’Legacy Release History’
▲ ’The Symbol Database’ in ’Training Source Level Debugging’

Format: Var.INFO <variable> | <expression>

;display information about the HLL expression func7
Var.INFO func7

;display information about the structure ast
Var.INFO ast
General Commands Reference Guide V | 48©1989-2024 Lauterbach

Var.Local Local variables

Display of all local variables of a function. When using Pascal, the local variables of the superior functions
are displayed too. The format parameters can modify the display in various ways. Format parameters are
described at the beginning of this chapter.

The variables can be modified by clicking with the mouse.

See also

■ Var ■ Var.Ref ■ Var.set ■ Var.View

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Display Variables’ in ’Training Source Level Debugging’

Format: Var.Local [%<format> …]
General Commands Reference Guide V | 49©1989-2024 Lauterbach

Var.LOG Log variables
[Examples]

By default the specified variables are logged to the TRACE32 message AREA whenever the program
execution is stopped. If a syntactical error is made, just a warning is received. This allows the definition of a
log showing local variables not valid in the current program context.

Format: Var.LOG [%<format>] {<variable>} {/<option>}

<option>: ONBREAK
ONSPOT
ONTIME <time>
TImestamp
Changes
AREA <name>

<format> Use the <format> parameters to format the variables as required. For a
description of the <format> parameters, click here.

<options>

ONBREAK Updates log each time the program execution is stopped. This is the
default.

Changes A log is only made when the variables have changed their value.

AREA <name> Selects a different AREA for the logging.

ONSPOT Update the log whenever a breakpoint specified with the Action Spot is hit
and each time the program execution is stopped.

ONTIME Updates the log in a fixed time interval. This option requires run-time
memory access to the variables.

TImestamp Adds timestamps (absolute and relative) to the log. Mainly used together
with ONTIME option.
General Commands Reference Guide V | 50©1989-2024 Lauterbach

Example 1: Var.LOG without a variable definition ends the logging.

Example 2: Log variables to file. Remember that inline comments for Var.* commands must start with //.

Var.LOG flags i k ; i and k are local variables
; if they are not valid in the
; current context, a warning is
; given by TRACE32 PowerView

AREA.view ; open TRACE32 message AREA window

;… ; perform your test

Var.LOG ; switch off the logging

A If a variable is not valid in the current context, a ? is displayed.

AREA.Create my_log ; create my_log area

AREA.view my_log ; display my_log area

AREA.OPEN my_log loglist.lst ; save all entries to area in file

Var.LOG flags ast k /AREA my_log // enable variable log

AREA.CLOSE my_log ; stop saving the entries to area
; in file

Var.LOG // end variable logging

TYPE loglist.lst ; display contents of file

A

General Commands Reference Guide V | 51©1989-2024 Lauterbach

Example 3: Log variables every second.

See also

■ Var ■ Var.set

▲ ’Release Information’ in ’Legacy Release History’

Var.NEW Creates a TRACE32-internal variable

See also

■ Var ■ Var.set

▲ ’Release Information’ in ’Legacy Release History’

; create area named my_log
AREA.Create my_log

; display area named my_log
AREA.view my_log

; log variables every second via the run-time memory access
; log them with relative and absolute timestamp
; log only changes
Var.LOG %E flags ast /AREA my_log /ONTIME 1.0s /TImestamp /Changes

Go

;…

Break

; end variable logging
Var.LOG

Format: Var.NEW [<type>] <name> (deprecated)
Use Var.NEWLOCAL or Var.NEWGLOBAL instead.
General Commands Reference Guide V | 52©1989-2024 Lauterbach

Var.NEWGLOBAL Creates a global TRACE32-internal variable

Creates a TRACE32-internal variable of the specified variable type and registers the variable on the global
PRACTICE stack frame.

Global TRACE32-internal variables are visible everywhere. They are not erased when the declaring file or
block ends. TRACE32-internal variables can be used to write complex PRACTICE programs which deal with
expressions of the target high level language (HLL).

Example: A character array is created on the global PRACTICE stack frame. The array member [5] is
initialized, and its value is printed to the TRACE32 message line using the Var.STRing() function. For more
examples, refer to Var.NEWLOCAL.

Remember that inline comments for Var.* commands must start with //. PRINT is a command, whereas
Var.STRing() is not a command, but a function(). Therefore, the above inline comment may start with a
semicolon ;.

See also

■ Var.NEWLOCAL ■ Var ■ Var.set

▲ ’In This Document’ in ’General Function Reference’
▲ ’PRACTICE Script Structure’ in ’PRACTICE Script Language User’s Guide’
▲ ’Release Information’ in ’Legacy Release History’

Format: Var.NEWGLOBAL [<var_type>] \<variable_name>

<var_type>: int | char | long | short

<var_type> The following commands provide an overview of the supported variable
types:
• The sYmbol.List.BUILTIN command lists the supported built-in

variable types.
• The sYmbol.List.Type command lists variable types available after

a target program has been loaded.

<variable_name> The TRACE32-internal variables must begin with a '\' character, as opposed
to global PRACTICE macros (variables), which begin with a '&' and are
created with GLOBAL.

PMACRO.list ;View the PRACTICE stack

;Create a TRACE32-internal variable: the character array \myStr
Var.NEWGLOBAL char[10][128] \myStr

Var.set \myStr[5]="hello" //Initialize array member [5]

PRINT Var.STRing(\myStr[5]) ;Show value in message line
General Commands Reference Guide V | 53©1989-2024 Lauterbach

Var.NEWLOCAL Creates a local TRACE32-internal variable
[Examples]

Creates a TRACE32-internal variable of the specified variable type and registers the variable on the local
PRACTICE stack frame.

Local TRACE32-internal variables exist inside the declaring block and are erased when the block ends.
They are visible inside their blocks, sub-blocks (e.g. IF..., RePeaT..., WHILE..., etc.), subroutines
(GOSUB...RETURN), and sub-scripts (DO...ENDDO).

TRACE32 internal variables can be used to write complex PRACTICE programs which deal with
expressions of the target high level language (HLL).

Format: Var.NEWLOCAL [<var_type>] \<variable_name>

<var_type>: int | char | long | short | ...

<var_type> The following commands provide an overview of the supported variable
types:
• The sYmbol.List.BUILTIN command lists the supported built-in

variable types.
• The sYmbol.List.Type command lists variable types available after

a target program has been loaded.

<variable_name> The debugger-internal HLL variables must begin with a '\' character, as
opposed to local PRACTICE macros (variables), which begin with a '&' and
are created with LOCAL.
General Commands Reference Guide V | 54©1989-2024 Lauterbach

Example 1:

This script shows how to create, initialize, and view the local TRACE32-internal variables. In addition,
the example shows how to print their return values to the TRACE32 message line using the Var.*()
functions (See “Functions”).
By double-clicking a local TRACE32-internal variable in the Var.View window, you can change its
parameter on the fly. Simply type the desired parameter in the TRACE32 command line.

Example 2:

The HLL array flags is manipulated based on the HLL array vdiarray. Remember that inline
comments for Var.* commands must start with //.

PMACRO.list ;View the PRACTICE stack

;Create some TRACE32-internal variables: integer \val1, float \val2, and
;character array \myStr on the local PRACTICE stack frame
Var.NEWLOCAL int \val1
Var.NEWLOCAL float \val2
Var.NEWLOCAL char[10][128] \myStr

;Open the Var.View window to display these TRACE32-internal variables
Var.View %all \val1 \val2 \myStr

;Initialize the TRACE32-internal variables
Var.set \val1=0x42
Var.set \val2=197.25
Var.set \myStr[5]="Hello world!"

;Print the TRACE32-internal variables to the message bar
PRINT %Hex "0x" Var.VALUE(\val1) ;integer
PRINT Var.FVALUE(\val2) ;float
PRINT Var.STRing(\myStr[5]) ;string

Var.NEWLOCAL int \i //Create a TRACE32-internal variable: integer \i

Var.set \i=0 //Initialize the TRACE32-internal variable

;Open a window to watch the HLL arrays flags, ast, and vdiarray
;as well as the TRACE32-internal variable \i
Var.Watch %SpotLight flags ast vdiarray \i

;Manipulate the HLL array flags based on the HLL array vdiarray
Var.WHILE \i<sizeof(vdiarray)
 Var.set flags[\i++]=3

Var.IF \i=sizeof(vdiarray)
 PRINT "end of loop reached"
General Commands Reference Guide V | 55©1989-2024 Lauterbach

Example 3:

This script focusses on TRACE32-internal array variables.

See also

■ Var.NEWGLOBAL ■ Var ■ Var.set

▲ ’Release Information’ in ’Legacy Release History’

Var.OBJECT Pretty printing for C++ objects

The command Var.OBJECT can be used together with the sYmbol.AddInfo command or with simulator
based target calls for pretty printing of C++ objects.

Example:

The screen shots below show the standard display with the Var.View command and the pretty printing with
Var.OBJECT.

;Create a TRACE32-internal variable: a character array
Var.NEWLOCAL char[6][20] \string_array

;Open a window to watch \string_array
Var.Watch %SpotLight \string_array

;Initialize the character array
Var.set \string_array[0]="flashtest0" //is shown in message line
Var.ASSIGN \string_array[2]="element2" //is NOT shown in message line

PRINT Var.STRing(\string_array[0]) //show value in message line

Var.IF \string_array[2][0]!='\0'
 PRINT Var.STRing(\string_array[2])

Format: Var.OBJECT [%<format>] [<variable>] …

; define the vector type information
; TABLE type
; base: _M_impl._M_start
; size = _M_impl._M_finish - _M_impl._M_start
sYmbol.AddInfo.Type std::vector<? TABLE \
"(#o)._M_impl._M_finish-(#o)._M_impl._M_start" "(#o)._M_impl._M_start"
Var.OBJECT %String %Type vStr
General Commands Reference Guide V | 56©1989-2024 Lauterbach

An example for displaying STL container running on the TRACE32 Instruction Set Simulator for Arm can be
found under ~~/demo/etc/stl

See also

■ Var ■ Var.set

CD.DO ~~/demo/etc/stl/demo_stl_arm.cmm
General Commands Reference Guide V | 57©1989-2024 Lauterbach

Var.PATtern Display variables allowing wildcards for symbol name and type

Display variables allowing the wildcard ? and * in the variable name and the variable type.

Examples:

See also

■ Var ■ Var.set

▲ ’Release Information’ in ’Legacy Release History’

Format: Var.PATern [%<format>] [<symbol_pattern>] [<type_pattern>]

Var.PATtern target* struct ; Display all variables whose name
; begins with "target" and which
; are of the type struct

Var.PATtern jpeg* ; Display all variables whose name
; begins with "jpeg"

Var.PATtern %Type * struct struct? ; Display all variables which
; are of the type struct struct?
General Commands Reference Guide V | 58©1989-2024 Lauterbach

Var.PRINT Display variables

The specified formula is interpreted and the according values are displayed in the message line or the
current output AREA window. The command is an HLL version of the PRINT command.

Example:

See also

■ Var ■ Var.set ■ Var.WRITE ❏ Var.ADDRESS()
❏ Var.END() ❏ Var.RANGE() ❏ Var.SIZEOF() ❏ Var.STRing()
❏ Var.TYPEOF() ❏ Var.VALUE()

▲ ’Release Information’ in ’Legacy Release History’

Format: Var.PRINT [%CONTinue] {[%<format>] [<variable>|<data>]}

CONTinue Adds the string to the current output line in the selected AREA window or
message line without inserting a newline character.

<format> Use the <format> parameters to print the variables in the desired format. For
a description of the <format> parameters, click here.

Var.PRINT cstr1

Var.PRINT cstr1 " " mstatic1

Var.PRINT cstr1 ", " mstatic1

Var.PRINT "cstr1=" cstr1 ", mstatic1=" mstatic1
General Commands Reference Guide V | 59©1989-2024 Lauterbach

Var.PROfile Graphical display of variable

The value of the specified variable(s) is displayed graphically. The display requires run-time memory
access if the variable value should be displayed while the program execution is running.

Example 1:

Format: Var.PROfile [%<format>] <variable> [<variable>] [<variable>] [<refresh_rate>]

<refresh_
rate>:

0.1 | 1.0 | 10.0

<format> Use the <format> parameters to display the variables in the desired format.
For a description of the <format> parameters, click here.

<refresh_rate> The refresh rate is measured in seconds.
If no value is specified, then the display is updated and shifted every 100
ms.

Var.PROfile %E mstatic1

Button Description

Init Restart display

Hold Stop update/re-start update

AutoZoom Best vertical scaling
General Commands Reference Guide V | 60©1989-2024 Lauterbach

Example 2: Up to three variables can be displayed. The following color assignment is used: first variable
value red, second variable value green, third variable value blue.

See also

■ Var ■ Var.DRAW ■ Var.set ■ Data.PROfile

▲ ’Release Information’ in ’Legacy Release History’

Var.Ref Referenced variables

Display of variables, similar to command Var.Watch. The variables referenced by the current source line are
automatically added to the window.

See also

■ Var ■ Var.Local ■ Var.set ■ Var.View

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Display Variables’ in ’Training Source Level Debugging’

Var.PROfile %E mstatic1 fstatic fstatic2

Format: Var.Ref [%<format>] [/Track]

Track The window follows other windows. Otherwise the display is related to the
next executed HLL line.

<format> For a description of the <format> parameters, click here.
General Commands Reference Guide V | 61©1989-2024 Lauterbach

Var.set Modify variable

It is possible to start this command by double-clicking with the mouse to the variable in the List Source
window (List) or in a variable display window. Variable assignments done with the Var.set command result
in a message in the TRACE32 message AREA. The command Var.Assign can be used for variable
assignments without messaging to the TRACE32 message AREA.

Example 1:

Example 2: Modification of arrays

Format: Var.set [{%<format>}] <expression>

<format> For a description of the <format> parameters, click here.

Var.set \mod1\venumvar=enum4 //assignment of value 'enum4' to the
//variable 'venumvar' in module 'mod1'

Var.set charptr[4]='x' //Content of the 5th element of array
//'charptr' is set value 'x'.

 //complex C expression
Var.set xptr->next=(SYM_symbol*)sptr->prev->next[index]

Var.set i++ //simple C expression

Var.set func7(1.5,2.5) //execute a function in the target

//interrupts are accepted while the
//function is executed

Var.set flags[3..7]=12 //set flags[3..7] to 12

Var.set flags[3..7]=(1,2,3,4,5) //set flags[3..7] to specified
//values

//PRACTICE script for array comparison
Var.IF flags[3..7]==(1,2,3,4,5)

 PRINT "Array elements already initialized"
ELSE

 Var.set flags[3..7]=(1,2,3,4,5)
ENDDO
General Commands Reference Guide V | 62©1989-2024 Lauterbach

Example 3: Modifications of structures

Example 4: Assigning the result of TRACE32 functions to variables requires a special syntax.

Example 5: If no assignment is made, the variable value will be displayed in the message line.

See also

■ Var ■ Var.AddSticker ■ Var.AddWatch ■ Var.AddWatchPATtern
■ Var.Assign ■ Var.Break ■ Var.Call ■ Var.CHAIN
■ Var.DelWatch ■ Var.DRAW ■ Var.DRAWXY ■ Var.DUMP
■ Var.Eval ■ Var.EXPORT ■ Var.FixedCHAIN ■ Var.FixedTABle
■ Var.Go ■ Var.IF ■ Var.INFO ■ Var.Local
■ Var.LOG ■ Var.NEW ■ Var.NEWGLOBAL ■ Var.NEWLOCAL

Var.set ast=(0x100,6,0x12345,0x234,3,6)

// Assign result of TRACE32 function FILE.EXIST(<file>)to variable k

Var.set k=\FILE_EXIST("t32.men")

// multiply variable k with the result of the TRACE32 function
// Register(<name>) and assign the result to variable i

Var.set i=k*\Register(R10)

// assign the result of the TRACE32 function Data.Byte(<hex_address>) to
// the variable flags[3]

Var.set flags[3]=\Data_Byte(0x40004000)

// The following syntax is required if an Access Class is required
// here the Access Class NoCache

Var.set flags[3]=\Data_Byte((NC:0x40004000))

Var.set % i //displays value of variable 'i' in
//decimal, hex and ASCII

Var.set %String struct1 //displays structure 'struct1'.
//displays character array included
//in the structure as strings
General Commands Reference Guide V | 63©1989-2024 Lauterbach

■ Var.OBJECT ■ Var.PATtern ■ Var.PRINT ■ Var.PROfile
■ Var.Ref ■ Var.Step ■ Var.TABle ■ Var.TREE
■ Var.TYPE ■ Var.View ■ Var.Watch ■ Var.WHILE
■ Var.WRITE ❏ Var.ADDRESS() ❏ Var.BITPOS() ❏ Var.BITSIZE()
❏ Var.END() ❏ Var.EXIST() ❏ Var.FVALUE() ❏ Var.ISBIT()
❏ Var.RANGE() ❏ Var.SIZEOF() ❏ Var.STRing() ❏ Var.TYPEOF()
❏ Var.VALUE()

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Testing of Functions’ in ’Training Source Level Debugging’
General Commands Reference Guide V | 64©1989-2024 Lauterbach

Var.Step Step

See also

■ Var.Step.BackChange ■ Var.Step.BackTill ■ Var.Step.Change ■ Var.Step.Till
■ Var ■ Var.set ■ Step.single

Var.Step.BackChange Step back till expression changes

Steps back till the expression changes. The command will stop also if the expression cannot be evaluated.

Example:

See also

■ Var.Step

▲ ’Release Information’ in ’Legacy Release History’

Var.Step.BackTill Step back till expression true

Steps back till the boolean expression becomes true (i.e. not zero). The command will stop also, if the
expression cannot be evaluated.

See also

■ Var.Step

▲ ’Release Information’ in ’Legacy Release History’

Format: Var.Step.BackChange [<expression>]

Var.Step.BackChange k // steps till variable k changes

Var.Step.BackChange ptr->x // steps till the contents of the
// structure pointed to by 'ptr'
// changes

Var.Step.BackChange flags // steps till one element of the array
// 'flags' changes

Format: Var.Step.BackTill [<expression>]

Var.Step.BackTill i>0x10 //steps till variable 'i' is larger than 10
General Commands Reference Guide V | 65©1989-2024 Lauterbach

Var.Step.Change Step till expression changes

Steps till the expression changes. The command will stop also if the expression cannot be evaluated.

Examples:

See also

■ Var.Step

▲ ’Release Information’ in ’Legacy Release History’

Var.Step.Till Step till expression true

Steps till the boolean expression becomes true (i.e. not zero). The command will stop also if the expression
cannot be evaluated.

Example:

See also

■ Var.Step

▲ ’Release Information’ in ’Legacy Release History’

Format: Var.Step.Change [<expression>]

Var.Step.Change k // steps till variable k changes

Var.Step.Change ptr->x // steps till the contents of the structure
// pointed to by 'ptr' changes

Var.Step.Change flags // steps till one element of the array
// 'flags' changes

Format: Var.Step.Till [<expression>]

Var.Step.Till i>0x10 //steps till variable 'i' is larger than 10
General Commands Reference Guide V | 66©1989-2024 Lauterbach

Var.TABle Display table

Displays the first expression as an array. The extra arguments are displayed as pointers or indexes to that
array.

Examples:

Displays the first expression as an array.

See also

■ Var ■ Var.set

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Display Variables’ in ’Training Source Level Debugging’

Format: Var.TABle [%<format>] [<variable> [<pointer> …]]

<format> Use the <format> parameters to display the variables in the desired format.
For a description of the <format> parameters, click here.

Var.TABle %Location flags i k vpchar
Var.TABle vpchar[0..100] //'artificial' array build on

// a pointer
General Commands Reference Guide V | 67©1989-2024 Lauterbach

Var.TREE Display variables in the form of a tree structure

Displays the HLL variables in the form of a tree structure. The tree structure is broken down by program and
module.

Example:

See also

■ Var ■ Var.set

▲ ’Release Information’ in ’Legacy Release History’

Format: Var.TREE [%<format>]

<format> Use the <format> parameters to display the variables in the desired format.
For a description of the <format> parameters, click here.

Var.TREE %Type %Location %Index

%Index%Location%Type
General Commands Reference Guide V | 68©1989-2024 Lauterbach

Var.TYPE Display variable types

The specified formula is interpreted and the types of the according values are displayed. By the options of
this command the way of display may be modified in wide range.

See also

■ Var ■ Var.set

▲ ’Release Information’ in ’Legacy Release History’

Format: Var.TYPE [%<format>] [<expression>] …

<format>: all
DEFault
Type [.on | .OFF]
Open [.on | .OFF | .2 | .3 | .4]
Location [.on | .OFF]
HIdden [.on | .OFF]
Recursive [.on | .OFF | .2 | .3 | .4]
…

<format> Use the <format> parameters to display the variables in the desired format.
For a description of the <format> parameters, click here.
General Commands Reference Guide V | 69©1989-2024 Lauterbach

Var.View Display variables

The specified formula is interpreted and the according values are displayed. If a syntactical error is made,
just a warning will be received. That’s why the definition of a window showing local variables is allowed,
without the program counter being valid to the according procedure.

• Display variables:

• Interpret and display memory content in HLL format:

• Modify a variable value or structure element:

Format: Var.View [%<format>] [<variable>] …

<format> Use the <format> parameters to display the variables in the desired format.
For a description of the <format> parameters, click here.

A Static variable.

B ? indicates that the local variable is not valid in the current program context.

C Double-click the value you want to modify.

D Double-clicking inserts the current value into the TRACE32 command line. Simply enter a
new value, e.g. 0x1

B

A

C

D

General Commands Reference Guide V | 70©1989-2024 Lauterbach

See also

■ Var ■ Var.AddWatch ■ Var.Local ■ Var.Ref
■ Var.set ■ Var.Watch ■ Frame.view

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Display Variables’ in ’Training Source Level Debugging’

NOTE: A variable value is displayed in red color, then the assigned value is not within
the defined range of the variable type.
The typical reason in C programs is that an enumeration variable has a value
that does not correspond to one of the defined enumerators.
General Commands Reference Guide V | 71©1989-2024 Lauterbach

Var.Watch Open Var.Watch window

Opens a Var.Watch window, displaying the specified variables. Further variables can be added on the fly to
the window by using the window buttons or the Var.AddWatch command.

Example 1: If the command Var.Watch is used with format parameters only, these format parameters are
applied to all variables added to the window.

Example 2: If the command Var.Watch is used with variable names and format parameters, the format
parameters apply only to the specified variables. Variables added to the window are formatted in the default
way.

Format: Var.Watch [%<format>] [<variable>] …

A Recall already used variables B Browse symbols

C Var.AddWatch, Var.View, Var.DelWatch D Double-click to modify or use Var.set

E ? indicates that the variable is not valid in the current program context.

<format> Use the <format> parameters to display the variables in the desired format.
For a description of the <format> parameters, click here.

Var.Watch %Decimal %Hex

Var.AddWatch mstatic1 ; mstatic1 is displayed in decimal
; and hex format

Var.Watch %Index flags %Hex mstatic1 %Hex.OFF %SpotLight ast

Var.AddWatch mstatic2 ; mstatic1 is displayed in the
; default format

A B

D

C

E

General Commands Reference Guide V | 72©1989-2024 Lauterbach

Example 3: The Var.Watch window can also evaluate HLL expressions.

See also

■ Var ■ Var.AddWatch ■ Var.set ■ Var.View

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Display Variables’ in ’Training Source Level Debugging’

Var.WHILE PRACTICE loop construction

Repeats the next command or command block while <hll_condition> is true. Var.WHILE is the counterpart
to the PRACTICE WHILE instruction.

Example:

See also

■ Var ■ Var.set ■ WHILE

▲ ’Release Information’ in ’Legacy Release History’

Var.Watch mstatic1 ast.count enumvar mstatic1+ast.count/enumvar

Format: Var.WHILE <hll_condition>

<hll_condition> Allows to specify the condition in the syntax of the programming language
used (C, C++, …).

Var.WHILE ast.count<1238
(
 Var.set ast.count++
 …
)

General Commands Reference Guide V | 73©1989-2024 Lauterbach

Var.WRITE Write variables to file

Writes the values of the specified variables to file. The command is an HLL version of the WRITE command.

Example:

See also

■ Var ■ Var.EXPORT ■ Var.PRINT ■ Var.set
■ CLOSE ■ OPEN

▲ ’Release Information’ in ’Legacy Release History’

Format: Var.WRITE #<file_number> [%CONTinue] [%<format>] [<variable>] …

CONTinue Adds the string to the current output line in the selected file without
inserting a newline character.

<format> Using the <format> parameters, you can modify the output in various ways.
For a description of the <format> parameters, click here.

;create and open a file for writing
OPEN #1 ~~~\test.txt /Create

;write the variable name 'ast' to the file
WRITE #1 "ast: "

;continue with the values of 'ast' in the same line
Var.WRITE #1 %CONTinue %Recursive.on ast

;write the array name and a selected index 'vdiarray[2]' to the file
WRITE #1 "vdiarray[2]: "

;continue with the value of the array index 2 in the same line
Var.WRITE #1 %CONTinue vdiarray[2]

;close the file for writing
CLOSE #1

;open the file for editing in TRACE32
EDIT ~~~\test.txt
General Commands Reference Guide V | 74©1989-2024 Lauterbach

VCO

VCO Clock generator
Simulator only

See also

■ VCO.BusFrequency ■ VCO.Down ■ VCO.Frequency ■ VCO.Rate
■ VCO.RESet ■ VCO.state ■ VCO.TimeBaseFrequency ■ VCO.Up

VCO.BusFrequency Control bus clock
Simulator only

Sets the bus clock frequency.

See also

■ VCO ■ VCO.state

VCO.Down Frequency down
Simulator only

Step down with the VCO frequency.

See also

■ VCO ■ VCO.Frequency ■ VCO.state ■ VCO.Up

Format: VCO.BusFrequency <frequency>

Format: VCO.Down [<frequency>]

<frequency>: 50000. …

VCO.Down ; frequency down 50 kHz
General Commands Reference Guide V | 75©1989-2024 Lauterbach

VCO.Frequency Control VCO clock
Simulator only

In the TRACE32 Instruction Set Simulator, the value sets the number of cycles (instruction fetch and
load/store) after which the simulation time is increased by one second.

See also

■ VCO ■ VCO.Down ■ VCO.state ■ VCO.Up
❏ VCO()

VCO.Rate VCO rate
Simulator only

Defines the rate between VCO clock and internal CPU clock.

See also

■ VCO ■ VCO.state

Format: VCO.Frequency <frequency>

<frequency>: 1000Hz ... 2GHz

<frequency> All frequency definitions may be done in Hz, kHz, MHz or GHz.

VCO.Frequency 20MHz ; set VCO clock to 20 MHz

VCO.Frequency 10.5MHz ; set VCO clock to 10.5 MHz

VCO.Frequency 1800KHz ; set VCO clock to 1.8 MHz

Format: VCO.Rate <rate>
General Commands Reference Guide V | 76©1989-2024 Lauterbach

VCO.RESet VCO reset
Simulator only

The VCO is initialized to the default frequency.

See also

■ VCO ■ VCO.state

VCO.state State display
Simulator only

Displays the state of the VCO.

See also

■ VCO ■ VCO.BusFrequency ■ VCO.Down ■ VCO.Frequency
■ VCO.Rate ■ VCO.RESet ■ VCO.TimeBaseFrequency ■ VCO.Up
❏ VCO()

VCO.TimeBaseFrequency Set the time base clock
Simulator only

Sets the time base clock.

See also

■ VCO ■ VCO.state

Format: VCO.RESet

Format: VCO.state

Format: VCO.TimeBaseFrequency <frequency>

<frequency>: 1000Hz ... 2GHz
General Commands Reference Guide V | 77©1989-2024 Lauterbach

VCO.Up Frequency up
Simulator only

Step up with VCO clock.

Example:

See also

■ VCO ■ VCO.Down ■ VCO.Frequency ■ VCO.state

Format: VCO.Up [<frequency>]

<frequency>: 1000Hz ... 2GHz

VCO.Up ; frequency up by 50 kHz

VCO.Up 1MHz ; frequency up by 1 MHz
General Commands Reference Guide V | 78©1989-2024 Lauterbach

VCU

VCU VCU registers (Vector Computational Unit)
Ceva-X only

VCU commands refer to the Vector Computational Unit which is an optional unit available only to the new
Ceva-XC devices. In addition these commands must be made available by specifying the actual number of
implemented VCUs (see SYStem.VCU.INSTances).

See also

■ VCU.Init ■ VCU.RESet ■ VCU.Set ■ VCU.view

VCU.Init Initialize VCU registers
Ceva-X only

Sets the VCU registers to their default values.

See also

■ VCU ■ VCU.view

VCU.RESet Reset VCU registers
Ceva-X only

Default: VCU0

Resets all registers of the selected instance to zero.

See also

■ VCU ■ VCU.view

Format: VCU.Init

Format: VCU.RESet [/VCU<instance>]
General Commands Reference Guide V | 79©1989-2024 Lauterbach

VCU.Set Set VCU register
Ceva-X only

Default: VCU0

Modifies the selected <register> of the according VCU instance. MLD registers become available if
SYStem.VCU.MLD is ON.

See also

■ VCU ■ VCU.view

VCU.view Display VCU registers
Ceva-X only

Default: VCU0

Control panel to display and modify VCU registers of the corresponding VCU instance. MLD registers
become available if SYStem.VCU.MLD is ON.

See also

■ VCU ■ VCU.Init ■ VCU.RESet ■ VCU.Set

Format: VCU.Set <register> <value> [/<option>] [/VCU<instance>]

Format: VCU.view [/<option>] [/VCU<instance>]
General Commands Reference Guide V | 80©1989-2024 Lauterbach

VE

VE Virtual execution mode

VE is the virtual execution mode of TRACE32. The virtual execution mode can be used to run and debug a
target application even if no target memory is available. This can be useful to run initialization code for the
target.

After turning on the VE, all program code will be simulated by the debugger’s instruction set simulator. The
simulator will cause instruction fetches/loads and stores according the program. The target of the
fetch/load/store depends on the TRACE32 virtual memory (VM:). If an address is fetched/loaded/stored
which has been set using Data.LOAD or Data.Set, the simulator will access simulator memory. All other
addresses will be forwarded to the processor.

See also

■ VE.OFF ■ VE.ON

▲ ’Release Information’ in ’Legacy Release History’

VE.OFF Turn off virtual execution mode

Turns off the virtual execution mode.

See also

■ VE

VE.ON Turn on virtual execution mode

Turns on the virtual execution mode.

See also

■ VE

Format: VE.OFF
VM.OFF (deprecated)

Format: VE.ON
VM.ON (deprecated)
General Commands Reference Guide V | 81©1989-2024 Lauterbach

VPU

VPU Vector Processing Unit (VPU)
Not all core architectures supported

The VPU command group is used to display and modify the VPU (Vector Processing Unit) registers. These
commands do not support all core architectures.

See also

■ VPU.Init ■ VPU.Set ■ VPU.view ❏ VPU()

▲ ’VPU Functions’ in ’General Function Reference’

VPU.Init Initialize VPU registers
Not all core architectures supported

Resets all Vector Processing Unit (VPU) registers.

See also

■ VPU ■ VPU.view

Format: VPU.Init [/<option>]
VPU.RESet (deprecated)

<option> For a description of the options, see Register.view.
General Commands Reference Guide V | 82©1989-2024 Lauterbach

VPU.Set Modify VPU registers
Not all core architectures supported

Sets the value of the specified Vector Processing Unit register.

Format: VPU.Set <register> <value> [/<option>]

<register>:
(PowerPC
74xx/86xx
only)

VR0..VR31
VRSAVE
VSCR

<register>:
(APEX only)

V0...V7
VC0...VC3
VCS0...VCS7
OVV

<register>:
(TPC only)

VPE0_V0…VPE0_V44
VPE1_V0…VPE1_V44
…
VPE63_V0…VPE63_V44

VPE0_VP0…VPE0_VP15
VPE1_VP0…VPE1_VP15
…
VPE63_VP0…VPE63_VP15

<register>:
(PowerPC 74xx/86xx
only)

To modify the ALTIVEC vector registers VR0-VR31, split the value in four 32-
bit values. If less than four values are given, the values will be aligned to LSB
and undeclared values will be set to zero.

<register>:
(TPC only)

The register name describes the Vector Processing Element number and
the register class and number.
The first part of the register name specifies the Vector Processing Element
(VPE) number. The second part specifies the register class, Vector (V) or
Vector Predicate (VP), and the respective register number.

<option>: For a description of the options, see Register.view.
General Commands Reference Guide V | 83©1989-2024 Lauterbach

Example: Brief example for PowerPC

See also

■ VPU ■ VPU.view

VPU.view Display ALTIVEC register window
Not all core architectures supported

Opens a window displaying the register contents of the Vector Processing Unit.

See also

■ VPU ■ VPU.Init ■ VPU.Set

▲ ’Release Information’ in ’Legacy Release History’

VPU.Set VR2 0x11111111 0x22222222 0x33333333 0x44444444
VPU.Set VRSAVE 0x0000003F
VPU.Set VSCR 0x00010000

PRINT VPU(VR2.W3)
PRINT VPUCR(VRSAVE)

Format: VPU.view [/<option>]

<option> For a description of the options, see Register.view.
General Commands Reference Guide V | 84©1989-2024 Lauterbach

	General Commands Reference Guide V
	History
	Var
	Var HLL variables and expressions
	Overview Var
	Symbol Prefix and Postfix
	Symbol Paths
	Search Paths
	Mangled Names and C++ Classes
	Function Return Values
	Special Expressions
	Calling Functions
	Display Formats
	Functions

	Var.AddSticker Add variable sticker to source listing window
	Var.AddWatch Add variable to Var.Watch window
	Var.AddWatchPATtern Add variables to Var.Watch window using wildcards
	Var.Assign Assignment to a variable
	Var.Break Breakpoint on variable
	Var.Break.Delete Delete breakpoint on variable
	Var.Break.direct Set temporary breakpoint on HLL expression
	Var.Break.Pass Define pass condition for breakpoint
	Var.Break.Set Set breakpoint to HLL expression
	Var.Call Call a new procedure
	Var.CHAIN Display linked list
	Var.DelWatch Delete variable from watch
	Var.DRAW Graphical variable display
	Var.DRAWXY Graphical variable display
	Var.DUMP Memory dump
	Var.Eval Evaluate high-level expression
	Var.EXPORT Export variables in CSV format to file
	Var.FixedCHAIN Display linked list
	Var.FixedTABle Display table
	Var.Go Real-time emulation
	Var.Go.Back Re-run program backwards until variable access (CTS)
	Var.Go.Change Real-time emulation till expression changes
	Var.Go.direct Real-time emulation with breakpoint
	Var.Go.Till Real-time emulation till expression true
	Var.IF PRACTICE conditional branching
	Var.INFO View information about HLL variable or HLL expression
	Var.Local Local variables
	Var.LOG Log variables
	Var.NEW Creates a TRACE32-internal variable
	Var.NEWGLOBAL Creates a global TRACE32-internal variable
	Var.NEWLOCAL Creates a local TRACE32-internal variable
	Var.OBJECT Pretty printing for C++ objects
	Var.PATtern Display variables allowing wildcards for symbol name and type
	Var.PRINT Display variables
	Var.PROfile Graphical display of variable
	Var.Ref Referenced variables
	Var.set Modify variable
	Var.Step Step
	Var.Step.BackChange Step back till expression changes
	Var.Step.BackTill Step back till expression true
	Var.Step.Change Step till expression changes
	Var.Step.Till Step till expression true
	Var.TABle Display table
	Var.TREE Display variables in the form of a tree structure
	Var.TYPE Display variable types
	Var.View Display variables
	Var.Watch Open Var.Watch window
	Var.WHILE PRACTICE loop construction
	Var.WRITE Write variables to file

	VCO
	VCO Clock generator
	VCO.BusFrequency Control bus clock
	VCO.Down Frequency down
	VCO.Frequency Control VCO clock
	VCO.Rate VCO rate
	VCO.RESet VCO reset
	VCO.state State display
	VCO.TimeBaseFrequency Set the time base clock
	VCO.Up Frequency up

	VCU
	VCU VCU registers (Vector Computational Unit)
	VCU.Init Initialize VCU registers
	VCU.RESet Reset VCU registers
	VCU.Set Set VCU register
	VCU.view Display VCU registers

	VE
	VE Virtual execution mode
	VE.OFF Turn off virtual execution mode
	VE.ON Turn on virtual execution mode

	VPU
	VPU Vector Processing Unit (VPU)
	VPU.Init Initialize VPU registers
	VPU.Set Modify VPU registers
	VPU.view Display ALTIVEC register window

