LAUTERBACH A

General Commands Reference
Guide J

General Commands Reference Guide J

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
€= 1= = T 0T 1313 =T [- r—~
General Commands Reference GUIde Jcccceiiiicimiiicmninimninsms s sssss s sssss s snssmseas 1
L 1= (o 5
= 6
Java Java debugging subsystem 6
Java.CONFIG Configure VM type for debugging 7
Java.LOAD Load all Java symbols 8
Java.LOADCLASS Load Java class information 8
Java.MAP Java VM specific mappings 9
Java.MAP.ByteCode Define byte code area 9
Java.MAP.CB Configure Java VM class block pointer 10
Java.MAP.CP Configure Java VM class pointer 10
Java.MAP.FP Configure Java VM frame pointer 10
Java.MAP.IP Configure Java VM instruction pointer 11
Java.MAP.IPBASE Configure Java VM IPBASE pointer 12
Java.MAP.List List Java VM specific mappings 12
Java.MAP.LOADATTR Load attribute information from Java class files 12
Java.MAP.LP Configure Java VM LP pointer 13
Java.MAP.MB Configure Java VM method block pointer 13
Java.MAP.NoByteCode Remove byte code mapping 14
Java.MAP.NoVM Remove VM interpreter flag 14
Java.MAP.NoVMStop Remove breakpoint in VM interpreter 15
Java.MAP.RESet Reset Java VM mappings 15
Java.MAP.SP Configure Java VM stack pointer 16
Java.MAP.VM Configure Java VM interpreter routine area 17
Java.MAP.VMStop Configure breakpoint in VM interpreter 17
Java.OFF Disable Java VM debugging subsystem 18
Java.ON Activate Java debugging subsystem 18
Java.state Display Java VM subsystem state 19
1 20
JTAG Low-level JTAG control 20
JTAG.CLIENTINDEX Select data set for commands 21
JTAG.LOADBIT Configure a Xilinx FPGA with a BIT file = 22
©1989-2024 Lauterbach General Commands Reference Guide J 2

JTAG.LOCK
JTAG.MIPI34
JTAG.PARKSTATE
JTAG.PIN
JTAG.PROGRAM
JTAG.PROGRAM.Altera
JTAG.PROGRAM.auto
JTAG.PROGRAM.JAM
JTAG.PROGRAM.JBC
JTAG.PROGRAM.SVF
JTAG.PROGRAM.Xilinx
JTAG.RESet
JTAG.SEQuence
JTAG.SEQuence.ADD
JTAG.SEQuence.Append
JTAG.SEQuence.Create
JTAG.SEQuence.Delete
JTAG.SEQuence.Execute
JTAG.SEQuence.List

JTAG.SEQuence.MemAccess.ADD
JTAG.SEQuence.MemAccess.List
JTAG.SEQuence.MemAccess.ReMove
JTAG.SEQuence.MemAccess.Replace

JTAG.SEQuence.ReMove
JTAG.SEQuence.Replace
JTAG.SEQuence.View
JTAG.SHIFTREG
JTAG.SHIFTTDI
JTAG.SHIFTTMS
JTAG.SWD.Init
JTAG.SWD.ReadDapBus
JTAG.SWD.ReadScan
JTAG.SWD.Select
JTAG.SWD.SHIFT
JTAG.SWD.WriteDapBus
JTAG.SWD.WriteScan
JTAG.UNLOCK
JTAG.USECLOCK
JTAG.X7EFUSE
JTAG.XUSEFUSE
JTAG.CJTAG
JTAG.CJTAG.COMMAND
JTAG.CJTAG.START

Grab the JTAG port for manual control
Manually control MIP134 connector pins
Define the hand over TAP state

Set JTAG signals manually

Run programming file

Program Altera FPGAs

Detect and run programming file

Run programming file in JAM/STAPL format
Run programming file in binary JAM/STAPL format
Run programming file in SVF format
Program Xilinx FPGAs

Reset JTAG settings

Special JTAG sequences for certain events
Add new action to JTAG sequence

Append one sequence to another sequence
Create new JTAG sequence

Delete JTAG sequence

Run JTAG sequence

Show list of all sequences

Register sequence for memory access
View registered memory accesses

Delete registered memory accesses
Replace registered memory access
Remove action from sequence

Replace action inside sequence

Display JTAG sequence

Send a TDI pattern on the JTAG port

Send a TDI pattern on the JTAG port

Send a TMS pattern on the JTAG port
Initialize the debug port

Read register from DAP

Read register from DAP

Configure SWD multi drop target selection
Shift data by using the SWIO pin

Write register to DAP

Write register to DAP

Hand the JTAG port control back to the debugger
Observe shift commands

Program Xilinx 7-Series eFuses

Program Xilinx UltraScale eFUSEs
Low-level CJTAG control

Send command to the chip

Access the target via CJTAG

22
24
25
26
28
29
30
31
32
32
34
35
36
37
46
46
47
48
49
50
54
54
54
55
55
56
57
58
59
60
60
60
60
61
61
62
62
63
64
70
76
76
76

©1989-2024 Lauterbach

General Commands Reference Guide J

©1989-2024 Lauterbach General Commands Reference GuideJ | 4

General Commands Reference Guide J

Version 06-Jun-2024

History

Dec-2021 New feature JTAG.SEQuence.MemAccess.ADD to access memory via JTAG sequences.

©1989-2024 Lauterbach General Commands Reference GuideJ | 5

Java

Java Java debugging subsystem

Java code that is compiled into a native program with debug symbols, e.g. an ELF file with DWARF2
records, can be debugged with TRACE32 just like any other HLL (C/C++) code. You don’t need to use the
Java command group to debug such an application.

TRACE32 has built-in debugging support for several Java Virtual Machine byte code interpreters. Just-In-
Time compilation is not supported and must be disabled in the Java VM. These Java Virtual Machines are
supported:

. J2ME CDC/RI (SUN/Oracle Java 2 Micro Edition, Connected Device Configuration / Reference
Implementation)

. J2ME CLDC/RI “KVM” (SUN/Oracle Java 2 Micro Edition, Connected Limited Device Configuration /
Reference Implementation, the “K Virtual Machine”, K as in Kilobyte)

. KAFFE (a Java-compatible open-source VM that was developed independently from SUN)

The Java command group enables you to set the necessary TRACES2 configuration parameters to debug
with your Java VM implementation.

TRACERS2 has also built-in support for Android Dalvik Virtual Machine’s “Dex” file pre-loading and for parsing
the symbols contained in the symbol database. Pre-loading and parsing of Dex files is also set up with the
Java command group. Some part of the VM Awareness Support functionality for Dalvik additionally requires
loading and using a dalvik.t32 EXTension module. Please see “VM Debugger Dalvik” (vmdalvik.pdf).

NOTE: If you need support for a different type of virtual machine, or for a proprietary or
“optimizing” implementation of a Java virtual machine, please refer to the
EXTension command group for creating a custom VM Debugging Awareness.

See also
B Java.CONFIG B Java.LOAD B Java.LOADCLASS B Java.MAP
W Java.OFF W Java.ON W Java.state

©1989-2024 Lauterbach General Commands Reference GuideJ | 6

Java.CONFIG Configure VM type for debugging

Format: Java.CONFIG <vmtype> [<params>]
Java.VMTYPE (deprecated)

<type>and J2ME_CDC <name_table_address> <method_type_table_address>
<params>: <field_type_table_address> <class_table address>
<class_table_count_address> <globals_address>
J2ME_CLDC <name_table_address> <class_table_address>
KAFFE <class_table_address> <class_table_size>

PEARL90

DALVIK

Selects the Virtual Machine type for debugging. These are the currently available types:

J2ME_CDC SUN/Oracle Java 2 Micro Edition, Connected Device Configuration /
Reference Implementation

J2ME_CLDC SUN/Oracle Java 2 Micro Edition, Connected Limited Device Configuration /
Reference Implementation, the “K Virtual Machine”, K as in Kilobyte
(= Kilobyte Virtual Machine, KVM)

KAFFE A Java-compatible open-source VM that was developed independently from
SUN
PEARL90 PEARLOO interpreter support (non-Java VM, legacy entry)
DALVIK Android Dalvik VM
Example:

; tell the debugger to use KVM specific definitions for VM handling
Java.CONFIG J2ME_CLDC UTFStringTable ClassTable

See also

W Java B Java.state

©1989-2024 Lauterbach General Commands Reference GuideJ | 7

Java.LOAD Load all Java symbols

Format 1: Java.LOAD [/DIAG]

Format 2: Java.LOAD <file> [/DIAG]

Format 1 is used for SUN Java (J2ME_CDC, J2ME_CLDC, KAFFE): Shorthand for Java.LOADCLASS
for ALL classes found. The standard mapping from class descriptor to source path will be used.

Format 2 is used for Dalvik: Pre-load *.dex/*.odex/*.apk/* jar file into an internal cache for

Java.LOADCLASS.
See also
B Java M Java.state
Java.LOADCLASS Load Java class information
Format 1: Java.LOADCLASS <address> [/IDIAG]
Format 2: Java.LOADCLASS <dexfile_address> <class_descriptor> [IDIAG]

Format 1 is used for SUN Java (J2ME_CDC, J2ME_CLDC, KAFFE): Loads symbolic information for a
class residing in memory at <address>.

Format 2 is used for Dalvik: Loads the symbols for the named Dalvik/Java class from the cache (filled with

Java.LOAD).
<dexfile_address> Is the address of the DeX file in target memory.
<class_descriptor> Is a Java class descriptor. (Both Lpackage/class; and
package.class are accepted.)
See also
W Java B Java.state

©1989-2024 Lauterbach General Commands Reference GuideJ | 8

Java.MAP Java VM specific mappings

Format: Java.MAP

Displays the mapping of VMSTOP breakpoint, IP, FP, SP, LP, CP for current Java VM configuration.

See also
B Java.MAP.ByteCode B Java.MAP.CB B Java.MAPCP B Java.MAPFP
B Java.MAPIP B Java.MAPIPBASE B Java.MAPList B Java.MAPLOADATTR
W Java.MAPLP B Java.MAPMB B Java.MAP.NoByteCode B Java.MAP.NoVM
B Java.MAP.NoVMStop B Java.MAP.RESet B Java.MAPSP B Java.MAPVM
B Java.MAP.VMStop W Java B Java.state
Java.MAP.ByteCode Define byte code area
Format: Java.MAP.ByteCode [<range>]

Debugger configuration: Mark specified memory area as containing byte code.

<range> Range in memory where byte code resides.
Example:
Java.MAP.ByteCode 8000--87FF ; mark data area from 8000 to 87FF

; as byte code section

See also
B Java.MAP B Java.MAP.NoByteCode

©1989-2024 Lauterbach General Commands Reference GuideJ | 9

Java.MAP.CB Configure Java VM class block pointer

Format: Java.MAP.CB NONE
Java.MAP.CB Frame <range>
Java.MAP.CB Register <register_name>
Java.MAP.CB Static <name>
Java.MAP.CB Var <name>

Configures the Java VM class block pointer.

See also
B Java.MAP

Java.MAP.CP Configure Java VM class pointer

Format: Java.MAP.CP NONE
Java.MAP.CP Frame <range>
Java.MAP.CP Register <register_name>
Java.MAP.CP Static <name>
Java.MAP.CP Var <name>

Configures the Java VM class pointer.

See also
B Java.MAP

Java.MAP.FP Configure Java VM frame pointer

Format: Java.MAP.FP NONE
Java.MAP.FP Frame <range>
Java.MAP.FP Register <register_name>
Java.MAP.FP Static <name>
Java.MAP.FP Var <name>

Configures the Java VM frame pointer.

See also
B Java.MAP

©1989-2024 Lauterbach General Commands Reference GuideJ | 10

Java.MAP.IP Configure Java VM instruction pointer

Format: Java.MAP.IP NONE
Java.MAP.IP Frame <range>
Java.MAP.IP Register <register_name>
Java.MAP.IP Static <name>
Java.MAP.IP Var <name>

Configures the Java VM instruction pointer.

NONE Delete last assignment.

Frame Use instruction pointer on stack.

Register Use named register as VM instruction pointer.

Static Use named static (global) variable as VM instruction pointer.
Var Define local variable with address range of validity.

Pointers that must be set for Java VM are:

IP Java Instruction Pointer (to current byte code)
LP Java Locals Pointer
SP Java Stack Pointer
FP Java Frame Pointer
CP Java Class Pointer
Example:

;set Java VM instruction pointer
Java.MAP.IP Static ip_global

;for routine ’'FastInterpret’, we need a local variable ’‘override’
Java.MAP.IP Var IP sYmbol.RANGE (FastInterpret)

See also
B Java.MAP

©1989-2024 Lauterbach General Commands Reference Guide J | 11

Java.MAP.IPBASE Configure Java VM IPBASE pointer

Format: Java.MAP.IPBASE NONE
Java.MAP.IPBASE Frame <range>
Java.MAP.IPBASE Register <register_name>
Java.MAP.IPBASE Static <name>
Java.MAP.IPBASE Var <name>

Configures the Java VM IPBASE pointer.

See also
B Java.MAP

Java.MAP.List List Java VM specific mappings

Format: Java.MAP.List

Displays the mapping of VMSTOP breakpoint, IP, FP, SP, LP, CP for current Java VM configuration.

Example:

Java.MAP.List ; list VM mappings

See also
B Java.MAP

Java.MAP.LOADATTR Load attribute information from Java class files

Format: Java.MAP.LOADATTR

Loads the attribute information from Java class files residing in memory.

©1989-2024 Lauterbach General Commands Reference GuideJ | 12

Example:

Java .MAP.LOADATTR

See also
B Java.MAP

Java.MAP.LP Configure Java VM LP pointer

Format: Java.MAP.LP NONE
Java.MAP.LP Frame <range>
Java.MAP.LP Register <register_name>
Java.MAP.LP Static <name>
Java.MAP.LP Var <name>

Configures the Java VM LP pointer.

See also
B Java.MAP

Java.MAP.MB Configure Java VM method block pointer

Format: Java.MAP.MB NONE
Java.MAP.MB Frame <range>
Java.MAP.MB Register <register_name>
Java.MAP.MB Static <name>
Java.MAP.MB Var <name>

Configures the Java VM method block pointer.

See also
B Java.MAP

©1989-2024 Lauterbach General Commands Reference GuideJ | 13

Java.MAP.NoByteCode Remove byte code mapping

Format: Java.MAP.NoByteCode [<range>]

Removes the byte code mapping for address range.

Example:
Java.MAP.NoByteCode 0x8000--0x80ff ; remove byte code mapping
See also
B Java.MAP B Java.MAPByteCode
Java.MAP.NoVM Remove VM interpreter flag
Format: Java.MAP.NoVM [<range>]

Removes a VM interpreter flag for address range.

Example:

Java.MAP.NoVM 0x1000--0x1080 ; unmap address range as part of VM
See also
B Java.MAP B Java.MAPVM

©1989-2024 Lauterbach General Commands Reference GuideJ | 14

Java.MAP.NoVMStop Remove breakpoint in VM interpreter

Format: Java.MAP.NoVMStop <address>

Removes a breakpoint in VM interpreter (for single stepping).
Example:

; remove debug breakpoint for Java VM (see Java.MAP.VMStop)
Java.MAP.NoVMStop FastInterpret\nextOa

See also
W Java.MAP B Java.MAP.VMStop
Java.MAP.RESet Reset Java VM mappings
Format: Java.MAP.RESet

Resets the Java VM mappings.
Example:

Java.MAP.RESet ; reset all debugger mappings for Java VM

See also
B Java.MAP

©1989-2024 Lauterbach General Commands Reference GuideJ | 15

Java.MAP.SP Configure Java VM stack pointer

Format: Java.MAP.SP NONE
Java.MAP.SP Frame <range>
Java.MAP.SP Register <register_name>
Java.MAP.SP Static <name>
Java.MAP.SP Var <name>

Configures the Java VM stack pointer.

See also
B Java.MAP

©1989-2024 Lauterbach General Commands Reference GuideJ | 16

Java.MAP.VM Configure Java VM interpreter routine area

Format: Java.MAP.VM [<range>]

Configures the Java VM interpreter routine area.
Example:

; map range of VM interpreter to range
; of interpreter function

Java.MAP.VM sYmbol.RANGE (FastInterpret)

See also
B Java.MAP B Java.MAPNoVM
Java.MAP.VMStop Configure breakpoint in VM interpreter
Format: Java.MAP.VMStop <address>

Configures a breakpoint within VM interpreter for single-step.
Example:

; set debugger breakpoint for Java VM
; single stepping to label ’'nextOa’ within
; routine ’'FastInterpret’

Java.MAP.VMStop FastInterpret\nextOa

See also
B Java.MAP B Java.MAP.NoVMStop

©1989-2024 Lauterbach General Commands Reference GuideJ | 17

Java.OFF Disable Java VM debugging subsystem

Format: Java.OFF

Switches off the Java VM debugging support.

Example:

Java.OFF ; end Java debugging

See also

B Java B Java.state

Java.ON Activate Java debugging subsystem

Format: Java.ON

Activates the (Java) VM debugging support. E.g. “step” now does a single step within byte code, Data.List
window shows Java source mapping to byte code, activate byte code disassembler, etc.

Example:

Java .ON ; start VM debugging

See also

W Java B Java.state

©1989-2024 Lauterbach General Commands Reference GuideJ | 18

Java.state Display Java VM subsystem state

Format: Java.state

Displays the current state of Java VM debug subsystem - VM type, IP, FP, LP, CP, MB, CB and SP.

Example:

Java.state ; display VM debug subsystem state
See also
W Java B Java.CONFIG B Java.LOAD M Java.LOADCLASS
B Java.MAP B Java.OFF B Java.ON

©1989-2024 Lauterbach General Commands Reference GuideJ | 19

JTAG

JTAG

Low-level JTAG control

General notes:

o The JTAG comman

ds are only available for JTAG debuggers. They are not supported for

architectures with other debug interfaces (e.g. BDM).

J Manual JTAG control commands can conflict with the normal debugger operation. A certain course of
action is needed, if you want to use the debugger at the same time.

. Examples can be found in the following TRACES32 demo folders:
~~/demo/etc/jtag/
~~/demo/arc/etc/

~~/demo/powerpc/etc/jtag/

Example: This script shows how to retrieve the IDCODE of a single JTAG TAP controller.

SYStem.JtagClock
JTAG.USECLOCK ON

JTAG.PARKSTATE R
JTAG.LOCK

JTAG.PIN ENable
JTAG.SHIFTTMS 1

JTAG.SHIFTTMS 1
JTAG.SHIFTREG %L
&IDCODE=JTAG.SHI

JTAG.SHIFTTMS 1
JTAG.UNLOCK

IF (&IDCODE&Ox1)
PRINT "IDCODE
ELSE

1Mhz ; configure JTAG clock
; use the JTAG clock instead of pin toggling
; for DEBUG CABLE based solutions

TI ; set the hand-over TAP state is RunTestIdle
; prevent debugger from interrupting the
; sequence

; enable output buffers of DEBUG CABLE
1 111 0 ; reset TAP controller and
; go to RUN-TEST-IDLEstate

0 0 ; go to SHIFT-DRstate
ong 0x0 ; shift 32-bit data and go to EXIT-1-DRstate
FT () ; retrieve the shifted data of previous
; SHIFTREG command
0 ; go to RUN-TEST-IDLEstate

; allow debugger to use JTAG

==0x1 ; check if IDCODE is valid
is &IDCODE"

PRINT "Device has no IDCODE"

See also

B JTAG.CJTAG B JTAG.CLIENTINDEX W JTAG.LOADBIT B JTAG.LOCK

H JTAG.MIPI34 B JTAG.PARKSTATE B JTAG.PIN W JTAG.PROGRAM
B JTAG.RESet B JTAG.SEQuence B JTAG.SHIFTREG B JTAG.SHIFTTDI
B JTAG.SHIFTTMS B JTAG.UNLOCK B JTAG.USECLOCK B JTAG.X7EFUSE

B JTAG.XUSEFUSE

A 'CPU specific JTAG.CONFIG Commands’ in ’"ARC Debugger and Trace’
A 'CPU specific JTAG.CONFIG Commands’ in ’Intel® x86/x64 Debugger’
A 'JTAG Functions’ in 'General Function Reference’

©1989-2024 Lauterbach

General Commands Reference Guide J |

20

JTAG.CLIENTINDEX Select data set for commands

Format: JTAG.CLIENTINDEX <value>

Default: 0.
The JTAG command group uses the same underlaying data and algorithms as the Remote API Direct

Access functions. Historically, the first Remote API client uses the same data set as the JTAG command
group. To allow different settings between JTAG and RemoteAPI, use an index other than 0.

<value> Index of the data set. The value must be equal to or greater than 0 and
smaller than 256.

Example:

;select an index other than any RemoteAPI client can have
JTAG.CLIENTINDEX 16.

;lock the JTAG access against RemoteAPI accesses, too
JTAG.LOCK

See also

m JTAG
A ’Introduction’ in ’API for Remote Control and JTAG Access in C’

©1989-2024 Lauterbach General Commands Reference Guide J |

21

JTAG.LOADBIT Configure a Xilinx FPGA with a BIT file

Format: JTAG.LOADBIT <file> (deprecated)
Use JTAG.PROGRAM.Xilinx instead.

NOTE: This command is deprecated; prefer JTAG.PROGRAM.Xilinx, which operates
independently from multicore settings and available on all architectures which
support JTAG.

The command JTAG.LOADBIT configures a Xilinx FPGA with a bitstream (a .BIT file).

Be sure to make the correct multicore settings before invoking the command. The settings are identical to
those used for debugging a core.

Before invoking the command the debugger must be in state SYStem.Mode Down.

SYStem.CPU Virtex5PPC ; Example for PPC440 in Virtex5

SYStem.Down
JTAG.LOADBIT system.bit

PowerPC: Besides making the correct multicore settings, it is necessary to select the
correct CPU before configuring the FPGA e.g. SYStem.CPU VIRTEX5PPC.

NOTE: Configuration using compressed bitstreams is supported.
See also
B JTAG
JTAG.LOCK Grab the JTAG port for manual control
Format: JTAG.LOCK

Disables all debugger activity on the JTAG port when the first manual access (JTAG.PIN, JTAG.SHIFTREG,
JTAG.SHIFTTDI or, JTAG.SHIFTTMS) is performed. This allows to enter manual JTAG control sequences
without interfering JTAG accesses by the debugger. For handing back control to the debugger, use
JTAG.UNLOCK after finishing your manual sequence.

©1989-2024 Lauterbach General Commands Reference Guide J | 22

The following steps need to be respected:

1. Lock the JTAG port for the debugger. Now the TAP controller is in the pause parking position.
Consult the Processor Architecture Manual to find out what is the pause parking position for
your core. Normally this is either 12. (Run-Test/Idle) or 7. (Select-DR Scan).

2. Perform your JTAG access.
3. Return to the pause parking position.

4. Unlock the JTAG port for the debugger. The debugger will resume operation immediately.
As long as the JTAG port is locked, the debugger will not access the target.

In case an active debug session is interrupted, never issue a reset or alter the on-chip debug resources
unless you know exactly what you do. This may confuse the debugger or leads to a corrupted debug

session.

See also

m JTAG B JTAG.PIN B JTAG.SHIFTREG B JTAG.SHIFTTDI
B JTAG.SHIFTTMS H JTAG.UNLOCK

A 'Custom JTAG Access’ in’Application Note JTAG Interface’

©1989-2024 Lauterbach General Commands Reference GuideJ | 23

JTAG.MIPI34 Manually control MIP134 connector pins

Format: JTAG.MIPI34 <pin> <state>

<pin>: PIN12
PIN14
PIN16
PIN18
PIN20

<state>: NormalOperation
ForceTristate
ForceLow
ForceHigh

The command JTAG.MIPI34 makes it possible to override the normal functionality of some pins on the
MIPI34 connector.

The command is only available for the MIPI34 CombiProbe/uTrace (MicroTrace) whisker.

NormalOperation Return to normal operation.
This is the default state.

ForceTristate Never drive the pin.
Use the PRACTICE function JTAG.MIPI34() to query the current pin level.

ForceLow Drive a logic ‘0’ to the pin, even if the debug port is in tristate mode.
ForceHigh Drive a logic ‘1’ to the pin, even if the debug port is in tristate mode.
See also
B JTAG

©1989-2024 Lauterbach General Commands Reference Guide J | 24

JTAG.PARKSTATE Define the hand over TAP state

Format: JTAG.PARKSTATE [RunTestldle | SELectDRscan)]

Default: The default depends on the debug driver of the certain architecture. In case the JTAG commands
must cooperate with the debug driver, the park state should be set according to the rest of the JTAG
commands.

The park state is the TAP state that is assumed as hand over state between debug driver and JTAG
commands when JTAG.LOCK and JTAG.UNLOCK are used. Before JTAG.UNLOCK is executed, the
BYPASS instruction needs to be shifted because consecutive TAP state changes use the DR to reach a
certain TAP state.

Example:

SYStem.JtagClock 1Mhz ; configure JTAG clock

JTAG.USECLOCK ON ; use the JTAG clock instead of pin
; toggling for DEBUG CABLE based solutions

JTAG.PARKSTATE RTTI ; the script uses RUN-TEST-IDLE as handover
; State

JTAG.LOCK ; prevent debugger from interrupting the
; Sequence

JTAG.PIN ENable ; enable output buffers of DEBUG CABLE

JTAG.SHIFTTMS 1 1 1 1 1 0O ; reset TAP controller and
; go to RUN-TEST-IDLE state

JTAG.SHIFTTMS 1 1 0 O ; go to SHIFT-IR state
JTAG.SHIFTREG 1 1 1 1 1 1 ; shift BYPASS instruction and go to EXIT-1-IR
JTAG.SHIFTTMS 0 1 ; go to RUN-TEST-IDLE
JTAG . UNLOCK ; the debugger will now drive from the park

; state to the multi-core tap state
SYStem.CONFIG.SLAVE ON ; prevent SYStem.Mode command from resetting

; JTAG again
SYStem.Mode.Attach ; attach to the CPU

See also
W JTAG

©1989-2024 Lauterbach General Commands Reference GuideJ | 25

JTAG.PIN

Set JTAG signals manually

Format:

<signal_
name>:

JTAG.PIN <signal_name>[0 |1 | Low | High]

TCK

TMS

TDI

TDO

NTRST
NRESET
VTREF
RESETLATCH
VTREFLATCH
ENable
DISable

Sets the level of output signals on JTAG connector to a certain level. It has no effect for input signals. If not
already active due to the normal debugger operation, you need to enable the output driver before using the
JTAG port. This is done using the pseudo-signal ENable.

For details on the various signals see the table below. Note that the available signals depend on the

architecture’s JTAG port.

NOTE: There is also a function of the same name, JTAG.PIN() that can be used to read the
level of signals. The result is undefined for output signals.

TCK output

TMS output

TDI output

TDO input

NTRST output; JTAG reset; low active

NRESET input/output; chip reset; low active

VTREF input; reference voltage; high if applied

RESETLATCH input; high, if NRESET became low after reading this bit the last time i.e.

when there was a pulse on NRESET line.
VTREFLATCH input; high, if VTREF became low after reading this bit the last time; i.e.

when there was a pulse on VTREF line. This may condition may indicate
a problem with the target’s power supply.

©1989-2024 Lauterbach

General Commands Reference GuideJ | 26

ENable input/output; enables the output driver for all output signals; no further
parameter required

DISable input/output; disables the output driver for all output signals; no further
parameter required

See also
m JTAG B JTAG.LOCK B JTAG.SHIFTREG B JTAG.SHIFTTDI
B JTAG.SHIFTTMS B JTAG.UNLOCK a JTAG.PIN()

©1989-2024 Lauterbach General Commands Reference Guide J | 27

JTAG.PROGRAM Run programming file

Using the commands from the JTAG.PROGRAM group, you can execute JTAG command sequences from
files generated by 3rd-party tools. Applications of this include programming FPGA devices that are in the
same JTAG chain as a microprocessor or loading softcore designs for debugging.

Before invoking any command from the JTAG.PROGRAM group, the debugger must be in state
SYStem.Mode Down. Any JTAG commands are executed using the clock frequency specified with
SYStem.JtagClock.

Use JTAG.PROGRAM.auto to automatically infer the file format from the file’s extension, or one of the other
commands in this group to explicitly specify the file type.

See also
B JTAG.PROGRAM.Altera B JTAG.PROGRAM.auto N JTAG.PROGRAM.JAM B JTAG.PROGRAM.JBC
B JTAG.PROGRAM.SVF B JTAG.PROGRAM.Xilinx m JTAG

©1989-2024 Lauterbach General Commands Reference GuideJ | 28

JTAG.PROGRAM.Altera Program Altera FPGAs

Format: JTAG.PROGRAM.Altera <file> [/<option>]

<option>: IRPRE <value>
IRPOST <value>
DRPRE <value>
DRPOST <value>

This command programs bitstreams in .rbf format into Altera FPGAs.

NOTE: To load a bitstream via JTAG, bitstream compression must be disabled in the
Quartus Il toolchain.

For SoC devices (e.g. Cyclone V devices), you must specify the options such
that the TAP of the FPGA is accessed, not the one used for the ARM-based

HPS.
IRPRE <value> Configures the JTAG chain parameters.
IRPOST <value> These options work like the corresponding commands in
DRPRE <value> SYStem.Option: They specify how the FPGA device to be programmed
DRPOST <value> can be reached in the JTAG chain. All values default to O if the
corresponding option is not specified.

See also
B JTAG.PROGRAM B JTAG.PROGRAM.auto

©1989-2024 Lauterbach General Commands Reference Guide J | 29

JTAG.PROGRAM.auto Detect and run programming file

Format:

JTAG.PROGRAM.auto <file>.<extension> [/<option>]

Executes a programming file in one of several formats. The format to be used is depends on the file name
extension. The supported file extensions are as follows:

File <extension> Command Used

.bf JTAG.PROGRAM.Altera

Jjam JTAG.PROGRAM.JAM

Jjbc JTAG.PROGRAM.JBC

.svf JTAG.PROGRAM.SVF

.bit JTAG.PROGRAM.Xilinx

<options> See the documentation of the individual subcommands for a description of
their options.
See also

B JTAG.PROGRAM
B JTAG.PROGRAM.SVF

B JTAG.PROGRAM.Altera B JTAG.PROGRAM.JAM B JTAG.PROGRAM.JBC
B JTAG.PROGRAM.Xilinx

©1989-2024 Lauterbach

General Commands Reference GuideJ | 30

JTAG.PROGRAM.JAM Run programming file in JAM/STAPL format

Format: JTAG.PROGRAM.JAM <file> /A "<action>"
JTAG.LOADJAM (deprecated)

Loads a JAM or STAPL file and executes the <action> defined in the file.

The command is intended to configure FPGAs with the debugger. JAM files generated by Alteras Quartus Il
software usually contain the action CONFIGURE. Executing this action configures the Altera FPGA with the
design, which is contained in the JAM file.

IRPRE <value> Configures the JTAG chain parameters.

IRPOST <value> These options work like the corresponding commands in
DRPRE <value> SYStem.Option: They specify how the device targeted by the
DRPOST <value> programming file can be reached. All values default to 0 if the

corresponding option is not specified.

A "<action>" Action from the programming file to execute.
The names of available actions are defined by the application which
generated the file.

NOTE: JAM/STAPL is a programming language standardized by JEDEC, which allows to
control a JTAG port. The terms JAM and STAPL can be used interchangeably and
refer to the same programming language and file format. The terms were
introduced by Altera (JAM) respectively Xilinx (STAPL).

Example 1: STAPL files generated by Xilinxs iMPACT software usually contain the action
RUN_XILINX_PROC, which usually configures Xilinx FPGAs.

; Execute the action "RUN_XILINX_ PROC" in the STAPL file.
; Mind the quotation marks around the <action> parameter!

JTAG.LOADJAM file.stapl /A "RUN_XILINX_PROC"

Example 2: Another action which is also often available is READ_USERCODE. By executing this action, the
user code of the FPGA will be read out.

; Execute the action "READ USERCODE" in the JAM file.

JTAG.PROGRAM.JAM file.jam /A "READ_USERCODE"

See also
B JTAG.PROGRAM B JTAG.PROGRAM.auto

©1989-2024 Lauterbach General Commands Reference Guide J | 31

JTAG.PROGRAM.JBC Run programming file in binary JAM/STAPL format

Format: JTAG.PROGRAM.JBC <file> /A "<action>"
JTAG.LOADJBC (deprecated)

JBC files are binary encoded JAM files. The command will load a JBC (Jam Byte Code) file and execute the
<action>, which has to be defined in the JAM file.

The command behaves identically to JTAG.PROGRAM.JAM, except for the expected file format.

See also
B JTAG.PROGRAM B JTAG.PROGRAM.auto
JTAG.PROGRAM.SVF Run programming file in SVF format
Format: JTAG.PROGRAM.SVF <file> [/<option>]
JTAG.LOADSVF (deprecated)
<option>: IRPRE <value>

IRPOST <value>
DRPRE <value>
DRPOST <value>
InitState <state>
IgnoreTDO
Verbose

SVF (Serial Vector Format) is a simple programming language to access JTAG hardware. The command will
load a SVF file and execute it, so this command will perform the specified actions on the JTAG port.

This command is intended to configure FPGAs with the debugger. Most FPGA software tools (like Altera’s
Quartus Il or Xilinx’s IMPACT) can generate SVF files for this purpose.

IRPRE <value> Configures the JTAG chain parameters.

IRPOST <value> These options work like the corresponding commands in

DRPRE <value> SYStem.Option: They specify how the FPGA device to be programmed
DRPOST <value> can be reached in the JTAG chain. All values default to 0 if the

corresponding option is not specified.
NOTE: The SVF file can override these options using the HIR, TIR, HDR
and TDR commands.

©1989-2024 Lauterbach General Commands Reference GuideJ | 32

InitState <state>

Selects the actions performed at the beginning and end of the
sequence defined by the SVF file.
Possible values for <state>:

. None: Default behavior. Navigate to the test logic reset state at the
beginning and end of the sequence.
. TestLogicReset: Assume that the state machine is in the test logic

reset state at the beginning of the file and do not change the state
after the file has been executed.

. RunTestldle: Assume that the state machine is in the run test idle
state at the beginning of the file and do not change the state after
the file has been executed.

IgnoreTDO Does not perform the TDO checks specified in the SVF file. For some
files, this can improve programming speed.
Verbose Prints additional progress information to the AREA.view window.
Example:

JTAG . PROGRAM.

SVF <file> ; this command will load and
; execute a SVF file.

NOTE: Loading an SVF file is independent of multicore settings made in the debugger,
because SVF files are board-specific and thus implicitly reflect the layout of the
JTAG scan chain.
See also

B JTAG.PROGRAM

B JTAG.PROGRAM.auto

©1989-2024 Lauterbach

General Commands Reference Guide J |

33

JTAG.PROGRAM.Xilinx Program Xilinx FPGAs

Format: JTAG.PROGRAM.Xilinx <file> [/<option>]

<option>: IRPRE <value>
IRPOST <value>
DRPRE <value>
DRPOST <value>
IRWIDTH <value>

This command programs bit streams in .bit format into Xilinx FPGAs.

NOTE: Compressed bitstreams can also be loaded using this command.

For SoC devices (e.g. Zyng-7000 devices), you must specify the options such
that the TAP of the Programmable Logic (PL) is accessed, not the one used for
the ARM-based PS.

Zynq UltraScale+ devices can alternatively be programmed via the PL using the
PRACTICE script ~~/demo/arm/hardware/zynq_ultrascale/scripts/zyng-
ultrascale_load_bitstream.cmm.

IRPRE <value> Configures the JTAG chain parameters.

IRPOST <value> These options work like the corresponding commands in

DRPRE <value> SYStem.Option: They specify how the FPGA device to be programmed
DRPOST <value> can be reached in the JTAG chain. All values default to O if the

corresponding option is not specified.

IRWIDTH <value> Configures the number of bits of the JTAG instruction register. This varies
from device to device, but is 6. in most cases.

See also
B JTAG.PROGRAM B JTAG.PROGRAM.auto

©1989-2024 Lauterbach General Commands Reference GuideJ | 34

JTAG.RESet Reset JTAG settings

Format: JTAG.RESet

Resets JTAG.CONFIG settings to default and deletes non-locked JTAG sequences created with the
JTAG.SEQuence command group.

See also
H JTAG

A 'CPU specific JTAG.CONFIG Commands’ in ’ARC Debugger and Trace’
A 'CPU specific JTAG.CONFIG Commands’ in ’Intel® x86/x64 Debugger’

©1989-2024 Lauterbach General Commands Reference GuideJ | 35

JTAG.SEQuence Special JTAG sequences for certain events
ARC, ARM, Ceva-X, RH850, RISC-V, SDMA, TeakLite, TriCore, Xtensa [Examples]

Some SoCs with a JTAG interface need special JTAG sequences before the core can be accessed. For
example, the JTAG-TAP of some ARC cores has to be dynamically added to the JTAG daisy chain of an
SoC.

For some CPUs, TRACERS2 already provides pre-defined JTAG sequences. For others, you can create user-
defined JTAG sequences.

Using the JTAG.SEQuence command group, you can create and manage these JTAG sequences. Upon
creation with the command JTAG.SEQuence.Create, JTAG sequences can be executed as follows:

. By a PowerDebug hardware module if certain events occur.

A JTAG sequence is linked to an event, e.g. with (a) SYStem.CONFIG.MULTITAP.JtagSEQuence
or (b) SYStem.Option.CorePowerDetection.JtagSEQuence. The linked JTAG sequence is
executed automatically when that event occurs.

J By the user at the TRACE32 command line or via PRACTICE scripts (*.cmm)

Use the command JTAG.SEQuence.Execute at the TRACE32 command line or in a PRACTICE
script to execute a JTAG sequence on request.

What is the difference between the command groups...?

JTAG.SEQuence JTAG.SHIFT
. The defined JTAG sequence can be . A JTAG sequence defined by a
linked to events that occur when, for JTAG.SHIFT command is immediately
example, the commands SYStem.Attach executed when that JTAG.SHIFT
or SYStem.Up are executed. command is executed.
That is, JTAG sequence creation and
. The defined JTAG sequence can be execution take place at the same time.
executed upon request with
JTAG.SEQuence.Execute <seq_name>.

A good way to familiarize yourself with the JTAG.SEQuence command group is to start with the examples of
JTAG.SEQuence.ADD.

See also

W JTAG.SEQuence.ADD B JTAG.SEQuence.Append

B JTAG.SEQuence.Create B JTAG.SEQuence.Delete

B JTAG.SEQuence.Execute B JTAG.SEQuence.List

B JTAG.SEQuence.ReMove B JTAG.SEQuence.Replace

B JTAG.SEQuence.View B JTAG.SHIFTREG

B JTAG.SHIFTTDI B JTAG.SHIFTTMS

B JTAG B SYStem.CONFIG.MULTITAP.JtagSEQuence

A 'CPU specific SYStem Commands’ in ’ARC Debugger and Trace’
A ’Arm specific SYStem Commands’ in ’Arm Debugger’
A 'JTAG Functions’ in 'General Function Reference’

©1989-2024 Lauterbach General Commands Reference GuideJ | 36

JTAG.SEQuence.ADD

Add new action to JTAG sequence

ARC, ARM, Ceva-X, RH850, RISC-V, SDMA, TeakLite, TriCore, Xtensa

[Examples]

Format:

<action>:

<basic>:

<data>

<flow>

<comfort>

<cmp_sre>:
<mask>:
<cmp_val>:
<length>:
<tms> | <tdi>:
<tdo> | <dst>:
<src>:
<pos>:
<param>:
<width>:
<ir>:
<write>:
<read>:

<acc_width>

JTAG.SEQuence.ADD <seq_name> <action>

<basic> | <data> | <flow> | <comfort>

PrePostRelative <irpre> <irpost> <drpre> <drpost>
RawShift <length> <tms> <tdi> [<tdo>]
ShiftirAndExit <length> <tdi>[<tdo>]
ShiftDrAndEXxit <length> <tdi> [<tdo>]

TRST HIGH | LOW

SELect JTAG

SELect DAP-JTAG-AP <accessport> <jtagport>

ASSIGN <var> = [~] <src> [<operator> [~] <src>]
ToByteBuffer <pos> <acc_width> <src> [LittleEndian | BigEndian]
FromByteBuffer <pos> <acc_width> <dst> [LittleEndian | BigEndian]

CALL <seq_name> [<param> [<param>]]

Jump <index> [<cmp_src> [& <mask>] <cmp_op> <cmp_val>]
NOP

WAIT <time>

TIMEOUT <time>

IRWidth <width>

ReadWrite <ir> <length> <write> [<read>]
ReadWritelR <length> <write> [<read>]
ReadWriteDR < length> <write> [<read>]
RESetifMaster

<var> | <env>

<hex> | <binary> | <var>| <env>

<hex> | <binary> | <integer> | <var> | <env>
<integer> | <var> | <env>

<hex> | <binary> | <integer> | <var> | <env>
<var>

<hex> | <binary> | <integer> | <var> | <env>
<hex> | <binary> | <integer> | <var> | <env>
<hex> | <binary> | <integer> | <var> | <env>
<integer> | <var> | <env>

<hex> | <binary> | <integer> | <var> | <env>
<hex> | <binary> | <integer> | <var> | <env>
<var>

Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

©1989-2024 Lauterbach

General Commands Reference Guide J

37

<operator>: &l<<I>> 1 +1=-1*1/1%I"1I

<cmp_op>: =|l=l>|<I>=1<=

<vars. Result0 | Result1 | Local0 | Locall | Local2 | Local3 | Local4 | Local5 |
Local6 | Local7

<env>: SLAVE | SYStemMode | PortTYPE | MCTapState |
CORE | PhysicalCORE | ConfigCORE | ConfigCHIP

Adds an action to an existing JTAG sequence. To create a new JTAG sequence, use

JTAG.SEQuence.Create.

<accessport> Number of the DAP access port to which a DAP-JTAG-AP is connected.

<binary> Parameter Type: Binary value.

<hex> Parameter Type: Hex value.

<index> Absolute index of a command within the given JTAG sequence. Index
counting starts at 0 (not at 1).
See example.
Parameter Type: Decimal value.

<integer> Parameter Type: Decimal value.

<jtagport> Number of a JTAG port on a DAP-JTAG-AP.

<seq_hame>

Name of the JTAG sequence (without quotes). The name must start with
a letter. The following characters can be letters, numbers, underscores,
and minus signs, i.e. this regular expression: Na-zA-Z] [a-zA-Z0-9_-]*

As with TRACE32 commands, you can access a sequence with its full
name or with only the capital letters of its name. Regardless of whether
you choose the full or the short name, the selection of a sequence is
case insensitive.

<time>

Parameter Type: Time value.

©1989-2024 Lauterbach

General Commands Reference GuideJ | 38

Actions <basic>

PrePostRelative

The action PrePostRelative adds the offsets given by this action to the
pre/post settings of the core or DAP.

The resulting pre/post settings are then taken into account within
ShiftirAndEXxit and ShiftDrAndEXxit.

You can view the pre/post settings of the core and/or DAP in the dialog
window SYStem.CONFIG.state /Jtag and modify them during the
execution of the JTAG sequence.

RawShift

The action RawShift sends out the given TMS/TDI pattern on the
TMS/TDI pin.

If you are in SWD mode but have not yet used action SELect, then no
pattern will be send to the pins.

SELect JTAG

Action to switch (back) to the primary JTAG port. This is only useful if
you've selected a DAP-JTAG-AP before.

SELect DAP-JTAG-AP

Action to switch to a DAP-JTAG-AP port which is selected by DAP-
access-port of the JTAG-AP (“accessport’) and the port on the JTAG-AP
(“jtagport”). After this command all shift actions will be send out to the
chosen DAP-JTAG-AP.

NOTE: Selecting DAP-JTAG-AP is not supported with
JTAG.SEQuence.Execute when the current SYStem.Mode is neither
“Up” not “Prepare”.

ShiftDrAndExit

The action ShiftDrAndEXxit should be used only if you know that you have
entered the shift-dr state already. It will send the given TDI pattern while
keeping TMS at 0. For the last TDI bit, TMS will be set to 1, so the JTAG
state machine will be in exit-1-dr state after the action.

ShiftlrAndEXxit considers the pre/post settings of the core or DAP which

might have been modified by the action PrePostRelative.

ShiftirAndExit

The action ShiftlrAndEXxit should be used only if you know that you have
entered the shift-ir state already. It will send the given TDI pattern while

keeping TMS at 0. For the last TDI bit, TMS will be set to 1, so the JTAG
state machine will be in exit-1-ir state after the action.

ShiftirAndEXxit considers the pre/post settings of the core or DAP which

might have been modified by action PrePostRelative.

TRST HIGH | LOW

Sets the TRST pin to either HIGH or LOW.
Cannot be used when DAP-JTAG-AP was selected.

©1989-2024 Lauterbach

General Commands Reference GuideJ | 39

Actions <data>

ASSIGN

Assigns a value to the variable selected with <var>.

FromByteBuffer
(since build 142495)

Loads between 1 and 8 bytes from a global buffer of 512 byte.

The buffer is initialized with zeros and is destroyed when no sequence is
active any more. By default the byte order is litte-endian but there is also
an option for big-endian. When a sequence is registered for memory
access with JTAG.SEQuence.MemAccess.ADD the you have to load the
data for a write-transaction from the global buffer (in little-endian order).

ToByteBuffer
(since build 142495)

Save between 1 and 8 bytes to a global buffer of 512 byte.

The buffer is initialized with zeros and is destroyed when no sequence is
active any more. By default the byte order is litte-endian but there is also
an option for big-endian. When a sequence is registered for memory
access with JTAG.SEQuence.MemAccess.ADD the you have to save the
result of a read-transaction to the global buffer (in little-endian order).

Actions <flow>

CALL Calls another JTAG sequence.

The called sequence gets a new set of the local variables
Local0...Local7. The local variables are initialized with the values from
the calling sequence.

Additionally, you can pass up to two parameters to the called JTAG
sequence, which will initialize the local variables Local0 and Local1.
This is illustrated in example 2. Please refer to the comment and code
lines formatted in blue, red, and purple.

The result of a sequence can be passed to the called via the global
sequence variables Result0 and Result1.

Jump Action to jump to another action inside the same sequences. You can
define a condition for the jump which has to be met or does not have to
be met.

NOP This action does nothing.

TIMEOUT Sets a maximum time for the execution of the sequence. This command
can be used only once per sequence.

The default time-out is 100.ms.

The maximum value for TIMEOUT is 10.s

The time-out of a sequence called by another sequence with CALL is
truncated to the time-out of the caller during execution.

If you specify the time-out via a variable, it’s value is considered as a time
period in microseconds.

©1989-2024 Lauterbach

General Commands Reference GuideJ | 40

WAIT

Pauses the sequence for the given time period.

The maximum waiting time is limited by TIMEOUT (see above).

If you specify the time to wait via a variable, it's value is considered as a
time period in microseconds.

Actions <comfort>>

The comfort actions are only suitable if the JTAG TAPs you dealing with have no side effects on any JTAG
state. Especially on entering or staying in state Run-Test/Idle, some JTAG TAPs have a side-effect. In this
case the comfort actions are probably not suitable for your TAP.

The functionality of the comfort actions is also possible with the basic actions, but coding is more convenient

with them.

All comfort actions (except IRWidth) end in the multi-core TAP state configured with
SYStem.CONFIG.TAPState, which must be either Select-DR-Scan or Run-Test/Idle.

IRWidth
(since build 142495)

Sets the width of the IR register used with action ReadWrite.

The setting is local for every sequence, which means, than a prarent
sequence inherits its IRWidth to a called child sequence, but if the child
sequence changes the value, the IRWidth of the parent is not changed.
The default is zero, which means you must use IRWidth at least once,
before using action ReadWrite.

ReadWrite
(since build 142495)

Enters the Shift-IR state and shifts the value <ir>to the IR register. Then
the Shift-DR state is entered and <length> bits are written/read from the
just selected DR register. The active state of the TAP controller must be
the multicore TAP state configured with SYStem.CONFIG.TAPState.
You mus use the action IRWidth at least once before using ReadWrite.

ReadWritelR
(since build 142495)

Enters the Shift-IR state and writes/reads <length> bits to/from the IR
register. The active state of the TAP controller must be the multicore TAP
state configured with SYStem.CONFIG.TAPState.

ReadWriteDR
(since build 142495)

Enters the Shift-DR state and writes/reads <length> bits to/from the
active DR register. The active state of the TAP controller must be the
multicore TAP state configured with SYStem.CONFIG.TAPState.

RESetlfMaster
(since build 142495)

Resets the TAP controller, If SYStem.CONFIG Slave is set to OFF and
there only one logical core or it is the first core of an SMP system.

Use this action with care! Resetting the TAP in SYStem.Mode is Up might
cause the debugger to loose the connection to your target. (Depends on the
used chip/architecture)

To reset the TAP, the this actions sends several cycles withTMS set to
one, to enter state Test Logic Reset. Afterwards the reset the multicore
TAP state configured with SYStem.CONFIG.TAPState is entered.

©1989-2024 Lauterbach

General Commands Reference GuideJ | 41

<var>

Local0...Local7

8 built-in local sequence variables. They are, for example, used with the
action CALL.

These built-in local sequence variables are not user-defined PRACTICE
macros of the type LOCAL.

Result0 | Result1

2 built-in global sequence variables. They are, for example, used with the
action CALL.

These built-in global sequence variables are not user-defined
PRACTICE macros of the type GLOBAL.

<operator>
<< >> Shift-left and shift-right operators
+ - * Add, Subtract, Multiply
I % Division and Modulo (since build 142495)
& Binary AND
| Binary OR
A Binary XOR

Binary INVERT

There must be a blank before and after an operator used with the ASSIGN action.

©1989-2024 Lauterbach

General Commands Reference GuideJ | 42

<env> - TRACE32-internal Environment Variables

. 7. = Select-DR-Scan
. 12. = Run-Test/Idle
Any JTAG sequence must start and end in this JTAG TAP state.

<env> TRACE32-internal environment variables listed below.

ConfigCHIP Contains the chip number of the TRACE32 instance, which was set with
the second parameter of SYStem.CONFIG.CORE.

ConfigCORE Contains the core number of the TRACES32 instance, which was set with
the first parameter of SYStem.CONFIG.CORE.

CORE Contains the logical core (which is used with CORE.select)

MCTapState Contains the setting SYStem.CONFIG.TAPState in a numeric value:

Physical CORE

Contains the physical core (which is used with CORE.ASSIGN)

PortTYPE Contains setting SYStem.CONFIG.DEBUGPORTTYPE in a numeric
value:
. 1. =JTAG
. 2.=SWD
. 4. = CJTAG
RUNNING Contains 1 if the core is running. (since build 142495)
SLAVE Contains 1 if SYStem.CONFIG Slave is set to ON. (0 otherwise)
In an SMP system it can contain a zero only for the first logical core.
SYStemMode Contains the SYStem.Mode where the following numeric values

represent the following states:

. 0. = Down

. 2. = NoDebug

. 4. = Prepare (or during SYStem.DETECT.DAP)

. 10. = Attach (Only visible during SYStem.Mode Attach)
. 11.=Up

When using SYStem.CONFIG.MULTITAP.JtagSEQuence.Attach, the
assigned sequences will “see” the following numeric values of
SYStemMode in case of the following events:

. SYStem.Mode.Prepare : 4.

. SYStem.Mode.Attach : 10.

. SYStem.Mode.Up : 11.

. SYStem.DETECT.DAP : 4.

©1989-2024 Lauterbach

General Commands Reference Guide J

43

Examples

Example 1: Write 0200004000 to JTAG register 5:

SYStem.CONFIG.TAPState RunTestIdle

;create a JTAG sequence named

JTAG.
JTAG.
JTAG.
JTAG.
JTAG.

7

JTAG.
JTAG.
JTAG.
JTAG.

;1link the JTAG sequence

SEQuence.

SEQuence
SEQuence
SEQuence
SEQuence

SEQuence
SEQuence
SEQuence
SEQuence

‘myAttach’
Create myAttach
.Add myAttach Jump
.Add myAttach RawShift
.Add myAttach PrePostRelative
.Add myAttach RawShift
.Add myAttach ShiftIrAndExit
.Add myAttach RawShift
.Add myAttach ShiftDrAndExit
.Add myAttach RawShift

‘myAttach’

;when the SYStem.Attach command is executed

SYStem.CONFIG.MULTITAP.JtagSEQuence.Attach myAttach

+8.

IS

N

SLAVE == 0x0001
0x3F 0x00

-8. +1. -1.
0x03 0x00

register 5

0x05

0x03 0x00
0x00004000
0x01 0x00

to the Attach event, which occurs

©1989-2024 Lauterbach

General Commands Reference Guide J

44

Example 2: Get a flag from a JTAG register after setting 3 special function registers via their set-sequence.
For a newly-created JTAG sequence, you can replace the sequence name in the JTAG.SEQuence.Add
commands with a comma, as shown in this example.

SYStem.CONFIG.TAPState RunTestIdle

JTAG.SEQuence.Create WriteSPR ; <index>
JTAG.SEQuence.Add , RawShift 4. 0x0003 O ;0.
; <length> <tdi>

JTAG.SEQuence.Add , ShiftIrAndExit 8. 0x00A0 ;1.
JTAG.SEQuence.Add , RawShift 4. 0x0003 O ;2.
; <length> <tdi> <tdo>
JTAG.SEQuence.Add , ShiftDrAndExit 32. 0x0000 Local2 ;3.
JTAG.SEQuence.Add , RawShift 2. 0x0001 O ;4
JTAG.SEQuence.Add , Local2 & 0x28 != 0x08 5
JTAG.SEQuence.Add , RawShift 4. 0x0003 O ;6.
JTAG.SEQuence.Add , ShiftIrAndExit 8. 0x00BO ;7
JTAG.SEQuence.Add , RawShift 4. 0x0003 O ;8.
JTAG.SEQuence.Add , ShiftDrAndExit 32. Local0 ;9.
JTAG.SEQuence.Add , RawShift 6. 0x000D O ;10.
JTAG.SEQuence.Add , ShiftIrAndExit 8. 0x00CO ;11
JTAG.SEQuence.Add , RawShift 4. 0x0003 O ;12.
JTAG.SEQuence.Add , ShiftDrAndExit 32. Locall ;13.
JTAG.SEQuence.Add , RawShift 6. 0x000D O ;14.
JTAG.SEQuence.Add , ShiftIrAndExit 8. 0x0020 ;15.
JTAG.SEQuence.Add , RawShift 4. 0x0003 O ;16.
JTAG.SEQuence.Add , ShiftDrAndExit 4. 0x0001 ;17
JTAG.SEQuence.Add , RawShift 2. 0x0001 O ;18.
JTAG.SEQuence.Add , NOP

JTAG.SEQuence.Create PowerCheck ; <index>
JTAG.SEQuence.Add , PrePostRelative +4. -4. +1. -1. ;0.
; Call sequence "WriteSPR" with Local0 = 0x80000200, Locall = 0x0037
JTAG.SEQuence.Add , CALL WriteSPR 0x80000200 0x0037 gl .
JTAG.SEQuence.Add , CALL WriteSPR 0x80000100 0x0000 22 .
JTAG.SEQuence.Add , CALL WriteSPR 0x80000100 0x0008 23,
JTAG.SEQuence.Add , RawShift 4. 0x0003 O ;4
JTAG.SEQuence.Add , ShiftIrAndExit 8. 0x0008 ;5.
JTAG.SEQuence.Add , RawShift 4. 0x0003 O ;6.
JTAG.SEQuence.Add , ShiftDrAndExit 32. 0x0000 ResultO ;7
JTAG.SEQuence.Add , RawShift 2. 0x0001 O ;8
JTAG.SEQuence.Add , ASSIGN Result0 = Result0 & 0x0004 ;9

JTAG.SEQuence.Execute PowerCheck

See also
B JTAG.SEQuence

©1989-2024 Lauterbach General Commands Reference GuideJ | 45

JTAG.SEQuence.Append Append one sequence to another sequence
ARC, ARM, Ceva-X, RH850, RISC-V, SDMA, TeakLite, TriCore, Xtensa

Format: JTAG.SEQuence.Append <seq_name_dst> <seq_name_src>

Appends all actions of one JTAG sequence to another JTAG sequence.

<seq_name_dst> Name of the sequence which is extended by the other sequence.
<seq_name_src> Name of the sequence from which the actions are copied.
See also

B JTAG.SEQuence

JTAG.SEQuence.Create Create new JTAG sequence

ARC, ARM, Ceva-X, RH850, RISC-V, SDMA, TeakLite, TriCore, Xtensa

Format: JTAG.SEQuence.Create <seq_name>

Creates a name for a new empty JTAG sequence. To add the actual JTAG sequence, use

JTAG.SEQuence.ADD.
<seq_name> Name of the JTAG sequence (without quotes). The name must start with
a letter. The following characters can be letters, numbers, underscores,
and minus signs, i.e. this regular expression: Na-zA-Z] [a-zA-Z0-9_-]*
If you write the name in lower-case letters only, the name will be
converted to upper-case only.
See also

B JTAG.SEQuence

©1989-2024 Lauterbach General Commands Reference Guide J | 46

JTAG.SEQuence.Delete Delete JTAG sequence

ARC, ARM, Ceva-X, RH850, RISC-V, SDMA, TeakLite, TriCore, Xtensa

Format: JTAG.SEQuence.Delete [<seq_name>]

Deletes a JTAG sequence. If the command is used without sequence name, all deletable sequences will
be deleted.

Sequences which are locked cannot be deleted. A sequence is locked if it is assigned to an event (e.qg.
with SYStem.CONFIG.MULTITAP.JtagSEQuence) or if the sequence is an internal one which was
created by TRACES2 after using SYStem.CPU. The names of internal sequences start with an
underscore.

<seq_name> For a description of <seq_name>, see JTAG.SEQuence.ADD.

See also
B JTAG.SEQuence

©1989-2024 Lauterbach General Commands Reference Guide J | 47

JTAG.SEQuence.Execute Run JTAG sequence

ARC, ARM, Ceva-X, RH850, RISC-V, SDMA, TeakLite, TriCore, Xtensa

Format: JTAG.SEQuence.Execute <seq_name> [<value>...] [[<option>]

<option>: CORE current | ALL | <core>

Executes the given JTAG sequence on the active core selected with the command CORE.select or on the
core selected with the option CORE of this command.

It is mandatory that the chosen JTAG sequence is written in such a way that it begins and ends in the JTAG
TAP state, which is selected by SYStem.CONFIG.TAPState.

<value> Max. 8 <value> parameters, which initialize the local variables
Local0...Local7 of the sequence.

<seq_name> For a description of <seq_name>, see JTAG.SEQuence.ADD.

CORE current Executes the JTAG sequence on the currently selected core, e.g. the
core that is currently selected in the CORE.SHOWACTIVE window.

CORE ALL Executes the JTAG sequence on all cores.

CORE <core> Specifies the number of the logical core on which you want to execute the
JTAG sequence.

What happens when the JTAG.SEQuence.Execute command is being executed?

1. If the debugger is in SYStem.Mode Down or NoDebug, the debugger will automatically enable
the pin drivers.

2. If the debugger is in SYStem.Mode Up or Prepare, the debugger will execute JTAG actions
before and after the execution of the chosen JTAG sequence:

- Before the execution the debugger will go from the JTAG park-state of the debug driver to the
TAP state which is selected by SYStem.CONFIG.TAPState.

- Afterthe execution the debugger will go back to the JTAG park-state of the debug driver from
the TAP state which is selected by SYStem.CONFIG.TAPState.

3. The JTAG sequence is executed.

4. After successful execution, the value of the global sequence variable Result0 is displayed in the
AREA window unless JTAG.SEQuence.Execute was run with the pre-command SILENT and
unless the option CORE ALL was used.

The values of Result0 and Result1 set by the last run of JTAG.SEQuence.Execute can be read
via the PRACTICE function JTAG.SEQuence.RESULT(0I1).

See also
B JTAG.SEQuence 1 JTAG.SEQuence.RESULT()

©1989-2024 Lauterbach General Commands Reference Guide J | 48

JTAG.SEQuence.List

ARC, ARM, Ceva-X, RH850, RISC-V, SDMA, TeakLite, TriCore, Xtensa

Show list of all sequences

Format: JTAG.SEQuence.List

The command JTAG.SEQuence.List opens a window to display the names of all available user-defined and
TRACE32-internal JTAG sequences.

% BuJTAG.SEQuence.List

(=[O el

(3% Delete &l || B stwore.. |

= Load.. ” =+ Cieate Sequence]

JTAG Seqguence

state owner

' DapEnable locked |sys.cpu -
yAttach locked |user

'owerCheck idle user

JTAG Sequence -
= View [’
¥ Delete
¥ Execute

Append sequence

Description of Toolbar and Popup Menu in the JTAG.SEQuence.List Window

Delete All Delete all sequences which are not locked.
See JTAG.SEQuence.Delete.

Store... Saves all current sequences with owner “user” to a PRACTICE script
(via command STOre * JtagSEQuence)

Load... Executes a PRACTICE script. (See command DO) Typically you use

that to execute the script previously created with Store...

Create Sequence... Writes command JTAG.SEQuence.Create to the command line

View Displays the selected sequence in a JTAG.SEQuence.View window.
Delete Deletes the selected sequence. See JTAG.SEQuence.Delete.
Execute Executes the selected sequence. See JTAG.SEQuence.Execute.

Writes the command JTAG.SEQuence.Append to the command line
to append another sequence to the selected one.

Append sequence

©1989-2024 Lauterbach General Commands Reference Guide J | 49

Description of Columns in the JTAG.SEQuence.List Window:

JTAG sequence The names of the currently existing JTAG sequences.
The names of internal sequences (with owner “sys.cpu”) start with an
underscore.

state idle: Default state for a user sequence which was not yet attached to
an event.
empty: The sequence was created and is valid but does not yet
contain any action.
invalid: The sequence contains an invalid action or calls an invalid
sequence. Invalid sequences can’t be executed or attached to an
event
locked: The sequence can be modified. That is the case when the
sequence is an internal sequences (with owner “sys.cpu”) or when the
sequence is attached to an event e.g. by
SYStem.CONFIG.MULTITAP.JtagSEQuence

owner user: User-defined JTAG sequence.
sys.cpu: Internal sequences, specific for the current SYStem.CPU
Internal sequences are created by TRACES32 afterthe SYStem.CPU
command has been executed. They are always locked.

See also

B JTAG.SEQuence

JTAG.SEQuence.MemAccess.ADD Register sequence for memory access

ARC, ARM [build 142495 - DVD 02/2022]
Format: JTAG.SEQuence.MemAccess.ADD <addressrange> <seq_name> <mau>
[<rtAccMode>]
<mau> Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
<rtAccMode> stopped | SYStem | PREPARE | ALways

This command registers a JTAG sequence to be used to read or write data via access class JSEQ:

<addressrange>

<seq_name>

Address range for which a JTAG sequence should provide memory
access

Name of a previously created JTAG sequence, which should provide
memory access for the given address range.

©1989-2024 Lauterbach

General Commands Reference GuideJ | 50

<mau> Minimal Addressable Unit (MAU) (see below)

<rtAccMode> Run-time access mode: Controls in which system states the memory

access is allowed (see below)

When accessing the registered address range via the access class JSEQ: e.g. via command
Data.dump JSEQ:<address> , the following parameters are set to the variables before calling the
sequence:

LocalO: address (in MAU)

Local1: length (in MAU)

Local2: 1 on Write, O on read-access

Local3: size of Minimal Addressable Unit (MAU) in bytes
Local4: access-width (in bytes)

Result1: 1 (must be set to 0 on success, otherwise the access is invalid)

On a read request the called JTAG sequence has to write the requested data to the buffer via sequence
action ToByteBuffer in little-endian byte order and then set the global variable Result1 to 0.

On a write request the called JTAG sequence has to read the requested data to the buffer via sequence
action FromByteBuffer in little-endian byte order and then set the global variable Result1 to 0.

The maximum amount of data, which should be read or write during one call is 512 Bytes.

If the transaction was successful, you have to set Result1 to 0.
If the memory, you try to access, is read-only, do nothing on a write, except setting Result1 to 0.

Minimal Addressable Unit (MAU):
While PowerView will access memory via class JSEQ always byte addressable, however setting MAU to any
other value than Byte will have the following effect:

The addresses and the access size send to the JTAG sequence are always provided in MAUs instead of

bytes. Thus the data read/write via JTAG sequences are always aligned to a multiple of the MAU.

When a user tries to read memory not aligned to the MAU, TRACE32 will request aligned data containing

the requested data and extract the requested data from there.
When a user tries to write memory not aligned to the MAU, TRACE32 will read aligned data containing the
requested data via the JTAG sequence, modify the affected data and then write back the modified data.

©1989-2024 Lauterbach General Commands Reference Guide J |

51

Run-time access mode:

When registering a JTAG sequence for memory access, you can specify under which system states the
memory access is possible at all:

rtAccMode System.Mode System.Mode System.Mode System.Mode Up
Down PREPARE Up & Stopped & Running

stopped (default) no access no access EJSEQ: | JSEQ | no access

SYStem no access no access EJSEQ: | JSEQ | EJSEQ: only if
SYS.MemAccess()!=
"DENIED"

PREPARE no access EJSEQ: | JSEQ | EJSEQ:|JSEQ| EJSEQ:

ALways EJSEQ: | JSEQ: | EJSEQ:|JSEQ| EJSEQ:|JSEQ | EJSEQ:

©1989-2024 Lauterbach

General Commands Reference Guide J |

52

Example:

/I Create JTAG sequences:
JTAG.SEQ.Create myMemRead

JTAG.SEQ.ADD , ReadWrite Ox0A 32. LocalO ; 0: set address
JTAG.SEQ.ADD , ReadWrite 0x09 4. 0x04 ; 1: trigger read access
JTAG.SEQ.ADD , ReadWrite 0x08 3. 0x00 Local2 ; 2: read state
JTAG.SEQ.ADD , Jump 3. Local2 & 0x05 != 0x04; 3: transaction done-?
JTAG.SEQ.ADD , ReadWrite OxO0OB 32. 0x00 ResultO ; 4: get result
JTAG.SEQ.Create

JTAG.SEQ.ADD , ReadWrite Ox0A 32. LocalO ; 0: set address
JTAG.SEQ.ADD , ReadWrite O0x0B 32. Locall ; 1: set data
JTAG.SEQ.ADD , ReadwWrite 0x09 4. 0x00 ; 2: trigger read access
JTAG.SEQ.ADD , ReadWrite 0x08 4. 0x00 Local2 ; 3: read state
JTAG.SEQ.ADD , Jump 3. Local2 & 0x05 != 0x04; 4: transaction done-?
JTAG.SEQ.Create myMemAccess

; Local0O: address (in MAU)

; Locall: length (in MAU)

; Local2: 1 on Write, 0 on read-access

JTAG.SEQ.ADD , PrePostRelative -4. +4. -1. +1. ; 0

JTAG.SEQ.ADD , IRWidth 4. g A

JTAG.SEQ.ADD , Jump 13. Locall == 0x00 ; 2 all accesses done?
JTAG.SEQ.ADD , Jump 7. Local2 == 0x01 g 3 write access?
JTAG.SEQ.ADD , CALL myMemRead LocalO ; 4 : read 32-bit value
JTAG.SEQ.ADD , ToByteBuffer Local0 Long Result0O; 5 : save value
JTAG.SEQ.ADD , Jump 10. ; 6

JTAG.SEQ.ADD , FromByteBuffer Local0 Long Local6 ; 7 load val. to write
JTAG.SEQ.ADD , CALL LocalO Local6 ; 8 write 32-bit value
JTAG.SEQ.ADD , Jump 10. 79

JTAG.SEQ.ADD , ASSIGN Local0 = Localld + ;10: increment address

;11: decrement length

JTAG.SEQ.ADD , ASSIGN Locall = Locall =
JTAG.SEQ.ADD , Jump 2. ;12: goto next iteration
JTAG.SEQ.ADD , ASSIGN Resultl = 0x00 ;13: indicate success

/I Register JTAG sequence for accessing the given address range:
JTAG.SEQ.MemAccess.ADD JSEQ:0x10000--0x1FFFF myMemAccess Long PREPARE

/I Display memory:
Data.dump JSEQ:0x10000--0xX1FFFF

©1989-2024 Lauterbach General Commands Reference GuideJ | 53

JTAG.SEQuence.MemAccess.List View registered memory accesses
ARC, ARM [build 142495 - DVD 02/2022]

Format: JTAG.SEQuence.MemAccess.List

This command opens a window, which shows your all address ranges which are currently registered for
accesses via JTAG sequences.

To add a new entry to this window use command JTAG.SEQuence.MemAccess.ADD.

JTAG.SEQuence.MemAccess.ReMove Delete registered memory accesses
ARC, ARM [build 142495 - DVD 02/2022]

Format: JTAG.SEQuence.MemAccess.ReMove [<addressrange> | <address>]

Delete all memory accesses via JTAG sequences previously registered via
JTAG.SEQuence.MemAccess.ADD which overlap with the given address or address-range.

Calling JTAG.SEQuence.MemAccess.ReMove without any address or address-range will delete all
registered memory accesses.

JTAG.SEQuence.MemAccess.Replace Replace registered memory access
ARC, ARM [build 142495 - DVD 02/2022]

Format: JTAG.SEQuence.MemAccess.Replace <addressrange> <seq_name>
<mau> <rtAccMode>

This command is a shortcut and does the same than executing the following two commands:
JTAG.SEQuence.MemAccess.ReMove.
JTAG.SEQuence.MemAccess.ADD.

©1989-2024 Lauterbach General Commands Reference Guide J | 54

JTAG.SEQuence.ReMove Remove action from sequence
ARC, ARM, Ceva-X, RH850, RISC-V, SDMA, TeakLite, TriCore, Xtensa

Format: JTAG.SEQuence.ReMove <seq_name> [<index>]

Removes the indexed action from the specified sequence.

If the <index> parameter is omitted, all actions are removed from the sequence. However, unlike
JTAG.SEQuence.Delete, the sequence name still exists, but the sequence itself is empty.

<seq_name> For a description of <seq_name>, see JTAG.SEQuence.ADD.

<index> Index of a command within the given JTAG sequence.
Parameter Type: Decimal.

See also
B JTAG.SEQuence

JTAG.SEQuence.Replace Replace action inside sequence
ARC, ARM, Ceva-X, RH850, RISC-V, SDMA, TeakLite, TriCore, Xtensa

Format: JTAG.SEQuence.Replace <seq_name> <index> <action>

Like JTAG.SEQuence.Add, but instead of adding a new action to a sequence it replaces the indexed action
<index> inside the specified sequence with a new <action>. For an illustrated example, see

JTAG.SEQuence.View.
<seq_name> For a description of <seq_name>, see JTAG.SEQuence.ADD.
<index> Index of a command within the given JTAG sequence.
Parameter Type: Decimal.
<action> For a description of <action>, see JTAG.SEQuence.ADD.
See also

B JTAG.SEQuence

©1989-2024 Lauterbach General Commands Reference GuideJ | 55

JTAG.SEQuence.View

Display JTAG sequence

ARC, ARM, Ceva-X, RH850, RISC-V, SDMA, TeakLite, TriCore, Xtensa

Format: JTAG.SEQuence.View <seq_name>

Opens the JTAG.SEQuence.View window, displaying the specified JTAG sequence.

<seq_name> For a description of <seq_name>, see JTAG.SEQuence.ADD.

(=[O el

5 B::JTAG.SEQuenceView PowerCheck
4% List All Seuences|[3 itoedll | & UP_][> DOWN][_+ Add (2% Beate |

idx fJlaction | parameter |

1] =l e Tative |[irpre: +0. irpost: -4. drpre: +0. drpost: -1.
1. |CALL WriteSPR 0x80000200 0x0037
2. WriteSPR 0x80000100 0x0000
3. |Write5PR 0x80000100 0x0008
4. ength: 4. tms:0x0003 tdi :0x0000 JTAG Action
5. length: 8. tdi:0x0008
5. Tength: 4. tms:0x0003 tdi:0x0000 X ReMove
T length:32. tdi:0x0000 tdo:ResultO & UP
8. length: 2. tms:0x0001 +tdi:0x0000
9. Resultd = Result0d & O0x0004 w DOWN
ol g Modify. |

o View WriteSPR

E::JTAG. SEQuence. Replace PowerCheck 3. CALL WriteSPR Ox80000100 0x0008

[ok]

A To modify an individual action of a JTAG sequence, right-click the action and then select Modify.

B This inserts the command JTAG.SEQuence.Replace into the TRACE32 command line. You can

now modify the action as required.

Description of Toolbar and Popup Menu in the JTAG.SEQuence.View Window

List All Sequences

Lists the sequence names in the JTAG.SEQuence.List window.

ReMove All Removes all actions of the displayed sequence. The sequence name,
however, is retained. See JTAG.SEQuence.ReMove.

UP, DOWN Allow you to rearrange the individual actions of a sequence.

Add Inserts the JTAG.SEQuence.Add command into the TRACE32
command line. You can now add a new action to the sequence.

Execute Executes the displayed sequence. See JTAG.SEQuence.Execute.

View <seq_name>
Only available for the action CALL

Displays the sequence that will be called from this sequence in a new
JTAG.SEQuence.View window.

See also

B JTAG.SEQuence

©1989-2024 Lauterbach

General Commands Reference GuideJ | 56

JTAG.SHIFTREG Send a TDI pattern on the JTAG port

Format: JTAG.SHIFTREG <pattern>

This command can be used to shift data if you are in the Shift-IR or Shift-DR state of the JTAG state
machine. The shift is limited to 1024 bit.

It behaves the same way as JTAG.SHIFTTDI, but on the last bit the TMS is set high to leave the shift state.
The last bit is still a valid data. This way you can shift a complete value with one command.

The function JTAG.SHIFT() can be used to read out the TDO data of the last shift. LSB first. Up to 64 bit.

Example: “JTAG.SHIFTREG1111001010000 1 1 1” produces 16 TCK pulses having the specified
TDI pattern. The left-most bit will be sent first. TMS keeps its level (low), on the last bit it gets high.

The pattern can also be specified for example in 8-bit, 16-bit, 32-bit formats:

JTAG.SHIFTREG %Byte 0x23 0x45 0x67

JTAG.SHIFTREG $%Word 0x2345

JTAG.SHIFTREG %Long 0x23444565 0x22556667

For a more advanced example, see JTAG.

See also
B JTAG.SHIFTTDI B JTAG.SHIFTTMS B JTAG.SEQuence m JTAG
B JTAG.LOCK B JTAG.PIN B JTAG.UNLOCK

A Custom JTAG Access’ in’Application Note JTAG Interface’

©1989-2024 Lauterbach General Commands Reference GuideJ | 57

JTAG.SHIFTTDI Send a TDI pattern on the JTAG port

Format: JTAG.SHIFTTDI <pattern>

This command can be used to shift data if you are in the Shift-IR or Shift-DR state of the JTAG state
machine. The size of the shift is limited to 1024 bits.

The function JTAG.SHIFT() can be used to read out the TDO data of the last shift. LSB first. Up to 64 bit.

Example: “JTAG.SHIFTTDI1111001010000 1 1 1” produces 16 TCK pulses having the specified TDI
pattern. The left-most bit will be sent first. TMS keeps its level (low).

The pattern can also be specified for example in 8-bit, 16-bit, 32-bit formats:

JTAG.SHIFTTDI %Byte 0x23 0x45 0x67

JTAG.SHIFTTDI %Word 0x2345

JTAG.SHIFTTDI %Long 0x23444565 0x22556667

For a more advanced example, see JTAG.

See also
B JTAG.SHIFTTMS B JTAG.SHIFTREG B JTAG.SEQuence m JTAG
B JTAG.LOCK W JTAG.PIN B JTAG.UNLOCK a JTAG.SHIFT()

A 'Custom JTAG Access’ in’Application Note JTAG Interface’

©1989-2024 Lauterbach General Commands Reference GuideJ | 58

JTAG.SHIFTTMS

Send a TMS pattern on the JTAG port

Format: JTAG.SHIFTTMS <pattern>

This command can be used to walk to a different state in the JTAG state machine. The shift is limited to 1024

bit.

Example: “JTAG.SHIFTTMS 1100 1 0 1” produces 7 TCK pulses having the specified TMS bit pattern.

The left-most bit will be sent first. TDI keeps its level.

The pattern can also be specified for example in 8-bit, 16-bit, 32-bit formats:

JTAG.SHIFTTMS %Byte 0x23 0x45 0x67

JTAG.SHIFTTMS $Word 0x2345

JTAG.SHIFTTMS %Long 0x23444565 0x22556667

For a more advanced example, see JTAG.

See also
B JTAG.SHIFTTDI B JTAG.SHIFTREG B JTAG.SEQuence m JTAG
W JTAG.LOCK N JTAG.PIN B JTAG.UNLOCK

A 'Custom JTAG Access’ in’Application Note JTAG Interface’

©1989-2024 Lauterbach

General Commands Reference GuideJ | 59

JTAG.SWD.Init Initialize the debug port

Format: JTAG.SWD.Init

Initializes the debug port and switches to SWD.

JTAG.SWD.ReadDapBus Read register from DAP

Format: JTAG.SWD.ReadDapBus [AP | DP | IDCODE]

Reads a register from the DAP via SWD. JTAG.SWD.ReadDapBus additionally reads out the DP:RDBUF
register when an AP register is read.

JTAG.SWD.ReadScan Read register from DAP

Format: JTAG.SWD.ReadScan [AP | DP | IDCODE]

Reads a register from the DAP via SWD.

JTAG.SWD.Select Configure SWD multi drop target selection

Format: JTAG.SWD.Select <pattern>

Selects to configure SWD multi drop target selection.

©1989-2024 Lauterbach General Commands Reference GuideJ | 60

JTAG.SWD.SHIFT Shift data by using the SWIO pin

Format: JTAG.SWD.SHIFT <pattern>

This command can shift data by using the SWIO pin with the configured clock. The command accepts single
symbols for single cycles or larger words using masks to mark positions where data is read back. The
function JTAG.SHIFT() returns in maximum 64 bit shift data counting all cycles passed to
JTAG.SWD.SHIFT.

Examples:

; 1. shift 3 times symbol ‘1’ to target

; 2. shift 3 cycles and read back SWIO from target
; 3. shift 3 cycles symbol ‘0’ to target
JTAG.SWD.SHIFT 1 1 1 X X X 0 0 O

; read back result

print “result of X X X “ (JTAG.SHIFT()>>>3.)&0x7

; 1. shift 1 cycle and read back SWIO from target
; 2. shift 32 bit data

; 3. shift 1 bit '1'

JTAG.SWD.SHIFT X $LONG OxCOFFEAFFE 1

; 1. shift 32 cycles and read back SWIO from target
; 2. shift 1 cycle and read back SWIO from target
JTAG.SWD.SHIFT $%$long O0xXXXXXXXX X

; shift line reset
JTAG.SWD.SHIFT %$long OxFFFFFFFF %$word OxFFFF 1 1 0 O

; shift 'park' and 'trn' symbol (just don't drive swio line)
JTAG.SWD.SHIFT X X

JTAG.SWD.WriteDapBus Write register to DAP

Format: JTAG.SWD.WriteDapBus [AP | DP | ABORT]

Writes a register to the DAP via SWD.

©1989-2024 Lauterbach General Commands Reference Guide J | 61

JTAG.SWD.WriteScan Write register to DAP

Format: JTAG.SWD.WriteScan [AP | DP | ABORT]

Wirites a register to the DAP via SWD.

JTAG.UNLOCK Hand the JTAG port control back to the debugger

Format: JTAG.UNLOCK

Re-enables all debugger activity on the JTAG port which might have been disabled by JTAG.LOCK in order
to avoid debugger JTAG access in between a manual control sequence.

You need to return to the JTAG pause parking position before performing the UNLOCK. Refer to
JTAG.LOCK for more information.

See also
H JTAG B JTAG.LOCK N JTAG.PIN B JTAG.SHIFTREG
B JTAG.SHIFTTDI B JTAG.SHIFTTMS

A 'Custom JTAG Access’ in’Application Note JTAG Interface’

©1989-2024 Lauterbach General Commands Reference GuideJ | 62

JTAG.USECLOCK Observe shift commands

Format: JTAG.USECLOCK [ON | OFF]

Default: OFF

The command JTAG.USECLOCK affects only Lauterbach hardware labeled with DEBUG CABLE.

ON The debug clock set with SYStem.JtagClock is taken into account when
the JTAG.SHIFT* commands are used:
. JTAG.SHIFTREG
. JTAG.SHIFTTDI
. JTAG.SHIFTTMS

OFF The debug clock is ignored.
Example:

SYStem.JtagClock 1Mhz ; configure JTAG clock

JTAG.USECLOCK ON ; use the JTAG clock instead of pin toggling
; for DEBUG CABLE based solutions

JTAG.LOCK ; prevent debugger from interrupting the
; Sequence

JTAG.PIN ENable ; enable output buffers of DEBUG CABLE

JTAG.SHIFTTMS 1 1 1 1 1 0 ; reset TAP controller and
; go to RUN-TEST-IDLEstate

See also
H JTAG

©1989-2024 Lauterbach General Commands Reference GuideJ | 63

JTAG.X7EFUSE Program Xilinx 7-Series eFuses

[Examples]

Format: JTAG.X7EFUSE [/<option>]
<option>: DEVICE <device>
SLR <sir>

IRPRE <value>
IRPOST <value>
DRPRE <value>
DRPOST <value>
USER <value>
USERL <value>
USERH <value>
KEY <key._file>
NOKEY

ADD

UNSAFE
ENABLE
CFG_AES_ONLY
AES_EXCLUSIVE
W_EN_B_KEY_USER
R_EN_B_KEY
R_EN_B_USER
W_EN_B_CNTL

Programs the eFuse array in Xilinx 7-series (Virtex-7, Kintex-7 and Artix-7) FPGAs. These fuses contain the
following information:

J AES key for loading encrypted bitstreams (256 bit)
. USER code accessible to loaded FPGA design (32 bit)
. Protection flags for eFuses and configuration (6 flags)

It is highly recommended to read the Xilinx application note XAPP 1239, Using Encryption to Secure a 7
Series FPGA Bitstream, prior to using this command.

The command prints information about its progress, including the unique device identifier DNA, to the
AREA . view window. It is recommended to use AREA.OPEN and AREA.CLOSE to set up persistent
logging of the performed operations to a file.

After the command has been executed, information about its outcome can be programmatically queried
using the PRACTICE functions JTAG.X7EFUSE.RESULT(), JTAG.X7EFUSE.CNTLY(),
JTAG.X7EFUSE.DNA(), JTAG.X7EFUSE.KEY() and JTAG.X7EFUSE.USER().

©1989-2024 Lauterbach General Commands Reference Guide J | 64

DEVICE <device>

Selects the device type to be configured.
The following devices are known to TRACE32:
. XC7A15T, XA7A15T
XC7A35T, XA7A35T
XC7A50T, XA7A50T, XQ7A50T
XC7K70T
XC7A75T, XA7A75T
XC7A100T, XA7A100T
XQ7A200T, XC7A200T, XQ7A200T, XC7K160T
XC7K325T, XQ7K325T, XC7K355T
XC7K410T, XQ7K410T
XC7K420T
XC7K480T
XC7VX330T
XC7VX415T
XC7VX485T
XC7VX550T
XC7V585T
XC7VX690T
XC7VX980T
XC7VX1140T (%)
XC7V2000T (*)
XC7VH580T (*)
XC7VHS870T (*)
*) These devices contain multiple Super Logic Regions (SLRs) and
equire the SLR option.

= -~~~ 6 o o o o o o ¢ ¢ o o o o o oo o o o o o o

SLR <sir>

Selects the Super Logic Region (SLR) to be configured.

The largest 7-series devices are composed of multiple SLRs. In this
case, each SLR contains its own eFuse array. All eFuse arrays must be
separately programmed to the exact same values. Using this option, one
SLR can be programmed at a time. The valid indices are as follows:

. XC7VX1140T:0,1,2,3

XC7V2000T: 0, 1

XC7VH580T: 0, 1

XC7VH870T: 0, 1, 2

All others: 0 (the SLR option can also be omitted)

IRPRE <value>
IRPOST <value>
DRPRE <value>
DRPOST <value>

Configures the JTAG chain parameters.

These options work like the corresponding commands in
SYStem.Option: They specify how the FPGA device to be programmed
can be reached in the JTAG chain. All values default to O if the
corresponding option is not specified.

©1989-2024 Lauterbach

General Commands Reference GuideJ | 65

USER <value>
USERL <value>
USERH <value>

Specifies the USER code to be programmed.

The USER code is a 32-bit value that is accessible to the logic inside the
FPGA. Unless explicitly disabled, it can also be read via the JTAG port.
The value is stored in two parts: USER[31:8] can be programmed
independently of the AES key, while USER[7:0] must be programmed at
the same time. If only part of the USER code should be programmed, use
USERL and USERH to program USER[7:0] and USER[24:0],
respectively. These commands also expect a 32-bit value, but require
that the high or low bits be zero.

If USERL or USER is specified, it is also required to specify an AES key
with KEY or explicitly accept that no key can be loaded in the future using
NOKEY

KEY <key_file>

Specifies the *.nky file containing the AES key.

The *.nky file is generated by the Xilinx Vivado toolchain.

When using KEY, the values for USER[7:0] must also be permanently
programmed. If no USER code should ever be programmed, use USERL
0.

NOKEY

Explicitly specifies that no key should be programmed.
Used in conjunction with USERL or USER.

ADD

Allow adding information to a partially programmed eFuse array.

Under some circumstances, it is possible to perform further

programming:

. Program KEY and USER]J7:0] if neither have already been pro-
grammed and none of the W_EN_KEY_USER, R_EN_KEY and
R_EN_USER fuses are set.

. Program USER([31:8] if not already programmed and none of the
W_EN_KEY_USER, R_EN_KEY and R_EN_USER fuses are set.

. Program further CNTL bits if W_EN_CNTL is not set.

When programming the fuses for the first time, dedicated test fuses are

blown to verify correct programming. This is not possible if the array has

already been partially programmed. It is therefore recommended to
program KEY, USER and CNTL bits using a single invocation of the

JTAG.X7EFUSE command.

UNSAFE

Allows combinations of operations that could leak key data.

When programming the AES key, it is recommended to immediately set
the R_EN_KEY CNTL flag to disallow reading the key. Additionally, if the
R_EN_KEY or R_EN_USER flags are set, writing to KEY or USER is
disabled. It is therefore recommended to also set W_EN_KEY_USER as
a further precaution.

When using this flag, programming will begin operation even if these
conditions are not met. Without this flag, it will report an error instead,
before any fuses are programmed.

ENABLE

Allows writing to an eFuse array.

This option is required to write to any eFuse. If the option is missing, but
the other options specify that a write operation is necessary, the
command will fail and report the list of operations that would have been
performed. This is the equivalent to a dry-run operation.

©1989-2024 Lauterbach

General Commands Reference GuideJ | 66

CFG_AES_ONLY

Forces configuring the FPGA through the AES decryptor.
If this option is set, it will be impossible to load the FPGA without
knowledge of the AES key. See XAPP1239 for further details.

AES_EXCLUSIVE

Disables partial reconfiguration from external interfaces.
See XAPP1239 for further details.

W_EN_B_KEY_USE
R

Disables writing to KEY and USER values.
See XAPP1239 for further details.

R_EN_B_KEY Disables reading the KEY value.
As a side effect, this also disables writing to KEY and USER values. See
XAPP1239 for further details.

R_EN_B_USER Disables reading the USER value through the JTAG interface.
The USER value will still be accessible to user logic inside the FPGA. As
a side effect, this also disables writing to KEY and USER values. See
XAPP1239 for further details.

W_EN_B_CNTL Disables writing to the CNTL flags.

See XAPP1239 for further details.

Preconditions

Before programming, please verify the following:

Any external configuration sources must be disabled. TRACES32 will clear the FPGA
configuration upon excution of this command, but cannot prevent reconfiguration from external
sources. For eFuse programming, the FPGA must be unconfigured.

SYStem.JtagClock must be set to exactly 1 MHz.

Observe the Igg and T; conditions from the device data sheet.

The Ve iyt must be within 0.97 V and 1.03 V. This applies to all devices, including -2L and -1L

devices.

Verify the reliability of the communication between TRACES32 and the FPGA by loading a
bitstream using JTAG.LOADBIT.

Failure Conditions

The command JTAG.X7EFUSE first reads and verifies the IDCODE register multiple times, then resets the
FPGA configuration. It then reads the current state of the CNTL bits and any accessible eFuse data. If a
communication error occurs or it is determined that the requested operations cannot be performed, the
command fails and JTAG.X7EFUSE.RESULT() returns the value 2. If it is determined that the requested
values are already programmed, the command succeeds and JTAG.X7EFUSE.RESULT() returns 0.

If programming is to be performed, the command first blows dedicated test fuses to verify correct operation.
If an error is discovered during this period, the command fails and JTAG.X7EFUSE.RESULT() returns 3. If

the operation is requested by the user, the command writes and verifies KEY and USER data. Regardless of
the result of this operation, the command will attempt to program the CNTL bits as specified by the user. This

©1989-2024 Lauterbach

General Commands Reference Guide J | 67

is done to ensure that any key security settings also protect incorrectly written keys. If programming or
verification of KEY or USER failed, but programming and verifying CNTL succeeded,

JTAG.X7EFUSE.RESULT() returns 4. If programming or verifying CNTL fails, JTAG.X7EFUSE.RESULT()
returns 5 to indicate that the device could potentially leak confidential information.

If no error occurs, but at least one eFuse was programmed, JTAG.X7EFUSE.RESULT() returns 1.

Examples

Example 1: This script programs the KEY, USER and CNTL flags with a single command, treats KEY as a
secret value and leaves USER readable via JTAG. In addition, further writes to control flags are disabled:

SYStem.JtagClock 1.0MHz

JTAG.X7EFUSE /DEVICE XC7K325T /KEY my_ key.nky /USER O0xCODECODE \
/R_EN_B_KEY /W_EN_B_KEY_USER /W_EN_B_CNTL \
/ENABLE

IF JTAG.X7EFUSE.RESULT () !=1.
(

; handle the case where programming or verifying failed

)

Example 2: This script initially programs only the USER[31:8] code, and at a later time programs the KEY.
The FPGA configuration and reconfiguration is forced to use the AES decryptor:

SYStem.JtagClock 1.0MHz

JTAG.X7EFUSE /DEVICE XC7K325T /USERH 0xCODECO000 /ENABLE
; omitted: do error checking as above

; later, possibly in a separate TRACE32 session:

JTAG.X7EFUSE /DEVICE XC7K325T /KEY my_key.nky /USERL 0x000000DE \

/R_EN_B_KEY /W_EN_B_KEY USER /CFG_AES_ONLY /AES_EXCLUSIVE \
/W_EN_B_CNTL /ENABLE /ADD
; omitted: do error checking as above

©1989-2024 Lauterbach General Commands Reference GuideJ | 68

Example 3: This script reads all available information from a device:

SYStem.JtagClock 1.0MHz

JTAG.X7EFUSE /DEVICE XC7K325T

IF JTAG.X7EFUSE.RESULT (
(
PRINT "Device DNA:
PRINT "Device CNTL:
PRINT "Device KEY:
PRINT "Device USER:

ELSE

)::O.

"+JTAG
"+JTAG
"+JTAG
"+JTAG

; some error occurred

Depending on the CNTL flags, it may be impossible to read the KEY or USER, in which case an all-zero

KEY or USER value will be returned.

See also

.X7EFUSE . DNA (
.X7EFUSE.CNTL
.X7EFUSE.KEY (
.X7EFUSE.USER

)
()
)

()

B JTAG

A "JTAG Functions’ in 'General Function Reference’

©1989-2024 Lauterbach

General Commands Reference Guide J

69

JTAG.XUSEFUSE Program Xilinx UltraScale eFUSEs

[Examples]

Format: JTAG.XUSEFUSE [/<option>]

<option>: READ <value>
IRPRE <value>
IRPOST <value>
DRPRE <value>
DRPOST <value>
SLR <value>
RSA <value>
KEY <value>
USER <value>
USER128 <value>
CNTL <value>
SEC <value>
NKZ <key_file>

Programs the eFUSE registers in Xilinx UltraScale FPGAs. UltraScale+ devices are not supported. These
fuses contain the following information:

. SHA-3 hash for RSA bitstream authentication

J AES key for loading encrypted bitstreams (256 bit)

. Short USER code accessible to loaded FPGA design (32 bit)

. Long USER code readable via special JTAG instruction (128 bit)
J Configuration flags for accessing the eFuse registers (10 flags)

. Security flags for configuring e. g. the use of the AES key (7 flags)

It is highly recommended to read the Xilinx User Guide UG 570, UlfraScale Architecture Configuration as
well as Xilinx application note XAPP 1283, Internal Programming of BBRAM and eFUSEsS, prior to using this
command.

The command prints information about its progress, including the unique device identifier DNA, to the
AREA . view window. It is recommended to use AREA.OPEN and AREA.CLOSE to set up persistent
logging of the performed operations to a file.

After the command has been executed, information about its outcome can be programmatically queried
using the PRACTICE function JTAG.XUSEFUSE.RESULT(). If the command has been invoked with the
/READ option, the following PRACTICE functions can be used to get the current eFUSE configuration of the
FPGA:

e JTAG.XUSEFUSE.CNTL(), JTAG.XUSEFUSE.DNA(),
s JTAG.XUSEFUSE.KEY(), JTAG.XUSEFUSE.RSA(),
« JTAG.XUSEFUSE.SEC(), JTAG.XUSEFUSE.USER(), and JTAG.XUSEFUSE.USER128()

©1989-2024 Lauterbach General Commands Reference GuideJ | 70

READ <value>

Reads the values currently stored in the eFUSE registers.

If not prevented by the configuration bits in the CNTL register, the values
can afterwards be obtained by using the PRACTICE functions
JTAG.XUSEFUSE.().

NOTE: Because the private AES key cannot be directly read, the user
must provide a value as key for comparing.

NOTE: This option can only be combined with the options IRPRE,
IRPOST, DRPRE, DRPOST, and SLR.

IRPRE <value>
IRPOST <value>
DRPRE <value>
DRPOST <value>

Configures the JTAG chain parameters.

These options work like the corresponding commands in
SYStem.Option: They specify how the FPGA device to be programmed
can be reached in the JTAG chain. All values default to O if the
corresponding option is not specified.

SLR <sir>

Selects the Super Logic Region (SLR) to be configured.

The largest UltraScale series devices are composed of multiple SLRs. In
this case, each SLR contains its own eFUSE array. All eFUSE arrays
must be separately programmed. Using this option, one SLR can be
programmed at a time. The valid indices are as follows:

. XCKUO085: 0, 1

XCKU115: 0, 1

XCvU125: 0, 1

XCvu160:0, 1,2

XCvU190:0, 1,2

XCVU440:0, 1,2
All others: O (the SLR option can also be omitted)

RSA <value>

Specifies the hash for RSA authentication to be programmed.
The value is the SHA-3 hash of the public key used for RSA bitstream
authentication.

KEY <value>

Specifies the AES key for bitstream decryption.

USER <value>

Specifies the USER code to be programmed.
The USER code is a 32-bit value that is accessible to the logic inside the
FPGA. Unless explicitly disabled, it can also be read via the JTAG port.

USER128 <value>

Specifies the 128-bit USER code to be programmed.

CNTL <value>

Specifies the value to be programmed into the eFUSE Control Register.
The Control Register contains 10 flags which can be used to restrict the
access to the different eFUSE registers. A more detailed information on
the Control Register can be found in the Xilinx User Guide UG570.

©1989-2024 Lauterbach

General Commands Reference GuideJ | 71

SEC <value>

Specifies the value to be programmed into the eFUSE Security Register.
The Security Register contains 7 flags which can be used to configure
the usage of the different eFUSE registers. A more detailed information
on the Security Register can be found in the Xilinx User Guide UG570.

NKZ <key_file>

Specifies the *.nkz file containing several values to be programmed.

All values in the given *.nkz file are programmed to the eFUSEs. The
*.nkz file can be generated by the Xilinx Vivado toolchain and may
contain the values for each eFUSE register. Example 3 includes a *.nkz
file with all possible keywords and values.

NOTE: This option can only be combined with the options IRPRE,
IRPOST, DRPRE, DRPOST, and SLR.

Preconditions

Before programming, please verify the following:

. Any external configuration sources must be disabled. TRACE32 will clear the FPGA
configuration upon execution of this command, but cannot prevent reconfiguration from external
sources. For eFUSE programming, the FPGA must be unconfigured.

J SYStem.JtagClock must be set to exactly 1 MHz.

. Observe the Igg and T; conditions from the device data sheet.

. The Ve int must be within 0.97 V and 1.03 V. This applies to all devices, including -2L and -1L

devices.

Verify the reliability of the communication between TRACE32 and the FPGA by loading a bitstream

using JTAG.LOADBIT.

Failure Conditions

The command JTAG.XUSEFUSE first reads and verifies the IDCODE register, then resets the FPGA
configuration. Afterwards it either reads the current accessible eFUSE data or writes the given values to the
eFUSES. If a communication error occurs or it is determined that the requested operations cannot be
performed, the command fails and JTAG.XUSEFUSE.RESULT() returns the value 1. If it is determined that
the requested values are already programmed, the command succeeds and JTAG.XUSEFUSE.RESULT()

returns 0.

If programming is to be performed, the command verifies the written values. If an error is discovered during
this period or during reading, the command fails and JTAG.XUSEFUSE.RESULT() returns 2. An exception
is made when the AES key value could not be verified. In this case JTAG.XUSEFUSE.RESULT() returns 3.

If no error occurs when executing this command, JTAG.XUSEFUSE.RESULT() returns 0.

©1989-2024 Lauterbach

General Commands Reference GuideJ | 72

Examples

Example 1: This script programs the KEY, USER and CNTL registers with a single JTAG.XUSEFUSE
command:

SYStem.JtagClock 1.0MHz

JTAG.XUSEFUSE /KEY 0x0123456789ABCDEF0123456789ABCDEF(0123456789ABCDEF\
0123456789ABCDEF /USER 0x01234567 /CNTL 0x00080

IF JTAG.X7EFUSE.RESULT () !=0.
(

; handle the case where programming or verifying failed

Example 2: This script reads all available information from a device:

SYStem.JtagClock 1.0MHz

JTAG.XUSEFUSE /READ 0xBE99CB71765F308C8ECOD67ACCAA3146\
FBD2A1C67E1394400937873B8A4BDFFF

IF JTAG.XUSEFUSE.RESULT () ==

(
PRINT "Device DNA: 0x"+JTAG.XUSEFUSE.DNA ()
PRINT "Device CNTL: 0x" +JTAG.XUSEFUSE.CNTL ()
PRINT "Device Key: 0x"+JTAG.XUSEFUSE.KEY ()
PRINT "Device SEC: 0x" +JTAG.XUSEFUSE.SEC ()
PRINT "Device RSA: 0x"+JTAG.XUSEFUSE.RSA ()
PRINT "Device User: 0x" +JTAG.XUSEFUSE.USER ()
PRINT "Device 128: 0x"+JTAG.XUSEFUSE.USER128 ()

)

ELSE IF JTAG.XUSEFUSE.RESULT ()==3.

(
; handle an error
PRINT "Device DNA: 0x"+JTAG.XUSEFUSE.DNA ()
PRINT "Device CNTL: 0x" +JTAG.XUSEFUSE.CNTL ()
PRINT "The given AES key does not match the stored value"
PRINT "Device SEC: 0x" +JTAG.XUSEFUSE.SEC ()
PRINT "Device RSA: 0x"+JTAG.XUSEFUSE.RSA ()
PRINT "Device User: 0x" +JTAG.XUSEFUSE.USER()
PRINT "Device 128: 0x"+JTAG.XUSEFUSE.USER128 ()

)

ELSE

(

PRINT "An error occurred while reading the eFUSE registers"

Depending on the CNTL flags, it may be impossible to read a eFUSE register, in which case an all-one value

will be returned.

©1989-2024 Lauterbach General Commands Reference Guide J |

73

Example 3: This script writes all available information from a device within a JTAG chain:

SYStem.JtagClock 1.0MHz
JTAG.XUSEFUSE /IRPRE 0x6 /DRPRE 0x12 /NKZ my_ values.nkz

IF JTAG.XUSEFUSE.RESULT () !=0.
(

; some error occurred

The following shows the contents of the file my_values.nkz:

;This is an example of a .nkz file containing all information*/
Device xcku040;
EncryptKeySelect EFUSE;

Key0 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF ;
Program FUSE_USER 13579BDF;
Program FUSE_USER_ 128 0123456789ABCDEF0123456789ABCDEF ;

Program FUSE_CNTL_O_R DIS_KEY 1;
Program FUSE_CNTL_1 R DIS_USER O0;
Program FUSE_CNTL_2_ R DIS_SEC O0;
Program FUSE_CNTL_5 W DIS_CNTL O;
Program FUSE_CNTL_6_R _DIS _RSA 0;
Program FUSE_CNTL_7_W DIS_KEY 1;
Program FUSE_CNTL_8 W DIS_USER O0;
Program FUSE_CNTL_9 W DIS_SEC O0;
Program FUSE_CNTL_15_W_DIS_RSA 1;
Program FUSE_CNTL_16_W_DIS_USER 128 1;

Program FUSE_SEC_0_CFG_AES_ONLY 1;

Program FUSE_SEC_1_EFUSE_AES_KEY O0;

Program FUSE_SEC_2_RSA_AUTH O0;

Program FUSE_SEC_3_JTAG_DISABLE O0;

Program FUSE_SEC_4_SCAN_DISABLE O0;

Program FUSE_SEC_5_CRYPT_DISABLE 1;

Program FUSE_SEC_6_OBFUSCATED_KEY ENABLE O;

RsaPublicKeyDigest 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF \
0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF ;

NOTE: The first three lines of the file above contain information which is omitted by the
command. All other lines contain a key-value-pair which is evaluated. The key and
associated register value must not be spread over separate lines. As shown for the
key RsaPublicKeyDigest.

©1989-2024 Lauterbach General Commands Reference GuideJ | 74

See also
H JTAG a JTAG.MIPI34() a JTAG.PIN() 1 JTAG.SHIFT()

A 'JTAG Functions’ in 'General Function Reference’
A ’'Release Information’ in ’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideJ | 75

JTAG.CJTAG Low-level CJTAG control

The JTAG.CJTAG command group allows a manual control of the IEEE 1149.7 (aka CJTAG). An example
script is available under ~~/demo/etc/jtag/test_cjtag_idcode.cmm.

See also
B JTAG.CJTAG.COMMAND M JTAG.CJTAG.START B JTAG
JTAG.CJTAG.COMMAND Send command to the chip
Format: JTAG.CJTAG.COMMAND <cp0> <cp1>

The IEEE 1149.7 (aka CJTAG) defines a method to send commands to the chip internal 1149.7 controller
module.

These commands are made up of two 5-bit numbers, “cp0” and “cp1”.

The exact shift sequence how to send such a command is complicated. JTAG.CJTAG.COMMAND provides
an interface to execute such a command; you have to provide the “cp0” and “cp1” number values.

See also
W JTAG.CJTAG

JTAG.CJTAG.START Access the target via CJTAG

Format: JTAG.CJTAG.START

If you intend to access your target via IEEE 1149.7 (aka CJTAG) in 2-pin mode, then when the connection is
initialized, the debugger will first of all switch the target to 2-pin mode.

If you want to access the target via raw JTAG shifts before the debugger has initialized the connection,
then you have to explicitly switch to 2-pin mode, before accessing the target via IEEE 1149.7 (aka CJTAG) in
2-pin mode.

See also
W JTAG.CJTAG

The command JTAG.CJTAG.START executes this explicit switch to 2-pin mode.

©1989-2024 Lauterbach General Commands Reference GuideJ | 76

	General Commands Reference Guide J
	History
	Java
	Java Java debugging subsystem
	Java.CONFIG Configure VM type for debugging
	Java.LOAD Load all Java symbols
	Java.LOADCLASS Load Java class information
	Java.MAP Java VM specific mappings
	Java.MAP.ByteCode Define byte code area
	Java.MAP.CB Configure Java VM class block pointer
	Java.MAP.CP Configure Java VM class pointer
	Java.MAP.FP Configure Java VM frame pointer
	Java.MAP.IP Configure Java VM instruction pointer
	Java.MAP.IPBASE Configure Java VM IPBASE pointer
	Java.MAP.List List Java VM specific mappings
	Java.MAP.LOADATTR Load attribute information from Java class files
	Java.MAP.LP Configure Java VM LP pointer
	Java.MAP.MB Configure Java VM method block pointer
	Java.MAP.NoByteCode Remove byte code mapping
	Java.MAP.NoVM Remove VM interpreter flag
	Java.MAP.NoVMStop Remove breakpoint in VM interpreter
	Java.MAP.RESet Reset Java VM mappings
	Java.MAP.SP Configure Java VM stack pointer
	Java.MAP.VM Configure Java VM interpreter routine area
	Java.MAP.VMStop Configure breakpoint in VM interpreter
	Java.OFF Disable Java VM debugging subsystem
	Java.ON Activate Java debugging subsystem
	Java.state Display Java VM subsystem state

	JTAG
	JTAG Low-level JTAG control
	JTAG.CLIENTINDEX Select data set for commands
	JTAG.LOADBIT Configure a Xilinx FPGA with a BIT file
	JTAG.LOCK Grab the JTAG port for manual control
	JTAG.MIPI34 Manually control MIPI34 connector pins
	JTAG.PARKSTATE Define the hand over TAP state
	JTAG.PIN Set JTAG signals manually
	JTAG.PROGRAM Run programming file
	JTAG.PROGRAM.Altera Program Altera FPGAs
	JTAG.PROGRAM.auto Detect and run programming file
	JTAG.PROGRAM.JAM Run programming file in JAM/STAPL format
	JTAG.PROGRAM.JBC Run programming file in binary JAM/STAPL format
	JTAG.PROGRAM.SVF Run programming file in SVF format
	JTAG.PROGRAM.Xilinx Program Xilinx FPGAs
	JTAG.RESet Reset JTAG settings
	JTAG.SEQuence Special JTAG sequences for certain events
	JTAG.SEQuence.ADD Add new action to JTAG sequence
	JTAG.SEQuence.Append Append one sequence to another sequence
	JTAG.SEQuence.Create Create new JTAG sequence
	JTAG.SEQuence.Delete Delete JTAG sequence
	JTAG.SEQuence.Execute Run JTAG sequence
	JTAG.SEQuence.List Show list of all sequences
	JTAG.SEQuence.MemAccess.ADD Register sequence for memory access
	JTAG.SEQuence.MemAccess.List View registered memory accesses
	JTAG.SEQuence.MemAccess.ReMove Delete registered memory accesses
	JTAG.SEQuence.MemAccess.Replace Replace registered memory access
	JTAG.SEQuence.ReMove Remove action from sequence
	JTAG.SEQuence.Replace Replace action inside sequence
	JTAG.SEQuence.View Display JTAG sequence
	JTAG.SHIFTREG Send a TDI pattern on the JTAG port
	JTAG.SHIFTTDI Send a TDI pattern on the JTAG port
	JTAG.SHIFTTMS Send a TMS pattern on the JTAG port
	JTAG.SWD.Init Initialize the debug port
	JTAG.SWD.ReadDapBus Read register from DAP
	JTAG.SWD.ReadScan Read register from DAP
	JTAG.SWD.Select Configure SWD multi drop target selection
	JTAG.SWD.SHIFT Shift data by using the SWIO pin
	JTAG.SWD.WriteDapBus Write register to DAP
	JTAG.SWD.WriteScan Write register to DAP
	JTAG.UNLOCK Hand the JTAG port control back to the debugger
	JTAG.USECLOCK Observe shift commands
	JTAG.X7EFUSE Program Xilinx 7-Series eFuses
	JTAG.XUSEFUSE Program Xilinx UltraScale eFUSEs
	JTAG.CJTAG Low-level CJTAG control
	JTAG.CJTAG.COMMAND Send command to the chip
	JTAG.CJTAG.START Access the target via CJTAG

