LAUTERBACH A

General Commands Reference
Guide P



General Commands Reference Guide P

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES32 DocumeNnts ......iccceirmmeiimmessimmessssmenssssnnsssnes
General Commands .....cccccccviirrrmseeiiereeee e reen—..
General Commands Reference Guide P ..........

[ 1= (o

PCI

PCI.Dump
PCI.Option.DOMAIN
PCI.Read

PCl.Scan

PCI.Write

2007 20 14 T 1 1] o

PER

Overview PER

PER.IMPORT
PER.<format>.ReProgram
PER.<format>.Save
PER.<format>.TestProgram
PER.<format>.view
PER.IMPORT.AccessClass
PER.IMPORT.EnumDelimiter
PER.IMPORT.FieldsFromDescription
PER.IMPORT.ForMaT
PER.IMPORT.INDent
PER.IMPORT.InputFile
PER.IMPORT.LoaD
PER.IMPORT.LOGfile
PER.IMPORT.MaximumChoiceLength
PER.IMPORT.MaximumDescriptionLength
PER.IMPORT.MergeGroups

Legacy PCI configuration
Display PCI device data
Set PCI domain

Read a PCI register

List PCI devices

Write a PCI register

Peripheral files

Import of alternative peripheral file formats
Set default peripheral file

Save to file

Test mode

Display peripherals

TRACES2 access class

Delimiter for BITFLD items.
Generate BITFLDs from description
Input file format

Indent trees, registers and fields
Input files for conversion

Load external converter project
Create logfile of conversion
Maximum choice item length
Maximum tooltip length

Minimize number of GROUPs

- O ©W 0 0o NN O

[ R G-
N

UL U QT G U (U UGS G (T G G QST G QI G Y
© © © 0 00 O N NO O OO O oo o W W W

PER.IMPORT.ModuleFiles Split .per file into separate files 20
PER.IMPORT.ModulePath Output directory for module files 20
PER.IMPORT.MSBfirst Order of bits in BITFLD command 20
©1989-2024 Lauterbach General Commands Reference Guide P 2



PER.IMPORT.NumberOfColumns Number of output columns 21
PER.IMPORT.OutputFile Name of generated peripheral file 21
PER.IMPORT.REPeat Generate REPEAT commands 22
PER.IMPORT.RESet Reset import settings 22
PER.IMPORT.RULES Apply rules file 22
PER.IMPORT.SortSubTrees Sort TREEs alphabetically 23
PER.IMPORT.SortTopTrees Sort TREEs alphabetically 23
PER.IMPORT.STOre Store current project 23
PER.IMPORT.WithValue Precede bitfield items with value 24
PER.In Read port 25
PER.Program Interactive programming 25
PER.ReProgram Set default peripheral file 26
PER.ReProgramDECRYPT Load default program (encrypted) 27
PER.Set Modify memory 28
PER.Set.ByName Modify memory by name 28
PER.Set.CONDitions Workaround for PER functions 30
PER.Set.Field Modify a bit field in memory 30
PER.Set.Index Modify indirect (indexed) register 32
PER.Set.IndexField Set fields at indexed register 33
PER.Set.Out Write data stream to memory 33
PER.Set.Savelndex Modify indirect (indexed) register 34
PER.Set.SavelndexField Set fields at indexed register 35
PER.Set.SaveTIndex Set fields at indexed registers 35
PER.Set.SaveTIndexField Set fields at indexed registers 35
PER.Set.SEQuence Set SGROUP members 36
PER.Set.SEQuenceField Set SGROUP members 36
PER.Set.SHADOW Modify data based on shadow RAM 36
PER.Set.simple Modify registers/peripherals 37
PER.Set. TIndex Set fields at indexed registers 37
PER.Set.TIndexField Set fields at indexed registers 38
PER.STOre Generate PRACTICE script from PER settings 39
PER.TestProgram Test mode 41
PER.view Display peripherals 41
PER.viewDECRYPT View decrypted PER file in a PER window 44
Programming Commands 45
e ] 46
PERF Sample-based profiling 46
Overview PERF 46
PERF.ADDRESS Restrict evaluation to specified address area 53
PERF.Arm Activate the performance analyzer manually 54
PERF.AutoArm Couple performance analyzer to program execution 54
PERF.Autolnit Automatic initialization 54
PERF.ContextID Enable sampling the context ID register 55
©1989-2024 Lauterbach General Commands Reference Guide P 3



PERF.DISable Disable the performance analyzer 55
PERF.Init Reset current measurement 55
PERF.List Default profiling 56
PERF.ListDistriB Memory contents profiling 62
PERF.ListFunc Function profiling 63
PERF.ListFuncMod HLL function profiling (restricted) 65
PERF.ListLABEL Label-based profiling 67
PERF.ListLine Profiling by HLL lines 69
PERF.ListModule Profiling by modules 70
PERF.ListProgram Profiling based on performance analyzer program 71
PERF.ListRange Profiling by ranges 71
PERF.ListS10 Profiling in n-byte segments 72
PERF.ListTASK Profiling by tasks/threads 73
PERF.ListTREE Profiling by module/function tree 75
PERF.ListVarState Variable state profiling 76
PERF.LOAD Load previously stored PERF results 77
PERF.METHOD Specify acquisition method 77
The Method StopAndGo 79
The Method Snoop 80
The Method Trace 83
The Method DCC 87
PERF.MMUSPACES Include space IDs for addresses in the sampling 88
PERF.Mode Specify sampling object 88
PERF.OFF Stop the performance analyzer manually 90
PERF.PROfile Graphic profiling display 90
PERF.Program Write a performance analyzer program 92
PERF.ReProgram Load an existing performance analyzer program 93
PERF.RESet Reset analyzer 94
PERF.RunTime Retain time for program run 94
PERF.SAVE Save the PERF results for postprocessing 95
PERF.SnoopAddress Address for memory sample 95
PERF.SnoopMASK Mask for memory sample 95
PERF.SnoopSize Size for memory sample 96
PERF.Sort Specify sorting of evaluation results 96
PERF.state Display state 97
PERF.STREAM PERF stream mode 98
PERF.ToProgram Automatic generation of performance analyzer program 98
PERF.View Detailed view 99
= 5 0 102
PERSVD Built-in converter for peripheral files in CMSIS-SVD format 102
PERSVD.Save Save converted file 102
PERSVD.view Display peripherals 102
1 104
©1989-2024 Lauterbach General Commands Reference Guide P | 4



PMI Power management interface 104
0 0 105
POD Configure input behavior of digital and analog probe 105
POD.ADC Probe configuration 105
POD.Level Input state 108
POD.RESet Input level reset 109
POD.state Input state 109
POD.USB Set up USB probe 111
0 O 112
PORT.Arm Arm the trace 112
PORT.AutoArm Arm automatically 112
PORT.BookMark Set a bookmark in trace listing 112
PORT.Chart Display trace contents graphically 112
PORT.DRAW Plot trace data against time 112
PORT.FindAll Find all specified entries in trace 112
PORT.FindChange Search for changes in trace flow 113
PORT.GOTO Move cursor to specified trace record 113
PORT.Init Initialize trace 113
PORT.OFF Switch off 113
PORT.PROfileChart Profile charts 113
PORT.PROTOcol Protocol analysis 113
PORT.PROTOcol.Chart Graphic display for user-defined protocol 113
PORT.PROTOcol.Draw Graphic display for user-defined protocol 114
PORT.PROTOcol.EXPORT Export trace buffer for user-defined protocol 114
PORT.PROTOcol.Find Find in trace buffer for user-defined protocol 114
PORT.PROTOcol.list Display trace buffer for user-defined protocol 114
PORT.PROTOcol.PROfileChart Profile chart for user-defined protocol 114
PORT.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol 114
PORT.PROTOcol.STATIistic Display statistics for user-defined protocol 114
PORT.REF Set reference point for time measurement 115
PORT.RESet Reset command 115
PORT.SAVE Save trace for postprocessing in TRACE32 115
PORT.SelfArm Automatic restart of trace recording 115
PORT.SnapShot Restart trace capturingonce 115
PORT.STATistic Statistic analysis 115
PORT.Timing Waveform of trace buffer 115
PORT.TRACK Set tracking record 115
PORT.ZERO Align timestamps of trace and timing analyzers 116
o = 117
Probe Probe logic analyzer 117
©1989-2024 Lauterbach General Commands Reference GuideP | 5



General Commands Reference Guide P

History

Version 06-Jun-2024

23-Feb-2024
31-Oct-2023

11-Oct-2023

28-Aug-2023
21-Jul-2023

07-Apr-2023
05-Aug-2022

06-May-2022

New command PER.Set. CONDitions.
New command PER.IMPORT.ModulePath.

PERFEMETHOD command: the list of CPUs that allow reading the program counter while the
program is running has been deleted. The function CPU.FEATURE(PCSNOORP) is used to
check this.

New command PER.<format>.TestProgram.

New command PER.IMPORT.SortTopTrees.

New PER.IMPORT command group.

New /AccessClass option for PERSVD commands.

New command PER.Set.ByName.

©1989-2024 Lauterbach General Commands Reference Guide P | 6



PCI

PCI Legacy PCI configuration

The command group PCI supports the access to the legacy PCI configuration space (first 256 bytes of
device data).

NOTE: This command group is only implemented for a few specific chips.
See also
B PCl.Dump B PCl.Option.DOMAIN B PCl.Read B PCl.Scan
B PCl.Write

©1989-2024 Lauterbach General Commands Reference Guide P | 7



PCl.Dump Display PCI device data

Format: PCIl.Dump <bus> <device> <function> [[<option>]
<bus>: 0..Max_PCI_Busnumber
<device>: 0..Max_PCIl_Devicenumber
<function>: 0..Max_PCI_Functionnumber
<option>: Byte | Word | Long | Quad
BE | LE

Displays the raw PCI device data.

<bus> PCI bus number
<device> PCI device number
<function> PCI function number
<option> Data display format and endianness

See also

B PCI

PCI.Option.DOMAIN Set PCI domain

Format: PCI.Option.DOMAIN <domain>
<domain>: 0...65535

Default: 0

Configures the PCI domain used as default by other PCI commands. A PCl domain is an isolated set of PCI
bus segments. Usually multiple PCI domains are used when there are multiple independent PCI controllers
on a chip.

©1989-2024 Lauterbach General Commands Reference Guide P | 8



See also

m PCI
PCl.Read Read a PCI register
Format: PCIl.Read <bus> <device> <function> <register> [/<option>]
<bus>: 0..Max_PCI_Busnumber
<device>: 0..Max_PCI_Devicenumber
<function>: 0..Max_PCI_Functionnumber
<register>: 0..Max_PCI_Registernumber
<option>: Byte | Word | Long | Quad
BE | LE

Reads the selected PCI register. The read access is always 32bit (long), using a byte or word format is only

for convenience.

<bus> PCI bus number

<device> PCI device number

<function> PCI function number

<register> PCI register number

<option> Data display format and endianness
See also
B PCI

©1989-2024 Lauterbach

General Commands Reference GuideP | 9



PCl.Scan List PCI devices

Format: PCl.Scan [<range>]
<range>: <start>--<end>

<start>: 0..Max_PCIl_Busnumber
<end>: 0..Max_PCI_Busnumber

Scans the PCI bus and lists the found devices.

<range> PCI bus range, default: 0.--1.
<start> <start> must be smaller than or equal to <end>.
<end> <end> must be greater than or equal to <start>.
See also
m PCI

©1989-2024 Lauterbach General Commands Reference Guide P | 10



PCl.Write Write a PCI register

Format: PCl.Write <bus> <device> <function> <register> [%<format>] <value>
<bus>: 0..Max_PCI_Busnumber
<device>: 0..Max_PCIl_Devicenumber
<function>: 0..Max_PCI_Functionnumber
<register>: 0..Max_PCI_Registernumber
<format>: Byte | Word | Long | Quad
BE | LE
<value>: Number

Writes the selected PCI register. The write access is always 32bit (long), using a byte or word format is only
for convenience (read-modify-write operation).

<bus> PCI bus number
<device> PCI device number
<function> PCI function number
<register> PCI register number
<format> Data display format and endianness
<value> New PCI register value
See also
m PCI

©1989-2024 Lauterbach General Commands Reference Guide P | 11



PCPOnchip

The PCPOnNchip command group allows to display and analyze the PCP trace information stored to the on-
chip trace provided by an ED device e.g. for the TriCore architecture.

The PCPOnNchip command is only applicable if the PCP debugging and tracing is performed with the same
TRACE32 instance then the core debugging (legacy PCP).

For a description of the command usage, refer to the <trace> command group.

©1989-2024 Lauterbach General Commands Reference Guide P | 12



PER

PER Peripheral files
See also
B PER.IMPORT B PER.In B PER.Program B PER.ReProgram
B PER.ReProgramDECRYPT M PER.Set B PER.STOre B PER.TestProgram
B PER.view B PER.viewDECRYPT

A ’'Release Information’ in’Legacy Release History’

Overview PER

The command PER.view displays a window with a view on the control registers of integrated peripherals.
The so-called peripherals files (*.per) controlling the contents of this window can be freely configured for

displaying memory structures or I/O structures.

# BuPER ~~/permpcS5Secper "Core Registers, General Registers” /SpotLight

(=[O el

Core Regis

-

N |

T ooo00000|
[=j=f=j=f=l=l=]=

ja]
=
=]
=]

m

All microcontroller emulation probes are supported by a file which describes the internal peripherals. This file
may be modified (using logical names instead of pin numbers for i/o ports) or extended to display additional

peripherals outside the microcontroller.

Examples for different microcontrollers reside in the directory ~~/demo/per.

©1989-2024 Lauterbach

General Commands Reference Guide P | 13



PER.IMPORT

Import of alternative peripheral file formats

The native peripheral file format is *.per. Though TRACES32 is able to import other file formats such as SVD
or various XML derivatives. Imported files can directly we opened in a PER.<format>.view window or saved
to native .per format using PER.<format>.Save.

Eile Edit View WVar Break Run CPU Misc Trace Perf Cov Window Help

M % AL 3 ¢« ¢ » n i

@ H oM B & &

Bipenimport

InputFile
+ Add X Remove & RemoveAll

stop current conversion

QutputFile
&l |peroutput.per
LOGFile
{44j Compile Myiew & Save

X & X

,

~* | ForMaT
RULES

AccessClass

V| FieldsFromDescription

MaximumDescriptionLength

MaximumChoiceLength

v SortTopTrees v MergeGroups

NumberOfColumns

E2sTOre » advanced

view directly CONVEITLO .PET 554 p\'r'oject file  save settings
N (deprecated) to cmm script
PER.IMPORT.<format=.ReProgram
See also
B PER.IMPORT.AccessClass B PER.IMPORT.FieldsFromDescription
B PER.IMPORT.ForMaT B PER.IMPORT.InputFile
B PER.IMPORT.LoaD B PER.IMPORT.MaximumChoiceLength
B PER.IMPORT.MaximumDescriptionLength B PER.IMPORT.MergeGroups
B PER.IMPORT.ModuleFiles B PER.IMPORT.MSBfirst
B PER.IMPORT.NumberOfColumns B PER.IMPORT.OutputFile
B PER.IMPORT.REPeat B PER.IMPORT.RESet
B PER.IMPORT.RULES B PER.IMPORT.SortTopTrees
B PER.IMPORT.STOre B PER.IMPORT.WithValue
B PER B PER.view
©1989-2024 Lauterbach General Commands Reference Guide P | 14



PER.<format>.ReProgram Set default peripheral file
[build 155354 - DVD 09/2023]

Format: PER.<format>.ReProgram <file>

Same as PER.ReProgram for converted peripheral files.

PER.<format>.Save Save to file
[build 155354 - DVD 09/2023]

Format: PER.<format>.Save

Convert input file(s) and save as .per file. The output file is configured by the PER.IMPORT.OutputFile

command.
PER.<format>.TestProgram Test mode
[build 155354 - DVD 09/2023]
Format: PER.<format>.TestProgram

Same as PER.TestProgram for converted peripheral files.

PER.<format>.view Display peripherals
[build 155354 - DVD 09/2023]

Format: PER.<format>.view <file>

Same as PER.view for converted peripheral files.

©1989-2024 Lauterbach General Commands Reference Guide P | 15



PER.IMPORT.AccessClass TRACES32 access class

[build 155354 - DVD 09/2023]

Format: PER.IMPORT.AccessClass <class>

Specifies the TRACES2 specific access class to be used for the BASE and GROUP commands.

Default: :ad

See also
W PER.IMPORT

PER.IMPORT.EnumbDelimiter Delimiter for BITFLD items.

[build 155354 - DVD 09/2023]

Format: PER.IMPORT.EnumDelimiter <delimiter> [<description>]

BITFLD items are usually separated by a comma. In order to change the separating character, the first
argument must be used. The second (optional) argument can used to provide a description (tooltip) for each

item.
delimiter Character which separates BITFLD items.
Default: ,
description Character which separates BITFLD item from corresponding description.
Default: none

PER.IMPORT.FieldsFromDescription Generate BITFLDs from description

[build 155354 - DVD 09/2023]

Format: PER.IMPORT.FieldsFromDescription [ON | OFF]

Tries to extract choice items for BITFLD commands from bitfield descriptions.If no choice items can be
extracted, a HEXMASK will be generated instead.

Default: OFF

See also
W PER.IMPORT

©1989-2024 Lauterbach General Commands Reference GuideP | 16



PER.IMPORT.ForMaT Input file format

[build 155354 - DVD 09/2023]

Format: PER.IMPORT.ForMaT <format>
<format>: AUTO

SPIRITXML

TIXML

SVD

Tells TRACES2 the format of the input files.

AUTO Detect format automatically by means of the input file(s).

SPIRITXML XML format used by IP-XACT.

TIXML XML format used by Texas Instruments.

SVD System View Description format for the Common Microcontroller
Software Interface Standard.

Default: AUTO

See also
B PER.IMPORT
PER.IMPORT.INDent Indent trees, registers and fields
[build 155354 - DVD 09/2023]
Format: PER.IMPORT.INDent [ON | OFF]

Indent trees, registers and fields for improved readability of the resulting .per file.

Default: OFF

©1989-2024 Lauterbach General Commands Reference Guide P | 17



PER.IMPORT.InputFile Input files for conversion

[build 155354 - DVD 09/2023]

Format: PER.IMPORT.InputFile <file_list>

Selects input files to be converted into a single .per file.

<file_list> List of input files separated by whitespaces.

See also
W PER.IMPORT

PER.IMPORT.LoaD Load external converter project

[build 155354 - DVD 09/2023]

Format: PER.IMPORT.LoaD <file>

For backward compability only.

Allows to load project files from the previous external converters. Current internal converters store project
files as PRACTICE .cmm scripts. See PER.IMPORT.STOre.

See also
B PER.IMPORT
PER.IMPORT.LOGfile Create logdfile of conversion
[build 155354 - DVD 09/2023]
Format: PER.IMPORT.LOGfile [ON | OFF]

A lodfile with extended information and error messages will be created during the conversion process. The
lodfile will be placed in the same directory as the output file (see PER.IMPORT.OutputFile).

Default: OFF

©1989-2024 Lauterbach General Commands Reference Guide P | 18



PER.IMPORT.MaximumChoicelLength Maximum choice item length

[build 155354 - DVD 09/2023]

Format: PER.IMPORT.MaximumChoicelLength </ength>

Defines the maximum length of the individual choice items in BITFLD commands. Must be in range 1..80.

Default: 50
See also
B PER.IMPORT
PER.IMPORT.MaximumDescriptionLength Maximum tooltip length
[build 155354 - DVD 09/2023]
Format: PER.IMPORT.MaximumDescriptionLength </ength>

Defines the maximum length of the description/tooltip. Must be in range 1..255.

Default: 255

See also
W PER.IMPORT

PER.IMPORT.MergeGroups Minimize number of GROUPs

[build 155354 - DVD 09/2023]

Format: PER.IMPORT.MergeGroups [ON | OFF]

Merges consecutive registers (LINE) into a single GROUP. Otherwise each LINE will have its own GROUP.

Default: ON

See also
B PER.IMPORT

©1989-2024 Lauterbach General Commands Reference Guide P | 19



PER.IMPORT.ModuleFiles Split .per file into separate files

[build 155354 - DVD 09/2023]

Format: PER.IMPORT.ModuleFiles [ON | OFF]

Instead of a single .per file, a .ph file for each module will be created. This is useful if you want to build up
your own peripheral file library and want to re-use module files.

Default: OFF

See also
W PER.IMPORT

PER.IMPORT.ModulePath Output directory for module files

[build 160201 - DVD 02/2024]

Format: PER.IMPORT.ModulePath <path>

Defines the output directory for modules files. Only has an effect if PER.IMPORT.ModuleFiles is ON.

Default: Current working directory.

PER.IMPORT.MSBfirst Order of bits in BITFLD command

[build 155354 - DVD 09/2023]

Format: PER.IMPORT.MSBfirst [ON | OFF]

If ON, BITFLD commands will output the most significant bit first. Otherwise the most significant bit will be
output last.

Default: ON

See also
H PER.IMPORT

©1989-2024 Lauterbach General Commands Reference Guide P | 20



PER.IMPORT.NumberOfColumns Number of output columns

[build 155354 - DVD 09/2023]

Format: PER.IMPORT.NumberOfColumns <number>

<number>:

A
1
2
3
4
5
6

Defines the number of output columns in the PER.<format>.view window. In case of AUTO, the algorithm
tries to find the optimal number of columns.

Default: AUTO

See also
H PER.IMPORT

PER.IMPORT.OutputFile Name of generated peripheral file

[build 155354 - DVD 09/2023]

Format: PER.IMPORT.OutputFile <file>

Name of the resulting .per file after conversion.

<file> Output file name.

If the file already exists, its content will be replaced.If
PER.IMPORT.InputFile specifies only one input file, the file name will be
taken over and its extension replaced by .per.

See also
H PER.IMPORT

©1989-2024 Lauterbach General Commands Reference Guide P | 21



PER.IMPORT.REPeat Generate REPEAT commands

[build 155354 - DVD 09/2023]

Format: PER.IMPORT.REPeat [ON | OFF]

Tries to find repetitive elements in the input file(s) and merges them into a REPEAT command. However
this command only works for registers and larger elements, but not for bitfields! Bitfield names will
always be a result of the first iteration of the corresponding REPEAT command.

Default: OFF

See also

B PER.IMPORT

PER.IMPORT.RESet

Reset import settings

[build 155354 - DVD 09/2023]

Format: PER.IMPORT.RESet

Reset all PER.IMPORT settings to their defaults.

See also

B PER.IMPORT

PER.IMPORT.RULES

Apply rules file

[build 155354 - DVD 09/2023]

Format: PER.IMPORT.RULES <file>

Apply rules file. See “Rules file” in Peripheral Files Programming,

See also

page 81 (per_prog.pdf).

B PER.IMPORT

©1989-2024 Lauterbach General Commands Reference Guide P | 22




PER.IMPORT.SortSubTrees Sort TREESs alphabetically

[build 161055 - DVD 09/2023]

Format: PER.IMPORT.SortSubTrees [ON | OFF]

If ON, all TREE levels except the first will be sorted alphabetically. If OFF, all TREE levels except the first will
be output in the same order as they appear in the input file(s).

Default: ON.
PER.IMPORT.SortTopTrees Sort TREEs alphabetically
[build 155354 - DVD 09/2023]
Format: PER.IMPORT.SortTopTrees [ON | OFF]

If ON, the first level of TREEs will be sorted alphabetically. If OFF, the first level of TREEs will be output in the
same order as they appear in the input file(s).

Default: ON.
See also
B PER.IMPORT
PER.IMPORT.STOre Store current project
[build 155354 - DVD 09/2023]
Format: PER.IMPORT.STOre <file.cmm>

Write all settings to a PRACTICE .cmm file.

See also
B PER.IMPORT

©1989-2024 Lauterbach General Commands Reference Guide P | 23



PER.IMPORT.WithValue Precede bitfield items with value

[build 155354 - DVD 09/2023]

Format: PER.IMPORT.WithValue [ON | OFF]

If ON, each choice item of a BITFLD command will be preceded by its corresponding value and a colon:
<value>:<choice_item>

e.g.
1:enable
0:disable

Default:OFF

See also
B PER.IMPORT

©1989-2024 Lauterbach General Commands Reference Guide P | 24



PER.In Read port
Format: PER.In <address> [<count>] [[<options>]
<options>: Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
BE | LE
Repeat | INCrement | CORE <core_number>

This command reads data from the specified address and prints it to the message line. Please refer to the

description of the Data.In command for more information.

See also
B PER B PER.view
PER.Program Interactive programming
Format: PER.Program [<file> [<line>]] [/<option>]
<option>: AutoSave | NoSave

Opens the PER.Program editor window, where you can create and edit peripheral files.

The editor provides an online syntax check. The input is guided by softkeys. For a description of the syntax
for the peripheral files, refer to “Peripheral Files Programming” (per_prog.pdf).

EB::PER.Program ~~\demo.per E‘ =l @
BHsetup... || D save |[FFsaveps. | BB quit || #iFind... |[)[0x][][iE Compileiﬂ?i
WIDTH Oxb

[A]
TREE "Module Registers™ =

2
3
4
5 BASE ad:0xf0000000
[
7
3

-

(CONFIG 16. 8.

GROUP. LONG Ox00++0x3
LINE.LONG Ox00 "REGOD,Register 0"
; one bit filed definition

9 BITFLD.LONG 0x00 26. " BIT26 ,Bit 26" "0,1"
10 ; 2-bit field definition

11 EITFLD.LONG Ox00 23.--24. " BIT24_23 ,Bits 24 to 23" "0,1,2,3"
12 (TREE.END i

™ B::PER.view ~~\demo.per EI@

Module Registers

4 T b

I okl || GROUP |[WGROUP || WSGROUP |[ RGROUP | other

©1989-2024 Lauterbach General Commands Reference Guide P | 25



Buttons common to all TRACE32 editors:
A For button descriptions, see EDIT file.
Buttons specific to this editor:

B Compile performs a syntax check and, if an error is found, displays an error message.
If the peripheral file (*.per) is error free, then the message “compiled successfully” is displayed in
the PER.Program window.
To view the result, open the file in the PER.view window.

C Commands for programming peripheral files. For descriptions and examples, refer to “Peripheral
Files Programming Commands” (per_prog.pdf).

<file> The default extension for <file> is *.per.

<line>, <option> For description of the arguments, see EDIT file.
See also
H PER B PER.ReProgram B PER.view B SETUPEDITOR
0 IOBASE()

A ’Text Editors’ in ’PowerView User’s Guide’
A ’'Release Information’ in’Legacy Release History’

PER.ReProgram Set default peripheral file

Format: PER.ReProgram [<file>]

Without command parameter <file>, the CPU specific default peripheral file (*.per) in the system directory
is used (e.g. peromap35xx.per).

With command parameter <file>, the corresponding file is compiled. The file should not have any errors
when using this command. This given file will be temporary used as new default peripheral file till the next
PER.ReProgram command or a new start of TRACES32 software.

The peripherals can be displayed with the PER.view command without arguments.
See also

W PER B PER.Program B PER.view 1 IOBASE()

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide P | 26




PER.ReProgramDECRYPT Load default program (encrypted)

Format: PER.ReProgramDECRYPT [<file>]

Reprograms encrypted PER file. See PER.ReProram for more information.

See also
H PER B PER.view

©1989-2024 Lauterbach General Commands Reference Guide P | 27



PER.Set Modify memory
The PER.Set command group is used to modify peripheral registers.
See also
B PER.Set.ByName B PER.Set.CONDitions B PER.Set.Field B PER.Set.Index
B PER.Set.IndexField B PER.Set.Out B PER.Set.Savelndex B PER.Set.SavelndexField
B PER.Set.SaveTIndex B PER.Set.SaveTIndexField B PER.Set.SEQuence B PER.Set.SEQuenceField
B PER.Set. SHADOW B PER.Set.simple B PER.Set.TIndex B PER.Set.TIndexField
B PER B PER.view
PER.Set.ByName Modify memory by name
[build 147535 - DVD 09/2022]
Format: PER.Set.ByName <path> <value>l<choice>

A more convenient way to modify memory than PER.Set.simple and PER.Set.Field. The memory location
can be referenced by its name rather than by its address. Also HEXMASK and BITFLD masks will be filled

automatically.

(Full) path of the register(field) name. Case sensitive!

Starting from the root tree, every subelement (TREE, GROUP, LINE,
BITFLD, HEXMASK) must be separated by a dot.

Alternatively the whole peripheral file can be searched for the
register(field) name. In that case the name must be preceded by a dot.
If a path elements contains spaces, it must be enclosed by quotes.

Choice item from BITFLD. Case sensitive!
Only available if last item of <path> points to a BITFLD.

<path>
<value> New value to be written.
<choice>

* Buper E@

B RootTree

B SubTree

MyRegister 12345668

MyBitField two

©1989-2024 Lauterbach

General Commands Reference Guide P | 28



Example 1: Full path

; Select peripheral file by compiling it

PER.ReProgram permyperfile.per

; Set whole register

PER.Set.ByName RootTree.SubTree.MyRegister 0x12345668

; Set BITFLD only (Both methods do the same)

PER.Set.ByName RootTree.SubTree.MyRegister.MyBitField "two"
PER.Set.ByName RootTree.SubTree.MyRegister.MyBitField 2

Example 2: No path

; Select peripheral file by compiling it
PER.ReProgram permyperfile.per

; Set whole register

PER.Set.ByName .MyRegister 0x12345668

; Set BITFLD only (Both methods do the same)
PER.Set.ByName .MyRegister.MyBitField "two"
PER.Set.ByName .MyRegister.MyBitField 2

See also
B PER.Set 1 PER.ADDRESS() 1 PER.VALUE() 1 PER.VALUE.STRING()

©1989-2024 Lauterbach General Commands Reference Guide P | 29



PER.Set.CONDitions Workaround for PER functions

[build 167085 - DVD 09/2024]

Format: PER.Set.CONDitions

Some of the PER functions are unable to evaluate IF conditions and to fetch enclosed data. This command
allows you to overcome this limitation by evaluating all IF conditions and taking a snapshot of the results.It
must be called before the first invocation of an according function. PER.Set.CONDitions may be called

several times to re-evaluate the conditions and to update the snapshot:

// Initial snapshot
PER.Set .CONDitions
PRINT PER.VALUE (<path>)

....change of conditions....
// Update snapshot

PER.Set .CONDitions
PRINT PER.VALUE (<path>)

See also
B PER.Set
PER.Set.Field Modify a bit field in memory
Format: PER.Set.Field <address> %<format> <mask> [<mult> [<summ>] |<value>
<format>: Byte | Word | Long | Quad | TByte | HByte | BE | LE

Modifies a bit field in memory. When some register content is shown in the Peripheral window by the
HEXMASK or BITFLD command, it may be scaled with a multiplier and a summand. This command can be
used to modify the scaled value without having to unscale it manually or taking care of the bitfield’s offset.

The memory content at <address> is read with the access width given by <format>. The bits set in <mask>
will be replaced by the corresponding bits in <value> and the new value is written to <address>. <value> is
considered to be completely within the mask, one must not specify any offset to the mask.

©1989-2024 Lauterbach General Commands Reference Guide P | 30



Oldbhata: 0x53674210 0y0101.0011.0110.0111.0100.0010.0001.0000

mask: 0x007c0000 0y0000.0000.0111.1100.0000.0000.0000.0000
————— | <- offset -> |

value: 0x5 Oy 001 01

NewData: 0x53174210 0y0101.0011.0001.0111.0100.0010.0001.0000

NewData = (OldData & ~mask) | ( (value<<offset (mask)) & mask)

Additionally a possible multiplier <mult> may be specified as divisor. If the <mult> is omitted, the default is 1.
Also a possible summand <summ> can be specified as subtrahend. If the <summ-> is omitted, the default is

0. If <summ> and <mult> both specified, the division is performed before the subtraction.

tmpvalue = (<value> / <mult>) - <summ>;
tmpvalue = tmpvalue << (number of bits between <mask> and 0);
Memory (<address>) = (Memory (<address>) & <mask>) | tmpvalue;

Example 1 - the following PER file is given:

GROUP D:0xBF000000++3 "Cache Configuration"
LINE.LONG 0O "CACHE"
HEXMASK.LONG 0x0 8.--9. 64. 0. "Cache Size "

; Bits [9:8] are defined:

I
o

0 K Cache Size, displayed is 0x00
1 64 K Cache Size, displayed is 0x40
; 2 = 128 K Cache Size, displayed is 0x80
3 172 K Cache Size, displayed is 0xCO

To change the cache size to 128 KB, perform the following command:

PER.Set.Field D:0xBF000000 %Long 0x00000300 64. 0. 128.

As result, the content of bits [9:8] is 0y10 (0x2).

Example 2 - Change single bit only and leave other bits untouched:

PER.Set.Field D:0xF0000470 %Long 0x00002000 1. ; set bit 13
PER.Set.Field D:0xF0000470 %Long 0x01000000 O. ; clear bit 24
See also
B PER.Set

©1989-2024 Lauterbach General Commands Reference Guide P

31



PER.Set.Index Modify indirect (indexed) register

Format: PER.Set.Index <idx_addr> %<idx_fmt> <idx_rd> <idx_wr> <data_addr>
%<data_fmt> <data_value>

<idx_fmt>, Byte | Word | Long | Quad | TByte | HByte | BE | LE
<data_fmt>:

Writes or modifies indirectly addressed registers.

<idx_addr> Specifies the address register.

<data_addr> Specifies the address of the data register of the indirect access.

PER.Set.Index can be translated into the following commands (IS_BITMASK and APPLY_BITMASK are
pseudo-functions):

if IS_BITMASK (<data_value>)
(

PER.Set <index_ addr> %<idx_fmt> <idx_rd>
&read_value=DATA.<data_fmt> (<data_addr>)
&new_value=APPLY BITMASK (&read_value, <data_value>)

)

else

(

&new_value=<data_value>

)
PER.Set <index_ addr> %<idx_fmt> <idx_wr>
PER.Set <data_addr> %<data_fmt> &new_value

If the address register <idx_addr> is read/write, it is recommended to use PER.Set.Savelndex, to
restore the original setting after the access.

See also
B PER.Set

©1989-2024 Lauterbach General Commands Reference Guide P | 32



PER.Set.IndexField Set fields at indexed register

Format: PER.Set.IndexField <idx_addr> %<idx_fmt> <idx_rd> <idx_wr> <data_addr>
%<data_fmt> <data_value>

<idx_fmt>, Byte | Word | Long | Quad | TByte | HByte | BE | LE
<data_fmt>:

See also
B PER.Set

PER.Set.Out Write data stream to memory

Format: PER.Set.Out <address> %<format> <data> <string> [[<option>]

<options>: Repeat | CORE <core>

Writes a sequence of data elements sequentially to <address>.

See also
B PER.Set

©1989-2024 Lauterbach General Commands Reference Guide P | 33



PER.Set.Savelndex Modify indirect (indexed) register

Format: PER.Set.Savelndex <idx_addr> %<idx_fmt> <idx_rd> <idx_wr> <data_addr>
%<data_fmt> <data_value>

<idx_fmt>, Byte | Word | Long | Quad | TByte | HByte | BE | LE
<data_fmt>:

Writes or modifies indirectly addressed registers.

<idx_addr> Specifies the address register.

<data_addr> Specifies the address if the data register of the indirect access.

The original value of the register at <idx_addr> is restored after the access.

PER.Set.Savelndex can be translated into following commands (IS_BITMASK and APPLY_BITMASK are
pseudo-functions):

&original_idx_addr=DATA.<idx_fmt> (<index_addr>)

if IS _BITMASK (<data_value>)
(

PER.Set <index_addr> %<idx_fmt> <idx_rd>
&read_value=DATA.<data_fmt> (<data_addr>)
&new_value=APPLY BITMASK (&read_value, <data_value>)

)

else

(

&new_value=<data_value>

)
PER.Set <index_addr> %<idx_fmt> <idx_wr>
PER.Set <data_addr> %<data_fmt> &new_value

PER.Set <index_addr> %<idx_fmt> &original_idx_addr

If the address register <idx_addr> cannot be read (write only), use “PER.Set.Index Modify indirect
(indexed) register” (general_ref_p.pdf).

See also
B PER.Set

©1989-2024 Lauterbach General Commands Reference Guide P | 34



PER.Set.SavelndexField Set fields at indexed register

Format: PER.Set.SavelndexField <idx_addr> %<idx_fmt> <idx_rd> <idx_wr>
<data_addr> %<data_fmt> <data_value>

<idx_fmt>, Byte | Word | Long | Quad | TByte | HByte | BE | LE
<data_fmt>:
See also
B PER.Set
PER.Set.SaveTIndex Set fields at indexed registers
Format: PER.Set.SaveTIndex <address> %<format> <value>
<format>: Byte | Word | Long | Quad | TByte | HByte | BE | LE

Modifies fields at indexed registers.

See also
B PER.Set
PER.Set.SaveTIndexField Set fields at indexed registers
Format: PER.Set.SaveTIndexField <address> %<format> <value>
<format>: Byte | Word | Long | Quad | TByte | HByte | BE | LE

Modifies fields at indexed registers.

See also
B PER.Set

©1989-2024 Lauterbach General Commands Reference Guide P | 35



PER.Set.SEQuence Set SGROUP members

Format: PER.Set.SEQuence <offset> %<format> <data> ...
<format>: Byte | Word | Long | Quad | TByte | HByte | BE | LE
See also
B PER.Set
PER.Set.SEQuencefField Set SGROUP members
Format: PER.Set.SEQuenceField <offset> Y% <format> <data> ...
<format>: Byte | Word | Long | Quad | TByte | HByte | BE | LE
See also
B PER.Set
PER.Set.SHADOW Modify data based on shadow RAM
Format: PER.Set.SHADOW <address1> <address2> %<format> <data> <string>
[/<option>]
<format>: Byte | Word | Long | Quad | TByte | HByte | BE | LE
<options>: Verify | ComPare | DIFF | PlusVM | CORE <core>

Modifies data as PER.Set, but modifies data both on <address1> and on <address2>in shadow RAM.

See also
B PER.Set

©1989-2024 Lauterbach General Commands Reference Guide P | 36



PER.Set.simple Modify registers/peripherals

Format: PER.Set.simple <address> %<format> <value> [[<option>]
<format>: Byte | Word | Long | Quad | TByte | HByte | BE | LE
<options>: Verify | ComPare | DIFF | PlusVM | CORE <core>

Modifies configuration registers/onchip peripherals. The command usually appears in the command line
after a double click on a register in the PER.view window. See Data.Set for details on how to modify

memories.
See also
B PER.Set
PER.Set.Tindex Set fields at indexed registers
Format: PER.Set.Tindex <address> %<format> <value>
<format>: Byte | Word | Long | Quad | TByte | HByte | BE | LE

Modifies fields at indexed registers.

See also
B PER.Set

©1989-2024 Lauterbach General Commands Reference Guide P | 37



PER.Set.TindexField Set fields at indexed registers

Format: PER.Set.TIndexField <address> %<format> <value>

<format>: Byte | Word | Long | Quad | TByte | HByte | BE | LE

Modifies fields at indexed registers.

See also
B PER.Set

©1989-2024 Lauterbach General Commands Reference Guide P | 38



PER.STOre Generate PRACTICE script from PER settings

[Examples]

Format: PER.STOre [<script_file> [<per_file> [" <subtree_path>"]]] [[CORE <core>]

Stores all PER settings or all settings of a PER subtree to a PRACTICE file (*.cmm). The resulting file
consists of PER.Set.simple commands [B]. If no <script_file> is specified, all settings are stored to the
clipboard.

B:PEDIT ~~\perad40t_script.cmm EI@
[ & setup... || 5 save | T save As..][ B Quit |[ #iFind...|[][0x][1T][ ¥ Do | M Debug |

ID Registers _
‘

-

/7 Sys ig
PER.Set.zimple C15:0x1 %Long OAF
PER.Set.simple C15:0x2 %Long Ox0
PER. Set.=imple C15:0x102 %Long Ox0
PER. Set.zimple C15:0x3 %Long Ox0

PER.Set.simple C15:0x5 %Long Ox0

PER. Set.=imple C15:0x105 %Long Ox0
PER. Set.zimple C15:0x6 %Long Ox0

(o=
oW~ o wra

A Headings and read-only PER file values are commented out in PRACTICE scripts generated by
PER.STOre.

The command PER.STOre may result in a “bus errror” or “debug port fail” if TRACE32 has no access to a
peripheral component. Possible reasons are:

o The component is disabled.
. The component has no power or clock.
J The access to the component is restricted.

The script generated by the PER.STOre command contains the PER.Set commands in the order the
configuration registers appear in the PER.view window. If the script is used to initialize the target hardware,
it is probably not possible to use the script without modifications. The configuration registers for peripheral
components typically need to be initialized in a particular order, require sometimes a fixed timing, and often
assume that other initializations have already been performed (e.g. clocks settings). So it is recommended to
check the script and rearrange the PER.Set commands as required.

The script generated by the PER.STOre command can be directly used in the TRACES32 Instruction Set
Simulator, e.g. to analyze a crash dump.

<script_file> File name of the PRACTICE script generated upon execution of the
PER.STOre command.

<per _file> Name of the PER file that is used to describe the configuration registers.

You can use a comma (,), if you want to use the default PER file for the
core/chip under debug. The name of the default PER file is displayed in
the VERSION.SOFTWARE window.

©1989-2024 Lauterbach General Commands Reference Guide P | 39




<Subtree_path>

The optional parameter specifies the subtree to be saved. The individual
components of a <subtree_path> are separated by comma.

CORE <core>

PER file values pertaining to the specified core (SMP debugging only).

Examples:

;generate script per_script.cmm for all settings
PER.STOre per_script.cmm

;generate script per_script.cmm for the settings

;of the subtree

"Core Registers" and all its subtrees

;the name of the <per_file> is permpc564xbc.per
PER.STOre per_script.cmm permpc564xbc.per "Core Registers"

;generate script per_script.cmm for the settings

;of the subtree

;<per_file> can be represented by ,

"Core Registers" and all its subtrees

;core/chip under debug
PER.STOre per_script.cmm , "Core Registers"

;generate script per_script.cmm for the settings

;of the specified subtree path

PER.STOre per_script.cmm , \

"Analog to Digital Converter,ADCO,Control Logic Registers"

;1f no <script_file> is specified all settings are stored to the

;clipboard
PER.STOre

;only settings of the subtree "Core Registers" and all its subtrees
;are stored to the clipboard

if it is the default per file of the

PER.STOre ,, "Core Registers"
See also
B PER B PER.view

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide P

40



PER.TestProgram Test mode
Format: PER.TestProgram [<file>]
Can be used to detects errors in per file.
See also
B PER B PER.view
PER.view Display peripherals
[Example]
Format: PER.view [<file> [[<args>] "<subtree_path>"] [/<option>]]
<option>: SpotLight | DualPort | Track | AlternatingBackGround

CORE <core_number>

Opens the PER.view window, displaying a so-called PER file, short for peripheral register definition file.
PER files simplify working with peripheral registers and allow to display and modify the contents of
peripheral registers. The peripheral registers in a PER file are often organized in a tree hierarchy.

Note that the PER.view window remains empty until the commands SYStem.CPU <cpu_type> and

SYStem.Mode Up have been executed.

# BuPER ~~/permpcS5Secper "Core Registers, General Registers” /SpotLight

(=[O el

-

The SpotLight option highlights

(=j=j=j=l=j=]=]
Lprpnnyry |
(=j=j=j=l=j=]=]

[t et
ST [
ST T Y Y |

(= =j=j=j=j=p=g=] |

]

= changes.

Right-click to show/hide all
subtrees.

"o Boocooool|

Be sure to show all subtrees

before searching for a specific
' item (e.g. with Ctrl+F).

NOTE: For searching inside a (potentially huge) PER file, proceed as follows:
. Right-click on a [-] or [+] box of the tree.
. Choose show all from the popup menu. This will open all the subtrees.
. Press Ctrl+F to open a search dialog for performing a text search in the

open window and enter the term to search for.

©1989-2024 Lauterbach

General Commands Reference Guide P | 41




<file> Specifies the PER file to be displayed. If <file>is omitted, the default PER
file for the selected CPU is displayed.

<subtree_path> The optional parameter specifies the subtree to be opened. The individual
components of a <subtree_path> are comma-separated.

If <subtree_path> starts with a colon, only the selected subtree will be
displayed. All others will be completely discarded.

<args> Arguments can be passed from a PRACTICE script file (*.cmm) to a PER
file. For an example, see “Passing Arguments” (per_prog.pdf).

SpotLight Highlights all changes on the registers.

Registers changed by the last program run/single step are marked in
dark red. Registers changed by the second to the last program run/single
step are marked a little bit lighter. This works up to 4 levels.

DualPort Updates the registers while the program execution is running.

CORE <n> Displays the contents of the registers for a certain core other than the
currently selected core.

Track All windows opened with the /Track option follow the cursor movements
in the active window. For more information, see “Window Tracking”
(ide_user.pdf).

AlternatingBack- Displays an alternating background color in the PER.View window. The
Ground background color display can also be toggled using the pop-up context
menu entry “Toggle alternating background”.

This option is supported by TRACE32 release 09.2020 or newer.

©1989-2024 Lauterbach General Commands Reference Guide P | 42



Example: This script illustrates how you can use the PER.view command. Simply copy the script to a
test . cmm file, and then step through the script (See “How to...”).

;Displays the default PER definition file for the selected CPU, i.e.
;the peripherals for the selected CPU
PER.view

;Displays the path and the version of the PER definition file
VERSION.SOFTWARE

;The comma replaces the default PER definition file name
;and lets you use the SpotLight option.
PER.view , /SpotLight ;This is useful to highlight changes

;Displays a specific PER definition file. The path prefix ~~ expands to
;the system directory of TRACE32
PER.view ~~/per750mm.per

;Expands all subtrees
PER.view ~~/per750mm.per "*"

;Expands just the subtree "General Registers"
PER ~~/permpch5xx.per "Core Registers,General Registers" /SpotLight
WinPAN 0. -3. ;The WinPAN command is used here for demo purposes.

;Expands all subtrees of "Core Registers"
PER.view , "Core Registers, *"

;Displays only the subtree “DEBUG_CPU_CTIO” using colon preceding
; <subtree path>.
PER.view ~~/perzyng7000.per ":Cross Trigger Interface, DEBUG_CPU_CTIO"

See also

B PER B PER.IMPORT H PER.In B PER.Program
B PER.ReProgram B PER.ReProgramDECRYPT M PER.Set B PER.STOre
B PER.TestProgram B PER.viewDECRYPT B SYStem.CPU 1 PER.ARG()

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide P | 43



PER.viewDECRYPT View decrypted PER file in a PER window

Format: PER.viewDECRYPT <keystring> <file> [<string> | <address>] [[<option>]

<option>: SpotLight | DualPort | Track | AlternatingBackGround
CORE <core_number>

Encrypted PER files can be executed and viewed with the command PER.viewDECRYPT using the original
<keystring>. Decrypting the PER file or viewing its original file contents in plain text is not possible.

<option> For a description of the options, see PER.view.
See also
B PER B PER.view W ENCRYPTPER

A ’Encrypt/Execute Encrypted Files’ in ’PowerView User’'s Guide’

©1989-2024 Lauterbach General Commands Reference Guide P | 44



Programming Commands

For a description of the programming commands for peripheral files, refer to “Peripheral Files
Programming” (per_prog.pdf).

©1989-2024 Lauterbach General Commands Reference Guide P | 45



PERF

PERF Sample-based profiling
See also
B PERFADDRESS B PERFArm B PERFAutoArm B PERFAutolnit
B PERF.ContextID B PERFDISable B PERFInit B PERFList
B PERFListDistriB B PERFListFunc B PERF.ListFuncMod B PERF.ListLABEL
B PERFListLine B PERF.ListModule B PERFListProgram B PERF.ListRange
B PERFLIistS10 B PERFLIistTASK B PERFLIistTREE B PERF.ListVarState
B PERFLOAD B PERFEMETHOD B PERFMMUSPACES B PERF.Mode
B PERF.OFF B PERF.PROfile B PERF.Program B PERF.ReProgram
B PERF.RESet B PERF.RunTime B PERF.SAVE B PERF.SnoopAddress
B PERF.SnoopMASK B PERF.SnoopSize B PERF.Sort B PERFstate
B PERF.STREAM B PERF.ToProgram B PERF.View J PEREMETHOD()
1 PERF.MODE() 1 PERF.RATE() 1 PERF.RunTime() 1 PERF.STATE()
A ’Release Information’ in’Legacy Release History’

Overview PERF

The TRACE32 Performance Analyzer is designed for sample-based profiling. Samples can be the actual
program counter or the actual contents of a memory location. Sample-based profiling collects samples to

calculate:

J The percentage of run-time used by a high-level language function.

. The percentage of run-time a variable had a certain contents.

. The percentage of run-time used by a task etc.

£ B:PERF.ListTASK

=N Hoh

(& Setup...|[38 Config...][ A Goto...

|l petailed|[ & view || i Profile || @ it || @ mit | DiSable|| @& Arm |
117%

name

runtime:
ratio

91. 3

1% 2% 5% 10% 20% 50

main
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
(other)
Idle Thread
K

[T S N AN N = T Y]

82.

OO FMNRMRMRRR

160%

. 973%
.817%

504%
347%
191%
034%
878%
095%
000%

. 000%

Samples are collected periodically. TRACE32 starts normally with 100 samples/s, but the sample acquisition
methods of TRACES32 are auto-adaptive. They tune the sampling rate to its optimum.

©1989-2024 Lauterbach

General Commands Reference Guide P | 46



TRACE32 supports several sample acquisition methods. Some have no or nearly no effect on the target’s

run-time behavior but require special features from the on-chip debug logic (Snoop, Trace, DCC). The

acquisition method StopAndGo is always supported, but has some impact on the target’s run-time

behavior.

NOTE:

An unfavorable time coherence between the Performance Analyzer's sampling rate
and periodic conditions on the target can distort the measurement results.

Profiling Results

The following evaluation commands can be used if the program counter is sampled:

Sampled
program counter
information

PERF.ListProgram
PERF.ListTREE
PERF.ListLine
PERF.ListFunc
PERF.ListModule
PERF.ListFuncMod
PERF.ListLABEL
PERF.ListRange
PERF.ListS10
PERF.ListS100
PERF.ListS1000
PERF.ListS10000

The following evaluation commands can be used if the contents of a memory location is sampled:

Sampled
data
information

—

PERF.ListDistriB
PERF.ListVarState
PERF.ListTASK

©1989-2024 Lauterbach

General Commands Reference Guide P

47



If a combi-mode is selected e.g. PERF.Mode PCMEMory the results can only be displayed independently.

PERF.state ; display the Performance
; Analyzer configuration window

PERF .RESet ; reset the Performance Analyzer
; configuration to its default
; setting

PERF .OFF ; enable the Performance
; Analyzer

PERF .Mode PCMEMory ; the Performance Analyzer

; samples the program counter
; and the contents of the
; specified memory location

; PERF.METHOD StopAndGo ; TRACE32 set the acquisition
; method StopAndGo

PERF . SnoopAddress Var.RANGE (flags[3]) ; specify the memory location to
; to be sampled

PERF.SnoopSize Byte ; specify the sampling width
PERF .ListFunc ; open a function profiling

; window
PERF.ListVarState ; and a separate variable state

; profiling window

Go ; start the program execution
; and the sampling

©1989-2024 Lauterbach General Commands Reference Guide P | 48



Profiling for SMP Systems

TRACE32 allows a sample-based profiling of SMP systems by supporting the methods Snoop and

StopAndGo.

Function Profiling

£ B::PERF.ListFunc /CORED (== =]
(& <up... [ 22 @rfo... (4 Goto...| B Detaied |[ &, View ][ [ Profile ][ @ Init ][ DISable][ & Arm |
core: 0

name ratio 1% 2% 10% 20% 50% 100 |
inflate_codes 44,155% -
f Tush_window 18.139% ——— |
(other) 17.273% =
huft_build 1.764% | ee— -

4 2
£ B:PERF ListFunc /SplitCORE o ==
(&=, [ 22 @rfo... (4 Goto...|[ B Detaied |[ &, View ][ [ Profile ][ @ Init ][ DIsable][ & Arm |
name ratio 1% 10% 20% 50% 100 |
inflate_codes:0 22.077% -
flush_window: 0 9.069% 1
;:_.:,t}~e,-_: 4.143% —s — ==
huft_build:0 0.882% [«
update_wall_time:0 0.515% |+
spin_lock:0 0.374% |+
find_busiest_group:1 0.362% |+
vsnprintf:0 0.295% |+
calibrate_delay:1 0.271% |+ -

4 13
£ B:PERF ListFunc /MergeCORE o[-

core: merged

(& cetwp... |[ 28 Q... |[Y Goto...|[ E] Detaied |[ €& view |[ ] Profie || € Init |[C> DISable|| & Arm |

20% 50% 100

4

name ratio 1% 2% 5% 10%

(other) 17.273% -
inflate_codes 22.077% @
T lush_window 9.069% =
huft_build 0.882% |+ -

©1989-2024 Lauterbach

General Commands Reference Guide P

49



PERF.state

PERF .RESet

PERF .OFF

PERF .Mode PC

; PERF . METHOD Snoop

PERF.ListFunc /CORE 0

PERF.ListFunc /SplitCORE

PERF.ListFunc /MergeCORE

display the Performance Analyzer

configuration window

reset the Performance Analyzer
configuration window to its
default settings

enable the Performance Analyzer

the Performance Analyzer sample
the actual program counter

TRACE32 set the METHOD Snoop if
the program counter can be read
while the program execution is
running

open window for function
profiling for core 0

open window for function
profiling for all cores

display results for each
individual core

open window for function
profiling for all cores

results are added up for all
cores

©1989-2024 Lauterbach

General Commands Reference Guide P |

50



The result display can also be configured by the local pull-down menu.

£ B:PERF.ListFunc

=N Eoh/

[ & cetw... |[ 28 onfi...|((Y Goto...|[ E] Detailed |[ €& view |[ ] Profile || € Init |[Cr DISable|| @& Arm |

5%

10% 20% 50% 100 |

ttick_periodic
sp'in_lock_'irgsalwe
rurn_timer_softirg
|_rcu_process_callb
spin_unlock_irgrest
|_do_softirg
scheduler_tick

4

e
[SY Y
00 4
Lo
]
ok S e e o

core:
name ratio 1% 2%
inf late_codes 44, 155% |
ush_windo 18.139%
(other) 17,27 3% e G View
huft_build L 764% |- :
update_wall_time 031% | w Pmﬂ_le
spin_lock 748% |+ | El Detailed
snprintf 590% £ more

here

MergeCORE

Task Profiling

= B:PERF ListTASK /CORE 0 = =R
& seup... || 38 Qonfig... | (Y Goto...|| B Detaied | G, view || i/ Profile || @ Init |[Q DIsable| @ Arm
runtime: 2.800%
core |name ratio 1% 2% 5% 10% 20% 50% 100 |
] processl 90.196% A
(] swapper /0 9. 804%
0 sieve 0.000%
0 kworker /u4:2 0. 000%
0 kworker /u4:1 0. 000%
] myTlogin.sh 0.000% v
S B:PERF.ListTASK /SplitCORE = =R
& setp.. || 38 anfig... | (A Goto... | B Detsled | O, View || i/ Profile || @ mit || Disable| @ Amm
runtime: 2.800%

core |name ratio 1% 2% 5% 10% 20% 50% 100 |
1 swapper /0 45, 098%
(] processl 45.098%
(] swapper /0 4, 902% [ e—
1 processl 4, 902% [ e—
= B:PERF.ListTASK /MergeCORE = =R
& seup... || 38 Qonfig... | (Y Goto...|| B Detaied | G, view || i/ Profile || @ Init |[Q DIsable| @ Arm

core: merged runtime: 2.800%
core |[name ratio 1% 2% 5% 10% 20% 50% 100 |

swapper /0 50.000% A

processl 50.000%

sieve 0.000%

kworker /u4:2 0. 000%

kworker /ud:1 0. 000% W

PERF.state

PERF .RESet

PERF .OFF

PERF .Mode TASK

; display the Performance Analyzer
; configuration window

; reset the Performance Analyzer
; configuration window to its
; default settings

; enable the Performance Analyzer

; the Performance Analyzer sample
; the actual program counter

©1989-2024 Lauterbach

General Commands Reference Guide P | 51



; PERF .METHOD Snoop

; TASK.CONFIG

PERF.ListTASK /CORE 0

PERF.ListTASK /SplitCORE

PERF.ListTASK /MergeCORE

TRACE32 set the METHOD Snoop if
the memory can be read

while the program execution is
running

Setup OS-aware debugging

I

I

open window for task profiling
for core 0

open window for TASK
profiling for all cores

display results for each
individual core

open window for TASK
profiling for all cores

results are added up for all
cores

©1989-2024 Lauterbach

General Commands Reference Guide P |

52



PERF.ADDRESS

Restrict evaluation to specified address area

Format:

PERF.ADDRESS <address> | <address_range>
(program counter sampling only)

Restricts the evaluation of the program counter sampling to <address_range>. A given <address> is
expanded to an address range that ends at the next label. The default <address_range> is the whole
address space of the processor.

The following commands are equivalent:

PERF .ADDRESS Var .RANGE (sieve)

PERF .ListFunc

PERF.ListFunc /Address Var.RANGE (sieve)

Exampile: In this script, the sample-based profiling is restricted to the function sieve.

PERF.state

PERF .RESet

PERF .OFF

PERF .Mode PC

PERF .METHOD Trace

PERF .ADDRESS Var .RANGE (sieve)

PERF.ListLine

display the Performance Analyzer
configuration window

reset the Performance Analyzer
configuration to its default settings

enable the Performance Analyzer

sample the program counter
information

set the acquisition method Trace

restrict the evaluation of the
result to the program range of the
function sieve

open a window for the profiling of
high-level language lines

Go start the program execution and the
sampling
See also
B PERF B PERFstate

©1989-2024 Lauterbach

General Commands Reference Guide P | 53



PERF.Arm Activate the performance analyzer manually

Format: PERF.Arm

The Performance Analyzer is coupled to the program execution if PERF.AutoArm is ON (default).

If PERF.AutoArm is OFF, the Performance Analyzer can be controlled manually. PERF.Arm activates the
Performance Analyzer, PERF.OFF stops the Performance Analyzer.

See also
B PERF B PERFstate
PERF.AutoArm Couple performance analyzer to program execution
Format: PERF.AutoArm [ON | OFF]

The Performance Analyzer is coupled to the program execution.

ON (default) The Performance Analyzer starts sampling when the program execution
is started and stops when the program execution is stopped.

OFF The Performance Analyzer has to be started and stopped manually by
the commands PERF.Arm and PERF.OFF.

See also
W PERF B PERFstate
PERF.Autolnit Automatic initialization
Format: PERF.Autolnit [ON | OFF]

The PERF.Init command will be executed automatically, when the user program is started.

See also
B PERF B PERFstate

©1989-2024 Lauterbach General Commands Reference Guide P | 54



PERF.ContextID Enable sampling the context ID register

Format: PERF.ContextID [ON | OFF]

When this option is enabled, the ARM ContextID register will be sampled with the program counter and used
in the analysis for task identification. This option is only available for some ARM cores.

See also
B PERF B PERFstate
PERF.DISable Disable the performance analyzer
Format: PERF.DISable

The Performance Analyzer is disabled. Enabling can be done by entering the commands PERF.Arm or
PERF.OFF.

The measurement data are preserved until the Performance Analyzer is re-enabled.

See also
B PERF B PERFstate
PERF.Init Reset current measurement
Format: PERF.Init

Resets the current measurement. PERF.Init does not affect the Performance Analyzer configuration.

See also
B PERF B PERFstate

©1989-2024 Lauterbach General Commands Reference Guide P | 55



PERF.List

Default profiling

Format:

<column>:

<option>:

PERF.List [<column> ...] [/[<option>]

DEFault
DYNamic

ALL

Name

TIme
WatchTime
Ratio

DRatio

BAR [.log | .LIN]
DBAR [.log | .LIN]
Hits

Address

Track | Address <range> | <address>

CORE <core_number> | MergeCORE | SplitCORE

Default profiling displays:

PERF.ListLabel for PERF.Mode PC | PCTASK | PCMEMory
PERF.ListTASK for PERF.Mode TASK
PERF.ListDistriB for PERF.Mode MEMory

CORE, MergeCO
SplitCORE

RE, For detalils, refer to “Profiling for SMP Systems”, page 49.

£ B:PERF.List

Lo [O sl

(&2 Setup...|[28 config...[ ¥

Goto... || E] Detailed|| €, View || jul Profile || @ it |[C DISable]| @ Arm |[ToProgram |

name

coverage: 100.000% runtime: 98.519% covtime: 100.000%
ratio 1% 2% 5% 10% 20% 50%

idTe_thread_main--Cyg_
s1eve--cyg_io_init_c

|_strcmp--strilen
hal_Tlsbindex--hal_thre
Cyg_CList_T<Cyg_Alarm>
Cyg_5cheduler::unlock_
Cﬁg_Schedu'I er::unlock-
dhrystone--Proc_1
jroc_S——Func_l

4

Cyg_Counter: :ti ck——Cﬁ/g_Counter sradd_alar | 4.448%
ass::cyg_io_init_cl| 4.273%
memcpy--Cyg_SpinLock: :Cyg_SpinLock

IdleThread::Cyg_Id | 52.721% -

ad_switch_context
: :get_head——Cﬁg_DN
inner--Cyg_Schedul
-operator new

R R
Wi
T
=
&

W
oo
o
=S
h I| |‘

©1989-2024 Lauterbach

General Commands Reference Guide P

56




Interpretation of the result:

runtime PERF.METHOD StopAndGo only:
Percentage of time taken by the actual program run in the last second,
the rest of the time was consumed by the measurement.

Columns sets:

DEFault Select the standard set (columns: Name, Ratio and BAR.log). The
DEFault configuration is also used if no display items are specified.

DYNamic Displays the results of the last second (columns: Name, DRatio,
DBAR.log). Dynamic displays are continually updated with the results of
the previous second of performance data. They will not reflect any
performance data outside the previous second.

ALL Display all possible numeric fields in the PERF.List window (columns:
Name, Time, WatchTime, Ratio, DRatio, Address, Hits).

PERF.List Hits DEFault ; Open a PERF.List window starting with
; the column Hits followed by the
; default columns

PERF.List ALL

©1989-2024 Lauterbach General Commands Reference Guide P | 57



| B:PERF List ALL o= =
(& setup...|[88 config...| R Goto... |[E] Detailed|| & view Imul profile | @ mit |[© Disable || ® Arm |[ToProgram |
coverage: 100.000% runtime: 98.425% covtime: 100.000%

hame time watchtime |ratio dratio |address hits |
idTe_thread_mai n——CY?_Id'IeThread: :Cyg_Id| 56.270ms | 104.568ms | 53.811% | 83.333% P:0003A2Z80--0003AZAB 3014. | .
sieve--cyg_io_init_class::cyg_io_init_cl 4.555ms | 104.568ms | 4.356% | 0.000% P:000315B80--0003167F 244,
Cyg_Counter : :tick--Cyg_Counter::add_alar 4.537ms | 104.568ms | 4.338% | 16.666% P:000440A4--000442E7 243.
memcpy--Cyg_SpinLock: :Cyg_SpinLock 3.547ms | 104.568ms | 3.392%| 0.000% P:00038A10--00038C47 190.
| strcmp--strlen 2.520ms | 104.568ms | 2.410% | 0.000% P:000414F4--000416EF 135.
hal_l1sbindex—-hal_thread_switch_context 2.446ms | 104.568ms | 2.338%| 0.000% P:00041D20--00041D8B 131.
Cyg_CList_T<Cyg_Alarm>::get_head--Cyg_DN 1.624ms | 104.568ms | 1.553%| 0.000% P:00044910--00044957 87.
Cyg_scheduler: :unlock_inner--Cyg_schedul 1.587ms | 104.568ms | 1.517%| 0.000% P:0003B70C--0003B86F 85.
Cy?jchedu'ler::uﬂ'lockfoperator new 1.288ms | 104.568ms | 1.231%| 0.000% P:00038F84--00038FC7 69.
hal_IRQ_handler--hal_interrupt_mask 1.045ms | 104.568ms | 0.999% | 0.000% P:000435B4--0004362F 56.
dhrystone--Proc_1 1.027ms | 104.568ms | 0.981%| 0.000% P:000304C8--00030CF7 55. | -

columns

name Name of the item (here label range)

time Total run-time spent in item

watchtime Observation time of item

ratio Ratio of time spent by the item in percent

dratio Ratio of time spent by item in the last second in percent. Please refer to

DYNamic for more information.

address Item’s address range or contents of the memory location

hits Number of samples taken for the item

bar Logarithmic bar for the ratio

dbar Logarithmic bar for the ratio of time spent by item in the last second.

Please refer to DYNamic for more information.

Column description:

Name Display the names/contents of the listed items.
Command PERF.ListFunc: If the sampled program counter can’t be
assigned to a high-level language function (e.g. assembler code, library
code) it is assigned to (other).
Command PERF.ListLine: If the sampled program counter can not be
assigned to the address range of an high-level language line, it is assigned
to (other)
Command PERF.ListTASK: If task ID 0x0 is sampled or if the sampled
task ID is unknown it is assigned to (other).

Time Total runtime spent in listed item.

©1989-2024 Lauterbach

General Commands Reference Guide P |

58



WatchTIime

Time the item is observed.

This time will be the same for all ranges if the program counter is
sampled.

When the contents of a memory location is sampled, WatchTime starts
when the listed value is detected the first time.

Ratio Ratio of time spent by the listed item in percent. This value is calculated
by dividing the field Time by WatchTIme.

DRatio Similar to Ratio, but only for the last second. Please refer to DYNamic for
more information.

BAR Display the profiling values in a graphical way as horizontal bars. The
default display is logarithmic. The keyword .LIN changes to a linear
display.

DBAR Similar to BAR, but only for the last second. Please refer to DYNamic for
more information.

Hits Number of samples taken for the item.

Address Item’s address range or contents of the memory location.

Buttons and Context Menu in the PERF.List window

£| B:PERF.List

(=[O

(& Setup... |28 Config...|[ 13 Goto... |[E] Detailed|[ @ view ]m profile || @ it |[© DiSable|| @ Arm ]L

coverage: 100.000% runtime: 98.861% covtime: 100.000%
name ratio 1% 2% 5% 10% 2
sieve--background 99. 250% | -
start--sin
(other) &, View .eo0x| =
start--bss_clear : 0. 000%
bss_clear--gomain w Pmﬂ_le 0. 000%
gordna'ig——end ]| Detailed 0. 000%
end--funcO = = 0%
funcO--funcl m — 0%
funcl--func2 (=g | 510 0%
;unc%——an‘:Zgb £ s100 8%
uncLsa--Tunc = A
func2b--func2c El s1000 0% -
< n| £ 510000 »
Buttons
Setup ... Opens a PERF.state window that allows the configuration of the
Performance Analyzer.
Config ... Opens a configuration dialog that allows to rearrange the column display
in the PERF.List window.
Goto ... Opens a Perf Goto dialog which allows to bring the specified item in

display (command line equivalent Data.GOTO).

©1989-2024 Lauterbach

General Commands Reference Guide P | 59



Detailed

Opens a PERF.List window, which lists all numerical items (command line
equivalent PERF.List<item> ALL). Only supported for program counter
sampling.

View

Opens a window to display all performance data of a selected item
(command line equivalent PERF.View /Track).

Profile

Opens a PERF.PROfile window that displays a graphical profiling for the
first three listed items, (other) is ignored.

Init

Execute the command PERF.Init. This command resets the current
measurement. The Performance Analyzer configuration is not touched.

DiSable

Disable the Performance Analyzer (command line equivalent
PERF.DISable).

Arm

Activates the Performance Analyzer manually (command line equivalent
PERF.Arm)

ToProgram

A Performance Analyzer program is generated out of the currently shown
address ranges (program counter sampling only). The command line
equivalent is PERF.ToProgram.

©1989-2024 Lauterbach

General Commands Reference Guide P | 60



Context menu items

View This window displays all performance data for the selected line (command
line equivalent PERF.View <address>).

Profile Opens a PERF.PROfile window that displays a graphical profiling for the
selected line.

Detailed Opens a PERF.List window, which lists all numerical items (command line
equivalent PERF.List<item> ALL). Only supported for program counter
sampling.

Line Opens a PERF.ListLine window for the selected item (command line

equivalent PERF.ListLine /Address <range>). Only supported for program
counter sampling.

$10/S100/S1000/S10 | Opens a PERF.ListSn window for the selected item (command line
000 equivalent PERF.ListSn /Address <range>). Only supported for program
counter sampling.

Options
Track Tracks the window to the reference position of other windows.
Address <range> | Restricts the evaluation of the profiling results to the specified address
<address> range. If only an <address> is given it is expanded to an address range
that ends at the next label. Only supported for program counter sampling.
See also
B PERF B PERFstate

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide P | 61



PERF.ListDistriB Memory contents profiling

Format: PERF.ListDistriB [<column> ...] [[Track]
(memory contents sampling)

Reports the percentage of run-time a memory location had a certain value.

£ B:PERF ListDistrif [=n Eol

(& Setup...|[38 Config...|[ 3 Goto... |[E] Detailed|| &, View |m profile || @ mit || © mit |[© Disable|| & Arm |
runtime: 95.829%
value ratio 1% 2% 5% 10% 20% 50% 100 [
0x4E208 57.143% -
0x58E10 11.837%
0x58D68 11.429%
0x58CCO 9.796%
Ox58EES 4, B98N | —————
0x59158 2. 041% |e——
0x59008 1.224% |mem
0x58F60 0.816% |+
0x59080 0.816% |+ -
4 [

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

Example for ARMO:
PERF.state ; display the Performance Analyzer
; configuration window
PERF .RESet ; reset the Performance Analyzer
; configuration to its default
; setting
PERF.OFF ; enable the Performance Analyzer
PERF .Mode MEMory ; the Performance Analyzer samples
; the contents of a memory location
; PERF .METHOD StopAndGo ; TRACE32 sets the acquisition
; method StopAndGo
PERF . SnoopAddress 0x4BD60 ; specify the memory location
PERF . SnoopSize Long ; specifies the sampling width
PERF.ListDistriB ; open a memory contents
; profiling window
Go ; start the program execution and
; sampling
See also
B PERF B PERFstate

©1989-2024 Lauterbach General Commands Reference Guide P | 62



PERF.ListFunc Function profiling

Format: PERF.ListFunc [<column> ...] [/<option>]
(program counter sampling)

<option>: Track | Address <range> | <address>

CORE <core_number> | MergeCORE | SplitCORE

Reports the percentage of run-time used by high-level language functions.

If the sample program counter can not be assigned to the address range of an HLL function, it is assigned to
(other). The command PERF.ListLABEL can be used to get more information on what is assigned to

(other).

£ B:PERF ListFunc = = =
(&2 Setup...|[28 Config...| A Goto... |[E] Detailed|| € view || |l Profile || @ it |[© DiSable]
name ratio 1% 2% 5% 10% 20% 50 1
Sieve 57. 292% -
pain o500 v E
func0 0.000%

funcl 0.000% hd
J < I b

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

CORE, For details, refer to “Profiling for SMP Systems”, page 49.
MergeCORE,
SplitCORE

©1989-2024 Lauterbach General Commands Reference Guide P | 63



Example for ARMO:

; example for ARM9

PERF.state ; display the Performance Analyzer
; configuration window

PERF .RESet ; reset the Performance Analyzer

; configuration to its default

; settings
PERF .OFF ; enable Performance Analyzer
PERF .Mode PC ; the Performance Analyzer samples

; the actual program counter

PERF .METHOD Trace ; set the acquisition method Trace
PERF .ListFunc ; open a window for function
; profiling
Go ; start the program execution and
; sampling
See also
W PERF B PERFstate

©1989-2024 Lauterbach General Commands Reference Guide P | 64



PERF.ListFuncMod

HLL function profiling (restricted)

Format:

<option>:

PERF.ListFuncMod [<column> ...] [[<option>]
(program counter sampling)

Track | Address <range> | <address>

CORE <core_number> | MergeCORE | SplitCORE

Report the percentage of run-time spent in high-level language functions inside the address range specified

by the PERF.ADDRESS command. Outside the specified address range the percentage is reported on

module base.

E| B:PERF.ListFuncMod

(o )[O el

(& Setup...|[38 Config...|[ 13 Goto... |[E] Detailed|[ @ view |m Profile || @ it |[© Disable|[ & Arm |[ToProgram |

coverage:

100.000% runtime:

covtime: 100.000%

jyg_Schedu]er_Base::get_current_thread

name ratio 5% 10% 20% 50% 100
NcTock 15.562% -
‘twothreads 10. 669%
memcpy 9. 345%
\mlgueue 8.830%
\dhry_2 8.351%
\dhry_1 6.622%
‘stromp 6.254%
“sched 6.070%
“thread 5.334%
“clock 5.040%
hintr 2.906%
“arm/arch/v3_0/src/hal_misc 2.869%
Cyg_Scheduler: :unlock 2.538%
1.839% -

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

CORE,
MergeCORE,
SplitCORE

For details, refer to “Profiling for SMP Systems”, page 49.

©1989-2024 Lauterbach

General Commands Reference Guide P

65



Example for ARMO:

PERF.state ; display the Performance Analyzer
; configuration window

PERF .RESet ; reset the Performance Analyzer

; configuration to its default

; settings
PERF .OFF ; enable Performance Analyzer
PERF .Mode PC ; the Performance Analyzer samples

; the actual program counter

; PERF.METHOD StopAndGo ; TRACE32 sets the acquisition
; method StopAndGo

PERF .Mode PC ; the Performance Analyzer samples
; the actual program counter

PERF .ADDRESS 0x38000--0x38fff ; specify address range

PERF .ListFuncMod ; display a function profiling
; inside the specified address
; range and module profiling
; outside the specified address
; range

Go ; start the program execution and
; sampling

See also
B PERF B PERFstate

©1989-2024 Lauterbach General Commands Reference Guide P | 66



PERF.ListLABEL

Label-based profiling

Format: PERF.ListLABEL [<column> ...] [/<option>]
(program counter sampling)

<option>: Track | Address <range> | <address>

CORE <core_number> | MergeCORE | SplitCORE

Reports the percentage of run-time spent in the address range between two labels.

£ B:PERF ListLABEL =<
(&2 Setup...|[28 Config...| R Goto... |[E] Detailed]| @, View || ] Profile || @ mit |[ DISable]| @ Arm |[ToProg
coverage: 100.000% runtime: 99.602% covtime: 100.000%

name ratio 1% 2% 5% 10% 20% 50% 100 [

main--dhrystone 0. 000% -

dhrystone--Proc_1 6.591%

Proc_l--Proc_2 3.528%

Proc_2--Proc_3 1.318% |mmmm

Proc_3--Proc_4 1.279% |m—

Proc_4--Proc_5 0.969% |+

Proc_5--Proc_6 0.542% |+

Proc_b--Proc_7 1.395% |mm—

Proc_7--Proc_8 2.442%

Proc_8--Func_1 5.971%

Func_l--Func_2 2. 3655 |——

Func_2--Func_3 2.597% |— hi
4 }

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

CORE,
MergeCORE,
SplitCORE

For details, refer to “Profiling for SMP Systems”, page 49.

©1989-2024 Lauterbach

General Commands Reference Guide P |

67



Example for ARMO:

PERF.state ; display the Performance Analyzer
; configuration window

PERF .RESet ; reset the Performance Analyzer
; configuration to its default
; settings
PERF.OFF ; enable Performance Analyzer
PERF .Mode PC ; the Performance Analyzer samples

; the actual program counter

; PERF.METHOD StopAndGo ; TRACE32 sets the acquisition
; method StopAndGo

PERF.Sort OFF ; the result is sorted by the
; succession of the labels in the
; symbol database

PERF .ListLABEL ; open a window for label-based
; profiling
Go ; start the program execution and
; sampling
See also
B PERF B PERFstate

©1989-2024 Lauterbach General Commands Reference Guide P | 68



PERF.ListLine Profiling by HLL lines
Format: PERF.ListLine [<column> ...] [[<option>]
(program counter sampling)
<option>: Track | Address <range> | <address>
CORE <core_number> | MergeCORE | SplitCORE

Reports the percentage of run-time spent in high-level language lines.

If the sampled program counter cannot be assigned to the address range of an HLL line, it is assigned to
(other). If the time spent in (others) is high the command PERF.ListLABEL can be used to get more

information.

£| B:PERF.ListLine

=N Hoh/

(& setup...|[38 Config...|[ 13 Goto... |[E] Detailed|[ @ view ]m Profile || @ it |[© Disable|[ & Arm |[ToProgram |

rname

coverage: 100.000% runtime:
ratio

97.984%  covtime: 100.000%

1% 2% 5% 10% 20% 50% 100 4

4

Nthread\1227 59. 800% -
\thread\1224 6.129% =
twothreads', 89 1. 710% |ee— L&

‘arm/arch/v3_0/src/hal_misci259
“arm/arch/v3_0/src/hal_misc’257

1. 710% |we—
1. 496% |m— v

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

CORE, For details, refer to “Profiling for SMP Systems”, page 49.
MergeCORE,
SplitCORE

See also

W PERF B PERFstate

©1989-2024 Lauterbach

General Commands Reference Guide P | 69



PERF.ListModule Profiling by modules

Format: PERF.ListModule [<column> ...] [[<option>]
(program counter sampling)

<option>: Track | Address <range> | <address>

CORE <core_number> | MergeCORE | SplitCORE

Reports the percentage of run-time spent in program modules.

1 B:PERF ListModule ===
(& Setup...|[38 Config...|[ 13 Goto... |[E] Detailed|[ @ view ]m profile || @ it |[© DiSable|| @® Arm |[ToProgram
coverage: 100.000% runtime: 99.625% covtime: 100.000%

name ratio 1% 2% 5% 10% 20% 50% 100 [
Ndhry_1 20.408% -
dhry_2 19.591%

\memcpy 17.142%

‘stromp 12.653%

“clock 8.979% -

4 I3

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

CORE, For details, refer to “Profiling for SMP Systems”, page 49.
MergeCORE,
SplitCORE

See also

B PERF B PERFstate

©1989-2024 Lauterbach General Commands Reference Guide P | 70




PERF.ListProgram Profiling based on performance analyzer program

Format: PERF.ListProgram [<column> ...] [/<option>]
(program counter sampling)

<option>: Track | Address <range> | <address>

CORE <core_number> | MergeCORE | SplitCORE

Reports the percentage of run-time spent in the address ranges specified by the Performance Analyzer
program. A complete example of how to work with a Performance Analyzer program is given in the
description of the PERF.Program command.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

CORE, MergeCORE, For details, refer to “Profiling for SMP Systems”, page 49.

SplitCORE
See also
B PERF B PERFstate
PERF.ListRange Profiling by ranges
Format: PERF.ListRange [<column> ...] [/[<option>]
(program counter sampling)
<option> Track | Address <range> | <address>
CORE <core_number>| MergeCORE | SplitCORE

Reports the percentage of run-time spent in all ranges specified in the symbol database.

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

CORE, MergeCORE, For detalils, refer to “Profiling for SMP Systems”, page 49.
SplitCORE

See also
B PERF B PERFstate

©1989-2024 Lauterbach General Commands Reference Guide P | 71




PERF.ListS10

Profiling in n-byte segments

Format:

<option>:

PERF.ListS10 [<column> ...] [/<option>]
PERF.ListS100 [<column> ...] [/[<option>]
PERF.ListS1000 [<column> ...] [/<option>]
PERF.ListS10000 [<column> ...] [/<option>]
(program counter sampling)

Track | Address <range> | <address>

CORE <core_number> | MergeCORE | SplitCORE

Reports the percentage of run-time spent in 16/256/4096/65536 byte segments.

£ B:PERF.List5100 |- ]
(& Setup...|[s8 Config...|[ 13 Goto... |[E] Detailed|[ & view |m Profile || @ it |[© Disable|[ & Arm |[ToProgram |
scan: 0. 3.149% coverage: 100.000% runtime: 98.226% covtime: 100.000%
name ratio 1% 2% 5% 10% 20% i
C:00038B00--00038EFF 8.239% -
C:00041600--000416FF 6.991%
C:00038C00--00038CFF 4.868%
C:00038A00--00038AFF 4.619%
C:00031200--000312FF 4.244%
C:00031600--000316FF 3.870%
C:00044200--000442FF 3.870%
C:00030E00--00030EFF 3.745%
C:0003AC00--0003ACFF 3.745%
J C:00044100--000441FF 3. 620% |e— i
4 n 3

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

CORE, For details, refer to “Profiling for SMP Systems”, page 49.
MergeCORE,
SplitCORE

See also

W PERF W PERFstate

©1989-2024 Lauterbach

General Commands Reference Guide P | 72




PERF.ListTASK Profiling by tasks/threads

Format: PERF.ListTASK [<column> ...] [[Track]
(memory contents sampling)

Reports the percentage of run-time spent in different tasks/threads based on the sampling of the contents of
the OS-variable that contains the identifier for the current task/tread.

£ B:PERF.ListTASK = -E e
(&2 Setup...|[28 Config...| A Goto... |[E] Detailed|| &, view | lProfie || @ it |[ @ mit |[Q DiSable]|| @& Arm |
runtime: 91.117%

Iname ratio 1% 2% 5% 10% 20% 50

main 82.160% 2

Thread 3 2.973% |e—

Thread 7 2.817%

Thread 6 2. 504% | e—

Thread 5 2. 347 | e—

Thread 2 2.191% | e———

Thread 4 2. 034% | e—

Thread 0 1. B78% |we—

Thread 1 1.095% |m

(other) 0.000%

jd'le Thread 0. 000% -
4 I 3

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

Example for ARM9 and RTOS ECOS:

TASK.CONFIG ecos ; enable ECOS-aware debugging

PERF.state ; display the Performance Analyzer
; configuration window

PERF.RESet ; reset the Performance Analyzer

; configuration to its default

; settings
PERF.OFF ; enable Performance Analyzer
PERF .Mode TASK ; the Performance Analyzer samples

; the contents of the variable that
; contains the identifier for the
; current task

; PERF.METHOD StopAndGo ; TRACE32 sets the acquisition
; method StopAndGo

PERF .Mode TASK ; the Performance Analyzer samples
; data information from
; TASK.CONFIG (magic)

PERF.LiStTASK ; open a window to display a
; a task profiling

Go ; start the program execution and
; the sampling

©1989-2024 Lauterbach General Commands Reference Guide P | 73



Example for ARM9 and proprietary target-OS:

; inform TRACE32 which variable contains the identifier for the
; current task

; ~~ represents the TRACE32 installation directory

TASK.CONFIG ~~/demo/kernel/simple/simple.t32 current_task

; specify names for the individual tasks
Task.NAME.Set 0Ox4bca "Idle Task"
TASK.NAME.Set 0x58cc0 "Thread 1"

; list specified task names
TASK.NAME.view

; display the Performance Analyzer configuration window
PERF.state

; reset the Performance Analyzer configuration to its default settings
PERF .RESet

; enable Performance Analyzer
PERF .OFF

; the Performance Analyzer samples the contents of the variable that
; contains the identifier for the current task
PERF .Mode TASK

; TRACE32 sets the acquisition method StopAndGo
; PERF.METHOD StopAndGo

; open a window to display a task profiling
PERF .ListTASK

; start the program execution and the sampling
Go

See also
B PERF B PERFstate

©1989-2024 Lauterbach General Commands Reference Guide P | 74



PERF.ListTREE Profiling by module/function tree
Format: PERF.ListTREE [<column> ...] [/<option>]
(program counter sampling)
<option>: Track | Address <range> | <address>
CORE <core_number> | MergeCORE | SplitCORE

Reports the percentage of run-time spent in modules/functions as a tree display. The tree is based on the

module/function information provided by the symbol database.

£| B:PERF.ListTREE

=N Noh

(& Setup...|[38 Config...|[ A Goto... |[E] Detailed|| & View ]m profile || @ mit || © mit |[© Disable|| & Arm |
coverage: 100.000% runtime: 97.867% covtime: 100.000%
name ratio 1% 2% 5% 10% 20% 50% 100 i
[ memcpy 22.027% -
= dhry_2
# Proc_8§ 6.313%
# Func_1 3.686%
# Func_2 3.041%
# Proc_7 2.903%
# Proc_6 1.705% |we—
# Func_3 1.152% |wem
& dhry_1 15. 598%
# strcmp 13.502% 5
4 [

A detailed description of all display columns, all options, all window-specific buttons and the context pull-

down is given in the description of the PERF.List command.

CORE, For details, refer to “Profiling for SMP Systems”, page 49.
MergeCORE,
SplitCORE

See also

W PERF W PERFstate

©1989-2024 Lauterbach

General Commands Reference Guide P

75



PERF.ListVarState

Variable state profiling

(memory contents sampling)

Format: PERF.ListVarState [<column> ...] [[Track]

Reports the percentage of run-time a variable had a certain contents.

£ B:PERF.ListVarState

=N Eoh

runtime: 90. 9
value ratio 1% 2% 5% 10% 20%

(2 setup...|(s8 Config...|[ ¥ Goto... ||l Detailed|| & view |[ il Profile || @ Init |[ @ it |[© DE
474%

50%

73.775%

100 1

14.121%
10.951%
0.576%
0.576%

&

T RFwrPro

A detailed description of all display columns, all options, all window-specific buttons and the context pull-
down is given in the description of the PERF.List command.

Example for ARMO:

PERF.state

PERF .RESet

PERF .OFF

PERF .Mode MEMory

; PERF.METHOD StopAndGo

PERF . SnoopAddress Var.RANGE (sched_Lock)

PERF.SnoopSize Var.SIZEOF (sched_Lock)

PERF.ListVarState

Go

See also

display the Performance
Analyzer configuration
window

reset the Performance
Analyzer configuration to
its default settings

enable Performance Analyzer

the Performance Analyzer
samples the contents of
a memory location

TRACE32 set the acquisition
method StopAndGo

specifies the address range
of the variable

specifies the sampling width

open a window for variable
profiling

start the program execution
and sampling

B PERF B PERFstate

©1989-2024 Lauterbach

General Commands Reference Guide P | 76




PERF.LOAD Load previously stored PERF results

Format: PERF.LOAD <file>

Loads the PERF results previously stored with the PERF.SAVE command for postprocessing.

See also
B PERF W PERFSAVE B PERFstate
PERF.METHOD Specify acquisition method
Format: PERF.METHOD <mode>
<mode>: StopAndGo
Trace
Snoop

DCC (only if JTAG interface provides Data Communications Channel)

The TRACERS2 software sets automatically the acquisition method Snoop:

. If the processor allows to read the program counter while the program execution is running and
PERF.Mode PC is selected.

J If the processor allows to read the contents of a memory locations while the program execution is
running and PERF.Mode MEMory or TASK is selected.

Otherwise the default method is set to StopAndGo.

Performance Analyzer Methods

StopAndGo The target processor is stopped periodically in order to get the
actual program counter or in order to read the data information of
interest (intrusive). For details refer to “The Method StopAndGo”
in General Commands Reference Guide P, page 79
(general_ref_p.pdf).

©1989-2024 Lauterbach General Commands Reference Guide P | 77




Snoop The actual program counter or the data information of interest is
read while the program execution is running (non-intrusive).

Sampling is done as fast as possible (no snoop fails). The
minimum rate is 10 samples per second. The sampling rate is set
slightly varied to avoid any side effects with the timing of the
application / target.

For details, refer to “The Method Snoop” in General Commands
Reference Guide P, page 80 (general_ref_p.pdf).

Trace This method requires an off-chip trace port. In order to get the
actual program counter or the data information of interest, the
trace recording is stopped shorty to get a big enough section of the
most recent trace information (non-intrusive).

Sampling is done as fast as possible (no snoop fails). The
minimum rate is 10 samples per second. The sampling rate is set
slightly varied to avoid any side effects with the timing of the
application / target.

For details, refer to “The Method Trace” in General Commands
Reference Guide P, page 83 (general_ref_p.pdf).

DCC The Performance Analyzer sample the data provided via the DCC
(intrusive due to code instrumentation in the target application).
For detalils, refer to “The Method DCC” in General Commands
Reference Guide P, page 87 (general_ref_p.pdf).

©1989-2024 Lauterbach General Commands Reference Guide P | 78



The Method StopAndGo

The method StopAndGo is available for all processors.

The target processor is stopped periodically in order to get the actual program counter or in order to
read the data information of interest. The target processor is restarted afterwards. A stop and restart of
the target processor can take more than 1 ms in a worst case scenario.

=

[ ermilate ][ trigger ][ devices ][ trace ][ Drata ][ War ][ other ][ previons ]

ER 1 P

The display of a red S in the TRACE32 state line indicates that the program execution is periodically
interrupted by the Performance Analyzer.

The field snhoops/s in the PERF.state window shows how much stops have been performed in the last
second.

The field runtime in the PERF.List<item> window shows the percentage of time taken by the actual
program run in the last second.

£ B:PERF ListFunc =]

(& Setup...|[38 Config...|[ 13 Goto... |[E] Detailed|[ @ view ]m Profile || @ it |[© Disable|[ & Arm |[ToProgram |
coverage: 100.000% runtime: 99.392% covtime: 100.000%

name ratio 1% 2% 5% 10% 20% 50% 100 |
s1eve 96.982% o
(other) 2.024% |—
main 0.635% |+
|_deee754_rem_pio2 0.119% |+
|_kernel_cos 0.119% |+ -

4 b

TRACE32 starts the sampling with 100 stops per second, but then tunes the sampling rate so that more the
99% of the run-time is retained for the actual program run. The smallest possible sampling rate is
nevertheless 10.

A fixed percentage of time can be retained for the actual program run by the command PERF.RunTime.

©1989-2024 Lauterbach General Commands Reference Guide P | 79



The Method Snoop

The actual program counter or the data information of interest is read while the program execution is running
(non-intrusive).

Non intrusive sample-based profiling can be done, if the target processor supports

. reading the program counter while the target program is running.
The function CPU.FEATURE(PCSNOOP) returns TRUE if your CPU under debug supports this.

PRINT CPU.FEATURE (PCSNOOP)

. reading memory (never cache) while the target program is running.

TRACE32 is optimizing the sampling rate. The achieved sampling rate of the last second is displayed in the
field snoops/s in the PERF.state window.

Combi-modes e.g. PERF.Mode PCMEMory operate only if both, reading the program counter and reading
memory is supported while the target program is running.

Processor architectures that allow to read memory (not cache)
while the program execution is running

78KOR

ARC600
ARC700

Blackfin Only via Background Telemetric Channel

ColdFire

Cortex-A/R If the DAP is connected to the AHB bus
other ARM cores

Cortex-M

GTM

MPC55xx/56xx Via NEXUS block

QORIQ

RH850

S$12X, MCS12, 68HC12

©1989-2024 Lauterbach General Commands Reference Guide P | 80



Processor architectures that allow to read memory (not cache)
while the program execution is running

SH2/SH2A

TMS320C28xx
TMS320C54xx
TMS320C55xx
TMS320C62xx
TMS320C64xx
TMS320C67xx

TriCore

V850 E1 core by QUICK access

V850 E2 core

XC2000/C166S V2

ZSP500 Debug Emulation Unit only

Example: Program counter sampling

PERF.state ; display the Performance
; Analyzer configuration
; window

PERF .RESet ; reset the Performance

; Analyzer configuration to
; 1ts default settings

PERF.OFF ; enable Performance Analyzer

PERF .Mode PC ; the Performance Analyzer samples
; the program counter

; PERF .METHOD Snoop ; TRACE32 detects automatically
; that reading the program counter
; 1s possible while the program
; execution 1s running

PERF .ListFunc ; open a window for function
; profiling
Go ; start the program execution and

; the measurement

©1989-2024 Lauterbach General Commands Reference Guide P | 81



Example: Memory contents sampling

PERF .state

PERF .RESet

PERF .OFF

PERF .Mode MEMory

; PERF .METHOD Snoop

PERF . SnoopAddress 0xA108002F
PERF . SnoopSize Word

PERF.ListDistriB

Go

display the Performance
Analyzer configuration
window

reset the Performance
Analyzer configuration to
its default settings

enable Performance Analyzer

the Performance Analyzer samples
the contents of a memory location

TRACE32 detects automatically
that reading memory is possible
while the program execution is
running

specifies the memory address
specifies the sampling width

open a window for memory contents
profiling

start the program execution and
the measurement

©1989-2024 Lauterbach

General Commands Reference Guide P | 82



The Method Trace

NOTE: The sampling rate of PERF.METHOD Trace is much slower than the sampling
rate of PERF.METHOD Snoop.

Use PERF.METHOD Trace only if:

. You do not want to stop the application.

. The option Snoop (= PERF.METHOD Snoop) is disabled in the
PERF.state window.

] The architecture supports a trace that can be read without stopping the
application.

This non-intrusive method is only available if the processor provides an off-chip trace port. Please make
sure, that the trace recording is working correctly before you use the PERF.METHOD Trace.

In order to get the actual program counter or the data information of interest, the trace recording is stopped
shortly to get a big enough section of the most recent trace information.

The field snoop fails in the PERF.state window shows how often TRACES32 failed to get the requested
information out of the captured section.

i BuTrace.List EI
&2 setup...|[ ¥ Goto... || §3Find... || Adchart || $ More || X Less |
run |address cycle |data symbol ti.back
R:00002240 exec <0.020us .
mo 1, #0x1 E
R:00002244 notexec <0.020us _
b

The display of perf in blue in any Trace display window indicates that the trace recording was periodically
interrupted by the Performance Analyzer. In this case the trace information is inappropriate for any trace
analysis.

Sampling the actual program counter (PERF.Mode PC)

If the actual program counter is sampled the source code is required to decompress the trace information. If
the target processor doesn’t allow to read memory while the program execution is running, the source code
has to be loaded to the TRACES32 virtual memory.

Sampling data information (PERF.Mode MEMory/TASK)

If data information is sampled it is recommended to set a filter on the data of interest. Otherwise the number
of snoop fails will be too high.

©1989-2024 Lauterbach General Commands Reference Guide P | 83



Example for MPC5554: NEXUS block allows to read source code from memory while the program
execution is running.

TRANSlation.Create 0x0--Oxffffffff 0xO0

TRANSlation.ON

NEXUS.DTM OFF

PERF.

PERF.

PERF .

PERF

PERF.

PERF .

Go

state

RESet

OFF

.METHOD Trace

Mode PC

ListFunc

specify 1:1 translation of
effective to real addresses
for debugger MMU

activate translation via
debugger MMU

switch data trace off in
order to reduce load on the
NEXUS port

display the Performance
Analyzer configuration
window

reset the Performance
Analyzer configuration to
its default settings

enable Performance Analyzer
set acquisition method Trace

the Performance Analyzer
samples the program counter

open a window for
function profiling

start the program execution
and the sampling

©1989-2024 Lauterbach

General Commands Reference Guide P | 84



Example for ARM920: Load the source code to the virtual memory of TRACES32 because it is not possible
to read the source code from memory while the program execution is running.

Data.LOAD.El1f armle.axf /VM

ETM.DataTrace off

PERF.

PERF.

PERF .

PERF.

PERF.

PERF

Go

state

RESet

OFF

METHOD Trace

Mode PC

.ListLABEL

load source code to virtual
memory of TRACE32

switch data trace off in order to
reduce load on ETM trace port

display the Performance
Analyzer configuration
window

reset the Performance
Analyzer configuration to
its default settings

enable Performance Analyzer
set acquisition method Trace

the Performance Analyzer samples
the program counter

open a window for label-based
profiling

start the program execution and
the sampling

©1989-2024 Lauterbach

General Commands Reference Guide P | 85



Example for ARM920: A filter is set to advise the ETM to only broadcast trace information if a write access
to the variable flags[3] occurs.

Var.Break.Set flags[3] /TraceEnable /Write

PERF .

PERF.

PERF.

PERF .

PERF

PERF

PERF

PERF.

Go

state

RESet

OFF

METHOD Trace

.Mode MEMory

.SnoopAddress Var.RANGE (flags[3])

.SnoopSize Byte

ListVarState

configure the ETM so
that only write
accesses to the
variable flags[3] are
broadcast

; display the Performance

Analyzer configuration
window

reset the Performance
Analyzer configuration
to its default settings

enable Performance
Analyzer

set acquisition method
Trace

the Performance
Analyzer samples
memory contents

specifies the sampling
address

specifies the sampling
width

open a variable state
profiling window

start the program
execution and
the sampling

©1989-2024 Lauterbach

General Commands Reference Guide P | 86



The Method DCC

DCC (Debug Communications Channel) is a feature of the on-chip debugging logic currently available for all
ARM/Cortex cores (not Cortex-M) and the StarCore architecture. DCC allows the target program to provide
data of interest to the TRACES32 debugger. For details on DCC, refer to the manual of your target CPU.

Examples of how to use the DCC with TRACES2 are given in the TRACE32 demo folder:

~~/demo/arm/etc/semihosting_arm_dcc

The Performance Analyzer sample the data provided via the DCC. The DCC method is recommended

mainly for PERF.Mode MEMory and TASK.

TRACES2 is optimizing the sampling rate. The achieved sampling rate of the last second is displayed in the

field snoops/s in the PERF.state window.

Example for ARM920: The contents of a variable is sent via DCC to TRACES32.

PERF.

PERF.

PERF .

PERF

PERF.

state

RESet

OFF

.METHOD DCC

Mode MEMory

display the Performance

; Analyzer configuration
; window

reset the Performance

; Analyzer configuration to

its default settings
enable Performance Analyzer
set acquisition method DCC

the Performance Analyzer samples
data information

PERF.ListVarState open a variable state profiling
; window
Go start the program execution and
the sampling
See also
B PERF B PERFstate 1 PERFMETHOD()

©1989-2024 Lauterbach

General Commands Reference Guide P | 87



PERF.MMUSPACES Include space IDs for addresses in the sampling

Format: PERF.MMUSPACES [ON | OFF]

If a target operating system (e.g. Linux, Windows CE) is used, several processes/tasks can run at the same
logical addresses. In this scenario, the logical address sampled by the Performance Analyzer is not sufficient
to assign the address to a function or variable. For a clear assignment the space ID is also required.

OFF (default) The Performance Analyzer does standard sampling.

ON The Performance Analyzer includes the space ID in the sampling.
See also
B PERF B PERFstate

A ’'Release Information’ in’Legacy Release History’

PERF.Mode Specify sampling object
Format: PERF.Mode <mode>
<mode>: PC
TASK
MEMory
PCTASK
PCMEMory

Selects the sampling object for the sample-based profiling.

TRACE32 samples in essence either:

J The actual program counter (PC)

J The contents of a memory location (MEMory, TASK)
. Or both simultaneously (PCMEMory, PCTASK)

©1989-2024 Lauterbach General Commands Reference Guide P | 88



The sampled program counter information and the sampled data information can only be profiled

independently of each other.

PC

The actual program counter is sampled.

TASK

The contents of the variable that contains the identifier for the actual task

is sampled.

If OS-aware debugging is configured, TRACES32 knows the address of

this variable (TASK.CONFIG(magic)).

Context ID packets are not supported.

MEMory

The memory address specified by the command PERF.SnoopAddress is
sampled in the size specified by the command PERF.SnoopSize.

PCTASK

The actual program counter and the contents of the variable that contains

the identifier for the actual task are sampled.

The information is sampled simultaneous, but can only be evaluated

separately.

PCMEMory

The actual program counter and the memory address specified by the
command PERF.SnoopAddress is sampled in the size specified by the

command PERF.SnoopSize.

The information is sampled simultaneous, but can only be evaluated

separately.

Not all PERF Modes are suitable for all PERF METHODSs. The table below provides a summary.

Mode Mode Mode
PC MEMory/TASK PCMEMory/PCTASK
METHOD yes yes yes
StopAndGo
METHOD yes yes, but requires no
Trace appropriate filter
METHOD yes, if the program yes, if memory can yes, if program
Snoop counter can be read be read during counter and memory
during program run program run can be read during
program run
METHOD no yes no
DCC
See also
B PERF B PERFstate Q0 PERFMODE()
A ’Release Information’ in’Legacy Release History’
©1989-2024 Lauterbach General Commands Reference Guide P | 89



PERF.OFF Stop the performance analyzer manually

Format: PERF.OFF

The Performance Analyzer is coupled to the program execution if PERF.AutoArm is ON (default).

If PERF.AutoArm is OFF, the Performance Analyzer can be controlled manually. PERF.Arm activates the
Performance Analyzer, PERF.OFF stops the Performance Analyzer.

If the Performance Analyzer is disabled (state disable) it can be enable by PERF.OFF.

See also
B PERF B PERFstate O PERFSTATE()

PERF.PROfile Graphic profiling display
Format: PERF.PROfile <channel> [<channel> [<channel>]] [<gate> <scale>]
<channel>: <range> | <address> | <value>
<gate>: 0.1s11.0s | 10.0s
<scale>: 1. ... 32768.

The Performance Analyzer charts the percentage of time spent in the specified item over the time axis.

By default the display is updated once per second while the minimum update period is 100 ms. Within the
update period a large number of PC samples is required to calculate a statistically relevant distribution of the

runtime. Therefore using slow sample methods like StopAndGo with short update periods will give imprecise
results.

©1989-2024 Lauterbach General Commands Reference Guide P | 90



Up to three channels may be displayed in one window. Channels correspond to a code areas like functions,
address ranges, addresses, tasks or memory/variable contents.

PERF .METHOD StopAndGo ; take the samples for the profiling
; from the recorded trace information

PERF .Mode PC ; sample the program counter

; information
PERF .Arm ; arm the Performance Analyzer
PERF.PROfile sieve ; restrict the evaluation of the

; result to the program range of the
; function sieve

| B:PERF.PROfile sieve = =R
Esp. | @mt | OHold | In b0t S1n || S out|[ [ Ao used: Il

. -125.0s -100.0s -75.0s -50.0s -25.0s o
ratio |, 1 1 1 1 =
~

11.0

10.5

10.0

A, Wﬂ“

< >

See also
B PERF B PERFstate

©1989-2024 Lauterbach General Commands Reference Guide P | 91



PERF.Program

Write a performance analyzer program

Format: PERF.Program [<file>]
(program counter sampling only)

PERF.Program opens a Performance Analyzer programming window that allows to restrict the evaluation of
the program counter sampling to address ranges of interest.

A programming file consists of a text file containing one or more address ranges, each on a separate line.
The address ranges can be specified using a variety of methods:

Direct Address

AHB:08000000-AHBO8FFFFFF

Address Symbols

main

Range Symbols

localArray++0xFF

See <address ranges> for more details on specifying address ranges.

g B:PERF.Program CATMP\my_program.ps

[E=N Noh/

[ Save ][ Save As... ][Save+close][Quit+Close][Save+C0mp][ Compile ]

sieve
func40
Ox0--0xfff

4

[ [okl || <range> | <address>

Buttons in the PERF.Program window

Save Save the Performance Analyzer program.
If no name is specified the default name t32.ps is used.
Save As ... Save the Performance Analyzer program under a different name.

Save + Close

Save the Performance Analyzer program and close the Performance
Analyzer programming window.

Quit + Close

Quit editing and close the Performance Analyzer programming window.

Save + Comp

Save the Performance Analyzer program and activate it as done by
Compile.

Compile

Compiles the Performance Analyzer program. The evaluation of the
profiling is restricted to the specified address ranges in all
PERF.List<item> windows that evaluate sampled program counter
information.

©1989-2024 Lauterbach

General Commands Reference Guide P | 92



Example:

PERF.state ; display the Performance Analyzer
; configuration window

PERF .RESet ; reset the Performance Analyzer

; configuration to its default

; settings
PERF .OFF ; enable the Performance Analyzer
; PERF.METHOD StopAndGo ; the acquisition method StopAndGo

; 1s set by TRACE32

PERF .ReProgram my_ program.ps ; load a existing, error-free
; Performance Analyzer program

PERF.ListProgram ; open a window for Performance
; Analyzer program based profiling

Go ; start the program execution and
; the sampling

See also
B PERF B PERFstate

A ’'Release Information’ in’Legacy Release History’

PERF.ReProgram Load an existing performance analyzer program

Format: PERF.ReProgram [<file>]
(program counter sampling only)

Loads an existing, error-free Performance Analyzer program to the Performance Analyzer.

See also
B PERF B PERFstate

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide P | 93



PERF.RESet Reset analyzer

Format: PERF.RESet

All settings of the performance analyzer and all marked breakpoints will be destroyed. The windows of the
performance analyzer will be changed to the freeze mode and the performance analyzer will be disabled.

See also
W PERF B PERFstate
PERF.RunTime Retain time for program run
Format: PERF.RunTime <value>

If PERF.METHOD StopAndGo is used a fraction of time is taken by the sample-based performance
measurement, the rest is used by the actual program run. The command PERF.RunTime allows to specify
the percentage of time that should be retained for the actual program run.

Examples:
PERF.RunTime 90. ; 90% of time is retained for the
; actual program run, the sample-
; based performance measurement can
; take 10% of the time
PERF.RunTime 90% ; alternative input format

The adjustment of the snoops/s is done gradually (see the snoops/s field in the PERF.state window).

See also
B PERF B PERFstate

©1989-2024 Lauterbach General Commands Reference Guide P | 94



PERF.SAVE Save the PERF results for postprocessing

Format: PERF.SAVE <file>

The PERF results are stored to the selected file. The file can be then loaded for postprocessing with the

PERF.LOAD command.
See also
B PERF B PERF.LOAD B PERFstate
PERF.SnoopAddress Address for memory sample
Format: PERF.SnoopAddress <address> | <range>

(memory contents sampling only)

Defines the memory address for snoop modes (DistriBution, VarState). Supplying an address range
defines also the size of the memory operation (PERF.SnoopSize).

See also

B PERF B PERFstate
1 PERFMEMORY.SnoopAddress()

PERF.SnoopMASK Mask for memory sample

Format: PERF.SnoopMASK <value>
(memory contents sampling only)

Defines the sample mask for snoop modes (DistriBution, VarState).

See also
B PERF B PERFstate

©1989-2024 Lauterbach General Commands Reference Guide P | 95



PERF.SnoopSize Size for memory sample

Format: PERF.SnoopSize Byte | Word | Long
(memory contents sampling only)

Defines the memory access size for snoop modes (DistriBution, VarState).

See also

B PERF B PERFstate
1 PERF.MEMORY.SnoopSize()

PERF.Sort Specify sorting of evaluation results
Format: PERF.Sort <mode>
<mode>: OFF
Address
sYmbol
Ratio

As a default the results are sorted by ratio.

OFF Don’t sort. Results of the program counter sampling are sorted by
address, results of memory contents sampling are sorted by occurrence.

Address Sort evaluation result by addresses (program counter sampling only).
sYmbol Sort evaluation result by symbol names (program counter sampling only).
Ratio Sort evaluation result by the ratio of time used by the items.

See also

B PERF B PERFstate

©1989-2024 Lauterbach General Commands Reference Guide P | 96



PERF.state

Display state

Format:

PERF.state

Displays the control window for the Performance Analyzer.

&2 B::PERF state

METHOD
BusSnoop @ StopAndGo

state Mode

(0) DISable (@)1

@ OFF © TASK

) Arm @ MEMary
@) PCTASK

commands

[¥] Aut VArm

[C] A1 Mnie

options
[CIMmuseacs
STREAM

RunTime

(©) PCMEMory

() Trace

Snoop @ DCC

curr.scan

scans done Sort

©) OFF
Address

s¥mbol

runtime
79.103%
snoops/s

17

snoop fails

@ Ratio

SnoopAddress
D:0x4A3261
SnoopSize

perf program file

(] (&)

List510000
ListDistriB
ListVarState

List TASK

A For descriptions of the commands in the PERF.state window, please refer to the PERF.* commands in

this chapter.

Example: For information about the AutoArm check box, see PERF.AutoArm.

number of ranges.

scan done Displays the number of scans already completed. The field will be displayed
only, if the scanning mode is active, i.e. Ratio is active and more ranges than
available counters are covered.

curr.scan The 'current scan' field displays the ratio of the scanned ranges to total the

covered time

The 'covered time' field gives the time covered by the current set of ranges.
(not shown in the above PERF.state window.)

See also

B PERF B PERFADDRESS B PERFArm B PERF.AutoArm

B PERFAutolnit B PERF.ContextID B PERF.DISable B PERF.Init

B PERFList B PERFListDistriB B PERFListFunc B PERF.ListFuncMod
B PERFListLABEL B PERFListLine B PERFListModule B PERF.ListProgram
B PERFListRange B PERFLIistS10 B PERFLIistTASK B PERF.LIistTREE

B PERFListVarState B PERF.LOAD B PERFMETHOD B PERFMMUSPACES
B PERFMode B PERFOFF B PERF.PROfile B PERF.Program

B PERF.ReProgram B PERF.RESet B PERF.RunTime B PERF.SAVE

B PERF.SnoopAddress B PERF.SnoopMASK B PERF.SnoopSize B PERF.Sort

B PERF.STREAM B PERF.ToProgram B PERF.View J PEREMETHOD()
1 PERFMODE() 1 PERF.RATE() 1 PERF.RunTime() 1 PERF.STATE()

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide P

97



PERF.STREAM PERF stream mode

Format: PERF.STREAM [ON | OFF]
(program counter sampling and StopAndGo method only)

Default: OFF
Enable/disable STREAM mode for program counter sampling when PERF.METHOD is set to StopAndGo.

When STREAM mode is enabled, the sampling is performed by the software running on the PowerDebug
module instead of the PowerView host software which leads to higher sampling rates.

The STREAM mode cannot be used together with PERF.MMUSPACES.

See also
B PERF B PERFstate
PERF.ToProgram Automatic generation of performance analyzer program
Format: PERF.ToProgram

(program counter sampling only)

The different PERF.List<item> commands partition the address spaces into address ranges in order to
evaluate the sampled program counter information. Examples:

PERF.ListFunc Partitions the address space in function ranges
PERF.ListLine Partitions the address space in high-level language line ranges
PERF.ListModule Partitions the address space in module ranges

The command PERF.ToProgram converts the current segmentation into a Performance Analyzer program.

TRACE32 allows up to 1024 address ranges in a Performance Analyzer program.

©1989-2024 Lauterbach General Commands Reference Guide P | 98



Example for ARMO:

PERF .state

PERF .RESet

PERF .OFF

PERF .Mode PC

; PERF.METHOD StopAndGo

PERF.ListLABEL

Go

Break

PERF .ToProgram

[ B:PERF.P

(o8 sl

armiarm'sieve--(\\arm\arm'\background-1)
arm\G10ba1\start——(\\arm\G1oba?\bss_c1ear—l)
arm\Global\bss_clear--(\\arm\Global'gomain-1)
armGloballgomain--(\\arm\Global'end-1)
arm\Globaltend--(\\arm'arm' func0-1)

armiarm', func0--(\\armarm' funcl-1)

armtarm', funcl--(\\arm\arm' func2-1)

armtarm' func2--(\\arm\arm' func2a-1)

armiarm' func2a-- (\\armiarm', func2b-1)

armiarm func2b--(\\arm\arm\func2c-1)

I

[okl | <range> || <address= | previous

o i i i i e

T

Save ” Save As... ”Save+CI05e”Quit+Close ”Save+C0mp” Compile ]

See also

display the Performance Analyzer
configuration window

reset the Performance Analyzer
configuration to its default
settings

enable Performance Analyzer

the Performance Analyzer samples
the actual program counter

acquisition method StopAndGo
is set by TRACE32

open a window for label-based
profiling

start the program execution and
sampling

stop the program execution and
the sampling

convert the listed label ranges
to a Performance Analyzer program

B PERF B PERFstate

PERF.View Detailed view
Format: PERF.View <address> | [Track
Displays all numerical results of a symbol or an area.
©1989-2024 Lauterbach General Commands Reference Guide P | 99



Examples:

PERF.View sieve

PERF .state

PERF .RESet

PERF .OFF

PERF .Mode MEMory

; PERF.Mode StopAndGo

PERF . SnoopAddress Var.RANGE (flags[3])
PERF.SnoopSize Byte

PERF.ListVarState

Go

PERF.View /Track

list all numerical results for
the function sieve

display the Performance
Analyzer configuration window

reset the Performance Analyzer
to its default settings

enable the Performance
Analyzer

the Performance Analyzer
samples the contents of a
memory location

the Performance Analyzer sets
the acquisition method
StopAndGo

specify the memory address
specify the sampling width

open a window for variable
state profiling

start the program execution
and the sampling

list all numerical results for
the item selected in
PERF.List<item>

©1989-2024 Lauterbach

General Commands Reference Guide P | 100



£ B:PERF ListVarState (o)==

(& setup... [ 35 Config...] R Goto... |[E] Detailed]| @ view |[ujProfile | @ mit || @ mit |[O Disable| @ am |
runtime: 89.818%

name [ratio |1% 2% 5% 10% 20% 50% 100
0 76. 470% | i
: 2, B:PERF.View /Track (23w
values =

symboTname [1 -

time | 139.072ms
watchtime | 591.032Zms
ratio| 23.530%
average
dratio | 27.272%
daverage
hits 1401.
entrys
address |0Ox1
breakpoints -

See also

B PERF B PERFstate

©1989-2024 Lauterbach General Commands Reference Guide P | 101



PERSVD

PERSVD Built-in converter for peripheral files in CMSIS-SVD format

Allows you to display peripheral files written in CMSIS-SVD format. Furthermore you can export an SVD file
to Lauterbach’s native peripheral file format.

PERSVD.Save Save converted file
Format: PERSVD.Save <svd._file> <per_file> [[<option>]
<option>: See PERSVD.view

Converts the given svd_file to native Lauterbach peripheral file format and saves it to a file named per_file.

svd_file Source file in CMSIS-SVD format.

per_file Destination file name.
Will be overwritten if the file already exists.

PERSVD.view Display peripherals
Format: PERSVD.view <file> [/<option>]
<option>: WithValue
Description
AccessClass <class>
For additional options see PER.view

Converts a CMSIS-SVD file to Lauterbach’s native peripheral file format and displays its peripherals. See
PER.view.

©1989-2024 Lauterbach General Commands Reference Guide P | 102



WithValue Precedes bitfield names or descriptions with the value followed by a
colon: “<value>: <name>".

Description In case of bitfields, the description instead of the name will be taken from
the SVD file.
AccessClass Since SVD files don’t know about TRACE32 access classes, the default

access class is “AD:”. With this option you can change the default, e.g.
PERSVD.view <file>/AccessClass d:

In case you encounter any errors during conversion, it might be helpful to save the converted intermediate to
a file (PERSVD.Save) first and to process the result via PER.Program afterwards.

©1989-2024 Lauterbach General Commands Reference Guide P | 103



PMI

PMI Power management interface

For a description of the PMI commands, see “System Trace User’s Guide” (trace_stm.pdf).

©1989-2024 Lauterbach General Commands Reference Guide P | 104



POD

POD Configure input behavior of digital and analog probe
See also
H POD.ADC B POD.Level B POD.RESet B POD.state
B POD.USB
POD.ADC Probe configuration
[Example]
Format: POD.ADC <probes>.<voltage>[ON | OFF] [<comp>] [<sample>]
POD.ADC <probes>.<current>[ON | OFF] [<comp>] [<sample>] [<shunt>]
POD.ADC <probe>.<power>[ON | OFF] [<vref>]
CIProbe.CONFIG.CHANNEL <...> (deprecated)
<probe>: AlIP|CIP
<voltage>: voilvilv2]|v3
<current>: ol IiI2
<power>: PO I P11P2
<comp>: 1/112/114/118/1116/1132/1164/11128/1 | 256/1
<sample>: ALways | Track | BusA | Filter
<shunt>: <float>
<vref>: VO | V1| V2| <float>

ADC stands for analog-digital converter. The POD.ADC command allows you to programmatically
configure the Analog Probe together with the PowerIntegrator, PowerIntegrator Il, IProbe or ClProbe.
Alternatively, you can manually configure the hardware via the POD.state A, POD.state IP or the POD.state

CIP window.

©1989-2024 Lauterbach

General Commands Reference Guide P | 105



Note that all parameters after the channel are optional, but have to be specified in the correct order. If a
parameter is not given, that setting remains unchanged.

<probe> A stands for port A of the Powerlntegrator or Powerlntegrator Il. IP stands
for the IProbe. CIP stands for the CombiProbe.

<voltage> The following channels are available:
<current> . Four voltage channels (VO, V1, V2, and V3)
<power> . Three current channels (10, 11, and 12)
. Three virtual power channels (PO, P1, and P2).
<comp> Changing the compression changes the recording time: The higher the

compression factor, the longer the recording time.
For the IProbe, the resulting recording time is displayed in the message
bar below the command line and in the AREA window.

Example: A compression factor of 256/1 for all channels results in a
recording time of 429 seconds. A compression factor of 1/1 for all
channels results in a recording time of 1.678 seconds.

B::
IProbe recording time: 429.497s

emulate trizzer devices trace

A high compression factor reduces the noise, which results in a smoother
line chart, e.g. in an ETA.DRAW or IProbe.DRAW window, and allows for
a better interpretation of the line chart.

This setting is not available for the virtual power channels. The setting
from the corresponding current channel is used instead.

<sample> . (Default) ALways for continuous recording of analog trace data.
Use the option, for example, if you want to focus on power con-
sumption even during the sleep mode of the CPU.

. (IProbe only) Track for intermittent recording of analog trace data.
Analog trace data is recorded only if a user-defined trigger event
occurs in the program flow.

Use this option, for example, if you want to record analog trace
data when the CPU is active, i.e. not in sleep mode.

. (IProbe only) BusA: Data is recorded if a PodBus trigger signal is
detected on the bus trigger line BUSA.
. Filter: Use the trigger logic to only record samples that are in a

specified range. For the CIProbe, this condition can be configured
using the command CIProbe.ATrigMODE.

This setting is not available for the virtual power channels. The setting
from the corresponding current channel is used instead. This settting is
also not available for the Powerlntegrator or Powerlntegrator Il.

©1989-2024 Lauterbach General Commands Reference Guide P | 106



<shunt> To measure current, you have to use an appropriate shunt resistor and
configure TRACE32 with the shunt resistance in Ohms.
Shunt formula: Ry = 0.125V / |4«

. To achieve a maximum resolution of the analog-digital converter,
the voltage drop permissible at the shunt must not exceed 0.125V.
. Imax is the maximum current that you expect: The more accurate

your estimate, the better the measurement accuracy.
Example: Rg = 0.125V / 4A = 0.031Q

If a voltage drop of 0.125V is not acceptable in your case, then you may
lower the voltage value from 0.125V to e.g. 0.05V. Note that this reduces
the resolution of the analog-digital converter.

Example: Ry = 0.05V / 4A = 0.012Q

<vref> If you specify a voltage value (e.g. 3.3V), the system multiplies the
voltage value with the value of the current channel (e.g. I1 = 0.019561A).
Example: 3.3V x 0.019561A = 0.064553W

Alternatively, you can select the corresponding voltage channel (e.g. V1
for P1). In this case, the IProbe or CIProbe automatically uses the
voltage value from that voltage channel.

Example:

; Configure Analog Probe and IProbe
POD.ADC CIP VO ON 8/1 ALways
POD.ADC CIP V1 ON 8/1 ALways
POD.ADC CIP V2 ON 8/1 ALways
POD.ADC CIP V3 ON 8/1 ALways
POD.ADC CIP IO ON 8/1 ALways 1.000
POD.ADC CIP Il ON 8/1 ALways 1.000
POD.ADC CIP I2 ON 8/1 ALways 1.000
POD.ADC CIP PO ON 3.300

POD.ADC CIP P1 ON 3.300

POD.ADC CIP P2 ON 3.300

[E

; Initialize the CIProbe.
CIProbe.Init

; Open the POD CIP window. The following screenshot displays the result.
POD.state CIP

©1989-2024 Lauterbach General Commands Reference Guide P | 107



The POD.state CIP window displays the result of the above script:

im B:POD.state CIP

voltage max res compress — sample

Mvo |0.498046 N 4.900V  0.001220V 81 v [Mvas v

Mvi 10.897216 | 4000V 0.001220V TIL V| | AvaEs v

Mv2 |1.673583 | 4000V 0.001220V 81 v [Mwas v

Mvs |2.711181 N 490v  oomzov 81 v Aww v

current I shunt{Ohms)

Mo J0.075988 B o0.125a 00003 1.000 81 ~| M v

Fn J|0.105682 N o125 000003 1.000 81~ |Muws v

Mr |0.113220 [N o.2s5a oo | tnon 81 ~| |Awes v

power vohge(\l’olts)l

Mro 0.250762 I os2w oo | 3300~

Mr1 0348751 M os2w  ooowow | 3300 ~

Mr2 0373626 N os2w oo | 3300 ~

|

See also

H POD B POD.state

POD.Level Input state
Format: POD.Level <group> <level>
<group>: 00-15 | 16-31 | 32-47 | 48-63 | SOC (PowerProbe)
IPIAIBICIDIEIF (Powerlntegrator)
<level>: 1.011.4 (PowerProbe)
0.0...5.0 (Powerlntegrator)

Defines the variable threshold levels for the PowerProbe and the input probes of the Powerlntegrator.

Defaultis 1.4 V for all CMOS and TLL targets down to 2.5 V supply voltage.

00-15, ..., SOC

Input channels of the PowerProbe

IPAB,CDEF

A to F: Input channels of the Powerlntegrator
IP: Input channel of the IProbe

1.0and 1.4 Threshold level settings of the PowerProbe
0.0t0 5.0 Threshold level range of the Powerlntegrator
See also
H POD W POD.state

©1989-2024 Lauterbach

General Commands Reference Guide P | 108



POD.RESet Input level reset

Format: POD.RESet

All input threshold levels are setto 1.4 V.

All POD.ADC settings are reset.

See also
H POD B POD.state
POD.state Input state
Format: POD.state
POD.state <probe>
CIProbe.CONFIG.CHANNEL.state (deprecated)
<probe>: AlIP|CIP

©1989-2024 Lauterbach General Commands Reference Guide P | 109



Without arguments, shows the digital probe configuration for PowerProbe, Powerlntegrator,
PowerlIntegrator Il, IProbe, and CIProbe. The screenshot below shows the dialog with a PowerProbe,
PowerlIntegrator, IProbe and CIProbe,

POD.state A POD.Level

A pomma 012345 -Input—— Pl ] rm 0 1 2345 Input—————— PLL
)60 | 0111111111111111 0 oo | N
-B- 012345 Iput——————PLL| K- 012345 Input—— PLL-
reo | N 0000000000000000 0 o0 | N
-c- 012345 Input L ‘012345 Input
reo | N 0000000000000000 0 o0 | N
-D- 012345 Input - M ‘012345 Input
reo | N 0000000000000000 0 o0 | N
-E- 012345 Input -N- ‘012345 Input
reo | N o0 | N
-F- 012345 Input -0 ‘012345 Input
reo | N o0 | N
~ooJs—J o 12345 mput
| | 0000000000000000
~16f1—J o 12345 Iput
| | 0000000000000000
~3207—J 012345 mput
| | 0000000000000000
~ag3—J 012345 mput
| | 0000000000000000
- |
I 45| Analog Settings I | POD.state IP
-
45| Analog Settings I POD.state CIP

With an argument, it can be used to show the analog settings of a connected Analog Probe:

im B:POD.state CIP

— voltage max res ————————————— COMpress — sample ——
Mvo 0.498046 N 4.990V 0001220 8l ~| [Avas v
Mvi 0.897216 M 4.990V 0001220 a1 ~| |Avas v
Mv2 1.673583 [ 4.990V 0001220 a1 ~| |Avas v
Mva 2711181 [ so00ov oo g loms
— current shunt(Ohms)
Mo 0.075988 M oi25a  ooooes [ 1.000 81 | |Avwas v
Mo 0.105682 N o.125a  oooo0s | 1.000 81 ~| |Avwas v
Mr  0.413220 N o254 oooxA | 1.000 81 v M v
— power voltage(Volts)
Mro 0.250762 M osow ooowoow [ 3300 -
Mre1 0348751 N 042w ooooow | 3300 -
Mr2 0.373626 N osw  ooowoow | 3300 -
See also
W POD H POD.ADC H POD.Level Bl POD.RESet
B POD.USB

©1989-2024 Lauterbach General Commands Reference GuideP | 110



POD.USB Set up USB probe

Format: POD.USB USB1 | USB2
POD.USB ENABLE | DISABLE <packet>

<packet>: RESVD | OUT | ACK | DATAO | PING | SOF | NYET | DATA2 | SPLIT | IN | NAK
| DATA1 | ERR | SETUP | STALL | MDATA

Sets up the hardware of the USB probe.

USB1 | USB2 Selects USB mode.

<packet> Enables/disables recording of specific USB packets (PID).
See also
H POD B POD.state

©1989-2024 Lauterbach General Commands Reference Guide P | 111



PORT

NOTE: If not otherwise mentioned, the described commands refer the timing analyzer
mode!

PORT.Arm Arm the trace

See command <trace>.Arm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 134).

PORT.AutoArm Arm automatically

See command <trace>.AutoArm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
135).

PORT.BookMark Set a bookmark in trace listing

See command <trace>.BookMark in 'General Commands Reference Guide T' (general_ref_t.pdf, page
140).

PORT.Chart Display trace contents graphically

See command <trace>.Chart in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 144).

PORT.DRAW Plot trace data against time

See command <trace>.DRAW in 'General Commands Reference Guide T' (general_ref_t.pdf, page 201).

PORT.FindAll Find all specified entries in trace

See command <trace>.FindAll in 'General Commands Reference Guide T' (general_ref_t.pdf, page 237).

©1989-2024 Lauterbach General Commands Reference Guide P | 112



PORT.FindChange Search for changes in trace flow

See command <trace>.FindChange in 'General Commands Reference Guide T' (general_ref_t.pdf, page
238).

PORT.GOTO Move cursor to specified trace record

See command <trace>.GOTO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 244).

PORT.Init Initialize trace

See command <trace>.Init in 'General Commands Reference Guide T' (general_ref_t.pdf, page 246).

PORT.OFF Switch off

See command <trace>.OFF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 278).

PORT.PROfileChart Profile charts

See command <trace>.PROfileChart in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
283).

PORT.PROTOcol Protocol analysis

See command <trace>.PROTOcol in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
339).

PORT.PROTOcol.Chart Graphic display for user-defined protocol

See command <trace>.PROTOcol.Chart in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 339).

©1989-2024 Lauterbach General Commands Reference Guide P | 113



PORT.PROTOcol.Draw Graphic display for user-defined protocol

See command <trace>.PROTOcol.Draw in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 341).

PORT.PROTOcol.EXPORT Export trace buffer for user-defined protocol

See command <trace>.PROTOcol.EXPORT in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 342).

PORT.PROTOcol.Find Find in trace buffer for user-defined protocol

See command <trace>.PROTOcol.Find in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 343).

PORT.PROTOcol.list Display trace buffer for user-defined protocol

See command <trace>.PROTOcol.list in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 344).

PORT.PROTOcol.PROfileChart Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileChart in '‘General Commands Reference Guide T
(general_ref_t.pdf, page 347).

PORT.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileSTATistic in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 348).

PORT.PROTOcol.STATistic Display statistics for user-defined protocol

See command <trace>.PROTOcol.STATistic in '‘General Commands Reference Guide T
(general_ref_t.pdf, page 350).

©1989-2024 Lauterbach General Commands Reference Guide P | 114



PORT.REF Set reference point for time measurement

See command <trace>.REF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

PORT.RESet Reset command

See command <trace>.RESet in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

PORT.SAVE Save trace for postprocessing in TRACES32

See command <trace>.SAVE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 358).

PORT.SelfArm Automatic restart of trace recording

See command <trace>.SelfArm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
362).

PORT.SnapShot Restart trace capturing once

See command <trace>.SnapShot in 'General Commands Reference Guide T' (general_ref_t.pdf, page
373).

PORT.STATistic Statistic analysis

See command <trace>.STATistic in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
378).

PORT.Timing Waveform of trace buffer

See command <trace>.Timing in 'General Commands Reference Guide T' (general_ref_t.pdf, page 499).

PORT.TRACK Set tracking record

See command <trace>.TRACK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 502).

©1989-2024 Lauterbach General Commands Reference Guide P | 115



PORT.ZERO Align timestamps of trace and timing analyzers

See command <trace>.ZERO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 505).

©1989-2024 Lauterbach General Commands Reference Guide P | 116



Probe

Probe Probe logic analyzer

The trace method Probe is available if a PowerProbe module is connected.

For selecting and configuring the trace method Probe, use the TRACE32 command line or a PRACTICE
script (*.cmm) or the Probe.state window [A].

Alternatively, execute the command Trace.METHOD Probe in order to select the trace method Probe and
use the more general command group Trace.

Refer for more information to “PowerProbe User’s Guide” (powerprobe_user.pdf) and “PowerProbe/Port
Analyzer Reference Guide” (powerprobe_ref.pdf).

See also
B Trace. METHOD

A ’'Generic Probe Trace Commands’ in 'PowerProbe/Port Analyzer Reference Guide’

©1989-2024 Lauterbach General Commands Reference Guide P | 117



	General Commands Reference Guide P
	History
	PCI
	PCI      Legacy PCI configuration
	PCI.Dump      Display PCI device data
	PCI.Option.DOMAIN      Set PCI domain
	PCI.Read      Read a PCI register
	PCI.Scan      List PCI devices
	PCI.Write      Write a PCI register

	PCPOnchip
	PER
	PER      Peripheral files
	Overview PER
	PER.IMPORT      Import of alternative peripheral file formats
	PER.<format>.ReProgram      Set default peripheral file
	PER.<format>.Save      Save to file
	PER.<format>.TestProgram      Test mode
	PER.<format>.view      Display peripherals
	PER.IMPORT.AccessClass      TRACE32 access class
	PER.IMPORT.EnumDelimiter      Delimiter for BITFLD items.
	PER.IMPORT.FieldsFromDescription      Generate BITFLDs from description
	PER.IMPORT.ForMaT      Input file format
	PER.IMPORT.INDent      Indent trees, registers and fields
	PER.IMPORT.InputFile      Input files for conversion
	PER.IMPORT.LoaD      Load external converter project
	PER.IMPORT.LOGfile      Create logfile of conversion
	PER.IMPORT.MaximumChoiceLength      Maximum choice item length
	PER.IMPORT.MaximumDescriptionLength      Maximum tooltip length
	PER.IMPORT.MergeGroups      Minimize number of GROUPs
	PER.IMPORT.ModuleFiles      Split .per file into separate files
	PER.IMPORT.ModulePath      Output directory for module files
	PER.IMPORT.MSBfirst      Order of bits in BITFLD command
	PER.IMPORT.NumberOfColumns      Number of output columns
	PER.IMPORT.OutputFile      Name of generated peripheral file
	PER.IMPORT.REPeat      Generate REPEAT commands
	PER.IMPORT.RESet      Reset import settings
	PER.IMPORT.RULES      Apply rules file
	PER.IMPORT.SortSubTrees      Sort TREEs alphabetically
	PER.IMPORT.SortTopTrees      Sort TREEs alphabetically
	PER.IMPORT.STOre      Store current project
	PER.IMPORT.WithValue      Precede bitfield items with value
	PER.In      Read port
	PER.Program      Interactive programming
	PER.ReProgram      Set default peripheral file
	PER.ReProgramDECRYPT      Load default program (encrypted)
	PER.Set      Modify memory
	PER.Set.ByName      Modify memory by name
	PER.Set.CONDitions      Workaround for PER functions
	PER.Set.Field      Modify a bit field in memory
	PER.Set.Index      Modify indirect (indexed) register
	PER.Set.IndexField      Set fields at indexed register
	PER.Set.Out      Write data stream to memory
	PER.Set.SaveIndex      Modify indirect (indexed) register
	PER.Set.SaveIndexField      Set fields at indexed register
	PER.Set.SaveTIndex      Set fields at indexed registers
	PER.Set.SaveTIndexField      Set fields at indexed registers
	PER.Set.SEQuence      Set SGROUP members
	PER.Set.SEQuenceField      Set SGROUP members
	PER.Set.SHADOW      Modify data based on shadow RAM
	PER.Set.simple      Modify registers/peripherals
	PER.Set.TIndex      Set fields at indexed registers
	PER.Set.TIndexField      Set fields at indexed registers
	PER.STOre      Generate PRACTICE script from PER settings
	PER.TestProgram      Test mode
	PER.view      Display peripherals
	PER.viewDECRYPT      View decrypted PER file in a PER window
	Programming Commands

	PERF
	PERF      Sample-based profiling
	Overview PERF
	PERF.ADDRESS      Restrict evaluation to specified address area
	PERF.Arm      Activate the performance analyzer manually
	PERF.AutoArm      Couple performance analyzer to program execution
	PERF.AutoInit      Automatic initialization
	PERF.ContextID      Enable sampling the context ID register
	PERF.DISable      Disable the performance analyzer
	PERF.Init      Reset current measurement
	PERF.List      Default profiling
	PERF.ListDistriB      Memory contents profiling
	PERF.ListFunc      Function profiling
	PERF.ListFuncMod      HLL function profiling (restricted)
	PERF.ListLABEL      Label-based profiling
	PERF.ListLine      Profiling by HLL lines
	PERF.ListModule      Profiling by modules
	PERF.ListProgram      Profiling based on performance analyzer program
	PERF.ListRange      Profiling by ranges
	PERF.ListS10      Profiling in n-byte segments
	PERF.ListTASK      Profiling by tasks/threads
	PERF.ListTREE      Profiling by module/function tree
	PERF.ListVarState      Variable state profiling
	PERF.LOAD      Load previously stored PERF results
	PERF.METHOD      Specify acquisition method
	The Method StopAndGo
	The Method Snoop
	The Method Trace
	The Method DCC

	PERF.MMUSPACES      Include space IDs for addresses in the sampling
	PERF.Mode      Specify sampling object
	PERF.OFF      Stop the performance analyzer manually
	PERF.PROfile      Graphic profiling display
	PERF.Program      Write a performance analyzer program
	PERF.ReProgram      Load an existing performance analyzer program
	PERF.RESet      Reset analyzer
	PERF.RunTime      Retain time for program run
	PERF.SAVE      Save the PERF results for postprocessing
	PERF.SnoopAddress      Address for memory sample
	PERF.SnoopMASK      Mask for memory sample
	PERF.SnoopSize      Size for memory sample
	PERF.Sort      Specify sorting of evaluation results
	PERF.state      Display state
	PERF.STREAM      PERF stream mode
	PERF.ToProgram      Automatic generation of performance analyzer program
	PERF.View      Detailed view

	PERSVD
	PERSVD      Built-in converter for peripheral files in CMSIS-SVD format
	PERSVD.Save      Save converted file
	PERSVD.view      Display peripherals

	PMI
	PMI      Power management interface

	POD
	POD      Configure input behavior of digital and analog probe
	POD.ADC      Probe configuration
	POD.Level      Input state
	POD.RESet      Input level reset
	POD.state      Input state
	POD.USB      Set up USB probe

	PORT
	PORT.Arm      Arm the trace
	PORT.AutoArm      Arm automatically
	PORT.BookMark      Set a bookmark in trace listing
	PORT.Chart      Display trace contents graphically
	PORT.DRAW      Plot trace data against time
	PORT.FindAll      Find all specified entries in trace
	PORT.FindChange      Search for changes in trace flow
	PORT.GOTO      Move cursor to specified trace record
	PORT.Init      Initialize trace
	PORT.OFF      Switch off
	PORT.PROfileChart      Profile charts
	PORT.PROTOcol      Protocol analysis
	PORT.PROTOcol.Chart      Graphic display for user-defined protocol
	PORT.PROTOcol.Draw      Graphic display for user-defined protocol
	PORT.PROTOcol.EXPORT      Export trace buffer for user-defined protocol
	PORT.PROTOcol.Find      Find in trace buffer for user-defined protocol
	PORT.PROTOcol.list      Display trace buffer for user-defined protocol
	PORT.PROTOcol.PROfileChart      Profile chart for user-defined protocol
	PORT.PROTOcol.PROfileSTATistic      Profile chart for user-defined protocol
	PORT.PROTOcol.STATistic      Display statistics for user-defined protocol
	PORT.REF      Set reference point for time measurement
	PORT.RESet      Reset command
	PORT.SAVE      Save trace for postprocessing in TRACE32
	PORT.SelfArm      Automatic restart of trace recording
	PORT.SnapShot      Restart trace capturing once
	PORT.STATistic      Statistic analysis
	PORT.Timing      Waveform of trace buffer
	PORT.TRACK      Set tracking record
	PORT.ZERO      Align timestamps of trace and timing analyzers

	Probe
	Probe      Probe logic analyzer



