LAUTERBACH A

General Commands Reference
Guide F

General Commands Reference Guide F

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES2 DOCUMENTESuiiiiiiiiiieiiiiissseseennnanenmsnssssssssssssssssssesesesemmsnsnsnsmsmsmsmssssssssssssssssssssessensnsnnnnnnnn r—
€= 1= = T 0T 1313 =T [- r—~
General Commands Reference GUIde Foooeiiiieeeiriesscrrrssssce e s s s e eessssss s s ees s e snenses 1
L 1= (o 7
1 8
FDX Trace method FDX 8
FDX-sSpecific COMMANMccceiiiiiieiriniin s ss s s ssm s e nnn e amm e n e e ammnn e 9
FDX.ADDRESS Specify memory space for FDX traces 9
FDX.CLEAR Clear FDX communication buffers 9
FDX.CLOSE Close FDX files 9
FDX.DISableChannel Disable FDX communication 10
FDX.ENableChannel Enable FDX communication 10
FDX.InChannel Inchannel state display 11
FDX.METHOD Select communication channel 11
FDX.Mode Set the trace operation mode 13
FDX.Out Send FDX data 13
FDX.OutChannel Outchannel state display 14
FDX.PipeREAD Define named pipe for input channel 14
FDX.PipeWRITE Define named pipe for output channel 15
FDX.Rate Select sampling rate 15
FDX.READ Define FDX input file 15
FDX.TImestamp Configure timestamp usage of FDX trace 16
FDX.TraceChannel Define FDX trace channel 16
FDX.WRITE Define FDX output file 17
Generic FDX Trace COMMANASccccceeiiiiriiiiiisssssssssmmsensssssssssssssssssssmmmssssssssssssssssssssnnmmsmsssnssnns 18
FDX.Arm Arm the trace 18
FDX.AutoArm Arm automatically 18
FDX.Autolnit Automatic initialization 18
FDX.BookMark Set a bookmark in trace listing 18
FDX.Chart Display trace contents graphically 18
FDX.ComPare Compare trace contents 18
FDX.DISable Disable the trace 19
FDX.DRAW Plot trace data against time 19
FDX.EXPORT Export trace data for processing in other applications 19
©1989-2024 Lauterbach General Commands Reference Guide F 2

FDX.FILE Load a file into the file trace buffer 19
FDX.Find Find specified entry in trace 19
FDX.FindAll Find all specified entries in trace 19
FDX.FindChange Search for changes in trace flow 19
FDX.GOTO Move cursor to specified trace record 19
FDX.Init Initialize trace 20
FDX.List List trace contents 20
FDX.ListNesting Analyze function nesting 20
FDX.ListVar List variable recorded to trace 20
FDX.LOAD Load trace file for offline processing 20
FDX.OFF Switch off 20
FDX.PROfileChart Profile charts 20
FDX.PROTOcol Protocol analysis 20
FDX.PROTOcol.Chart Graphic display for user-defined protocol 21
FDX.PROTOcol.Draw Graphic display for user-defined protocol 21
FDX.PROTOcol. EXPORT Export trace buffer for user-defined protocol 21
FDX.PROTOcol.Find Find in trace buffer for user-defined protocol 21
FDX.PROTOcol.list Display trace buffer for user-defined protocol 21
FDX.PROTOcol.PROfileChart Profile chart for user-defined protocol 21
FDX.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol 21
FDX.PROTOcol.STATistic Display statistics for user-defined protocol 22
FDX.REF Set reference point for time measurement 22
FDX.RESet Reset command 22
FDX.SAVE Save trace for postprocessing in TRACE32 22
FDX.SelfArm Automatic restart of trace recording 22
FDX.SIZE Define buffer size 22
FDX.SnapShot Restart trace capturing once 22
FDX.state Display trace configuration window 22
FDX.STATistic Statistic analysis 23
FDX.Timing Waveform of trace buffer 23
FDX.Timing Waveform of trace buffer 23
FDX.TRACK Set tracking record 23
FDX.View Display single record 23
FDX.ZERO Align timestamps of trace and timing analyzers 23
1 24
FIFO Display on-chip trace FIFO 24
I 25
FLASH Memory mapped FLASH memories 25
FLASH.AUTO Auto programming of FLASH 25
FLASH.BSDLaccess Enables FLASH access via boundary scan 27
FLASH.CFI Generate FLASH declaration by CFlI 27
FLASH.CHANGEtype Changes the FLASH type 32
FLASH.CLocK Setup input clock for processor internal flash 33
©1989-2024 Lauterbach General Commands Reference Guide F 3

FLASHFILE

FLASH.Create
FLASH.CreateALIAS
FLASH.Delete
FLASH.EPILOG
FLASH.EPILOG.CONDition
FLASH.EPILOG.CORE
FLASH.EPILOG.OFF
FLASH.EPILOG.ON
FLASH.EPILOG.RESet
FLASH.EPILOG.SELect
FLASH.EPILOG.SEQuence
FLASH.EPILOG.state
FLASH.Erase
FLASH.GETID
FLASH.HOOKSCRIPT
FLASH.List

FLASH.LOCK
FLASH.MultiProgram
FLASH.OFFSET
FLASH.Program
FLASH.PROLOG
FLASH.PROLOG.CONDition
FLASH.PROLOG.CORE
FLASH.PROLOG.OFF
FLASH.PROLOG.ON
FLASH.PROLOG.RESet
FLASH.PROLOG.SELect
FLASH.PROLOG.SEQuence
FLASH.PROLOG:.state
FLASH.ReProgram
FLASH.RESet

FLASH.SPI
FLASH.SPI.CFI
FLASH.SPL.CMD
FLASH.SPI.GETSFDP
FLASH.SPI.RESetMemory
FLASH.state
FLASH.TARGET
FLASH.TARGET2
FLASH.UNLOCK
FLASH.UNSECUREerase

FLASHFILE

Declare FLASH

Create address alias

Delete entry in FLASH declaration table
Automatic data modification on FLASH operation
Define condition for FLASH epilog

Select core for FLASH epilog

Switch FLASH epilog off

Switch FLASH epilog on

Reset all FLASH epilogs

Increment the index number to the next epilog
Define FLASH epilog sequence

Display FLASH epilogs

Erase FLASH

Get FLASH IDs

PRACTICE script based FLASH programming prolog
Display FLASH definition table

Lock FLASH

Simultaneous programming of flash sectors
Change FLASH control address

Program FLASH

Automatic data modification on FLASH operation
Define condition for FLASH prolog

Select core for FLASH prolog

Switch FLASH prolog off

Switch FLASH prolog on

Reset all FLASH prologs

Increment the index number to the next prolog
Define FLASH prolog sequence

Display FLASH prologs

Re-program FLASH

Reset FLASH declaration table

FLASH SPI command group

Generate SPI FLASH sector declaration by CFI
Send data to SPI FLASH device

Read FLASH discovery parameters

Reset SPI FLASH volatile register

FLASH programming dialog

Define target controlled algorithm

Define second target controlled algorithm
Unlock FLASH

Unsecure a device

Non-memory mapped FLASH devices

34
39
40
41
41
41
42
42
42
43
43
44
45
46
47
49
50
52
52
53
55
55
55
56
56
56
57
57
58
59
60
61
61
63
66
66
67
68
75
76
78

79
79

©1989-2024 Lauterbach

General Commands Reference Guide F

FLASHFILE.BSDLaccess

FLASHFILE.BSDLFLASHTYPE

FLASHFILE.CONFIG
FLASHFILE.COPY
FLASHFILE.COPYSPARE
FLASHFILE.Create
FLASHFILE.Delete
FLASHFILE.DUMP
FLASHFILE.Erase
FLASHFILE.GETBADBLOCK
FLASHFILE.GETEXTCSD
FLASHFILE.GETID
FLASHFILE.GETONFI
FLASHFILE.List
FLASHFILE.LOAD
FLASHFILE.LOAD.binary
FLASHFILE.LOAD.EIf
FLASHFILE.LOAD.IntelHex
FLASHFILE.LOAD.JSON
FLASHFILE.LOAD.SPARSE
FLASHFILE.LOAD.Srecord
FLASHFILE.LOADALL
FLASHFILE.LOADECC
FLASHFILE.LOADSPARE
FLASHFILE.LOCK
FLASHFILE.MMC.GETHealth
FLASHFILE.MSYSDLL
FLASHFILE.PATTERN
FLASHFILE.ReProgram
FLASHFILE.RESet
FLASHFILE.SAVE
FLASHFILE.SAVEALL
FLASHFILE.SAVEECC
FLASHFILE.SAVEECC.BCH

FLASHFILE.SAVEECC.hamming
FLASHFILE.SAVEECC.ReedSolomon

FLASHFILE.SAVESPARE
FLASHFILE.Set
FLASHFILE.SETEXTCSD
FLASHFILE.SPI
FLASHFILE.SPI.CFI
FLASHFILE.SPI.CMD
FLASHFILE.SPI.GETSFDP

Enables FLASH access via boundary scan
Define FLASH type

Inform TRACE32 about the FLASH register addresses

Copy to FLASH
Copy to spare area of NAND FLASH

Declaration of flash memories: create a block/sector

Delete block in FLASH declaration table
Dump FLASH

Erase FLASH

Get the bad block addresses

Get the extended CSD register

Get ID values of FLASH device

Display ONFI

List blocks or sectors of FLASH memory
Load files to FLASH

Write FLASH

Load ELF file

Load Intel hex file

Load “flasher_args.json” file

Load SPARSE file

Load an 'Srecord' file

Load to main area and spare area

Load ECC file to spare area

Write NAND FLASH spare area

Lock the FLASH device

eMMC health state

Access an M-Systems DiskOnChip flash device
Erase and fill flash memory

Re-program FLASH

Reset FLASHFILE declaration within TRACE32
Save FLASH

Save the main area and the spare area
Save error correction code (ECC) to file
Save ECC with BCH algorithm

Save ECC with Hamming algorithm
Save ECC with Reed-S. algorithm

Read NAND FLASH spare area

Modify FLASH data

Modify the extended CSD register
FLASHFILE SPI command group
Generate SPI FLASH sector declaration by CFlI
Send data to SPI FLASH device

Read FLASH discovery parameters

80
80
81
82
82
84
85
85
86
87
87
88
88
89
90
90
93
93
94
95
96
96
97
97
98
99
99
99
100
101
102
102
103
103
106
109
111
111
112
113
113
114
116

©1989-2024 Lauterbach

General Commands Reference Guide F

FLASHFILE.SPI.RESetMemory Reset volatile register values 116
FLASHFILE.TARGET Define target controlled algorithm 117
FLASHFILE.TEST Non-memory mapped FLASH test 118
FLASHFILE.UNLOCK Unlock FLASH device 119
o 120
FPU Access to FPU registers 120
FPU.Init Initialize FPU registers 120
FPU.OFF FPU access off 121
FPU.ON FPU accesson 121
FPU.RESet Reset command 121
FPU.Set Modify FPU registers 121
FPU.TARGET Define FPU access agent 122
FPU.view Display FPU registers 122
- T 10 = 123
Frame Call-tree and context 123
Frame.CONFIG Fine-tune stack unwinding 123
Frame.CONFIG.Asm Frame back-trace mode 123
Frame.CONFIG.EABI Use chained frame pointers 124
Frame.CONFIG.EPILOG Use epilog code for frame display 124
Frame.CONFIG.PROLOG Use prolog code for frame display 125
Frame.CONFIG.RELOAD Generate frame information again 125
Frame.CONFIG.SignalHandler Stack unwinding 125
Frame.CONFIG.sYmbol Use symbol code for frame display 126
Frame.COPY Copy to TRACE32 registers 127
Frame.Down Show state one level down in stack nesting 127
Frame.GOTO Change source code view temporarily 127
Frame.Init Initialize the processor registers 128
Frame.REDO Recover from UNDO registers 131
Frame.SkipFunc Change view to previous/subsequent function 131
Frame.SkipLine Change view to previous/subsequent HLL line 132
Frame.SWAP Swap TRACE32 registers 132
Frame.TASK Change view to specified task 132
Frame.UNDO Recover previous registers 134
Frame.Up Show state one level up in stack nesting 134
Frame.view Display stack frame 136
U 139
FXU FXU registers (extended floating point unit) 139
FXU.Init Initialize FXU registers 139
FXU.Set Modify FXU registers 139
FXU.view Open FXU register window 140
©1989-2024 Lauterbach General Commands Reference Guide F | 6

General Commands Reference Guide F

Version 06-Jun-2024

History

22-Mar-2024 New commands FLASHFILE.LOAD.JSON, FLASHFILE.LOAD.SPARSE, and
FLASHFILE.MMC.GETHealth.

26-Jun-2023 New option /SpotLight for the command FLASHFILE.DUMP.
17-Mar-2023 New command FLASHFILE.ReProgram.
28-Jul-2022 New command FLASHFILE.Delete.

12-Apr-2022 Added parameters to the command FLASH.List.

©1989-2024 Lauterbach General Commands Reference Guide F | 7

FDX

FDX Trace method FDX

The Fast Data Exchange (FDX) enables transferring universal data between the target and the host. The
protocol implementation on target side is included in the target application. The source code (C) is provided
by LAUTERBACH. On the host side the transmitted data can be processed by a user application
communicating with the TRACE32 Application Interface or through Named Pipes. In a non-interactive mode
TRACE32 can also read or write normal files as a general data source and sink.

A special application of the FDX is the FDX software trace. Through the trace application interface the target
application can send trace information to the host. TRACES32 is capable to interpret the FDX data stream
and handle it as ordinary trace information device. The trace method FDX is mainly used when no trace
extension is available.

The basic packet transport method differs dependent on the target. TRACES32 supports memory mapped
buffered transfer through dual port memory access or normal access at breakpoints or spot breakpoints.
Some target devices support a Debug Communication Channel (DCC), which can be used to transfer FDX
data in real-time.

For more information, please refer to “Application Note for FDX” (app_fdx.pdf).

See also

B FDX.ADDRESS B FDX.CLEAR B FDX.CLOSE B FDX.DISableChannel
B FDX.ENableChannel B FDX.InChannel B FDX.METHOD B FDX.Mode

B FDX.Out B FDX.OutChannel B FDX.PipeREAD B FDX.PipeWRITE
B FDX.Rate B FDX.READ B FDX.TImestamp B FDX.TraceChannel
B FDX.WRITE B LOGGER B Trace. METHOD

A ’'Using ARTI Hooks’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

A ’General Function’ in ’Application Note for FDX’

A 'FDX-specific Command’ in ‘General Commands Reference Guide F’

A 'Generic FDX Trace Commands’ in ‘General Commands Reference Guide F’

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide F | 8

FDX-specific Command

FDX.ADDRESS Specify memory space for FDX traces

Format: FDX.ADDRESS [<address>]

Specifies memory space for FDX traces.

See also
W FDX
A ’'General Data Transfer’ in ’Application Note for FDX’

FDX.CLEAR Clear FDX communication buffers

Format: FDX.CLEAR [<address>]

Clears the communication buffers of an FDX channel. All buffer contents are lost. Without arguments all
FDX channels will be cleared.

See also
B <trace>.state B FDX

A ’'General Data Transfer’ in ’Application Note for FDX’

FDX.CLOSE Close FDX files

Format: FDX.CLOSE [<address>]

Closes the file related to the given FDX channel. Without arguments all files used by FDX are closed.

See also
B <trace>.state B FDX

A ’'General Data Transfer’ in ’Application Note for FDX’

©1989-2024 Lauterbach General Commands Reference Guide F | 9

FDX.DISableChannel Disable FDX communication

Format: FDX.DISableChannel [<address>]

Disables an FDX communication channel. Without parameters all channels are disabled. Disabling keeps
the buffer contents of FDX. Communication can be re-enabled with FDX.ENableChannel.

See also
B <trace>.state B FDX
A ’'General Data Transfer’ in ’Application Note for FDX’

FDX.ENableChannel Enable FDX communication

Format: <trace>.ENableChannel [<address>]

Enables the data transfer over a FDX channel. Without parameters all existing FDX channels are enabled.

See also
B <trace>.state B FDX
A ’'General Data Transfer’ in ’Application Note for FDX’

©1989-2024 Lauterbach General Commands Reference Guide F | 10

FDX.InChannel Inchannel state display

Format: FDX.InChannel [<address>]

Show the state of the input channel. An address parameter has to be specified if FDX doesn’t use DCC (see

FDX.METHOD).
= B:FDX.InChannel = =R
state address
O DissbleChannel
(@ BableChanne]
hostfifo used done
commands F — 0. of 262144. (0.packets) 0. (0.packets)
@ CLEAR
targetfifo used done
method F — 0. (0.packets)
DCCc4
File / Pipe
O File browse...
O Pipe browse... CLOSE
See also
B <trace>.state B FDX

A ’'General Data Transfer’ in ’Application Note for FDX’

FDX.METHOD Select communication channel

Format: FDX.METHOD [<method>]

<method>: BufferE | BufferC | BufferS | DCC3 | DCC | DCC4D | DCC7 | DCC8

If a <method> is specified, the command defines the low-level communication channel. Without <method>,
the command displays the currently selected <method> in the TRACE32 message line.

BufferE and DCC are methods where the CPU does not need to be stopped to transfer data. These modes
require a hardware support from the CPU. The BUFFER methods require a buffer at the target side. The

host is accessing these buffers by memory access to its addresses.

©1989-2024 Lauterbach General Commands Reference Guide F | 11

The DCC channel is a real-time debug communication channel which needs to be supported by the CPU.
DCC, DCC3, DCCA4D require a 4-byte wide channel. DCC7 and DCCS8 require a 8-byte wide channel.
BufferC and BufferS require a stopped CPU to transfer data that’s why this methods are very slow
compared to the other methods.

BufferE Transfers the data via Dual Port Memory access. This method requires a
buffer at the target side and a special CPU feature that allow to read
memory while CPU is running

BufferC Transfers the data after the CPU is stopped.

BufferS Transfers the data when the CPU has reached a SPOT breakpoint

DCC3 4-byte wide channel, where the first byte defines if the last 3 bytes are
used.

DCC 4-byte wide channel (e.g. ARM family)

DCC4D 4-byte wide channel without FDX high level protocol, every package is 4
byte wide

DCC7 8-byte wide channel, where the first byte defines if the last 8 bytes are
used.

DCC8 8-byte wide channel

See also

B <irace>.state

B FDX

A ’General Data Transfer' in’Application Note for FDX’
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide F | 12

FDX.Mode Set the trace operation mode

Format: FDX.Mode [<mode>]
<mode>: Fifo | Stack
Compress

Selects the trace operation mode. The most common operation modes are:

Fifo If the trace is full, new records will overwrite older records. The trace
records always the last cycles before the break.

Stack If the trace is full recording will be stopped. The trace always records the
first cycles after starting the trace.

Compress Compressed information transfer for FDX trace.
See also
B FDX B <trace>.Mode

A ’'General Data Transfer’ in ’Application Note for FDX’

FDX.Out Send FDX data
Format: FDX.Out <address> [Y%<format>] [<data> | <string>]
<format> Byte | Word | Long | Quad | TByte | PByte | HByte | SByte | Float | LE | BE

Send data to the FDX channel specified with the <address> parameter.

See also
B <trace>.state B FDX
A ’General Data Transfer in’Application Note for FDX’

©1989-2024 Lauterbach General Commands Reference Guide F | 13

FDX.OutChannel Outchannel state display

Format: FDX.OutChannel [<address>]

Show the state of the output channel. An address parameter has to be specified if FDX doesn’t use DCC
(see FDX.METHOD).

= B:FDX.OutChannel = =R
state address
O DissbleChannel
(@ BableChanne]
hostfifo used done
commands F — l— 0. of 262144. (0.packets) 5. (2.packets)
@ CLEAR
targetfifo used done
method F — l— 5. (2.packets)
DCCc4
File / Pipe
O File browse...
O Pipe browse... CLOSE
See also
B <trace>.state B FDX

A ’'General Data Transfer’ in ’Application Note for FDX’
A ’Release Information’ in’Legacy Release History’

FDX.PipeREAD Define named pipe for input channel

Format: FDX.PipeREAD <address> <pipe_name>

Defines a named pipe for FDX input channel.

See also
B <trace>.state B FDX
A ’General Data Transfer in’Application Note for FDX’

©1989-2024 Lauterbach General Commands Reference Guide F | 14

FDX.PipeWRITE

Define named pipe for output channel

Format: FDX.PipeWRITE <address> <pipe_name>

Defines a named pipe for FDX output channel.

See also

B <trace>.state B FDX
A ’'General Data Transfer’ in ’Application Note for FDX’

FDX.Rate

Select sampling rate

Format: FDX.Rate [<rate> | <resolution>]

Selects the sampling rate in samples/s.

See also

B <trace>.state B FDX
A ’'General Data Transfer’ in ’Application Note for FDX’

FDX.READ

Define FDX input file

Format: FDX.READ <address> <file>

Defines FDX input file.

See also

B <trace>.state B FDX
A ’'General Data Transfer’ in ’Application Note for FDX’

©1989-2024 Lauterbach

General Commands Reference Guide F | 15

FDX.TImestamp

Configure timestamp usage of FDX trace

Format:

FDX.TImestamp OFF | Up | Down | Rate <rate>

Default: OFF.

Configure timestamps for the FDX trace. The FDX trace record format includes a timestamp field for up to 48
bit timestamps. The direction and rate information passed by this command is required to convert the
timestamp into the time in seconds.

OFF
(default)

Up

Down

Rate <rate>

Disable timestamps. Use this setting if the FDX target code does not
store timestamps in the FDX trace records. When this setting is used, the
x-direction in chart views is the record number axis instead of the time
axis.

Enable timestamp counter, counting upwards. Use this setting if the FDX
target code stores timestamps in the FDX trace records and if the
timestamp increments with each timer tick.

Enable timestamp counter, counting downwards. Use this setting if the
FDX target code stores timestamps in the FDX trace records and if the
timestamp decrements with each timer tick.

Frequency of the timestamp in ticks per second.

Example: The timestamp used by the FDX target code increments at a rate of 16 million per second (16

MHz):

FDX.TimeStamp Up

FDX.TimeStamp Rate 16000000.

See also

B <trace>.state

B FDX

A ’'General Data Transfer’ in ’Application Note for FDX’

FDX.TraceChannel

Define FDX trace channel

Format:

FDX.TraceChannel [<address>]

Defines FDX trace channel. An address parameter has to be specified if FDX doesn’t use DCC (see

FDX.METHOD).

©1989-2024 Lauterbach

General Commands Reference Guide F | 16

Examples:

; Example for DCC methods:
FDX.METHOD DCC4
FDX.Mode COMPRESS ON
FDX.SIZE 100000.
FDX.TraceChannel
FDX.OFF

; Example for buffered methods:
FDX.METHOD BUFFERE
FDX.Mode COMPRESS ON
FDX.SIZE 100000.
FDX.TraceChannel FdxTraceSendBuffer
FDX.OFF

See also
B <trace>.state B FDX

A ’'General Data Transfer’ in ’Application Note for FDX’

FDX.WRITE Define FDX output file

Format: FDX.WRITE <address> <file>

Defines FDX outpuit file.

See also
B <trace>.state B FDX

A ’'General Data Transfer’ in ’Application Note for FDX’

©1989-2024 Lauterbach General Commands Reference Guide F | 17

Generic FDX Trace Commands

FDX.Arm Arm the trace

See command <trace>.Arm in 'General Commands Reference Guide T' (general_ref_t.pdf, page 134).

FDX.AutoArm Arm automatically
See command <trace>.AutoArm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
135).

FDX.Autolnit Automatic initialization

See command <trace>.Autolnit in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 140).

FDX.BookMark Set a bookmark in trace listing

See command <trace>.BookMark in 'General Commands Reference Guide T' (general_ref_t.pdf, page
140).

FDX.Chart Display trace contents graphically

See command <trace>.Chart in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 144).

FDX.ComPare Compare trace contents

See command <trace>.ComPare in 'General Commands Reference Guide T' (general_ref_t.pdf, page
192).

©1989-2024 Lauterbach General Commands Reference Guide F | 18

FDX.DISable Disable the trace

See command <trace>.DISable in 'General Commands Reference Guide T' (general_ref_t.pdf, page 197).

FDX.DRAW Plot trace data against time

See command <trace>.DRAW in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 201).

FDX.EXPORT Export trace data for processing in other applications
See command <trace>.EXPORT in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
212).

FDX.FILE Load a file into the file trace buffer

See command <trace>.FILE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 233).

FDX.Find Find specified entry in trace

See command <trace>.Find in 'General Commands Reference Guide T' (general_ref_t.pdf, page 235).

FDX.FindAll Find all specified entries in trace

See command <trace>.FindAll in 'General Commands Reference Guide T' (general_ref_t.pdf, page 237).

FDX.FindChange Search for changes in trace flow

See command <trace>.FindChange in 'General Commands Reference Guide T' (general_ref_t.pdf, page
238).

FDX.GOTO Move cursor to specified trace record

See command <trace>.GOTO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 244).

©1989-2024 Lauterbach General Commands Reference Guide F | 19

FDX.Init Initialize trace

See command <trace>.Init in 'General Commands Reference Guide T' (general_ref_t.pdf, page 246).

FDX.List List trace contents

See command <trace>.List in 'General Commands Reference Guide T' (general_ref_t.pdf, page 248).

FDX.ListNesting Analyze function nesting

See command <trace>.ListNesting in 'General Commands Reference Guide T' (general_ref_t.pdf, page
263).

FDX.ListVar List variable recorded to trace

See command <trace>.ListVar in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 266).

FDX.LOAD Load trace file for offline processing

See command <trace>.LOAD in 'General Commands Reference Guide T' (general_ref_t.pdf, page 270).

FDX.OFF Switch off

See command <trace>.OFF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 278).

FDX.PROfileChart Profile charts

See command <trace>.PROfileChart in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
283).

FDX.PROTOcol Protocol analysis

See command <trace>.PROTOcol in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
339).

©1989-2024 Lauterbach General Commands Reference Guide F | 20

FDX.PROTOcol.Chart Graphic display for user-defined protocol

See command <trace>.PROTOcol.Chart in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 339).

FDX.PROTOcol.Draw Graphic display for user-defined protocol
See command <trace>.PROTOcol.Draw in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 341).

FDX.PROTOcol.EXPORT Export trace buffer for user-defined protocol

See command <trace>.PROTOcol.EXPORT in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 342).

FDX.PROTOcol.Find Find in trace buffer for user-defined protocol

See command <trace>.PROTOcol.Find in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 343).

FDX.PROTOcol.list Display trace buffer for user-defined protocol
See command <trace>.PROTOcol.list in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 344).

FDX.PROTOcol.PROfileChart Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileChart in '‘General Commands Reference Guide T
(general_ref_t.pdf, page 347).

FDX.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileSTATistic in '‘General Commands Reference Guide T'
(general_ref_t.pdf, page 348).

©1989-2024 Lauterbach General Commands Reference Guide F | 21

FDX.PROTOcol.STATistic Display statistics for user-defined protocol

See command <trace>.PROTOcol.STATistic in '‘General Commands Reference Guide T
(general_ref_t.pdf, page 350).

FDX.REF Set reference point for time measurement

See command <trace>.REF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

FDX.RESet Reset command

See command <trace>.RESet in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

FDX.SAVE Save trace for postprocessing in TRACES2

See command <trace>.SAVE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 358).

FDX.SelfArm Automatic restart of trace recording
See command <trace>.SelfArm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
362).

FDX.SIZE Define buffer size

See command <trace>.SIZE in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 373).

FDX.SnapShot Restart trace capturing once

See command <trace>.SnapShot in 'General Commands Reference Guide T' (general_ref_t.pdf, page
373).

FDX.state Display trace configuration window

See command <trace>.state in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 376).

©1989-2024 Lauterbach General Commands Reference Guide F | 22

FDX.STATistic Statistic analysis

See command <trace>.STATistic in 'General Commands Reference Guide T' (general_ref_t.pdf, page
378).

FDX.Timing Waveform of trace buffer

See command <trace>.Timing in 'General Commands Reference Guide T' (general_ref_t.pdf, page 499).

FDX.Timing Waveform of trace buffer

See command <trace>.Timing in 'General Commands Reference Guide T' (general_ref_t.pdf, page 499).

FDX.TRACK Set tracking record

See command <trace>.TRACK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 502).

FDX.View Display single record

See command <trace>.View in 'General Commands Reference Guide T' (general_ref_t.pdf, page 504).

FDX.ZERO Align timestamps of trace and timing analyzers

See command <trace>.ZERO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 505).

©1989-2024 Lauterbach General Commands Reference Guide F | 23

FIFO

FIFO Display on-chip trace FIFO

Format: FIFO

Shows the raw data of the on-chip trace fifo (where applicable).

©1989-2024 Lauterbach General Commands Reference Guide F | 24

FLASH

FLASH Memory mapped FLASH memories

Memory mapped FLASH devices can be programmed and erased using the FLASH command group.

For more information about programming NOR and internal FLASH memories, please refer to
“Onchip/NOR FLASH Programming User’s Guide” (norflash.pdf).

Please refer to the FLASHFILE command group for information about programming non-memory mapped
FLASH memories as NAND and serial FLASH devices.

FLASH.CFI.SIZE()

"’FLASH Functions’ in ’General Function Reference’
A ’Introduction’ in ’Onchip/NOR FLASH Programming User’s Guide’

FLASH.List. STATE.PENDING()

See also

B FLASH.AUTO B FLASH.BSDLaccess
B FLASH.CFI B FLASH.CHANGEtype
B FLASH.CLocK B FLASH.Create

B FLASH.CreateALIAS B FLASH.Delete

B FLASH.EPILOG B FLASH.Erase

B FLASH.GETID B FLASH.HOOKSCRIPT
B FLASH.List B FLASH.LOCK

B FLASH.MultiProgram B FLASH.OFFSET

B FLASH.Program B FLASH.PROLOG

B FLASH.ReProgram B FLASH.RESet

B FLASH.SPI B FLASH.state

B FLASH.TARGET B FLASH.TARGET2

B FLASH.UNLOCK B FLASH.UNSECUREerase
B FLASHFILE B BSDL.FLASH

a a

A

FLASH.AUTO Auto programming of FLASH

Format: FLASH.AUTO [<unit> | <address_range>| ALL | off | CANCEL |
/CENSORSHIP]

Activates the auto programming mode for the selected FLASH memory unit, address range or all declared
devices.

©1989-2024 Lauterbach General Commands Reference Guide F | 25

The auto programming mode can be used:
. To patch code in FLASH.

. To set software breakpoints into FLASH.

NOTE: The FLASH.AUTO off and FLASH.ReProgram off commands automatically
erase the modified sectors before writing them.
Consequently, do not use FLASH.Erase when using the auto or FLASH
reprogramming mode. If you do, you will lose the advantage of reprogramming
only modified sectors, which will result in a loss of performance.

<unit> Activate the auto programming mode for all sectors of the specified unit.
ALL Activate the auto programming mode for all FLASH sectors.
off With parameter “off” or without argument the auto programming mode is

terminated. Terminating the auto programming mode lets you program only
the modified sectors.

CANCEL Abort without programming pending changes.

CENSORSHIP CPU specific option: Allows you to program the range where the FLASH
security bytes are located.

Example:

g (==) ; No FLASH.Erase!

FLASH.AUTO ALL ; Activate all FLASHs for programming

Data.LOAD.Binary data.bin ; load binary file

FLASH.AUTO off ; Erase and program all modified
; sectors

Data.LOAD.Binary data.bin /DIFF ; compare the contents of the FLASH
; with the file contents

IF FOUND () ; FOUND() returns TRUE if a

PRINT "Not ok!™" ; difference was found
ELSE

PRINT "FLASH ok!"

See also
B FLASH B FLASH.state 1 FLASH.ProgramMODE()
A 'Programming Commands’ in ’Onchip/NOR FLASH Programming User's Guide’

©1989-2024 Lauterbach General Commands Reference Guide F | 26

FLASH.BSDLaccess Enables FLASH access via boundary scan

Format: FLASH.BSDLaccess ON | OFF

Enables or disables FLASH memory access via boundary scan. The boundary scan chain must be
configured with BSDL.FLASH.IFDefine and BSDL.FLASH.IFMap.

See also
N FLASH B FLASH.state
B BSDL.FLASH.IFDefine B BSDL.FLASH.IFMap

1 BSDL.CHECK.FLASHCONF()
A 'FLASH Programming via Boundary Scan’ in 'Onchip/NOR FLASH Programming User's Guide’

FLASH.CFI Generate FLASH declaration by CFl

Format 1: FLASH.CFI [[<unit>] <address> | <range> <bus_width>]
[/BSPLIT <increment> <offset> <width>]

Format 2: FLASH.CFI [<unit>] <address> | <range> <bus_width>
ITARGET <code_address> <data_address> <buffer_size>
[/DualPort | /IBSPLIT <increment> <offset> <width>]

Format 3: FLASH.CFI [<unit>] <address> | <range> <bus_width>
ITARGET2 <code_address> <data_address> <buffer_size>
[/DualPort | /BSPLIT <increment> <offset> <width>]

<bus_width>: Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
| AUTOwidth

Generates the FLASH declaration by using the CFI information stored in an off-chip FLASH device.

CFI (Common FLASH memory Interface) is an open standard, that specifies how FLASH identification
information can be provided by FLASH devices. The identification information includes the memory size,
block configuration, voltage and timing information etc.

©1989-2024 Lauterbach General Commands Reference Guide F | 27

Without any parameters a FLASH.CFI dialog is opened.

<code_address>

<data_address>

<buffer_size>

<bus_width> The <bus_width> parameter defines the external data bus size.

AUTOwidth If the AUTOwidth parameter is used, TRACE32 detects the data bus
width automatically. This is only recommended if a memory access with
the wrong bus width does not result in an error.

TARGET and Specify that target controlled FLASH programming is used:

TARGET2 . TARGET uses the flash family code TARGET

. TARGET?2 uses the flash family code TARGET2
See also FLASH.TARGET and FLASH.TARGET2.

The flash algorithm is loaded to the <code_address>.

<data_address> specifies the start address for data and stack used by
the flash algorithm.

<buffer_size> specifies the data buffer size.

DualPort Dual-port can be used for target controlled FLASH programming only.
For an explanation of the DualPort option, see FLASH.TARGET.

BSPLIT Loads only certain bytes of the memory. For an illustration of
<increment>, <offset>, and <width>, see FLASH.Create.

<increment> <increment> number of bytes which the other two parameters refer to.

<offset> <offset> defines the offset of the bytes being programmed.

<width> <width> defines the number of bytes being programmed.

Format 1

If Format 1 is used, a FLASH declaration for TRACE32 tool based FLASH programming is generated.
Refer to “TRACE32 Tool-based vs. Target-controlled FLASH Programming” in Onchip/NOR FLASH
Programming User’s Guide, page 75 (norflash.pdf) for for a description of the TRACE32 FLASH

programming techniques,

FLASH.RESet

; reset all FLASH declarations

FLASH.CFI 0xc0000000 Long ; perform FLASH declaration by CFI

FLASH.List

AREA.view

; display the FLASH declaration

; display the monitoring of the TRACE32
; FLASH declaration commands

©1989-2024 Lauterbach

General Commands Reference Guide F | 28

If several FLASH devices of the same type are used in serial, a FLASH.CFI for each FLASH device has to

be used.
FLASH.RESet ; reset all FLASH declarations
FLASH.CFI 0xc0000000 Long ; perform FLASH declaration by CFI
FLASH.CFI 0xc2000000 Long ; perform FLASH declaration by CFI
FLASH.List ; display the FLASH declaration
AREA.view ; display the monitoring of the TRACE32
; FLASH declaration commands
Format 2

If Format 2 is used, a FLASH declaration for target controlled FLASH programming is generated. Refer
to “TRACE32 Tool-based vs. Target-controlled FLASH Programming” in Onchip/NOR FLASH
Programming User’s Guide, page 75 (norflash.pdf) for a description of the TRACE32 FLASH programming
techniques,

; reset all FLASH declarations
FLASH.RESet

; FLASH.CFI <address> <bus_width> /TARGET <code_address> <data_address>

; <buffer_ size>
FLASH.CFI 0xc0000000 Long /TARGET 0x1000 0x2000 0x1000

; display flash programming dialog to check settings
FLASH.state

; display the FLASH declaration
FLASH.List

; display the monitoring of the TRACE32 FLASH declaration commands
AREA.view

©1989-2024 Lauterbach General Commands Reference Guide F | 29

Format 3

If Format 3 is used, a second FLASH declaration for target controlled FLASH programming is generated.
This is needed, for example, to program processor internal and processor external NOR flash or HyperFlash
together. Refer to “TRACE32 Tool-based vs. Target-controlled FLASH Programming” in Onchip/NOR
FLASH Programming User’s Guide, page 75 (norflash.pdf) for a description of the TRACE32 FLASH

programming techniques,

; script to set up onchip flash configuration
DO ~~/demo/tricore/flash/tc29x.cmm CPU=TC298TF PREPAREONLY DUALPORT=1

; configure external bus interface

; perform flash declaration for external NOR flash by CFI
FLASH.CFI 0xA4000000 Long /TARGET2 0xC0000000 0xD0O000000 0x2000 /DUALPORT

; check configuration
FLASH.state
FLASH.List

A BuFLASH.state o] & ==
commands
[#Reset | | [off x] Oau
| # CFI] unit number or address range:
[a#wust || [execute
Flash list information
Units declared: | 20. Sectors declared: | 302.
TARGET setup
flash algorithm file: revision: 3527. options
C:\T32_TriCore\demol\tricore\flash\long\tc2.bin | DualPort
STACKSIZE
code address: P:0xC0000000 size: | 0x570
FirmWareRAM
data address: ED:0xD0000000 size: | 0x4160 buffer size: 0x4000
TARGET2 setup
flash algorithm file: revision: 3527. gpichs
C:\T32_TriCore\demo\tricore\flash\long\m58b032.bin ol |DualPort
STACKSIZE
code address: P:0xC0000000 size: | 0x2C8
| FirmWareRAM
data address: ED:0xD0000000 size: | 0x2160 buffer size: 0x2000
©1989-2024 Lauterbach General Commands Reference Guide F | 30

A% BFLASH.List

(=[O el

[#hstate || #Reset || OQoff || Ocancel | @Program || @ ReProgram || @Auto || d#cr |

address [type width |state |unit [extra i
C:A0700000--A07 3FFFF [TARGET Long 15. -
C:A0740000--A077FFFF [TARGET Long 15.

C:AQ0780000--A07BFFFF [TARGET Long 16.

C:AQ7C0000--A07FFFFF [TARGET Long 16.

C:A4000000--A4003FFF [TARGET2 Long 20.

C:A4004000--A4007FFF [TARGET2 Long 20.

C:A4008000--A400BFFF [TARGET2 Long 20.

C:A400C000--A400FFFF [TARGET2 Long 20.

C:A4010000--A4011FFF [TARGET2 Long 20.

C:A4012000--A4013FFF [TARGET2 Long 20.

C:A4014000--A4015FFF [TARGET2 Long 20.

C:A4016000--A4017FFF [TARGET2 Long 20. i

4 F

See also
B FLASH B FLASH.List B FLASH.state B FLASH.TARGET

B FLASH.TARGET2

d FLASH.CFI.SIZE()

A ’Standard Approach’ in ’Onchip/NOR FLASH Programming User’s Guide’

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide F

31

FLASH.CHANGEtype Changes the FLASH type

[Example]

Format:

<type>:

<width>:

<option>:

FLASH.CHANGEtype ALL | <unit> | <address_range>
[<type> <width> <extra_value> [<option>]

TARGET | TARGET2 | ...

Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

Autolnc [<increment>] | EraseALIAS | BootModeHeaDer | SWAP
KEEP <address_range>| OTP | INFO <string> | DISableBulkErase

Changes the FLASH type (FLASH family code) for the specified range. All other options remain unchanged.

ALL

Changes the FLASH declaration of all FLASH sectors.

<unit>

Change the FLASH declaration of the specified unit.

<address_range>

Change the FLASH declaration of the specified address range.

<type> FLASH type, also referred to as FLASH family code. For more information,
see FLASH.Create.
<width> For information about the data bus width, see FLASH.Create.

<extra_value>

An extra value that is passed to the FLASH algorithm. The extra value is
displayed in the extra column of the FLASH.List window.

<option>

For a description of the options, see FLASH.Create.

©1989-2024 Lauterbach

General Commands Reference Guide F | 32

Example:

;For the specified address range, change current type to type 'TARGET'
FLASH.CHANGEtype 0xA0018000--0xA001BFFF TARGET
Before After
A BuFLASH.List A BuFLASH.List =n| Wl <
[#hstate | #FReset || Qoff | A State || P Reset || DoZ M O cancel || @ Program || @ ReProgram || @ Auto |[A CFI]
address |type address gge width |state |unit |extra
C:30000000--30FFFFFF [ALTAS C 1 30000000 --30FFFFF | S—— C 1 OxAQOO0000--0xADFFFFFF ~
C : AQOOOO00--ADDO3FFF (TARGET C: ADOOOO00--ADDO3FFF TARGET Long 1. EMHD=C : 0xAQ0000000--0xA000001F
C:ADDO4000--ADD07FFF [TARGET C:AQOO4000--ADD07FFF (TARGET Long 1.
C : ADDOS000--ADDOBFFF ([TARGET C:AQOOB000--ADD0BFFF (TARGET Long 1.
C:AQOOCO00--ADDOFFFF [TARGET C:AQOOCO00--ADDOFFFF (TARGET Long 1. EMHD=C : 0xAQQ0FFEQ--0xADDOFFFF
C :AOOlOOOO——AOOlSFFF TARGET C :AOOlOOOO——AOOlSFFF TARGET Long 1.
e ——————— == e ——————— —== Long 1.
C:ADD1B000--ADDLEFFF [NOP I C:ADO1B000--ADD1EFFF TARGETI Long 1.
e —— e — Long 1. EMHD=C : 0xAQ01FFEQ--0xADOLFFFF
C:AQO20000--AD027FFF (TARGET C:AQO20000--AD027FFF (TARGET Long 1. EMHD=C : 0xA0020000--0xA002001F
C:ADD2B3000--AD002FFFF (TARGET C:ADD2B3000--AD002FFFF (TARGET Long 1.
C:ADO30000--AD037FFF (TARGET C:ADO30000--AD037FFF (TARGET Long 1.
C:ADOD3B000--A003FFFF [TARGET C:ADOD3B000--A003FFFF [TARGET Long 1. 57
v ’)

See also

B FLASH B FLASH.state

A ’'Release Information’ in’Legacy Release History’

FLASH.CLocK

Setup input clock for processor internal flash

Format:

FLASH.CLocK <frequency> | AUTO

The command is used to set up the FLASH module input clock for processor internal flash (target-controlled
on-chip FLASH programming only, refer to “TRACE32 Tool-based vs. Target-controlled FLASH
Programming” in Onchip/NOR FLASH Programming User’s Guide, page 75 (norflash.pdf) for a

description of the TRACE32 FLASH programming techniques).

Examples:

FLASH.CLocK AUTO

FLASH.CLocK 10MHz

See also

; the FLASH programming algorithm measures

; the input clock before programming or
; erasing the FLASH

; a fixed input clock is used

W FLASH B FLASH.state

(1 FLASH.CLocK.Frequency()

©1989-2024 Lauterbach

General Commands Reference Guide F |

33

FLASH.Create Declare FLASH
[Examples]
Format: FLASH.Create <unit> <physical_range> <sector_size>
<family_code> <bus_width> <extra_value> [[<option>]
<family_ TARGET | TARGET2 | ...
code>:
<bus_width>: Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
<option>: Autolnc [<increment>] | EraseALIAS | BootModeHeaDer | SWAP
KEEP <address_range>| CENSORSHIP <address_range> | OTP |
INFO <string> | BSPLIT <increment> <offset> <width> | DISableBulkErase

Declaration of FLASH memories.

A <unit>number has to be declared for each device. If the processor has
on-chip FLASH that is declared automatically by TRACES32, the unit
numbers 1 ... n are already in use for the on-chip FLASH. Please use the
FLASH.List command to check the next available unit number.

If the FLASH has sectors of different size (boot block devices) one FLASH.Create command has to be
entered for each sector size.

<bus_width>

The <bus_width> parameter defines the external data bus size:
. Byte (8-bit accesses) Word (16-bit accesses)
. TByte (24-bit accesses) Long (32-bit accesses)
. PByte (40-bit accesses) HByte (48-bit accesses)
. SByte (56-bit accesses) Quad (64-bit accesses)

be assumed that FLASH devices of the same type are in parallel.

<extra_value>

An extra value that is passed to the FLASH algorithm. The extra value is
displayed in the extra column of the FLASH.List window.

<family_code>

The <family_code> determines the programming algorithm. The FLASH
types and the corresponding <family_codes> are listed under “List of
Supported FLASH Devices” (flashlist.pdf).

<sector_size>

If no <sector_size> is specified, then one sector occupying the full
<physical_range> will be assumed.

©1989-2024 Lauterbach

General Commands Reference Guide F |

If the data bus size is wider than the bus size of the FLASH device, it will

Autolnc <increment>

Increments the FLASH.Create extra value for every created sector by
<increment>. The default <increment> is 1.
See example.

The Autolnc option is only available for TARGET, TARGET2, and NOP
and a few other FLASH family codes.

BootModeHeaDer
<address_range>

Only available for the TriCore debugger. See example.
Does not delete a valid TriCore boot mode header when the commands
FLASH.Erase and FLASH.ReProgram are executed.

But, after the FLASH reprogramming mode has been activated (see
FLASH.ReProgram), the TriCore boot mode header can be overwritten.

BSPLIT Loads only certain bytes of the memory. For an illustration of
<increment>, <offset>, and <width>, see below.

<increment> <increment> number of bytes which the other two parameters refer to.

<offset> <offset> defines the offset of the bytes being programmed.

<width> <width> defines the number of bytes being programmed.

CENSORSHIP The FLASH security bytes are not erased or changed by any FLASH

<address_range>

command.
If you want to change or erase them, you have to use the FLASH.AUTO
... [CENSORSHIP command.

DiISableBulkErase

Prevents unintended chip erase for truncated declaration of flash address
ranges.

EraseALIAS
<address_range>

The EraseALIAS option allows you to apply the commands
FLASH.Auto.off and FLASH.ReProgram.off to non-contiguous physical
sectors.

The EraseALIAS option is, for example, used for a processor-internal
FLASH with visible ECC sectors.

INFO <string>

Adds a user-defined comment to the extra column of the FLASH.List
window (max. length 64 characters). See example.

KEEP
<address_range>

Does not delete the specified address range when the commands
FLASH.Erase and FLASH.ReProgram are executed. See example.

But, after the FLASH reprogramming mode has been activated (see
FLASH.ReProgram), the specified address range can be overwritten.

©1989-2024 Lauterbach

General Commands Reference Guide F | 35

OTP States in a declaration that the specified range is an OTP sector (One
Time Programmable). See example.

All regular FLASH erase and FLASH programming commands have no
effect on the OTP sector. In the FLASH.List window, the state column
displays “nop” for this OTP sector.

To activate the FLASH programming mode for an OTP sector, use the
FLASH.Program ... /OTP command. In the FLASH.List window, the state
column displays “otp” for this OTP sector.

SWAP Supports SOTA/FOTA FLASH configurations. In case sectors are
physically swapped, FLASH programming is redirected to physical
address of declared swap sector.

BSPLIT: illustration of <increment> = 3, <offset> = 0, and <width> =1

< Incre3ment >« Incresment >
Offset Width Offset Width
D N N
Memory: 0 1 2 3 4 5

File:

Example 1

FLASH declaration for an Am29LV640 in 16 bit mode on a 16 bit bus. The FLASH provides 128 sectors
each with 64 KByte:

FLASH.RESet
FLASH.Create 1. 0x0--O0x7FFFFF 0x10000 AM29LV100 Word

©1989-2024 Lauterbach General Commands Reference Guide F | 36

Example 2

FLASH declaration for 2 Intel 28F128J3 in 16 bit mode, 2 FLASHSs in parallel on a 32 bit bus. Each FLASH
provides 128 sectors with 128 KByte. Since the FLASHSs are in parallel the sector size used with the
FLASH.Create command is 2 x 128 KByte:

FLASH.RESet
FLASH.Create 1. 0x0--0x1FFFFFF 0x40000 I28F200J3 Long

Example 3

FLASH declaration for an Am29DL322DB in 8 bit mode on a 8 bit bus (FLASH sectors of different size -
bottom boot block device). The 8 boot blocks have a size of 8 KByte, the 63 main blocks have a size of
64 KBytes:

FLASH.RESet
FLASH.Create 1. 0x00000--0x00FFFF 0x02000 AM29LV100B Byte
FLASH.Create 1. 0x10000--0x3FFFFF 0x10000 AM29LV100B Byte

You will find an up-to-date list of all supported FLASHs at the LAUTERBACH website under:
https://www.lauterbach.com/ylist.html. The list is also available under “List of Supported FLASH
Devices” (flashlist.pdf).

The <family_code> TARGET must be selected if target controlled FLASH programming is used. The
target-based FLASH programming is configured via the FLASH.Target command.

EEPROM can be used to declare an EEPROM area. When activated write accesses result in EEPROM
programming sequences. This is useful if both FLASH and EEPROM areas are used by the download file.

If no data accesses are allowed to a specific memory area, the option NOP can be used, to prevent any
access when data transfer commands are used.

Compatible types are supported even if they are not explicitly listed. (Please note that not all FLASH types
have been tested in all configurations).

It is recommended to use Long or Word option for load or memory copy command, corresponding to the
<bus_width> defined with the FLASH.Create command.

On some ATMEL flash types the data written must be aligned to the flash page size. Use binary file format or
copy from virtual memory if possible (refer to Data.Load <file> /VM for more information). TRACE32
software based programming is not working on all FLASHSs.

©1989-2024 Lauterbach General Commands Reference Guide F | 37

https://www.lauterbach.com/ylist.html

Example 4 - /Autoinc, /KEEP, /OTP, and /INFO

FLASH.RESet

FLASH.Create 0x1000000--0x100FFFF 0x4000 TARGET Long 0. \
/AutoInc /KEEP 0x1003FFC--0x1003FFF

FLASH.Create 0x0400000--0x0403FFF 0x4000 TARGET Long 0x500 \
/OTP /INFO "UTEST sector"

FLASH.List

1 BiFLASH List I 1 =0 =R
[#hstate | #PReset || Qoff |[O Cancel|[@ Program || ® RePrograrly @ Auto || ##CFI]
address [type width |[state |unit |extra
:00400000--00403FFF [TARGET Long ooooos00 OTP UTEST sector

00000000 KEEP=C: 01003FFC——0100
00000001
00000002
0Qo0onos

:01004000--01007FFF |TARGET Long
:01008000--0100EFFF |TARGET Long
:0100C000--0100FFFF |TARGET Long

(‘|(‘|(‘|(‘|(‘|

:01000000--01003FFF |TARGET ‘Long

FEEE

A A user-defined comment is added by /INFo. B Sector IDs are incremented by /AutoInc.

Example 5 - /BootModeHeaDer

The BootModeHeaDer option is only available for TriCore.
Example for a TriCore internal FLASH:

FLASH.Create 1. 0xA0000000--0xA0003FFF TARGET Long \
/BootModeHeaDer 0xA0000000--0xA000001F

See also

B FLASH B FLASH.state
1 FLASH.SECTOR.EXTRAvalue()

A 'FLASH Declaration in Detail’ in ’Onchip/NOR FLASH Programming User’s Guide’
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide F | 38

FLASH.CreateALIAS Create address alias

Format: FLASH.CreateALIAS <address_range> <alias_address>

All FLASH write cycles to <address_range> are performed to the address range starting with
<alias_address>.

This command is useful when the on-chip FLASH is mapped to different addresses, for example:
. At address 0x0C000000--0x0OCO01FFFF for uncached accesses
o At address 0x08000000--0x0801FFFFF for cached accesses

Due to this, a compiler may generate bootcode for the uncached address range and application code for the
cached address range. This situation complicates the programming of the on-chip FLASH. With the
command FLASH.CreateALIAS flash programming is only executed in the uncached address range.

The command FLASH.CreateALIAS might also be useful for mirrored FLASH address ranges.

Example:

;reset FLASH declaration table
FLASH.RESet

;declare FLASH sectors
FLASH.Create 1. 0x0C000000--0x0COOFFFF 0x4000 TARGET Long
FLASH.Create 2. 0x0C010000--0x0CO1FFFF 0x4000 TARGET Long

;all FLASH write cycles to the address range 0x08000000--0x0801FFFF
; (cached) are actually performed to the address range
;0x0C000000--0x0CO1FFFF (not cached)

FLASH.CreateALIAS 0x08000000--0x0801FFFF 0x0C000000

;declare the target controlled FLASH algorithm

FLASH.TARGET O0x1FFFE000 0x20000000 0x1000 \
~~/demo/arm/flash/long/xmc4000.bin

;open the window

FLASH.List

©1989-2024 Lauterbach General Commands Reference Guide F | 39

The alias is also displayed in the listing of the FLASH declarations, see FLASH.List window:

Am BuFLASH.List =n| Wl <
[#hstate | #fReset || O 0f [O cancel || @ Program || @ ReProgram || @ Auto |[d#CFL |
address| type width |[state |unit |extra
C:08000000--0801FFFF) ALTAS C : OxCO00000--0xCO1LFFFF
C:0C000000--0C003FFF e Long 1.
C:0C004000--0C007FFF |TARGET Long 1.
C:0C008000--0C00BFFF |TARGET Long 1.
C:0C00C000--0C00FFFF |TARGET Long 1. E
C:0C010000--0C013FFF |TARGET Long 2.
C:0C014000--0C017FFF |TARGET Long 2.
C:0C018000--0C0O1BFFF |TARGET Long 2.
C:0C01C000--0C0O1FFFF |TARGET Long 2.
2
A Cached address range. B Destination address for uncached memory.
See also
B FLASH B FLASH.state

A ’'Special Features for Onchip FLASHs’ in ’Onchip/NOR FLASH Programming User's Guide’

FLASH.Delete Delete entry in FLASH declaration table

Format: FLASH.Delete <unit> | <address_range> | ALL | off

The specified FLASH entry is removed from the FLASH declaration table. Use the command FLASH.RESet
to clear the whole list and the entire FLASH target configuration.

<unit> Deletes the specified unit.
ALL Deletes all FLASH entries from the FLASH declaration table.
off (no effect)
Example:
FLASH.Delete 2. ; delete unit 2 from the FLASH declaration

; table. A unit can consist of multiple
; flash sectors.

FLASH.Delete 0x2000--Oxffff ; delete the specified flash sectors.
; from the FLASH declaration table.

FLASH.Delete ALL ; delete all flash sectors from the
; FLASH declaration table.

See also
B FLASH B FLASH.state
A 'FLASH Declaration in Detail’ in ’Onchip/NOR FLASH Programming User’s Guide’

©1989-2024 Lauterbach General Commands Reference Guide F | 40

FLASH.EPILOG Automatic data modification on FLASH operation

The FLASH.EPILOG command group allows to define a sequence of read/write accesses that are
automatically performed directly after the execution of one of the following commands. FLASH.Erase,
FLASH.Program, FLASH.AUTO or FLASH.ReProgram. The complementary command
FLASH.PROLOG performs read/write accesses before the execution of the command.

See also
B FLASH B FLASH state
FLASH.EPILOG.CONDition Define condition for FLASH epilog
Format: FLASH.EPILOG.CONDition <condition>
<condition>: <memory_access> & <mask> == <value>
<memory_access> & <mask> = <value>

<memory._ Data.Byte(<address>) | Data.Word(<address>) | Data.Long(<address>)
access>:

Defines a condition on which the command sequence defined with FLASH.EPILOG.SEQuence will be
executed.

<memory_access> Supported Data.*() functions are:

. Data.Byte() and its short form D.B()

. Data.Long() and its short form D.L()

. Data.Word() and its short form D.W()

FLASH.EPILOG.CORE Select core for FLASH epilog

Format: FLASH.EPILOG.CORE <core_number>

Selects the core for which you want to define one or more FLASH epilogs.

Prerequisite: You have successfully configured an SMP system with the CORE.ASSIGN command.

©1989-2024 Lauterbach General Commands Reference Guide F | 41

Example: The following example shows how to define a FLASH epilog that is executed on core 3 of a
multicore chip.

;Select the core for which you want to define a FLASH epilog
FLASH.EPILOG.CORE 3.

;Define the FLASH epilog for core 3
FLASH.EPILOG.CONDition <your_code>
FLASH.EPILOG.SEQuence <your_code>

For information on how to configure two different FLASH epilogs, see FLASH.EPILOG.SELect.

FLASH.EPILOG.OFF Switch FLASH epilog off

Format: FLASH.EPILOG.OFF

Disables the execution of the FLASH.EPILOG sequence.

FLASH.EPILOG.ON Switch FLASH epilog on

Format: FLASH.EPILOG.ON

Enables the execution of the FLASH.EPILOG sequence.

FLASH.EPILOG.RESet Reset all FLASH epilogs

Format: FLASH.EPILOG.RESet

Switches the FLASH.EPILOG feature off and clears all settings.

©1989-2024 Lauterbach General Commands Reference Guide F | 42

FLASH.EPILOG.SELect Increment the index number to the next epilog

Format:

FLASH.EPILOG.SELect <index_number>

Increments the index number for each new FLASH epilog. This is useful, for example, if you need two
separate FLASH epilogs with each FLASH epilog having its own FLASH.EPILOG.CONDition.

TRACES2 automatically assigns the index number 1. to the 1st FLASH.EPILOG.SEQuence. If you require
a 2nd, separate FLASH epilog sequence, then increment the <index_number> to 2. Otherwise the 2nd
FLASH epilog will overwrite the 1st FLASH epilog. You can define a maximum of 10 FLASH epilogs.

FLASH.EPILOG.SEQuence Define FLASH epilog sequence

Format:

<command>:

FLASH.EPILOG.SEQuence <command> ...

SET <address> %<format> <data>

SETI <address> %<format> <data> <increment>
SETS <address>

GETS <address>

Defines a sequence of Data.Set commands that are automatically executed by the TRACE32 software
directly after the execution of the FLASH command.

SET

SETI

GETS

SETS

Parameters: <address> %<format> <value>
Write <value> with data type <format> to <address>

Parameters: <address> %<format> <start> <increment>
At the first time performed, write <start>to <address>.
<start> is incremented by <increment> on each successive call.

Parameters: <address> %<format>

Reads the value at <address> and stores it into an internal data buffer.
The internal data buffer can contain multiple records and is reset when the
command FLASH.EPILOG.Sequence is called.

Parameters: <address> %<format>
If the internal data buffer contains a record for <address>, the stored value
is written to the processor.

©1989-2024 Lauterbach

General Commands Reference Guide F | 43

FLASH.EPILOG.state Display FLASH epilogs

Format: FLASH.EPILOG.state

Opens the FLASH.EPILOG.state window, where you can configure FLASH epilogs.

2 B:FLASH.EPILOG state = =R
epilog CONDition
O oFF | (Data.Word(D:0x3f2f30)80xfF00)==0x2000 |
®on SEQuence
SET 0x3faf64 %Word 0xb0bo|
3 count
’ 0.
CORE — SEL
‘ 40 4D

A Counts the number of times the FLASH.EPILOG.SEQuence command has been executed.

B Lets you create and view the FLASH epilogs of a particular core. This example shows the 2nd
FLASH epilog of core 1.

The CORE field is grayed out for single-core targets.

©1989-2024 Lauterbach General Commands Reference Guide F | 44

FLASH.Erase

Erase FLASH

Format: FLASH.Erase <unit> | <address_range> | ALL | off

Erases the selected FLASH memory unit or an address range or all declared sectors.

<unit> Erases the specified unit.
ALL Erases all FLASH sectors of a FLASH memory.
off (no effect)

Examples:

FLASH.Erase 1.

; erase unit 1 from the FLASH memory.

FLASH.Erase 0x0--0x1FFFF ; erase the specified FLASH sectors

FLASH.Erase ALL

See also

; from the FLASH memory.

; erase all flash sectors
; of a FLASH memory.

W FLASH

B FLASH.state

A 'TRACE32 Tool-based Programming’ in 'Tips to Solve NOR FLASH Programming Problems’
A 'Programming Commands’ in ‘'Onchip/NOR FLASH Programming User's Guide’

©1989-2024 Lauterbach

General Commands Reference Guide F | 45

FLASH.GETID Get FLASH IDs

Format: FLASH.GETID <address> [<bus_width> | <option> ...]

<bus_width>: Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

<option>: ByteSWAP | BSPLIT

Prints the FLASH manufacturer ID and the device IDs to the message area A000. To view the output, open
an AREA.view window.

The FLASH.GETID command is mainly used to identify FLASH devices that do not provide CFl information.
The command FLASH.GETID together with the function FLASH.ID() allows you to program PRACTICE

scripts (*.cmm) with device-specific behavior.
Bu:AREAview =N Eoh(

anufacturer ID: 0001 AMD
Device ID: 227E

Device ID 2: 2210

Device ID 3: 2200 =
4 m

— e

<address> Start address of the FLASH device.

<bus_width>, etc. For descriptions of the command line arguments, see FLASH.Create.
See also
W FLASH B FLASH.state [FLASH.ID()

©1989-2024 Lauterbach General Commands Reference Guide F | 46

FLASH.HOOKSCRIPT PRACTICE script based FLASH programming prolog

[Examples]

Format: FLASH.HOOKSCRIPT <hook_script>

If a so-called <hook_script> is specified, it is started when one of the following FLASH programming
commands is entered: FLASH.ReProgram, FLASH.AUTO, FLASH.Erase, FLASH.Program,
FLASH.LOCK or FLASH.UNLOCK.

The <hook_script> can perform checks, setups etc. to guarantee that the FLASH programming works
properly afterwards, e.g. to avoid fatal problems that might occur when the FLASH programming erases or
modifies FLASH sectors that contain information that is necessary to operate the debug interface or the chip.

The entered FLASH programming command can then be invoked in the <hook_script> by using the
/NoHOOK option.

<hook_script> The <hook_script> is usually provided by Lauterbach.

Examples:

; FLASH declaration

; specification of hook script
FLASH.HOOKSCRIPT ~~~~/flash_hookscript.cmm

; FLASH programming command
FLASH.ReProgram ALL

TRACE32 redirects the FLASH programming command to the <hook_script> by using the following
PRACTICE script call:

DO ~~~~/flash_hookscript.cmm HOOKCMD="FLASH.ReProgram ALL"

©1989-2024 Lauterbach General Commands Reference Guide F | 47

If the <hook_script> starts with the following script commands, it is able to read the actual entered FLASH
programming command and invoke it, when its checks or setups are done.

; read HOOKCMD=<flash_ cmd>
LOCAL ¶m
ENTRY $LINE ¶m

&flash_cmd=STRing.SCANAndExtract (STRing.UPpeR ("¶m") , "HOOKCMD=", "")
; convert string to command
&flash cmd=&flash_cmd

; invode FLASH programming command, but skip <hook_ script>
&flash_cmd /NoHOOK

See also
N FLASH B FLASH.state

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide F | 48

FLASH.List

Display FLASH definition table

Format:

FLASH.List all | <unit> | <address>

Displays the address range, family code, bus width, state (if programming or auto is activated), and the unit
number of declared FLASH sectors. For a description of the columns in the FLASH.List window, see table

below.
<unit> Opens the window pointing to unit start address.
<address> Opens the window pointing to <address>.
A BuFLASH.List =N Eoh(

[#hstate | #fReset || Qoff |[O Cancel|[@ Program || @ ReProgram || @ Auto |[& CFI]

address [type

width |state § umit]extra

C :30000000--80FFFFFF |ALIAS C 1 OxADCOO0000--0xADFFFFFF ~
C:AQ0O00000--ADO03FFF |TARGET 1. SMHD=C : 0xAQQO00000--0xA000001F
C:AD004000--AD007FFF [TARGET _|
C :ADO0OB000--ADD0BFFF |TARGET Flash
C:ADOOCO00--ADOOFFFF [TARGET . SMHD=C : 0xAQQOOFFEQ- 2=
C:AQ0010000--AD013FFF |TARGET S List
C:A0014000--A0017FFF |NOP 'm'
C:AD013000--A001EFFF |NOP . 1511 Dump
C:AQ00LCO00--ADOLFFFF |TARGET . SMHD=C : 0xAQOLFFEQ--1
C:A0020000--AD027FFF [TARGET . 3MHD=C : 0xA0020000-~| 4% Program
C:AD023000--A002FFFF |TARGET .
C:AQ030000--A0037FFF |TARGET . d? ReProgram
C:AD038000--A003FFFF |TARGET . P Auto
4
I B 1 SJ Unlock ...
I_I T Lock..
& Eraze ...
A Each row stands for one sector. B Unit 1. consists of multiple sectors.

Description of Columns in the FLASH.List Window

address Address range of a sector.
type FLASH family code. An ALIAS entry is created with FLASH.CreateALIAS.
width Data bus width (Byte, Word, Long, Quad).

©1989-2024 Lauterbach

General Commands Reference Guide F | 49

state Values in the state column:

. program: FLASH programming for the selected sector is
activated by FLASH.Program.

. reprog: FLASH programming for the selected sector is activated
by FLASH.ReProgram.

J pending: The contents in the virtual host memory differs from
the real FLASH contents. FLASH will be programmed by
FLASH.AUTO.off or FLASH.ReProgram.off.

J nop: Sectors that are not affected by FLASH.Program,
FLASH.AUTO, or FLASH.ReProgram.

. otp: OTP sector programming is enabled by FLASH.Program...
/OTP.

unit A unit consists of multiple sectors. Each row stands for one sector.
Related sectors have the same unit number.

extra Displays the extra value and the options created with FLASH.Create,
including user-defined comments.

See also
B FLASH B FLASH.CFI
B FLASH.state 1 FLASH.List.STATE.PENDING()

A ’Standard Approach’ in ’Onchip/NOR FLASH Programming User’s Guide’
A 'FLASH Declaration in Detail’ in ’Onchip/NOR FLASH Programming User’s Guide’

FLASH.LOCK Lock FLASH

Format: FLASH.LOCK <unit> | <address_range> | ALL | off

Locks the selected sectors of a FLASH device.

<unit> Locks the specified unit.
ALL Locks all FLASH sectors.
off (no effect)

©1989-2024 Lauterbach General Commands Reference Guide F | 50

Example:

FLASH.LOCK 1. ; lock unit 1. in the FLASH memory.

FLASH.LOCK 0x0--0x1FFFF ; lock the specified range
; in the FLASH memory.

FLASH.LOCK ALL ; lock all FLASH sectors
; in the FLASH memory.

See also

B FLASH B FLASH.state B FLASH.UNLOCK
A 'TRACE32 Tool-based Programming’ in 'Tips to Solve NOR FLASH Programming Problems’

©1989-2024 Lauterbach General Commands Reference Guide F | 51

FLASH.MultiProgram Simultaneous programming of flash sectors

Available on: MPC555 (K1, K2, K3)

Format: FLASH.MultiProgram <range>

Simultaneous programming of the internal FLASH is supported for the masks K1, K2, K3 and M of the
MPC555. The MPC555 supports simultaneous programming of all 14 flash modules, 8 blocks of FLASH

module A and 6 blocks of FLASH module B.

Example:

; initialize the virtual memory of TRACE32-ICD with Oxff
Data.Set VM:0x0++0x6ffff %Long Oxffffffff

; load the code for the internal FLASH into the virtual memory
Data.LOAD.E1f file.elf /VM

; Start the simultaneous programming
FLASH.MultiProgram O0x0++0x6ffff

See also
B FLASH B FLASH state
FLASH.OFFSET Change FLASH control address
Format: FLASH.OFFSET [<offset>]

On some FLASH memory types a dummy address is used to control FLASH programming and erasure. For
this purpose normally the lowest address of the FLASH is used (default offset: 0). If this address can not be
accessed, since it is occupied by other peripherals, this command can be used to change these control

address.

Example:

80196 FLASH example
access to location 0 is not possible (overlaid by register block)

FLASH.Create P:0x0--0x1ffff AM29F100 Word
FLASH.OFFSET 0x1000

See also
W FLASH B FLASH.state

©1989-2024 Lauterbach General Commands Reference Guide F | 52

FLASH.Program Program FLASH

[Example]

Format: FLASH.Program [<unit> | <address_range> | ALL | off | CANCEL] [/OTP]

Activates the FLASH programming mode for the selected FLASH memory unit or address range or for all
declared sectors.

While the programming mode is active, all writes from TRACES2 to the activated FLASH memory range are
executed as FLASH program cycles. The programming data must be written to the correct location and
access class of the FLASH memory.

<unit> Activates the FLASH programming mode for the specified unit.

ALL Programs all FLASH sectors.

off With parameter “off” or without argument the programming mode is
terminated.

CANCEL Abort without programming pending changes.

OTP FLASH.Create ... /OTP declares an OTP sector (One Time Programmable).
Use FLASH.Program ... /OTP to activate the FLASH programming mode
for the OTP sector.

NOTE: Before using the FLASH.Program command, it is necessary to erase the
FLASH memory with FLASH.Erase.

This is not required with FLASH.ReProgram or FLASH.AUTO because
they automatically erase the sectors before writing them.

©1989-2024 Lauterbach General Commands Reference Guide F | 53

Example:

FLASH.Erase ALL

FLASH.Program ALL

Data.LOAD.Binary data.bin 0x0 /Word
FLASH.Program off
Data.LOAD.Binary data.bin 0x0 /DIFF
IF FOUND ()

PRINT "Not ok!"

ELSE
PRINT "FLASH ok!"

See also

Reset FLASH contents
(mandatory)

Activate all FLASHs for
programming

load binary file at offset 0x0
deactivate FLASH programming

compare the contents of the
FLASH

with the file contents

FOUND () returns TRUE if a
difference was found

B FLASH B FLASH.ReProgram B FLASH.state 1 FLASH.ProgramMODE()
A 'Programming Commands’ in ’'Onchip/NOR FLASH Programming User's Guide’

©1989-2024 Lauterbach

General Commands Reference Guide F | 54

FLASH.PROLOG Automatic data modification on FLASH operation

The FLASH.PROLOG command group allows to define a sequence of read/write accesses that are
automatically performed before the execution of one of the following commands. FLASH.Erase,
FLASH.Program, FLASH.AUTO or FLASH.ReProgram. The complementary command FLASH.EPILOG
performs read/write accesses after the execution of the command.

See also
B FLASH B FLASH state
FLASH.PROLOG.CONDition Define condition for FLASH prolog
Format: FLASH.PROLOG.CONDition <condition>
<condition>: <memory_access> & <mask> == <value>
<memory_access> & <mask> = <value>

<memory._ Data.Byte(<address>) | Data.Word(<address>) | Data.Long(<address>)
access>:

Defines a condition on which the command sequence defined with FLASH.PROLOG.SEQuence will be

executed.
<memory_access> Supported Data.*() functions are:
. Data.Byte() and its short form D.B()
. Data.Long() and its short form D.L()
. Data.Word() and its short form D.W()
FLASH.PROLOG.CORE Select core for FLASH prolog
Format: FLASH.PROLOG.CORE <core_number>

Selects the core for which you want to define one or more FLASH prologs.

Prerequisite: You have successfully configured an SMP system with the CORE.ASSIGN command.

©1989-2024 Lauterbach General Commands Reference Guide F | 55

Example: The following example shows how to define a FLASH prolog that is executed on core 3 of a
multicore chip.

;Select the core for which you want to define a FLASH prolog
FLASH.PROLOG.CORE 3.

;Define the FLASH prolog for core 3
FLASH.PROLOG.CONDition <your_code>
FLASH.PROLOG. SEQuence <your_code>

For information on how to configure two different FLASH prologs, see FLASH.PROLOG.SELect.

FLASH.PROLOG.OFF Switch FLASH prolog off

Format: FLASH.PROLOG.OFF

Disables the execution of the FLASH.PROLOG sequence.

FLASH.PROLOG.ON Switch FLASH prolog on

Format: FLASH.PROLOG.ON

Enables the execution of the FLASH.PROLOG sequence.

FLASH.PROLOG.RESet Reset all FLASH prologs

Format: FLASH.EPILOG.RESet

Switches the FLASH.PROLOG feature off and clears all settings.

©1989-2024 Lauterbach General Commands Reference Guide F | 56

FLASH.PROLOG.SELect Increment the index number to the next prolog

Format:

FLASH.PROLOG.SELect <index_number>

Increments the index number for each new FLASH prolog. This is useful, for example, if you need two
separate FLASH prologs with each FLASH prolog having its own FLASH.PROLOG.CONDition.

TRACES32 automatically assigns the index number 1. to the 1st FLASH.PROLOG.SEQuence. If you require
a 2nd, separate FLASH prolog sequence, then increment the <index_number> to 2. Otherwise the 2nd
FLASH prolog will overwrite the 1st FLASH prolog. You can define a maximum of 10 FLASH prologs.

FLASH.PROLOG.SEQuence Define FLASH prolog sequence

Format:

<command>:

FLASH.PROLOG.SEQuence <command> ...

SET <address> %<format> <data>

SETI <address> %<format> <data> <increment>
SETS <address>

GETS <address>

Defines a sequence of Data.Set commands that are automatically executed by the TRACE32 software
directly before the execution of the FLASH command.

SET

SETI

GETS

SETS

Parameters: <address> %<format> <value>
Write <value> with data type <format> to <address>

Parameters: <address> %<format> <start> <increment>
At the first time performed, write <start>to <address>.
<start> is incremented by <increment> on each successive call.

Parameters: <address> %<format>

Reads the value at <address> and stores it into an internal data buffer.
The internal data buffer can contain multiple records and is reset when the
command FLASH.PROLOG.Sequence is called.

Parameters: <address> %<format>
If the internal data buffer contains a record for <address>, the stored value
is written to the processor.

©1989-2024 Lauterbach

General Commands Reference Guide F | 57

FLASH.PROLOG.state Display FLASH prologs

Format: FLASH.PROLOG.state

Opens the FLASH.PROLOG.state window, where you can configure FLASH prologs.

2 BuFLASH.PROLOG state = =R
prolog CONDition
O oFF | (Data.Word(D:0x3f2f30)80xfF00)==0x2000 |
®on SEQuence
SET 0x3faf64 %Word 0xb0b0
34 count
0.
CORE — SEL
40 4D

A Counts the number of times the FLASH.PROLOG.SEQuence command has been executed.

B Lets you create and view the FLASH prologs of a particular core. This example shows the 2nd
FLASH prolog of core 1.

The CORE field is grayed out for single-core targets.

©1989-2024 Lauterbach General Commands Reference Guide F | 58

FLASH.ReProgram Re-program FLASH

[Example]

Format: FLASH.ReProgram [<unit> | <address_range> | ALL | off | CANCEL]
[/Erase | /FILL]

Activates the FLASH reprogramming mode for the selected FLASH unit, address range or for all declared
devices. In this mode, all changes are written to the virtual host memory of TRACES32. As soon as
FLASH.ReProgram.off is executed, the FLASH sectors are programmed but only if their contents have
changed. The programming time for target-controlled FLASH programming is considerably improved. Refer
to “TRACE32 Tool-based vs. Target-controlled FLASH Programming” in Onchip/NOR FLASH
Programming User’s Guide, page 75 (norflash.pdf) for a description of the TRACE32 FLASH programming

techniques.

<unit> Activates the reprogramming mode for the specified unit.

ALL Activates the reprogramming mode for all FLASH sectors.

off With parameter “off” or without parameters the FLASH reprogramming
mode is terminated. Terminating the FLASH reprogramming mode lets you
program only the modified sectors.

CANCEL Abort without programming pending changes.

Erase Flags the activated sectors in the virtual host memory as to be erased.
The Erase option is used to remove obsolete code from sectors that are
not reprogrammed (e.g. because a smaller program is flashed into the
target).

FILL Fills all erase sectors with 0 or 1, depending on the FLASH device.

Use the FILL option to prevent that ECC errors occur after FLASH
programming in case of an address-sensitive ECC calculation.

NOTE: The FLASH.AUTO.off and FLASH.ReProgram.off commands automatically

erase the modified sectors before writing them.

. Consequently, do nof use FLASH.Erase when using the auto or FLASH
reprogramming mode.

. If you do, you will lose the advantage of reprogramming only modified
sectors, which will result in a loss of performance.

©1989-2024 Lauterbach General Commands Reference Guide F | 59

Example:

g (==) ; No FLASH.Erase!

FLASH.ReProgram ALL /Erase ; Activate all FLASHs for programming
Data.LOAD.Binary data.bin ; load binary file
FLASH.ReProgram off ; Erase and program all modified
; sectors
Data.LOAD.Binary data.bin /DIFF ; compare the contents of the FLASH

; with the file contents

IF FOUND () ; FOUND() returns TRUE if a
PRINT "Not ok!™" ; difference was found
ELSE
PRINT "FLASH ok!"

See also
B FLASH B FLASH.Program B FLASH.state 1 FLASH.ProgramMODE()

A 'Programming Commands’ in ’'Onchip/NOR FLASH Programming User's Guide’
A ’Release Information’ in’Legacy Release History’

FLASH.RESet Reset FLASH declaration table

Format: FLASH.RESet

The debugger-internal table with FLASH-related declarations is cleared and all settings are restored to their
default values. Use the command FLASH.Delete to remove a single entry or parts of the FLASH list.

This command does not erase the FLASH sectors. Use FLASH.Erase for that purpose.
See also

B FLASH B FLASH.state
A ’Standard Approach’ in ’Onchip/NOR FLASH Programming User’s Guide’

©1989-2024 Lauterbach General Commands Reference Guide F | 60

FLASH.SPI FLASH SPI command group

See also
W FLASH W FLASH.state
FLASH.SPI.CFI Generate SPI FLASH sector declaration by CFl
Format: FLASH.SPI.CFI [<unit>] <address> | <range> <bus_width> [[<option>]
<bus_width>: Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
<option>: TARGET [<code_address> <data_address> <buffer_size> <file>]
TARGET2 [<code_address> <data_address> <buffer_size> <file>]
DualPort
OctaPI
QuadPI

Generates the FLASH declaration by using the CFl information stored in an SPI FLASH device.

CFI (Common FLASH memory Interface) is an open standard, that specifies how FLASH identification
information can be provided by FLASH devices. The identification information includes the memory size,
block configuration, voltage and timing information etc.

The target algorithm has to be specified with the TTARGET[2] option or with the FLASH.TARGET /
FLASH.TARGET2 command.

If the ITARGET([2] option is used without further parameters, then the target algorithm has to have been
already specified with FLASH.TARGET / FLASH.TARGET2. The option only specifies in this case which of
the two possible algorithms should be used. If no /TARGET[2] option is specified, the algorithm that is
declared with FLASH.TARGET will be used.

Default serial peripheral interface (SPI) devices use a single data bit (in/out separate), while Quad SPI (QPI)
moves for data bits at a time and Octal SPI (OPI) moves eight data bits.

Default Supports SPI Mode (1-1-1).
QuadPI Supports QPI Mode (4-4-4).
OctaPI Supports Octal Mode (8-8-8).

n-n-nmeans here <cmd phase iowidth>-<address phase iowidth>-<data phase iowidth>.

The following graphics display a write enable command phase for the 3 different spi modes.

©1989-2024 Lauterbach General Commands Reference Guide F | 61

SPI Mode:

s\ WA

0 1 2 3 4 5 6 7 "

s U
J i

Opcode
r 8 \
S| 0 X0 X0 X0 X0 X1 X1 X QOO0

SO High Impedance

QPI Mode:

S\ w4
scK 11 i

3-0

OPI Mode:

s\ S
SCK [1 i

KOpcode

7-0

Examples:

Example 1:

FLASH.RESet

FLASH.TARGET2 <code_address> <data_address> <buffer size> <file>
FLASH.SPI.CFI <address> Byte /TARGET2

FLASH.List

AREA.view

©1989-2024 Lauterbach General Commands Reference Guide F | 62

Example 2:

FLASH.RESet

FLASH.SPI.CFI <address> Byte /TARGET <code_address> <data_address> \

FLASH.List

<buffer size> <file>

AREA.view
FLASH.SPI.CMD Send data to SPI FLASH device
[Examples]
Format: FLASH.SPI.CMD <unit> | <range> [%<format>] <data> ... [[<option>]
FLASH.SPICMD (deprecated)
<format>: Byte | Word | Long | ...
<option>: READ <number_of_bytes> [<address>]
QPI
TARGET
TARGET2

Sends FLASH-device-specific <data> from TRACES32 to a SPI FLASH device. The <data> can be any valid
FLASH command sequence. For <data> that can be sent, refer to the FLASH manufacturer’s

documentation.
<unit> Sends the SPI FLASH command to the specified FLASH device
<range> identified by its unit number or address range.
Byte (default), Word, Data size for integer constants. See “Keywords for <width>"
Long, ... (general_ref_d.pdf).
<data> Any valid FLASH command sequence you want to send to the SPI
FLASH, such as commands, addresses, dummy cycles, etc.
Examples of SPI-FLASH-device commands:
. 0x9F // the READ ID command
. 0x03 0x00 0x10 0x00 //the READ command with arguments
0x3 is the READ command. The three arguments 0x00, 0x10,
and 0x00 stand for the SPI FLASH address 0x001000.
READ TRACE32 requests the SPI FLASH to read the specified
<number_of_bytes> <number_of_bytes>, and then prints the bytes read by the SPI FLASH to
the AREA.view window.

©1989-2024 Lauterbach

General Commands Reference Guide F | 63

READ TRACES2 requests the SPI FLASH to read the specified
<number_of_bytes> <number_of_bytes>, and then sends the bytes read by the SPI FLASH to
<address> the specified <address>; typically an address in the TRACES32 virtual
memory (VM:).

See example 1.

QPI Execute SPI FLASH access in 4-4-4 QPI mode.
TARGET Execute target FLASH algorithm declared with FLASH.TARGET.
TARGET2 Execute target FLASH algorithm declared with FLASH.TARGET2.

Example 1: The SPI FLASH reads the <number_of_bytes>, and then TRACES32 sends the bytes read
by the SPI FLASH to the specified <address> in the TRACE32 virtual memory (VM:).

; TRACE32 transmits the command 0x9f (= read ID), and the host receives 4
;bytes of data. Then TRACE32 sends the data received from the host to
;the TRACE32 virtual memory address 0xO0.

FLASH.SPI.CMD 1. 0x9f /READ 4. VM:0x0

&data=Data.LONG (VM: 0x0)
PRINT "SPI data : 0x" &data //print the FLASH Manufacture and Device ID

©1989-2024 Lauterbach General Commands Reference Guide F | 64

Example 2: This script shows how to output the contents of internal SPI FLASH registers to the AREA.view

window.

SCREEN.OFF

FLASH.SPI.CMD 1.
FLASH.SPI.CMD 1.

SCREEN. ON

0x66
0x99

&address=0x800000

;enable the SPI FLASH software reset
;perform the SPI FLASH software reset

;1f the SPI flash is the 3-byte address mode

PRINT
FLASH

PRINT

FLASH.

PRINT

FLASH.

PRINT

FLASH.

PRINT

FLASH.

"H### SRIV
.SPI.CMD 1

"### CR1IV
SPI.CMD 1

"### CR2V
SPI.CMD 1

"### CR3V
SPI.CMD 1

"H### CRAV
SPI.CMD 1

;let’s open the
AREA.view

register ###"

register ###"

register ###"

register ###"

register ###"

0x65 0x80 0x00 0x00 0x00 /READ 0x1

0x65 0x80 0x0 0x2 0x0 /READ 0x1

0x65 0x80 0x0 0x3 0x0 /READ 0x1

0x65 0x80 0x0 0x4 0x0 /READ 0x1

0x65 0x80 0x0 0x5 0x0 /READ 0x1

AREA window to view the result

B:AREA.view

(=[O el

SP

SP

SP

4

Icmd read:
Ox00

Icmd read:
Ox00

Icmd read:

0x08

0x08

Ox10
i

SPIcmd write: 1. byte(s), 0x66
SPIcmd write: 1. byte(s), 0x99
w#g SR1V register ###

SPIcmd write: 5. byte(s), Ox&5

1. byte(s)

w#g CR1V register ##
SPIcmd write: 5. byte(s), Ox&5

1. byte(s)

w#g CR2ZV register #z#
SPIcmd write: 5. byte(s), Ox&5

1. byte(s)

w#g CR3V register ##
SPIcmd write: 5. byte(s), Ox&5
SPIcmd read:

1. byte(s)

w#g CRAV register #z#
SPIcmd write: 5. byte(s), Ox&5
SPIcmd read:

1. byte(s)

-

0x80 0x00 O0x00 O0x00

0xB80 0x00 0x02 Ox00

0xB80 0x00 0x03 Ox00

0x80 0x00 Ox04 Ox00

m

0x80 0x00 O0x05 Ox00

©1989-2024 Lauterbach

General Commands Reference Guide F

65

FLASH.SPI.GETSFDP Read FLASH discovery parameters

Format: FLASH.SPIL.GETSFDP <unit> | <range> [Y%o<format>] <data> ...

<format>: Byte | Word | Long | ...

Reads Serial Flash Discovery Parameters from SPI FLASH. Several parameters values can be afterwards
utilized with the FLASH.SPI.SFDP() function.

FLASH.SPI.RESetMemory Reset SPI FLASH volatile register

[build 134704 - DVD 09/2021]

Format: FLASH.SPI.LRESetMemory <unit> | <address> | <range> [/<option>]

<option>: TARGET (Available if sector is not declared)
TARGET2 (Available if sector is not declared)

Default: TARGET.

Resets SPI FLASH internal volatile register values.

TARGET Execute target FLASH algorithm declared with FLASH.TARGET.

TARGET2 Execute target FLASH algorithm declared with FLASH.TARGET2.

©1989-2024 Lauterbach General Commands Reference Guide F | 66

FLASH.state

FLASH programming dialog

Format: FLASH.state

Opens the FLASH.state window, where you can create, check, and modify the setup for memory mapped

FLASH programming.

; script to program onchip

SYStem.CPU TC298TF

and off-chip flash together

; script to set up onchip flash configuration

DO ~~/demo/tricore/flash/tc29x.cmm CPU=TC298TF PREPAREONLY DUALPORT=1

; configure external bus interface

; prepare off-chip flash configuration
FLASH.CFI 0xA4000000 Long /TARGET2 0xC0000000 0xD0000000 0x2000 /DualPort

FLASH.state

#7 B::FLASH .state
commands
[o reset | | [off z
[#ca |
[#eust |

ALL

| execute

Flash list information

Units declared: | 20. Sectors declared: | 302.

TARGET setup
flash algorithm file:
C:\T32_TriCore\demo'\tricore\flash\long\tc2.bin

code address: P:0xC0000000 size: | 0x570

data address: ED:0xD0000000 size: | 0x4160

TARGET2 setup
flash algorithm file:
C:\T32_TriCore\demo\tricore\flash\long\m58b032.bin

code address: P:0xC0000000 size: | 0x2C8

data address: ED:0xD0000000 size: | 0x2160

unit number or address range:

revision: 3527.

STACKSIZE
FirmWareRAM

buffer size: 0x4000

revision: 3527. options

(&]

buffer size: 0x2000

See also

B FLASH.AUTO
B FLASH.CLocK

B FLASH
M FLASH.CHANGEtype

B FLASH.CFI
B FLASH.CreateALIAS

B FLASH.BSDLaccess
B FLASH.Create

©1989-2024 Lauterbach

General Commands Reference Guide F

67

B FLASH.Delete

B FLASH.HOOKSCRIPT
B FLASH.OFFSET

B FLASH.RESet

B FLASH.UNLOCK

B FLASH.EPILOG B FLASH.Erase B FLASH.GETID

B FLASH.List B FLASH.LOCK B FLASH.MultiProgram
B FLASH.Program B FLASH.PROLOG B FLASH.ReProgram
B FLASH.SPI B FLASH.TARGET B FLASH.TARGET2

B FLASH.UNSECUREerase

A ’Release Information’ in’Legacy Release History’

FLASH.TARGET Define target controlled algorithm
[Examples]
Format 1: FLASH.TARGET <code_range> <data_range> [<file>] \
[/[STACKSIZE <size> | IFirmWareRAM <address_range>] \
[/DualPort | /CORE <number>]
Format 2: FLASH.TARGET <code_address> <data_address> [<buffer_size>] [<file>] \
[/[STACKSIZE <size>] | IFirmWareRAM <address_range>] \
[/DualPort | /CORE <number>]

Prepares target controlled FLASH programming.

STACKSIZE

Declares the stack size for the target algorithm. The default size is 256 bytes.

FirmWareRAM

Declares the <address_range> used by the on-chip FLASH programming
firmware. This range is protected before programming and restored after
FLASH programming, just as is the case for the <data_range> and the
<code_range>.

See example.

DualPort

DualPort can be used for target controlled FLASH programming only.
While FLASH programming is being executed, the TRACE32 host
software simultaneously downloads the next command and data via dual-
port memory access into the target RAM.

DualPort can reduce the programming time significantly.

See examples.

CORE <number>

Defines that the target controlled algorithm is executed on the specified core.

©1989-2024 Lauterbach

General Commands Reference Guide F | 68

Example for Format 1

FLASH: Intel Strata FLASH 28F320J3A, 16 bit mode, word access
CPU: ARM core

Memory configuration:

. FLASH from 0x0--Ox3FFFFF

J RAM starting at address 0OxA0000000

; Format 1

FLASH.RESet
FLASH.Create 1. 0x0--0x3fffff 0x20000 TARGET Word

5 <code_range> <data_range> <flash algorithm>

FLASH.Target 0xA0000000++0xXFFF 0xA0001000++0xFFF \
~~/demo/arm/flash/word/i28f200j3 .bin
; binary file only!

. <code_range>

- The code for the <flash_algorithm> is downloaded to <code_range>

- Required size for the code is size_of (<flash_algorithm>) + 32 byte
. <data_range>

- The specified data range is used for <flash_algorithm>

- <buffer_size> is the number of bytes which are transferred from the TRACE32 software to
the target controlled FLASH programming routine in one step. Recommended buffer size is
4 KByte, smaller buffer sizes are also possible. The max. buffer size is 16 KByte.

- <buffer_size> =
size_of (<data_range>) - 32 byte argument buffer - 256 byte stack

. <flash_algorithm>
The FLASH algorithm can be found in: ~~/demo/arm/flash/word/i28£2003j3.bin

Programming procedure:
1. The TRACERS2 software takes care of saving the contents of

<code_range>
<data_range>
used CPU registers

before the commands FLASH.Erase, FLASH.UNLOCK, FLASH.LOCK are started

before patching the code in FLASH or setting a software breakpoint to FLASH is performed after
FLASH.AUTO is used

when FLASH programming is enabled with the FLASH.Program command

2. The FLASH program is loaded to the target and the requested FLASH programming commands
are performed.

©1989-2024 Lauterbach General Commands Reference Guide F | 69

3. The saved context (register and data) is restored

after the commands FLASH.Erase, FLASH.UNLOCK, FLASH.LOCK are finished

after patching the code in FLASH or setting a software breakpoint to FLASH is done when
FLASH.AUTO is used

when FLASH programming is disabled with the FLASH.Program command.

Complete example:

; Format 1

FLASH.RESet

FLASH.Create 1. 0x0--0x3fffff 0x20000 TARGET Word

FLASH.Target 0xA0000000++0xFFF 0xA0001000++0xXFFF \
~~/demo/arm/flash/word/i28£200j3 .bin

FLASH.Erase 1.

FLASH.Program 1.

Data.LOAD.E1f my_application.elf /Word
FLASH.Program off

Data.LOAD.El1f my_application.elf /Word /DIFF

IF FOUND ()

Print "Not ok!"
ELSE

Print "FLASH ok!"

©1989-2024 Lauterbach General Commands Reference Guide F | 70

Example for Format 2

FLASH: Intel Strata FLASH 28F320J3A, 16 bit mode, word access
CPU: ARM core

Memory configuration:
. FLASH from 0x0--Ox3FFFFF
J RAM starting at address 0xA0000000

; Format 2

FLASH.RESet
FLASH.Create 1. 0x0--0x3FFFFF 0x20000 TARGET Word

<code_address> <data_addr> <buffer_size> <flash_algorithm>
FLASH Target 0xA0000000 O0xA0001000 0x1000 \
~~/demo/arm/flash/word/i28£2003j3 .bin
; binary file only!

. <code_address>

- The code for the <flash_algorithm> is downloaded to the target RAM starting at
<code_address>

- Required size for the code is size_of (<flash_algorithm>) + 32 byte
. <data_address>

- The address range starting with <data_address> is used as data range for
<flash_algorithm>

- Required size for the data is
<buffer_size> + 32 byte argument buffer + 256 byte stack

. <buffer_size>

<buffer_size> is the number of bytes which are transferred from the TRACE32 software to
the target controlled FLASH programming routine in one step. Recommended buffer size is
4 KByte, smaller buffer sizes are also possible. The max. buffer size is 16 KByte.

. <flash_algorithm>
The FLASH algorithm can be found in ~~/demo/arm/flash/word/i28£2003j3.bin

©1989-2024 Lauterbach General Commands Reference Guide F | 71

Programming procedure:
1. The TRACE32 software takes care of saving the contents of

<code_address>++ (size_of (<flash_algorithm>)+32 byte)
<data_address>++(<buffer_size> + 32 byte argument buffer + 256 byte
stack>)

used CPU registers

before the commands FLASH.Erase, FLASH.UNLOCK, FLASH.LOCK are started

before patching the code in FLASH or setting a software breakpoint to FLASH is performed after
FLASH.AUTO is used

when FLASH programming is enabled with the FLASH.Program command

2. The FLASH program is loaded to the target and the requested FLASH programming commands
are executed.

3. The saved context (register and data) is restored.

after the commands FLASH.Erase, FLASH.UNLOCK, FLASH.LOCK are finished

after patching the code in FLASH or setting a software breakpoint to FLASH is done when
FLASH.AUTO is used

when FLASH programming is disabled with the FLASH.Program command.

Complete example:

; Format 2

FLASH.RESet

FLASH.Create 1. 0x0--0x3FFFFF 0x20000 TARGET Word

FLASH.Target 0xA0000000 0xA0001000 0x1000 \
~~/demo/arm/flash/word/i28£200j3.bin

FLASH.Erase 1.

FLASH.Program 1.

Data.LOAD.E1f my_application.elf /Word
FLASH.Program off

Data.LOAD.El1f my_application.elf /Word /DIFF

IF FOUND ()

Print "Not ok!"
ELSE

Print "FLASH ok!"

©1989-2024 Lauterbach General Commands Reference Guide F | 72

Example 3 (Recommended to Test Your Own FLASH Algorithm)

Tips for writing your own FLASH algorithm can be found in “How to Write your own FLASH Algorithm”
(flash_app_own_algorithm.pdf).

FLASH: Intel Strata FLASH 28F320J3A, 16 bit mode, word access

Memory configuration:
. FLASH from 0x0--Ox3FFFFF
J RAM starting at address 0xA0000000

Format 1 using your own FLASH algorithm

I

FLASH.RESet
FLASH.Create 1. 0x0--0x3fffff 0x20000 TARGET Word

; <code_range> <data_range>
FLASH.Target 0xA0000000++0xFFF 0xA0001000++0xXFFF

Data.LOAD.E1f my flash_algorithm.elf

FLASH.Erase ALL

FLASH.Program ALL

Data.LOAD.Binary flash_contents.bin
FLASH.Program off

. <code_range>

- The code formy_ flash_ algorithm.elf is downloaded to <code_range>

- Required size for the code is size_of (my_flash_algorithm.elf) + 32 byte
. <data_range>

- The specified data range is used formy_flash_algorithm.elf

- <buffer_size> is the number of bytes which are transferred from the TRACE32 software to
the target controlled FLASH programming routine in one step. Recommended buffer size is
4 KByte, smaller buffer sizes are also possible. The max. buffer size is 16 KByte.

- <buffer_size> =
size_of (<data_range>) - 32 byte argument buffer - 256 byte stack

©1989-2024 Lauterbach General Commands Reference Guide F | 73

Programming procedure:

1. The FLASH program is loaded to the target by the user.

2. The TRACE32 software saves the used CPU registers:
- Before the commands FLASH.Erase, FLASH.UNLOCK, FLASH.LOCK are started or
- When FLASH programming is enabled.

3. The requested FLASH commands are executed.

4. The saved CPU registers are restored:
- After the commands FLASH.Erase, FLASH.UNLOCK, FLASH.LOCK are finished or

- When FLASH programming is disabled.

Examples for /DualPort

Example for processor-internal FLASH:

: <code> <data> <buffer_size>
FLASH.TARGET 0x40000000 0x40002000 0x1000 * . bin /DualPort

Example for Cortex/ARM using dual-port access via AHB bus:

; <code> <data> <buffer_size>
FLASH.TARGET 0x20000000 EAHB:0x20001000 0x1000 *.bin /DualPort
Example for /[FirmWareRAM

FLASH declaration of LPC43xx internal FLASH:

FLASH.TARGET 0x10000000 0x10001000 0x2000 \
~~/demo/arm/flash/long/lpc4300.bin \
/STACKSIZE 0x200 /FirmWareRAM 0x10089FF0--0x10089FFF

See also

B FLASH.TARGET2 B FLASH

B FLASH.CFI B FLASH.state

1 FLASH.TARGET.BUILD() 1 FLASH.TARGET.CODERANGE()
1 FLASH.TARGET.DATARANGE() 1 FLASH.TARGET.FILE()

A 'FLASH Declaration in Detail’ in ’Onchip/NOR FLASH Programming User’s Guide’
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide F | 74

FLASH.TARGET2 Define second target controlled algorithm

Format 1: FLASH.TARGET2 <code_address> <data_address> <buffer_size> <file>\

Format 2: FLASH.TARGET2 <code_range> <data_range> [<file>] \

[/[STACKSIZE <size>] [[FirmWareRAM <address_range>]\
[/DualPort | /ICORE <number>]

[/[STACKSIZE <size>] [[FirmWareRAM <address_range>]\
[/DualPort | /ICORE <number>]

Supports the simultaneous programming of multiple flash devices with two different flash algorithms. This
allows to program for example processor internal and processor external NOR flash, HyperFlash or QSPI
flash with a single programming command sequence.

The command syntax is the same as for the FLASH.TARGET command.

STACKSIZE, etc. For a description of the options, see FLASH.TARGET.
Example:
; set up declaration for off-chip flash 1
FLASH.Create 1. 0x00000000--0x0001FFFF 0x10000 TARGET Long
FLASH.TARGET 0xC0000000 0xD0000000 0x2000 \
~~/demo/arm/flash/long/am291v100.bin
; set up declaration for off-chip flash 2
FLASH.Create 2. 0xA4000000--0xA401FFFF 0x4000 TARGET2 Long
FLASH.Create 2. 0xA4020000--0xA43FFFFF 0x20000 TARGET2 Long
FLASH.TARGET2 0xC0000000 0xD0000000 0x2000 \

~~/demo/arm/flash/long/am29n256.bin

; single flash programming sequence for both flash devices

FLASH.

ReProgram ALL /Erase

Data.LOAD.E1f my program.elf

FLASH.ReProgram off
See also
B FLASH.TARGET W FLASH
B FLASH.CFI B FLASH.state
1 FLASH.TARGET.BUILD() 1 FLASH.TARGET2.CODERANGE()
1 FLASH.TARGET2.DATARANGE() 1 FLASH.TARGET2.FILE()

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide F | 75

FLASH.UNLOCK Unlock FLASH

Format: FLASH.UNLOCK <unit> | <address_range> | ALL | off

Many FLASH devices provide a sector/block protection to avoid unintended erasing or programming
operations. This protection has to be unlocked in order to erase or program a FLASH device.

<unit> Unlock the specified unit.
ALL Unlock all FLASH sectors.
off (no effect)

Two unlocking schemes are used by FLASH devices:
1. Each individual sector/block has to be unlocked (individual unlocking).

2. The execution of a single unlock command sequence on an address range unlocks the complete
FLASH device (parallel unlocking).

Re-locking has to be executed usually sector by sector.

Please refer to the data sheet of your FLASH device, to find out which scheme is used by your FLASH
device.

Example for 1 (individual unlocking): INTEL 28F128L18 at address 0x0, connected to the CPU via a 16

bit data bus
FLASH.RESet ; reset FLASH declaration
FLASH.CFI 0x0 Word ; declare FLASH sectors via
; CFI query
FLASH.UNLOCK ALL ; unlock each sector individually
; erasing and programming
FLASH.LOCK ALL ; re-lock each sector individually

©1989-2024 Lauterbach General Commands Reference Guide F | 76

Example for 2 (parallel unlocking): INTEL 28F128J3 at address 0x0, connected to the CPU via a 16 bit
data bus, each sector 128KByte

FLASH.RESet ; reset FLASH declaration
FLASH.CFI 0x0 Word ; declare FLASH sectors via

; CFI query
FLASH.UNLOCK 0x0--0Ox1ffff ; execute a single unlock command

; by using an address range
; inside of a FLASH sector (faster)

; erasing and programming

FLASH.LOCK ALL ; re-lock each sector individually
See also
B FLASH B FLASH.LOCK B FLASH.state

A 'TRACES32 Tool-based Programming’ in 'Tips to Solve NOR FLASH Programming Problems’
A 'Programming Commands’ in ‘Onchip/NOR FLASH Programming User's Guide’

©1989-2024 Lauterbach General Commands Reference Guide F | 77

FLASH.UNSECUREerase Unsecure a device

Format: FLASH.UNSECUREerase

Debug access is no longer possible if the CPU is secured by programming special FLASH address
locations.

In these cases, the FLASH.UNSECUREerase command can be used to unsecure a device by sending
special commands via the debug interface. As a result, the FLASH is completely erased by the unsecure
sequence. Debug access is now possible again.

NOTE: FLASH.UNSECUREerase is a CPU specific command.

Example:

SYStem.CPU <cpu_type>
FLASH.UNSECUREerase
SYStem.Up

See also
MW FLASH B FLASH.state

©1989-2024 Lauterbach General Commands Reference Guide F | 78

FLASHFILE

FLASHFILE

Non-memory mapped FLASH devices

Non-memory mapped FLASH memories as NAND FLASH devices and serial FLASH devices can be
programmed and erased by the FLASHFILE command group.

. For a description of the NAND FLASH programming concept, see “NAND FLASH Programming

User’s Guide” (nandflash.pdf).

. For a description of the Serial FLASH programming concept, see “Serial FLASH Programming

User’s Guide” (serialflash.pdf).

J For a description of the eMMC FLASH programming concept, see “eMMC FLASH Programming

User’s Guide” (emmcflash.pdf).

See also

B FLASHFILE.BSDLaccess B FLASHFILE.BSDLFLASHTYPE
B FLASHFILE.CONFIG B FLASHFILE.COPY

B FLASHFILE.COPYSPARE B FLASHFILE.Create

B FLASHFILE.Delete B FLASHFILE.DUMP

B FLASHFILE.Erase B FLASHFILE.GETBADBLOCK
B FLASHFILE.GETEXTCSD B FLASHFILE.GETID

B FLASHFILE.GETONFI B FLASHFILE.List

B FLASHFILE.LOAD B FLASHFILE.LOADALL

B FLASHFILE.LOADECC B FLASHFILE.LOADSPARE

B FLASHFILE.LOCK B FLASHFILE.MSYSDLL

B FLASHFILE.PATTERN B FLASHFILE.ReProgram

B FLASHFILE.RESet B FLASHFILE.SAVE

B FLASHFILE.SAVEALL B FLASHFILE.SAVEECC

B FLASHFILE.SAVESPARE B FLASHFILE.Set

B FLASHFILE.SETEXTCSD B FLASHFILE.SPI

B FLASHFILE.TARGET B FLASHFILE.TEST

B FLASHFILE.UNLOCK B FLASH

B BSDL.FLASH 1 FLASHFILE.SPAREADDRESS()
A 'FLASHFILE Functions’ in ‘General Function Reference’

A ’Introduction’ in '’NAND FLASH Programming User’s Guide’

A ’Introduction’ in’Serial FLASH Programming User’s Guide’

©1989-2024 Lauterbach

General Commands Reference Guide F | 79

FLASHFILE.BSDLaccess Enables FLASH access via boundary scan

Format: FLASHFILE.BSDLaccess ON | OFF

Enables or disables FLASH memory access via boundary scan. The boundary scan chain must be
configured with BSDL.FLASH.IFDefine and BSDL.FLASH.IFMap.

See also
B FLASHFILE
FLASHFILE.BSDLFLASHTYPE Define FLASH type
Format: FLASHFILE.BSDLFLASHTYPE <flash_family_code>

Declaration of FLASH memories.

<flash_family_code> Determines the programming algorithm. Supported flash family codes
are listed on https://www.lauterbach.com/ylist.html in the Code column.

See also
B FLASHFILE

©1989-2024 Lauterbach General Commands Reference Guide F | 80

https://www.lauterbach.com/ylist.html

FLASHFILE.CONFIG Inform TRACES32 about the FLASH register addresses

Format 1: FLASHFILE.CONFIG <cmd_reg> <addr_reg> <io_reg>
NAND FLASH
Format 2: FLASHFILE.CONFIG <spi_tx> <spi_rx> <cs_reg> <cs_port>
Serial FLASH

NAND FLASH

NAND FLASH devices use a common multiplexed bus for data, address and command transfers. With the
two signals (Command Latch Enable, Address Latch Enable) the access is latched to the appropriate
register. If the two signals are inactive, the access is performed to the I/O register.

Normally CLE and ALE are part of the address on the external bus. Thus NAND FLASHSs data, address and
command register can be mapped to the processors external memory space.

The user has to define the following three addresses:

<cmd_reg> Address of the NAND FLASH command register
<addr_reg> Address of the NAND FLASH address register
<io_reg> Address of the NAND FLASH 1/O register

Example: The NAND FLASH device chip select is assigned to the address 0xa0000000.

CPU NAND FLASH
<addr_reg>: 0xa0020000
A17 > ALE <cmd_reg>: 0xa0040000
A18 »CLE <io_reg>: 0xa0000000
Data bus

For a processor with integrated NAND FLASH controller this command can be omitted. Instead a script for
the configuration of such a controller must be executed. Scripts for the supported NAND FLASH controllers
are located in the demo directory under ~~/demo/<arch>/flash/<cpu>-nand* . crmm.

See also
B FLASHFILE
A ’Scripts for NAND Flash Programming’ in ’NAND FLASH Programming User's Guide’

©1989-2024 Lauterbach General Commands Reference Guide F | 81

FLASHFILE.COPY Copy to FLASH

Format: FLASHFILE.COPY <source_range> <target_address> [/<option>]

<option>: ComPare | DIFF | wordSWAP | LongSWAP | QuadSWAP

The source range data is copied to the defined target address. It is useful to write some memory data to
FLASH memory.

<option> For a description of the options, see FLASHFILE.LOAD.binary.

Example:

; Copy the 2MB virtual memory data at 0x0 to the NAND FLASH address at
0x100000, the writing scheme is the skipped way
FLASHFILE.COPY VM:0x0--0x1FFFFF 0x100000

; Compare the data between virtual memory and NAND FLASH
FLASHFILE.COPY VM:0x0--0x1FFFFF 0x100000 /ComPare

See also
B FLASHFILE
FLASHFILE.COPYSPARE Copy to spare area of NAND FLASH
Format: FLASHFILE.COPYSPARE <source_range> <spare_area_address>
[/<option>]
<option>: ComPare | DIFF | wordSWAP | LongSWAP | QuadSWAP

The source range data is copied from the TRACES32 virtual memory (VM:) to the defined spare area address
of the NAND flash.

<option> For a description of the options, see FLASHFILE.LOAD.binary.

©1989-2024 Lauterbach General Commands Reference Guide F | 82

Example:

NAND Page Size (example for main/spare: 2KB/64B)

From the TRACE32 virtual memory, copy 64B to the spare area that

; corresponds to the NAND FLASH main address 0x100000
FLASHFILE.COPYSPARE VM: 0x0--0x3F FLASHFILE.SPAREADDRESS (0x100000)

I

I

; O

;the spare area address 0x8000 corresponds to the main area 0x100000

FLASHFILE.COPYSPARE VM: 0x0--0x3F 0x8000
See also
B FLASHFILE 1 FLASHFILE.SPAREADDRESS()

©1989-2024 Lauterbach General Commands Reference Guide F | 83

FLASHFILE.Create Declaration of flash memories: create a block/sector

Format: FLASHFILE.Create <address_range> <erase_unit_size> <bus_width>
<erase_unit_ <sector> | <block>

size>:

<bus_width>: Byte | Word

Declaration of FLASH memories.

Generally, the FLASHFILE.Create command instructs TRACES32 to correctly calculate the non-uniform
flash block size/flash sector size since it has a non-uniform erase unit size.

<address_range> Address range within the flash memory.
<erase_unit_size> The erase unit is called sector for serial flash and block for NAND flash
memories.

In case of a NAND flash:
A block equals the size of an ERASE BLOCK of the NAND command
(0x60/0xD0).

In case of a Serial flash:
A sector equals the size of an ERASE SECTOR of the Serial flash erase
command (0x20/0x40/0xD8).

<bus_width> The bus width parameter defines the external flash memory bus size (8-bit,
16-bit).

Example: In this script, TRACES32 is informed that the serial flash device S25FL129 has 32 boot sectors,
each with a size of 4Kbyte, and 254 main sectors, each with a size of 64KByte.

FLASHFILE.Create 0x0--0x1FFFF 0x1000 Byte ; boot sectors
FLASHFILE.Create 0x20000--0xFFFFFF 0x10000 Byte ; main sectors
See also
B FLASHFILE B FLASHFILE.List

©1989-2024 Lauterbach General Commands Reference Guide F | 84

FLASHFILE.Delete Delete block in FLASH declaration table

Format: FLASHFILE.Delete <address_range> | ALL

The specified FLASH block is removed from the FLASH declaration table. Use the command
FLASHFILE.RESet to clear the whole list and the entire FLASH target configuration.

Example:

FLASHFILE.LIST

FLASHFILE.CREATE 0x0--OxFFFFF 0x10000 Byte ; create 1MByte FLASH
with 16 erase blocks of
64KByte

FLASHFILE.Delete 0x0--0xFFFF ; delete the first

64KByte block

See also
W FLASHFILE
FLASHFILE.DUMP Dump FLASH
Format: FLASHFILE.DUMP [<address> | <range>] [I<format> | <option> ...]
<format>: NoHex | NoAscii
Byte | Word | Long | Quad | TByte | HByte | SByte
BE | LE
<option>: MAIN
SPARE
Track
ReFresh
SpotLight

Reads the FLASH memory to the Data.dump window. You can read the main and spare data from NAND

FLASH devices. You can find the matched spare area easily from the main area dump window by the Track

option.

See also

B FLASHFILE

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide F |

FLASHFILE.Erase Erase FLASH

Format: FLASHFILE.Erase <range> [EraseBadBlocks

Erases the FLASH memory.

EraseBadBlocks Includes bad blocks in the operation.
|
MAIN SP MAIN SP | MAIN SP MAIN SP
1 I 1
2 | 2
3 : 3
4 - Bad 4 - Bad | 4 - Bad
5 » | 5 »
: | E
N I N
FLASHFILE.Erase | FLASHFILE.ERASE /EraseBadBlocks
I
|
Examples:

;Erase NAND FLASH except bad blocks
FLASHFILE.Erase 0x0--0xXFFFF

;Erase NAND FLASH including bad blocks
FLASHFILE.Erase 0x0--0xXFFFF /EraseBadBlocks

See also
B FLASHFILE

©1989-2024 Lauterbach General Commands Reference Guide F | 86

FLASHFILE.GETBADBLOCK Get the bad block addresses

Format: FLASHFILE.GETBADBLOCK <range>

Displays the bad block addresses within the specified range. If the NAND FLASH block #0 is bad, then
TRACE32 cannot detect any bad blocks in the NAND FLASH device.

= | B:AREAview [:::]I!!I[:::

-

FLASHFILE. GETEADELOCK 0x0--0xFFFFFF

Bad Block at Ox100000 (#Block: 0x8)

Bad Block at Ox120000 (#Block: 0x9)

Bad Block at Ox140000 (#Block: OxA)

Bad Block at Ox160000 (#Block: OxB)

Bad Block at Ox480000 (#Block: 0Ox24) -
4 m [

See also

B FLASHFILE 1 FLASHFILE.GETBADBLOCK.COUNTY()
1 FLASHFILE.GETBADBLOCK.NEXT()

FLASHFILE.GETEXTCSD Get the extended CSD register

Format: FLASHFILE.GETEXTCSD

Gets the extended CSD register, which defines the MMC flash properties and selected modes. Each
register byte is described in the JEDEC standard eMMC documentation.

Example:

FLASHFILE .GETEXTCSD

AREA.view ;display the result in the AREA.view window
See also
B FLASHFILE B FLASHFILE.SETEXTCSD

©1989-2024 Lauterbach General Commands Reference Guide F | 87

FLASHFILE.GETID

Get ID values of FLASH device

Format:

FLASHFILE.GETID

Gets the manufacture and device ID from FLASH. This command is mainly used to test the communication
between the CPU and FLASH device.

See also
B FLASHFILE
FLASHFILE.GETONFI Display ONFI
Format: FLASHFILE.GETONFI

Displays the Open NAND FLASH Interface (ONFI) specification. This command works only for NAND flash

devices that support ONFI.

= | B:AREAview

(=[O el

NAND ONFI
Parameter page signature : ONFI
anufacture: SPANSION
Device: S34MLO4GL
data bytes per page: Ox800
=pare bytes per page: 0Ox40
data bytes per partial page: 0x200
=pare bytes per partial page: O0x10
pages per block: Ox40(64.)
col cycl: 2
row cycl: 3
num of bits per cell: 1
nand type: nand2g08
4 m

-

4 [m

See also

B FLASHFILE

©1989-2024 Lauterbach

General Commands Reference Guide F

88

FLASHFILE.List List blocks or sectors of FLASH memory

Format: FLASHFILE.List

Opens the FLASHFILE.List window, displaying the list of blocks or sectors defined with the
FLASHFILE.Create command. Each block or sector corresponds to one erase unit size of the flash
memory.

Example: In this script, TRACES32 is informed that the serial flash device S25FL129 has 32 boot sectors,
each with a size of 4Kbyte, and 254 main sectors, each with a size of 64KByte.

FLASHFILE.Create 0x0--0x1FFFF 0x1000 Byte ;boot sectors
FLASHFILE.Create 0x20000--0xFFFFFF 0x10000 Byte ;main sectors

<= BuFLASHFILE List =] ==

address [width
000000000001A000--000000000001AFFF [Byt

000000000001E000--000000000001EFFF |Byte i
000000000001C000--000000000001CFFF |Byte | A
000000000001D000--000000000001DFFF |Byte

I

000000000001EQO0--000000000001EFFF Byte
0000000000020000--000000000002FFFF
0000000000030000--000000000003FFFF (Byte
0000000000040000--000000000004FFFF (Byte E
000000000005 0000--000000000005FFFF (Byte
0000000000060000--000000000006FFFF

A Each row corresponds to one 4KB boot sector. B Each row corresponds to one 64KB main
sector.

See also
B FLASHFILE B FLASHFILE.Create

©1989-2024 Lauterbach General Commands Reference Guide F | 89

FLASHFILE.LOAD Load files to FLASH

Using the FLASHFILE.LOAD command group, you can load binary, ELF, Intel HEX, and Srecord files to the
NAND FLASH.

See also

B FLASHFILE.LOAD.binary B FLASHFILE.LOAD.EIf B FLASHFILE.LOAD.IntelHex M FLASHFILE.LOAD.JSON
B FLASHFILE.LOAD.SPARSE M FLASHFILE.LOAD.Srecord M FLASHFILE

FLASHFILE.LOAD.binary Write FLASH
[Examples]
Format: FLASHFILE.LOAD.binary <file> [<address> <range>] [<option>
<option>: WriteBadBlocks | ComPare | ComPareChecKSUM | DIFF |

wordSWAP | LongSWAP | QuadSWAP |
SKIP <offset>| ZIPLOAD | NoFF | NoZero

The data from the binary <file> is programmed to the flash. If the command is called without <address>and
<range>, the complete file will be programmed to flash beginning from target address 0.

<address> . File format without address information (e.g. binary): base address
of the flash memory

. File format with address information: address offset of the flash
memory
<range> . If specified, only the data within the address range will be loaded.

Data outside this address range will be ignored.

. If specified for file formats without address information, the start
address of <range> is used as base address and <address> will
be ignored.

ComPare Verify the each byte of the file(or data) against the flash memory.
ComPareChecK- Verify the checksum bytes from the certain size of the file (or data)

SUM against the flash memory, faster verification.

DIFF Compare the contents of the FLASH with the file contents. See example.
LongSWAP Swaps high and low bytes of a 32-bit word during load.

NoFF Skips the pages of a <file> that contain only OxFF.

©1989-2024 Lauterbach General Commands Reference Guide F | 90

NoZero Skips the pages of a <file> that contain only 0x00.

NOTE: Pages containing only OxFF or 0x00 can cause unexpected ECC
code generation on the NAND flash spare area.

The purpose of the options NoFF and NoZero is to prevent unexpected
ECC code generation by skipping these pages.

For information about ECC, see “NAND FLASH Programming User’s
Guide” (nandflash.pdf).

QuadSWAP Swaps high and low bytes of a 64-bit word during load.

SKIP If the option SKIP <offset> is specified, the first <offset> bytes of the file are
omitted.

wordSWAP Swaps high and low bytes of a 16-bit word during load.

WriteBadBlock Program NAND Flash including bad blocks. (Does not apply to serial

flash). See example.

ZIPLOAD Speeds up the transfer of compressed files through the JTAG interface,
decompresses and programs the files to the FLASH memory on the
target board.

Requirements for using ZIPLOAD:

. SDRAM > 256 KB; SDRAM > 512 KB is recommended.

. Configure the CPU clock and SDRAM clock.

See example.

Example 1

FLASHFILE.RESet

; FLASHFILE.Config <cmd_reg> <addr_reg> <io_reg>
FLASHFILE.Config 0xA0040000 0xA0020000 0xA0000000

; FLASHFILE.TARGET <code_range> <data_range> <file>
FLASHFILE.TARGET 0x1000++0x1FFF 0x3000++0x1FFFF \
~~/demo/arm/flash/word/nandl216.bin

; get the flash identification
FLASHFILE.GETID

; erase first 1 MByte
FLASHFILE.Erase 0++0xFFFFF

; write file to NAND FLASH
FLASHFILE.LOAD my_ file.bin 0++0xXFFFFF

©1989-2024 Lauterbach General Commands Reference Guide F | 91

Example 2 - ZIPLOAD option:

FLASHFILE.LOAD * O0x0 /ZIPLOAD ;the asterisk (*) lets you browse
; for the compressed file you want

;to load

Example 3 - lllustration of the WriteBadBlock option:

My_file——p NAND
Main

My_file —— = NAND

SP Main SP

O AW N =
O AW N =

Zl--Jolrlw(nvd|=

FLASHFILE.LOAD .. FLASHFILE.LOAD ..

Example 4 - DIFF option:

Bad

/WriteBadBlock

; compare the contents of the NAND FLASH with the file contents
FLASHFILE.LOAD.E1lf data.elf /DIFF

; FOUND() returns TRUE if a difference was found
IF FOUND ()
PRINT "Not ok!"
ELSE
PRINT "NAND FLASH ok!"
See also

B FLASHFILE.LOAD

©1989-2024 Lauterbach General Commands Reference Guide F |

92

FLASHFILE.LOAD.EIf Load ELF file

Format: FLASHFILE.LOAD.EIf <file> [<address> <range>] [/<option>]

<option>: ComPare | DIFF
wordSWAP | LongSWAP | QuadSWAP

Loads an ELF file to the FLASH memory on the target.

<option> For a description of the parameters and options, see
FLASHFILE.LOAD.binary.

Example:

FLASHFILE.LOAD.ELF *.* (0x20000000 O0x0--OxFFFFFF

See also
B FLASHFILE.LOAD

FLASHFILE.LOAD.IntelHex Load Intel hex file
Format: FLASHFILE.LOAD.IntelHex <file> [<address> <range>] [[<option>]
<option>: ComPare | DIFF
wordSWAP | LongSWAP | QuadSWAP

Loads a file in the intel HEX format to the NAND Flash.

<option> For a description of the parameters and options, see
FLASHFILE.LOAD.binary.

See also
B FLASHFILE.LOAD

©1989-2024 Lauterbach General Commands Reference Guide F | 93

FLASHFILE.LOAD.JSON Load “flasher_args.json” file

[build 165298 - DVD 02/2024]

Format: FLASHFILE.LOAD.JSON <file> [<address> <range>] [[<option>]

<option>: ComPare | DIFF
wordSWAP | LongSWAP | QuadSWAP

Loads the json query “flash_files” so that TRACE32 can program to the FLASH memory by
parsing the json file.

<option> For a description of the parameters and options, see
FLASHFILE.LOAD.binary.

Example:
{
“flash_ files” : {
“0x0” : “bootloader/bootloader.bin”,
“0x10000” : “blink.bin”,
“0x8000” : “partition_table/partition-table.bin”
}I

FLASHFILE.ReProgram ALL

FLASHFILE.LOAD.JSON flasher_args.json
FLASHFILE.ReProgram OFF

FLASHFILE.LOAD.JSON flasher_args.json /ComPare

ENDDO

See also
B FLASHFILE.LOAD

©1989-2024 Lauterbach General Commands Reference Guide F | 94

FLASHFILE.LOAD.SPARSE Load SPARSE file

[build 165298 - DVD 02/2024]

Format: FLASHFILE.LOAD.SPARSE <file> [<address> <range>] [/<option>]

<option>: ComPare | DIFF
wordSWAP | LongSWAP | QuadSWAP

Loads SPARSE image.

<option> For a description of the parameters and options, see
FLASHFILE.LOAD.binary.

See also
B FLASHFILE.LOAD

©1989-2024 Lauterbach General Commands Reference Guide F | 95

FLASHFILE.LOAD.Srecord Load an "Srecord" file

Format: FLASHFILE.LOAD.S1record <file> [<address> <range>] [/<option>]
FLASHFILE.LOAD.S2record <file> [<address> <range>] [/<option>]
FLASHFILE.LOAD.S3record <file> [<address> <range>] [/<option>]

<option>: ComPare | DIFF
wordSWAP | LongSWAP | QuadSWAP

Loads a file in the Srecord format to the NAND Flash.

<option> For a description of the parameters and options see
FLASHFILE.LOAD.binary.

See also
B FLASHFILE.LOAD

FLASHFILE.LOADALL Load to main area and spare area
Format: FLASHFILE.LOADALL <file> [<address> <range>] [/<option>]
<option>: ComPare | DIFF | WriteBadBlocks
wordSWAP | LongSWAP | QuadSWAP

Loads <file>to the main area and the spare area of the NAND flash memory. This is useful for cloning a

NAND flash device.
<option> For a description of the parameters and options see
FLASHFILE.LOAD.binary.
See also
W FLASHFILE

©1989-2024 Lauterbach General Commands Reference Guide F | 96

FLASHFILE.LOADECC Load ECC file to spare area

Format: FLASHFILE.LOADECC <params> (deprecated)
Use FLASHFILE.SAVEECC + FLASHFILE.LOADSPARE.

See also
B FLASHFILE B FLASHFILE.SAVEECC
A ’Scripts for NAND Flash Programming’ in’NAND FLASH Programming User's Guide’

FLASHFILE.LOADSPARE Write NAND FLASH spare area

Format: FLASHFILE.LOADSPARE <file> <range> /\WriteBadBlocks /ComPare

The data from <file> is written to the spare area on the address and size specified by <range>. At first only
binary files are supported.

. Nand
My_File_Spare Main SP

3
> - Bad

4

O~ |W (N —=

N N-1

FLASHFILE.LOADSPARE

See also

B FLASHFILE 1 FLASHFILE.SPAREADDRESS()

©1989-2024 Lauterbach General Commands Reference Guide F | 97

FLASHFILE.LOCK Lock the FLASH device

Format: FLASHFILE.LOCK <range>

Locks the FLASH device.

See also
B FLASHFILE B FLASHFILE.UNLOCK

©1989-2024 Lauterbach General Commands Reference Guide F | 98

FLASHFILE.MMC.GETHealth eMMC health state

[build 157881 - DVD 02/2024]

Format: FLASHFILE.MMC.GETHealth [/<option>]

<option>: VM

Reports the health status of the eMMC (Embedded Multi-Media Card), allowing user to monitor device
usage and determine the lifetime of the eMMC.

This command applies to eMMC memories over version 5.0.

VM Allows to copy the read out data to VM memory.
FLASHFILE.MSYSDLL Access an M-Systems DiskOnChip flash device
Format: FLASHFILE.MSYSDLL <file>[<cmd> ...]

Accesses an M-Systems DiskOnChip flash device.

See also
B FLASHFILE
FLASHFILE.PATTERN Erase and fill flash memory
Format: FLASHFILE.PATTERN <addressrange> [[<option>]
<option>: ComPare

Erases and fills the flash memory with a predefined pattern for the specified address range. The predefined
pattern is as follows:

(8 byte hexadecimal address) 01 02 04 08 10 20 40 80

<addressrange> Flash block align address for the erase.

©1989-2024 Lauterbach General Commands Reference Guide F | 99

Example: This example shows how to test the flash write per flash address.

7

FLASHFILE.PATTERN Ox0--Oxfffff

7

7

1IMB erase & fill pattern data

Display the pattern data in the flash
FLASHFILE.DUMP 0x0

Compare flash memory against pattern

FLASHFILE.PATTERN 0x0--Oxfffff /ComPare

<& Biflashfile.dump 0x800000 = E ==
0x800000 MAIN v Find...| | Modify... Byte ex [Asci
addressj 0 1 2 3 4 5 & 7 8 9 A B C D E F |0123456789ABCDEF |
0000000P00DE00000 (30 30 38 30 30 30 30 30 01 02 04 0B 10 20 40 B0 [DDBO0O0DOYLSS a5, ~
00000000Q00800010 | 30 30 38 30 30 30 31 30 01 02 04 08 10 20 40 B0 DOS000LOY] _
00000000Q00B00020 | 30 30 38 30 30 30 32 30 01 02 04 08 10 20 40 B0 DOB00020 =
00000000Q00B00030 | 30 30 38 30 30 30 33 30 01 02 04 08 10 20 40 B0 DOB00030 W
00000000Q0O0B00040 | 30 30 38 30 30 30 34 30 01 02 04 08 10 20 40 B0 POS000404S
00000000Q0O0B00050 | 30 30 38 30 30 30 35 30 01 02 04 08 10 20 40 B0 DOB000504S 2
00000000Q0O0B00060 | 30 30 38 30 30 30 35 30 01 02 04 08 10 20 40 B0 POB000E0YS
00000000Q0O0B00070 | 30 30 38 30 30 30 37 30 01 02 04 08 10 20 40 B0 POB0007OHS
00000000Q0O0B00080 | 30 30 38 30 30 30 38 30 01 02 04 08 10 20 40 B0 POB000BOYS
00000000Q0O0B00090 | 30 30 38 30 30 30 39 30 01 02 04 08 10 20 40 B0 POB00090S
00000000Q00B000A0 | 30 30 38 30 30 30 41 30 01 02 04 08 10 20 40 B0 DOS000ADYS
0000000Q0O0B000E0 | 30 30 38 30 30 30 42 30 01 02 04 08 10 20 40 B0 DOS000BOYS
00000000Q0O0B000CO | 30 30 38 30 30 30 43 30 01 02 04 08 10 20 40 B0 POB000OCOHYS
00000000Q0O0B000D0 | 30 30 38 30 30 30 44 30 01 02 04 08 10 20 40 B0 POS000DOYS
0000000Q0O0B000ED | 30 30 38 30 30 30 45 30 01 02 04 08 10 20 40 B0 DOS000OEDS
0000000Q0O0B000F0 | 30 30 38 30 30 30 46 30 01 02 04 08 10 20 40 B0 PDOS00OFOS
00000000Q00800100 | 30 30 38 30 30 31 30 30 01 02 04 08 10 20 40 B0 DOB00L100S
0000000Q00800110 | 30 30 38 30 30 31 31 30 01 02 04 08 10 20 40 B0 POB001104S
00000000Q00B00120 | 30 30 38 30 30 31 32 30 01 02 04 08 10 20 40 B0 POB001204°
00000000Q00800130 | 30 30 38 30 30 31 33 30 01 02 04 08 10 20 40 B0 DOB00130Y
00000000Q00B00140 | 30 30 38 30 30 31 34 30 01 02 04 08 10 20 40 B0 DOB00140]
00000000Q00B00150 | 30 30 38 30 30 31 35 30 01 02 04 08 10 20 40 B0 DOB00L50
0000000008000 | 30 30 38 30 30 31 35 30 01 02 04 08 10 20 40 B0 DOB00LE0]
00000000Q00B001L70 | 30 30 38 30 30 31 37 30 01 02 04 08 10 20 40 B0 POB00LTO
00000000Q0O0B00180 | 30 30 38 30 30 31 38 30 01 02 04 08 10 20 40 B0 [DOB00LB0]
00000000Q00800190 | 30 30 38 30 30 31 39 30 01 02 04 08 10 20 40 B0 DOB00190]
00000000Q00B001A0 | 30 30 38 30 30 31 41 30 01 02 04 08 10 20 40 B0 DOS00LAD]
0000000Q0O0B00LED | 30 30 38 30 30 31 42 30 01 02 04 08 10 20 40 B0 DOS00LBOYS
00000000Q0O0B00LCO | 30 30 38 30 30 31 43 30 01 02 04 08 10 20 40 B0 POB00LCOYS
00000000Q00B001D0 | 30 30 38 30 30 31 44 30 01 02 04 08 10 20 40 B0 DOB001DOYS
00000000Q0O0B00LED | 30 30 38 30 30 31 45 30 01 02 04 08 10 20 40 B0 DOS00LEDYS
00000000Q0O0B00LF0 | 30 30 38 30 30 31 45 30 01 02 04 08 10 20 40 B0 POB00LFOS
00000000Q0O0B00200 | 30 30 38 30 30 32 30 30 01 02 04 08 10 20 40 B0 DOB002004°
00000000Q00B00210 | 30 30 38 30 30 32 31 30 01 02 04 08 10 20 40 B0 POB002104°
00000000Q0O0B00220 | 30 30 38 30 30 32 32 30 01 02 04 08 10 20 40 B0 [DOB002204°
00000000Q0O0B00230 | 30 30 38 30 30 32 33 30 01 02 04 08 10 20 40 B0 [DOB002304°
00000000Q0O0B00240 | 30 30 38 30 30 32 34 30 01 02 04 08 10 20 40 B0 [DOB002404°
00000000Q0O0B00250 | 30 30 38 30 30 32 35 30 01 02 04 08 10 20 40 B0 DOB002504°
00000000Q0O0B00260 | 30 30 38 30 30 32 35 30 01 02 04 08 10 20 40 B0 POB002604° hd
See also
B FLASHFILE

FLASHFILE.ReProgram

Re-program FLASH

[build 157321 - DVD 09/2023]

Format:

FLASHFILE.ReProgram [<address_range> | ALL | off | CANCEL]

Activates the FLASH reprogramming mode for the selected address range or for all declared devices. In this
mode, all changes are written to the virtual host memory of TRACE32. As soon as
FLASHFILE.ReProgram.off is executed, the FLASH sectors are programmed but only if their contents
have changed.

©1989-2024 Lauterbach

General Commands Reference Guide F | 100

When using FLASHFILE.ReProgram, it is required to define the flash memory (FLASHFILE.Create),
whether the memory is uniform or non-uniform.

ALL Activates the reprogramming mode for all FLASH sectors.

off With parameter “off” or without parameters the FLASH reprogramming
mode is terminated. Terminating the FLASH reprogramming mode lets you
program only the modified sectors.

CANCEL Abort without programming pending changes.

Example:

; create FLASH block/sector
FLASHFILE.Create 0x0--0xFFFF 0x1000 Byte

; Activate all FLASHs for programming
FLASHFILE.ReProgram ALL

; load the programming file

FLASHFILE.LOAD.E1lf data.elf
; or

; modify FLASH data

FLASHFILE.Set ...

; Program all modified sectors
FLASHFILE.ReProgram off

See also
B FLASHFILE
FLASHFILE.RESet Reset FLASHFILE declaration within TRACE32
Format: FLASHFILE.RESet

The setup for the FLASH device is cleared and set to the default values within TRACE32.

This command does not erase the FLASH sectors.

See also
B FLASHFILE

A ’'Scripts for eMMC Controllers’ in 'eMMC FLASH Programming User's Guide’
A ’Scripts for NAND Flash Programming’ in 'NAND FLASH Programming User’s Guide’
A ’Scripts for SPI Controllers’ in ’Serial FLASH Programming User’s Guide’

©1989-2024 Lauterbach General Commands Reference Guide F | 101

FLASHFILE.SAVE

Save FLASH

Format: FLASHFILE.SAVE <file> <range>

The data whose address and size is specified by <range> is read from the NAND FLASH main area and

written to <file>.

Nand
Main SP

1

File

3 . 3
B e I ee
4 4
N-1 N-1
FLASHFILE.SAVE
See also
B FLASHFILE
FLASHFILE.SAVEALL Save the main area and the spare area
Format: FLASHFILE.SAVEALL <file> <range> [/SkipBadBlocks]

Saves the main area and the spare area of the NAND flash memory to <file>. This is useful for cloning a

NAND flash device.

SkipBadBlocks

Skips bad blocks while saving the contents of the NAND Flash main area
to <file>.

See also

B FLASHFILE

©1989-2024 Lauterbach

General Commands Reference Guide F | 102

FLASHFILE.SAVEECC Save error correction code (ECC) to file

The FLASHFILE.SAVEECC command group is used to generate and save error correction code (ECC) to
file. The ECC is generated from the target application residing in the main area of a flash device.

Depending on the FLASHFILE.SAVEECC.* command used, TRACE32 generates the ECC with one of the
following algorithms:

. Bose-Chaudhuri-Hocquenghem (BCH) algorithm
. Hamming algorithm

. Reed-Solomon algorithm

Use FLASHFILE.LOADECC to load ECC files to the spare area of a flash device.

See also
B FLASHFILE.SAVEECC.BCH B FLASHFILE.SAVEECC.hamming
B FLASHFILE.SAVEECC.ReedSolomon B FLASHFILE

B FLASHFILE.LOADECC

FLASHFILE.SAVEECC.BCH Save ECC with BCH algorithm

[Example]

Format: FLASHFILE.SAVEECC.BCH <params> [/[REVERSE | /SWAP |
ILAYOUT <layout_block_size> <offset> <bytes_per_block>]

<params>: <file> <range> <ref_size> <g_field> <err_correc>

Saves the error correction code (ECC) to file using the BCH algorithm.

<file> Destination file for the error correction code (ECC).
<range> Source memory range for which you want to save the ECC to file.
<ref_size> Number of bytes that will be represented by an ECC word.

Example: One ECC word is generated for every 512 . bytes of the
<range> if the <ref_size>is setto 512 . bytes.

<g_field> Dimension of the Galois field.

<err_correc> Error correction capability (measured in bit) of the BCH code.

©1989-2024 Lauterbach General Commands Reference Guide F | 103

SWAP Swaps the read byte order (byte access) of each ECC word.

Example for the 4 byte ECC word 0x12345678:
Without /SWAP 0x|12]34|56]78]
With /SWAP 0x|78|56]34]12]

REVERSE Reverses the read bit order (bit access) of each ECC word.
Example: The ECC word is 0xC1, i.e. 1 byte [7:0]. The REVERSE option
changes bit 7 to bit 0, bit 6 to bit 1, and so on. Thus, the resulting
reversed ECC word is 0x83.

Without /REVERSE ox| ¢ | 1
——— >
0y|llOO|OOOl
With /REVERSE 0x|
0y|5 ooo | 0011

LAYOUT For a description of LAYOUT, see FLASHFILE.SAVEECC.hamming.
For examples for FLASHFILE.SAVEECC.BCH ... /[LAYOUT, see
examples 2 and 3 below.

Examples for FLASHFILE.SAVEECC.BCH

Example 1:
;save the ECC file: <range> <ref_s.><g_field><err_ correc>
FLASHFILE.SAVEECC.BCH file.bch 0x0--0xXFFFF 512. 13. 8.

;open an AREA window to view the result

AREA.view

;optionally,

view the ECC file with the DUMP command

;for WIDTH use the width of the generated ECC word
DUMP file.bch /WIDTH 13.

= | B:AREAview

<g_field>

[= |

he Galois field is GF{2**13), S bits Error Correction
otal Ox680 bytes BCH code(lSB;SlZB) is generated

FLASHFILE saved.

4 I

= <err_correc>

<ref_size>

Generated 13-byte ECC word

©1989-2024 Lauterbach

General Commands Reference Guide F | 104

Example 2:

;without LAYOUT: ECC in linear form
FLASHFILE.SAVEECC.BCH aaa.bin 0x0--0xFFFFF 512. 13. 8.
DUMP aaa.bin

;with LAYOUT: ECC in non-linear form
FLASHFILE.SAVEECC.BCH aab.bin 0x0--0xFFFFF 512. 13. 8. \

/LAYOUT 0x30 5. 3.
DUMP aab.bin

Result without /LAYOUT Result with /LAYOlIJlI
14! B:DUMP aaa.bin =N Eoh(14! B:DUMP aab.bin =N Eoh(
0. of 6144. (=] (=] 0. ofosse. Vx| [X]

osition | 0 1 2 3 4 5 6 7 position | 0 1 2 3 4 ©§ 6 7
00000000 |89 95 56 3F CC FFJ03 03 00000000 [|FF FF FF FF FF[99_95 56]
00000008 | OF, A bA AA A 56 0C 000(FF FF FF FF FF FFymmmmy-F
00000010 | 33W3C FC FC CC OF CO C3 0000 AI FF FF FF FF FF FF:F
00000018 | 5 95 03 3F CC 69 95 0000 FF FF FF FF FF FF E
00000020 | 66f5A A5 69 96 96 65 6A 00000020 (|FF FF FF FF FF FF FF FF
00000028 | 6Af55 5A 69 55 C3 FC FF 00000028 (|EE_FF _FF FF FF FF FF FF

4 » 00000030 |[FF FF FF FF FFL3E_CC EF]

00000022 |FF FF FF FF FF FFpmmmF
0000"A]| |FF FF FF FF FF FF F
. . 0000 FF FF FF FF FF FF F
Compare with [C] on the right. 0000UGSU ||FF FF FF FF FF FF FF FF
00000058 ||[EF_FF_FF_FF_FF_FF_FE_FF

00000060 | FF FF FF FF FF 03 03 OF -

] [}

y o4 [m »

40 4 [mf»

A <layout_block_size> = 0x30
B <offset>=5

C <bytes_per_block>=3

Example 3:
FLASHFILE.SAVEECC.BCH spare-bch.bin 0x0--O0xFFFFF 512. 13. 8. \
/LAYOUT 0x10 2. 13.
See also

B FLASHFILE.SAVEECC
A ’Scripts for NAND Flash Programming’ in 'NAND FLASH Programming User’s Guide’

©1989-2024 Lauterbach General Commands Reference Guide F | 105

FLASHFILE.SAVEECC.hamming Save ECC with Hamming algorithm

[Examples]

Format: FLASHFILE.SAVEECC.hamming <file> <range> <ref_size>
[/SWAP | /JLAYOUT <layout_block_size> <offset> <bytes_per_block>]

Saves the error correction code (ECC) to file using the Hamming algorithm. By default, the ECC words
generated by the Hamming algorithm are fixed (3 bytes). Consequently, you do not need to specify the
<ecc_size>, but only <file>, <range>, and <ref_size>.

<file> Destination file for the error correction code (ECC).
<range> Source memory range for which you want to save the ECC to file.
<ref_size> Number of bytes that will be represented by an ECC word.

Example: One ECC word is generated for every 512 . bytes of the
<range> if the <ref_size>is setto 512 . bytes.

SWAP In the generated 3-byte ECC words, the location of ECCO and ECC1 is
swapped. The location of ECC2 remains fixed.

Example:

Without /SWAP [Ecco Eccl Ecc2 |
FF 3C OF
69 AA 96

With /SWAP ECCO ECCl ECC2 |

3C FF OF
AA 69 96
LAYOUT Without LAYOUT: The error correction code (ECC) is written to file in

linear form.

With LAYOUT: The ECC is written to file in non-linear form and the layout
of the ECC is modified by the arguments <layout_block_size>, <offset>,
and <bytes_per_block>. See examples 2 and 3 below.

©1989-2024 Lauterbach General Commands Reference Guide F | 106

Examples for FLASHFILE.SAVEECC.hamming

Example 1:

;save the ECC file:
FLASHFILE.SAVEECC.hamming

<ref_size
512.

<range>
file.hmg 0x0--0xXFFFF
AREA.view ;open an AREA window to view the result

;optionally, view the ECC file with the DUMP command
;use WIDTH 3. because each ECC word is 3 bytes
DUMP file.hmg /WIDTH 3.

= | B:AREAview e]

Generated 3-byte ECC word

-

<ref_size>

]
otal Ox180 bytes Hamming code{3B/512B) is generated
FLASHFILE saved.

4 I 2

Example 2:

;without LAYOUT: ECC in linear form
FLASHFILE.SAVEECC.hamming aaa.bin 0x0--O0xFFFFF 512.
DUMP aaa.bin

;with LAYOUT: ECC in non-linear form
FLASHFILE.SAVEECC.hamming aab.bin 0x0--0xFFFFF 512.
DUMP aab.bin

/LAYOUT 0x30 5. 3.

Result without /LAYOUT Result with /LAYOUT
14! B:DUMP aaa.bin =N Eoh(14! B:DUMP aab.bin =N Eoh(
0. of 6144. (=] (=] 0. of 98304. =) [(Z]
position| 0 1 2 3 4 5 & 7 i position| Q0 1 2 3 4 § § 7 i
00000000 | 99 95 56 3F CC FF 03 03 00000000 [[FF FF FF FF FFL99_95 56]

4

00000008 | OF 55 9A 6A AA 6A 56 OC = 0000 g=azy (|FF FF FF FF FF FFysm——-F =
00000010 | 33 3C FC FC CC OF CO C3 - 0000 FF FF FF FF FF FF-F =
00000018 | 55 AA 95 03 3F CC 69 95 0000 FF FF FF FF FF FF E
00000020 | 66 5A A5 69 96 96 65 6A i 00000020 (|FF FF FF FF FF FF FF FF i
00000028 | 6A 55 5A 69 55 C3 FC FF - F

a

00000030 |[FF FF FF FF FFL3E_CCF
00000022 ||FF FF FF FF FFIFF*TF
0000["A]|[FF FE EF FE EF FF-F
0000 FF FF FF FF FF FF F
0000uUsSy ||FF EF FF FF FF FF FF FF
00000058 ||FE_EF_FF_FE_FF_FF_FF_FF
00000060 | FF FF FF FE FF 03 03 OF -

4 [}

00000028 ||EE_FE_FF FF FE FE FE

A <layout block_size> = 0x30
B <offset>=5

C <bytes_per_block>=3

©1989-2024 Lauterbach

General Commands Reference Guide F | 107

Example 3:

FLASHFILE.SAVEECC.hamming spare-ham.bin 0x0--O0xFFFFF 256. \
/LAYOUT 0x40 40. 24.

See also
B FLASHFILE.SAVEECC
A ’Scripts for NAND Flash Programming’ in’NAND FLASH Programming User's Guide’

©1989-2024 Lauterbach General Commands Reference Guide F | 108

FLASHFILE.SAVEECC.ReedSolomon Save ECC with Reed-S. algorithm

Format: FLASHFILE.SAVEECC.ReedSolomon <file> <range>
[/JLAYOUT <layout_block_size> <offset> <bytes_per_block>]

Saves the error correction code (ECC) to file using the Reed-Solomon algorithm.

By default, one ECC word is 10 bytes for 4-bits error correction. Consequently, you do not need to specify
the <ecc_size>, but only <file> and <range>.

<file> Destination file for the error correction code (ECC).
<range> Source memory range for which you want to save the ECC to file.
LAYOUT For a description of LAYOUT, see FLASHFILE.SAVEECC.hamming.

For examples of FLASHFILE.SAVEECC.ReedSolomon ... /LAYOUT, see
examples 2 and 3 below.

Examples for FLASHFILE.SAVEECC.ReedSolomon

Example 1:

;view the result of FLASHFILE.SAVEECC.ReedSolomon in the AREA window
AREA.view

i <range>
FLASHFILE.SAVEECC.ReedSolomon file.rs 0x0--0xFFFF

;optionally, view the ECC file with the DUMP command
;use WIDTH 10. because each ECC word is 10 bytes
DUMP file.rs /WIDTH 10.

= | B:AREAview [:::]I!!I[:::

-

he Galois field is GF{2**10), 4-bits Error Correction
otal Ox500 bytes ReedSolomon code(10B/512B) is generated

FLASHFILE saved. L <ref_size>

4 M 3

Generated 10-byte ECC word

©1989-2024 Lauterbach General Commands Reference Guide F | 109

Example 2:

;without LAYOUT: ECC in linear form

FLASHFILE.SAVEECC.ReedSolomon
DUMP aaa.bin

aaa.bin 0x0--0xFFFF

;with LAYOUT: ECC in non-linear form

FLASHFILE.SAVEECC.ReedSolomon
DUMP aab.bin

Result without /LAYOUT

=8 {Eom
(=] (=] [#Fnd...]

0 1 2 3 4 5
99 95 56 3F CC FF 03 03
OF 55 9A 6A AA BA 56 0C
33 3C FC FC CC OF CO C3
55 AA 95 03 3F CC 69 95
66 5A A5 69 96 96 65 BA
6A 55 5A 69 55 C3 FC FF

] [}

i B:DUMP aaa.bin

0. of 6144.
osition

00000000
00000008
00000010
00000018
00000020
00000028

40 4 [mf»

Example 3:

FLASHFILE.SAVEECC.ReedSolomon

aab.bin

Result with /LAYOUT

0x0--0xFFFF /LAYOUT 0x30 5. 3.

i# B:DUMP aab.bin

(=[O el

position| 0 1 2 3 4 ©

0. of 98304. i) [=]
[

00000000 [[FF FF FF FF
000(FF FF FF FF
0000) A | FF FF FF FF
0000 FF FF FF FF
00000020 ||FF FF FF FF
00000028 ||EE_EE_FE_FE FE FE_FE FE
00000030 |[FF FF FF FF FFBE_CC EF]
00000022 ||FF FF FF FF FF FFemoF
0000 p)|FF FE FE FF FF FFﬂrF
0000 FF FF FF FF FF FF F
0000UGSL ||FF FF FF FF FF FF FF FF
00000058 |[EE_FE_FF FF FF FE_FE FE
00000060 | FF_FF _FF FF FF 03 03 OF

] [}

FFL29_95 56]
F
F

FF FFp==
FF FF]III
FF FF C F

FF FF FF FF

y o4 [m »

A <layout_block_size> = 0x30
B <offset>=5

C <bytes_per_block>=3

spare-rs.bin 0x0--0xFFFF \

/LAYOUT 0x10 6. 10.
See also
B FLASHFILE.SAVEECC
A ’Scripts for NAND Flash Programming’ in 'NAND FLASH Programming User’s Guide’
©1989-2024 Lauterbach General Commands Reference Guide F | 110

FLASHFILE.SAVESPARE Read NAND FLASH spare area

Format: FLASHFILE.SAVESPARE <file> <range>

The data whose address and size is specified by <range> is read from the NAND FLASH spare area and

written to <file>.

Nand .
Main SP File

1 1

3 3
—

4 4

N-1 N-1
FLASHFILE.SAVESPARE

See also
B FLASHFILE O FLASHFILE.SPAREADDRESS()
FLASHFILE.Set Modify FLASH data
Format: FLASHFILE.Set <address> | <range> %<format> <data>
<format>: Byte | Word | Long | Quad | ...

Modifies the contents of FLASH data at defined <address>. The maximum size of modifying is a block size
of the flash.

; Write 4Bytes data 0x12345678 at the address 0x100000;
FLASHFILE.Set 0x100000 %LE %Long 0x12345678

; Write data 0x0 at the address range 0x100000++0xXFFF;
FLASHFILE.Set 0x100000++0xXFFF %Byte 0x0

See also
B FLASHFILE

©1989-2024 Lauterbach General Commands Reference Guide F | 111

FLASHFILE.SETEXTCSD Modify the extended CSD register

Format: FLASHFILE.SETEXTCSD <index> <data>

Modifies the extended CSD register by using the MMC command CMD6.

Example: Partition switch in the eMMC flash

;The Extended CSD register index 179. is the PARTITIOM CONFIG register.
;The register bit flag describes in the JEDEC standard eMMC

;documentation.
FLASHFILE.SETEXTCSD 179. 0x00 ; access: partition null, no boot,
; access: no boot partition
FLASHFILE.SETEXTCSD 179. 0x49 ; access: partition boot 1
FLASHFILE.SETEXTCSD 179. 0x4A ; access: partition boot 2
See also
B FLASHFILE B FLASHFILE.GETEXTCSD

©1989-2024 Lauterbach General Commands Reference Guide F | 112

FLASHFILE.SPI FLASHFILE SPI command group

See also
B FLASHFILE
FLASHFILE.SPI.CFI Generate SPI FLASH sector declaration by CFl
Format: FLASHFILE.SPI.CFI [/<option>]
<option>: QPI

Generates the FLASH declaration (FLASHFILE.List) by using the CFI information stored in a non-memory
mapped SPI FLASH device.

QPI This option is needed when the SPI FLASH is in QPI mode.

©1989-2024 Lauterbach General Commands Reference Guide F | 113

FLASHFILE.SPI.CMD Send data to SPI FLASH device

[Examples]

Format: FLASHFILE.SPL.CMD [%<format>] <data> ... [I<option>]
FLASHFILE.SPICMD (deprecated)

<format>: Byte | Word | Long | ...
<option>: READ <number_of_bytes> [<address>]
QPI

Sends FLASH-device-specific <data> from TRACES2 to a SPI FLASH device. The <data> can be any valid
FLASH command sequence. For <data> that can be sent, refer to the FLASH manufacturer’s

documentation.
Byte (default), Word, Data size for integer constants. See “Keywords for <width>"
Long, ... (general_ref_d.pdf).
<data> Any valid FLASH command sequence you want to send to the SPI
FLASH, such as commands, addresses, dummy cycles, etc.
Examples of SPI-FLASH-device commands:
. 0x9F // the READ ID command
. 0x03 0x00 0x10 0x00 //the READ command with arguments
0x3 is the READ command. The three arguments 0x00, 0x10,
and 0x00 stand for the SPI FLASH address 0x001000.
READ TRACE32 requests the SPI FLASH to read the specified

<number_of_bytes> <number_of_bytes>, and then prints the bytes read by the SPI FLASH to
the AREA.view window.

READ TRACERS2 requests the SPI FLASH to read the specified

<number_of_bytes> <number_of_bytes>, and then sends the bytes read by the SPI FLASH to

<address> the specified <address>; typically an address in the TRACES32 virtual
memory (VM:).

See example 1.

QPI Execute SPI FLASH access in 4-4-4 QPIl mode.

©1989-2024 Lauterbach General Commands Reference Guide F | 114

Example 1: The SPI FLASH reads the <number_of_bytes>, and then TRACES32 sends the bytes read
by the SPI FLASH to the specified <address> in the TRACE32 virtual memory (VM:).

; TRACE32 transmits the command 0x9f (= read ID), and the host receives 4
;bytes of data. Then TRACE32 sends the data received from the host to
;the TRACE32 virtual memory address 0xO0.

FLASHFILE.SPI.CMD 0x9f /READ 4. VM:0x0

&data=Data.LONG (VM: 0x0)
PRINT "SPI data : 0x" &data //print the FLASH Manufacture and Device ID

Example 2: This script shows how to output the contents of internal SPI FLASH registers to the AREA.view
window:

;Flash name: S25FS series (Spansion SPI Flash memory)

SCREEN.OFF
FLASHFILE.SPI.CMD 0x66 ;enable the SPI FLASH software reset
FLASHFILE.SPI.CMD 0x99 ;perform the SPI FLASH software reset
SCREEN. ON

;1f the SPI FLASH is the 3-byte address mode
PRINT "### SR1V register ###"
FLASHFILE.SPI.CMD 0x65 0x80 0x00 0x00 0x00 /READ 0x1

PRINT "### CR1V register ###"
FLASHFILE.SPI.CMD 0x65 0x80 0x00 0x02 0x00 /READ 0x1

PRINT "### CR2V register ###"
FLASHFILE.SPI.CMD 0x65 0x80 0x00 0x03 0x00 /READ 0x1

PRINT "### CR3V register ###"
FLASHFILE.SPI.CMD 0x65 0x80 0x00 0x04 0x00 /READ 0x1

PRINT "### CR4V register ###"
FLASHFILE.SPI.CMD 0x65 0x80 0x00 0x05 0x00 /READ 0x1

;let’s open the AREA window to view the result
AREA.view

©1989-2024 Lauterbach General Commands Reference Guide F | 115

= | BzAREAview [::::]II!II[:::]

-

SPIcmd write: 1. byte(s), 0x66
SPIcmd write: 1. byte(s), 0x99
w#g SR1V register ###
SPIcmd write: 5. byte(s), O0x65 0x80 0Ox00 0x00 0Ox00
SPIcmd read: 1. byte(s)

Ox00
w#g CR1V register ##
SPIcmd write: 5. byte(s), O0x65 0x80 0Ox00 0x02 0Ox00
SPIcmd read: 1. byte(s)

Ox00
w#g CR2ZV register #z#
SPIcmd write: 5. byte(s), O0x65 0x80 0Ox00 0x03 0x00
SPIcmd read: 1. byte(s)

0x08
w#g CR3V register ##
SPIcmd write: 5. byte(s), O0x65 0x80 0Ox00 Ox04 0Ox00
SPIcmd read: 1. byte(s)

0x08
w#g CRAV register #z#
SPIcmd write: 5. byte(s), O0x65 0Ox80 0Ox00 0x05 0x00
SPIcmd read: 1. byte(s)

Ox10 &
4 10 2

I

FLASHFILE.SPI.GETSFDP Read FLASH discovery parameters

Format: FLASHFILE.SPI.GETSFDP <unit> | <range> [Y%<format>] <data> ...

<format>: Byte | Word | Long | ...

Reads Serial Flash Discovery Parameters from SPI FLASH. Several parameters values can be afterwards.

FLASHFILE.SPIL.LRESetMemory Reset volatile register values

[build 134704 - DVD 09/2021]

Format: FLASHFILE.SPI.RESetMemory

Resets all volatile register values.

©1989-2024 Lauterbach General Commands Reference Guide F | 116

FLASHFILE.TARGET Define target controlled algorithm

Format: FLASHFILE.TARGET <code_range> <data_range> [<file>]
[/DualPort | /KEEP]

Specifies the FLASH programming algorithm and where it runs in the target RAM.

<code_range> defines the address range in the target memory where the code of the FLASH programming
algorithm is downloaded to.

required size for the code is size_of (file) + 32 byte

FLASH algorithm Memory mapping for the <code_range>

32 byte

<data_range> specifies the address range in the target memory where data buffer, argument buffer and
stack are placed.

<data_buffer_size> =
size_of (<data_range>) - 64 byte argument buffer - 256 byte stack

<data_buffer_size> is the number of bytes which are transferred from the TRACE32 software to the FLASH
programming routine in one step. Recommended buffer size is 4 KByte, smaller buffer sizes are also
possible. The max. buffer size is 16 KByte.

64 byte argument buffer Memory mapping for the <data_range>

Data buffer for data transfer
between TRACE32 and
FLASH algorithm

<buffer_size> calculated as
described above

256 byte stack

<file> specifies the FLASH programming algorithm file.

DualPort (for FLASHFILE.TARGET)

DualPort can be used for target controlled FLASH programming. While FLASH programming is being
executed, the TRACES32 host software simultaneously downloads the next command and data via dual-port
memory access into the target RAM. DualPort can reduce the programming time significantly.

The DualPort option can only be used together with the memory class E: for <data_range>:

; <code_range> <data_range>
FLASHFILE.TARGET 0x20000000++0x1FFF EAHB:0x20002000++0x4FFF \
~~/demo/arm/flash/byte/nand2g08_cortexm3.bin /DualPort /KEEP

©1989-2024 Lauterbach General Commands Reference Guide F | 117

KEEP (for FLASHFILE.TARGET)

After FLASH programming, the <code_range> and <data_range> on the target remain (=KEEP) reserved
for FLASH programming. TRACES32 does not restore the original data that existed in <code_range> and
<data_range> before the FLASH programming was executed.

So TRACES32 can save the restore overhead, for example, when FLASHFILE commands are executed
within a large <data_range> or when FLASHFILE commands are executed frequently, such as the
FLASHFILE.DUMP command.

See also
B FLASHFILE

A ’Scripts for eMMC Controllers’ in 'eMMC FLASH Programming User's Guide’
A ’Scripts for NAND Flash Programming’ in 'NAND FLASH Programming User’s Guide’

FLASHFILE.TEST Non-memory mapped FLASH test

Format: FLASHFILE.TEST <address_range> [[<option>]

Performs an integrity test of the non-memory mapped FLASH in the specified <address_range> and prints a
message indicating success or failure of the test.

<address_range> The start and end addresses have to be aligned to the FLASH block size,
otherwise the error message "test address range is wrong" is printed.

Prime The defined range is completely filled with a test pattern and is
subsequently verified.

NOTE: The length of the test pattern is a prime, but not the data itself.

Original memory contents are lost. This test detects address line failures
or mirrored partitions within a memory.

RANDOM Pattern is a random sequence.

PRANDOM Pattern is a pseudo random sequence.

Repeat the test is repeated, in case there are no parameters, until it is stopped
manually.

©1989-2024 Lauterbach General Commands Reference Guide F | 118

Examples:

FLASHFILE.TEST 0x0--0xXFFFF /Prime ;test flash address 0x0--0xFFFF (64KB)

FLASHFILE.TEST 0x200000++0xFFFFF /Prime /Repeat 10. ;test 10 times, 1MB
size from the flash address 0x200000

See also
B FLASHFILE B Data.Test

FLASHFILE.UNLOCK Unlock FLASH device

Format: FLASHFILE.UNLOCK <range>

Unlocks a FLASH device.

Some FLASH devices are locked after power-up. These devices have to be unlocked in order to erase or
program the FLASH device.

See also
B FLASHFILE B FLASHFILE.LOCK

©1989-2024 Lauterbach General Commands Reference Guide F | 119

FPU

FPU Access to FPU registers

In order to access the FPU (Floating-Point Unit) state, the FPU.ON command must be set.

Standalone

Emulation probes which support standalone FPU operation (socket inside the emulation probe), this FPU
must be activated by the SYStem.Option.FPU ON command first. This option must not be set, if an FPU in
the target is used.

OS Awareness
The FPU's registers are not a part of the tasks, rather, are jointly available only once to all tasks. ’

HLL
HLL-debugging with the FPU is fully supported, i.e. register variables in FPU and stack back traces through
FPU stacks are supported.

Assembler Stepping with 68881/68882

When stepping floating point commands, it is possible, that the FPU operation is stopped by the single step
during the execution of the operation. This state is indicated by the message 'Mid-Instruction Break' in the
FPU window. The displayed PC value may be wrong in this case. The FPU operation will be completed with
the next assembler step.

See also

B FPU.Init W FPU.OFF H FPU.ON B FPU.RESet
B FPU.Set B FPU.TARGET B FPU.view a FPU()

1 FPUCR()

A 'FPU Functions (Floating Point Unit)’ in 'General Function Reference’

FPU.Init Initialize FPU registers

Format: FPU.Init

Sets the FPU registers to their default values.

See also
H FPU B FPU.view

©1989-2024 Lauterbach General Commands Reference Guide F | 120

FPU.OFF FPU access off

Format: FPU.OFF

All other FPU commands are locked. The FPU in the target is not accessed.

See also
H FPU W FPU.view
FPU.ON FPU access on
Format: FPU.ON

The FPU register set is activated. The FPU must be either in the target or in the emulation-probe. FPU
registers are handled similarly to CPU registers (stack tracing, HLL register variables, etc.).

See also
m FPU W FPU.view
FPU.RESet Reset command
Format: FPU.RESet

The access to the FPU is turned off.

See also
B FPU W FPU.view
FPU.Set Modify FPU registers
Format: FPU.Set <register> [<expression> | <float>]

The modification can either set floating-point values, or hexadecimal values.

©1989-2024 Lauterbach General Commands Reference Guide F | 121

Examples:

FPU.Set fpiar 0x1000 ; set FPIAR
FPU.Set fp0O 1.23 ; FPO on 1.23
FPU.Set fp0O 1 2 3 4 ; the upper most bytes from

; FPO to 01 02 03 04

See also
B FPU B FPU.view
FPU.TARGET Define FPU access agent
Format: FPU.TARGET <code_range> [<data_range>]

Defines the code and data address ranges used by the target agent to read or write FPU registers. Both
ranges must define RAM areas that can be used for code or data access. This command is only required for
the ARMO vfp.

See also
H FPU B FPU.view
FPU.view Display FPU registers
Format: FPU.view [/<option>]
<option>: RAW (Armv8 only)

All visible FPU registers are displayed in a window. The contents of this window are strongly dependent on
the CPU type.

RAW (Armv8 only) Displays the hexadecimal (raw) interpretation of the FPU registers
without floating point view.

See also

H FPU B FPU.Init B FPU.OFF W FPU.ON
B FPU.RESet B FPU.Set B FPU.TARGET a FPU()
1 FPUCR()

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide F | 122

Frame

Frame Call-tree and context

Using the Frame command group, you can display the call-tree-hierarchy including parameters and local
variables belonging to the previous levels (frames). The Up/Down buttons allow the user to see CPU context
of previous frames which is then used to investigate and find the exact location of a software-bug.

See also

B Frame.CONFIG B Frame.COPY B Frame.Down B Frame.GOTO
B Frame.Init B Frame.REDO B Frame.SkipFunc B Frame.SkipLine
B Frame.SWAP B Frame.TASK B Frame.UNDO B Frame.Up

B Frame.view B sYmbol.List. FRAME

A ’'Release Information’ in’Legacy Release History’

Frame.CONFIG Fine-tune stack unwinding

Using the Frame.CONFIG command group, the user can optimize the results of the frame command by
turning on/off compiler-generated frame-unwind rules or other parts of the frame algorithm.

See also

B Frame.CONFIG.Asm B Frame.CONFIG.EABI

B Frame.CONFIG.EPILOG B Frame.CONFIG.PROLOG

B Frame.CONFIG.RELOAD B Frame.CONFIG.SignalHandler
B Frame.CONFIG.sYmbol B Frame

B Frame.view

Frame.CONFIG.Asm Frame back-trace mode

Format: Frame.CONFIG.Asm [ON | OFF]
sYmbol. ASMFRAME (deprecated)

Default: ON.

If this option is set, the system will try to trace back over assembler generated frames and frames without
debug information (command Frame.view). This back trace will fail, if the stack is modified by a function in a
'non standard' way.

See also
B Frame.CONFIG

©1989-2024 Lauterbach General Commands Reference Guide F | 123

Frame.CONFIG.EABI Use chained frame pointers

Format: Frame.CONFIG.EABI [ON | OFF]

Default: OFF.

When turned on, this command forces the stack unwinding algorithm to assume that the frame pointers of
each call are chained with each other. The stack unwinding algorithm then reads the previous frame pointer
and the return address consecutively from the current frame pointer address. The user should only use this
command if he is sure that the architecture supports frame pointers and the compiler has chained all the
frame pointers.

See also
B Frame.CONFIG

Frame.CONFIG.EPILOG Use epilog code for frame display

Format: Frame.CONFIG.EPILOG [MaxInstr <value>| ON | OFF | UNRESTRICTED |
RESTRICTED]
sYmbol.FRAME.EPILOG (deprecated)

Default: ON.

When turned on, the epilog of each function is run through the simulator to find the return address thus the
calling function.

Maxinstr <value> Specify the maximum number of simulated instructions used to find the
return address in the Frame window.

ON The simulator is used to find the return address.
OFF The simulator is not used for stack unwinding.
RESTRICTED The Simulator does not follow indirect jumps.
UNRESTRICTED The Simulator follows indirect jumps.

See also

B Frame.CONFIG

©1989-2024 Lauterbach General Commands Reference Guide F | 124

Frame.CONFIG.PROLOG Use prolog code for frame display

Format: Frame.CONFIG.PROLOG [ON | OFF]
sYmbol.FRAME.PROLOG (deprecated)

Default: ON.

When turned on, the prolog of each function is analyzed and the effect of the prolog is reversed to find the
calling function.

See also
B Frame.CONFIG

Frame.CONFIG.RELOAD Generate frame information again

Format: Frame.CONFIG.RELOAD
sYmbol.FRAME.Reload (deprecated)

The PowerView assumes the stability of the executable code and analyzes it only once. This command
forces it to reanalyze the executable code. It is useful when the executable code is modified during a session
and the Frame results become corrupted.

See also
B Frame.CONFIG

Frame.CONFIG.SignalHandler Stack unwinding

[build 135371 - DVD 09/2021]

Format: Frame.CONFIG.SignalHandler <addressrange> <name>

Unwinds the Stack inside a Signal Handler if the SignalHandler has been declared with
Frame.CONFIG.SignalHandler.

See also
B Frame.CONFIG

©1989-2024 Lauterbach General Commands Reference Guide F | 125

Frame.CONFIG.sYmbol Use symbol code for frame display

Format: Frame.CONFIG.sYmbol [ON | OFF]
sYmbol.FRAME.sYmbol (deprecated)

Default: ON.

This command is an on-and-off switch for debug information from the debug file to find the calling function.

ON Use the symbolic debug information the compiler generated during
compile time (if any).

OFF Use a platform-dependent built-in algorithm to make an educated and
sophisticated “guess” about frame size and layout.

See also

B Frame.CONFIG

©1989-2024 Lauterbach General Commands Reference Guide F |

126

Frame.COPY Copy to TRACE32 registers

Format: Frame.COPY
Register.COPY (deprecated)

The processor register set is copied to the TRACE32-internal register set.

This command is useful, when the current register values need to be saved and restored later. The
TRACE32-internal register set can be copied back by the Frame.SWAP command.

See also
B Frame B Frame.view
Frame.Down Show state one level down in stack nesting
Format: Frame.Down

Register.Down (deprecated)

The registers are set to the values they had one subroutine nesting level deeper. This command is used
after the command Frame.Up to restore the original register values.

See also
B Frame B Frame.view 0 FLAG.READ() 0 FLAG.WRITE()
Frame.GOTO Change source code view temporarily
Format: Frame.GOTO [<address>]

Register.GOTO (deprecated)

Sets the PC to the specified address in order to change the view of the source listing (Data.List).

The current PC value is saved and will be restored before the application is started again.

See also

B Frame B Frame.view

©1989-2024 Lauterbach General Commands Reference Guide F | 127

Frame.lnit

Initialize the processor registers

[Example]

Format: Frame.Init

Resets the CPU registers to their default values after a processor reset. Registers that are undefined after a

reset are set to zero.

CPU Behavior of Frame.lnit

ARC STATUS <= 0x02000000
STATUS32 <= 0x00000001
DEBUG <= 0x11000000

IRQ_IV12 <= 0x00000002 (Resets any interrupt flags)
TENABLE <= Oxffffffff
SEMAPHORE <= 0x00000000

All other registers are set to zero.
If SYStem.Option.ResetDetection is used with a semaphore bit

(Sem0...Sem3), Frame.Init sets the corresponding semaphore bit in the
SEMAPHORE register.

ARM, Cortex, XScale

ARM7/9/10/11, Cortex-A/R, XScale:

Rx=0

SPSRx = 0x10

CPSR = 0xd3 (ARM7/9/10, XScale), 0x1d3 (ARM11, Cortex-A/R)
R15 (PC) = 0, 0xffff0000 if high exception vectors selected

Cortex-M:

Rx=0

R15 (PC) = [vector table base + 4]

xPSR = 0x01000000

MSP = [vector table base + 0]

PSP =0

R13 (SP) = MSP or PSP depending on the mode

C166

The CP is set to 0xFCO00. The sixteen registers RO - R15 are set to 0x0.
DPPO = 0x0, DPP1 = 0x1, DPP2 = 0x2 and DPP3 = 0x3.

Stack registers STKUN is set to OxFC00 and STKOV is set to 0xFAQO.
The Stack Pointer SP is set to 0xFCO00

The Instruction Pointer IP is set to zero.

The Code Segment Pointer CSP and the VECSEG are set to the initial
value after SYStem.Mode Up.

All other registers are set to zero.

CEVA-X

MODA and MODA shadow register are set to Ox1E.
All other registers are set to zero.

©1989-2024 Lauterbach

General Commands Reference Guide F | 128

CPU

Behavior of Frame.lnit

DSP56K

Family 56000 and 56100

The eight 16-bit modifier registers M[0-7] are set to OxFFFF. This specifies
linear arithmetic as the default type for address register update
calculations.The Operating Mode Register (OMR) is set to the initial value
after SYStem.Mode Up. Values of bits MA, MB and MC of the OMR
register are preserved.The program counter is set to zero. All interrupts
are masked by setting the Status Register (SR) to 0x300.

Family 56300 and 56720 Dualcore

The eight 24-bit modifier registers M[0-7] are set to OXFFFFFF. This
specifies linear arithmetic as the default type for address register update
calculations. The Operating Mode Register (OMR) is set to the initial value
after SYStem.Mode Up. Values of bits MA, MB, MC and MD of the OMR
register are preserved. All interrupts are masked by setting Status
Register (SR) to 0x300. The program counter is set to zero.

Family 56800 and 56800E

The eight 16-bit modifier registers M[0-7] are set to OxFFFF. This specifies
linear arithmetic as the default type for address register update
calculations. The Operating Mode Register (OMR) is set to the initial value
after SYStem.Mode Up. Values of bits MA and MB of the OMR register are
preserved. All interrupts are masked by setting Status Register (SR) to
0x300. The program counter is set to zero.

HCSO08

The Program Counter is set to the value read at OxFFFE. The Stack
Pointer SP is set to OxFF and the CCR is set to 0x68. All other registers
are set to zero.

HC11

The Program Counter is set to the value read at OXFFFE. The Stack
Pointer SP is set to a default value dependent on the derivative. The CCR
is set to OxD8. All other registers are set to zero.

HC12/S12/S12X

The Program Counter is set to the value read at OxFFFE. The CCR is set
to 0xD8. All other registers are set to zero.

MIPS32 / MIPS64
INEC-VR

Program Counter, Status register and Config register are set to their initial
values after reset (read during SYStem.Mode Up). PRID and Cause
register are updated, all other registers are set to zero.

MMDSP

Sets all registers to their initial value after a reset. This is done via a soft
reset of the core. NOTE: This may have effects besides updating the
contents of architectural registers.

PowerPC

Program counter and MSR are set to their initial values after reset (read
during SYStem.Mode Up). GPRs and SPR appearing in the Register
window are set to zero.

Microblaze

All registers are set to zero.

PCP

All registers are set to zero.

©1989-2024 Lauterbach

General Commands Reference Guide F | 129

CPU Behavior of Frame.Init

Teak MODO and MODOS registers SATA bit is set. MOD1 and MOD1S registers
CMD bit is set. MOD3 and MODSS registers CREP, CPC and CCNTA bits
are set.
All other registers are set to zero.

Teaklite / Teaklite-l All registers are set to zero.

/Oak

Teaklite-lll MOD2 register SATA and SATP bits are set.
All other registers are set to zero.

x86 EDX is set to a cpu specific value defining the family/model/stepping of the
core if a SYStem.Mode Up has been executed at some point before,
otherwise EDX is set to 0.
EAX,EBX,ECX,ESI,EDI,ESPEBP are set to 0.
EIP is set to OXFFFO and EFLAGS to 2.
CRO is set to 0x60000010 and CR2-4 to 0.
DRO-3 are set to 0. DR6 to OXFFFFOFFO and DR7 to 0x400.
IDT and GDT: Base = 0 and Limit = OxFFFF.
LDT and TR: Selector = 0, Base = 0, Limit = OXFFFF, Access = 0x82.
CS: Selector = 0xF000, Base = OxFFFFO0000, Limit = OxFFFF, Access =
0x93.
DS,ES,FS,GS,SS: Selector = 0, Base = 0, Limit = OxFFFF, Access = 0x93.
NOTE: In a multicore system the above holds for the main bootstrap
processor. For the other processors the following differences apply: EIP is
set to 0x10000 and CRO to 0x10.

TMS320 All registers except SSR, IER and TSR are set to zero.

TriCore All registers except PC, PSW, ICR and BTV are set to zero.

XTENSA Program Counter (PC), Program Status (PS) and dependent on the
XTENSA configuration some other Special Registers are read from the
CPU. All other registers are set to zero.

ZSP All registers are set to zero.

Example:
B8 g ; example for the debugger
SYStem.Up ; establish the communication between the

Frame.Init

See also

; processor and the debugger

; initialize the general purpose registers

B Frame

B Frame.view

©1989-2024 Lauterbach

General Commands Reference Guide F | 130

Frame.REDO

Recover from UNDO registers

Format: Frame.REDO

Register.REDO (deprecated)

Recovers the state of the registers before the last Frame.UNDO command was executed.

See also
B Frame B Frame.view
Frame.SkipFunc Change view to previous/subsequent function
Format: Frame.SkipFunc <number>

Register.SkipFunc (deprecated)

Sets the PC temporarily to one of the subsequent (positive number) or previous (negative number) functions
in the source. The current PC value is saved and will be restored before the application is started again.

=1 [B=Data.List]

= EEs

[M Step |[M Over || & Next][« Retumn|[¢ up ||

» Go |[IN Break |@| Mode | Find:

addr,/Tine

source

<
I

1117
1118

|

Frame.SkipFunc -1.

1127

1113 |7

1121 |{

1128
1130
1132

1134
1135

1137
1139

1141
1142

P 1149

Frame.SkipFunc 1.
1150

1145 |{

static void funcl(int =
1116 |{

}

ction */

ic fune

intptr 3

(=intptr)++;

void func2 ()

}

int autovar;

register int regvar;
static int fstatic = 44;
static int fstaticz;

autovar = regvar = fstatic;
autovar++;

funcl(&autovar J;

funcl &fstatic);

for (regvar = 0; regvar <5 ; regvar++)
mstaticl += regvar*autovar;

fstatic += mstaticl;
fstaticz = 2*fstatic;

funcl(&fstaticz J;

void funcza()

/* char st
/= char re

auto char autovar;
register char reagvar;

autovar = regvar = (char) mstaticl;
autovar++;

M

-

See also

B Frame B Frame.view

©1989-2024 Lauterbach

General Commands Reference Guide F

I 131

Frame.SkipLine Change view to previous/subsequent HLL line

Format: Frame.SkipLine <number>
Register.SkipLine (deprecated)

Sets the PC temporarily to one of the subsequent (positive number) or previous (negative number) HLL lines
in the source. The current PC value is saved and will be restored before the application is started again.

Example:
Register.SkipLine +3. ; set PC 3 HLL line forward
See also
B Frame B Frame.view
Frame.SWAP Swap TRACES2 registers
Format: Frame.SWAP

Register.SWAP (deprecated)

The processor register set and TRACE32-internal register sets are swapped. This command is useful when
an operating system-call or HLL-function call fails to restore the original registers.

See also
B Frame B Frame.view
Frame.TASK Change view to specified task
[Examples]
Format: Frame.TASK <task_magic> | <task_id> | <task_name>

Register.TASK (deprecated)

Display register set of the specified task temporarily. This will also change the source listing display
(Data.List).

The register set of the current task is saved and will be restored before the application is started again.

©1989-2024 Lauterbach General Commands Reference Guide F | 132

A reddish cursor at the program counter indicates a manipulation by Register.TASK.

A Trace32 PowerPC [SIM @]

File Edit View Var Break Run CPU Misc Trace Pef Cov MPCSXXX ThreadX Window Help

(M I e/ pn|E e aollsamdacds @22

reddish cursor

= B:Data.List E”E”E|
[M step |[W Over || & Next |[#F Retum|[& up || » Go |[B Break |[¥ Mode | Find:

(task) indicates that the
register set was temporarily
changed by the command

addr/11ne |source |
S5P:00013D0C |51503 Wz r1Z,-0x7FFO(ri3) ~
SP:00013010 |2C (cmpwi riz,0x0
5P:00013D14 40820030 bne Ox13044
SP:00013018 |46 9 b1 0x13860
| SP:00013D1C 430000 b Ox13D44
SP 00013020 |7F mtmsr r30
5P:00013024 Twz ri2,-0x7F70{r13) T
4 n 3
o BiTASK.THread 2=z
mg'rc state prio [runcount name |
00041498 [Suspended 0. | 2577. System.TimeroThread N
00040788 [Sleep 1. 516. thread.0 1
00040818 |Ready 16. | 2208. |thread.l =
000408A8 |Executing 16. | 2255. thread.2 |
00040938 |Sema Susp 8. | 2578. threadu3
000409CE [Sleep 8. | 2578. thread.4
00040458 |Event Flag| 4. 516. threadus -
4 n [3
I BuRegister =5 EeE =)
RO 0O RSB 4] F 0 5P= 00042848
1 00042828 RS 00043E50 o +04 00000000
R.2 0001F270 R10D 00043C04 0 +05 00042848
R3 8000 RI11 1 10 +0C 00000000
R4 00043060 R1Z 00043C04 5000 +10 00000000
RS FFFFFFFF R13 00048564 FFFFFFFF 00000000 |
R.& 00013494 R14 o 00043060 00008000 |-
R7 4 R15 o 00040AES C 00000004
00042858
B 01936442 0001301 000116E8
LY o 0001301 00000000
00000000
SPRC o 5000 00042868
SPR o 51120000 00010448
SPR o 97 00000000
SPR o 0200 C 00000000
SPR o o 00042878
SPR o 00013938
SPRG o _ 00000000
SPRG o _ _ 0ooooo0n —
4 I3

‘B: :[Register.TASK "thread 0"

Register.TASK
I—.- SP:00013D1C ‘\demo\Global_tx_thread_suspend+0x38C (task) thread 0 stopped

-

<task_magic>, etc. See also “What to know about the Task Parameters”
(general_ref_t.pdf).

Examples:

Register.TASK 0x41498

; <task_magic>

Register.TASK "thread 0" ; <task_name>
See also
B Frame B Frame.view

©1989-2024 Lauterbach

General Commands Reference Guide F |

133

Frame.UNDO Recover previous registers

Format: Frame.UNDO
Register.UNDO (deprecated)

Recovers the state of the registers before the last register change or execution command. Repeating the
command will recover earlier registers. The command Frame.REDO can be used to “undo” this command.

See also
B Frame B Frame.view
Frame.Up Show state one level up in stack nesting
Format: Frame.Up

Register.Up (deprecated)

The debugger “virtually” goes up one level of the call stack by switching to the stack frame of the calling
function and reconstructing its registers. The command can be repeated to traverse multiple levels of the call
stack. The current offset from the actual stack frame is shown in the status line as (2), (3) etc.

The register window will show the values of the newly selected stack frame. In Data.List windows, the bar
indicating the PC position changes its color to a reddish tone to indicate that it is not the actual PC of the
processor.

The actual register set in the processor is not affected by this. Therefore a Go would continue from the place
where the processor stopped before issuing the Frame.Up command.

The corresponding command for going down in the call hierarchy is Frame.Down.

©1989-2024 Lauterbach General Commands Reference Guide F | 134

B:Data.List =I=EE] |

M Step || B Over |[4 Next ||+ Retum][& up » Go |[_EE Break | %] Mode | Find: P H
addr/Tine |source | [I = 404F6E6E 0
668 whiTe { TRUE) - 66666666 L]
669 1 . 00BCE14E 404FB666
670 sieve(); OFEC

| am))

char flags[SIZE+1];

0 PC mad2ic
CPSR 60000103

reddish cursor | ine sieve0) /= sieve of erathostenes
| 678
| register int i, primz, ki
int anzahl;
I 682 anzahl = 0;
| o) m] r
|
|§::|
[emotate | [erigser || gaviess |[traee][Datm J[wvar |[ust |[PERF |[system |[Step |[Go |[other |[previows |

|stopped at breakpoint | | | HLL e

SR:0000227C \\armia\a_li_aifimain+0x204 (1)

back level

See also
M Frame B Frame.view

©1989-2024 Lauterbach General Commands Reference Guide F | 135

Frame.view Display stack frame

[Examples]
Format: Frame.view [%<format>] [[<option>]
Var.Frame (deprecated)
<display_ NoVar | Args | Locals | Caller | MODule | Size | NoSize | LIMIT </evels>
option>:
<context_ MACHINE <machine_number>[INCPU <vcpu_number>]
option>: TASK <task_magic> | <task_id> | "<task_name>"

CORE <number>| REGSET <number>

Displays a stack back trace. By default the stack frame for the current program context is displayed. The
command Frame.CONFIG.Asm configures whether the back trace stops at frames that do not belong to
HLL code or attempts to trace back over those frames.

& BuFrame.view /Locals /Caller EI@
t. Up "3 Down v| Args ¥|locals V| Caller Task:
-001[[func2 -

IAI—}I autovar = 45
- regvar = 44
- fstatic = 44

- fstatic2 = 0

funcl(&autovar); /* to force autovar as stack-scope */ E
-002| main()

i =0
®#p = 0x0

A By clicking the little, gray square to the left of a variable, you can switch between the formats hex,
decimal, and binary for a value.

B By double-clicking a variable, you can modify its value.

C The numbers in the gray scale area of the Frame.view window indicate the nesting level.
Double-clicking a number will execute a Frame.Up command to get to this level.

D Click the +/- toggle button to view the variable in more detail.

<context_option> <context_option> allows to specify a different program context.

<display_option> Without <display_option>, solely the functions together with the arguments
are displayed.

<format> The format parameters can modify the display in various ways. For
information about format parameters, refer to section “Display Formats” in
“General Commands Reference Guide V” (general_ref_v.pdf).

©1989-2024 Lauterbach General Commands Reference Guide F | 136

<machine_id>

Args Display of arguments (default). If the argument is prefixed with a colon ":"
(e.g. ":state") then the displayed value is the initial argument value,
otherwise the displayed value is the current argument value.

Caller Display of the high level language block, from which the function was
called.

CORE Choose a core for which you want to display the frame.

LIMIT Limit the number of frame levels to be displayed.

Locals Local variables of functions.

MACHINE Choose a virtual machine for which you want to display the stack frame. It

is possible to specify additionally the number of the VCPU.

See also “What to know about the Machine Parameters”
(general_ref_t.pdf).

MODule Display the module (e.g. library) to which the frame entry belongs.
NoVar No display of variables and arguments.
REGSET Choose one of the switchable register sets.

Size, NoSize

Show/hide the frame size.

TASK <task_magic>,

Choose a task for which you want to display the frame.

etc.
See also “What to know about the Task Parameters”
(general_ref_t.pdf).
VCPU A virtual core used by a virtual machine. See also VCPU and virtual
machine in the “TRACE32 Concepts” (trace32_concepts.pdf).
Examples:

; display stack frame for taskl on the virtual machine 2
Frame.view /MACHINE 2 /TASK "taskl"

; display stack frame with call information and local variables
Frame.view /Caller /Locals

See also

B Frame
B Frame.GOTO
B Frame.SkipLine

B Frame.CONFIG
B Frame.Init
B Frame.SWAP

B Frame.COPY
B Frame.REDO
B Frame.TASK

B Frame.Down
B Frame.SkipFunc
B Frame.UNDO

©1989-2024 Lauterbach

General Commands Reference Guide F

137

B Frame.Up B Var.View a FLAG() 1 FLAG.READ()
1 FLAG.WRITE()

A ’'Release Information’ in ’Legacy Release History’
A ’Display Variables’ in "Training Source Level Debugging’

©1989-2024 Lauterbach General Commands Reference Guide F | 138

FXU

FXU FXU registers (extended floating point unit)

RH850

The FXU command group is used to display and modify the FXU (extended floating point unit) registers for
RH850.

See also

B FXU.Init W FXU.Set B FXU.view 0 CPU.FEATURE()
0 FXU()

A 'FXU Function’ in 'General Function Reference’

FXU.Init Initialize FXU registers

RH850

Format: FXU.Init

Sets all registers of the active FXU extension to zero.

See also
W FXU B FXU.view
FXU.Set Modify FXU registers
RH850
Format: FXU.Set <register> <value> ...

Modifies the FXU registers.

See also
m FXU W FXU.view

©1989-2024 Lauterbach General Commands Reference Guide F | 139

FXU.view Open FXU register window

RH850

Format: FXU.view

Opens an FXU register window.

See also
H FXU W FXU.Init B FXU.Set

©1989-2024 Lauterbach General Commands Reference Guide F | 140

	General Commands Reference Guide F
	History
	FDX
	FDX Trace method FDX

	FDX-specific Command
	FDX.ADDRESS Specify memory space for FDX traces
	FDX.CLEAR Clear FDX communication buffers
	FDX.CLOSE Close FDX files
	FDX.DISableChannel Disable FDX communication
	FDX.ENableChannel Enable FDX communication
	FDX.InChannel Inchannel state display
	FDX.METHOD Select communication channel
	FDX.Mode Set the trace operation mode
	FDX.Out Send FDX data
	FDX.OutChannel Outchannel state display
	FDX.PipeREAD Define named pipe for input channel
	FDX.PipeWRITE Define named pipe for output channel
	FDX.Rate Select sampling rate
	FDX.READ Define FDX input file
	FDX.TImestamp Configure timestamp usage of FDX trace
	FDX.TraceChannel Define FDX trace channel
	FDX.WRITE Define FDX output file

	Generic FDX Trace Commands
	FDX.Arm Arm the trace
	FDX.AutoArm Arm automatically
	FDX.AutoInit Automatic initialization
	FDX.BookMark Set a bookmark in trace listing
	FDX.Chart Display trace contents graphically
	FDX.ComPare Compare trace contents
	FDX.DISable Disable the trace
	FDX.DRAW Plot trace data against time
	FDX.EXPORT Export trace data for processing in other applications
	FDX.FILE Load a file into the file trace buffer
	FDX.Find Find specified entry in trace
	FDX.FindAll Find all specified entries in trace
	FDX.FindChange Search for changes in trace flow
	FDX.GOTO Move cursor to specified trace record
	FDX.Init Initialize trace
	FDX.List List trace contents
	FDX.ListNesting Analyze function nesting
	FDX.ListVar List variable recorded to trace
	FDX.LOAD Load trace file for offline processing
	FDX.OFF Switch off
	FDX.PROfileChart Profile charts
	FDX.PROTOcol Protocol analysis
	FDX.PROTOcol.Chart Graphic display for user-defined protocol
	FDX.PROTOcol.Draw Graphic display for user-defined protocol
	FDX.PROTOcol.EXPORT Export trace buffer for user-defined protocol
	FDX.PROTOcol.Find Find in trace buffer for user-defined protocol
	FDX.PROTOcol.list Display trace buffer for user-defined protocol
	FDX.PROTOcol.PROfileChart Profile chart for user-defined protocol
	FDX.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol
	FDX.PROTOcol.STATistic Display statistics for user-defined protocol
	FDX.REF Set reference point for time measurement
	FDX.RESet Reset command
	FDX.SAVE Save trace for postprocessing in TRACE32
	FDX.SelfArm Automatic restart of trace recording
	FDX.SIZE Define buffer size
	FDX.SnapShot Restart trace capturing once
	FDX.state Display trace configuration window
	FDX.STATistic Statistic analysis
	FDX.Timing Waveform of trace buffer
	FDX.Timing Waveform of trace buffer
	FDX.TRACK Set tracking record
	FDX.View Display single record
	FDX.ZERO Align timestamps of trace and timing analyzers

	FIFO
	FIFO Display on-chip trace FIFO

	FLASH
	FLASH Memory mapped FLASH memories
	FLASH.AUTO Auto programming of FLASH
	FLASH.BSDLaccess Enables FLASH access via boundary scan
	FLASH.CFI Generate FLASH declaration by CFI
	FLASH.CHANGEtype Changes the FLASH type
	FLASH.CLocK Setup input clock for processor internal flash
	FLASH.Create Declare FLASH
	FLASH.CreateALIAS Create address alias
	FLASH.Delete Delete entry in FLASH declaration table
	FLASH.EPILOG Automatic data modification on FLASH operation
	FLASH.EPILOG.CONDition Define condition for FLASH epilog
	FLASH.EPILOG.CORE Select core for FLASH epilog
	FLASH.EPILOG.OFF Switch FLASH epilog off
	FLASH.EPILOG.ON Switch FLASH epilog on
	FLASH.EPILOG.RESet Reset all FLASH epilogs
	FLASH.EPILOG.SELect Increment the index number to the next epilog
	FLASH.EPILOG.SEQuence Define FLASH epilog sequence
	FLASH.EPILOG.state Display FLASH epilogs
	FLASH.Erase Erase FLASH
	FLASH.GETID Get FLASH IDs
	FLASH.HOOKSCRIPT PRACTICE script based FLASH programming prolog
	FLASH.List Display FLASH definition table
	FLASH.LOCK Lock FLASH
	FLASH.MultiProgram Simultaneous programming of flash sectors
	FLASH.OFFSET Change FLASH control address
	FLASH.Program Program FLASH
	FLASH.PROLOG Automatic data modification on FLASH operation
	FLASH.PROLOG.CONDition Define condition for FLASH prolog
	FLASH.PROLOG.CORE Select core for FLASH prolog
	FLASH.PROLOG.OFF Switch FLASH prolog off
	FLASH.PROLOG.ON Switch FLASH prolog on
	FLASH.PROLOG.RESet Reset all FLASH prologs
	FLASH.PROLOG.SELect Increment the index number to the next prolog
	FLASH.PROLOG.SEQuence Define FLASH prolog sequence
	FLASH.PROLOG.state Display FLASH prologs
	FLASH.ReProgram Re-program FLASH
	FLASH.RESet Reset FLASH declaration table
	FLASH.SPI FLASH SPI command group
	FLASH.SPI.CFI Generate SPI FLASH sector declaration by CFI
	FLASH.SPI.CMD Send data to SPI FLASH device
	FLASH.SPI.GETSFDP Read FLASH discovery parameters
	FLASH.SPI.RESetMemory Reset SPI FLASH volatile register
	FLASH.state FLASH programming dialog
	FLASH.TARGET Define target controlled algorithm
	FLASH.TARGET2 Define second target controlled algorithm
	FLASH.UNLOCK Unlock FLASH
	FLASH.UNSECUREerase Unsecure a device

	FLASHFILE
	FLASHFILE Non-memory mapped FLASH devices
	FLASHFILE.BSDLaccess Enables FLASH access via boundary scan
	FLASHFILE.BSDLFLASHTYPE Define FLASH type
	FLASHFILE.CONFIG Inform TRACE32 about the FLASH register addresses
	FLASHFILE.COPY Copy to FLASH
	FLASHFILE.COPYSPARE Copy to spare area of NAND FLASH
	FLASHFILE.Create Declaration of flash memories: create a block/sector
	FLASHFILE.Delete Delete block in FLASH declaration table
	FLASHFILE.DUMP Dump FLASH
	FLASHFILE.Erase Erase FLASH
	FLASHFILE.GETBADBLOCK Get the bad block addresses
	FLASHFILE.GETEXTCSD Get the extended CSD register
	FLASHFILE.GETID Get ID values of FLASH device
	FLASHFILE.GETONFI Display ONFI
	FLASHFILE.List List blocks or sectors of FLASH memory
	FLASHFILE.LOAD Load files to FLASH
	FLASHFILE.LOAD.binary Write FLASH
	FLASHFILE.LOAD.Elf Load ELF file
	FLASHFILE.LOAD.IntelHex Load Intel hex file
	FLASHFILE.LOAD.JSON Load “flasher_args.json” file
	FLASHFILE.LOAD.SPARSE Load SPARSE file
	FLASHFILE.LOAD.Srecord Load an "Srecord" file
	FLASHFILE.LOADALL Load to main area and spare area
	FLASHFILE.LOADECC Load ECC file to spare area
	FLASHFILE.LOADSPARE Write NAND FLASH spare area
	FLASHFILE.LOCK Lock the FLASH device
	FLASHFILE.MMC.GETHealth eMMC health state
	FLASHFILE.MSYSDLL Access an M-Systems DiskOnChip flash device
	FLASHFILE.PATTERN Erase and fill flash memory
	FLASHFILE.ReProgram Re-program FLASH
	FLASHFILE.RESet Reset FLASHFILE declaration within TRACE32
	FLASHFILE.SAVE Save FLASH
	FLASHFILE.SAVEALL Save the main area and the spare area
	FLASHFILE.SAVEECC Save error correction code (ECC) to file
	FLASHFILE.SAVEECC.BCH Save ECC with BCH algorithm
	FLASHFILE.SAVEECC.hamming Save ECC with Hamming algorithm
	FLASHFILE.SAVEECC.ReedSolomon Save ECC with Reed-S. algorithm
	FLASHFILE.SAVESPARE Read NAND FLASH spare area
	FLASHFILE.Set Modify FLASH data
	FLASHFILE.SETEXTCSD Modify the extended CSD register
	FLASHFILE.SPI FLASHFILE SPI command group
	FLASHFILE.SPI.CFI Generate SPI FLASH sector declaration by CFI
	FLASHFILE.SPI.CMD Send data to SPI FLASH device
	FLASHFILE.SPI.GETSFDP Read FLASH discovery parameters
	FLASHFILE.SPI.RESetMemory Reset volatile register values
	FLASHFILE.TARGET Define target controlled algorithm
	FLASHFILE.TEST Non-memory mapped FLASH test
	FLASHFILE.UNLOCK Unlock FLASH device

	FPU
	FPU Access to FPU registers
	FPU.Init Initialize FPU registers
	FPU.OFF FPU access off
	FPU.ON FPU access on
	FPU.RESet Reset command
	FPU.Set Modify FPU registers
	FPU.TARGET Define FPU access agent
	FPU.view Display FPU registers

	Frame
	Frame Call-tree and context
	Frame.CONFIG Fine-tune stack unwinding
	Frame.CONFIG.Asm Frame back-trace mode
	Frame.CONFIG.EABI Use chained frame pointers
	Frame.CONFIG.EPILOG Use epilog code for frame display
	Frame.CONFIG.PROLOG Use prolog code for frame display
	Frame.CONFIG.RELOAD Generate frame information again
	Frame.CONFIG.SignalHandler Stack unwinding
	Frame.CONFIG.sYmbol Use symbol code for frame display
	Frame.COPY Copy to TRACE32 registers
	Frame.Down Show state one level down in stack nesting
	Frame.GOTO Change source code view temporarily
	Frame.Init Initialize the processor registers
	Frame.REDO Recover from UNDO registers
	Frame.SkipFunc Change view to previous/subsequent function
	Frame.SkipLine Change view to previous/subsequent HLL line
	Frame.SWAP Swap TRACE32 registers
	Frame.TASK Change view to specified task
	Frame.UNDO Recover previous registers
	Frame.Up Show state one level up in stack nesting
	Frame.view Display stack frame

	FXU
	FXU FXU registers (extended floating point unit)
	FXU.Init Initialize FXU registers
	FXU.Set Modify FXU registers
	FXU.view Open FXU register window

