
MANUAL

General Commands Reference
Guide P

General Commands Reference Guide P

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 General Commands .. 

 General Commands Reference Guide P .. 1

 History .. 6

 PCI .. 7

 PCI Legacy PCI configuration 7

 PCI.Dump Display PCI device data 8

 PCI.Option.DOMAIN Set PCI domain 8

 PCI.Read Read a PCI register 9

 PCI.Scan List PCI devices 10

 PCI.Write Write a PCI register 11

 PCPOnchip ... 12

 PER ... 13

 PER Peripheral files 13

 Overview PER 13

 PER.IMPORT Import of alternative peripheral file formats 14

 PER.<format>.ReProgram Set default peripheral file 15

 PER.<format>.Save Save to file 15

 PER.<format>.TestProgram Test mode 15

 PER.<format>.view Display peripherals 15

 PER.IMPORT.AccessClass TRACE32 access class 16

 PER.IMPORT.EnumDelimiter Delimiter for BITFLD items. 16

 PER.IMPORT.FieldsFromDescription Generate BITFLDs from description 16

 PER.IMPORT.ForMaT Input file format 17

 PER.IMPORT.INDent Indent trees, registers and fields 17

 PER.IMPORT.InputFile Input files for conversion 18

 PER.IMPORT.LoaD Load external converter project 18

 PER.IMPORT.LOGfile Create logfile of conversion 18

 PER.IMPORT.MaximumChoiceLength Maximum choice item length 19

 PER.IMPORT.MaximumDescriptionLength Maximum tooltip length 19

 PER.IMPORT.MergeGroups Minimize number of GROUPs 19

 PER.IMPORT.ModuleFiles Split .per file into separate files 20

 PER.IMPORT.ModulePath Output directory for module files 20

 PER.IMPORT.MSBfirst Order of bits in BITFLD command 20
General Commands Reference Guide P | 2©1989-2024 Lauterbach

 PER.IMPORT.NumberOfColumns Number of output columns 21

 PER.IMPORT.OutputFile Name of generated peripheral file 21

 PER.IMPORT.REPeat Generate REPEAT commands 22

 PER.IMPORT.RESet Reset import settings 22

 PER.IMPORT.RULES Apply rules file 22

 PER.IMPORT.SortSubTrees Sort TREEs alphabetically 23

 PER.IMPORT.SortTopTrees Sort TREEs alphabetically 23

 PER.IMPORT.STOre Store current project 23

 PER.IMPORT.WithValue Precede bitfield items with value 24

 PER.In Read port 25

 PER.Program Interactive programming 25

 PER.ReProgram Set default peripheral file 26

 PER.ReProgramDECRYPT Load default program (encrypted) 27

 PER.Set Modify memory 28

 PER.Set.ByName Modify memory by name 28

 PER.Set.CONDitions Workaround for PER functions 30

 PER.Set.Field Modify a bit field in memory 30

 PER.Set.Index Modify indirect (indexed) register 32

 PER.Set.IndexField Set fields at indexed register 33

 PER.Set.Out Write data stream to memory 33

 PER.Set.SaveIndex Modify indirect (indexed) register 34

 PER.Set.SaveIndexField Set fields at indexed register 35

 PER.Set.SaveTIndex Set fields at indexed registers 35

 PER.Set.SaveTIndexField Set fields at indexed registers 35

 PER.Set.SEQuence Set SGROUP members 36

 PER.Set.SEQuenceField Set SGROUP members 36

 PER.Set.SHADOW Modify data based on shadow RAM 36

 PER.Set.simple Modify registers/peripherals 37

 PER.Set.TIndex Set fields at indexed registers 37

 PER.Set.TIndexField Set fields at indexed registers 38

 PER.STOre Generate PRACTICE script from PER settings 39

 PER.TestProgram Test mode 41

 PER.view Display peripherals 41

 PER.viewDECRYPT View decrypted PER file in a PER window 44

 Programming Commands 45

 PERF ... 46

 PERF Sample-based profiling 46

 Overview PERF 46

 PERF.ADDRESS Restrict evaluation to specified address area 53

 PERF.Arm Activate the performance analyzer manually 54

 PERF.AutoArm Couple performance analyzer to program execution 54

 PERF.AutoInit Automatic initialization 54

 PERF.ContextID Enable sampling the context ID register 55
General Commands Reference Guide P | 3©1989-2024 Lauterbach

 PERF.DISable Disable the performance analyzer 55

 PERF.Init Reset current measurement 55

 PERF.List Default profiling 56

 PERF.ListDistriB Memory contents profiling 62

 PERF.ListFunc Function profiling 63

 PERF.ListFuncMod HLL function profiling (restricted) 65

 PERF.ListLABEL Label-based profiling 67

 PERF.ListLine Profiling by HLL lines 69

 PERF.ListModule Profiling by modules 70

 PERF.ListProgram Profiling based on performance analyzer program 71

 PERF.ListRange Profiling by ranges 71

 PERF.ListS10 Profiling in n-byte segments 72

 PERF.ListTASK Profiling by tasks/threads 73

 PERF.ListTREE Profiling by module/function tree 75

 PERF.ListVarState Variable state profiling 76

 PERF.LOAD Load previously stored PERF results 77

 PERF.METHOD Specify acquisition method 77

 The Method StopAndGo 79

 The Method Snoop 80

 The Method Trace 83

 The Method DCC 87

 PERF.MMUSPACES Include space IDs for addresses in the sampling 88

 PERF.Mode Specify sampling object 88

 PERF.OFF Stop the performance analyzer manually 90

 PERF.PROfile Graphic profiling display 90

 PERF.Program Write a performance analyzer program 92

 PERF.ReProgram Load an existing performance analyzer program 93

 PERF.RESet Reset analyzer 94

 PERF.RunTime Retain time for program run 94

 PERF.SAVE Save the PERF results for postprocessing 95

 PERF.SnoopAddress Address for memory sample 95

 PERF.SnoopMASK Mask for memory sample 95

 PERF.SnoopSize Size for memory sample 96

 PERF.Sort Specify sorting of evaluation results 96

 PERF.state Display state 97

 PERF.STREAM PERF stream mode 98

 PERF.ToProgram Automatic generation of performance analyzer program 98

 PERF.View Detailed view 99

 PERSVD .. 102

 PERSVD Built-in converter for peripheral files in CMSIS-SVD format 102

 PERSVD.Save Save converted file 102

 PERSVD.view Display peripherals 102

 PMI .. 104
General Commands Reference Guide P | 4©1989-2024 Lauterbach

 PMI Power management interface 104

 POD ... 105

 POD Configure input behavior of digital and analog probe 105

 POD.ADC Probe configuration 105

 POD.Level Input state 108

 POD.RESet Input level reset 109

 POD.state Input state 109

 POD.USB Set up USB probe 111

 PORT .. 112

 PORT.Arm Arm the trace 112

 PORT.AutoArm Arm automatically 112

 PORT.BookMark Set a bookmark in trace listing 112

 PORT.Chart Display trace contents graphically 112

 PORT.DRAW Plot trace data against time 112

 PORT.FindAll Find all specified entries in trace 112

 PORT.FindChange Search for changes in trace flow 113

 PORT.GOTO Move cursor to specified trace record 113

 PORT.Init Initialize trace 113

 PORT.OFF Switch off 113

 PORT.PROfileChart Profile charts 113

 PORT.PROTOcol Protocol analysis 113

 PORT.PROTOcol.Chart Graphic display for user-defined protocol 113

 PORT.PROTOcol.Draw Graphic display for user-defined protocol 114

 PORT.PROTOcol.EXPORT Export trace buffer for user-defined protocol 114

 PORT.PROTOcol.Find Find in trace buffer for user-defined protocol 114

 PORT.PROTOcol.list Display trace buffer for user-defined protocol 114

 PORT.PROTOcol.PROfileChart Profile chart for user-defined protocol 114

 PORT.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol 114

 PORT.PROTOcol.STATistic Display statistics for user-defined protocol 114

 PORT.REF Set reference point for time measurement 115

 PORT.RESet Reset command 115

 PORT.SAVE Save trace for postprocessing in TRACE32 115

 PORT.SelfArm Automatic restart of trace recording 115

 PORT.SnapShot Restart trace capturing once 115

 PORT.STATistic Statistic analysis 115

 PORT.Timing Waveform of trace buffer 115

 PORT.TRACK Set tracking record 115

 PORT.ZERO Align timestamps of trace and timing analyzers 116

 Probe .. 117

 Probe Probe logic analyzer 117
General Commands Reference Guide P | 5©1989-2024 Lauterbach

General Commands Reference Guide P

Version 06-Jun-2024

History

23-Feb-2024 New command PER.Set.CONDitions.

31-Oct-2023 New command PER.IMPORT.ModulePath.

11-Oct-2023 PERF.METHOD command: the list of CPUs that allow reading the program counter while the
program is running has been deleted. The function CPU.FEATURE(PCSNOOP) is used to
check this.

28-Aug-2023 New command PER.<format>.TestProgram.

21-Jul-2023 New command PER.IMPORT.SortTopTrees.

07-Apr-2023 New PER.IMPORT command group.

05-Aug-2022 New /AccessClass option for PERSVD commands.

06-May-2022 New command PER.Set.ByName.
General Commands Reference Guide P | 6©1989-2024 Lauterbach

PCI

PCI Legacy PCI configuration

The command group PCI supports the access to the legacy PCI configuration space (first 256 bytes of
device data).

See also

■ PCI.Dump ■ PCI.Option.DOMAIN ■ PCI.Read ■ PCI.Scan
■ PCI.Write

NOTE: This command group is only implemented for a few specific chips.
General Commands Reference Guide P | 7©1989-2024 Lauterbach

PCI.Dump Display PCI device data

Displays the raw PCI device data.

See also

■ PCI

PCI.Option.DOMAIN Set PCI domain

Default: 0

Configures the PCI domain used as default by other PCI commands. A PCI domain is an isolated set of PCI
bus segments. Usually multiple PCI domains are used when there are multiple independent PCI controllers
on a chip.

Format: PCI.Dump <bus> <device> <function> [/<option>]

<bus>: 0..Max_PCI_Busnumber

<device>: 0..Max_PCI_Devicenumber

<function>: 0..Max_PCI_Functionnumber

<option>: Byte | Word | Long | Quad
BE | LE

<bus> PCI bus number

<device> PCI device number

<function> PCI function number

<option> Data display format and endianness

Format: PCI.Option.DOMAIN <domain>

<domain>: 0…65535
General Commands Reference Guide P | 8©1989-2024 Lauterbach

See also

■ PCI

PCI.Read Read a PCI register

Reads the selected PCI register. The read access is always 32bit (long), using a byte or word format is only
for convenience.

See also

■ PCI

Format: PCI.Read <bus> <device> <function> <register> [/<option>]

<bus>: 0..Max_PCI_Busnumber

<device>: 0..Max_PCI_Devicenumber

<function>: 0..Max_PCI_Functionnumber

<register>: 0..Max_PCI_Registernumber

<option>: Byte | Word | Long | Quad
BE | LE

<bus> PCI bus number

<device> PCI device number

<function> PCI function number

<register> PCI register number

<option> Data display format and endianness
General Commands Reference Guide P | 9©1989-2024 Lauterbach

PCI.Scan List PCI devices

Scans the PCI bus and lists the found devices.

See also

■ PCI

Format: PCI.Scan [<range>]

<range>: <start>--<end>

<start>: 0..Max_PCI_Busnumber

<end>: 0..Max_PCI_Busnumber

<range> PCI bus range, default: 0.--1.

<start> <start> must be smaller than or equal to <end>.

<end> <end> must be greater than or equal to <start>.
General Commands Reference Guide P | 10©1989-2024 Lauterbach

PCI.Write Write a PCI register

Writes the selected PCI register. The write access is always 32bit (long), using a byte or word format is only
for convenience (read-modify-write operation).

See also

■ PCI

Format: PCI.Write <bus> <device> <function> <register> [%<format>] <value>

<bus>: 0..Max_PCI_Busnumber

<device>: 0..Max_PCI_Devicenumber

<function>: 0..Max_PCI_Functionnumber

<register>: 0..Max_PCI_Registernumber

<format>: Byte | Word | Long | Quad
BE | LE

<value>: Number

<bus> PCI bus number

<device> PCI device number

<function> PCI function number

<register> PCI register number

<format> Data display format and endianness

<value> New PCI register value
General Commands Reference Guide P | 11©1989-2024 Lauterbach

PCPOnchip

The PCPOnchip command group allows to display and analyze the PCP trace information stored to the on-
chip trace provided by an ED device e.g. for the TriCore architecture.

The PCPOnchip command is only applicable if the PCP debugging and tracing is performed with the same
TRACE32 instance then the core debugging (legacy PCP).

For a description of the command usage, refer to the <trace> command group.
General Commands Reference Guide P | 12©1989-2024 Lauterbach

PER

PER Peripheral files

See also

■ PER.IMPORT ■ PER.In ■ PER.Program ■ PER.ReProgram
■ PER.ReProgramDECRYPT ■ PER.Set ■ PER.STOre ■ PER.TestProgram
■ PER.view ■ PER.viewDECRYPT

▲ ’Release Information’ in ’Legacy Release History’

Overview PER

The command PER.view displays a window with a view on the control registers of integrated peripherals.
The so-called peripherals files (*.per) controlling the contents of this window can be freely configured for
displaying memory structures or I/O structures.

All microcontroller emulation probes are supported by a file which describes the internal peripherals. This file
may be modified (using logical names instead of pin numbers for i/o ports) or extended to display additional
peripherals outside the microcontroller.

Examples for different microcontrollers reside in the directory ~~/demo/per.
General Commands Reference Guide P | 13©1989-2024 Lauterbach

PER.IMPORT Import of alternative peripheral file formats

The native peripheral file format is *.per. Though TRACE32 is able to import other file formats such as SVD
or various XML derivatives. Imported files can directly we opened in a PER.<format>.view window or saved
to native .per format using PER.<format>.Save.

See also

■ PER.IMPORT.AccessClass ■ PER.IMPORT.FieldsFromDescription
■ PER.IMPORT.ForMaT ■ PER.IMPORT.InputFile
■ PER.IMPORT.LoaD ■ PER.IMPORT.MaximumChoiceLength
■ PER.IMPORT.MaximumDescriptionLength ■ PER.IMPORT.MergeGroups
■ PER.IMPORT.ModuleFiles ■ PER.IMPORT.MSBfirst
■ PER.IMPORT.NumberOfColumns ■ PER.IMPORT.OutputFile
■ PER.IMPORT.REPeat ■ PER.IMPORT.RESet
■ PER.IMPORT.RULES ■ PER.IMPORT.SortTopTrees
■ PER.IMPORT.STOre ■ PER.IMPORT.WithValue
■ PER ■ PER.view
General Commands Reference Guide P | 14©1989-2024 Lauterbach

PER.<format>.ReProgram Set default peripheral file
[build 155354 - DVD 09/2023]

Same as PER.ReProgram for converted peripheral files.

PER.<format>.Save Save to file
[build 155354 - DVD 09/2023]

Convert input file(s) and save as .per file. The output file is configured by the PER.IMPORT.OutputFile
command.

PER.<format>.TestProgram Test mode
[build 155354 - DVD 09/2023]

Same as PER.TestProgram for converted peripheral files.

PER.<format>.view Display peripherals
[build 155354 - DVD 09/2023]

Same as PER.view for converted peripheral files.

Format: PER.<format>.ReProgram <file>

Format: PER.<format>.Save

Format: PER.<format>.TestProgram

Format: PER.<format>.view <file>
General Commands Reference Guide P | 15©1989-2024 Lauterbach

PER.IMPORT.AccessClass TRACE32 access class
[build 155354 - DVD 09/2023]

Specifies the TRACE32 specific access class to be used for the BASE and GROUP commands.

Default: :ad

See also

■ PER.IMPORT

PER.IMPORT.EnumDelimiter Delimiter for BITFLD items.
[build 155354 - DVD 09/2023]

 BITFLD items are usually separated by a comma. In order to change the separating character, the first
argument must be used. The second (optional) argument can used to provide a description (tooltip) for each
item.

PER.IMPORT.FieldsFromDescription Generate BITFLDs from description
[build 155354 - DVD 09/2023]

Tries to extract choice items for BITFLD commands from bitfield descriptions.If no choice items can be
extracted, a HEXMASK will be generated instead.

Default: OFF

See also

■ PER.IMPORT

Format: PER.IMPORT.AccessClass <class>

Format: PER.IMPORT.EnumDelimiter <delimiter> [<description>]

delimiter Character which separates BITFLD items.
Default: ,

description Character which separates BITFLD item from corresponding description.
Default: none

Format: PER.IMPORT.FieldsFromDescription [ON | OFF]
General Commands Reference Guide P | 16©1989-2024 Lauterbach

PER.IMPORT.ForMaT Input file format
[build 155354 - DVD 09/2023]

Tells TRACE32 the format of the input files.

Default: AUTO

See also

■ PER.IMPORT

PER.IMPORT.INDent Indent trees, registers and fields
[build 155354 - DVD 09/2023]

Indent trees, registers and fields for improved readability of the resulting .per file.

Default: OFF

Format: PER.IMPORT.ForMaT <format>

<format>: AUTO
SPIRITXML
TIXML
SVD

AUTO Detect format automatically by means of the input file(s).

SPIRITXML XML format used by IP-XACT.

TIXML XML format used by Texas Instruments.

SVD System View Description format for the Common Microcontroller
Software Interface Standard.

Format: PER.IMPORT.INDent [ON | OFF]
General Commands Reference Guide P | 17©1989-2024 Lauterbach

PER.IMPORT.InputFile Input files for conversion
[build 155354 - DVD 09/2023]

Selects input files to be converted into a single .per file.

See also

■ PER.IMPORT

PER.IMPORT.LoaD Load external converter project
[build 155354 - DVD 09/2023]

For backward compability only.

Allows to load project files from the previous external converters. Current internal converters store project
files as PRACTICE .cmm scripts. See PER.IMPORT.STOre.

See also

■ PER.IMPORT

PER.IMPORT.LOGfile Create logfile of conversion
[build 155354 - DVD 09/2023]

A logfile with extended information and error messages will be created during the conversion process. The
logfile will be placed in the same directory as the output file (see PER.IMPORT.OutputFile).

Default: OFF

Format: PER.IMPORT.InputFile <file_list>

<file_list> List of input files separated by whitespaces.

Format: PER.IMPORT.LoaD <file>

Format: PER.IMPORT.LOGfile [ON | OFF]
General Commands Reference Guide P | 18©1989-2024 Lauterbach

PER.IMPORT.MaximumChoiceLength Maximum choice item length
[build 155354 - DVD 09/2023]

Defines the maximum length of the individual choice items in BITFLD commands. Must be in range 1..80.

Default: 50

See also

■ PER.IMPORT

PER.IMPORT.MaximumDescriptionLength Maximum tooltip length
[build 155354 - DVD 09/2023]

Defines the maximum length of the description/tooltip. Must be in range 1..255.

Default: 255

See also

■ PER.IMPORT

PER.IMPORT.MergeGroups Minimize number of GROUPs
[build 155354 - DVD 09/2023]

Merges consecutive registers (LINE) into a single GROUP. Otherwise each LINE will have its own GROUP.

Default: ON

See also

■ PER.IMPORT

Format: PER.IMPORT.MaximumChoiceLength <length>

Format: PER.IMPORT.MaximumDescriptionLength <length>

Format: PER.IMPORT.MergeGroups [ON | OFF]
General Commands Reference Guide P | 19©1989-2024 Lauterbach

PER.IMPORT.ModuleFiles Split .per file into separate files
[build 155354 - DVD 09/2023]

Instead of a single .per file, a .ph file for each module will be created. This is useful if you want to build up
your own peripheral file library and want to re-use module files.

Default: OFF

See also

■ PER.IMPORT

PER.IMPORT.ModulePath Output directory for module files
[build 160201 - DVD 02/2024]

Defines the output directory for modules files. Only has an effect if PER.IMPORT.ModuleFiles is ON.

Default: Current working directory.

PER.IMPORT.MSBfirst Order of bits in BITFLD command
[build 155354 - DVD 09/2023]

If ON, BITFLD commands will output the most significant bit first. Otherwise the most significant bit will be
output last.

Default: ON

See also

■ PER.IMPORT

Format: PER.IMPORT.ModuleFiles [ON | OFF]

Format: PER.IMPORT.ModulePath <path>

Format: PER.IMPORT.MSBfirst [ON | OFF]
General Commands Reference Guide P | 20©1989-2024 Lauterbach

PER.IMPORT.NumberOfColumns Number of output columns
[build 155354 - DVD 09/2023]

Defines the number of output columns in the PER.<format>.view window. In case of AUTO, the algorithm
tries to find the optimal number of columns.

Default: AUTO

See also

■ PER.IMPORT

PER.IMPORT.OutputFile Name of generated peripheral file
[build 155354 - DVD 09/2023]

Name of the resulting .per file after conversion.

See also

■ PER.IMPORT

Format: PER.IMPORT.NumberOfColumns <number>

<number>: AUTO
1
2
3
4
5
6

Format: PER.IMPORT.OutputFile <file>

<file> Output file name.
If the file already exists, its content will be replaced.If
PER.IMPORT.InputFile specifies only one input file, the file name will be
taken over and its extension replaced by .per.
General Commands Reference Guide P | 21©1989-2024 Lauterbach

PER.IMPORT.REPeat Generate REPEAT commands
[build 155354 - DVD 09/2023]

Tries to find repetitive elements in the input file(s) and merges them into a REPEAT command. However
this command only works for registers and larger elements, but not for bitfields! Bitfield names will
always be a result of the first iteration of the corresponding REPEAT command.

Default: OFF

See also

■ PER.IMPORT

PER.IMPORT.RESet Reset import settings
[build 155354 - DVD 09/2023]

Reset all PER.IMPORT settings to their defaults.

See also

■ PER.IMPORT

PER.IMPORT.RULES Apply rules file
[build 155354 - DVD 09/2023]

Apply rules file. See “Rules file” in Peripheral Files Programming, page 81 (per_prog.pdf).

See also

■ PER.IMPORT

Format: PER.IMPORT.REPeat [ON | OFF]

Format: PER.IMPORT.RESet

Format: PER.IMPORT.RULES <file>
General Commands Reference Guide P | 22©1989-2024 Lauterbach

PER.IMPORT.SortSubTrees Sort TREEs alphabetically
[build 161055 - DVD 09/2023]

If ON, all TREE levels except the first will be sorted alphabetically. If OFF, all TREE levels except the first will
be output in the same order as they appear in the input file(s).

Default: ON.

PER.IMPORT.SortTopTrees Sort TREEs alphabetically
[build 155354 - DVD 09/2023]

If ON, the first level of TREEs will be sorted alphabetically. If OFF, the first level of TREEs will be output in the
same order as they appear in the input file(s).

Default: ON.

See also

■ PER.IMPORT

PER.IMPORT.STOre Store current project
[build 155354 - DVD 09/2023]

Write all settings to a PRACTICE .cmm file.

See also

■ PER.IMPORT

Format: PER.IMPORT.SortSubTrees [ON | OFF]

Format: PER.IMPORT.SortTopTrees [ON | OFF]

Format: PER.IMPORT.STOre <file.cmm>
General Commands Reference Guide P | 23©1989-2024 Lauterbach

PER.IMPORT.WithValue Precede bitfield items with value
[build 155354 - DVD 09/2023]

If ON, each choice item of a BITFLD command will be preceded by its corresponding value and a colon:

Default:OFF

See also

■ PER.IMPORT

Format: PER.IMPORT.WithValue [ON | OFF]

<value>:<choice_item>

e.g.
1:enable
0:disable
General Commands Reference Guide P | 24©1989-2024 Lauterbach

PER.In Read port

This command reads data from the specified address and prints it to the message line. Please refer to the
description of the Data.In command for more information.

See also

■ PER ■ PER.view

PER.Program Interactive programming

Opens the PER.Program editor window, where you can create and edit peripheral files.

The editor provides an online syntax check. The input is guided by softkeys. For a description of the syntax
for the peripheral files, refer to “Peripheral Files Programming” (per_prog.pdf).

Format: PER.In <address> [<count>] [/<options>]

<options>: Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
BE | LE
Repeat | INCrement | CORE <core_number>

Format: PER.Program [<file> [<line>]] [/<option>]

<option>: AutoSave | NoSave

A
B

C

General Commands Reference Guide P | 25©1989-2024 Lauterbach

See also

■ PER ■ PER.ReProgram ■ PER.view ■ SETUP.EDITOR
❏ IOBASE()

▲ ’Text Editors’ in ’PowerView User’s Guide’
▲ ’Release Information’ in ’Legacy Release History’

PER.ReProgram Set default peripheral file

Without command parameter <file>, the CPU specific default peripheral file (*.per) in the system directory
is used (e.g. peromap35xx.per).

With command parameter <file>, the corresponding file is compiled. The file should not have any errors
when using this command. This given file will be temporary used as new default peripheral file till the next
PER.ReProgram command or a new start of TRACE32 software.

The peripherals can be displayed with the PER.view command without arguments.

See also

■ PER ■ PER.Program ■ PER.view ❏ IOBASE()

▲ ’Release Information’ in ’Legacy Release History’

Buttons common to all TRACE32 editors:

A For button descriptions, see EDIT.file.

Buttons specific to this editor:

B Compile performs a syntax check and, if an error is found, displays an error message.
If the peripheral file (*.per) is error free, then the message “compiled successfully” is displayed in
the PER.Program window.
To view the result, open the file in the PER.view window.

C Commands for programming peripheral files. For descriptions and examples, refer to “Peripheral
Files Programming Commands” (per_prog.pdf).

<file> The default extension for <file> is *.per.

<line>, <option> For description of the arguments, see EDIT.file.

Format: PER.ReProgram [<file>]
General Commands Reference Guide P | 26©1989-2024 Lauterbach

PER.ReProgramDECRYPT Load default program (encrypted)

Reprograms encrypted PER file. See PER.ReProram for more information.

See also

■ PER ■ PER.view

Format: PER.ReProgramDECRYPT [<file>]
General Commands Reference Guide P | 27©1989-2024 Lauterbach

PER.Set Modify memory

The PER.Set command group is used to modify peripheral registers.

See also

■ PER.Set.ByName ■ PER.Set.CONDitions ■ PER.Set.Field ■ PER.Set.Index
■ PER.Set.IndexField ■ PER.Set.Out ■ PER.Set.SaveIndex ■ PER.Set.SaveIndexField
■ PER.Set.SaveTIndex ■ PER.Set.SaveTIndexField ■ PER.Set.SEQuence ■ PER.Set.SEQuenceField
■ PER.Set.SHADOW ■ PER.Set.simple ■ PER.Set.TIndex ■ PER.Set.TIndexField
■ PER ■ PER.view

PER.Set.ByName Modify memory by name
[build 147535 - DVD 09/2022]

A more convenient way to modify memory than PER.Set.simple and PER.Set.Field. The memory location
can be referenced by its name rather than by its address. Also HEXMASK and BITFLD masks will be filled
automatically.

Format: PER.Set.ByName <path> <value>|<choice>

<path> (Full) path of the register(field) name. Case sensitive!
Starting from the root tree, every subelement (TREE, GROUP, LINE,
BITFLD, HEXMASK) must be separated by a dot.
Alternatively the whole peripheral file can be searched for the
register(field) name. In that case the name must be preceded by a dot.
If a path elements contains spaces, it must be enclosed by quotes.

<value> New value to be written.

<choice> Choice item from BITFLD. Case sensitive!
Only available if last item of <path> points to a BITFLD.
General Commands Reference Guide P | 28©1989-2024 Lauterbach

Example 1: Full path

Example 2: No path

See also

■ PER.Set ❏ PER.ADDRESS() ❏ PER.VALUE() ❏ PER.VALUE.STRING()

; Select peripheral file by compiling it
PER.ReProgram permyperfile.per
; Set whole register
PER.Set.ByName RootTree.SubTree.MyRegister 0x12345668
; Set BITFLD only (Both methods do the same)
PER.Set.ByName RootTree.SubTree.MyRegister.MyBitField "two"
PER.Set.ByName RootTree.SubTree.MyRegister.MyBitField 2

; Select peripheral file by compiling it
PER.ReProgram permyperfile.per
; Set whole register
PER.Set.ByName .MyRegister 0x12345668
; Set BITFLD only (Both methods do the same)
PER.Set.ByName .MyRegister.MyBitField "two"
PER.Set.ByName .MyRegister.MyBitField 2
General Commands Reference Guide P | 29©1989-2024 Lauterbach

PER.Set.CONDitions Workaround for PER functions
[build 167085 - DVD 09/2024]

Some of the PER functions are unable to evaluate IF conditions and to fetch enclosed data. This command
allows you to overcome this limitation by evaluating all IF conditions and taking a snapshot of the results.It
must be called before the first invocation of an according function. PER.Set.CONDitions may be called
several times to re-evaluate the conditions and to update the snapshot:

See also

■ PER.Set

PER.Set.Field Modify a bit field in memory

Modifies a bit field in memory. When some register content is shown in the Peripheral window by the
HEXMASK or BITFLD command, it may be scaled with a multiplier and a summand. This command can be
used to modify the scaled value without having to unscale it manually or taking care of the bitfield’s offset.

The memory content at <address> is read with the access width given by <format>. The bits set in <mask>
will be replaced by the corresponding bits in <value> and the new value is written to <address>. <value> is
considered to be completely within the mask, one must not specify any offset to the mask.

Format: PER.Set.CONDitions

// Initial snapshot
PER.Set.CONDitions
PRINT PER.VALUE(<path>)

....change of conditions....

// Update snapshot
PER.Set.CONDitions
PRINT PER.VALUE(<path>)

Format: PER.Set.Field <address> %<format> <mask> [<mult> [<summ>]]<value>

<format>: Byte | Word | Long | Quad | TByte | HByte | BE | LE
General Commands Reference Guide P | 30©1989-2024 Lauterbach

OldData: 0x53674210 0y0101.0011.0110.0111.0100.0010.0001.0000
mask: 0x007c0000 0y0000.0000.0111.1100.0000.0000.0000.0000
 --- --| <- offset -> |
value: 0x5 0y 001 01

NewData: 0x53174210 0y0101.0011.0001.0111.0100.0010.0001.0000
 -- --- --

NewData = (OldData & ~mask) | ((value<<offset(mask)) & mask)

Additionally a possible multiplier <mult> may be specified as divisor. If the <mult> is omitted, the default is 1.
Also a possible summand <summ> can be specified as subtrahend. If the <summ> is omitted, the default is
0. If <summ> and <mult> both specified, the division is performed before the subtraction.
tmpvalue = (<value> / <mult>) - <summ>;
tmpvalue = tmpvalue << (number of bits between <mask> and 0);
Memory(<address>) = (Memory(<address>) & <mask>) | tmpvalue;

Example 1 - the following PER file is given:

To change the cache size to 128 KB, perform the following command:

As result, the content of bits [9:8] is 0y10 (0x2).

Example 2 - Change single bit only and leave other bits untouched:

See also

■ PER.Set

GROUP D:0xBF000000++3 "Cache Configuration"
LINE.LONG 0 "CACHE"
HEXMASK.LONG 0x0 8.--9. 64. 0. "Cache Size "

; Bits [9:8] are defined: 0 = 0 K Cache Size, displayed is 0x00
; 1 = 64 K Cache Size, displayed is 0x40
; 2 = 128 K Cache Size, displayed is 0x80
; 3 = 172 K Cache Size, displayed is 0xC0

PER.Set.Field D:0xBF000000 %Long 0x00000300 64. 0. 128.

PER.Set.Field D:0xF0000470 %Long 0x00002000 1. ; set bit 13
PER.Set.Field D:0xF0000470 %Long 0x01000000 0. ; clear bit 24
General Commands Reference Guide P | 31©1989-2024 Lauterbach

PER.Set.Index Modify indirect (indexed) register

Writes or modifies indirectly addressed registers.

PER.Set.Index can be translated into the following commands (IS_BITMASK and APPLY_BITMASK are
pseudo-functions):

If the address register <idx_addr> is read/write, it is recommended to use PER.Set.SaveIndex, to
restore the original setting after the access.

See also

■ PER.Set

Format: PER.Set.Index <idx_addr> %<idx_fmt> <idx_rd> <idx_wr> <data_addr>
%<data_fmt> <data_value>

<idx_fmt>,
<data_fmt>:

Byte | Word | Long | Quad | TByte | HByte | BE | LE

<idx_addr> Specifies the address register.

<data_addr> Specifies the address of the data register of the indirect access.

if IS_BITMASK(<data_value>)
(
 PER.Set <index_addr> %<idx_fmt> <idx_rd>
 &read_value=DATA.<data_fmt>(<data_addr>)
 &new_value=APPLY_BITMASK(&read_value,<data_value>)
)
else
(
 &new_value=<data_value>
)
PER.Set <index_addr> %<idx_fmt> <idx_wr>
PER.Set <data_addr> %<data_fmt> &new_value
General Commands Reference Guide P | 32©1989-2024 Lauterbach

PER.Set.IndexField Set fields at indexed register

See also

■ PER.Set

PER.Set.Out Write data stream to memory

Writes a sequence of data elements sequentially to <address>.

See also

■ PER.Set

Format: PER.Set.IndexField <idx_addr> %<idx_fmt> <idx_rd> <idx_wr> <data_addr>
%<data_fmt> <data_value>

<idx_fmt>,
<data_fmt>:

Byte | Word | Long | Quad | TByte | HByte | BE | LE

Format: PER.Set.Out <address> %<format> <data> <string> [/<option>]

<options>: Repeat | CORE <core>
General Commands Reference Guide P | 33©1989-2024 Lauterbach

PER.Set.SaveIndex Modify indirect (indexed) register

Writes or modifies indirectly addressed registers.

The original value of the register at <idx_addr> is restored after the access.

PER.Set.SaveIndex can be translated into following commands (IS_BITMASK and APPLY_BITMASK are
pseudo-functions):

If the address register <idx_addr> cannot be read (write only), use “PER.Set.Index Modify indirect
(indexed) register” (general_ref_p.pdf).

See also

■ PER.Set

Format: PER.Set.SaveIndex <idx_addr> %<idx_fmt> <idx_rd> <idx_wr> <data_addr>
%<data_fmt> <data_value>

<idx_fmt>,
<data_fmt>:

Byte | Word | Long | Quad | TByte | HByte | BE | LE

<idx_addr> Specifies the address register.

<data_addr> Specifies the address if the data register of the indirect access.

&original_idx_addr=DATA.<idx_fmt>(<index_addr>)

if IS_BITMASK(<data_value>)
(
 PER.Set <index_addr> %<idx_fmt> <idx_rd>
 &read_value=DATA.<data_fmt>(<data_addr>)
 &new_value=APPLY_BITMASK(&read_value,<data_value>)
)
else
(
 &new_value=<data_value>
)
PER.Set <index_addr> %<idx_fmt> <idx_wr>
PER.Set <data_addr> %<data_fmt> &new_value

PER.Set <index_addr> %<idx_fmt> &original_idx_addr
General Commands Reference Guide P | 34©1989-2024 Lauterbach

PER.Set.SaveIndexField Set fields at indexed register

See also

■ PER.Set

PER.Set.SaveTIndex Set fields at indexed registers

Modifies fields at indexed registers.

See also

■ PER.Set

PER.Set.SaveTIndexField Set fields at indexed registers

Modifies fields at indexed registers.

See also

■ PER.Set

Format: PER.Set.SaveIndexField <idx_addr> %<idx_fmt> <idx_rd> <idx_wr>
<data_addr> %<data_fmt> <data_value>

<idx_fmt>,
<data_fmt>:

Byte | Word | Long | Quad | TByte | HByte | BE | LE

Format: PER.Set.SaveTIndex <address> %<format> <value>

<format>: Byte | Word | Long | Quad | TByte | HByte | BE | LE

Format: PER.Set.SaveTIndexField <address> %<format> <value>

<format>: Byte | Word | Long | Quad | TByte | HByte | BE | LE
General Commands Reference Guide P | 35©1989-2024 Lauterbach

PER.Set.SEQuence Set SGROUP members

See also

■ PER.Set

PER.Set.SEQuenceField Set SGROUP members

See also

■ PER.Set

PER.Set.SHADOW Modify data based on shadow RAM

Modifies data as PER.Set, but modifies data both on <address1> and on <address2> in shadow RAM.

See also

■ PER.Set

Format: PER.Set.SEQuence <offset> %<format> <data> …

<format>: Byte | Word | Long | Quad | TByte | HByte | BE | LE

Format: PER.Set.SEQuenceField <offset> %<format> <data> …

<format>: Byte | Word | Long | Quad | TByte | HByte | BE | LE

Format: PER.Set.SHADOW <address1> <address2> %<format> <data> <string>
 [/<option>]

<format>: Byte | Word | Long | Quad | TByte | HByte | BE | LE

<options>: Verify | ComPare | DIFF | PlusVM | CORE <core>
General Commands Reference Guide P | 36©1989-2024 Lauterbach

PER.Set.simple Modify registers/peripherals

Modifies configuration registers/onchip peripherals. The command usually appears in the command line
after a double click on a register in the PER.view window. See Data.Set for details on how to modify
memories.

See also

■ PER.Set

PER.Set.TIndex Set fields at indexed registers

Modifies fields at indexed registers.

See also

■ PER.Set

Format: PER.Set.simple <address> %<format> <value> [/<option>]

<format>: Byte | Word | Long | Quad | TByte | HByte | BE | LE

<options>: Verify | ComPare | DIFF | PlusVM | CORE <core>

Format: PER.Set.TIndex <address> %<format> <value>

<format>: Byte | Word | Long | Quad | TByte | HByte | BE | LE
General Commands Reference Guide P | 37©1989-2024 Lauterbach

PER.Set.TIndexField Set fields at indexed registers

Modifies fields at indexed registers.

See also

■ PER.Set

Format: PER.Set.TIndexField <address> %<format> <value>

<format>: Byte | Word | Long | Quad | TByte | HByte | BE | LE
General Commands Reference Guide P | 38©1989-2024 Lauterbach

PER.STOre Generate PRACTICE script from PER settings
[Examples]

Stores all PER settings or all settings of a PER subtree to a PRACTICE file (*.cmm). The resulting file
consists of PER.Set.simple commands [B]. If no <script_file> is specified, all settings are stored to the
clipboard.

The command PER.STOre may result in a “bus errror” or “debug port fail” if TRACE32 has no access to a
peripheral component. Possible reasons are:

• The component is disabled.

• The component has no power or clock.

• The access to the component is restricted.

The script generated by the PER.STOre command contains the PER.Set commands in the order the
configuration registers appear in the PER.view window. If the script is used to initialize the target hardware,
it is probably not possible to use the script without modifications. The configuration registers for peripheral
components typically need to be initialized in a particular order, require sometimes a fixed timing, and often
assume that other initializations have already been performed (e.g. clocks settings). So it is recommended to
check the script and rearrange the PER.Set commands as required.

The script generated by the PER.STOre command can be directly used in the TRACE32 Instruction Set
Simulator, e.g. to analyze a crash dump.

Format: PER.STOre [<script_file> [<per_file> ["<subtree_path>"]]] [/CORE <core>]

A Headings and read-only PER file values are commented out in PRACTICE scripts generated by
PER.STOre.

<script_file> File name of the PRACTICE script generated upon execution of the
PER.STOre command.

<per_file> Name of the PER file that is used to describe the configuration registers.

You can use a comma (,), if you want to use the default PER file for the
core/chip under debug. The name of the default PER file is displayed in
the VERSION.SOFTWARE window.

A

B

General Commands Reference Guide P | 39©1989-2024 Lauterbach

Examples:

See also

■ PER ■ PER.view

▲ ’Release Information’ in ’Legacy Release History’

<subtree_path> The optional parameter specifies the subtree to be saved. The individual
components of a <subtree_path> are separated by comma.

CORE <core> PER file values pertaining to the specified core (SMP debugging only).

;generate script per_script.cmm for all settings
PER.STOre per_script.cmm

;generate script per_script.cmm for the settings
;of the subtree "Core Registers" and all its subtrees
;the name of the <per_file> is permpc564xbc.per
PER.STOre per_script.cmm permpc564xbc.per "Core Registers"

;generate script per_script.cmm for the settings
;of the subtree "Core Registers" and all its subtrees

;<per_file> can be represented by , if it is the default per file of the
;core/chip under debug
PER.STOre per_script.cmm , "Core Registers"

;generate script per_script.cmm for the settings
;of the specified subtree path
PER.STOre per_script.cmm , \
"Analog to Digital Converter,ADC0,Control Logic Registers"

;if no <script_file> is specified all settings are stored to the
;clipboard
PER.STOre

;only settings of the subtree "Core Registers" and all its subtrees
;are stored to the clipboard
PER.STOre ,, "Core Registers"
General Commands Reference Guide P | 40©1989-2024 Lauterbach

PER.TestProgram Test mode

Can be used to detects errors in per file.

See also

■ PER ■ PER.view

PER.view Display peripherals
[Example]

Opens the PER.view window, displaying a so-called PER file, short for peripheral register definition file.
PER files simplify working with peripheral registers and allow to display and modify the contents of
peripheral registers. The peripheral registers in a PER file are often organized in a tree hierarchy.

Note that the PER.view window remains empty until the commands SYStem.CPU <cpu_type> and
SYStem.Mode Up have been executed.

Format: PER.TestProgram [<file>]

Format: PER.view [<file> [[<args>] "<subtree_path>"] [/<option>]]

<option>: SpotLight | DualPort | Track | AlternatingBackGround
CORE <core_number>

NOTE: For searching inside a (potentially huge) PER file, proceed as follows:
• Right-click on a [-] or [+] box of the tree.
• Choose show all from the popup menu. This will open all the subtrees.
• Press Ctrl+F to open a search dialog for performing a text search in the

open window and enter the term to search for.

Right-click to show/hide all
subtrees.
Be sure to show all subtrees
before searching for a specific
item (e.g. with Ctrl+F).

The SpotLight option highlights
changes.
General Commands Reference Guide P | 41©1989-2024 Lauterbach

<file> Specifies the PER file to be displayed. If <file> is omitted, the default PER
file for the selected CPU is displayed.

<subtree_path> The optional parameter specifies the subtree to be opened. The individual
components of a <subtree_path> are comma-separated.
If <subtree_path> starts with a colon, only the selected subtree will be
displayed. All others will be completely discarded.

<args> Arguments can be passed from a PRACTICE script file (*.cmm) to a PER
file. For an example, see “Passing Arguments” (per_prog.pdf).

SpotLight Highlights all changes on the registers.

Registers changed by the last program run/single step are marked in
dark red. Registers changed by the second to the last program run/single
step are marked a little bit lighter. This works up to 4 levels.

DualPort Updates the registers while the program execution is running.

CORE <n> Displays the contents of the registers for a certain core other than the
currently selected core.

Track All windows opened with the /Track option follow the cursor movements
in the active window. For more information, see “Window Tracking”
(ide_user.pdf).

AlternatingBack-
Ground

Displays an alternating background color in the PER.View window. The
background color display can also be toggled using the pop-up context
menu entry “Toggle alternating background”.
This option is supported by TRACE32 release 09.2020 or newer.
General Commands Reference Guide P | 42©1989-2024 Lauterbach

Example: This script illustrates how you can use the PER.view command. Simply copy the script to a
test.cmm file, and then step through the script (See “How to...”).

See also

■ PER ■ PER.IMPORT ■ PER.In ■ PER.Program
■ PER.ReProgram ■ PER.ReProgramDECRYPT ■ PER.Set ■ PER.STOre
■ PER.TestProgram ■ PER.viewDECRYPT ■ SYStem.CPU ❏ PER.ARG()

▲ ’Release Information’ in ’Legacy Release History’

;Displays the default PER definition file for the selected CPU, i.e.
;the peripherals for the selected CPU
PER.view

;Displays the path and the version of the PER definition file
VERSION.SOFTWARE

;The comma replaces the default PER definition file name
;and lets you use the SpotLight option.
PER.view , /SpotLight ;This is useful to highlight changes

;Displays a specific PER definition file. The path prefix ~~ expands to
;the system directory of TRACE32
PER.view ~~/per750mm.per

;Expands all subtrees
PER.view ~~/per750mm.per "*"

;Expands just the subtree "General Registers"
PER ~~/permpc55xx.per "Core Registers,General Registers" /SpotLight
WinPAN 0. -3. ;The WinPAN command is used here for demo purposes.

;Expands all subtrees of "Core Registers"
PER.view , "Core Registers,*"

;Displays only the subtree “DEBUG_CPU_CTI0” using colon preceding
;<subtree_path>.
PER.view ~~/perzynq7000.per ":Cross Trigger Interface,DEBUG_CPU_CTI0"
General Commands Reference Guide P | 43©1989-2024 Lauterbach

PER.viewDECRYPT View decrypted PER file in a PER window

Encrypted PER files can be executed and viewed with the command PER.viewDECRYPT using the original
<keystring>. Decrypting the PER file or viewing its original file contents in plain text is not possible.

See also

■ PER ■ PER.view ■ ENCRYPTPER

▲ ’Encrypt/Execute Encrypted Files’ in ’PowerView User’s Guide’

Format: PER.viewDECRYPT <keystring> <file> [<string> | <address>] [/<option>]

<option>: SpotLight | DualPort | Track | AlternatingBackGround
CORE <core_number>

<option> For a description of the options, see PER.view.
General Commands Reference Guide P | 44©1989-2024 Lauterbach

Programming Commands

For a description of the programming commands for peripheral files, refer to “Peripheral Files
Programming” (per_prog.pdf).
General Commands Reference Guide P | 45©1989-2024 Lauterbach

PERF

PERF Sample-based profiling

See also

■ PERF.ADDRESS ■ PERF.Arm ■ PERF.AutoArm ■ PERF.AutoInit
■ PERF.ContextID ■ PERF.DISable ■ PERF.Init ■ PERF.List
■ PERF.ListDistriB ■ PERF.ListFunc ■ PERF.ListFuncMod ■ PERF.ListLABEL
■ PERF.ListLine ■ PERF.ListModule ■ PERF.ListProgram ■ PERF.ListRange
■ PERF.ListS10 ■ PERF.ListTASK ■ PERF.ListTREE ■ PERF.ListVarState
■ PERF.LOAD ■ PERF.METHOD ■ PERF.MMUSPACES ■ PERF.Mode
■ PERF.OFF ■ PERF.PROfile ■ PERF.Program ■ PERF.ReProgram
■ PERF.RESet ■ PERF.RunTime ■ PERF.SAVE ■ PERF.SnoopAddress
■ PERF.SnoopMASK ■ PERF.SnoopSize ■ PERF.Sort ■ PERF.state
■ PERF.STREAM ■ PERF.ToProgram ■ PERF.View ❏ PERF.METHOD()
❏ PERF.MODE() ❏ PERF.RATE() ❏ PERF.RunTime() ❏ PERF.STATE()

▲ ’Release Information’ in ’Legacy Release History’

Overview PERF

The TRACE32 Performance Analyzer is designed for sample-based profiling. Samples can be the actual
program counter or the actual contents of a memory location. Sample-based profiling collects samples to
calculate:

• The percentage of run-time used by a high-level language function.

• The percentage of run-time a variable had a certain contents.

• The percentage of run-time used by a task etc.

Samples are collected periodically. TRACE32 starts normally with 100 samples/s, but the sample acquisition
methods of TRACE32 are auto-adaptive. They tune the sampling rate to its optimum.
General Commands Reference Guide P | 46©1989-2024 Lauterbach

TRACE32 supports several sample acquisition methods. Some have no or nearly no effect on the target’s
run-time behavior but require special features from the on-chip debug logic (Snoop, Trace, DCC). The
acquisition method StopAndGo is always supported, but has some impact on the target’s run-time
behavior.

Profiling Results

The following evaluation commands can be used if the program counter is sampled:

The following evaluation commands can be used if the contents of a memory location is sampled:

NOTE: An unfavorable time coherence between the Performance Analyzer’s sampling rate
and periodic conditions on the target can distort the measurement results.

Sampled
program counter

information

PERF.ListProgram

PERF.ListTREE

PERF.ListLine

PERF.ListFunc

PERF.ListModule

PERF.ListFuncMod

PERF.ListLABEL

PERF.ListRange

PERF.ListS10

PERF.ListS100

PERF.ListS1000

PERF.ListS10000

Sampled
data

information

PERF.ListDistriB

PERF.ListVarState

PERF.ListTASK
General Commands Reference Guide P | 47©1989-2024 Lauterbach

If a combi-mode is selected e.g. PERF.Mode PCMEMory the results can only be displayed independently.

PERF.state ; display the Performance
; Analyzer configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default
; setting

PERF.OFF ; enable the Performance
; Analyzer

PERF.Mode PCMEMory ; the Performance Analyzer
; samples the program counter
; and the contents of the
; specified memory location

;PERF.METHOD StopAndGo ; TRACE32 set the acquisition
; method StopAndGo

PERF.SnoopAddress Var.RANGE(flags[3]) ; specify the memory location to
; to be sampled

PERF.SnoopSize Byte ; specify the sampling width

PERF.ListFunc ; open a function profiling
; window

PERF.ListVarState ; and a separate variable state
; profiling window

Go ; start the program execution
; and the sampling
General Commands Reference Guide P | 48©1989-2024 Lauterbach

Profiling for SMP Systems

TRACE32 allows a sample-based profiling of SMP systems by supporting the methods Snoop and
StopAndGo.

Function Profiling
General Commands Reference Guide P | 49©1989-2024 Lauterbach

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration window to its
; default settings

PERF.OFF ; enable the Performance Analyzer

PERF.Mode PC ; the Performance Analyzer sample
; the actual program counter

;PERF.METHOD Snoop ; TRACE32 set the METHOD Snoop if
; the program counter can be read
; while the program execution is
; running

PERF.ListFunc /CORE 0 ; open window for function
; profiling for core 0

…

PERF.ListFunc /SplitCORE ; open window for function
; profiling for all cores

; display results for each
; individual core

PERF.ListFunc /MergeCORE ; open window for function
; profiling for all cores

; results are added up for all
; cores
General Commands Reference Guide P | 50©1989-2024 Lauterbach

The result display can also be configured by the local pull-down menu.

Task Profiling

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration window to its
; default settings

PERF.OFF ; enable the Performance Analyzer

PERF.Mode TASK ; the Performance Analyzer sample
; the actual program counter
General Commands Reference Guide P | 51©1989-2024 Lauterbach

;PERF.METHOD Snoop ; TRACE32 set the METHOD Snoop if
; the memory can be read
; while the program execution is
; running

;TASK.CONFIG Setup OS-aware debugging

PERF.ListTASK /CORE 0 ; open window for task profiling
; for core 0

…

PERF.ListTASK /SplitCORE ; open window for TASK
; profiling for all cores

; display results for each
; individual core

PERF.ListTASK /MergeCORE ; open window for TASK
; profiling for all cores

; results are added up for all
; cores
General Commands Reference Guide P | 52©1989-2024 Lauterbach

PERF.ADDRESS Restrict evaluation to specified address area

Restricts the evaluation of the program counter sampling to <address_range>. A given <address> is
expanded to an address range that ends at the next label. The default <address_range> is the whole
address space of the processor.

The following commands are equivalent:

Example: In this script, the sample-based profiling is restricted to the function sieve.

See also

■ PERF ■ PERF.state

Format: PERF.ADDRESS <address> | <address_range>
(program counter sampling only)

PERF.ADDRESS Var.RANGE(sieve)
PERF.ListFunc

PERF.ListFunc /Address Var.RANGE(sieve)

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default settings

PERF.OFF ; enable the Performance Analyzer

PERF.Mode PC ; sample the program counter
; information

PERF.METHOD Trace ; set the acquisition method Trace

PERF.ADDRESS Var.RANGE(sieve) ; restrict the evaluation of the
; result to the program range of the
; function sieve

PERF.ListLine ; open a window for the profiling of
; high-level language lines

Go ; start the program execution and the
; sampling
General Commands Reference Guide P | 53©1989-2024 Lauterbach

PERF.Arm Activate the performance analyzer manually

The Performance Analyzer is coupled to the program execution if PERF.AutoArm is ON (default).

If PERF.AutoArm is OFF, the Performance Analyzer can be controlled manually. PERF.Arm activates the
Performance Analyzer, PERF.OFF stops the Performance Analyzer.

See also

■ PERF ■ PERF.state

PERF.AutoArm Couple performance analyzer to program execution

The Performance Analyzer is coupled to the program execution.

See also

■ PERF ■ PERF.state

PERF.AutoInit Automatic initialization

The PERF.Init command will be executed automatically, when the user program is started.

See also

■ PERF ■ PERF.state

Format: PERF.Arm

Format: PERF.AutoArm [ON | OFF]

ON (default) The Performance Analyzer starts sampling when the program execution
is started and stops when the program execution is stopped.

OFF The Performance Analyzer has to be started and stopped manually by
the commands PERF.Arm and PERF.OFF.

Format: PERF.AutoInit [ON | OFF]
General Commands Reference Guide P | 54©1989-2024 Lauterbach

PERF.ContextID Enable sampling the context ID register

When this option is enabled, the ARM ContextID register will be sampled with the program counter and used
in the analysis for task identification. This option is only available for some ARM cores.

See also

■ PERF ■ PERF.state

PERF.DISable Disable the performance analyzer

The Performance Analyzer is disabled. Enabling can be done by entering the commands PERF.Arm or
PERF.OFF.

The measurement data are preserved until the Performance Analyzer is re-enabled.

See also

■ PERF ■ PERF.state

PERF.Init Reset current measurement

Resets the current measurement. PERF.Init does not affect the Performance Analyzer configuration.

See also

■ PERF ■ PERF.state

Format: PERF.ContextID [ON | OFF]

Format: PERF.DISable

Format: PERF.Init
General Commands Reference Guide P | 55©1989-2024 Lauterbach

PERF.List Default profiling

Default profiling displays:

Format: PERF.List [<column> …] [/<option>]

<column>: DEFault
DYNamic
ALL
Name
TIme
WatchTIme
Ratio
DRatio
BAR [.log | .LIN]
DBAR [.log | .LIN]
Hits
Address

<option>: Track | Address <range> | <address>

CORE <core_number> | MergeCORE | SplitCORE

PERF.ListLabel for PERF.Mode PC | PCTASK | PCMEMory

PERF.ListTASK for PERF.Mode TASK

PERF.ListDistriB for PERF.Mode MEMory

CORE, MergeCORE,
SplitCORE

For details, refer to “Profiling for SMP Systems”, page 49.
General Commands Reference Guide P | 56©1989-2024 Lauterbach

Interpretation of the result:

Columns sets:

runtime PERF.METHOD StopAndGo only:
Percentage of time taken by the actual program run in the last second,
the rest of the time was consumed by the measurement.

DEFault Select the standard set (columns: Name, Ratio and BAR.log). The
DEFault configuration is also used if no display items are specified.

DYNamic Displays the results of the last second (columns: Name, DRatio,
DBAR.log). Dynamic displays are continually updated with the results of
the previous second of performance data. They will not reflect any
performance data outside the previous second.

ALL Display all possible numeric fields in the PERF.List window (columns:
Name, Time, WatchTime, Ratio, DRatio, Address, Hits).

PERF.List Hits DEFault ; Open a PERF.List window starting with
; the column Hits followed by the
; default columns

PERF.List ALL
General Commands Reference Guide P | 57©1989-2024 Lauterbach

Column description:

columns

name Name of the item (here label range)

time Total run-time spent in item

watchtime Observation time of item

ratio Ratio of time spent by the item in percent

dratio Ratio of time spent by item in the last second in percent. Please refer to
DYNamic for more information.

address Item´s address range or contents of the memory location

hits Number of samples taken for the item

bar Logarithmic bar for the ratio

dbar Logarithmic bar for the ratio of time spent by item in the last second.
Please refer to DYNamic for more information.

Name Display the names/contents of the listed items.

Command PERF.ListFunc: If the sampled program counter can’t be
assigned to a high-level language function (e.g. assembler code, library
code) it is assigned to (other).

Command PERF.ListLine: If the sampled program counter can not be
assigned to the address range of an high-level language line, it is assigned
to (other)

Command PERF.ListTASK: If task ID 0x0 is sampled or if the sampled
task ID is unknown it is assigned to (other).

TIme Total runtime spent in listed item.
General Commands Reference Guide P | 58©1989-2024 Lauterbach

Buttons and Context Menu in the PERF.List window

WatchTIme Time the item is observed.

This time will be the same for all ranges if the program counter is
sampled.

When the contents of a memory location is sampled, WatchTime starts
when the listed value is detected the first time.

Ratio Ratio of time spent by the listed item in percent. This value is calculated
by dividing the field TIme by WatchTIme.

DRatio Similar to Ratio, but only for the last second. Please refer to DYNamic for
more information.

BAR Display the profiling values in a graphical way as horizontal bars. The
default display is logarithmic. The keyword .LIN changes to a linear
display.

DBAR Similar to BAR, but only for the last second. Please refer to DYNamic for
more information.

Hits Number of samples taken for the item.

Address Item´s address range or contents of the memory location.

Buttons

Setup … Opens a PERF.state window that allows the configuration of the
Performance Analyzer.

Config … Opens a configuration dialog that allows to rearrange the column display
in the PERF.List window.

Goto … Opens a Perf Goto dialog which allows to bring the specified item in
display (command line equivalent Data.GOTO).
General Commands Reference Guide P | 59©1989-2024 Lauterbach

Detailed Opens a PERF.List window, which lists all numerical items (command line
equivalent PERF.List<item> ALL). Only supported for program counter
sampling.

View Opens a window to display all performance data of a selected item
(command line equivalent PERF.View /Track).

Profile Opens a PERF.PROfile window that displays a graphical profiling for the
first three listed items, (other) is ignored.

Init Execute the command PERF.Init. This command resets the current
measurement. The Performance Analyzer configuration is not touched.

DISable Disable the Performance Analyzer (command line equivalent
PERF.DISable).

Arm Activates the Performance Analyzer manually (command line equivalent
PERF.Arm)

ToProgram A Performance Analyzer program is generated out of the currently shown
address ranges (program counter sampling only). The command line
equivalent is PERF.ToProgram.
General Commands Reference Guide P | 60©1989-2024 Lauterbach

See also

■ PERF ■ PERF.state

▲ ’Release Information’ in ’Legacy Release History’

Context menu items

View This window displays all performance data for the selected line (command
line equivalent PERF.View <address>).

Profile Opens a PERF.PROfile window that displays a graphical profiling for the
selected line.

Detailed Opens a PERF.List window, which lists all numerical items (command line
equivalent PERF.List<item> ALL). Only supported for program counter
sampling.

Line Opens a PERF.ListLine window for the selected item (command line
equivalent PERF.ListLine /Address <range>). Only supported for program
counter sampling.

S10/S100/S1000/S10
000

Opens a PERF.ListSn window for the selected item (command line
equivalent PERF.ListSn /Address <range>). Only supported for program
counter sampling.

Options

Track Tracks the window to the reference position of other windows.

Address <range> |
<address>

Restricts the evaluation of the profiling results to the specified address
range. If only an <address> is given it is expanded to an address range
that ends at the next label. Only supported for program counter sampling.
General Commands Reference Guide P | 61©1989-2024 Lauterbach

PERF.ListDistriB Memory contents profiling

Reports the percentage of run-time a memory location had a certain value.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

Example for ARM9:

See also

■ PERF ■ PERF.state

Format: PERF.ListDistriB [<column> …] [/Track]
(memory contents sampling)

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default
; setting

PERF.OFF ; enable the Performance Analyzer

PERF.Mode MEMory ; the Performance Analyzer samples
; the contents of a memory location

;PERF.METHOD StopAndGo ; TRACE32 sets the acquisition
; method StopAndGo

PERF.SnoopAddress 0x4BD60 ; specify the memory location

PERF.SnoopSize Long ; specifies the sampling width

PERF.ListDistriB ; open a memory contents
; profiling window

Go ; start the program execution and
; sampling
General Commands Reference Guide P | 62©1989-2024 Lauterbach

PERF.ListFunc Function profiling

Reports the percentage of run-time used by high-level language functions.

If the sample program counter can not be assigned to the address range of an HLL function, it is assigned to
(other). The command PERF.ListLABEL can be used to get more information on what is assigned to
(other).

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

Format: PERF.ListFunc [<column> …] [/<option>]
(program counter sampling)

<option>: Track | Address <range> | <address>

CORE <core_number> | MergeCORE | SplitCORE

CORE,
MergeCORE,
SplitCORE

For details, refer to “Profiling for SMP Systems”, page 49.
General Commands Reference Guide P | 63©1989-2024 Lauterbach

Example for ARM9:

See also

■ PERF ■ PERF.state

; example for ARM9

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default
; settings

PERF.OFF ; enable Performance Analyzer

PERF.Mode PC ; the Performance Analyzer samples
; the actual program counter

PERF.METHOD Trace ; set the acquisition method Trace

PERF.ListFunc ; open a window for function
; profiling

Go ; start the program execution and
; sampling
General Commands Reference Guide P | 64©1989-2024 Lauterbach

PERF.ListFuncMod HLL function profiling (restricted)

Report the percentage of run-time spent in high-level language functions inside the address range specified
by the PERF.ADDRESS command. Outside the specified address range the percentage is reported on
module base.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

Format: PERF.ListFuncMod [<column> …] [/<option>]
(program counter sampling)

<option>: Track | Address <range> | <address>

CORE <core_number> | MergeCORE | SplitCORE

CORE,
MergeCORE,
SplitCORE

For details, refer to “Profiling for SMP Systems”, page 49.
General Commands Reference Guide P | 65©1989-2024 Lauterbach

Example for ARM9:

See also

■ PERF ■ PERF.state

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default
; settings

PERF.OFF ; enable Performance Analyzer

PERF.Mode PC ; the Performance Analyzer samples
; the actual program counter

; PERF.METHOD StopAndGo ; TRACE32 sets the acquisition
; method StopAndGo

PERF.Mode PC ; the Performance Analyzer samples
; the actual program counter

PERF.ADDRESS 0x38000--0x38fff ; specify address range

PERF.ListFuncMod ; display a function profiling
; inside the specified address
; range and module profiling
; outside the specified address
; range

Go ; start the program execution and
; sampling
General Commands Reference Guide P | 66©1989-2024 Lauterbach

PERF.ListLABEL Label-based profiling

Reports the percentage of run-time spent in the address range between two labels.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

Format: PERF.ListLABEL [<column> …] [/<option>]
(program counter sampling)

<option>: Track | Address <range> | <address>

CORE <core_number> | MergeCORE | SplitCORE

CORE,
MergeCORE,
SplitCORE

For details, refer to “Profiling for SMP Systems”, page 49.
General Commands Reference Guide P | 67©1989-2024 Lauterbach

Example for ARM9:

See also

■ PERF ■ PERF.state

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default
; settings

PERF.OFF ; enable Performance Analyzer

PERF.Mode PC ; the Performance Analyzer samples
; the actual program counter

; PERF.METHOD StopAndGo ; TRACE32 sets the acquisition
; method StopAndGo

PERF.Sort OFF ; the result is sorted by the
; succession of the labels in the
; symbol database

PERF.ListLABEL ; open a window for label-based
; profiling

Go ; start the program execution and
; sampling
General Commands Reference Guide P | 68©1989-2024 Lauterbach

PERF.ListLine Profiling by HLL lines

Reports the percentage of run-time spent in high-level language lines.

If the sampled program counter cannot be assigned to the address range of an HLL line, it is assigned to
(other). If the time spent in (others) is high the command PERF.ListLABEL can be used to get more
information.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

See also

■ PERF ■ PERF.state

Format: PERF.ListLine [<column> …] [/<option>]
(program counter sampling)

<option>: Track | Address <range> | <address>

CORE <core_number> | MergeCORE | SplitCORE

CORE,
MergeCORE,
SplitCORE

For details, refer to “Profiling for SMP Systems”, page 49.
General Commands Reference Guide P | 69©1989-2024 Lauterbach

PERF.ListModule Profiling by modules

Reports the percentage of run-time spent in program modules.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

See also

■ PERF ■ PERF.state

Format: PERF.ListModule [<column> …] [/<option>]
(program counter sampling)

<option>: Track | Address <range> | <address>

CORE <core_number> | MergeCORE | SplitCORE

CORE,
MergeCORE,
SplitCORE

For details, refer to “Profiling for SMP Systems”, page 49.
General Commands Reference Guide P | 70©1989-2024 Lauterbach

PERF.ListProgram Profiling based on performance analyzer program

Reports the percentage of run-time spent in the address ranges specified by the Performance Analyzer
program. A complete example of how to work with a Performance Analyzer program is given in the
description of the PERF.Program command.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

See also

■ PERF ■ PERF.state

PERF.ListRange Profiling by ranges

Reports the percentage of run-time spent in all ranges specified in the symbol database.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

See also

■ PERF ■ PERF.state

Format: PERF.ListProgram [<column> …] [/<option>]
(program counter sampling)

<option>: Track | Address <range> | <address>

CORE <core_number> | MergeCORE | SplitCORE

CORE, MergeCORE,
SplitCORE

For details, refer to “Profiling for SMP Systems”, page 49.

Format: PERF.ListRange [<column> …] [/<option>]
(program counter sampling)

<option> Track | Address <range> | <address>

CORE <core_number> | MergeCORE | SplitCORE

CORE, MergeCORE,
SplitCORE

For details, refer to “Profiling for SMP Systems”, page 49.
General Commands Reference Guide P | 71©1989-2024 Lauterbach

PERF.ListS10 Profiling in n-byte segments

Reports the percentage of run-time spent in 16/256/4096/65536 byte segments.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

See also

■ PERF ■ PERF.state

Format: PERF.ListS10 [<column> …] [/<option>]
PERF.ListS100 [<column> …] [/<option>]
PERF.ListS1000 [<column> …] [/<option>]
PERF.ListS10000 [<column> …] [/<option>]
(program counter sampling)

<option>: Track | Address <range> | <address>

CORE <core_number> | MergeCORE | SplitCORE

CORE,
MergeCORE,
SplitCORE

For details, refer to “Profiling for SMP Systems”, page 49.
General Commands Reference Guide P | 72©1989-2024 Lauterbach

PERF.ListTASK Profiling by tasks/threads

Reports the percentage of run-time spent in different tasks/threads based on the sampling of the contents of
the OS-variable that contains the identifier for the current task/tread.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

Example for ARM9 and RTOS ECOS:

Format: PERF.ListTASK [<column> …] [/Track]
(memory contents sampling)

TASK.CONFIG ecos ; enable ECOS-aware debugging

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default
; settings

PERF.OFF ; enable Performance Analyzer

PERF.Mode TASK ; the Performance Analyzer samples
; the contents of the variable that
; contains the identifier for the
; current task

; PERF.METHOD StopAndGo ; TRACE32 sets the acquisition
; method StopAndGo

PERF.Mode TASK ; the Performance Analyzer samples
; data information from
; TASK.CONFIG(magic)

PERF.ListTASK ; open a window to display a
; a task profiling

Go ; start the program execution and
; the sampling
General Commands Reference Guide P | 73©1989-2024 Lauterbach

Example for ARM9 and proprietary target-OS:

See also

■ PERF ■ PERF.state

; inform TRACE32 which variable contains the identifier for the
; current task
; ~~ represents the TRACE32 installation directory
TASK.CONFIG ~~/demo/kernel/simple/simple.t32 current_task

; specify names for the individual tasks
Task.NAME.Set 0x4bca "Idle Task"
TASK.NAME.Set 0x58cc0 "Thread 1"

; list specified task names
TASK.NAME.view

; display the Performance Analyzer configuration window
PERF.state

; reset the Performance Analyzer configuration to its default settings
PERF.RESet

; enable Performance Analyzer
PERF.OFF

; the Performance Analyzer samples the contents of the variable that
; contains the identifier for the current task
PERF.Mode TASK

; TRACE32 sets the acquisition method StopAndGo
; PERF.METHOD StopAndGo

; open a window to display a task profiling
PERF.ListTASK

; start the program execution and the sampling
Go
General Commands Reference Guide P | 74©1989-2024 Lauterbach

PERF.ListTREE Profiling by module/function tree

Reports the percentage of run-time spent in modules/functions as a tree display. The tree is based on the
module/function information provided by the symbol database.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

See also

■ PERF ■ PERF.state

Format: PERF.ListTREE [<column> …] [/<option>]
(program counter sampling)

<option>: Track | Address <range> | <address>

CORE <core_number> | MergeCORE | SplitCORE

CORE,
MergeCORE,
SplitCORE

For details, refer to “Profiling for SMP Systems”, page 49.
General Commands Reference Guide P | 75©1989-2024 Lauterbach

PERF.ListVarState Variable state profiling

Reports the percentage of run-time a variable had a certain contents.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

Example for ARM9:

See also

■ PERF ■ PERF.state

Format: PERF.ListVarState [<column> …] [/Track]
(memory contents sampling)

PERF.state ; display the Performance
; Analyzer configuration
; window

PERF.RESet ; reset the Performance
; Analyzer configuration to
; its default settings

PERF.OFF ; enable Performance Analyzer

PERF.Mode MEMory ; the Performance Analyzer
; samples the contents of
; a memory location

; PERF.METHOD StopAndGo ; TRACE32 set the acquisition
; method StopAndGo

PERF.SnoopAddress Var.RANGE(sched_Lock) ; specifies the address range
; of the variable

PERF.SnoopSize Var.SIZEOF(sched_Lock) ; specifies the sampling width

PERF.ListVarState ; open a window for variable
; profiling

Go ; start the program execution
; and sampling
General Commands Reference Guide P | 76©1989-2024 Lauterbach

PERF.LOAD Load previously stored PERF results

Loads the PERF results previously stored with the PERF.SAVE command for postprocessing.

See also

■ PERF ■ PERF.SAVE ■ PERF.state

PERF.METHOD Specify acquisition method

The TRACE32 software sets automatically the acquisition method Snoop:

• If the processor allows to read the program counter while the program execution is running and
PERF.Mode PC is selected.

• If the processor allows to read the contents of a memory locations while the program execution is
running and PERF.Mode MEMory or TASK is selected.

Otherwise the default method is set to StopAndGo.

Format: PERF.LOAD <file>

Format: PERF.METHOD <mode>

<mode>: StopAndGo
Trace
Snoop
DCC (only if JTAG interface provides Data Communications Channel)

Performance Analyzer Methods

StopAndGo The target processor is stopped periodically in order to get the
actual program counter or in order to read the data information of
interest (intrusive). For details refer to “The Method StopAndGo”
in General Commands Reference Guide P, page 79
(general_ref_p.pdf).
General Commands Reference Guide P | 77©1989-2024 Lauterbach

Snoop The actual program counter or the data information of interest is
read while the program execution is running (non-intrusive).

Sampling is done as fast as possible (no snoop fails). The
minimum rate is 10 samples per second. The sampling rate is set
slightly varied to avoid any side effects with the timing of the
application / target.

For details, refer to “The Method Snoop” in General Commands
Reference Guide P, page 80 (general_ref_p.pdf).

Trace This method requires an off-chip trace port. In order to get the
actual program counter or the data information of interest, the
trace recording is stopped shorty to get a big enough section of the
most recent trace information (non-intrusive).

Sampling is done as fast as possible (no snoop fails). The
minimum rate is 10 samples per second. The sampling rate is set
slightly varied to avoid any side effects with the timing of the
application / target.

For details, refer to “The Method Trace” in General Commands
Reference Guide P, page 83 (general_ref_p.pdf).

DCC The Performance Analyzer sample the data provided via the DCC
(intrusive due to code instrumentation in the target application).
For details, refer to “The Method DCC” in General Commands
Reference Guide P, page 87 (general_ref_p.pdf).
General Commands Reference Guide P | 78©1989-2024 Lauterbach

The Method StopAndGo

The method StopAndGo is available for all processors.

The target processor is stopped periodically in order to get the actual program counter or in order to
read the data information of interest. The target processor is restarted afterwards. A stop and restart of
the target processor can take more than 1 ms in a worst case scenario.

The display of a red S in the TRACE32 state line indicates that the program execution is periodically
interrupted by the Performance Analyzer.

The field snoops/s in the PERF.state window shows how much stops have been performed in the last
second.

The field runtime in the PERF.List<item> window shows the percentage of time taken by the actual
program run in the last second.

TRACE32 starts the sampling with 100 stops per second, but then tunes the sampling rate so that more the
99% of the run-time is retained for the actual program run. The smallest possible sampling rate is
nevertheless 10.

A fixed percentage of time can be retained for the actual program run by the command PERF.RunTime.
General Commands Reference Guide P | 79©1989-2024 Lauterbach

The Method Snoop

The actual program counter or the data information of interest is read while the program execution is running
(non-intrusive).

Non intrusive sample-based profiling can be done, if the target processor supports

• reading the program counter while the target program is running.

The function CPU.FEATURE(PCSNOOP) returns TRUE if your CPU under debug supports this.

• reading memory (never cache) while the target program is running.

TRACE32 is optimizing the sampling rate. The achieved sampling rate of the last second is displayed in the
field snoops/s in the PERF.state window.

Combi-modes e.g. PERF.Mode PCMEMory operate only if both, reading the program counter and reading
memory is supported while the target program is running.

PRINT CPU.FEATURE(PCSNOOP)

Processor architectures that allow to read memory (not cache)
while the program execution is running

78K0R

ARC600
ARC700

Blackfin Only via Background Telemetric Channel

ColdFire

Cortex-A/R
other ARM cores

If the DAP is connected to the AHB bus

Cortex-M

GTM

MPC55xx/56xx Via NEXUS block

QORIQ

RH850

S12X, MCS12, 68HC12
General Commands Reference Guide P | 80©1989-2024 Lauterbach

Example: Program counter sampling

SH2/SH2A

TMS320C28xx
TMS320C54xx
TMS320C55xx
TMS320C62xx
TMS320C64xx
TMS320C67xx

TriCore

V850 E1 core by QUICK access

V850 E2 core

XC2000/C166S V2

ZSP500 Debug Emulation Unit only

PERF.state ; display the Performance
; Analyzer configuration
; window

PERF.RESet ; reset the Performance
; Analyzer configuration to
; its default settings

PERF.OFF ; enable Performance Analyzer

PERF.Mode PC ; the Performance Analyzer samples
; the program counter

;PERF.METHOD Snoop ; TRACE32 detects automatically
; that reading the program counter
; is possible while the program
; execution is running

PERF.ListFunc ; open a window for function
; profiling

Go ; start the program execution and
; the measurement

Processor architectures that allow to read memory (not cache)
while the program execution is running
General Commands Reference Guide P | 81©1989-2024 Lauterbach

Example: Memory contents sampling

PERF.state ; display the Performance
; Analyzer configuration
; window

PERF.RESet ; reset the Performance
; Analyzer configuration to
; its default settings

PERF.OFF ; enable Performance Analyzer

PERF.Mode MEMory ; the Performance Analyzer samples
; the contents of a memory location

;PERF.METHOD Snoop ; TRACE32 detects automatically
; that reading memory is possible
; while the program execution is
; running

PERF.SnoopAddress 0xA108002F ; specifies the memory address

PERF.SnoopSize Word ; specifies the sampling width

PERF.ListDistriB ; open a window for memory contents
; profiling

Go ; start the program execution and
; the measurement
General Commands Reference Guide P | 82©1989-2024 Lauterbach

The Method Trace

This non-intrusive method is only available if the processor provides an off-chip trace port. Please make
sure, that the trace recording is working correctly before you use the PERF.METHOD Trace.

In order to get the actual program counter or the data information of interest, the trace recording is stopped
shortly to get a big enough section of the most recent trace information.

The field snoop fails in the PERF.state window shows how often TRACE32 failed to get the requested
information out of the captured section.

The display of perf in blue in any Trace display window indicates that the trace recording was periodically
interrupted by the Performance Analyzer. In this case the trace information is inappropriate for any trace
analysis.

Sampling the actual program counter (PERF.Mode PC)

If the actual program counter is sampled the source code is required to decompress the trace information. If
the target processor doesn’t allow to read memory while the program execution is running, the source code
has to be loaded to the TRACE32 virtual memory.

Sampling data information (PERF.Mode MEMory/TASK)

If data information is sampled it is recommended to set a filter on the data of interest. Otherwise the number
of snoop fails will be too high.

NOTE: The sampling rate of PERF.METHOD Trace is much slower than the sampling
rate of PERF.METHOD Snoop.

Use PERF.METHOD Trace only if:
• You do not want to stop the application.
• The option Snoop (= PERF.METHOD Snoop) is disabled in the

PERF.state window.
• The architecture supports a trace that can be read without stopping the

application.
General Commands Reference Guide P | 83©1989-2024 Lauterbach

Example for MPC5554: NEXUS block allows to read source code from memory while the program
execution is running.

...

TRANSlation.Create 0x0--0xffffffff 0x0 ; specify 1:1 translation of
; effective to real addresses
; for debugger MMU

TRANSlation.ON ; activate translation via
; debugger MMU

...

NEXUS.DTM OFF ; switch data trace off in
; order to reduce load on the
; NEXUS port

PERF.state ; display the Performance
; Analyzer configuration
; window

PERF.RESet ; reset the Performance
; Analyzer configuration to
; its default settings

PERF.OFF ; enable Performance Analyzer

PERF.METHOD Trace ; set acquisition method Trace

PERF.Mode PC ; the Performance Analyzer
; samples the program counter

PERF.ListFunc ; open a window for
; function profiling

Go ; start the program execution
; and the sampling
General Commands Reference Guide P | 84©1989-2024 Lauterbach

Example for ARM920: Load the source code to the virtual memory of TRACE32 because it is not possible
to read the source code from memory while the program execution is running.

Data.LOAD.Elf armle.axf /VM ; load source code to virtual
; memory of TRACE32

ETM.DataTrace off ; switch data trace off in order to
; reduce load on ETM trace port

PERF.state ; display the Performance
; Analyzer configuration
; window

PERF.RESet ; reset the Performance
; Analyzer configuration to
; its default settings

PERF.OFF ; enable Performance Analyzer

PERF.METHOD Trace ; set acquisition method Trace

PERF.Mode PC ; the Performance Analyzer samples
; the program counter

PERF.ListLABEL ; open a window for label-based
; profiling

Go ; start the program execution and
; the sampling
General Commands Reference Guide P | 85©1989-2024 Lauterbach

Example for ARM920: A filter is set to advise the ETM to only broadcast trace information if a write access
to the variable flags[3] occurs.

Var.Break.Set flags[3] /TraceEnable /Write ; configure the ETM so
; that only write
; accesses to the
; variable flags[3] are
; broadcast

PERF.state ; display the Performance
; Analyzer configuration
; window

PERF.RESet ; reset the Performance
; Analyzer configuration
; to its default settings

PERF.OFF ; enable Performance
; Analyzer

PERF.METHOD Trace ; set acquisition method
; Trace

PERF.Mode MEMory ; the Performance
; Analyzer samples
; memory contents

PERF.SnoopAddress Var.RANGE(flags[3]) ; specifies the sampling
; address

PERF.SnoopSize Byte ; specifies the sampling
; width

PERF.ListVarState ; open a variable state
; profiling window

Go ; start the program
; execution and
; the sampling
General Commands Reference Guide P | 86©1989-2024 Lauterbach

The Method DCC

DCC (Debug Communications Channel) is a feature of the on-chip debugging logic currently available for all
ARM/Cortex cores (not Cortex-M) and the StarCore architecture. DCC allows the target program to provide
data of interest to the TRACE32 debugger. For details on DCC, refer to the manual of your target CPU.

Examples of how to use the DCC with TRACE32 are given in the TRACE32 demo folder:

~~/demo/arm/etc/semihosting_arm_dcc

The Performance Analyzer sample the data provided via the DCC. The DCC method is recommended
mainly for PERF.Mode MEMory and TASK.

TRACE32 is optimizing the sampling rate. The achieved sampling rate of the last second is displayed in the
field snoops/s in the PERF.state window.

Example for ARM920: The contents of a variable is sent via DCC to TRACE32.

See also

■ PERF ■ PERF.state ❏ PERF.METHOD()

...

PERF.state ; display the Performance
; Analyzer configuration
; window

PERF.RESet ; reset the Performance
; Analyzer configuration to
; its default settings

PERF.OFF ; enable Performance Analyzer

PERF.METHOD DCC ; set acquisition method DCC

PERF.Mode MEMory ; the Performance Analyzer samples
; data information

PERF.ListVarState ; open a variable state profiling
; window

Go ; start the program execution and
; the sampling
General Commands Reference Guide P | 87©1989-2024 Lauterbach

PERF.MMUSPACES Include space IDs for addresses in the sampling

If a target operating system (e.g. Linux, Windows CE) is used, several processes/tasks can run at the same
logical addresses. In this scenario, the logical address sampled by the Performance Analyzer is not sufficient
to assign the address to a function or variable. For a clear assignment the space ID is also required.

See also

■ PERF ■ PERF.state

▲ ’Release Information’ in ’Legacy Release History’

PERF.Mode Specify sampling object

Selects the sampling object for the sample-based profiling.

TRACE32 samples in essence either:

• The actual program counter (PC)

• The contents of a memory location (MEMory, TASK)

• Or both simultaneously (PCMEMory, PCTASK)

Format: PERF.MMUSPACES [ON | OFF]

OFF (default) The Performance Analyzer does standard sampling.

ON The Performance Analyzer includes the space ID in the sampling.

Format: PERF.Mode <mode>

<mode>: PC
TASK
MEMory
PCTASK
PCMEMory
General Commands Reference Guide P | 88©1989-2024 Lauterbach

The sampled program counter information and the sampled data information can only be profiled
independently of each other.

Not all PERF Modes are suitable for all PERF METHODs. The table below provides a summary.

See also

■ PERF ■ PERF.state ❏ PERF.MODE()

▲ ’Release Information’ in ’Legacy Release History’

PC The actual program counter is sampled.

TASK The contents of the variable that contains the identifier for the actual task
is sampled.

If OS-aware debugging is configured, TRACE32 knows the address of
this variable (TASK.CONFIG(magic)).

Context ID packets are not supported.

MEMory The memory address specified by the command PERF.SnoopAddress is
sampled in the size specified by the command PERF.SnoopSize.

PCTASK The actual program counter and the contents of the variable that contains
the identifier for the actual task are sampled.
The information is sampled simultaneous, but can only be evaluated
separately.

PCMEMory The actual program counter and the memory address specified by the
command PERF.SnoopAddress is sampled in the size specified by the
command PERF.SnoopSize.
The information is sampled simultaneous, but can only be evaluated
separately.

Mode
PC

Mode
MEMory/TASK

Mode
PCMEMory/PCTASK

METHOD
StopAndGo

yes yes yes

METHOD
Trace

yes yes, but requires
appropriate filter

no

METHOD
Snoop

yes, if the program
counter can be read
during program run

yes, if memory can
be read during
program run

yes, if program
counter and memory
can be read during
program run

METHOD
DCC

no yes no
General Commands Reference Guide P | 89©1989-2024 Lauterbach

PERF.OFF Stop the performance analyzer manually

The Performance Analyzer is coupled to the program execution if PERF.AutoArm is ON (default).

If PERF.AutoArm is OFF, the Performance Analyzer can be controlled manually. PERF.Arm activates the
Performance Analyzer, PERF.OFF stops the Performance Analyzer.

If the Performance Analyzer is disabled (state disable) it can be enable by PERF.OFF.

See also

■ PERF ■ PERF.state ❏ PERF.STATE()

PERF.PROfile Graphic profiling display

The Performance Analyzer charts the percentage of time spent in the specified item over the time axis.

By default the display is updated once per second while the minimum update period is 100 ms. Within the
update period a large number of PC samples is required to calculate a statistically relevant distribution of the
runtime. Therefore using slow sample methods like StopAndGo with short update periods will give imprecise
results.

Format: PERF.OFF

Format: PERF.PROfile <channel> [<channel> [<channel>]] [<gate> <scale>]

<channel>: <range> | <address> | <value>

<gate>: 0.1s | 1.0s | 10.0s

<scale>: 1. … 32768.
General Commands Reference Guide P | 90©1989-2024 Lauterbach

Up to three channels may be displayed in one window. Channels correspond to a code areas like functions,
address ranges, addresses, tasks or memory/variable contents.

See also

■ PERF ■ PERF.state

PERF.METHOD StopAndGo ; take the samples for the profiling
; from the recorded trace information

PERF.Mode PC ; sample the program counter
; information

PERF.Arm ; arm the Performance Analyzer

PERF.PROfile sieve ; restrict the evaluation of the
; result to the program range of the
; function sieve
General Commands Reference Guide P | 91©1989-2024 Lauterbach

PERF.Program Write a performance analyzer program

PERF.Program opens a Performance Analyzer programming window that allows to restrict the evaluation of
the program counter sampling to address ranges of interest.

A programming file consists of a text file containing one or more address ranges, each on a separate line.
The address ranges can be specified using a variety of methods:

See <address ranges> for more details on specifying address ranges.

Format: PERF.Program [<file>]
(program counter sampling only)

Direct Address AHB:08000000-AHB08FFFFFF

Address Symbols main

Range Symbols localArray++0xFF

Buttons in the PERF.Program window

Save Save the Performance Analyzer program.
If no name is specified the default name t32.ps is used.

Save As … Save the Performance Analyzer program under a different name.

Save + Close Save the Performance Analyzer program and close the Performance
Analyzer programming window.

Quit + Close Quit editing and close the Performance Analyzer programming window.

Save + Comp Save the Performance Analyzer program and activate it as done by
Compile.

Compile Compiles the Performance Analyzer program. The evaluation of the
profiling is restricted to the specified address ranges in all
PERF.List<item> windows that evaluate sampled program counter
information.
General Commands Reference Guide P | 92©1989-2024 Lauterbach

Example:

See also

■ PERF ■ PERF.state

▲ ’Release Information’ in ’Legacy Release History’

PERF.ReProgram Load an existing performance analyzer program

Loads an existing, error-free Performance Analyzer program to the Performance Analyzer.

See also

■ PERF ■ PERF.state

▲ ’Release Information’ in ’Legacy Release History’

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default
; settings

PERF.OFF ; enable the Performance Analyzer

; PERF.METHOD StopAndGo ; the acquisition method StopAndGo
; is set by TRACE32

PERF.ReProgram my_program.ps ; load a existing, error-free
; Performance Analyzer program

PERF.ListProgram ; open a window for Performance
; Analyzer program based profiling

Go ; start the program execution and
; the sampling

Format: PERF.ReProgram [<file>]
(program counter sampling only)
General Commands Reference Guide P | 93©1989-2024 Lauterbach

PERF.RESet Reset analyzer

All settings of the performance analyzer and all marked breakpoints will be destroyed. The windows of the
performance analyzer will be changed to the freeze mode and the performance analyzer will be disabled.

See also

■ PERF ■ PERF.state

PERF.RunTime Retain time for program run

If PERF.METHOD StopAndGo is used a fraction of time is taken by the sample-based performance
measurement, the rest is used by the actual program run. The command PERF.RunTime allows to specify
the percentage of time that should be retained for the actual program run.

Examples:

The adjustment of the snoops/s is done gradually (see the snoops/s field in the PERF.state window).

See also

■ PERF ■ PERF.state

Format: PERF.RESet

Format: PERF.RunTime <value>

PERF.RunTime 90. ; 90% of time is retained for the
; actual program run, the sample-
; based performance measurement can
; take 10% of the time

PERF.RunTime 90% ; alternative input format
General Commands Reference Guide P | 94©1989-2024 Lauterbach

PERF.SAVE Save the PERF results for postprocessing

The PERF results are stored to the selected file. The file can be then loaded for postprocessing with the
PERF.LOAD command.

See also

■ PERF ■ PERF.LOAD ■ PERF.state

PERF.SnoopAddress Address for memory sample

Defines the memory address for snoop modes (DistriBution, VarState). Supplying an address range
defines also the size of the memory operation (PERF.SnoopSize).

See also

■ PERF ■ PERF.state
❏ PERF.MEMORY.SnoopAddress()

PERF.SnoopMASK Mask for memory sample

Defines the sample mask for snoop modes (DistriBution, VarState).

See also

■ PERF ■ PERF.state

Format: PERF.SAVE <file>

Format: PERF.SnoopAddress <address> | <range>
(memory contents sampling only)

Format: PERF.SnoopMASK <value>
(memory contents sampling only)
General Commands Reference Guide P | 95©1989-2024 Lauterbach

PERF.SnoopSize Size for memory sample

Defines the memory access size for snoop modes (DistriBution, VarState).

See also

■ PERF ■ PERF.state
❏ PERF.MEMORY.SnoopSize()

PERF.Sort Specify sorting of evaluation results

As a default the results are sorted by ratio.

See also

■ PERF ■ PERF.state

Format: PERF.SnoopSize Byte | Word | Long
(memory contents sampling only)

Format: PERF.Sort <mode>

<mode>: OFF
Address
sYmbol
Ratio

OFF Don’t sort. Results of the program counter sampling are sorted by
address, results of memory contents sampling are sorted by occurrence.

Address Sort evaluation result by addresses (program counter sampling only).

sYmbol Sort evaluation result by symbol names (program counter sampling only).

Ratio Sort evaluation result by the ratio of time used by the items.
General Commands Reference Guide P | 96©1989-2024 Lauterbach

PERF.state Display state

Displays the control window for the Performance Analyzer.

See also

■ PERF ■ PERF.ADDRESS ■ PERF.Arm ■ PERF.AutoArm
■ PERF.AutoInit ■ PERF.ContextID ■ PERF.DISable ■ PERF.Init
■ PERF.List ■ PERF.ListDistriB ■ PERF.ListFunc ■ PERF.ListFuncMod
■ PERF.ListLABEL ■ PERF.ListLine ■ PERF.ListModule ■ PERF.ListProgram
■ PERF.ListRange ■ PERF.ListS10 ■ PERF.ListTASK ■ PERF.ListTREE
■ PERF.ListVarState ■ PERF.LOAD ■ PERF.METHOD ■ PERF.MMUSPACES
■ PERF.Mode ■ PERF.OFF ■ PERF.PROfile ■ PERF.Program
■ PERF.ReProgram ■ PERF.RESet ■ PERF.RunTime ■ PERF.SAVE
■ PERF.SnoopAddress ■ PERF.SnoopMASK ■ PERF.SnoopSize ■ PERF.Sort
■ PERF.STREAM ■ PERF.ToProgram ■ PERF.View ❏ PERF.METHOD()
❏ PERF.MODE() ❏ PERF.RATE() ❏ PERF.RunTime() ❏ PERF.STATE()

▲ ’Release Information’ in ’Legacy Release History’

Format: PERF.state

A For descriptions of the commands in the PERF.state window, please refer to the PERF.* commands in
this chapter.
Example: For information about the AutoArm check box, see PERF.AutoArm.

scan done Displays the number of scans already completed. The field will be displayed
only, if the scanning mode is active, i.e. Ratio is active and more ranges than
available counters are covered.

curr.scan The 'current scan' field displays the ratio of the scanned ranges to total the
number of ranges.

covered time The 'covered time' field gives the time covered by the current set of ranges.
(not shown in the above PERF.state window.)

A

General Commands Reference Guide P | 97©1989-2024 Lauterbach

PERF.STREAM PERF stream mode

Default: OFF

Enable/disable STREAM mode for program counter sampling when PERF.METHOD is set to StopAndGo.

When STREAM mode is enabled, the sampling is performed by the software running on the PowerDebug
module instead of the PowerView host software which leads to higher sampling rates.

The STREAM mode cannot be used together with PERF.MMUSPACES.

See also

■ PERF ■ PERF.state

PERF.ToProgram Automatic generation of performance analyzer program

The different PERF.List<item> commands partition the address spaces into address ranges in order to
evaluate the sampled program counter information. Examples:

The command PERF.ToProgram converts the current segmentation into a Performance Analyzer program.

TRACE32 allows up to 1024 address ranges in a Performance Analyzer program.

Format: PERF.STREAM [ON | OFF]
(program counter sampling and StopAndGo method only)

Format: PERF.ToProgram
(program counter sampling only)

PERF.ListFunc Partitions the address space in function ranges

PERF.ListLine Partitions the address space in high-level language line ranges

PERF.ListModule Partitions the address space in module ranges
General Commands Reference Guide P | 98©1989-2024 Lauterbach

Example for ARM9:

See also

■ PERF ■ PERF.state

PERF.View Detailed view

Displays all numerical results of a symbol or an area.

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer
; configuration to its default
; settings

PERF.OFF ; enable Performance Analyzer

PERF.Mode PC ; the Performance Analyzer samples
; the actual program counter

; PERF.METHOD StopAndGo ; acquisition method StopAndGo
; is set by TRACE32

PERF.ListLABEL ; open a window for label-based
; profiling

Go ; start the program execution and
; sampling

Break ; stop the program execution and
; the sampling

PERF.ToProgram ; convert the listed label ranges
; to a Performance Analyzer program

Format: PERF.View <address> | /Track
General Commands Reference Guide P | 99©1989-2024 Lauterbach

Examples:

PERF.View sieve ; list all numerical results for
; the function sieve

PERF.state ; display the Performance
; Analyzer configuration window

PERF.RESet ; reset the Performance Analyzer
; to its default settings

PERF.OFF ; enable the Performance
; Analyzer

PERF.Mode MEMory ; the Performance Analyzer
; samples the contents of a
; memory location

; PERF.Mode StopAndGo ; the Performance Analyzer sets
; the acquisition method
; StopAndGo

PERF.SnoopAddress Var.RANGE(flags[3]) ; specify the memory address

PERF.SnoopSize Byte ; specify the sampling width

PERF.ListVarState ; open a window for variable
; state profiling

Go ; start the program execution
; and the sampling

PERF.View /Track ; list all numerical results for
; the item selected in
; PERF.List<item>
General Commands Reference Guide P | 100©1989-2024 Lauterbach

See also

■ PERF ■ PERF.state
General Commands Reference Guide P | 101©1989-2024 Lauterbach

PERSVD

PERSVD Built-in converter for peripheral files in CMSIS-SVD format

Allows you to display peripheral files written in CMSIS-SVD format. Furthermore you can export an SVD file
to Lauterbach’s native peripheral file format.

PERSVD.Save Save converted file

Converts the given svd_file to native Lauterbach peripheral file format and saves it to a file named per_file.

PERSVD.view Display peripherals

Converts a CMSIS-SVD file to Lauterbach’s native peripheral file format and displays its peripherals. See
PER.view.

Format: PERSVD.Save <svd_file> <per_file> [/<option>]

<option>: See PERSVD.view

svd_file Source file in CMSIS-SVD format.

per_file Destination file name.
Will be overwritten if the file already exists.

Format: PERSVD.view <file> [/<option>]

<option>: WithValue
Description
AccessClass <class>
For additional options see PER.view
General Commands Reference Guide P | 102©1989-2024 Lauterbach

In case you encounter any errors during conversion, it might be helpful to save the converted intermediate to
a file (PERSVD.Save) first and to process the result via PER.Program afterwards.

WithValue Precedes bitfield names or descriptions with the value followed by a
colon: “<value>: <name>”.

Description In case of bitfields, the description instead of the name will be taken from
the SVD file.

AccessClass Since SVD files don’t know about TRACE32 access classes, the default
access class is “AD:”. With this option you can change the default, e.g.
PERSVD.view <file> /AccessClass d:
General Commands Reference Guide P | 103©1989-2024 Lauterbach

PMI

PMI Power management interface

For a description of the PMI commands, see “System Trace User’s Guide” (trace_stm.pdf).
General Commands Reference Guide P | 104©1989-2024 Lauterbach

POD

POD Configure input behavior of digital and analog probe

See also

■ POD.ADC ■ POD.Level ■ POD.RESet ■ POD.state
■ POD.USB

POD.ADC Probe configuration
[Example]

ADC stands for analog-digital converter. The POD.ADC command allows you to programmatically
configure the Analog Probe together with the PowerIntegrator, PowerIntegrator II, IProbe or CIProbe.
Alternatively, you can manually configure the hardware via the POD.state A, POD.state IP or the POD.state
CIP window.

Format: POD.ADC <probe>.<voltage> [ON | OFF] [<comp>] [<sample>]
POD.ADC <probe>.<current> [ON | OFF] [<comp>] [<sample>] [<shunt>]
POD.ADC <probe>.<power> [ON | OFF] [<vref>]
CIProbe.CONFIG.CHANNEL <...> (deprecated)

<probe>: A | IP | CIP

<voltage>:
<current>:
<power>:

V0 | V1 | V2 | V3
I0 | I1 | I2
P0 | P1 | P2

<comp>: 1/1 | 2/1 | 4/1 | 8/1 | 16/1 | 32/1 | 64/1 | 128/1 | 256/1

<sample>: ALways | Track | BusA | Filter

<shunt>: <float>

<vref>: V0 | V1 | V2 | <float>
General Commands Reference Guide P | 105©1989-2024 Lauterbach

Note that all parameters after the channel are optional, but have to be specified in the correct order. If a
parameter is not given, that setting remains unchanged.

<probe> A stands for port A of the PowerIntegrator or PowerIntegrator II. IP stands
for the IProbe. CIP stands for the CombiProbe.

<voltage>
<current>
<power>

The following channels are available:
• Four voltage channels (V0, V1, V2, and V3)
• Three current channels (I0, I1, and I2)
• Three virtual power channels (P0, P1, and P2).

<comp> Changing the compression changes the recording time: The higher the
compression factor, the longer the recording time.
For the IProbe, the resulting recording time is displayed in the message
bar below the command line and in the AREA window.

Example: A compression factor of 256/1 for all channels results in a
recording time of 429 seconds. A compression factor of 1/1 for all
channels results in a recording time of 1.678 seconds.

A high compression factor reduces the noise, which results in a smoother
line chart, e.g. in an ETA.DRAW or IProbe.DRAW window, and allows for
a better interpretation of the line chart.

This setting is not available for the virtual power channels. The setting
from the corresponding current channel is used instead.

<sample> • (Default) ALways for continuous recording of analog trace data.
Use the option, for example, if you want to focus on power con-
sumption even during the sleep mode of the CPU.

• (IProbe only) Track for intermittent recording of analog trace data.
Analog trace data is recorded only if a user-defined trigger event
occurs in the program flow.
Use this option, for example, if you want to record analog trace
data when the CPU is active, i.e. not in sleep mode.

• (IProbe only) BusA: Data is recorded if a PodBus trigger signal is
detected on the bus trigger line BUSA.

• Filter: Use the trigger logic to only record samples that are in a
specified range. For the CIProbe, this condition can be configured
using the command CIProbe.ATrigMODE.

This setting is not available for the virtual power channels. The setting
from the corresponding current channel is used instead. This settting is
also not available for the PowerIntegrator or PowerIntegrator II.
General Commands Reference Guide P | 106©1989-2024 Lauterbach

Example:

<shunt> To measure current, you have to use an appropriate shunt resistor and
configure TRACE32 with the shunt resistance in Ohms.
Shunt formula: Rs = 0.125V / Imax
• To achieve a maximum resolution of the analog-digital converter,

the voltage drop permissible at the shunt must not exceed 0.125V.
• Imax is the maximum current that you expect: The more accurate

your estimate, the better the measurement accuracy.
Example: Rs = 0.125V / 4A = 0.031

If a voltage drop of 0.125V is not acceptable in your case, then you may
lower the voltage value from 0.125V to e.g. 0.05V. Note that this reduces
the resolution of the analog-digital converter.
Example: Rs = 0.05V / 4A = 0.012

<vref> If you specify a voltage value (e.g. 3.3V), the system multiplies the
voltage value with the value of the current channel (e.g. I1 = 0.019561A).
Example: 3.3V x 0.019561A = 0.064553W
Alternatively, you can select the corresponding voltage channel (e.g. V1
for P1). In this case, the IProbe or CIProbe automatically uses the
voltage value from that voltage channel.

; Configure Analog Probe and IProbe
POD.ADC CIP V0 ON 8/1 ALways
POD.ADC CIP V1 ON 8/1 ALways
POD.ADC CIP V2 ON 8/1 ALways
POD.ADC CIP V3 ON 8/1 ALways
POD.ADC CIP I0 ON 8/1 ALways 1.000
POD.ADC CIP I1 ON 8/1 ALways 1.000
POD.ADC CIP I2 ON 8/1 ALways 1.000
POD.ADC CIP P0 ON 3.300
POD.ADC CIP P1 ON 3.300
POD.ADC CIP P2 ON 3.300

; Initialize the CIProbe.
CIProbe.Init

; Open the POD CIP window. The following screenshot displays the result.
POD.state CIP
General Commands Reference Guide P | 107©1989-2024 Lauterbach

The POD.state CIP window displays the result of the above script:

See also

■ POD ■ POD.state

POD.Level Input state

Defines the variable threshold levels for the PowerProbe and the input probes of the PowerIntegrator.

Default is 1.4 V for all CMOS and TLL targets down to 2.5 V supply voltage.

See also

■ POD ■ POD.state

Format: POD.Level <group> <level>

<group>: 00-15 | 16-31 | 32-47 | 48-63 | SOC (PowerProbe)
IP | A | B | C | D | E | F (PowerIntegrator)

<level>: 1.0 | 1.4 (PowerProbe)
0.0 … 5.0 (PowerIntegrator)

00-15, …, SOC Input channels of the PowerProbe

IP, A, B, C, D, E, F A to F: Input channels of the PowerIntegrator
IP: Input channel of the IProbe

1.0 and 1.4 Threshold level settings of the PowerProbe

0.0 to 5.0 Threshold level range of the PowerIntegrator
General Commands Reference Guide P | 108©1989-2024 Lauterbach

POD.RESet Input level reset

All input threshold levels are set to 1.4 V.

All POD.ADC settings are reset.

See also

■ POD ■ POD.state

POD.state Input state

Format: POD.RESet

Format: POD.state
POD.state <probe>
CIProbe.CONFIG.CHANNEL.state (deprecated)

<probe>: A | IP | CIP
General Commands Reference Guide P | 109©1989-2024 Lauterbach

Without arguments, shows the digital probe configuration for PowerProbe, PowerIntegrator,
PowerIntegrator II, IProbe, and CIProbe. The screenshot below shows the dialog with a PowerProbe,
PowerIntegrator, IProbe and CIProbe,

With an argument, it can be used to show the analog settings of a connected Analog Probe:

See also

■ POD ■ POD.ADC ■ POD.Level ■ POD.RESet
■ POD.USB

POD.state A

POD.state IP

POD.Level

POD.state CIP
General Commands Reference Guide P | 110©1989-2024 Lauterbach

POD.USB Set up USB probe

Sets up the hardware of the USB probe.

See also

■ POD ■ POD.state

Format: POD.USB USB1 | USB2
POD.USB ENABLE | DISABLE <packet>

<packet>: RESVD | OUT | ACK | DATA0 | PING | SOF | NYET | DATA2 | SPLIT | IN | NAK
| DATA1 | ERR | SETUP | STALL | MDATA

USB1 | USB2 Selects USB mode.

<packet> Enables/disables recording of specific USB packets (PID).
General Commands Reference Guide P | 111©1989-2024 Lauterbach

PORT

PORT.Arm Arm the trace

See command <trace>.Arm in 'General Commands Reference Guide T' (general_ref_t.pdf, page 134).

PORT.AutoArm Arm automatically

See command <trace>.AutoArm in 'General Commands Reference Guide T' (general_ref_t.pdf, page
135).

PORT.BookMark Set a bookmark in trace listing

See command <trace>.BookMark in 'General Commands Reference Guide T' (general_ref_t.pdf, page
140).

PORT.Chart Display trace contents graphically

See command <trace>.Chart in 'General Commands Reference Guide T' (general_ref_t.pdf, page 144).

PORT.DRAW Plot trace data against time

See command <trace>.DRAW in 'General Commands Reference Guide T' (general_ref_t.pdf, page 201).

PORT.FindAll Find all specified entries in trace

See command <trace>.FindAll in 'General Commands Reference Guide T' (general_ref_t.pdf, page 237).

NOTE: If not otherwise mentioned, the described commands refer the timing analyzer
mode!
General Commands Reference Guide P | 112©1989-2024 Lauterbach

PORT.FindChange Search for changes in trace flow

See command <trace>.FindChange in 'General Commands Reference Guide T' (general_ref_t.pdf, page
238).

PORT.GOTO Move cursor to specified trace record

See command <trace>.GOTO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 244).

PORT.Init Initialize trace

See command <trace>.Init in 'General Commands Reference Guide T' (general_ref_t.pdf, page 246).

PORT.OFF Switch off

See command <trace>.OFF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 278).

PORT.PROfileChart Profile charts

See command <trace>.PROfileChart in 'General Commands Reference Guide T' (general_ref_t.pdf, page
283).

PORT.PROTOcol Protocol analysis

See command <trace>.PROTOcol in 'General Commands Reference Guide T' (general_ref_t.pdf, page
339).

PORT.PROTOcol.Chart Graphic display for user-defined protocol

See command <trace>.PROTOcol.Chart in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 339).
General Commands Reference Guide P | 113©1989-2024 Lauterbach

PORT.PROTOcol.Draw Graphic display for user-defined protocol

See command <trace>.PROTOcol.Draw in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 341).

PORT.PROTOcol.EXPORT Export trace buffer for user-defined protocol

See command <trace>.PROTOcol.EXPORT in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 342).

PORT.PROTOcol.Find Find in trace buffer for user-defined protocol

See command <trace>.PROTOcol.Find in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 343).

PORT.PROTOcol.list Display trace buffer for user-defined protocol

See command <trace>.PROTOcol.list in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 344).

PORT.PROTOcol.PROfileChart Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileChart in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 347).

PORT.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileSTATistic in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 348).

PORT.PROTOcol.STATistic Display statistics for user-defined protocol

See command <trace>.PROTOcol.STATistic in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 350).
General Commands Reference Guide P | 114©1989-2024 Lauterbach

PORT.REF Set reference point for time measurement

See command <trace>.REF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

PORT.RESet Reset command

See command <trace>.RESet in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

PORT.SAVE Save trace for postprocessing in TRACE32

See command <trace>.SAVE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 358).

PORT.SelfArm Automatic restart of trace recording

See command <trace>.SelfArm in 'General Commands Reference Guide T' (general_ref_t.pdf, page
362).

PORT.SnapShot Restart trace capturing once

See command <trace>.SnapShot in 'General Commands Reference Guide T' (general_ref_t.pdf, page
373).

PORT.STATistic Statistic analysis

See command <trace>.STATistic in 'General Commands Reference Guide T' (general_ref_t.pdf, page
378).

PORT.Timing Waveform of trace buffer

See command <trace>.Timing in 'General Commands Reference Guide T' (general_ref_t.pdf, page 499).

PORT.TRACK Set tracking record

See command <trace>.TRACK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 502).
General Commands Reference Guide P | 115©1989-2024 Lauterbach

PORT.ZERO Align timestamps of trace and timing analyzers

See command <trace>.ZERO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 505).
General Commands Reference Guide P | 116©1989-2024 Lauterbach

Probe

Probe Probe logic analyzer

The trace method Probe is available if a PowerProbe module is connected.

For selecting and configuring the trace method Probe, use the TRACE32 command line or a PRACTICE
script (*.cmm) or the Probe.state window [A].

Alternatively, execute the command Trace.METHOD Probe in order to select the trace method Probe and
use the more general command group Trace.

Refer for more information to “PowerProbe User’s Guide” (powerprobe_user.pdf) and “PowerProbe/Port
Analyzer Reference Guide” (powerprobe_ref.pdf).

See also

■ Trace.METHOD

▲ ’Generic Probe Trace Commands’ in ’PowerProbe/Port Analyzer Reference Guide’
General Commands Reference Guide P | 117©1989-2024 Lauterbach

	General Commands Reference Guide P
	History
	PCI
	PCI Legacy PCI configuration
	PCI.Dump Display PCI device data
	PCI.Option.DOMAIN Set PCI domain
	PCI.Read Read a PCI register
	PCI.Scan List PCI devices
	PCI.Write Write a PCI register

	PCPOnchip
	PER
	PER Peripheral files
	Overview PER
	PER.IMPORT Import of alternative peripheral file formats
	PER.<format>.ReProgram Set default peripheral file
	PER.<format>.Save Save to file
	PER.<format>.TestProgram Test mode
	PER.<format>.view Display peripherals
	PER.IMPORT.AccessClass TRACE32 access class
	PER.IMPORT.EnumDelimiter Delimiter for BITFLD items.
	PER.IMPORT.FieldsFromDescription Generate BITFLDs from description
	PER.IMPORT.ForMaT Input file format
	PER.IMPORT.INDent Indent trees, registers and fields
	PER.IMPORT.InputFile Input files for conversion
	PER.IMPORT.LoaD Load external converter project
	PER.IMPORT.LOGfile Create logfile of conversion
	PER.IMPORT.MaximumChoiceLength Maximum choice item length
	PER.IMPORT.MaximumDescriptionLength Maximum tooltip length
	PER.IMPORT.MergeGroups Minimize number of GROUPs
	PER.IMPORT.ModuleFiles Split .per file into separate files
	PER.IMPORT.ModulePath Output directory for module files
	PER.IMPORT.MSBfirst Order of bits in BITFLD command
	PER.IMPORT.NumberOfColumns Number of output columns
	PER.IMPORT.OutputFile Name of generated peripheral file
	PER.IMPORT.REPeat Generate REPEAT commands
	PER.IMPORT.RESet Reset import settings
	PER.IMPORT.RULES Apply rules file
	PER.IMPORT.SortSubTrees Sort TREEs alphabetically
	PER.IMPORT.SortTopTrees Sort TREEs alphabetically
	PER.IMPORT.STOre Store current project
	PER.IMPORT.WithValue Precede bitfield items with value
	PER.In Read port
	PER.Program Interactive programming
	PER.ReProgram Set default peripheral file
	PER.ReProgramDECRYPT Load default program (encrypted)
	PER.Set Modify memory
	PER.Set.ByName Modify memory by name
	PER.Set.CONDitions Workaround for PER functions
	PER.Set.Field Modify a bit field in memory
	PER.Set.Index Modify indirect (indexed) register
	PER.Set.IndexField Set fields at indexed register
	PER.Set.Out Write data stream to memory
	PER.Set.SaveIndex Modify indirect (indexed) register
	PER.Set.SaveIndexField Set fields at indexed register
	PER.Set.SaveTIndex Set fields at indexed registers
	PER.Set.SaveTIndexField Set fields at indexed registers
	PER.Set.SEQuence Set SGROUP members
	PER.Set.SEQuenceField Set SGROUP members
	PER.Set.SHADOW Modify data based on shadow RAM
	PER.Set.simple Modify registers/peripherals
	PER.Set.TIndex Set fields at indexed registers
	PER.Set.TIndexField Set fields at indexed registers
	PER.STOre Generate PRACTICE script from PER settings
	PER.TestProgram Test mode
	PER.view Display peripherals
	PER.viewDECRYPT View decrypted PER file in a PER window
	Programming Commands

	PERF
	PERF Sample-based profiling
	Overview PERF
	PERF.ADDRESS Restrict evaluation to specified address area
	PERF.Arm Activate the performance analyzer manually
	PERF.AutoArm Couple performance analyzer to program execution
	PERF.AutoInit Automatic initialization
	PERF.ContextID Enable sampling the context ID register
	PERF.DISable Disable the performance analyzer
	PERF.Init Reset current measurement
	PERF.List Default profiling
	PERF.ListDistriB Memory contents profiling
	PERF.ListFunc Function profiling
	PERF.ListFuncMod HLL function profiling (restricted)
	PERF.ListLABEL Label-based profiling
	PERF.ListLine Profiling by HLL lines
	PERF.ListModule Profiling by modules
	PERF.ListProgram Profiling based on performance analyzer program
	PERF.ListRange Profiling by ranges
	PERF.ListS10 Profiling in n-byte segments
	PERF.ListTASK Profiling by tasks/threads
	PERF.ListTREE Profiling by module/function tree
	PERF.ListVarState Variable state profiling
	PERF.LOAD Load previously stored PERF results
	PERF.METHOD Specify acquisition method
	The Method StopAndGo
	The Method Snoop
	The Method Trace
	The Method DCC

	PERF.MMUSPACES Include space IDs for addresses in the sampling
	PERF.Mode Specify sampling object
	PERF.OFF Stop the performance analyzer manually
	PERF.PROfile Graphic profiling display
	PERF.Program Write a performance analyzer program
	PERF.ReProgram Load an existing performance analyzer program
	PERF.RESet Reset analyzer
	PERF.RunTime Retain time for program run
	PERF.SAVE Save the PERF results for postprocessing
	PERF.SnoopAddress Address for memory sample
	PERF.SnoopMASK Mask for memory sample
	PERF.SnoopSize Size for memory sample
	PERF.Sort Specify sorting of evaluation results
	PERF.state Display state
	PERF.STREAM PERF stream mode
	PERF.ToProgram Automatic generation of performance analyzer program
	PERF.View Detailed view

	PERSVD
	PERSVD Built-in converter for peripheral files in CMSIS-SVD format
	PERSVD.Save Save converted file
	PERSVD.view Display peripherals

	PMI
	PMI Power management interface

	POD
	POD Configure input behavior of digital and analog probe
	POD.ADC Probe configuration
	POD.Level Input state
	POD.RESet Input level reset
	POD.state Input state
	POD.USB Set up USB probe

	PORT
	PORT.Arm Arm the trace
	PORT.AutoArm Arm automatically
	PORT.BookMark Set a bookmark in trace listing
	PORT.Chart Display trace contents graphically
	PORT.DRAW Plot trace data against time
	PORT.FindAll Find all specified entries in trace
	PORT.FindChange Search for changes in trace flow
	PORT.GOTO Move cursor to specified trace record
	PORT.Init Initialize trace
	PORT.OFF Switch off
	PORT.PROfileChart Profile charts
	PORT.PROTOcol Protocol analysis
	PORT.PROTOcol.Chart Graphic display for user-defined protocol
	PORT.PROTOcol.Draw Graphic display for user-defined protocol
	PORT.PROTOcol.EXPORT Export trace buffer for user-defined protocol
	PORT.PROTOcol.Find Find in trace buffer for user-defined protocol
	PORT.PROTOcol.list Display trace buffer for user-defined protocol
	PORT.PROTOcol.PROfileChart Profile chart for user-defined protocol
	PORT.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol
	PORT.PROTOcol.STATistic Display statistics for user-defined protocol
	PORT.REF Set reference point for time measurement
	PORT.RESet Reset command
	PORT.SAVE Save trace for postprocessing in TRACE32
	PORT.SelfArm Automatic restart of trace recording
	PORT.SnapShot Restart trace capturing once
	PORT.STATistic Statistic analysis
	PORT.Timing Waveform of trace buffer
	PORT.TRACK Set tracking record
	PORT.ZERO Align timestamps of trace and timing analyzers

	Probe
	Probe Probe logic analyzer

