
MANUAL

General Function Reference

General Function Reference

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 PRACTICE Script Language ... 

 TRACE32 Functions ... 

 General Function Reference .. 1

 History ... 24

 In This Document ... 26

 How This Document is Organized 26

 Difference between Functions and Commands in TRACE32 27

 Purpose of Functions 28

 Example 1: Return Status of the Target 28

 Example 2: Return Status of a TRACE32 Tool 28

 Example 3: Return the Version Number 28

 Example 4: Convert a String 28

 How to Use Functions 29

 Example 1: In PRACTICE Scripts 29

 Example 2: As Parameters in Commands 29

 Example 3: Together with the Output Commands PRINT and Data.Print 30

 Example 4: Address Function and Their Access Class Specifiers 30

 Which Return Values of Functions can be Printed? 31

 Related Documents 31

 ACCESS Functions .. 32

 In This Section 32

 ACCESS.isGUEST() TRUE if access class belongs to guest 32

 ACCESS.isHYPERVISOR() TRUE if access class belongs to hypervisor 33

 ADDRESS Functions .. 34

 In This Section 34

 ADDRESS.ACCESS() Access class as ordinal number 34

 ADDRESS.ACCESS.CMP() Compare access classes 34

 ADDRESS.ACCESS.CMPSTRICT() Compare access classes, strict 35

 ADDRESS.EXPANDACCESS() Fully qualified access class 35

 ADDRESS.INSTR.LEN() Length of instruction 36

 ADDRESS.isDATA() Check if memory class refers to data 36

 ADDRESS.isGUEST() TRUE if address is guest address 37
General Function Reference | 2©1989-2024 Lauterbach

 ADDRESS.isHYPERVISOR() TRUE if address is hypervisor address 37

 ADDRESS.isINTERMEDIATE() Check if intermediate address 38

 ADDRESS.isNONSECURE() TRUE if non-secure (TrustZone) access 38

 ADDRESS.isNONSECUREEX() TRUE if non-secure access 39

 ADDRESS.MACHINEID() Extract machine ID 39

 ADDRESS.MAU() Minimal addressable unit size (MAU) 40

 ADDRESS.OFFSET() Address without class 41

 ADDRESS.isONCHIP() TRUE if on-chip address area 41

 ADDRESS.isPHYSICAL() TRUE if physical address 41

 ADDRESS.isPROGRAM() TRUE if program address 42

 ADDRESS.isSECURE() TRUE if secure (TrustZone) access 42

 ADDRESS.isSECUREEX() TRUE if secure access 43

 ADDRESS.RANGE.BEGIN() Lowest address value of address range 44

 ADDRESS.RANGE.END() Highest address value of address range 44

 ADDRESS.RANGE.SIZE() Size of address range 45

 ADDRESS.SEGMENT() Segment of an address 46

 ADDRESS.STRACCESS() Access class of an address 46

 Analyzer Functions .. 47

 In This Section 48

 Analyzer() Check if Analyzer command group is available 48

 Analyzer.CONFIG.<powertrace>() Check if specified PowerTrace connected 49

 Analyzer.COUNTER.EVENT() Get value of trigger program event counter 49

 Analyzer.COUNTER.TIME() Get value of trigger program time counter 50

 Analyzer.DSEL() For internal usage only 50

 Analyzer.FIRST() Get record number of first trace record 50

 Analyzer.FLOW.ERRORS() Get number of flow errors / hard errors 50

 Analyzer.FLOW.FIFOFULL() Get number of FIFO overflows 51

 Analyzer.FOCUS.EYE() Check quality of data eye 53

 Analyzer.ISCHANNELUP() Check if serial link is established 54

 Analyzer.MAXSIZE() Get max. size of trace buffer in records 55

 Analyzer.MODE() Get Analyzer recording mode 55

 Analyzer.MODE.FLOW() Check if Analyzer operates as flowtrace 55

 Analyzer.PCIE.CONFIG() Value of register field from PCIe configuration 56

 Analyzer.PCIE.ISCONFIGURED() TRUE if prerequisites are fulfilled 57

 Analyzer.PCIE.Register() Value of 32-bit register from PCIe configuration 57

 Analyzer.PROBEREVISION() Get revision of StarCore NEXUS probe 58

 Analyzer.RECORDS() Get number of used trace records 58

 Analyzer.RECORD.ADDRESS() Get address recorded in trace record 58

 Analyzer.RECORD.DATA() Get data recorded in trace record 59

 Analyzer.RECORD.OFFSET() Get address in trace record as number 59

 Analyzer.RECORD.TIME() Get timestamp of trace record 60

 Analyzer.REF() Get record number of reference record 61

 Analyzer.SIZE() Get current trace buffer size in records 61
General Function Reference | 3©1989-2024 Lauterbach

 Analyzer.STATE() Get state of Analyzer 61

 Analyzer.THRESHOLD() Get threshold voltage of parallel preprocessor 62

 Analyzer.TraceCONNECT() Name of trace sink of the SoC 62

 Analyzer.TRACK.RECORD() Get record number matching search 63

 Analyzer.TRIGGER.TIME() Time of trigger point in trace 63

 ARM Function ... 65

 ARMARCHVERSION() ARM architecture version of CPU 65

 Advanced Register Trace (ART) Functions ... 66

 In This Section 66

 ART.FIRST() Get record number of first trace record 66

 ART.MAXSIZE() Get max. size of trace buffer in records 67

 ART.MODE() Get ART recording mode 67

 ART.RECORD.ADDRESS() Get address recorded in trace record 67

 ART.RECORD.OFFSET() Get address in trace record as number 68

 ART.RECORD.TIME() Get timestamp of trace record 68

 ART.RECORDS() Get number of used trace records 68

 ART.REF() Get record number of reference record 68

 ART.SIZE() Get current trace buffer size in records 69

 ART.STATE() Get state of ART trace 69

 ART.TRACK.RECORD() Get record number matching search 69

 AUTOFOCUS Functions .. 70

 In This Section 70

 AUTOFOCUS() TRUE if AutoFocus preprocessor attached 70

 AUTOFOCUS.OK() TRUE if command execution successful 70

 AUTOFOCUS.FREQUENCY() Frequency of trace-port clock 70

 AVX Functions .. 71

 In This Section 71

 AVX() Content of AVX register 71

 AVX512() Content of AVX512 register 72

 Break Functions ... 73

 In This Section 73

 Break.Alpha.EXIST() TRUE if Alpha breakpoint exists 73

 Break.Beta.EXIST() TRUE if Beta breakpoint exist 73

 Break.Charly.EXIST() TRUE if Charly breakpoint exists 74

 Break.Program.EXIST() TRUE if enabled program breakpoint exists 74

 Break.ReadWrite.EXIST() TRUE if enabled data address breakpoint exists 74

 BMC Functions (Benchmark Counter) ... 75

 In This Section 75

 BMC.CLOCK() Frequency of core clock 75

 BMC.COUNTER() Value of a benchmark counter 75

 BMC.COUNTER.BYNAME() Value of a benchmark counter 76
General Function Reference | 4©1989-2024 Lauterbach

 BMC.COUNTER.CORE() Value of a benchmark counter 76

 BMC.COUNTER.BYNAME.CORE() Value of a benchmark counter 77

 BMC.OVERFLOW() TRUE if benchmark counter overflow 77

 BMC.OVERFLOW.BYNAME() TRUE if benchmark counter overflow 77

 BMC.OVERFLOW.CORE() TRUE if benchmark counter overflow 78

 BMC.OVERFLOW.BYNAME.CORE() TRUE if benchmark counter overflow 78

 Boundary Scan Description Language (BSDL) Functions ... 79

 In This Section 79

 BSDL.CHECK.BYPASS() Chain bypass test 79

 BSDL.CHECK.FLASHCONF() Flash configuration test 79

 BSDL.CHECK.IDCODE() Chain IDCODE test 79

 BSDL.GetDRBit() Data register bit 80

 BSDL.GetPortLevel() Port level value 80

 CABLE Functions ... 81

 In This Section 81

 CABLE.GalvanicISOlation() Cable has galvanic isolation 81

 CABLE.GalvanicISOlation.FIRMWARE() Adapter firmware version 81

 CABLE.GalvanicISOlation.SERIAL() Serial number of adapter 81

 CABLE.NAME() Name of debug cable 82

 CABLE.SERIAL() Serial number of debug cable 82

 CABLE.TWOWIRE() TRUE if two-wire debugging supported 82

 CACHE Functions .. 83

 In This Section 83

 CACHE.DC.DIRTY() Dirty-flag of L1 Data Cache Line 83

 CACHE.DC.DIRTYMASK() Dirty-flag mask of L1 Data Cache Line 84

 CACHE.DC.LRU() LRU information of L1 Data Cache Line 84

 CACHE.DC.TAG() Address Tag of L1 Data Cache Line 84

 CACHE.DC.VALID() Valid-flag of L1 Data Cache Line 85

 CACHE.DC.VALIDMASK() Valid-flag mask of L1 Data Cache Line 85

 CACHE.IC.DIRTY() Dirty-flag of L1 Unified Cache Line 86

 CACHE.IC.DIRTYMASK() Dirty-flag mask of L1 Unified Cache Line 86

 CACHE.IC.LRU() LRU information of L1 Instruction Cache Line 86

 CACHE.IC.TAG() Address Tag of L1 Instruction Cache Line 87

 CACHE.IC.VALID() Valid-flag of L1 Instruction Cache Line 87

 CACHE.IC.VALIDMASK() Valid-flag mask of L1 Instruction Cache Line 87

 CACHE.L2.DIRTY() Dirty-flag of L2 Cache Line 88

 CACHE.L2.DIRTYMASK() Dirty-flag mask of L2 Cache Line 88

 CACHE.L2.LRU() LRU information of L2 Cache Line 88

 CACHE.L2.SHARED() Shared-flag of L2 Cache Line 89

 CACHE.L2.SHAREDMASK() Shared-flag mask of L2 Cache Line 89

 CACHE.L2.TAG() Address Tag of L2 Cache Line 89

 CACHE.L2.VALID() Valid-flag of L2 Cache Line 90
General Function Reference | 5©1989-2024 Lauterbach

 CACHE.L2.VALIDMASK() Valid-flag mask of L2 Cache Line 90

 CACHE.L3.DIRTY() Dirty-flag of L3 Cache Line 90

 CACHE.L3.DIRTYMASK() Dirty-flag of L3 Cache Line 91

 CACHE.L3.LRU() LRU information of L3 Cache Line 91

 CACHE.L3.TAG() Address Tag of L3 Cache Line 91

 CACHE.L3.VALID() Valid-flag of L3 Cache Line 92

 CACHE.L3.VALIDMASK() Valid-flag mask of L3 Cache Line 92

 CAnalyzer Functions .. 93

 In This Section 93

 CAnalyzer() Check if CAnalyzer command group is available 94

 CAnalyzer.BOTHCables() TRUE if both debug cables are plugged 94

 CAnalyzer.CableTYPE() Type of adapter 94

 CAnalyzer.DebugCable() CombiProbe whisker cable is A or B 95

 CAnalyzer.FEATURE() Query features of CAnalyzer hardware 95

 CAnalyzer.FIRST() Get record number of first trace record 97

 CAnalyzer.MAXSIZE() Get max. size of trace buffer in records 97

 CAnalyzer.PIN() Status of trace pins 98

 CAnalyzer.RECORD.ADDRESS() Get address recorded in trace record 98

 CAnalyzer.RECORD.DATA() Get data recorded in trace record 98

 CAnalyzer.RECORD.OFFSET() Get address in trace record as number 99

 CAnalyzer.RECORD.TIME() Get timestamp of trace record 99

 CAnalyzer.RECORDS() Get number of used trace records 99

 CAnalyzer.REF() Get record number of reference record 99

 CAnalyzer.SIZE() Get current trace buffer size in records 100

 CAnalyzer.STATE() Get state of Compact Analyzer 100

 CAnalyzer.TraceCLOCK() Get trace port frequency 101

 CAnalyzer.TraceCONNECT() Name of trace sink of the SoC 102

 CAnalyzer.TracePort() CombiProbe whisker cable is A or B 102

 CAnalyzer.TRACK.RECORD() Get record number matching search 102

 CERBEURS Functions ... 103

 CERBERUS.IOINFO() IOINFO of Cerberus module 103

 CERBERUS.IOINFO.IFLCK() TRUE if IF_LCK bit in Cerberus INONFO set 103

 CHIP Functions ... 104

 CHIP.EmulationDevice() TRUE if emulation device 104

 CHIP.STEPping() Major silicon step of an TriCore AURIX device 104

 CIProbe Functions (Analog Probe for CombiProbe or µTrace) 105

 In This Section 105

 CIProbe() TRUE if Compact Analyzer hardware 105

 CIProbe.ADC.ENABLE() TRUE if channel is enabled 105

 CIProbe.ADC.SHUNT() Get shunt-resistor value 105

 CIProbe.MAXSIZE() Get max. size of trace buffer in records 106

 CIProbe.RECORDS() Get number of used trace records 106
General Function Reference | 6©1989-2024 Lauterbach

 CIProbe.SIZE() Get current trace buffer size in records 106

 CIProbe.STATE() Get state of Compact Analyzer for CIProbe 107

 CIProbe.TRACK.RECORD() Get record number matching search 107

 CMI Function ... 108

 CMIBASE() Base addresses of CMI modules 108

 COMPonent Functions ... 109

 In This Section 109

 COMPonent.AVAILABLE() TRUE if debug/trace peripherals available on CPU 109

 COMPonent.BASE() Base address of debug/trace peripherals 110

 COMPonent.NAME() User-defined name of debug/trace peripherals 110

 COMPonent.TYPE() Type of debug/trace peripherals 111

 COMPonentNAME() Name of debug/trace peripheral 111

 COMPonentNUMBER() Number of valid debug/trace peripherals 112

 CORE Functions ... 113

 In This Section 113

 CONFIGNUMBER() Number of cores configured in TRACE32 114

 CORE() Get the selected core 114

 CORE.ISACTIVE() TRUE if this core is active 115

 CORE.ISASSIGNED() TRUE if physical core is assigned to debug session 116

 CORE.LOGICALTOPHYSICAL() This is the physical core number 117

 CORE.NAMES() Physical core names assigned to TRACE32 118

 CORENAME() Name of core within selected chip 119

 CORE.NUMBER() Number of logical cores 119

 CORE.PHYSICALTOLOGICAL() Logical core number of physical core 121

 Count Functions ... 122

 In This Section 122

 Count.Frequency() Frequency of last measurement 122

 Count.LEVEL() Level of frequency counter input 122

 Count.Time() Time of last measurement 123

 Count.VALUE() Samples of the Count.GO command 123

 COVerage Functions .. 124

 In This Section 124

 COVerage.BDONE() Byte count of all executed instructions 125

 COVerage.IDLE() TRUE if all trace data for code coverage are processed 125

 COVerage.LOAD.KEY() Key from last ACD file 126

 COVerage.Percentage() Percentage of code coverage 126

 COVerage.SCOPE() Degree of code coverage 126

 COVerage.SourceMetric() Active code coverage criterion 128

 COVerage.TreeWalk() Walk symbol tree 129

 CPU Functions .. 130

 In This Section 130
General Function Reference | 7©1989-2024 Lauterbach

 CPU.ADDRESS() Start address of memory section 130

 CPU.ADDRESS.PhysicalINDEX() Section start address of given core 130

 CPU.FEATURE() TRUE if CPU feature exists 131

 CPU.PINCOUNT() For internal usage only 136

 CPUBONDOUT() Name of boundout processor 136

 CPUCOREVERSION() Core or architecture version of CPU 136

 CPUDERIVATE() Main part of processor name 137

 CPUFAMILY() Family name of processor 137

 CPUHELP() For internal usage only 137

 CPUIS() TRUE if search string matches processor name 138

 CPUIS64BIT() TRUE if 64-bit architecture 138

 DAP Functions .. 139

 In This Section 139

 DAP.Available() TRUE if debugging via DAP is supported 139

 DAP.USER<x>() Status of the DAP user pin 139

 Data Functions ... 140

 In This Section 140

 Data.<value_width>() Memory contents in default endianness 140

 Data.<value_width>.<endianness>() Mem. contents in specified byte order 143

 Data.<value_width>.<access_width>() Mem. contents in specified width 145

 Data.AL.ERRORS() Get number of errors detected by Data.AllocList 146

 Data.Float() Get floating point number 146

 Data.STRing() Get zero-terminated string 147

 Data.STRingN() Get zero-terminated string with a maximum length 148

 Data.SUM() Get checksum 148

 Data.SWAP.<value_width>.<swap_width>() Swap byte groups in word 149

 Data.WSTRING() Get zero-terminated wide string 150

 Data.WSTRING.BigEndian() Get big-endian wide string 150

 Data.WSTRING.LittleEndian() Get little-endian wide string 151

 DEBUGGER Function .. 152

 DEBUGGER.FEATURE() Check debugger feature 152

 DEBUGMODE Function ... 153

 DEBUGMODE() Current debug mode 153

 DISASSEMBLE Function ... 154

 DISASSEMBLE.ADDRESS() Disassembled instruction at address 154

 DONGLEID Function .. 155

 DONGLEID() Serial number of USB WibuKey 155

 ELA Function (ARM Coresight Embedded Logic Analyzer) ... 156

 ELABASE() ELA base address 156

 DPP Function (C166/ST10 only) .. 156

 DPP() Content of DPP register 156
General Function Reference | 8©1989-2024 Lauterbach

 EPOC Functions ... 157

 In This Section 157

 EPOC.DATAADDRESS() Start address of data area (EPOC debugger) 157

 EPOC.ENTRYPOINT() Entry address of debug task 157

 EPOC.TEXTADDRESS() Start address of code area (EPOC debugger) 157

 ERROR Functions (target-dependent) ... 158

 ERROR.ADDRESS() Address of last occurred memory access error 158

 ETM Functions .. 159

 In This Section 159

 ETM() TRUE if ETM trace is available 159

 ETM.ADDRCOMP() For internal usage only 160

 ETM.ADDRCOMPTOTAL() Number of ETM address comparator pair 160

 ETM.COUNTERS() Number of ETM counters 160

 ETM.DATACOMP() Number of ETM data comparators 160

 ETM.EXTIN() Number of internal ETM inputs 161

 ETM.EXTOUT() Number of external ETM outputs 161

 ETM.FIFOFULL() ETM fifofull logic 161

 ETM.MAP() Number of ETM memory map decoders 161

 ETM.PROTOCOL() Version of ETM protocol 162

 ETM.SEQUENCER() Number of ETM sequencers 162

 ETM.TraceCore() TRUE if the core is traced 162

 EXTENDED Function (Z80 only) .. 163

 EXTENDED() TRUE if register CBAR > 0 163

 FDX Function .. 164

 FDX.INSTRING() Content at FDX memory address 164

 FDX.TargetSTALLS() Monitor FDX communication stalls on the target 164

 FLAG Functions ... 165

 In This Section 165

 FLAG() TRUE if hardware flag system available 165

 FLAG.READ() FLAG memory bytes with read access bit 165

 FLAG.WRITE() FLAG memory bytes with write access bit 165

 FLASH Functions ... 166

 In This Section 166

 FLASH.CFI.SIZE() Size of FLASH devices 167

 FLASH.CFI.WIDTH() Data bus width of FLASH devices 167

 FLASH.CLocK.Frequency() FLASH clock value 167

 FLASH.ID() FLASH manufacturer and device ID 168

 FLASH.List.STATE.PENDING() Number of pending sectors 169

 FLASH.List.TYPE() FLASH family code of FLASH list entry 169

 FLASH.ProgramMODE() FLASH programming modes 170

 FLASH.ProgramMODE.OPTION() FLASH programming options 171
General Function Reference | 9©1989-2024 Lauterbach

 FLASH.SECTOR.BEGIN() Start address 172

 FLASH.SECTOR.END() End address 172

 FLASH.SECTOR.EXIST() TRUE if sector exists 172

 FLASH.SECTOR.EXTRAvalue() Extra value of FLASH.Create 173

 FLASH.SECTOR.NEXT() Address of next sector 174

 FLASH.SECTOR.OTP() TRUE if OTP sector 174

 FLASH.SECTOR.OPTION() Options of a FLASH sector 175

 FLASH.SECTOR.RANGE() Address range of a FLASH sector 176

 FLASH.SECTOR.SIZE() Size in bytes 176

 FLASH.SECTOR.STATE() FLASH programming state 176

 FLASH.SECTOR.TYPE() FLASH family code of sector 177

 FLASH.SECTOR.WIDTH() Width of FLASH sector 178

 FLASH.TARGET.BUILD() Build number of FLASH algorithm file 178

 FLASH.TARGET.CODERANGE() Code range of FLASH algorithm 179

 FLASH.TARGET.DATARANGE() Data range of FLASH algorithm 179

 FLASH.TARGET.FILE() Name of FLASH algorithm file 179

 FLASH.UNIT() Unit number of FLASH sector 180

 FLASH.UNIT.BEGIN() Unit start address 180

 FLASH.UNIT.END() Unit end address 180

 FLASH.UNIT.EXIST() TRUE if unit exists 181

 FLASH.UNIT.NEXT() Number of next unit 181

 FLASHFILE Functions ... 182

 In This Section 182

 FLASHFILE.GETBADBLOCK.COUNT() Number of bad blocks 182

 FLASHFILE.GETBADBLOCK.NEXT() Address of bad block 182

 FLASHFILE.SPAREADDRESS() Address of spare area 183

 FPU Functions (Floating Point Unit) ... 184

 In This Section 184

 FPU() FPU register contents 184

 FPUCR() FPU control register contents 184

 FPU.RAW() FPU register raw contents 184

 FXU Function .. 185

 FXU() Content of FXU register 185

 GROUP Function .. 185

 GROUP.EXIST() TRUE if group exists 185

 Hardware Functions ... 186

 In This Section 186

 hardware.COMBIPROBE() TRUE if CombiProbe 186

 hardware.ESI() TRUE if EPROM Simulator 186

 hardware.ICD() TRUE if TRACE32 debug hardware 187

 hardware.POWERDEBUG() TRUE if TRACE32 PowerDebug hardware 187

 hardware.POWERINTEGRATOR() TRUE if a PowerIntergrator 187
General Function Reference | 10©1989-2024 Lauterbach

 hardware.POWERINTEGRATOR2() TRUE if a PowerIntegrator II 187

 hardware.POWERNEXUS() TRUE is a NEXUS Adapter 188

 hardware.POWERPROBE() TRUE is a PowerProbe 188

 hardware.POWERTRACE() TRUE if a PowerTrace Module 188

 hardware.POWERTRACE2() TRUE if a PowerTrace II 188

 hardware.POWERTRACE2LITE() TRUE if a PowerTrace II LITE 189

 hardware.POWERTRACE3() TRUE if a PowerTrace III 189

 hardware.POWERTRACEPX() TRUE if a PowerTrace PX 189

 hardware.POWERTRACESERIAL() TRUE if a PowerTrace Serial 189

 hardware.POWERTRACESERIAL2() TRUE if a PowerTrace Serial II 190

 hardware.QUADPROBE() TRUE if QuadProbe 190

 hardware.UTRACE() TRUE if µTrace 190

 HVX Function .. 191

 HVX() Content of HVX register 191

 I2C Functions .. 192

 In This Section 192

 I2C.DATA() Data read by I2C.TRANSFER 192

 I2C.PIN() Pin status 192

 ID Functions .. 193

 In This Section 193

 ID.CABLE() Hardware ID of debug cable 193

 ID.POWERTRACEAUXPORT() Hardware ID of device at PT aux port 193

 ID.PREPROcessor() Hardware ID of preprocessor 194

 ID.SERialPort1() Type-ID of Adapter or Preprocessor at PowerTrace Serial 195

 ID.WHISKER() ID of whisker cable 196

 IDCODE() ID code of TAP in JTAG chain 199

 IDCODENUMBER() Number of detected TAPs 199

 Integrator Functions .. 200

 In This Section 200

 Integrator() TRUE if PowerIntegrator 200

 Integrator.FIRST() Get record number of first trace record 200

 Integrator.ADC.ENABLE() Bitmask of enabled analog channels 201

 Integrator.ADC.SHUNT() Shunt-resistor value 201

 Integrator.ANALOG() 201

 Integrator.COUNTER.EVENT() Get value of trigger program event counter 201

 Integrator.COUNTER.EXTERN() Value of trigger program external counter 202

 Integrator.COUNTER.TIME() Get value of trigger program time counter 202

 Integrator.DIALOGDSEL() For internal usage only 202

 Integrator.DIALOGDSELGET() For internal usage only 202

 Integrator.DSEL() For internal usage only 203

 Integrator.FIND.PI_CHANNEL() For internal usage only 203

 Integrator.FIND.PI_WORD() TRUE if signal word is defined 203
General Function Reference | 11©1989-2024 Lauterbach

 Integrator.FLAG() Check state of trigger program FLAG 203

 Integrator.GET() Value of channel 204

 Integrator.MAXSIZE() Get max. size of trace buffer in records 204

 Integrator.PROBE() For internal usage only 204

 Integrator.PROGRAMFILENAME() File name of trigger program 204

 Integrator.RECORD.DATA() Get data recorded in trace record 205

 Integrator.RECORD.TIME() Get timestamp of trace record 205

 Integrator.RECORDS() Get number of used trace records 205

 Integrator.REF() Get record number of reference record 205

 Integrator.SIZE() Get current trace buffer size in records 206

 Integrator.STATE() Get state of the Integrator 206

 Integrator.TRACK.RECORD() Get record number matching search 206

 Integrator.USB() For internal usage only 207

 INTERFACE Functions ... 208

 In This Section 208

 INTERFACE.CADI() TRUE if connection to target is via CADI interface 208

 INTERFACE.GDB() TRUE if connection to target is via GDB interface 209

 INTERFACE.GDI() TRUE if connection to target via GDI interface 209

 INTERFACE.HOST() TRUE if application is debugged on host 209

 interface.HOSTMCI() TRUE if TRACE32 debug driver runs on host 209

 INTERFACE.IRIS() TRUE if connection to target is via IRIS interface 210

 INTERFACE.MCD() TRUE if connection to target via MCD interface 210

 INTERFACE.NAME() Name of debugger 210

 INTERFACE.QNX() TRUE if PBI=QNX 210

 INTERFACE.SIM() TRUE if simulator 211

 IOBASE Functions ... 212

 In This Section 212

 IOBASE() Base address of internal I/O’s 212

 IOBASE.ADDRESS() Base address of internal I/O’s with access class 212

 IOBASE2() Second base address of internal I/O’s 212

 IProbe Functions .. 213

 In This Section 214

 IProbe() TRUE if IPROBE 214

 IProbe.ADC.ENABLE() TRUE if channel is enabled 214

 IProbe.ADC.SHUNT() Shunt resistor value of channel 215

 IProbe.ANALOG() TRUE if Analog Probe is plugged 216

 IProbe.FIRST() Get record number of first trace record 216

 IProbe.GET() Value of channel 216

 IProbe.MAXSIZE() Get max. size of trace buffer in records 217

 IProbe.PROBE() 217

 IProbe.RECORD.DATA() Get data recorded in trace record 218

 IProbe.RECORD.TIME() Get timestamp of trace record 218
General Function Reference | 12©1989-2024 Lauterbach

 IProbe.RECORDS() Get number of used trace records 219

 IProbe.REF() Get record number of reference record 220

 IProbe.SIZE() Get current trace buffer size in records 220

 IProbe.STATE() Get state of IProbe 221

 IProbe.TRACK.RECORD() Get record number matching search 221

 JTAG Functions .. 222

 In This Section 222

 JTAG.MIPI34() Query special MIPI34 pins 222

 JTAG.PIN() Level of JTAG signal 223

 JTAG.SEQuence.RESULT() Get result of JTAG sequence 223

 JTAG.SEQuence.EXIST() Check if a JTAG sequence exists 223

 JTAG.SEQuence.LOCKED() Check if a JTAG sequence is locked 224

 JTAG.SHIFT() TDO output of JTAG shift 224

 JTAG.X7EFUSE.RESULT() Result of JTAG.X7EFUSE command 225

 JTAG.X7EFUSE.CNTL() CNTL flags read by JTAG.X7EFUSE command 226

 JTAG.X7EFUSE.DNA() DNA value read by JTAG.X7EFUSE command 226

 JTAG.X7EFUSE.KEY() AES key read by JTAG.X7EFUSE command 227

 JTAG.X7EFUSE.USER() User code read by JTAG.X7EFUSE command 227

 JTAG.XUSEFUSE.RESULT() Result of JTAG.XUSEFUSE command 228

 JTAG.XUSEFUSE.CNTL() CNTL value read by JTAG.XUSEFUSE command 228

 JTAG.XUSEFUSE.DNA() DNA value read by JTAG.XUSEFUSE command 229

 JTAG.XUSEFUSE.KEY() AES key read by JTAG.XUSEFUSE command 229

 JTAG.XUSEFUSE.RSA() RSA hash read by JTAG.XUSEFUSE command 230

 JTAG.XUSEFUSE.SEC() SEC value read by JTAG.XUSEFUSE command 230

 JTAG.XUSEFUSE.USER() User code read by JTAG.XUSEFUSE command 231

 JTAG.XUSEFUSE.USER128() 128 bit User code read by JTAG.XUSEFUSE 231

 LOGGER Functions .. 232

 In This Section 232

 LOGGER.FIRST() Get record number of first trace record 232

 LOGGER.RECORD.ADDRESS() Get address recorded in trace record 233

 LOGGER.RECORD.DATA() Get data recorded in trace record 233

 LOGGER.RECORD.OFFSET() Get address in trace record as number 233

 LOGGER.RECORD.TIME() Get timestamp of trace record 234

 LOGGER.RECORDS() Get number of used trace records 234

 LOGGER.REF() Get record number of reference record 234

 LOGGER.SIZE() Get current trace buffer size in records 234

 LOGGER.STATE() Get state of Logger trace 235

 MachO Format Function (Apple) ... 236

 MACHO.LASTUUID() Universally unique identifier of MachO file 236

 MAP Functions ... 237

 In This Section 237

 MAP.ROMSIZE() Size of the defined ROM 237
General Function Reference | 13©1989-2024 Lauterbach

 MCDS Functions ... 238

 In This Section 238

 MCDS.MODULE.NAME() Name of MCDS module 239

 MCDS.MODULE.NUMBER() Number-part of MCDS module ID 239

 MCDS.MODULE.REVision() Revision-part of MCDS module ID 239

 MCDS.MODULE.TYPE() Type-part of MCDS module ID 240

 MCDS.STATE() MCDS module is switched on/off 240

 MCDS.TraceBuffer.LowerGAP() Trace buffer lower gap 241

 MCDS.TraceBuffer.SIZE() Trace buffer size 242

 MCDS.TraceBuffer.UpperGAP() Trace buffer upper gap 242

 MMU Functions (Memory Management Unit) .. 243

 In This Section 243

 MMU() Value of MMU register 243

 MMU.DEFAULTPT() Base address of default page table 244

 MMU.DEFAULTTRANS.<range>() Query MMU setup 245

 MMU.FORMAT() Currently selected MMU format 247

 MMU.FORMAT.DETECTED() Auto-detection of page table format 248

 MMU.FORMAT.DETECTED.ZONE() Auto-detection of page table format 249

 MMX Function (MultiMedia eXtension) ... 250

 MMX() Value of MMX register 250

 MONITOR Function .. 250

 MONITOR() TRUE if debugger is running as monitor 250

 NEXUS Functions ... 251

 In This Section 251

 NEXUS() TRUE if Nexus trace is supported 251

 NEXUS.RTTBUILD() RTT build register 251

 NEXUS.PortMode() Current PortMode setting 252

 NEXUS.PortSize() Current PortSize setting 252

 Onchip Functions ... 253

 In This Section 253

 Onchip() TRUE if the onchip trace is available 253

 Onchip.FIRST() Get record number of first trace record 253

 Onchip.FLOW.ERRORS() Get number of flow errors / hard errors 253

 Onchip.FLOW.FIFOFULL() Get number of FIFO overflows 254

 Onchip.MAXSIZE() Get max. size of trace buffer in records 255

 Onchip.RECORD.ADDRESS() Get address recorded in trace record 255

 Onchip.RECORD.DATA() Get data recorded in trace record 255

 Onchip.RECORD.OFFSET() Get address in trace record as number 255

 Onchip.RECORD.TIME() Get timestamp of trace record 256

 Onchip.RECORDS() Get number of used trace records 256

 Onchip.REF() Get record number of reference record 256

 Onchip.SIZE() Get current trace buffer size in records 256
General Function Reference | 14©1989-2024 Lauterbach

 Onchip.STATE() Get state of Onchip trace 257

 Onchip.TraceCONNECT() Name of trace sink of the SoC 257

 Onchip.TRACK.RECORD() Get record number matching search 258

 PBI Function ... 259

 PBI() Name of used debug back-end 259

 PCI Functions ... 260

 In This Section 260

 PCI.Read.B() Byte from PCI register 260

 PCI.Read.L() Long from PCI register 260

 PCI.Read.W() Word from PCI register 260

 PER Functions .. 261

 In This Section 261

 PER.<width>() Memory contents in default endianness 261

 PER.<width>.<endianness>() Memory contents in specified endianness 262

 PER.ADDRESS() Address of register(field) 263

 PER.ADDRESS.<sub_cmd>() Check access security in PER file 264

 PER.ARG() Argument of PER.view command 264

 PER.ARG.ADDRESS() Address argument of PER.view command 265

 PER.BASE() Last BASE address 265

 PER.Buffer.<width>() Value from buffer 266

 PER.EVAL() Value of expression in PER file 267

 PER.FILENAME() PER file name 267

 PER.SAVEINDEX() Value from indexed register 268

 PER.VALUE() Value of register(field) 268

 PER.VALUE.STRING() Value of BITFLD as string 269

 PERF Functions (Performance) .. 270

 In This Section 270

 PERF.MEMORY.HITS() Number of memory samples 270

 PERF.MEMORY.SnoopAddress() Snoop memory address 271

 PERF.MEMORY.SnoopSize() Snoop size 271

 PERF.METHOD() Recording method 271

 PERF.MODE() Get Performance Analyzer recording mode 272

 PERF.PC.HITS() Number of PC samples 272

 PERF.RATE() Number of snoops per second 272

 PERF.RunTime() Retained time for program run 273

 PERF.SNOOPFAILS() Number of snoop fails 273

 PERF.STATE() Get state of Performance Analyzer 273

 PERF.TASK.HITS() Number of task samples 274

 Port Analyzer Functions .. 275

 In This Section 275

 PORT.GET() Value of channel 275

 PORT.MAXSIZE() Get max. size of trace buffer in records 275
General Function Reference | 15©1989-2024 Lauterbach

 PORT.RECORDS() Get number of used trace records 275

 PORT.REF() Get record number of reference record 276

 PORT.SIZE() Get current trace buffer size in records 276

 PORT.STATE() Get state of Port Analyzer 276

 PORT.TRACK.RECORD() Get record number matching search 276

 PORTANALYZER() 277

 PORTSHARING Function ... 277

 PORTSHARING() Current setting of PortSHaRing 277

 POWER Functions .. 278

 In This Section 278

 PowerProbe Functions .. 279

 In This Section 279

 PROBE.COUNTER.EVENT() Get value of trigger program event counter 279

 PROBE.COUNTER.EXTERN() Get value of trigger program external counter 279

 PROBE.COUNTER.TIME() Get value of trigger program time counter 279

 Probe.FIRST() Get record number of first trace record 280

 PROBE.FLAG() Check state of trigger program FLAG 280

 PROBE.GET() Value of channel 280

 PROBE.MAXSIZE() Get max. size of trace buffer in records 280

 PROBE.RECORD.DATA() Get data recorded in trace record 281

 PROBE.RECORD.TIME() Get timestamp of trace record 281

 PROBE.RECORDS() Get number of used trace records 281

 PROBE.REF() Get record number of reference record 281

 PROBE.SIZE() Get current trace buffer size in records 282

 PROBE.STATE() Get state of PowerProbe 282

 PROBE.TRACK.RECORD() Get record number matching search 283

 Program Pointer Function ... 284

 PP() Address of program pointer (access class, space ID, program counter) 284

 Register Functions ... 285

 Register() Content of register 285

 Register.LIST() First / next register name 286

 Register.Valid() Valid register value 287

 RTS Functions .. 288

 In This Section 288

 RTS.ERROR() Check for flowerrors during RTS processing 288

 RTS.NOCODE() Check for RTS NOCODE error 288

 RTS.FIFOFULL() Check for FIFO full error in RTS 289

 RTS.RECORD() Find record causing an error in RTS 289

 RTS.RECORDS() Get number of trace records transferred to RTS 289

 RTS.BUSY() Check if RTS is busy 289

 RunTime Functions .. 290
General Function Reference | 16©1989-2024 Lauterbach

 In This Section 290

 RunTime.ACCURACY() Accuracy of run-time counter 290

 RunTime.ACTUAL() 290

 RunTime.LAST() 290

 RunTime.LASTRUN() 291

 RunTime.REFA() 291

 RunTime.REFB() 291

 SMMU Functions .. 292

 SMMU.BaseADDRESS() Base address of SMMU 292

 SMMU.StreamID2SMRG() Find match for stream ID 292

 SNOOPer Functions ... 294

 In This Section 294

 SNOOPer.FIRST() Get record number of first trace record 294

 SNOOPer.MAXSIZE() Get max. size of trace buffer in records 295

 SNOOPer.RECORD.ADDRESS() Get address recorded in trace record 295

 SNOOPer.RECORD.DATA() Get data recorded in trace record 295

 SNOOPer.RECORD.OFFSET() Get address in trace record as number 295

 SNOOPer.RECORD.TIME() Get timestamp of trace record 296

 SNOOPer.RECORDS() Get number of used trace records 296

 SNOOPer.REF() Get record number of reference record 296

 SNOOPer.SIZE() Get current trace buffer size in records 296

 SNOOPer.STATE() Get state of SNOOPer trace 297

 STATE Functions (Target State) ... 298

 In This Section 298

 STATE.HALT() 298

 STATE.OSLK() 298

 STATE.POWER() 299

 STATE.PROCESSOR() 300

 STATE.RESET() 301

 STATE.RUN() 301

 STATE.TARGET() State of target displayed in TRACE32 state line 301

 SPE Function .. 301

 SPE() Content from SPE register 301

 SSE Function .. 302

 SSE() Segment from SSE register 302

 Stimuli Generator Function ... 303

 hardware.STG() TRUE if Stimuli Generator hardware 303

 sYmbol Functions .. 304

 In This Section 304

 sYmbol.AutoLOAD.CHECK() Update option for the symbol autoloader 304

 sYmbol.AutoLOAD.CHECKCMD() Load command for symbol autoloader 304
General Function Reference | 17©1989-2024 Lauterbach

 sYmbol.AutoLOAD.CONFIG() Used sub-command 305

 sYmbol.BEGIN() First address of symbol 305

 sYmbol.COUNT() Number of symbols 306

 sYmbol.ECA.BINary.GAPNUMBER() Number of observability gaps 306

 sYmbol.END() Last address of symbol 306

 sYmbol.EPILOG() Address of return point 307

 sYmbol.EXIST() TRUE if symbol exists 308

 sYmbol.EXIT() Exit address of function 308

 sYmbol.FUNCTION() Function name 309

 sYmbol.IMPORT() Import file names 309

 sYmbol.ISFUNCTION() TRUE if symbol is function 309

 sYmbol.ISVARIABLE() TRUE if symbol is variable 310

 sYmbol.LANGUAGE() Selected high-level language 311

 sYmbol.List.MAP.<x>() Information about address ranges on the target 311

 sYmbol.LIST.PROGRAM() Path and file name of binary files 312

 sYmbol.List.PROGRAM.<x>() Information about loaded programs 313

 sYmbol.List.SECtion.<x>() Information about section ranges 314

 sYmbol.LIST.SOURCE() File location of source file 316

 sYmbol.MATCHES() Number of occurrences 316

 sYmbol.NAME() Symbol path and name based on address 317

 sYmbol.NAME.AT() Resolve ambiguous symbols based on address 317

 sYmbol.NEXT.BEGIN() Start address of next symbol 318

 sYmbol.RANGE() Address range of symbol 318

 sYmbol.SEARCHFILE() Absolute path of source file 318

 sYmbol.SECADDRESS() Start address of section 320

 sYmbol.SECEND() End address of section 320

 sYmbol.SECEXIST() Check for existence of a section 320

 sYmbol.SECNAME() Section name 321

 sYmbol.SECPRANGE() Physical address range of section 321

 sYmbol.SECRANGE() Logical address range of section 321

 sYmbol.SIZEOF() Size of debug symbol 322

 sYmbol.SOURCEFILE() Name of source file 322

 sYmbol.SOURCELINE() HLL-line number of address 323

 sYmbol.SOURCEPATH() TRUE if path is search path 324

 sYmbol.STATE() Value from sYmbol.state window 324

 sYmbol.TRANSPOSE() Transpose program and module names 324

 sYmbol.TYPE() Type of symbol 325

 sYmbol.VARNAME() Name of variable or structure element 326

 SYStem Functions .. 327

 In This Section 327

 SYStem.ACCESS.DENIED() TRUE if memory access is denied 328

 SYStem.AMBA() TRUE if AMBA bus mode is selected 328

 SYStem.BigEndian() TRUE if target core runs in big endian mode 328
General Function Reference | 18©1989-2024 Lauterbach

 SYStem.CADIconfig.RemoteServer() 329

 SYStem.CADIconfig.Traceconfig() 330

 SYStem.CONFIG.<tap_position>() 331

 SYStem.CONFIG.DEBUGPORT() 331

 SYStem.CONFIG.DEBUGPORTTYPE() 331

 SYStem.CONFIG.JTAGTAP() Return the JTAG PRE and POST settings 332

 SYStem.CONFIG.ListCORE() 335

 SYStem.CONFIG.ListSIM() 336

 SYStem.CONFIG.Slave() 336

 SYStem.CONFIG.TAPState() 337

 SYStem.CPU() Name of processor 337

 SYStem.GTL.CALLCOUNTER() Amount of calls to GTL library 338

 SYStem.GTL.CONNECTED() Connection status 338

 SYStem.GTL.CYCLECOUNTER() load GTL interface for bit banging protocol 338

 SYStem.GTL.LIBname() Name of GTL library 338

 SYStem.GTL.ModelINFO() Info string from GTL API 339

 SYStem.GTL.ModelNAME() Model Name 339

 SYStem.GTL.PLUGINVERSION() Version number 339

 SYStem.GTL.TransactorNAME() Transactor name 340

 SYStem.GTL.TransactorTYPE() Transactor type 340

 SYStem.GTL.VENDORID() Vendor ID 340

 SYStem.GTL.VERSION() Version number 341

 SYStem.HOOK() 341

 SYStem.IMASKASM() 341

 SYStem.IMASKHLL() 341

 SYStem.INSTANCE() Index of TRACE32 PowerView instance 342

 SYStem.INSTANCECOUNT() Count of GUIs connected to a PowerDebug 342

 SYStem.IRISconfig.RemoteServer() 343

 SYStem.JtagClock() 343

 SYStem.LittleEndian() 343

 SYStem.MCDCommand.ResultString() 344

 SYStem.MCDconfig.LIBrary() 344

 SYStem.Mode() 344

 SYStem.NOTRAP() 1 if the option NOTRAP is active 345

 SYStem.Option.DUALPORT() State of like-named command 345

 SYStem.Option.MACHINESPACES() State of like-named command 345

 SYStem.Option.MMUSPACES() State of like-named command 346

 SYStem.Option.EnReset() State of like-named command 346

 SYStem.Option.ResBreak() State of like-named command 346

 SYStem.Option.SPILLLOCation() State of like-named command 347

 SYStem.Option.ZoneSPACES() State of like-named command 347

 SYStem.RESetBehavior() Current setting of RESetBehavior 348

 SYStem.Up() TRUE if debugger has access to debug resources 348
General Function Reference | 19©1989-2024 Lauterbach

 SYStem.USECORE() 350

 SYStem.USEMASK() 351

 TASK Functions ... 352

 In This Section 352

 TASK() Name of current task 353

 TASK.ACCESS() Access class 353

 TASK.ACCESS.ZONE() Access class zone 353

 TASK.BACK() Background task number 353

 TASK.CONFIG() OS Awareness configuration information 354

 TASK.CONFIGFILE() Path of loaded OS Awareness 354

 TASK.COUNT() Number of tasks 354

 TASK.CURRENT.MACHINEID() ID of current machine 355

 TASK.CURRENT.SPACEID() ID of current MMU space 355

 TASK.CURRENT.TASK() Magic value of current task 355

 TASK.CURRENT.TASKNAME() Name of current task 355

 TASK.FIRST() First task in list 356

 TASK.FORE() Foreground task number 356

 TASK.ID() ID of task 356

 TASK.MACHINE.ACCESS() Default access class 356

 TASK.MACHINE.ID() ID of machine 357

 TASK.MACHINE.NAME() Name of machine 357

 TASK.MACHINE.VTTB() VTTB of machine 358

 TASK.MAGIC() Task magic number 358

 TASK.MAGICADDRESS() 'magic address' 359

 TASK.MAGICRANGE() Range of 'magic address' 359

 TASK.MAGICSIZE() Size of 'magic address' 359

 TASK.NAME() Name of task 360

 TASK.NEXT() Next task in list 360

 TASK.ORTIFILE() Path of loaded ORTI file 361

 TASK.SPACE.COUNT() Number of spaces 361

 TASK.SPACEID() Space ID of task 362

 TERM Functions (Terminal Window) .. 363

 In This Section 363

 TERM.LINE() Get line from terminal window 363

 TERM.NEWHANDLE() Get next free terminal handle 363

 TERM.READBUSY() TRUE as long as TERM.READ is in progress 364

 TERM.RETURNCODE() Get returncode from terminal routine 364

 TERM.TRIGGERED() Get trigger state of terminal window 365

 TPIU Functions ... 366

 In This Section 366

 TPIU.PortMode() Port mode setting 366

 TPIU.PortSize() Port size setting 366
General Function Reference | 20©1989-2024 Lauterbach

 TPIU.SWVPrescaler() SWVPrescaler value 367

 TPUBASE Function .. 367

 TPUBASE.ADDRESS() Address of TPU 367

 Trace Functions .. 368

 In This Section 368

 Trace.FIRST() Get record number of first trace record 368

 Trace.FLOW() TRUE if trace method is flow trace 369

 Trace.FLOW.ERRORS() Get number of flow errors / hard errors 369

 Trace.FLOW.FIFOFULL() Get number of FIFO overflows 370

 Trace.MAXSIZE() Get max. size of trace buffer in records 370

 Trace.METHOD() Currently configured trace method 371

 Trace.METHOD.Analyzer() TRUE if the trace method is Analyzer 371

 Trace.METHOD.ART() TRUE if the trace method is ART 371

 Trace.METHOD.CAnalyzer() TRUE if the trace method is CAnalyzer 371

 Trace.METHOD.FDX() TRUE if the trace method is FDX 372

 Trace.METHOD.HAnalyzer() TRUE if the trace method is HAnalyzer 372

 Trace.METHOD.Integrator() TRUE if the trace method uses the Integrator 372

 Trace.METHOD.IProbe() TRUE if the trace method uses the IProbe 372

 Trace.METHOD.LA() TRUE if the trace method is LA 373

 Trace.METHOD.LOGGER() TRUE if the trace method is LOGGER 373

 Trace.METHOD.ONCHIP() TRUE if the trace method is ONCHIP 373

 Trace.METHOD.Probe() TRUE if trace method uses the PowerProbe 373

 Trace.METHOD.SNOOPer() TRUE if the trace method is SNOOPer 374

 Trace.RECORD.ADDRESS() Get address recorded in trace record 374

 Trace.RECORD.DATA() Get data recorded in trace record 374

 Trace.RECORD.OFFSET() Get address in trace record as number 375

 Trace.RECORD.TIME() Get timestamp of trace record 375

 Trace.RECORDS() Get number of used trace records 375

 Trace.SIZE() Get current trace buffer size in records 376

 Trace.STATE() Get state of PowerTrace hardware 376

 Trace.STATistic.COUNT() Number of occurences of selected function 377

 Trace.STATistic.EXIST() TRUE if function exists in trace statistics 377

 Trace.STATistic.FIRST() Record number of start point for statistic analysis 377

 Trace.STATistic.IMAX() Longest time between function entry and exit 377

 Trace.STATistic.IMIN() Shortest time between function entry and exit 378

 Trace.STATistic.Internal() Time spent within the selected function 378

 Trace.STATistic.LAST() Record number of end point for statistic analysis 378

 Trace.STATistic.MAX() Maximum time of selected function 378

 Trace.STATistic.MIN() Minimum time of selected function 379

 Trace.STATistic.Total() Total time of selected function 379

 Trace.TraceCONNECT() Name of trace sink of the SoC 380

 TRACEPORT Function ... 381
General Function Reference | 21©1989-2024 Lauterbach

 In This Section 381

 TRACEPORT.LaneCount() Number of serial lanes 381

 TRACK Functions ... 382

 In This Section 382

 TRACK.ADDRESS() Get tracking address 382

 TRACK.COLUMN() Number of column where the found item starts 382

 TRACK.LINE() Number of line containing the found item 382

 TRACK.RECORD() Number of record containing the found item 384

 TRACK.STRing() Current selection in a TRACE32 window 384

 TRACK.TIME() Timestamp of current tracking record 385

 TRANS Functions (Debugger Address Translation) ... 386

 In This Section 386

 TRANS.LIST.NUMBER() Number of TRANS.List entries 386

 TRANS.LIST.LOGRANGE() Query TRANS.List entry 387

 TRANS.LIST.PHYSADDR() Query TRANS.List entry 388

 TRANS.LIST.TYPE() Query TRANS.List entry 389

 TRANS.ENABLE() TRUE if address translation is enabled 390

 TRANS.INTERMEDIATE() Convert a guest logical address 390

 TRANS.INTERMEDIATE.VALID() TRUE if address translation is valid 391

 TRANS.LINEAR() Convert logical to linear address 391

 TRANS.LINEAR.VALID() TRUE if address translation is valid 392

 TRANS.LOGICAL() Convert physical to logical address 392

 TRANS.LOGICAL.VALID() TRUE if address translation is valid 393

 TRANS.PHYSICAL() Convert logical to physical address 393

 TRANS.PHYSICAL.VALID() TRUE if address translation is valid 396

 TRANS.TABLEWALK() TRUE if address translation table walk is ON 396

 TSS Function .. 397

 TSS() TSS base address 397

 Var Functions ... 398

 In This Section 398

 Var.ADDRESS() Address of HLL expression 398

 Var.BITPOS() Bit position inside a C bit field 398

 Var.BITSIZE() Size of bit field element 399

 Var.END() Last address of HLL expression 399

 Var.EXIST() TRUE if HLL expression exists 400

 Var.FVALUE() Contents of HLL expression 401

 Var.ISBIT() TRUE if HLL expression is a bit field element 401

 Var.RANGE() Address range of HLL expression 402

 Var.SIZEOF() Size of HLL expression 402

 Var.STRing() Zero-terminated string or variable contents 403

 Var.TYPEOF() Type of HLL expression 403

 Var.VALUE() Value of HLL expression 404
General Function Reference | 22©1989-2024 Lauterbach

 VCO Function ... 405

 VCO() Frequency of VCO generator 405

 VERSION Functions ... 406

 In This Section 406

 VERSION.BUILD() Upper build number 407

 VERSION.BUILD.BASE() Lower build number 407

 VERSION.CABLE() Hardware version of debug cable 408

 VERSION.DATE() Version date YYYY/MM 408

 VERSION.ENVironment() TRACE32 environment setting 408

 VERSION.FirmWare.DEBUG() Version number of firmware 409

 VERSION.SERIAL() Serial number 409

 VERSION.SERIAL.CABLE() First serial number of debug cable 409

 VERSION.SERIAL.DEBUG() Serial number of debug module 410

 VERSION.SERIAL.Integrator() Serial number of PowerIntegrator 410

 VERSION.SERIAL.NEXUSadapter() Serial number of nexus adapter 410

 VERSION.SERIAL.PREPROcessor() Serial number of preprocessor 410

 VERSION.SERIAL.POWERPROBE() Serial number of PowerProbe 411

 VERSION.SERIAL.POWERTRACEAUXPORT() S/N of device at PT aux port 411

 VERSION.SERIAL.SERialPort1() S/N of device at Serial Port 1 of PT Serial 411

 VERSION.SERIAL.WHISKER() S/N of whiskers at CombiProbe or µTrace 411

 VERSION.SERIAL.TRACE() Serial number of trace module 412

 VERSION.SOFTWARE() Release build or nightly build, etc. 413

 VERSION.SOFTWARE.TYPE() Software build type 414

 VPU Functions .. 415

 In This Section 415

 VPU() Value of VPU register 415

 VPUCR() Value of VRSAVE or VSCR register 415
General Function Reference | 23©1989-2024 Lauterbach

General Function Reference

Version 06-Jun-2024

History

27-May-2024 New functions Trace.STATistic.FIRST() and Trace.STATistic.LAST().

13-May-2024 New function COVerage.IDLE().

08-May-2024 New functions COMPonentNAME() and COMPonentNUMBER().

03-May-2024 New function TERM.NEWHANDLE().

27-Mar-2024 New function ID.POWERTRACEAUXPORT().

25-Jan-2024 New function sYmbol.ECA.BINary.GAPNUMBER().

20-Nov-2023 New function COVerage.Percentage().

21-Aug-2023 New function Register.Valid().

06-Jun-2023 New function VERSION.SOFTWARE.TYPE().

05-Jun-2023 New function PER.BASE().

02-May-2023 New functions: Analyzer.CONFIG.POWERTRACESERIAL2() and
hardware.POWERTRACESERIAL2().

18-Apr-2023 New optional parameter for Symbol.SOURCEFILE().

20-Feb-2023 New functions: ID.SERialPort1() and VERSION.SERIAL.SERialPort1().

18-Nov-2022 New function: PBI().

18-Nov-2022 New functions: VERSION.SERIAL.Integrator, VERSION.SERIAL.NEXUSadapter, and
VERSION.SERIAL.POWERPROBE.

02-Nov-2022 All hardware functions are now grouped in the chapter ‘Hardware Functions‘. The
descriptions have also been updated.

22-Aug-2022 New THUMB parameter for CPU.FEATURE() function supported by the Arm architecture.

09-May-2022 New functions: SYStem.GTL.CALLCOUNTER() and SYStem.GTL.CYCLECOUNTER().
General Function Reference | 24©1989-2024 Lauterbach

09-May-2022 New function: FDX.TargetSTALLS().

06-May-2022 New functions: PER.ADDRESS(), PER.VALUE(), and PER.VALUE.STRING().

08-Apr-2022 Added optional parameters to the functions TASK.MAGICADDRESS(),
TASK.MAGICRANGE(), and TASK.MAGICSIZE().

01-Apr-2022 Removed functions: hardware.SCU(), hardware.TA32(), SYStem.TRACEEXT(),
SYStem.TRACEINT(), and Analyzer.CONFIG.RISCTRACE().

30-Mar-2022 New function: sYmbol.TRANSPOSE().

09-Mar-2022 New function: COVerage.LOAD.KEY().

04-Mar-2022 New function: ETM.TraceCORE().

04-Mar-2022 New function: CABLE.GalvanicISOlation.FIRMWARE().

24-Feb-2022 Removed functions: INTERFACE.VAST() and INTERFACE.VDI().

10-Feb-2022 New function: COMPonent.TYPE().

03-Feb-2022 New function: TERM.READBUSY().

19-Jan-2022 New function: PER.SAVEINDEX().

Dec-2021 New functions: sYmbol.List.PROGRAM.<x>(), and sYmbol.List.SECtion.<x>().

Nov-2021 New functions: SYStem.GTL.ModelINFO(), SYStem.GTL.ModelNAME(),
SYStem.GTL.TransactorNAME(), SYStem.GTL.TransactorTYPE(), and
DEBUGGER.FEATURE().
General Function Reference | 25©1989-2024 Lauterbach

In This Document

This document lists all the target-related functions and tool-related functions available for the different debug
systems.

In addition, the document provides important background information about functions in TRACE32 and
explains the purpose and use of functions in TRACE32.

The capital letters in function names represent the short form of the function. Any function name can be
written in its long or short form. For example Data.Byte() could be also written as D.B()

How This Document is Organized

• Difference between Functions and Commands in TRACE32: This section is primarily intended for
users who are new to TRACE32. As a new user, make sure that you also read the next two sections.

• Purpose of Functions: Briefly describes and illustrates the purpose of functions in TRACE32 by way
of four examples.

• How to Use Functions: Briefly describes and illustrates how to use functions in TRACE32 by way of
four examples.

• Which return values of functions can be printed?: Provides background information.

• Groups of Functions (e.g. ACCESS Functions, ADDRESS Functions etc.): Describes the target-
related and tool-related functions, including source code examples, screenshots, and photos.
General Function Reference | 26©1989-2024 Lauterbach

Difference between Functions and Commands in TRACE32

In TRACE32, functions are not the same as commands. Commands are used to perform actions, e.g. open
a window, modify configuration settings, etc. Whereas functions are used to return information about hard
and software and convert formats and data.

Functions have trailing parentheses(), whereas commands are used without parentheses:

Functions and commands can have identical names to emphasize that they are related. But this is not
always the case, as the example below shows:

Next:

• Purpose of Functions

• How to Use Functions

Function() Command

SYStem.UP() SYStem.state

Related function and command Function() Command

identical names Analyzer.SIZE() Analyzer.SIZE <records>

not identical names STATE.RUN() Go
General Function Reference | 27©1989-2024 Lauterbach

Purpose of Functions

Functions in TRACE32 have two main purposes:

1. Return status information about:

- The target (see Example 1)

- The TRACE32 tools (see Example 2)

- The TRACE32 software (see Example 3)

2. Convert specific formats or data into other formats or data (see Example 4).

Example 1: Return Status of the Target

Returns the status of the target:

Example 2: Return Status of a TRACE32 Tool

Returns the status of a TRACE32 tool, here the serial cable:

Example 3: Return the Version Number

Returns the version number of the TRACE32 software:

Example 4: Convert a String

Convert a string to upper case:

PRINT STATE.RUN() ; Returns the status of the run-flag
; as a boolean.
; TRUE: cpu is running in the target
; (or is out of control).
; FALSE: cpu is not running.

PRINT VERSION.SERIAL.CABLE() ; Returns the serial number of
; the debug license
; (Nexus adapter or debug cable).

PRINT VERSION.SOFTWARE() ; Returns the version number of
; your TRACE32 installation.

PRINT SOFTWARE.VERSION() ; Alternative command

PRINT STRing.UPR("hello world") ; Converts the string to HELLO WORLD
General Function Reference | 28©1989-2024 Lauterbach

How to Use Functions

In TRACE32, you can use functions as follows:

1. Within PRACTICE scripts (see Example 1)

2. To parametrize commands (see Example 2)

3. Type them directly into the TRACE32 command line

- Example 3 points out the importance of the output commands PRINT and Data.Print

- Example 4 points out the importance of access class specifiers for address functions.

Example 1: In PRACTICE Scripts

Functions are normally used within PRACTICE scripts:

Example 2: As Parameters in Commands

Functions can be used to parametrize commands:

...
; verify the FLASH contents
Data.LOAD.COSMIC demo.h12 /DIFF
IF FOUND()

PRINT "Verify error after FLASH programming"
ELSE

PRINT "FLASH programming completed successfully"
...

; Get the value of register 13, and then dump the memory contents
; starting at this address

Data.dump Register(R13) ; Command: Data.dump
; Function Register() is used as command
; parameter.
; R13: Register 13 of ARM family chips
; Note: "R" is part of the register name.

; Here, the register name is AL.

Data.dump Register(AL) ; AL: Lower 8 bit of register AX of the
; x86 family.
General Function Reference | 29©1989-2024 Lauterbach

Example 3: Together with the Output Commands PRINT and Data.Print

You can type functions directly into the TRACE32 command line. In this case it is necessary to use an
additional output command like PRINT or Data.Print, depending on the return value of the function.

Example 4: Address Function and Their Access Class Specifiers

An address function, such as Data.Long(), always requires a parameter together with an access class
specifier. In the example below, the access class specifier is D for data memory. A plain integer value, such
as 0x1234ffff, without an access class specifier is not a valid address.

; Returns the current working directory.
PRINT "Working directory is: " OS.PresentWorkingDirectory()

; Returns the memory contents of a long value (32-bit) from the
; data memory (D:)
PRINT Data.Long(D:0x1234abc8)

; ’D:1024.’ is a valid, decimal address due to postfix "."
PRINT Data.Long(D:1024.)

; Fails because the address does not have a access class specifier.
PRINT Data.Long(0x1234ffff)

The access class specifier
is D (View menu > Dump)

For lists of target-specific
memory class specifiers, see
TRACE32 > Help menu >
Processor Architecture
Manual.

Simply search for “Access
Classes”.
General Function Reference | 30©1989-2024 Lauterbach

Which Return Values of Functions can be Printed?

The following return values of functions can be printed:

• Addresses

• ASCII values

• Boolean

• Numerical values:

- Binary

- Decimal

- Float

- Hex

• Ranges, address ranges, time ranges

• String

• Time values

Related Documents

For training material, refer to:

• Training PRACTICE

For more functions, refer to:

• PowerView Function Reference

• Stimuli Generator Function Reference
General Function Reference | 31©1989-2024 Lauterbach

ACCESS Functions

In This Section

See also

❏ ACCESS.isGUEST() ❏ ACCESS.isHYPERVISOR()

ACCESS.isGUEST() TRUE if access class belongs to guest
[build 90005 - DVD 02/2018]

Returns TRUE if the access class of the specified <address> belongs to a guest in the hypervisor
environment.

• For ARM, this is the non-secure access class (N: and related ones).

• For x86, this is the guest access class (G: and related ones).

• For PowerPC, this is the guest access class (G: and related ones).

Parameter Type: Address.

Return Value Type: Boolean.

Examples:

Syntax: ACCESS.isGUEST(<address>)

NOTE: If SYStem.Option.MACHINESPACES is set to ON, then the machine ID of an
address is the better criterion to determine whether the address belongs to a
guest machine or the hypervisor.
See function ADDRESS.isGUEST().

; on ARM, guest machines are usually running in non-secure mode, so
; guest addresses usually use access class N: and related.

PRINT ACCESS.isGUEST(N:0xC0000000) ; TRUE

PRINT ACCESS.isGUEST(H:0xC0000000) ; FALSE
General Function Reference | 32©1989-2024 Lauterbach

ACCESS.isHYPERVISOR() TRUE if access class belongs to hypervisor
[build 90005 - DVD 02/2018]

Returns TRUE if the access class belongs to the hypervisor in the hypervisor environment.

• For ARM, this is the hypervisor access class (H: and related ones).

• For x86, this is the host access class (H: and related ones).

• For PowerPC, this is the hypervisor access class (H: and related ones).

Parameter Type: Address.

Return Value Type: Boolean.

Examples:

Syntax: ACCESS.isHYPERVISOR(<address>)

NOTE: If SYStem.Option.MACHINESPACES is set to ON, then the machine ID of an
address is the better criterion to determine whether the address belongs to a
guest machine or the hypervisor.
See function ADDRESS.isGUEST().

; on ARM, the host machine which runs the hypervisor is usually running
; in hypervisor mode, so hypervisor addresses use access class H: and
; related
PRINT ACCESS.isHYPERVISOR(H:0xC0000000) ; TRUE

PRINT ACCESS.isHYPERVISOR(N:0xC0000000) ; FALSE

PRINT ACCESS.isHYPERVISOR(Z:0xC0000000) ; FALSE
General Function Reference | 33©1989-2024 Lauterbach

ADDRESS Functions

In This Section

See also

❏ ADDRESS.ACCESS() ❏ ADDRESS.ACCESS.CMP()
❏ ADDRESS.ACCESS.CMPSTRICT() ❏ ADDRESS.EXPANDACCESS()
❏ ADDRESS.INSTR.LEN() ❏ ADDRESS.isDATA()
❏ ADDRESS.isGUEST() ❏ ADDRESS.isHYPERVISOR()
❏ ADDRESS.isINTERMEDIATE() ❏ ADDRESS.isNONSECURE()
❏ ADDRESS.isNONSECUREEX() ❏ ADDRESS.isONCHIP()
❏ ADDRESS.isPHYSICAL() ❏ ADDRESS.isPROGRAM()
❏ ADDRESS.isSECURE() ❏ ADDRESS.isSECUREEX()
❏ ADDRESS.MACHINEID() ❏ ADDRESS.MAU()
❏ ADDRESS.OFFSET() ❏ ADDRESS.RANGE.BEGIN()
❏ ADDRESS.RANGE.END() ❏ ADDRESS.RANGE.SIZE()
❏ ADDRESS.SEGMENT() ❏ ADDRESS.SPACE()
❏ ADDRESS.STRACCESS() ❏ ADDRESS.WIDTH()

ADDRESS.ACCESS() Access class as ordinal number

Gets the access class as ordinal number from the address.

Parameter Type: Address.

Return Value Type: Hex value.

ADDRESS.ACCESS.CMP() Compare access classes
[build 110619 - DVD 02/2020]

Compares the access classes of <address1> and <address2> and returns TRUE if they are equal, FALSE
otherwise. Missing information in one address will be neglected and the comparison may still return TRUE if
the rest of the access class information is equal.

Parameter Type: Address.

Return Value Type: Boolean.

Syntax: ADDRESS.ACCESS(<address>)
ADDRESS.SPACE(<address>) (deprecated)

Syntax: ADDRESS.ACCESS.CMP(<address1>,<address2>)
General Function Reference | 34©1989-2024 Lauterbach

Examples:

ADDRESS.ACCESS.CMPSTRICT() Compare access classes, strict
[build 110619 - DVD 02/2020]

Compares the access classes of <address1> and <address2> and returns TRUE if they are equal, FALSE
otherwise. Missing information in one address will yield the comparison to be FALSE.

Parameter Type: Address.

Return Value Type: Boolean.

Examples:

ADDRESS.EXPANDACCESS() Fully qualified access class
[build 75614 - DVD 09/2016]

Converts an address combining the passed access class and the current CPU status. The returned access
class can be referred to as fully qualified.

Parameter Type: Address.

Return Value Type: Address.

In this example, the passed access classes (C and A) and the returned expanded access classes
(NSD and ANSD) belong to an ARM Cortex-A9 with TrustZone, which is in the non-secure supervisor
state.

PRINT ADDRESS.ACCESS.CMP(NP:0x10,NP:0x60) ; TRUE
PRINT ADDRESS.ACCESS.CMP(N:0x50,NP:0x60) ; TRUE
PRINT ADDRESS.ACCESS.CMP(ND:0x50,NP:0x50) ; FALSE

Syntax: ADDRESS.ACCESS.CMPSTRICT(<address1>,<address2>)

PRINT ADDRESS.ACCESS.CMP(NP:0x10,NP:0x60) ; TRUE
PRINT ADDRESS.ACCESS.CMP(N:0x50,NP:0x60) ; FALSE
PRINT ADDRESS.ACCESS.CMP(ND:0x50,NP:0x50) ; FALSE

Syntax: ADDRESS.EXPANDACCESS(<address>)

PRINT ADDRESS.EXPANDACCESS(C:0x0) ; returns NSD:0x0
PRINT ADDRESS.EXPANDACCESS(A:0x0) ; returns ANSD:0x0
General Function Reference | 35©1989-2024 Lauterbach

ADDRESS.INSTR.LEN() Length of instruction
[build 18929 - DVD 12/2009]

Returns the length in bytes of the instruction at a given address.

Parameter Type: Address.

Return Value Type: Hex value.

ADDRESS.isDATA() Check if memory class refers to data

Returns TRUE when the memory class of the address is referring to data.

Parameter Type: Address.

Return Value Type: Boolean.

Syntax: ADDRESS.INSTR.LEN(<address>)

Syntax: ADDRESS.isDATA(<address>)
General Function Reference | 36©1989-2024 Lauterbach

ADDRESS.isGUEST() TRUE if address is guest address
[build 90005 - DVD 02/2018]

Returns TRUE if the machine ID of the specified <address> belongs to a guest machine in the hypervisor
environment. The use of this function requires SYStem.Option.MACHINESPACES to be set to ON.

Parameter Type: Address. Remember to include the machine ID in the <address>.

Return Value Type: Boolean.

Examples:

ADDRESS.isHYPERVISOR() TRUE if address is hypervisor address
[build 90005 - DVD 02/2018]

Returns TRUE if the machine ID of the specified <address> belongs to the host machine where the
hypervisor is running. The use of this function requires SYStem.Option.MACHINESPACES to be set to ON.

Parameter Type: Address. Remember to include the machine ID in the <address>.

Return Value Type: Boolean.

Examples:

Syntax: ADDRESS.isGUEST(<address>)

SYStem.Option.MACHINESPACES ON

; if the machine ID of an address is > 0, it is a guest address -
; regardless of the access class.
PRINT ADDRESS.isGUEST(D:0x1:::0xC0000000) ; TRUE

PRINT ADDRESS.isGUEST(D:0x0:::0xC0000000) ; FALSE

Syntax: ADDRESS.isHYPERVISOR(<address>)

SYStem.Option.MACHINESPACES ON

; if the machine ID of an address is 0, it is a hypervisor address -
; regardless of the access class.
PRINT ADDRESS.isHYPERVISOR(D:0x0:::0xC0000000) ; TRUE

PRINT ADDRESS.isHYPERVISOR(D:0x1:::0xC0000000) ; FALSE
General Function Reference | 37©1989-2024 Lauterbach

ADDRESS.isINTERMEDIATE() Check if intermediate address

Returns TRUE when the memory class of the address is an intermediate address.

Parameter Type: Address.

Return Value Type: Boolean.

ADDRESS.isNONSECURE() TRUE if non-secure (TrustZone) access
32-bit and 64-bit ARM cores [build 77032 - DVD 02/16]

Checks if the address passed as parameter will force a non-secure (TrustZone) access.

Parameter Type: Address.

Return Value Type: Boolean.

Example:

Syntax: ADDRESS.isINTERMEDIATE(<address>)

Syntax: ADDRESS.isNONSECURE(<address>)

PRINT ADDRESS.isNONSECURE(AHB:0x0) ; returns FALSE()
PRINT ADDRESS.isNONSECURE(ZAHB:0x0) ; returns FALSE()
PRINT ADDRESS.isNONSECURE(NAHB:0x0) ; returns TRUE()
General Function Reference | 38©1989-2024 Lauterbach

ADDRESS.isNONSECUREEX() TRUE if non-secure access
32-bit and 64-bit ARM cores [build 77032 - DVD 02/2016]

Checks if the address passed as parameter combined with the current CPU status will cause a non-secure
(TrustZone) access. This function is a combination of ADDRESS.isNONSECURE() and
ADDRESS.EXPANDACCESS().

Parameter Type: Address.

Return Value Type: Boolean.

In example 1, the CPU is in non-secure state.

In example 2, the CPU is in secure state.

ADDRESS.MACHINEID() Extract machine ID
[build 90005 - DVD 02/2018]

Extracts the machine ID from the specified <address>.

Parameter Type: Address.

Return Value Type: Decimal value.

Examples:

Syntax: ADDRESS.isNONSECUREEX(<address>)

Register.Set NS 1 ; non-secure state
PRINT ADDRESS.isNONSECUREEX(AHB:0x0) ; returns TRUE()
PRINT ADDRESS.isNONSECUREEX(ZAHB:0x0) ; returns FALSE()
PRINT ADDRESS.isNONSECUREEX(NAHB:0x0) ; returns TRUE()

Register.Set NS 0 ; secure state
PRINT ADDRESS.isNONSECUREEX(AHB:0x0) ; returns FALSE()
PRINT ADDRESS.isNONSECUREEX(ZAHB:0x0) ; returns FALSE()
PRINT ADDRESS.isNONSECUREEX(NAHB:0x0) ; returns TRUE()

Syntax: ADDRESS.MACHINEID(<address>)

SYStem.Option.MACHINESPACES ON

ECHO ADDRESS.MACHINEID(D:0x3:::0xC0000000) ; returns 3.

ECHO ADDRESS.MACHINEID(H:0x0:::0xC0000000) ; returns 0.
General Function Reference | 39©1989-2024 Lauterbach

ADDRESS.MAU() Minimal addressable unit size (MAU)
[build 86067 - TRACE32 Release 09/2017]

Returns the minimal addressable unit size.

Parameter Type: Address.

Return Value Type: Decimal value.

In this example, the TRACE32 Instruction Set Simulator for ARM is used. The return value 1 means
that each address points to 1 byte in memory. The return value 4 means that each address points to 4
bytes in memory.

Syntax: ADDRESS.MAU(<address>)

Data.MAU(<address>) (deprecated)
[build 42354 - DVD 02/2013]

ADDRESS.WIDTH(<address>) (deprecated)
[build 20337 - DVD 12/2009]

ECHO ADDRESS.MAU(D:0x1) ;returns 1
Data.dump D:0x1 /Byte /NoAscii

ECHO ADDRESS.MAU(C15:0x1) ;returns 4
Data.dump C15:0x1 /NoAscii

A The address 0x1 of the access class SD: points to 1 byte in memory.

B The address 0x1 of the Coprocessor access class C15: points to 4 bytes in memory.

A B
General Function Reference | 40©1989-2024 Lauterbach

ADDRESS.OFFSET() Address without class

The <address>-object of TRACE32, which is often returned by other functions, always contains the class
and the numerical value of the specific memory address. The function ADDRESS.OFFSET() returns that
numerical value from <address>. The class is omitted.

Parameter Type: Address.

Return Value Type: Hex value.

Example:

ADDRESS.isONCHIP() TRUE if on-chip address area
C166

Returns TRUE when the address refers to on-chip address area.

Parameter Type: Address.

Return Value Type: Boolean.

ADDRESS.isPHYSICAL() TRUE if physical address

Returns TRUE when the memory class of the address is a physical address.
Useful to determine if TRANS.PHYSICAL() succeed in translating a logical to a physical address.

Parameter Type: Address.

Return Value Type: Boolean.

Syntax: ADDRESS.OFFSET(<address>)

PRINT ADDRESS.OFFSET(SR:0000FF8) ;returns 0FF8
PRINT ADDRESS.OFFSET(TRACK.ADDRESS())
PRINT ADDRESS.OFFSET(sieve) ;returns 2228

Syntax: ADDRESS.isONCHIP(<address>)

Syntax: ADDRESS.isPHYSICAL(<address>)
General Function Reference | 41©1989-2024 Lauterbach

ADDRESS.isPROGRAM() TRUE if program address

Returns TRUE when the memory class of the address is referring to program.

Parameter Type: Address.

Return Value Type: Boolean.

ADDRESS.isSECURE() TRUE if secure (TrustZone) access
32-bit and 64-bit ARM cores [build 77032 - DVD 02/2016]

Checks if the address passed as a parameter will force a Secure (TrustZone) access.

Parameter Type: Address.

Return Value Type: Boolean.

Example:

Syntax: ADDRESS.isPROGRAM(<address>)

Syntax: ADDRESS.isSECURE(<address>)

PRINT ADDRESS.isSECURE(AHB:0x0) ; returns FALSE()
PRINT ADDRESS.isSECURE(ZAHB:0x0) ; returns TRUE()
PRINT ADDRESS.isSECURE(NAHB:0x0) ; returns FALSE()
General Function Reference | 42©1989-2024 Lauterbach

ADDRESS.isSECUREEX() TRUE if secure access
32-bit and 64-bit ARM cores [build 77032 - DVD 02/2016]

Checks if the address passed as a parameter combined with the current CPU status will cause an Secure
(TrustZone) access. Basically this function is a combination of ADDRESS.isSECURE() and
ADDRESS.EXPANDACCESS().

Parameter Type: Address.

Return Value Type: Boolean.

In example 1, the CPU is in non-secure state.

In example 2, the CPU is in secure state.

Syntax: ADDRESS.isSECUREEX(<address>)

Register.Set NS 1 ; non-secure state
PRINT ADDRESS.isSECUREEX(AHB:0x0) ; returns FALSE()
PRINT ADDRESS.isSECUREEX(ZAHB:0x0) ; returns TRUE()
PRINT ADDRESS.isSECUREEX(NAHB:0x0) ; returns FALSE()

Register.Set NS 0 ; secure state
PRINT ADDRESS.isSECUREEX(AHB:0x0) ; returns TRUE()
PRINT ADDRESS.isSECUREEX(ZAHB:0x0) ; returns TRUE()
PRINT ADDRESS.isSECUREEX(NAHB:0x0) ; returns FALSE()
General Function Reference | 43©1989-2024 Lauterbach

ADDRESS.RANGE.BEGIN() Lowest address value of address range
[build 66601 - DVD 09/2015]

Returns the lowest address value from <addressrange>.

Parameter Type: Address range.

Return Value Type: Address.

Example:

ADDRESS.RANGE.END() Highest address value of address range
[build 66601 - DVD 09/2015]

Returns the highest address value from <addressrange>.

Parameter Type: Address range.

Return Value Type: Address.

Examples:

Syntax: ADDRESS.RANGE.BEGIN(<addressrange>)

PRINT ADDRESS.RANGE.BEGIN(P:0x1000--0x2000) ; returns P:0x1000
PRINT ADDRESS.RANGE.BEGIN(Var.RANGE(flags))
PRINT ADDRESS.RANGE.BEGIN(P:0x20..0x30||P:0x13++0x03) ; returns P:0x13

Syntax: ADDRESS.RANGE.END(<addressrange>)

PRINT ADDRESS.RANGE.END(P:0x1000--0x2000) // returns P:0x2000
PRINT ADDRESS.RANGE.END(Var.RANGE(flags))
PRINT ADDRESS.RANGE.END(P:0x20..0x30||P:0x13++0x03) // returns P:0x30
General Function Reference | 44©1989-2024 Lauterbach

ADDRESS.RANGE.SIZE() Size of address range
[build 80994 - DVD 02/2017]

Returns the size of an address range.

Parameter Type: Address range.

Return Value Type: Hex value.

Example: In this script, the start and end address of the HLL variable flags is calculated as well as the
size of its address range. The output to the AREA.view window is formatted with the PRINTF command.

Syntax: ADDRESS.RANGE.SIZE(<addressrange>)

PRIVATE &rg

&rg="flags"
PRINTF %COLOR.RED "%16s: %s" "address range of" "&rg"
PRINTF "%16s: %#!A" "start" ADDRESS.RANGE.BEGIN(Var.RANGE(&rg))
PRINTF "%16s: %#!A" "end" ADDRESS.RANGE.END(Var.RANGE(&rg))
PRINTF "%16s: %i bytes " "size" ADDRESS.RANGE.SIZE(Var.RANGE(&rg))
PRINTF %CONTinue "(%#x)" ADDRESS.RANGE.SIZE(Var.RANGE(&rg))

AREA.view
General Function Reference | 45©1989-2024 Lauterbach

ADDRESS.SEGMENT() Segment of an address
[build 22265 - DVD 04/2010]

Returns the segment (space ID) of an address.

Parameter Type: Address.

Return Value Type: Hex value.

Example:

ADDRESS.STRACCESS() Access class of an address
[build 51173 - DVD 02/2014]

Returns the access class of an address. Useful in combination with TRANS.PHYSICAL() to verify that the
translation was successful and the returned address is really physical or linear.

Parameter Type: Address.

Return Value Type: String.

Example:

Syntax: ADDRESS.SEGMENT(<address>)

PRINT ADDRESS.SEGMENT(D:0x012A:0xC00208A)

Syntax: ADDRESS.STRACCESS(<address>)

TRANSlation.Create 0--1000 9000
TRANSlation.ON

PRINT TRANS.PHYSICAL(vm:0) // returns AVM:9000 (for
 // architectures with MMU)

PRINT ADDRESS.OFFSET(TRANS.PHYSICAL(VM:0)) // returns 0x9000

PRINT ADDRESS.STRACCESS(TRANS.PHYSICAL(VM:0)) // returns "AVM:"
General Function Reference | 46©1989-2024 Lauterbach

Analyzer Functions

This figure provides an overview of the return values of some of the Analyzer functions. For descriptions of
the illustrated functions and the functions not shown here, see below.

Analyzer.THRESHOLD()

Analyzer.RECORDS()

Analyzer.STATE()

Analyzer.MODE()

Analyzer.TRACK.RECORD()

Analyzer.RECORD.TIME()

Analyzer.RECORD.DATA()

Analyzer.RECORD.ADDRESS()

Analyzer.SIZE()
General Function Reference | 47©1989-2024 Lauterbach

In This Section

See also

❏ Analyzer() ❏ Analyzer.CONFIG()
❏ Analyzer.CONFIG.POWERTRACE() ❏ Analyzer.CONFIG.POWERTRACE2()
❏ Analyzer.CONFIG.POWERTRACE3() ❏ Analyzer.CONFIG.POWERTRACESERIAL()
❏ Analyzer.CONFIG.POWERTRACESERIAL2() ❏ Analyzer.COUNTER.EVENT()
❏ Analyzer.COUNTER.TIME() ❏ Analyzer.DSEL()
❏ Analyzer.FIRST() ❏ Analyzer.FLOW.ERRORS()
❏ Analyzer.FLOW.FIFOFULL() ❏ Analyzer.FOCUS.EYE()
❏ Analyzer.ISCHANNELUP() ❏ Analyzer.MAXSIZE()
❏ Analyzer.MODE() ❏ Analyzer.PROBEREVISION()
❏ Analyzer.RECORD.ADDRESS() ❏ Analyzer.RECORD.DATA()
❏ Analyzer.RECORD.OFFSET() ❏ Analyzer.RECORD.TIME()
❏ Analyzer.RECORDS() ❏ Analyzer.REF()
❏ Analyzer.SIZE() ❏ Analyzer.STATE()
❏ Analyzer.THRESHOLD() ❏ Analyzer.TraceCONNECT()
❏ Analyzer.TRACK.RECORD() ❏ Analyzer.TRIGGER.TIME()

Analyzer() Check if Analyzer command group is available

Returns TRUE in the following cases:

• A TRACE32 trace hardware is connected (not TRACE32 CombiProbe and TRACE32 µTrace
(MicroTrace)).

• A TRACE32 Instruction Set Simulator is used.

• A TRACE32 Front-End is used to debug a virtual target that provide trace memory.

• A TRACE32 Front-End is used to debug a RTL simulations / emulations that provides trace
capability.

Return Value Type: Boolean.

Syntax: Analyzer()
Analyzer.CONFIG() (deprecated)
General Function Reference | 48©1989-2024 Lauterbach

Analyzer.CONFIG.<powertrace>() Check if specified PowerTrace connected
<

Returns TRUE if the connected TRACE32 tool includes the specified PowerTrace type, FALSE otherwise.

Return Value Type: Boolean.

Analyzer.COUNTER.EVENT() Get value of trigger program event counter
NEXUS MPC5XXX MDO8/MDO12/MDO16

The trigger unit allows to count events by using EVENTCOUNTERs. EVENTCOUNTERs have to be
declared in the trigger program by the following command:

Returns the current value of <counter_name> if the trigger program is loaded.

Parameter Type: String.

Return Value Type: Decimal value.

Syntax: Analyzer.CONFIG.<powertrace>()

<powertrace>: POWERTRACE | POWERTRACE2 | POWERTRACESERIAL |
POWERTRACE3

Full function
name only
required for
HELP.Index.

Analyzer.CONFIG.POWERTRACE()
Analyzer.CONFIG.POWERTRACE2()
Analyzer.CONFIG.POWERTRACESERIAL()
Analyzer.CONFIG.POWERTRACESERIAL2()
Analyzer.CONFIG.POWERTRACE3()

<powertrace> Description

POWERTRACE Returns TRUE in case of TRACE32 POWERTRACE / ETHERNET.

POWERTRACE2 Returns TRUE in case of TRACE32 POWERTRACE II.

POWERTRACESERIAL Returns TRUE in case of TRACE32 POWERTRACE SERIAL.

POWERTRACESERIAL2 Returns TRUE in case of TRACE32 POWERTRACE SERIAL II.

POWERTRACE3 Returns TRUE in case of TRACE32 POWERTRACE III.

Syntax: Analyzer.COUNTER.EVENT(<counter_name>)

EVENTCOUNTER <counter_name> [<event>]
General Function Reference | 49©1989-2024 Lauterbach

Analyzer.COUNTER.TIME() Get value of trigger program time counter

The trigger unit allows to count events by using TIMECOUNTERs. TIMECOUNTERs have to be declared in
the trigger program by the following command:

Returns the current value of <counter_name> if the trigger program is loaded.

Parameter Type: String.

Return Value Type: Time value.

Analyzer.DSEL() For internal usage only

Reserved for internal usage.

Return Value Type: String.

Analyzer.FIRST() Get record number of first trace record
[build 71062 - DVD 09/2016]

Returns the record number of the first record. The first record is the record with the lowest record number.

Return Value Type: Decimal value.

Analyzer.FLOW.ERRORS() Get number of flow errors / hard errors

Returns the number of flow errors / hard errors found while processing the trace recording.

Return Value Type: Decimal value.

Syntax: Analyzer.COUNTER.TIME(<counter_name>)

TIMECOUNTER <counter_name> [<time>]

Syntax: Analyzer.DSEL()

Syntax: Analyzer.FIRST()

Syntax: Analyzer.FLOW.ERRORS()
General Function Reference | 50©1989-2024 Lauterbach

Please be aware that the return value of this function is the accumulated count of events that were
encountered while processing the trace recording. All opened windows showing trace data contribute to this
value. The value is reset when a new trace recording is made, or when the Trace.FLOWSTART or
Trace.FLOWPROCESS command is executed.

The use of this function is only recommended if you want to find out if a specified part of a trace recording is
error free. The part to be analyzed can be defined using Trace.STATistic.FIRST and
Trace.STATistic.LAST. If the defined part is error free (and thus this function returns zero), the analysis
results are reliable as well.

Example 1: This script shows how to return only the number of flow errors and hard errors in the trace that
is currently visible within the Analyzer.List window. If you now scroll up or down in the Analyzer.List window
or increase the window size, more trace data will be decoded, and thus the number of errors returned by the
function may increase.

Example 2: This script shows how to obtain the exact number of flow errors in the whole trace recording.

Analyzer.FLOW.FIFOFULL() Get number of FIFO overflows

Returns the number of FIFO overflows found while processing the trace recording.

Return Value Type: Decimal value.

Please be aware that the return value of this function is the accumulated count of events that were
encountered while processing the trace recording. All opened windows showing trace data contribute to this
value. The value is reset when a new trace recording is made, or when the Trace.FLOWSTART or
Trace.FLOWPROCESS command is executed.

The use of this function is only recommended if you want to find out if a specified part of a trace recording is
error free. The part to be analyzed can be defined using Trace.STATistic.FIRST and
Trace.STATistic.LAST. If the defined part is error free (and thus this function returns zero), the analysis
results are reliable as well.

Analyzer.List

PRINT Analyzer.FLOW.ERRORS()

; scroll up or down in the window

PRINT Analyzer.FLOW.ERRORS()

Trace.Find FLOWERROR /ALL
PRINT FOUND.COUNT()

Syntax: Analyzer.FLOW.FIFOFULL()
General Function Reference | 51©1989-2024 Lauterbach

Example: This script shows how to obtain the exact number of FIFO overflows in the whole trace recording.

Analyzer.Find FIFOFULL /ALL
PRINT FOUND.COUNT()
General Function Reference | 52©1989-2024 Lauterbach

Analyzer.FOCUS.EYE() Check quality of data eye
PowerTrace Serial, Preprocessor AutoFocus II [build 33694 - DVD 02/2012]

Checks a data eye previously scanned by the Analyzer.TestFocusEye command against violations. This
function allows you to determine the quality of a data eye via a PRACTICE script, and not just through visual
inspection.

Parameter and Description: Use the following parameters to define the region of interest (ROI) that you
want to check within the data eye:

Return Value Type: Hex value.

Example: The function returns 0 if the data eye is clean, and it returns non-zero if there is anything in the
data eye. The last tested pattern is shown in the Analyzer.ShowFocusEye window.

Syntax: Analyzer.FOCUS.EYE(<channel>,<c_time>,<c_voltage>,<tm>,<am>,<n>)

<channel> Parameter Type: String. For a list of channel names, refer to the
Analyzer.ShowFocusEye command. To check all channels, use "all"

<c_time>,
<c_voltage>

Parameter Type: Float. Time is given on the x-axis, voltage is given on the
y-axis.
The intersection of the two values defines the center C of the ROI.

<tm> Parameter Type: Float. Time

<am> Parameter Type: Float. Voltage

<n> Parameter Type: Float. Changes the ROI from a rectangle to a hexagon.
Rectangle: n = 1.0
Hexagon: n > 1.0
The greater n, the wider the hexagon.
General Function Reference | 53©1989-2024 Lauterbach

Analyzer.ISCHANNELUP() Check if serial link is established
PowerTrace Serial, PREPROCESSOR SERIAL

Returns TRUE is the channel training was successful and the serial link is established. An established serial
link is the prerequisite for receiving trace data.

In the case of FALSE you have to repeat the channel training.

Return Value Type: Boolean.

LOCAL &val

;Check the quality of the data eye for channel TS
&val=Analyzer.FOCUS.EYE(TS,0.0,1.65,2.0,0.7,1.0)
IF &val==0
 PRINT "Data eye is OK"

;Check the quality of the data eye for all channels
PRINT Analyzer.FOCUS.EYE("all",3.0,0.9,4.0,0.5,2.0)

Syntax: Analyzer.ISCHANNELUP()

###
 # # # #
 # # +-------+ - - - - # - # ----
 # # / \ # # ^
 # + C + # Am
 #:# : \ / : #:# v
 # : # : +-------+ - - - - # : # ----
 # : # : : : : # : #
###
 | |
 |< Tm/n>|
 <- Tm ->
General Function Reference | 54©1989-2024 Lauterbach

Analyzer.MAXSIZE() Get max. size of trace buffer in records
[build 38323 - DVD 08/2012]

Returns the maximum size of the Analyzer trace buffer in records if a TRACE32 trace hardware is
connected.

Returns the current size of the Analyzer trace buffer in records if a TRACE32 Instruction Set Simulator or a
TRACE32 Front-End is used.

Return Value Type: Decimal value.

Analyzer.MODE() Get Analyzer recording mode

Returns the current recording mode of the analyzer.

Return Value Type: Decimal value.

Return Value and Description:

Analyzer.MODE.FLOW() Check if Analyzer operates as flowtrace
[Go to figure]

Returns TRUE if the analyzer operates as FlowTrace.

Return Value Type: Boolean.

Syntax: Analyzer.MAXSIZE()

Syntax: Analyzer.MODE()

0 Fifo mode

1 Stack mode

2 Leash mode

3 PIPE mode

4 RTS mode (real time profiling)

5 STREAM mode (endless trace)

Syntax: Analyzer.MODE.FLOW() (deprecated)
General Function Reference | 55©1989-2024 Lauterbach

Analyzer.PCIE.CONFIG() Value of register field from PCIe configuration
[build 97410 - DVD 09/2018]

Returns the value of the specified register field from the PCIe configuration space of the analyzer.

Parameter Type: String.

Return Value Type: Hex value.

Syntax: Analyzer.PCIE.CONFIG("<register_field>")

<register_
field>:

DeviceID | VendorID | STATus | CoMmanD | ClassCode | REVision |
HeaderType | BaseAddressRegister0 | BaseAddressRegister1 |
BaseAddressRegister2 | BaseAddressRegister3 | BaseAddressRegister4 |
BaseAddressRegister5 | SubsystemID | SubsystemVendorID |
MaxPayloadSizeSupported | MaxPayloadSize | MaxLinkSpeed |
MaxLinkWidth | LinkSpeed | LinkWidth
General Function Reference | 56©1989-2024 Lauterbach

Analyzer.PCIE.ISCONFIGURED() TRUE if prerequisites are fulfilled
[build 97410 - DVD 09/2018]

Returns TRUE if the analyzer configuration is complete, so that the PCIe link can be used for data transfer.

Return Value Type: Boolean.

Example 1: This script checks if the manual PCIe trace setup performed in the previous steps was
successful. The previous setup steps are not shown in this script.

Example 2: This script instructs TRACE32 to wait until the target operating system has successfully
configured the analyzer for PCIe trace.

Analyzer.PCIE.Register() Value of 32-bit register from PCIe configuration
[build 97410 - DVD 09/2018]

Returns the value of the specified 32-bit register from the PCIe configuration space of the analyzer. The
register offset is given in 32-bit increments.

Parameter Type: Decimal or hex or binary value. Range: 0. to 1023.

Return Value Type: Hex value.

Syntax: Analyzer.PCIE.ISCONFIGURED()

IF Analyzer.PCIE.ISCONFIGURED()==FALSE()
(
 IF Analyzer.ISCHANNELUP()==FALSE()
 ;PCIe hardware link is down
 ELSE
 ;PCIe link is up, but configuration is not complete
)

SCREEN.WAIT Analyzer.ISCHANNELUP()
SCREEN.WAIT Analyzer.PCIE.ISCONFIGURED()
SYStem.Mode.Attach
Break
...

Syntax: Analyzer.PCIE.Register(<register_offset>)
General Function Reference | 57©1989-2024 Lauterbach

Analyzer.PROBEREVISION() Get revision of StarCore NEXUS probe
StarCore

Returns the revision number of the NEXUS probe.The StarCore NEXUS probe is out of production since
2010.

Return Value Type: Decimal value.

Analyzer.RECORDS() Get number of used trace records
[Go to figure]

Returns the number of records in the Analyzer.

If the state is OFF and the current mode is STREAM, this function will block until all buffered data has been
received.

Return Value Type: Decimal value.

Analyzer.RECORD.ADDRESS() Get address recorded in trace record
[Go to figure]

Returns the address from the specified record of the Analyzer trace. If the specified record does not contain
an address C:0x0 is returned.

Parameter Type: Decimal value.

Return Value Type: Address.

Example 1:

Syntax: Analyzer.PROBEREVISION()

Syntax: Analyzer.RECORDS()

Syntax: Analyzer.RECORD.ADDRESS(<record_number>)

PRINT Analyzer.RECORD.ADDRESS(-9.) ;return value example: R:0x226C
General Function Reference | 58©1989-2024 Lauterbach

Example 2: This example shows how to return the address recorded in the reference record. The address
is then used to display the memory contents of the trace reference record in a Data.dump window.

In the Analyzer.List window, right-click another trace record, and then select Set Ref.
After you have set a new trace reference record, the Data.dump window updates accordingly because of
the Track option.

Analyzer.RECORD.DATA() Get data recorded in trace record
[Go to figure]

Returns the data from the specified record of the Analyzer trace. If the specified record does not contain
data the function returns 0FFFFFFFFFFFFFFFF.

Parameter Type: Decimal value.

Return Value Type: Hex value.

Analyzer.RECORD.OFFSET() Get address in trace record as number

Returns the number within the address from the specified record of the Analyzer trace. If the specified record
does not contain an address 0 is returned.

Parameter Type: Decimal value.

Return Value Type: Hex value.

Analyzer.List DEFault /Track ;open an Analyzer.List window
Analyzer.REF -11895. ;set this trace record as reference record
Analyzer.GOTO Analyzer.REF() ;go to the specified trace reference record

;get the address of the trace reference record, and then display the
;memory contents for this trace reference record in a Data.dump window
Data.dump Analyzer.RECORD.ADDRESS(Analyzer.REF()) /Track

Syntax: Analyzer.RECORD.DATA(<record_number>)

Syntax: Analyzer.RECORD.OFFSET(<record_number>)

PRINT Analyzer.RECORD.ADDRESS(-100.) ; prints NR:0xFFFF:0xC0014A08

PRINT Analyzer.RECORD.OFFSET(-100.) ; prints 0xC0014A08
General Function Reference | 59©1989-2024 Lauterbach

Analyzer.RECORD.TIME() Get timestamp of trace record
[build 38323 - DVD 08/2012]

Returns the timestamp of the specified record in fixed length format. The timestamp is relative to the trace
zero point. For details refer to Trace.ZERO.

If the record does not provide timing information (dummy record), the timestamp of the preceding record is
returned.

Parameter Type: Decimal value.

Return Value Type: Time value.

Example:

Syntax: Analyzer.RECORD.TIME(<record_number>)

Trace.List %TimeFixed TIme.ZERO DEFault /Track

PRINT Analyzer.RECORD.TIME(-119700.)
General Function Reference | 60©1989-2024 Lauterbach

Analyzer.REF() Get record number of reference record

The command Analyzer.REF allows to mark a trace record as reference record. The function returns the
record number of the reference record.

Return Value Type: Decimal value.

Analyzer.SIZE() Get current trace buffer size in records
[Go to figure]

Returns the current size of the trace buffer in records.

Return Value Type: Decimal value.

Analyzer.STATE() Get state of Analyzer
[Go to figure]

Returns the current state of the Analyzer. If the state is OFF and the current mode is STREAM, this function
will block until all buffered data has been received.

Return Value Type: Hex value.

Return Value and Description:

Syntax: Analyzer.REF()

Syntax: Analyzer.SIZE()

Syntax: Analyzer.STATE()

0 OFF state

1 Arm state

2 break state

3 trigger state

4 DISable state

5 Analyzer hardware not available.

9 OFF state, but data is still being processed (PIPE and RTS modes only)
General Function Reference | 61©1989-2024 Lauterbach

Analyzer.THRESHOLD() Get threshold voltage of parallel preprocessor
[Go to figure]

Returns the threshold voltage of the parallel preprocessor.

Return Value Type: Float.

Analyzer.TraceCONNECT() Name of trace sink of the SoC
[build 80222 - DVD Feb/2017]

Returns the name of the currently selected trace sink of the SoC. In case no trace-sink is selected/available,
the function returns NONE. The trace sink is selected with the <trace>.TraceCONNECT command.

Return Value Type: String.

Example: See Onchip.TraceCONNECT().

Syntax: Analyzer.THRESHOLD()

Syntax: Analyzer.TraceCONNECT()
General Function Reference | 62©1989-2024 Lauterbach

Analyzer.TRACK.RECORD() Get record number matching search
[Go to figure]

After a successful search operation, this function returns the record number.

Return Value Type: Decimal value.

Example: This example shows how to search for and return the record numbers of the first, second, and all
records of the symbol sieve.

Analyzer.TRIGGER.TIME() Time of trigger point in trace
[build 78297 - DVD 02/2017]

Returns the time of the trigger point in the trace.

Return Value Type: Time value.

Syntax: Analyzer.TRACK.RECORD()

; Finds the first occurrence of the symbol sieve
Trace.Find , Address sieve
; Returns the record number of the first occurrence
IF FOUND()
 PRINT Analyzer.TRACK.RECORD()

; Search for the next occurrence of the symbol sieve
Trace.Find ; Running the command without any arguments
 ; repeats the previous search
; Returns the record number of the next occurrence
IF FOUND()
 PRINT Analyzer.TRACK.RECORD()

Syntax: Analyzer.TRIGGER.TIME()
General Function Reference | 63©1989-2024 Lauterbach

Example:

;define trace trigger point at function entry of func20()
Break.Set func20 /TraceTrigger

;and trace a little bit longer
 Trace.TDelay 1%

;run program for trace recording
 ...

;show statistics +/-100 us around the trigger point at func20()
PRINT Analyzer.TRIGGER.TIME()
Trace.STATistic.FIRST Analyzer.TRIGGER.TIME()-100.us
Trace.STATistic.LAST Analyzer.TRIGGER.TIME()+100.us
Trace.STATistic.sYmbol
General Function Reference | 64©1989-2024 Lauterbach

ARM Function

ARMARCHVERSION() ARM architecture version of CPU
ARM debuggers [build 57602 - DVD 02/2015]

Returns the ARM architecture version of the selected CPU.

The parameter is optional (see table below).

Return Value Type: Decimal value.

Return Value and Description:

Syntax: ARMARCHVERSION(["<parameter>"])

<parameter>: minor
major

Parameter Return value Description

None 0x0 ARMv4 / ARM7

0x1 ARMv4 / ARM9

0x5 ARMv5

0x6 ARMv6

0x7 ARMv7

0x8 Armv8

0x8<x> Armv8.x, e.g. 0x81 for Armv8.1

0x9<x> Armv9.x, e.g. 0x91 for Armv9.1

minor Returns minor version number.
E.g. ARMARCHVERSION("minor") returns "0x1" for Armv8.1.

major Returns major version number.
E.g. ARMARCHVERSION("major") returns "0x8" for Armv8.1.
General Function Reference | 65©1989-2024 Lauterbach

Advanced Register Trace (ART) Functions

This figure provides an overview of the return values of some of the ART functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

In This Section

See also

❏ ART.FIRST() ❏ ART.MAXSIZE() ❏ ART.MODE() ❏ ART.RECORD.ADDRESS()
❏ ART.RECORD.OFFSET() ❏ ART.RECORD.TIME() ❏ ART.RECORDS() ❏ ART.REF()
❏ ART.SIZE() ❏ ART.STATE() ❏ ART.TRACK.RECORD()

ART.FIRST() Get record number of first trace record
[build 71062 - DVD 09/2016]

Returns the record number of the first record. The first record is the record with the lowest record number.

Return Value Type: Decimal value.

Syntax: ART.FIRST()

ART.MODE()

ART.SIZE()
ART.RECORDS()

ART.STATE()
General Function Reference | 66©1989-2024 Lauterbach

ART.MAXSIZE() Get max. size of trace buffer in records
[build 38323 - DVD 08/2012]

Returns the maximum possible size of the ART trace buffer in records.

Return Value Type: Decimal value.

ART.MODE() Get ART recording mode
 [Go to figure]

Returns the current recording mode of the ART.

Return Value Type: Decimal value.

Return Value and Description:

ART.RECORD.ADDRESS() Get address recorded in trace record
[build 38764]

Returns the sampled address (access class and offset) from the specified record.

Parameter Type: Decimal value.

Return Value Type: Address.

Syntax: ART.MAXSIZE()

Syntax: ART.MODE()

0 Fifo mode

1 Stack mode

Syntax: ART.RECORD.ADDRESS(<record_number>)
General Function Reference | 67©1989-2024 Lauterbach

ART.RECORD.OFFSET() Get address in trace record as number
[build 38764]

Returns the address-offset of the sampled address from the specified record.

Parameter Type: Decimal value.

Return Value Type: Hex value.

ART.RECORD.TIME() Get timestamp of trace record
[build 38764]

Returns the timestamp of the specified record. For an example, see Analyzer.RECORD.TIME().

Parameter Type: Decimal value.

Return Value Type: Time value.

ART.RECORDS() Get number of used trace records
[build 38323 - DVD 08/2012] [Go to figure]

Returns the number of records stored in the trace buffer.

Return Value Type: Decimal value.

ART.REF() Get record number of reference record
[build 38323 - DVD 08/2012]

The number of the selected reference record in the analyzer trace.

Return Value Type: Decimal value.

Syntax: ART.RECORD.OFFSET(<record_number>)

Syntax: ART.RECORD.TIME(<record_number>)

Syntax: ART.RECORDS()

Syntax: ART.REF()
General Function Reference | 68©1989-2024 Lauterbach

ART.SIZE() Get current trace buffer size in records
[build 38323 - DVD 08/2012] [Go to figure]

Returns the size of the trace buffer.

Return Value Type: Decimal value.

ART.STATE() Get state of ART trace
[build 38323 - DVD 08/2012] [Go to figure]

Returns the state of the ART trace.

Return Value Type: Hex value.

Return Value and Description:

ART.TRACK.RECORD() Get record number matching search
[build 38323 - DVD 08/2012]

After a successful search operation, this function returns the record number. For an example, see
Analyzer.TRACK.RECORD().

Return Value Type: Decimal value.

Syntax: ART.SIZE()

Syntax: ART.STATE()

0 OFF state

1 Arm state

2 break state

3 trigger state

4 DISable state

Syntax: ART.TRACK.RECORD()
General Function Reference | 69©1989-2024 Lauterbach

AUTOFOCUS Functions

In This Section

See also

❏ AUTOFOCUS() ❏ AUTOFOCUS.FREQUENCY()
❏ AUTOFOCUS.OK()

AUTOFOCUS() TRUE if AutoFocus preprocessor attached
[build 07808 - DVD 09/2007]

Returns TRUE if an AutoFocus preprocessor is attached.

Return Value Type: Boolean.

AUTOFOCUS.OK() TRUE if command execution successful
[build 23129, DVD 11/2010]

Returns TRUE if the last execution of the command Analyzer.AutoFocus or Analyzer.TestFocus was
successful.

Return Value Type: Boolean.

AUTOFOCUS.FREQUENCY() Frequency of trace-port clock
[build 23129, DVD 11/2010]

Returns the frequency of the trace-port clock detected by the last execution of the command
Analyzer.AutoFocus or Analyzer.TestFocus was successful.

Return Value Type: Decimal value.

Syntax: AUTOFOCUS()

Syntax: AUTOFOCUS.OK()

Syntax: AUTOFOCUS.FREQUENCY()
General Function Reference | 70©1989-2024 Lauterbach

AVX Functions

In This Section

See also

■ AVX ■ AVX512 ❏ AVX() ❏ AVX512()

AVX() Content of AVX register

Returns a 32-bit segment of the selected 256-bit AVX register. See also AVX command group.

Parameter Type: String.

Parameter and Description:

Return Value Type: Hex value.

Example: This demo script returns 32-bit values of the register YMM1 from the column 0 (bits 31 to 0)
and the column 7 (bits 255 to 224) of the AVX.view window.

Syntax: AVX(<register_name>.<column_number>)

<register_name> The register names are listed in the AVX.view window.

<column_number> The column numbers start at 0 and are read from right to left in the
AVX.view window. See example below.

A column k corresponds to the bit range (k · 32 + 31)-(k · 32),
where 0<=k<=7

AVX.view
AVX.Set YMM1 123 243 345 67 689 789 809 9009
PRINT "Register|Bit Range|Col.|Value"
PRINT " YMM1 | 31-0 | 0 | " AVX(YMM1.0) ;32-bit value from col. 0
PRINT " YMM1 | 255-224 | 7 | " AVX(YMM1.7) ;32-bit value from col. 7

A Register names. 0 - 7 Column numbers - from right to left - in the AVX.view window.

0127 3456
A

General Function Reference | 71©1989-2024 Lauterbach

AVX512() Content of AVX512 register

Returns a 32-bit segment of the selected 512-bit AVX512 register. See also AVX512 command group.

Parameter Type: String.

Parameter and Description:

Return Value Type: Hex value.

Syntax: AVX512(<register_name>.<column_number>)

<register_name> The register names are listed in the AVX512.view window.

<column_number> The column numbers start at 0 and are read from right to left in the
AVX512.view window.
For an example, refer to the related function AVX().

A column k corresponds to the bit range (k · 32 + 31)-(k · 32),
where 0<=k<=15
General Function Reference | 72©1989-2024 Lauterbach

Break Functions

In This Section

See also

❏ Break.Alpha.EXIST() ❏ Break.Beta.EXIST() ❏ Break.Charly.EXIST() ❏ Break.Program.EXIST()
❏ Break.ReadWrite.EXIST()

Break.Alpha.EXIST() TRUE if Alpha breakpoint exists
[build 75340 - DVD 09/2016]

Returns TRUE if an Alpha breakpoint exists.

Parameter Type: Address.

Return Value Type: Boolean.

Example:

Break.Beta.EXIST() TRUE if Beta breakpoint exist
[build 75340 - DVD 09/2016]

Returns TRUE if a Beta breakpoint exists.

Parameter Type: Address.

Return Value Type: Boolean.

Syntax: Break.Alpha.EXIST(<address>)

List.Mix ;optional step: display a listing

Break.Set func2 /Alpha ;set an Alpha breakpoint at the
 ;symbol 'func2'

PRINT Break.Alpha.EXIST(func2) ;returns TRUE, i.e. the Alpha breakpoint
 ;exists at the symbol 'func2'

Syntax: Break.Beta.EXIST(<address>)
General Function Reference | 73©1989-2024 Lauterbach

Break.Charly.EXIST() TRUE if Charly breakpoint exists
[build 75340 - DVD 09/2016]

Returns TRUE if a Charly breakpoint exists.

Parameter Type: Address.

Return Value Type: Boolean.

Break.Program.EXIST() TRUE if enabled program breakpoint exists
[build 85294 - DVD 09/2017]

Returns TRUE if an enabled program breakpoint exists at the given address location.

Parameter Type: Address.

Return Value Type: Boolean.

Break.ReadWrite.EXIST() TRUE if enabled data address breakpoint exists
[build 85294 - DVD 09/2017]

Returns TRUE if an enabled data address breakpoint (read, write, or read-write) exists at the given address
location.

Parameter Type: Address.

Return Value Type: Boolean.

Syntax: Break.Charly.EXIST(<address>)

Syntax: Break.Program.EXIST(<address>)

Syntax: Break.ReadWrite.EXIST(<address>)
General Function Reference | 74©1989-2024 Lauterbach

BMC Functions (Benchmark Counter)

In This Section

See also

■ BMC ❏ BMC.CLOCK()
❏ BMC.COUNTER() ❏ BMC.COUNTER.BYNAME()
❏ BMC.COUNTER.BYNAME.CORE() ❏ BMC.COUNTER.CORE()
❏ BMC.OVERFLOW() ❏ BMC.OVERFLOW.BYNAME()
❏ BMC.OVERFLOW.BYNAME.CORE() ❏ BMC.OVERFLOW.CORE()

BMC.CLOCK() Frequency of core clock
[build 72352 - DVD 09/2016]

Returns the frequency set with the BMC.CLOCK command.

Return Value Type: Decimal value.

BMC.COUNTER() Value of a benchmark counter

Returns the counter value of the benchmark counter with the specified index. See also BMC command
group. In a multicore environment, the BMC.COUNTER() function returns the accumulated value of all
cores.

Parameter Type: Decimal value.

Return Value Type: Hex value.

Example: For PMN3 use BMC.COUNTER(3).

Syntax: BMC.CLOCK()

Syntax: BMC.COUNTER(<counter_index>)

PRINT BMC.COUNTER(3) ;prints the result to the TRACE32 message line
General Function Reference | 75©1989-2024 Lauterbach

BMC.COUNTER.BYNAME() Value of a benchmark counter

Returns the counter value of the benchmark counter with the specified name. See also BMC command
group. In a multicore environment, the BMC.COUNTER.BYNAME() function returns the accumulated
value of all cores.

Parameter Type: String.

Return Value Type: Hex value.

Example: For ETM1 use BMC.COUNTER.BYNAME("ETM1").

BMC.COUNTER.CORE() Value of a benchmark counter

Returns the counter value of the benchmark counter of the specified core and index. See also BMC
command group.

Parameter and Description:

Return Value Type: Hex value.

Example: For PMN3 of core #1 use BMC.COUNTER.CORE(3, 1).

Syntax: BMC.COUNTER.BYNAME("<counter_name>")

;prints the result to the TRACE32 message line
PRINT BMC.COUNTER.BYNAME("ETM1")

Syntax: BMC.COUNTER.CORE(<counter_index>, <core_index>)

<counter_index> Parameter Type: Decimal value.

<core_index> Parameter Type: Decimal value.

;prints the result to the TRACE32 message line
PRINT BMC.COUNTER.CORE(3, 1)
General Function Reference | 76©1989-2024 Lauterbach

BMC.COUNTER.BYNAME.CORE() Value of a benchmark counter

Returns the counter value of the benchmark counter with the specified name. See also BMC command
group. In a multicore environment, the BMC.COUNTER.BYNAME.CORE() function returns the
accumulated value of all cores.

Parameter Type: String.

Return Value Type: Hex value.

Example: For PMN0 of core #1 use BMC.COUNTER.CORE("PMN0", 1).

BMC.OVERFLOW() TRUE if benchmark counter overflow
[build 72015 - DVD 08/2016]

Returns TRUE if the benchmark counter has overflown. In a multicore environment, the BMC.OVERFLOW
function returns the OR’ed overflow status of all cores.

Parameter Type: Decimal value.

Return Value Type: Boolean.

BMC.OVERFLOW.BYNAME() TRUE if benchmark counter overflow
[build 72015 - DVD 08/2016]

Returns TRUE if the benchmark counter has overflown. In a multicore environment, the
BMC.OVERFLOW.BYNAME() function returns the OR’ed overflow status of all cores.

Parameter Type: String.

Return Value Type: Boolean.

Syntax: BMC.COUNTER.BYNAME.CORE("<counter_name>", <core_index>)

;prints the result to the TRACE32 message line
PRINT BMC.COUNTER.BYNAME.CORE("PMN0", 1)

Syntax: BMC.OVERFLOW(<counter_index>)

Syntax: BMC.OVERFLOW.BYNAME(<counter_name>)
General Function Reference | 77©1989-2024 Lauterbach

BMC.OVERFLOW.CORE() TRUE if benchmark counter overflow
[build 72015 - DVD 08/2016]

Returns TRUE if the benchmark counter of the specified core has overflown.

Parameter and Description:

Return Value Type: Boolean.

BMC.OVERFLOW.BYNAME.CORE() TRUE if benchmark counter overflow
[build 72015 - DVD 08/2016]

Returns TRUE if the benchmark counter of the specified core has overflown.

Parameter and Description:

Return Value Type: Boolean.

Syntax: BMC.OVERFLOW.CORE(<counter_index>, <core_index>)

<counter_index> Parameter Type: Decimal value.

<core_index> Parameter Type: Decimal value.

Syntax: BMC.OVERFLOW.BYNAME.CORE("<counter_name>", <core_index>)

<counter_name> Parameter Type: String.

<core_index> Parameter Type: Decimal value.
General Function Reference | 78©1989-2024 Lauterbach

Boundary Scan Description Language (BSDL) Functions

In This Section

See also

■ BSDL ❏ BSDL.CHECK.BYPASS()
❏ BSDL.CHECK.FLASHCONF() ❏ BSDL.CHECK.IDCODE()
❏ BSDL.GetDRBit() ❏ BSDL.GetPortLevel()

BSDL.CHECK.BYPASS() Chain bypass test
[build 28569 - DVD 06/2011]

Executes a boundary scan BYPASS test and returns TRUE if it passes.

Return Value Type: Boolean.

BSDL.CHECK.FLASHCONF() Flash configuration test
[build 28569 - DVD 06/2011]

Checks the FLASH definition and the pin mapping for the boundary scan interface; returns TRUE, when
FLASH configuration has no errors.

Return Value Type: Boolean.

BSDL.CHECK.IDCODE() Chain IDCODE test
[build 28569 - DVD 06/2011]

Executes a boundary scan IDCODE test and returns TRUE if it passes.

Return Value Type: Boolean.

Syntax: BSDL.CHECK.BYPASS()

Syntax: BSDL.CHECK.FLASHCONF()

Syntax: BSDL.CHECK.IDCODE()
General Function Reference | 79©1989-2024 Lauterbach

BSDL.GetDRBit() Data register bit
[build 35348 - DVD 08/2012]

Returns the last read value of bit <bit_number> from chip <chip_number>. If the requested bit was not
read before, -1 is returned.

Parameter and Description:

Return Value Type: Decimal value.

BSDL.GetPortLevel() Port level value
[build 36947 - DVD 08/2012]

Returns the port level of <port_name> from chip <chip_number> from the last boundary scan capture.

Parameter and Description:

Return Value Type: Decimal value.

Return Value and Description:

Syntax: BSDL.GetDRBit(<chip_number>,<bit_number>)

<chip_number> Parameter Type: Decimal or hex or binary value. Number of IC in the
boundary scan chain. Range: 1. to <n>.

<bit_number> Parameter Type: Decimal or hex or binary value. Bit index of the current
data register. Range: 0. to <i>.

Syntax: BSDL.GetPortLevel(<chip_number>,"<port_name>")

<chip_number> Parameter Type: Decimal or hex or binary value. Number of IC in the
boundary scan chain. Range: 1. to <n>.

<port_name> Parameter Type: String. Valid port name from the BSDL file for the
specified <chip_number>.

0 Low signal level

1 High signal level

2 Unknown level (e.g. floating output port)

-1 Error
General Function Reference | 80©1989-2024 Lauterbach

CABLE Functions

In This Section

See also

❏ CABLE.GalvanicISOlation() ❏ CABLE.GalvanicISOlation.FIRMWARE()
❏ CABLE.GalvanicISOlation.SERIAL() ❏ CABLE.NAME()
❏ CABLE.SERIAL() ❏ CABLE.TWOWIRE()

CABLE.GalvanicISOlation() Cable has galvanic isolation
[build 81072 - DVD 02/2017]

Returns TRUE if the cable has galvanic isolation.

Return Value Type: Boolean.

CABLE.GalvanicISOlation.FIRMWARE() Adapter firmware version
[build 81097 - DVD 02/2017]

Return the firmware version of the galvanic isolation adapter as a string. The same string is also shown in
the VERSION.HARDWARE window. An empty string is returned if no adapter is plugged.

Return Value Type: String.

CABLE.GalvanicISOlation.SERIAL() Serial number of adapter
[build 81072 - DVD 02/2017]

Returns the serial number of the galvanic isolation adapter. The same serial number is also shown in the
VERSION.HARDWARE window. An empty string is returned if no adapter is plugged.

Return Value Type: String.

Syntax: CABLE.GalvanicISOlation()

Syntax: CABLE.GalvanicISOlation.FIRMWARE()

Syntax: CABLE.GalvanicISOlation.SERIAL()
General Function Reference | 81©1989-2024 Lauterbach

CABLE.NAME() Name of debug cable
[build 21341 - DVD 04/2010]

Returns the debug cable name. The same cable name is also shown in the VERSION.HARDWARE
window.

Return Value Type: String.

Example:

CABLE.SERIAL() Serial number of debug cable
[build 21341 - DVD 04/2010]

Returns the first serial number of the plugged debug cable. It is the same serial number that is also shown in
the VERSION.HARDWARE window.

Return Value Type: String.

CABLE.TWOWIRE() TRUE if two-wire debugging supported
[build 21341 - DVD 04/2010]

Returns TRUE if the used debug hardware supports two-wire debugging like cJTAG or SWD.

Return Value Type: Boolean.

Example:

Syntax: CABLE.NAME()

PRINT CABLE.NAME() ; Returns the cable name, e.g.:
 ; - OCDS Uni-Dir Debug Cable V0
 ; - ARM Debug Cable V4b

Syntax: CABLE.SERIAL()

Syntax: CABLE.TWOWIRE()

;Check if the cpu family is ARM. If not, the block is skipped.
IF CPUFAMILY()=="ARM"
(
 IF CABLE.TWOWIRE() ;DebugCable supports Serial Wire Debug (SWD)?
 SYStem.CONFIG SWD
)

General Function Reference | 82©1989-2024 Lauterbach

CACHE Functions

In This Section

The CACHE functions give access to the status data of all cache lines, e.g. Valid, Dirty tag address and
others. Cache lines are addressed by their Set and Way indices.

If the target processor implements an L1 Unified Cache (used for both instruction and data), use the
CACHE.IC functions to access the status information.

See also

■ CACHE ❏ CACHE.DC.DIRTY() ❏ CACHE.DC.DIRTYMASK() ❏ CACHE.DC.LRU()
❏ CACHE.DC.TAG() ❏ CACHE.DC.VALID() ❏ CACHE.DC.VALIDMASK() ❏ CACHE.IC.DIRTY()
❏ CACHE.IC.DIRTYMASK() ❏ CACHE.IC.LRU() ❏ CACHE.IC.TAG() ❏ CACHE.IC.VALID()
❏ CACHE.IC.VALIDMASK() ❏ CACHE.L2.DIRTY() ❏ CACHE.L2.DIRTYMASK() ❏ CACHE.L2.LRU()
❏ CACHE.L2.SHARED() ❏ CACHE.L2.SHAREDMASK() ❏ CACHE.L2.TAG() ❏ CACHE.L2.VALID()
❏ CACHE.L2.VALIDMASK() ❏ CACHE.L3.DIRTY() ❏ CACHE.L3.DIRTYMASK() ❏ CACHE.L3.LRU()
❏ CACHE.L3.TAG() ❏ CACHE.L3.VALID() ❏ CACHE.L3.VALIDMASK()

CACHE.DC.DIRTY() Dirty-flag of L1 Data Cache Line

Returns TRUE if the specified set/way of the data cache is DIRTY.

On processors with unified L1 cache, use CACHE.IC.DIRTY().

Parameter and Description:

Return Value Type: Boolean.

Syntax: CACHE.DC.DIRTY(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.
General Function Reference | 83©1989-2024 Lauterbach

CACHE.DC.DIRTYMASK() Dirty-flag mask of L1 Data Cache Line

Returns a value containing all DIRTY flags of the specified set/way of the data cache. Use for caches with
multiple DIRTY flags/sectors per cache line.

On processors with unified L1 cache, use CACHE.IC.DIRTYMASK().

Parameter and Description:

Return Value Type: Hex value.

CACHE.DC.LRU() LRU information of L1 Data Cache Line
[build 52317]

Returns the index of the least recently used (next to be replaced) way of the specified set. Only a few
processors provide this information.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

CACHE.DC.TAG() Address Tag of L1 Data Cache Line

Returns the address tag of the specified set/way of the data cache.

On processors with unified L1 cache, use CACHE.IC.TAG().

Parameter and Description:

Return Value Type: Boolean.

Syntax: CACHE.DC.DIRTYMASK(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Syntax: CACHE.DC.LRU(<set>)

Syntax: CACHE.DC.TAG(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.
General Function Reference | 84©1989-2024 Lauterbach

CACHE.DC.VALID() Valid-flag of L1 Data Cache Line

Returns TRUE if the specified set/way of the data cache is VALID.

On processors with unified L1 cache, use CACHE.IC.VALID().

Parameter and Description:

Return Value Type: Boolean.

CACHE.DC.VALIDMASK() Valid-flag mask of L1 Data Cache Line

Returns a value containing all VALID flags of the specified set/way of the data cache. Use for caches with
multiple valid flags/sectors per cache line.

 Use CACHE.IC.VALIDMASK() for systems with unified L1 cache.

Parameter and Description:

Return Value Type: Hex value.

Syntax: CACHE.DC.VALID(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Syntax: CACHE.DC.VALIDMASK(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.
General Function Reference | 85©1989-2024 Lauterbach

CACHE.IC.DIRTY() Dirty-flag of L1 Unified Cache Line

Returns TRUE if the specified set/way of the unified L1 cache is DIRTY. For instruction caches, the result is
always FALSE.

Parameter and Description:

Return Value Type: Boolean.

CACHE.IC.DIRTYMASK() Dirty-flag mask of L1 Unified Cache Line

For processors with unified L1 cache. Returns a value containing all DIRTY flags of the specified set/way of
the cache line, and zero for pure instruction caches. Use for caches with multiple dirty flags/sectors per
cache line.

Parameter and Description:

Return Value Type: Hex value.

CACHE.IC.LRU() LRU information of L1 Instruction Cache Line
[build 52317]

Returns the index of the least recently used (next to be replaced) way of the specified set. Only a few
processors provide this information.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Syntax: CACHE.IC.DIRTY(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Syntax: CACHE.IC.DIRTYMASK(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Syntax: CACHE.IC.LRU(<set>)
General Function Reference | 86©1989-2024 Lauterbach

CACHE.IC.TAG() Address Tag of L1 Instruction Cache Line

Returns the address tag of the specified set/way of the instruction (or unified) cache.

Parameter and Description:

Return Value Type: Hex value.

CACHE.IC.VALID() Valid-flag of L1 Instruction Cache Line

Returns TRUE if the specified set/way of the instruction (or unified) cache is VALID.

Parameter and Description:

Return Value Type: Boolean.

CACHE.IC.VALIDMASK() Valid-flag mask of L1 Instruction Cache Line

Returns a value containing all VALID flags of the specified set/way of the instruction (or unified) cache. Use
for caches with multiple valid flags/sectors per cache line.

Parameter and Description:

Return Value Type: Hex value.

Syntax: CACHE.IC.TAG(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Syntax: CACHE.IC.VALID(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Syntax: CACHE.IC.VALIDMASK(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.
General Function Reference | 87©1989-2024 Lauterbach

CACHE.L2.DIRTY() Dirty-flag of L2 Cache Line

Returns TRUE if the specified set/way of the L2 cache has the DIRTY flag set. If the cache ways are split up
in sectors, the result is true if at least one of the DIRTY flags is set.

Parameter and Description:

Return Value Type: Boolean.

CACHE.L2.DIRTYMASK() Dirty-flag mask of L2 Cache Line

Returns a value containing all DIRTY flags of the specified set/way of the L2 cache. Use for caches with
multiple dirty flags/sectors per cache line.

Parameter and Description:

Return Value Type: Hex value.

CACHE.L2.LRU() LRU information of L2 Cache Line
[build 52317]

Returns the index of the least recently used (next to be replaced) way of the specified set. Only a few
processors provide this information.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Syntax: CACHE.L2.DIRTY(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Syntax: CACHE.L2.DIRTYMASK(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Syntax: CACHE.L2.LRU(<set>)
General Function Reference | 88©1989-2024 Lauterbach

CACHE.L2.SHARED() Shared-flag of L2 Cache Line

Returns TRUE if the specified set/way of the L2 cache has the SHARED flag set. If the cache ways are split
up in sectors, the result is true if at least one of the SHARED flags is set.

Parameter and Description:

Return Value Type: Boolean.

CACHE.L2.SHAREDMASK() Shared-flag mask of L2 Cache Line

Returns a value containing all SHARED flags of the specified set/way of the L2 cache. Use for caches with
multiple shared flags/sectors per cache line.

Parameter and Description:

Return Value Type: Hex value.

CACHE.L2.TAG() Address Tag of L2 Cache Line

Returns the address tag of the specified set/way of the L2 cache.

Parameter and Description:

Return Value Type: Hex value.

Syntax: CACHE.L2.SHARED(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Syntax: CACHE.L2.SHAREDMASK(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Syntax: CACHE.L2.TAG(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.
General Function Reference | 89©1989-2024 Lauterbach

CACHE.L2.VALID() Valid-flag of L2 Cache Line

Returns TRUE if the specified set/way of the L2 cache has the VALID flag set. If the cache ways are split up
in sectors, the result is true if at least one of the VALID flags is set.

Parameter and Description:

Return Value Type: Boolean.

CACHE.L2.VALIDMASK() Valid-flag mask of L2 Cache Line

Returns a value containing all VALID flags of the specified set/way of the L2 cache. Use for caches with
multiple valid flags/sectors per cache line.

Parameter and Description:

Return Value Type: Hex value.

CACHE.L3.DIRTY() Dirty-flag of L3 Cache Line

Returns TRUE if the specified set/way of the L3 cache has the DIRTY flag set. If the cache ways are split up
in sectors, the result is true if at least one of the DIRTY flags is set.

Parameter and Description:

Return Value Type: Boolean.

Syntax: CACHE.L2.VALID(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Syntax: CACHE.L2.VALIDMASK(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Syntax: CACHE.L3.DIRTY(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.
General Function Reference | 90©1989-2024 Lauterbach

CACHE.L3.DIRTYMASK() Dirty-flag of L3 Cache Line

Returns a value containing all DIRTY flags of the specified set/way of the L3 cache. Use for caches with
multiple dirty flags/sectors per cache line.

Parameter and Description:

Return Value Type: Hex value.

CACHE.L3.LRU() LRU information of L3 Cache Line
[build 52317]

Returns the index of the least recently used (next to be replaced) way of the specified set. Only a few
processors provide this information.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

CACHE.L3.TAG() Address Tag of L3 Cache Line

Returns the address tag of the specified set/way of the L3 cache.

Parameter and Description:

Return Value Type: Hex value.

Syntax: CACHE.L3.DIRTYMASK(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Syntax: CACHE.L3.LRU(<set>)

Syntax: CACHE.L3.TAG(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.
General Function Reference | 91©1989-2024 Lauterbach

CACHE.L3.VALID() Valid-flag of L3 Cache Line

Returns TRUE if the specified set/way of the L3 cache has the VALID flag set. If the cache ways are split up
in sectors, the result is true if at least one of the VALID flags is set.

Parameter and Description:

Return Value Type: Boolean.

CACHE.L3.VALIDMASK() Valid-flag mask of L3 Cache Line

Returns a value containing all VALID flags of the specified set/way of the L3 cache. Use for caches with
multiple valid flags/sectors per cache line.

Parameter and Description:

Return Value Type: Hex value.

Syntax: CACHE.L3.VALID(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Syntax: CACHE.L3.VALIDMASK(<set>,<way>)

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.
General Function Reference | 92©1989-2024 Lauterbach

CAnalyzer Functions

This figure provides an overview of the return values of some of the CAnalyzer functions. For descriptions of
the illustrated functions and the functions not shown here, see below.

In This Section

See also

❏ CAnalyzer() ❏ CAnalyzer.BOTHCables()
❏ CAnalyzer.CableTYPE() ❏ CAnalyzer.DebugCable()
❏ CAnalyzer.FEATURE() ❏ CAnalyzer.FIRST()
❏ CAnalyzer.MAXSIZE() ❏ CAnalyzer.PIN()
❏ CAnalyzer.RECORD.ADDRESS() ❏ CAnalyzer.RECORD.DATA()
❏ CAnalyzer.RECORD.OFFSET() ❏ CAnalyzer.RECORD.TIME()
❏ CAnalyzer.RECORDS() ❏ CAnalyzer.REF()
❏ CAnalyzer.SIZE() ❏ CAnalyzer.STATE()
❏ CAnalyzer.TraceCLOCK() ❏ CAnalyzer.TraceCONNECT()
❏ CAnalyzer.TracePort() ❏ CAnalyzer.TRACK.RECORD()

CAnalyzer.STATE()

CAnalyzer.SIZE()
CAnalyzer.MAXSIZE()

CAnalyzer.RECORDS()

CAnalyzer.BOTHCables()
CAnalyzer.DebugCable()
CAnalyzer.TracePort()

hardware.COMBIPROBE()

A

CAnalyzer.CableTYPE()
ID.WHISKER()

B

General Function Reference | 93©1989-2024 Lauterbach

CAnalyzer() Check if CAnalyzer command group is available
[Go to figure]

Returns TRUE if a Compact Analyzer hardware is available, meaning that the CAnalyzer.* command group
and the <trace>.METHOD CAnalyzer selection can be used.

Refer to “CAnalyzer” in General Commands Reference Guide C, page 26 (general_ref_c.pdf) for more
information.

Return Value Type: Boolean.

CAnalyzer.BOTHCables() TRUE if both debug cables are plugged
[build 49264 - DVD 02/2014] [Go to figure]

Returns TRUE if both DebugCableA and DebugCableB are plugged to the CombiProbe or µTrace
(MicroTrace).

Return Value Type: Boolean.

CAnalyzer.CableTYPE() Type of adapter
[Go to figure]

Parameter Type: Decimal value.

Return Value Type: Decimal value.

Returns the type of adapter plugged to the Compact Analyzer hardware. This function is similar to the
function ID.WHISKER(), except for the following differences:

• It returns a decimal value instead of a hexadecimal value.

• In simulator mode or if the plugged whisker is LA-4509 COMBIPROBE-IN-MIPI34, it returns the
value 1.

• For the QuadProbe, it always returns 0.

Lauterbach recommends using ID.WHISKER() in new scripts.

Syntax: CAnalyzer()

Syntax: CAnalyzer.BOTHCables()

Syntax: CAnalyzer.CableTYPE(<int>)
General Function Reference | 94©1989-2024 Lauterbach

Example:

CAnalyzer.DebugCable() CombiProbe whisker cable is A or B
[build 49264 - DVD 02/2014] [Go to figure]

Returns which CombiProbe whisker cable is used for debugging: "A" or "B"

Return Value Type: String.

CAnalyzer.FEATURE() Query features of CAnalyzer hardware
[build 81635 - DVD 02/2017]

Returns whether the Lauterbach hardware that provides the CAnalyzer functionality supports a certain
feature. The return value of this function only depends on the Lauterbach hardware and possibly the
TRACE32 software version, not on any user settings or the target system.

The main use of this function is for scripts to avoid using commands that may be locked.

Parameter Type: String.

Return Value Type: Boolean.

Return Value and Description:

;return value 1 means that a standard whisker cable is plugged at
;connector A
PRINT CAnalyzer.CableTYPE(0)

Syntax: CAnalyzer.DebugCable()

Syntax: CAnalyzer.FEATURE(<feature>)

TRUE() Feature is supported by current hardware and software. This does not
imply that the feature is usable with the current target system.

FALSE() Feature is not supported or not known to the current software version.
General Function Reference | 95©1989-2024 Lauterbach

The following <feature> parameters are currently supported:

Example:

<feature> Description

SWV Hardware supports ARM Serial Wire Viewer / Serial Wire Output.

SWV.SAMPLE Hardware supports setting sample delays for individual bits of an SWV
transmission and also supports focus diagnostics (see
CAnalyzer.ShowFocus, implies SWV).

PTI Hardware supports any parallel trace port.

PTI.SAMPLE Hardware supports setting individual sample delays for individual data lines of
a parallel trace port and also supports focus diagnostics (see
CAnalyzer.ShowFocus, implies PTI).

PTI.TERMINATION Hardware supports parallel termination for the data lines of a parallel trace
port that can be controlled using the command CAnalyzer.TERMination
(implies PTI).

TPIU Hardware supports decoding and filtering options for ARM TPIU / CoreSight
trace ports (implies PTI).

TPIU.SAMPLE Shorthand for TPIU and PTI.SAMPLE.

TPIU.TERMINATION Shorthand for TPIU and PTI.TERMINATION.

STP Hardware supports decoding and filtering options for direct STM (STPv1 or
STPv2) output (implies PTI).

STP.SAMPLE Shorthand for STP and PTI.SAMPLE.

; Script produced by STORE * CAnalyzerFocus. To avoid "Command locked"
; error messages when executing this script on different hardware, all
; commands are guarded by explicit checks whether hardware support is
; available.

IF CAnalyzer()
(
 IF CAnalyzer.FEATURE(TPIU.SAMPLE)
 (
 CAnalyzer.SAMPLE D0 -1.555
 CAnalyzer.SAMPLE D1 -2.177
 CAnalyzer.SAMPLE D2 -2.177
 CAnalyzer.SAMPLE D3 -1.866
)
 CAnalyzer.THreshold 1.3
 IF CAnalyzer.FEATURE(TPIU.TERMination)
 (
 CAnalyzer.TERMination ON
)
)

General Function Reference | 96©1989-2024 Lauterbach

CAnalyzer.FIRST() Get record number of first trace record
[build 71062 - DVD 09/2016]

Returns the record number of the first record. The first record is the record with the lowest record number.

Return Value Type: Decimal value.

CAnalyzer.MAXSIZE() Get max. size of trace buffer in records
[Go to figure]

Returns the maximum possible size of the Compact Analyzer trace buffer in records (value depends on the
currently selected tracing mode, too).

Return Value Type: Decimal value.

Syntax: CAnalyzer.FIRST()

Syntax: CAnalyzer.MAXSIZE()
General Function Reference | 97©1989-2024 Lauterbach

CAnalyzer.PIN() Status of trace pins
[build 62704 - DVD 09/2015]

Returns the status of trace pins as binary.

Parameter Type: String.

Return Value Type: Binary value.

CAnalyzer.RECORD.ADDRESS() Get address recorded in trace record
[build 38764]

Returns the sampled address (access class and offset) from the specified record. For an example, see
Analyzer.RECORD.ADDRESS().

Parameter Type: Decimal value.

Return Value Type: Address.

CAnalyzer.RECORD.DATA() Get data recorded in trace record
[build 38764]

Returns the sampled data of the specified record.

Parameter Type: Decimal value.

Return Value Type: Hex value.

Syntax: CAnalyzer.PIN(<pin_name>)

Syntax: CAnalyzer.RECORD.ADDRESS(<record_number>)

Syntax: CAnalyzer.RECORD.DATA(<record_number>)
General Function Reference | 98©1989-2024 Lauterbach

CAnalyzer.RECORD.OFFSET() Get address in trace record as number

Returns the address-offset of the sampled address from the specified record.

Parameter Type: Decimal value.

Return Value Type: Hex value.

CAnalyzer.RECORD.TIME() Get timestamp of trace record
[build 38764]

Returns the timestamp of the specified record. For an example, see Analyzer.RECORD.TIME().

Parameter Type: Decimal value.

Return Value Type: Time value.

CAnalyzer.RECORDS() Get number of used trace records
[Go to figure]

Returns the number of records in the Compact Analyzer.

If the state is OFF and the current mode is STREAM, this function will block until all buffered data has been
received.

Return Value Type: Decimal value.

CAnalyzer.REF() Get record number of reference record

Returns the number of the selected reference record in the Compact Analyzer trace.

Return Value Type: Decimal value.

Syntax: CAnalyzer.RECORD.OFFSET(<record_number>)

Syntax: CAnalyzer.RECORD.TIME(<record_number>)

Syntax: CAnalyzer.RECORDS()

Syntax: CAnalyzer.REF()
General Function Reference | 99©1989-2024 Lauterbach

CAnalyzer.SIZE() Get current trace buffer size in records
[Go to figure]

Returns the actual defined logical size of the Compact Analyzer trace buffer in records.

Return Value Type: Decimal value.

CAnalyzer.STATE() Get state of Compact Analyzer
Go to figure]

Returns the state of the Compact Analyzer.

If the state is OFF and the current mode is STREAM, this function will block until all buffered data has been
received.

Return Value Type: Hex value.

Return Value and Description:

Syntax: CAnalyzer.SIZE()

Syntax: CAnalyzer.STATE()

0 OFF state

1 Arm state

2 break state

3 trigger state

4 DISable state

8 SPY state

9 OFF state, but data is still being processed (PIPE and RTS modes only)
General Function Reference | 100©1989-2024 Lauterbach

CAnalyzer.TraceCLOCK() Get trace port frequency
[build 62692 - DVD 09/2015]

Get the current value of the CAnalyzer.TraceCLOCK setting. This is useful to query the SWV baud rate
detected by the CAnalyzer.AutoFocus command from a PRACTICE script.

If the frequency was not yet set or automatic detection was unsuccessful, a negative value is returned.
Otherwise, the frequency is returned in Hz.

Return Value Type: Decimal value.

Example 1: Print the detected trace clock after automatic detection

Example 2: A script to automatically find a suitable SWV prescaler is included with your TRACE32
installation. To access this script, run the following command

Syntax: CAnalyzer.TraceCLOCK()

; Set the trace output to Serial Wire Viewer mode
TPIU.PortType SWV

; Perform automatic rate detection
CAnalyzer.AutoFocus

IF CAnalyzer.TraceCLOCK()>=0.
(
 PRINT "Detected baud rate is " \
 FORMAT.FLOAT(0,3,CAnalyzer.TraceCLOCK()/1.0e6) \
 " MHz."
)

PSTEP ~~/demo/arm/etc/serial_wire_viewer/swv_autocalibration.cmm
General Function Reference | 101©1989-2024 Lauterbach

CAnalyzer.TraceCONNECT() Name of trace sink of the SoC
[build 80222 - DVD Feb/2017]

Returns the name of the currently selected trace sink of the SoC. In case no trace-sink is selected/available,
the function returns NONE. The trace sink is selected with the <trace>.TraceCONNECT command.

Return Value Type: String.

Example: See Onchip.TraceCONNECT().

CAnalyzer.TracePort() CombiProbe whisker cable is A or B
[build 49264 - DVD 02/2014] [Go to figure]

Returns which CombiProbe whisker cable is used for tracing: "A" or "B"

Return Value Type: String.

CAnalyzer.TRACK.RECORD() Get record number matching search

After a successful search operation, this function returns the record number. For an example, see
Analyzer.TRACK.RECORD().

Return Value Type: Decimal value.

Syntax: CAnalyzer.TraceCONNECT()

Syntax: CAnalyzer.TracePort()

Syntax: CAnalyzer.TRACK.RECORD()
General Function Reference | 102©1989-2024 Lauterbach

CERBEURS Functions

CERBERUS.IOINFO() IOINFO of Cerberus module
TriCore [build 66413 - DVD 02/2016]

Returns the IOINFO of the Cerberus module.

Return Value Type: Hex value.

CERBERUS.IOINFO.IFLCK() TRUE if IF_LCK bit in Cerberus INONFO set
TriCore [build 66413 - DVD 02/2016]

Returns TRUE if the IF_LCK bit in the Cerberus IOINFO is set, FALSE otherwise.

Return Value Type: Boolean.

Syntax: CERBERUS.IOINFO()

Syntax: CERBERUS.IOINFO.IFLCK()
General Function Reference | 103©1989-2024 Lauterbach

CHIP Functions

CHIP.EmulationDevice() TRUE if emulation device
[build 74844 - DVD 09/2016]

For PowerPC: This function returns TRUE if an Emulation Device was detected.

For TriCore/PCP/GTM/C166/XC2000ED: This function returns TRUE if an Emulation Device was selected
in the CPU list, e.g. TC1797ED, TC275TE.

Return Value Type: Boolean.

CHIP.STEPping() Major silicon step of an TriCore AURIX device
TriCore [build 49713 - DVD 02/2014]

Returns the major silicon step of an TriCore AURIX device.

Return Value Type: String.

Syntax: CHIP.EmulationDevice()

Syntax: CHIP.STEPping()
General Function Reference | 104©1989-2024 Lauterbach

CIProbe Functions (Analog Probe for CombiProbe or µTrace)

In This Section

See also

❏ CIProbe() ❏ CIProbe.ADC.ENABLE() ❏ CIProbe.ADC.SHUNT() ❏ CIProbe.MAXSIZE()
❏ CIProbe.RECORDS() ❏ CIProbe.SIZE() ❏ CIProbe.STATE() ❏ CIProbe.TRACK.RECORD()

CIProbe() TRUE if Compact Analyzer hardware

Returns TRUE if a Compact Analyzer (CombiProbe or µTrace (MicroTrace)) hardware is plugged and used
with a logic analyzer/analog probe.

Return Value Type: Boolean.

CIProbe.ADC.ENABLE() TRUE if channel is enabled

Returns TRUE if the specified analog channel of the Analog Probe is enabled.

Return Value Type: Boolean.

CIProbe.ADC.SHUNT() Get shunt-resistor value

Returns the shunt-resistor value of the specified current measurement <channel> of the Analog Probe.

Return Value Type: Float.

Syntax: CIProbe()

Syntax: CIProbe.ADC.ENABLE(<channel>)

Syntax: CIProbe.ADC.SHUNT(<channel>)
General Function Reference | 105©1989-2024 Lauterbach

CIProbe.MAXSIZE() Get max. size of trace buffer in records
[build 38323 - DVD 08/2012]

Returns the maximum size of the Compact Analyzer (CombiProbe) trace buffer, which is assigned to the
CIProbe, in records.

Return Value Type: Decimal value.

CIProbe.RECORDS() Get number of used trace records

The number of records currently stored in the trace buffer.

Return Value Type: Decimal value.

CIProbe.SIZE() Get current trace buffer size in records
[build 38323 - DVD 08/2012]

Returns the actual defined logical size of the Compact Analyzer (CombiProbe) trace buffer which is
assigned to the CIProbe, in records.

Return Value Type: Decimal value.

Syntax: CIProbe.MAXSIZE()

Syntax: CIProbe.RECORDS()

Syntax: CIProbe.SIZE()
General Function Reference | 106©1989-2024 Lauterbach

CIProbe.STATE() Get state of Compact Analyzer for CIProbe

Returns the state of the Compact Analyzer for CIProbe.

Return Value Type: Hex value.

Return Value and Description:

CIProbe.TRACK.RECORD() Get record number matching search

After a successful search operation, this function returns the record number. For an example, see
Analyzer.TRACK.RECORD().

Return Value Type: Decimal value.

Syntax: CIProbe.STATE()

0 OFF state

1 Arm state

2 break state

3 trigger state

4 DISable state

Syntax: CIProbe.TRACK.RECORD()
General Function Reference | 107©1989-2024 Lauterbach

CMI Function

CMIBASE() Base addresses of CMI modules
[build 58596]

Returns the base address of the primary or secondary CMI module. A base address is set with the
command SYStem.CONFIG.CMI.Base.

Parameter Type: Decimal value.

Return Value Type: Address.

Syntax: CMIBASE(<instance>)

<instance>: 1. | 2.
General Function Reference | 108©1989-2024 Lauterbach

COMPonent Functions

This figure provides an overview of the return values of the COMPonent functions. For descriptions of the
illustrated functions, see below.

In This Section

See also

❏ COMPonent.AVAILABLE() ❏ COMPonent.BASE() ❏ COMPonent.NAME() ❏ COMPonent.TYPE()

COMPonent.AVAILABLE() TRUE if debug/trace peripherals available on
CPU

[Go to figure]

Returns TRUE if the specified debug/trace peripheral <component_name> is available on this CPU.

Parameter Type: String.

Return Value Type: Boolean.

Example:

Syntax: COMPonent.AVAILABLE("<component_name>")

; set up base address of ETB1 and make it available
SYStem.CONFIG.ETB1.Base 0x123

; prints TRUE
PRINT COMPonent.AVAILABLE("ETB1")

COMPonent.AVAILABLE()

COMPonent.BASE()

COMPonent.NAME()
General Function Reference | 109©1989-2024 Lauterbach

COMPonent.BASE() Base address of debug/trace peripherals
[Go to figure]

Returns the base address for the specified debug/trace peripheral <component_name> and <core>.

Parameter and Description:

Return Value Type: Address.

Example:

COMPonent.NAME() User-defined name of debug/trace peripherals
[build 94361 - DVD 09/2018] [Go to figure]

Returns the user-defined name for the specified debug/trace peripheral <component_name> and <core>, if
a name was defined for that component with the command SYStem.CONFIG.<component>.Name.

Parameter and Description:

Return Value Type: String. An empty string is returned if the component does not exist or has no user-
defined name.

Syntax: COMPonent.BASE("<component_name>",<core>)

<component_name> Parameter Type: String.

<core> Parameter Type: Decimal value.
In case <core> is -1, the current core is used.

; set up base address of ETB1
SYStem.CONFIG.ETB1.Base 0x123

; print offset of base address (123)
PRINT ADDRESS.OFFSET(COMPonent.BASE("ETB1",-1))

Syntax: COMPonent.NAME("<component_name>",<core>)

<component_name> Parameter Type: String.

<core> Parameter Type: Decimal value.
In case <core> is -1, the current core is used.
General Function Reference | 110©1989-2024 Lauterbach

Example:

COMPonent.TYPE() Type of debug/trace peripherals
[build 95283 - DVD 09/2018]

Returns the user-defined type for the specified debug/trace peripheral <component_name>.

Parameter Type: String.

Return Value Type: String. An empty string is returned if the component does not exist.

COMPonentNAME() Name of debug/trace peripheral
[build 169044 - DVD 09/2024]

Returns the name of the n-th component of the specified <component_type>, where n is the given <index>.

Parameter and Description:

Return Value Type: String.

; assign a user-defined name to the 1st CoreSight Funnel
SYStem.CONFIG.FUNNEL1.Name "STM-Funnel"

; print name of the 1st Funnel
ECHO COMPonent.NAME("FUNNEL1",-1)

Syntax: COMPonent.TYPE("<component_name>")

Syntax: COMPonentNAME("<component_type>",<index>)

<component_type> Parameter Type: String.

<index> Parameter Type: Decimal value.
0 <= index < COMPonentNUMBER("<component_type>")
General Function Reference | 111©1989-2024 Lauterbach

Example:

COMPonentNUMBER() Number of valid debug/trace peripherals
[build 169044 - DVD 09/2024]

Returns the count of valid components belonging to the specified type <component_type>.

Parameter Type: String.

Return Value Type: Decimal value.

Example:

SYStem.CONFIG.ETB1.Base APB:0x4
SYStem.CONFIG.ETB2.Base APB:0x8
SYStem.CONFIG.ETB5.Base APB:0xC
&i=0.
RePeaT COMPonentNUMBER("ETB")
(
 PRINT "base address of " COMPonentNAME("ETB", &i) " is " \

COMPonent.BASE(COMPonentNAME("ETB", &i), -1.)
 &i=&i+1.
)

Syntax: COMPonentNUMBER("<component_type>")

SYStem.CONFIG.ETB1.Base APB:0x4
SYStem.CONFIG.ETB2.Base APB:0x8
SYStem.CONFIG.ETB5.Base APB:0xC
PRINT COMPonentNUMBER("ETB") " configured ETB components"
; prints “3 configured ETB components” to AREA
General Function Reference | 112©1989-2024 Lauterbach

CORE Functions

These figures provide an overview of the return values of some of the functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

In This Section

See also

■ CORE ❏ CONFIGNUMBER()
❏ CORE() ❏ CORE.ISACTIVE()
❏ CORE.ISASSIGNED() ❏ CORE.LOGICALTOPHYSICAL()
❏ CORE.NAMES() ❏ CORE.NUMBER()
❏ CORE.PHYSICALTOLOGICAL() ❏ CORENAME()
❏ CORENUMBER()

CONFIGNUMBER()

CORE.NUMBER()

CORE() The same values as in the CORE.SHOWACTIVE window (left)

SYStem.CONFIG.CoreNumber 6. informs
TRACE32 that this multicore chip has six cores.
(The right arrow button is deactivated at core 6.)
General Function Reference | 113©1989-2024 Lauterbach

CONFIGNUMBER() Number of cores configured in TRACE32
[build 34251 - DVD 02/2012] [Go to figure]

Returns the number of cores as set by the command SYStem.CONFIG.CoreNumber.

Return Value Type: Decimal value.

Example:

CORE() Get the selected core
[Go to figure]

Returns the core selected with the CORE.select or CORE.List command.

Return Value Type: String.

Syntax: CONFIGNUMBER()

;Inform TRACE32 about the total number of cores of a multicore chip
SYStem.CONFIG.CoreNumber 6.

;Specify the location of the debug registers (CoreSight ARM only)
SYStem.CONFIG COREBASE 100, 200, 300, 400, 500, 600

;Start core assignment at this <core> of this <chip>
SYStem.CONFIG.CORE 1. 1.

;- The cores 1, 2, 4, 5 (= four cores) are assigned to the TRACE32
; PowerView GUI
;- The cores 3 and 6 are skipped (= two cores)
CORE.ASSIGN 1. 2. 4. 5.

SYStem.Up

;Open the configuration window.
SYStem.CONFIG.state /Jtag ;When clicking the right arrow button on
 ;the JTAG tab, you cannot go beyond core 6.

;Returns 6 because you have informed TRACE32 that this multicore
;chip has 6 cores.
PRINT CONFIGNUMBER()

Syntax: CORE()
General Function Reference | 114©1989-2024 Lauterbach

CORE.ISACTIVE() TRUE if this core is active
[build 73978 - DVD 09/2016]

Returns TRUE if the specified core is active, FALSE if the core is inactive.

Parameter Type: String. If the <core> consists of just a number, then append a dot; see example 2. The
core names are displayed in the Cores drop-down list of the state line and in the CORE.SHOWACTIVE
window. If the string is empty, then the state of the currently selected core is returned.

Return Value Type: Boolean.

Example 1: This script line shows how to specify a core name in a big.LITTLE system

Example 2: This script line shows how to specify a core name in an SMP system

Example 3:

Syntax: CORE.ISACTIVE("<core>")

PRINT CORE.ISACTIVE("1b") ;prints TRUE to the message line if the core
 ;named "1b" is active

PRINT CORE.ISACTIVE("3.") ;prints TRUE to the message line if core
 ;number 3 is active
 ;remember to append a dot to the core number

PRINT CORE.ISACTIVE(CORE.NAMES(5.))
General Function Reference | 115©1989-2024 Lauterbach

CORE.ISASSIGNED() TRUE if physical core is assigned to debug session
[build 65779 - DVD 09/2015]

Returns TRUE if a physical core is assigned to the current debug session, FALSE otherwise. To assign
cores to TRACE32, use CORE.ASSIGN.

Parameter and Description:

Return Value Type: Boolean.

Example:

Syntax: CORE.ISASSIGNED(<core_number>)

<core_number> Parameter Type: Decimal value. Number of a physical core.
Range: 1. <= core_number <=CONFIGNUMBER()
• Min.: 1.
• Max.: Return value of CONFIGNUMBER()

;The physical cores 1, 3, 5 are assigned to the debug session.
;The other cores are skipped.
CORE.ASSIGN 1. 3. 5.

SYStem.Up

;Returns FALSE in this example because the physical core 2 was skipped.
IF CORE.ISASSIGNED(2.)==TRUE()
(
 PRINT CORE.PHYSICALTOLOGICAL(2)
)

General Function Reference | 116©1989-2024 Lauterbach

CORE.LOGICALTOPHYSICAL() This is the physical core number
[build 65779 - DVD 09/2015]

Returns the physical core number of a logical core.

Parameter and Description:

Return Value Type: Decimal value.

Return Value and Description:

Example:

See also: CORE.PHYSICALTOLOGICAL(), CORE.ISASSIGNED()

Syntax: CORE.LOGICALTOPHYSICAL(<core_number>)

<core_number> Parameter Type: Decimal value. Core number of a logical core.
Range: 0. <= core_number <= CORE.NUMBER()
• Min.: 0.
• Max.: Return value of CORE.NUMBER()-1.

1 ... <n> Number of the physical core. The highest number <n> equals the return
value of CONFIGNUMBER().

Error message The error message “value too large” is displayed if <core_number> is out
of bounds.

;The physical cores 1, 2, 3, 4 are assigned to the debug session.
CORE.ASSIGN 1. 2. 3. 4.

SYStem.Up

PRINT CORE.LOGICALTOPHYSICAL(0.) CORE.LOGICALTOPHYSICAL(1.)
PRINT CORE.LOGICALTOPHYSICAL(2.) CORE.LOGICALTOPHYSICAL(3.)
;Result:
;The logical core numbers 0, 1, 2, 3 correspond to
;the physical core numbers 1, 2, 3, 4
General Function Reference | 117©1989-2024 Lauterbach

CORE.NAMES() Physical core names assigned to TRACE32
[build 73978 - DVD 09/2016]

Retrieves all physical core names of the SMP system.

Parameter Type: Decimal value.

Return Value Type: String.

Example: The CORE.NAMES() function is used to loop through the cores assigned to TRACE32, and
the CORE.ISACTIVE() function returns whether a core is active or inactive.

Syntax: CORE.NAMES(<index>)

SYStem.CPU Cortexa15A7
SYStem.CONFIG.CoreNumber 14.

;assign the cores of a big.LITTLE SMP system to TRACE32
CORE.ASSIGN BIGLITTLE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

;enter debug mode
SYStem.Up

GOSUB printstate

CORE.SHOWACTIVE

ENDDO

printstate:

&i=0.
nextcore:
&name=CORE.NAMES(&i)
IF "&name"!=""
(
 &state=CORE.ISACTIVE("&name")
 IF &state==TRUE()
 PRINT "active core : &name"
 &i=&i+1.
 GOTO nextcore
)

RETURN
General Function Reference | 118©1989-2024 Lauterbach

CORENAME() Name of core within selected chip
ICD-ARM [Go to figure]

Returns the name of the core within a selected chip.

Return Value Type: String. The name and spelling is the same that is shown in the
SYStem.CONFIG.state window on the Miscellaneous tab.

CORE.NUMBER() Number of logical cores
[build 65779 - DVD 09/2015] [Go to figure] [Examples]

Returns the number of logical cores assigned to the current debug session.

For each assigned core, the CORE.SHOWACTIVE window and the Cores list contain one entry. To assign
cores to TRACE32, use the command CORE.ASSIGN.

Return Value Type: Decimal value.

Return Value and Description:

Syntax: CORENAME()

Syntax: CORE.NUMBER()
CORENUMBER() (deprecated)

NOTE: Do not confuse the number of cores currently assigned to TRACE32 with the actual
number of cores physically implemented on a multicore chip.
It is possible to assign fewer cores to TRACE32 than there are on a multicore
chip.

1 Single-core debug session.

Integer greater than 1 SMP debug session (Symmetrical Multicore Processing).
General Function Reference | 119©1989-2024 Lauterbach

Example 1: Let’s assume a multicore chip has 6 cores, and just 4 of them are assigned to TRACE32. As a
result, CORE.NUMBER() returns 4.

Example 2: A single-core debug session is set up for core 3 of a multicore chip.

;select a multicore chip
SYStem.CPU CortexA7MPCore

;Inform TRACE32 about the total number of cores of a multicore chip
SYStem.CONFIG.CoreNumber 4.

;Specify the location of the debug registers (CoreSight ARM only)
SYStem.CONFIG COREBASE DAP:0x100 DAP:0x200 DAP:0x300 DAP:0x400
;Start core assignment at this <core> of this <chip>
SYStem.CONFIG.CORE 1. 1.

;- The cores 1, 2, 4 (= three cores) are assigned to the TRACE32
; PowerView GUI
;- The core 3 is skipped
CORE.ASSIGN 1. 2. 4.

;Prints 3 because three cores were assigned to the debug session
PRINT CORE.NUMBER()

SYStem.CPU CortexA7MPCore ;select a multicore chip

;Inform TRACE32 about the total number of cores of a multicore chip
SYStem.CONFIG.CoreNumber 4.

;Specify the location of the debug registers (CoreSight ARM only)
SYStem.CONFIG COREBASE DAP:0x100 DAP:0x200 DAP:0x300 DAP:0x400

;Start core assignment at this <core> of this <chip>
SYStem.CONFIG.CORE 1. 1.

CORE.ASSIGN 3. ;assign only core 3 to the debug session
General Function Reference | 120©1989-2024 Lauterbach

CORE.PHYSICALTOLOGICAL() Logical core number of physical core
[build 65779 - DVD 09/2015]

Returns the logical core number of a physical core. If the core is not assigned to the current debug session,
an error is shown in the message line.

Parameter and Description:

Return Value Type: Decimal value.

Return Value and Description:

Example: For each physical core assigned to the TRACE32 PowerView GUI, the physical and logical core
numbers are printed to an AREA.view window.

See also: CORE.LOGICALTOPHYSICAL()

Syntax: CORE.PHYSICALTOLOGICAL(<core_number>)

<core_number> Parameter Type: Decimal value. Number of a physical core.
Range: 1. <= core_number <= CONFIGNUMBER()
• Min.: 1.
• Max.: The return value of CONFIGNUMBER()

0 ... <n> Number of the logical core. The highest number <n> equals the return
value of CORE.NUMBER().

Error message The error message “value not allowed” is displayed if <core_number>
refers to a physical core that is not assigned to the current debug session.
See CORE.ISASSIGNED().

&physical=1. ;the number of the first physical core is always 1

WHILE &physical<=CONFIGNUMBER()
(
 IF CORE.ISASSIGNED(&physical)==TRUE()
 (
 ;returns the physical core number for this logical core
 PRINT "Physical core: " &physical
 PRINT %CONTinue " (logical: " CORE.PHYSICALTOLOGICAL(&physical) ")"
)
 &physical=&physical+1. ;increment to next physical core
)

Reason for the gaps in the sequence of physical core numbers:
Only the cores 1, 2, 4, and 5 were assigned with the command
CORE.ASSIGN 1. 2. 4. 5.
The cores 3 and 6 were intentionally skipped.
General Function Reference | 121©1989-2024 Lauterbach

Count Functions

The Count functions give access to the measurement results of the Count.state window.

In This Section

See also

■ Count ❏ Count.Frequency() ❏ Count.LEVEL() ❏ Count.Time()
❏ Count.VALUE()

Count.Frequency() Frequency of last measurement
[build 67178 - DVD 02/2016]

Returns the frequency in Hz of the last measurement started with the command Count.GO. If the last
measurement was not a frequency measurement, the function aborts with an error.

Return Value Type: Decimal value.

Example:

Count.LEVEL() Level of frequency counter input

Current logical level of the frequency counter input.

Return Value Type: Time value.

Syntax: Count.Frequency()

; select signal source (here: MCKO) and operation mode
Count.Select MCKO
Count.Mode Frequency

; do measurement
Count.Go

PRINT "F=" Count.Frequency() "Hz" ;Output: "F=169440Hz"

Syntax: Count.LEVEL()
General Function Reference | 122©1989-2024 Lauterbach

Count.Time() Time of last measurement
[build 67178 - DVD 02/2016]

Returns the time of the last period or pulse duration measurement started with the command Count.GO. If
the last measurement was not a period or pulse duration measurement, the function aborts with an error.

Return Value Type: Time value.

Example:

Count.VALUE() Samples of the Count.GO command

If the Counter is configured to count events, this function returns the result samples when the command
Count.GO is issued. If the Counter is configured for frequency, period or pulse duration measurement, the
result of the function is undefined.

Return Value Type: Hex value.

Syntax: Count.Time()

; select signal source (here: PowerProbe eXt.3) and operation mode
Probe.CSelect eXt.3
Count.Mode Period

; do measurement
Count.Go

PRINT "Period=" Count.Time() ;Output: "Period=0.000105900s"

Syntax: Count.VALUE()
General Function Reference | 123©1989-2024 Lauterbach

COVerage Functions

This figure provides an overview of the return values of some of the functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

In This Section

See also

■ COVerage ❏ COVerage.BDONE() ❏ COVerage.IDLE() ❏ COVerage.LOAD.KEY()
❏ COVerage.Percentage() ❏ COVerage.SCOPE() ❏ COVerage.SourceMetric() ❏ COVerage.TreeWalk()

COVerage.BDONE()COVerage.SCOPE()

COVerage.SourceMetric()
General Function Reference | 124©1989-2024 Lauterbach

COVerage.BDONE() Byte count of all executed instructions
[Go to figure]

Returns a byte count of all instructions that have been executed.

Parameter Type: Address range.

Return Value and Description:

Return Value Type: Decimal value.

Example: Different types of input parameters are shown. The function accepts both address ranges and
other functions that return address ranges as input.

COVerage.IDLE() TRUE if all trace data for code coverage are processed
[build 169162 - DVD 09/2024]

Returns TRUE if all available trace data for code coverage have been processed. This function is useful for
detecting whether the processing of RTS and SPY modes has been completed.

Return Value Type: Boolean.

Syntax: COVerage.BDONE(<address_range>)

-1 The data is invalid, or the user has clicked Stop on the TRACE32 main
toolbar to abort the function.

Greater than or equal
to 0

Byte count of all executed instructions within the specified range.

; address range
PRINT COVerage.BDONE(P:0x1FFFC220--P:0x1FFFC299)

; function main
PRINT COVerage.BDONE(Var.RANGE(main))

; module crt0 of the executable sort
PRINT COVerage.BDONE(sYmbol.RANGE(\\sort\crt0))

NOTE: The specified range has to be identical to the limits of the function / functions
being tested. Otherwise inaccuracies may occur.

Syntax: COVerage.IDLE()
General Function Reference | 125©1989-2024 Lauterbach

COVerage.LOAD.KEY() Key from last ACD file
[build 113973 - DVD 02/2020]

Returns the key from the last ACD file (*.acd) that was loaded with COVerage.LOAD.

Return Value Type: String.

COVerage.Percentage() Percentage of code coverage
[build 164726 - DVD 02/2024]

Returns the percentage of achieved code coverage for the specified symbol using the currently selected
source metric.

Parameter Type: String.

Return Value Type: Float.

COVerage.SCOPE() Degree of code coverage
[build 37864 - DVD 08/2012] [Go to figure]

Returns the degree of code coverage within the specified range.

Parameter Type: Address range.

Return Value Type: Decimal value.

Return Value and Description:

Syntax: COVerage.LOAD.KEY()

Syntax: COVerage.Percentage(<symbol_name>)

Syntax: COVerage.SCOPE(<address_range>)

-1 Returns -1 if the data is invalid or if the user has clicked Stop on the
TRACE32 main toolbar to abort the function.

0 At least one instruction not fully executed.

1 At least one branch only taken.

2 At least one branch never taken.

3 At least one branch never and one only taken.

4 Fully executed.
General Function Reference | 126©1989-2024 Lauterbach

Example: This script demonstrates the usage of the COVerage.SCOPE() function with different types of
input parameters. The function COVerage.SCOPE() accepts both address ranges and other functions that
return address ranges as input.

; address range
COVerage.SCOPE(P:0x1FFFC220--P:0x1FFFC299)

; function main
COVerage.SCOPE(Var.RANGE(main))

; module crt0 of the executable sort
COVerage.SCOPE(sYmbol.RANGE(\\sort\crt0))

NOTE: The specified range has to be identical to the limits of the function / functions
being tested. Otherwise inaccuracies may occur.
General Function Reference | 127©1989-2024 Lauterbach

COVerage.SourceMetric() Active code coverage criterion
[build 96054 - DVD 09/2018]

Returns the current code coverage criterion for HLL lines that was set with the command
COVerage.Option.SourceMetric.

Return Value Type: String.

Return Value and Description:

For details, see COVerage.Option.SourceMetric.

Example: See ~~/demo/coverage/multi_file_report/create_report.cmm.

Syntax: COVerage.SourceMetric()

ObjectCode The tags of the corresponding block of assembly instructions are mapped
to the HLL line.

Statement Statement coverage

Decision Decision coverage

MCDC Modified condition/decision coverage (MC/DC)
General Function Reference | 128©1989-2024 Lauterbach

COVerage.TreeWalk() Walk symbol tree
[build 69632 - DVD 02/2016]

Traverses the code coverage tree that has been prepared by the command COVerage.TreeWalkSETUP.

Parameter Type: String.

Parameter and Description:

Return Value Type: String.

Example 1:

Example 2: A more complex demo script is included in your TRACE32 installation. To access the script, run
this command:
B::CD.PSTEP ~~/demo/coverage/multi_file_report/create_report.cmm

Syntax: COVerage.TreeWalk(<action>)

<action>: Init | Recurse | CONTinue

Init Returns the first node of the tree.

Recurse Returns the next node of the tree.

Continue Returns the next node on the same or higher level.

PRIVATE &node

COVerage.TreeWalkSETUP ; create a tree with all
 ; code coverage symbols

&node=COVerage.TreeWalk("Init") ; get the first tree element
WHILE "&node"!=""
(
 IF STRing.SCAN("&node","\",0.)==0. ; element is a module
 (
 PRINT "The next module is: &node"
)
 ELSE IF STRing.SCAN("&node","--",0.)>-1. ; element is an HLL line
 (
 PRINT "The next HLL line is: &node"
)
 ELSE ; element is a function
 (
 PRINT "The next function is: &node"
)
 &node=COVerage.TreeWalk("Recurse") ; get the next tree element
)

General Function Reference | 129©1989-2024 Lauterbach

CPU Functions

In This Section

See also

■ SYStem.CPU ❏ CPU()
❏ CPU.ADDRESS() ❏ CPU.ADDRESS.PhysicalINDEX()
❏ CPU.FEATURE() ❏ CPU.PINCOUNT()
❏ CPU.SUBFAMILY() ❏ CPUBONDOUT()
❏ CPUCOREVERSION() ❏ CPUDERIVATE()
❏ CPUFAMILY() ❏ CPUHELP()
❏ CPUIS() ❏ CPUIS64BIT()

CPU.ADDRESS() Start address of memory section
ARC, TriCore [build 106881 - DVD 09/2019]

Returns the start address of the memory or register block <section>.

Parameter Type: String.

Return Value Type: Address.

CPU.ADDRESS.PhysicalINDEX() Section start address of given core
TriCore [build 125278 - DVD 09/2020]

Returns the start address of the memory or register block <section> for the given core.

Syntax: CPU.ADDRESS(<section>)

<section>:
 (ARC)

XCCM | YCCM

<section>:
 (TriCore)

SFR | CSFR

Syntax: CPU.ADDRESS.PhysicalINDEX("<section>",<core_number>)
General Function Reference | 130©1989-2024 Lauterbach

Parameter and Description:

Return Value Type: Address.

CPU.FEATURE() TRUE if CPU feature exists
[build 57631] [Example]

Tests whether the selected CPU has a certain feature. The function returns TRUE if the CPU implements
the specified feature. If the feature it not supported, or if <feature_string> is unknown, the function returns
FALSE. The tables below show the generic and architecture dependent feature strings.

Parameter Type: String.

Parameter and Description:

All Architectures - Allowed keywords for <feature_string>

<section> Parameter Type: String. Name of the memory or register block. For legal
values see CPU.ADDRESS().

<core_number> Parameter Type: Decimal value. Number of a physical core.
Range: 1. <= core_number <= CONFIGNUMBER()

• MIN.: 1.

• MAX.: The return value of CONFIGNUMBER()

Syntax: CPU.FEATURE(<feature_string>)

<feature_string> Description

BMC
[build 71934 - DVD 02/2016]

TRUE if the selected CPU implements benchmark counters / performance
monitors.

IPA TRUE if the core uses intermediate physical addresses for guest address
translation (hypervisor).

MACHINESPACES TRUE if command SYStem.Option.MACHINESPACES can be used for
this CPU to enable machine-specific address spaces (hypervisor).

MMU TRUE if the selected core has a memory management unit (MMU).

PCSNOOP
[build 67662 - DVD 02/2016]

TRUE if the program counter of the selected CPU can be read by the
debugger while the CPU is running.

ZONESPACES TRUE if command SYStem.Option.ZoneSPACES can be used for this
CPU to enable zone-specific (CPU mode-specific) address spaces.
General Function Reference | 131©1989-2024 Lauterbach

ARM Architecture - Allowed keywords for <feature_string>

<feature_string> Description

BIGLITTLE TRUE if the selected CPU supports the ARM bigLITTLE technology.

CONDISA TRUE if the instruction set architecture of the selected core provides for
conditional instructions.

CONDTRACE TRUE if the trace data for conditional instructions indicates whether the
condition code check was passed or failed.

CORESIGHT TRUE if the selected CPU supports the ARM Coresight debug and trace
technology.

CP15 TRUE if the selected CPU supports CP15 register access.

DTLBDUMP TRUE if the selected CPU supports data TLB dumping using command
MMU.DUMP.DTLB.

EXTENDEDPHYSI-
CALADDRESS

TRUE if the selected CPU has 32bit logical adresses and more than 32bit
physical adresses. Physical addresses are displayed with bits 32 and
larger separated by a colon (A:0x00:0x00000000).

FPU TRUE if the selected CPU has a Vector Floating Point (VFP) coprocessor.

HYPERVISOR TRUE if the selected CPU has a hypervisor zone (ARM Virtualization
Extension).

ITLBDUMP TRUE if the selected CPU supports instruction TLB dumping using
command MMU.DUMP.ITLB.

JAZELLE TRUE if the selected CPU has the ARM Jazelle execution mode.

L1DCACHE TRUE if the selected CPU has a level 1 data cache.

L1DCACHEDUMP TRUE if the selected CPU supports level 1 data cache dump using
command CACHE.DUMP.

L1ICACHE TRUE if the selected CPU has a level 1 instruction cache.

L1ICACHEDUMP TRUE if the selected CPU supports level 1 instruction cache dumping
using command CACHE.DUMP.

L2CACHE TRUE if the selected CPU has a level 2 cache.

L2CACHEDUMP TRUE if the selected CPU supports level 2 cache dump using command
CACHE.DUMP.

LPAE TRUE if the selected CPU has a memory management unit (MMU) and
supports the Large Physical Address Extension (LPAE) mode.

MPU TRUE if the selected CPU has a memory protection unit (MPU).

NEON TRUE if the selected CPU has a ARM NEON Extension.

SECURE TRUE if the selected CPU has a secure zone (e.g. ARM TrustZone).

SECUREEL2 TRUE if the selected CPU has a non-secure and a secure EL2 mode.
General Function Reference | 132©1989-2024 Lauterbach

C6000 Architecture - Allowed keywords for <feature_string>

C7000 Architecture - Allowed keywords for <feature_string>

SME TRUE if the selected CPU has a scalable matrix extension (SME).

SPR TRUE if the selected CPU supports SPR register access.

SVE TRUE if the selected CPU has a scalable vector extension (SVE).

THUMB TRUE if the selected CPU supports thumb instruction set.

TLB0DUMP TRUE if the selected CPU supports TLB0 dumping using command
MMU.DUMP.TLB0.

TLB1DUMP TRUE if the selected CPU supports TLB1 dumping using command
MMU.DUMP.TLB1.

VBAR TRUE if the VBAR register is available in the selected CPU.

<feature_string> Description

CONDISA TRUE if the instruction set architecture of the selected core provides for
conditional instructions.

CONDTRACE TRUE if the trace data for conditional instructions indicates whether the
condition code check was passed or failed.

<feature_string> Description

CONDISA TRUE if the instruction set architecture of the selected core provides for
conditional instructions.

CONDTRACE TRUE if the trace data for conditional instructions indicates whether the
condition code check was passed or failed.

L2CACHE TRUE if the selected core has a L2 cache.

<feature_string> Description
General Function Reference | 133©1989-2024 Lauterbach

PowerPC Architecture - Allowed keywords for <feature_string>

<feature_string> Description

BMC TRUE if the selected core has performance monitor registers (PMR).

CONDISA TRUE if the instruction set architecture of the selected core provides for
conditional instructions.

CONDTRACE TRUE if the trace data for conditional instructions indicates whether the
condition code check was passed or failed.

COREMPU TRUE if the selected core has a memory protection unit (MPU).

EFPU TRUE if the selected core has the EFPU floating point unit.

EFPU2 TRUE if the selected core has the EFPU2 floating point unit.

FLE TRUE if the selected core supports the std. PowerPC opcodes.

FPU TRUE if the selected core has the standard PowerPC FPU floating point
unit.

HYPERVISOR TRUE if the selected core implements the hypervisor programming model.

L1DCACHE TRUE if the selected core has an L1 data cache.

L1ICACHE TRUE if the selected core has an L1 instruction cache.

L1UNIFIEDCACHE TRUE if the selected core has a unified L1 cache.

L2CACHE TRUE if the selected core has a L2 cache.

ONCHIP_PCFIFO TRUE if the selected core has the PCFIFO on-chip trace
(MPC55XX/56XX).

ONCHIP_TR2MEM TRUE if the processor implements trace-to-memory (MPC57XX/QorIQ).

SPE TRUE if the selected core has the signal processing engine (SPE).

VLE TRUE if the selected core supports variable length encoded instruction
set.
General Function Reference | 134©1989-2024 Lauterbach

RH850 Architecture - Allowed keywords for <feature_string>

RISC-V Architecture - Allowed keywords for <feature_string>

TRICORE Architecture - Allowed keywords for <feature_string>

<feature_string> Description

CONDISA TRUE if the instruction set architecture of the selected core provides for
conditional instructions.

CONDTRACE TRUE if the trace data for conditional instructions indicates whether the
condition code check was passed or failed.

FPU TRUE if the selected core has a floating point unit (FPU).

FXU
[build 108274 - DVD 09/2019]

TRUE if the selected CPU has FXU registers (extended floating point unit).

MPU TRUE if the selected CPU has a memory protection unit (MPU).

<feature_string> Description

CONDISA TRUE if the instruction set architecture of the selected core provides for
conditional instructions.

CONDTRACE TRUE if the trace data for conditional instructions indicates whether the
condition code check was passed or failed.

FPU TRUE if the selected core has a floating point unit (FPU).

VPU TRUE if the selected core has a vector processing unit (VPU).

<feature_string> Description

CONDISA TRUE if the instruction set architecture of the selected core provides for
conditional instructions.

CONDTRACE TRUE if the trace data for conditional instructions indicates whether the
condition code check was passed or failed.

HSM
[build 124752 - DVD 09/2020]

TRUE if the selected CPU has an HSM core.
General Function Reference | 135©1989-2024 Lauterbach

XTENSA Architecture - Allowed keywords for <feature_string>

Return Value Type: Boolean.

Example:

CPU.PINCOUNT() For internal usage only
[build 75532 - DVD 09/2016]

For internal use only.

CPUBONDOUT() Name of boundout processor

Returns the name of the bondout processor.

Return Value Type: String.

CPUCOREVERSION() Core or architecture version of CPU

Returns the CPU’s core or architecture version, e.g. “TriCore v1.3.1”.

Return Value Type: String.

<feature_string> Description

CONDISA TRUE if the instruction set architecture of the selected core provides for
conditional instructions.

CONDTRACE TRUE if the trace data for conditional instructions indicates whether the
condition code check was passed or failed.

SYStem.CPU CortexA15 ;select CPU CortexA15
PRINT CPU.FEATURE(SECURE) ;SECURE feature available? --> TRUE

Syntax: CPU.PINCOUNT()

Syntax: CPUBONDOUT()

Syntax: CPUCOREVERSION()
General Function Reference | 136©1989-2024 Lauterbach

CPUDERIVATE() Main part of processor name

Returns the main part of the processor name.

Return Value Type: String.

CPUFAMILY() Family name of processor

Returns the family name of the processor.

Return Value Type: String.

CPUHELP() For internal usage only

Reserved for internal usage.

Return Value Type: String.

Syntax: CPUDERIVATE()

Syntax: CPUFAMILY()

Syntax: CPUHELP()
General Function Reference | 137©1989-2024 Lauterbach

CPUIS() TRUE if search string matches processor name

Returns a boolean value after comparing the currently selected name of the processor with the given search
string. The search string can contain wildcards and characters are not interpreted as case-sensitive.

Parameter Type: String.

Return Value Type: Boolean.

Example:

CPUIS64BIT() TRUE if 64-bit architecture

Returns TRUE when the target architecture is 64-bit e.g. ARM64.

Return Value Type: Boolean.

Syntax: CPUIS(<search_string>)

IF (CPUIS("TC*ED"))
 PRINT "TriCore Emulation Device detected"

; instead of the more complex alternative:
IF ((CPU()=="TC1798ED")||(CPU()=="TC1793ED")||(CPU()=="TC1791ED")
 PRINT "TriCore Emulation Device detected"

Syntax: CPUIS64BIT()
ARM64() (deprecated)
General Function Reference | 138©1989-2024 Lauterbach

DAP Functions

In This Section

See also

❏ DAP.Available() ❏ DAP.USER0() ❏ DAP.USER1()

DAP.Available() TRUE if debugging via DAP is supported

Returns TRUE if both the attached debug cable and the selected CPU support debugging via the DAP
interface.

Return Value Type: Boolean.

DAP.USER<x>() Status of the DAP user pin
ICD-TriCore and ICD-C166

Returns the status of the DAP USER0 or USER1 pin. Low level is FALSE, high level is TRUE. For details, see
“Application Note Debug Cable TriCore” (app_tricore_ocds.pdf).

Return Value Type: Boolean.

Syntax: DAP.Available()

Syntax: DAP.USER0()
DAP.USER1()
General Function Reference | 139©1989-2024 Lauterbach

Data Functions

In This Section

See also

❏ Data.AL.ERRORS() ❏ Data.Byte()
❏ Data.Float() ❏ Data.HByte()
❏ Data.Long() ❏ Data.Long.BigEndian()
❏ Data.Long.Byte() ❏ Data.Long.LittleEndian()
❏ Data.Long.Long() ❏ Data.Long.Word()
❏ Data.LongLong() ❏ Data.LongLong.BigEndian()
❏ Data.LongLong.LittleEndian() ❏ Data.MAU()
❏ Data.PByte() ❏ Data.Quad()
❏ Data.Quad.BigEndian() ❏ Data.Quad.Byte()
❏ Data.Quad.LittleEndian() ❏ Data.Quad.Long()
❏ Data.Quad.Quad() ❏ Data.Quad.Word()
❏ Data.SByte() ❏ Data.Short()
❏ Data.Short.BigEndian() ❏ Data.Short.LittleEndian()
❏ Data.SLong() ❏ Data.STRing()
❏ Data.STRingN() ❏ Data.SUM()
❏ Data.TByte() ❏ Data.Word()
❏ Data.Word.BigEndian() ❏ Data.Word.Byte()
❏ Data.Word.LittleEndian() ❏ Data.Word.Word()
❏ Data.WSTRING() ❏ Data.WSTRING.BigEndian()
❏ Data.WSTRING.LittleEndian()

Data.<value_width>() Memory contents in default endianness
[Examples]

Reads a value from memory using the specified <width> and <address>. The address must be classified,
e.g. D:0x200, while each symbol has its own implicit memory class.

Syntax: Data.<value_width>(<address>)

<value_width>: Byte | Short | Word | TByte | Long | PByte | HByte | SByte | SLong | Quad |
LongLong

Full function
name only
required for
HELP.Index:

Data.Byte(<address>)
Data.Short(<address>)
Data.Word(<address>)
Data.TByte(<address>)
Data.Long(<address>)
Data.PByte(<address>)
Data.HByte(<address>)
Data.SByte(<address>)
Data.SLong(<address>)
Data.Quad(<address>)
Data.LongLong(<address>)
General Function Reference | 140©1989-2024 Lauterbach

The possible memory classes depend on the target CPU. The appropriate list can be found in the chapter
“Access Classes” of the particular Processor Architecture Manual.

Parameter Type: Address.

Return Value Type: Hex value.

Example 1:

<value_width> Description of Data.<value_width>()

Byte Returns a single byte from memory.

Short
[build 20186 - DVD 12/2009]

Returns a word (16-bit) from memory. Same as function Data.Word().

NOTE: Please don’t mix up the function Data.Short() and its function
short form D.S() with the command Data.Set and its command short
form D.S

NOTE: D.S() was an alias for Data.STRing() in former versions of
TRACE32.

Word Returns a word (16-bit) from memory.

TByte Returns a 3-byte value from memory.

Long Returns a long value (32-bit) from memory.

NOTE: Please don’t mix up the function Data.Long() and its function
short form D.L() with the command Data.List and its command short
form D.L

PByte Returns a 5-byte value from memory.

HByte Returns a 6-byte value from memory.

SByte Returns a 7-byte value from memory.

SLong Returns a signed long value from memory - sign extended internally to a 64-
bit value.

Quad Returns a 64-bit value from memory. Same as function Data.LongLong().

LongLong
[build 20186 - DVD 12/2009]

Returns a 64-bit value from memory. Same as function Data.Quad().

PRINT Data.Byte(D:0x200) // long form of the function name

PRINT Data.Byte(a+17.) // prints the memory contents of the address
 // of target program symbol "a" plus offset

 // 17 independent of the symbol type

PRINT Data.Byte(0x200) // fails - parameter is a numeric constant
 // and no address
 // access mode specifier e.g. "D:" or "P:"

 // is missing
General Function Reference | 141©1989-2024 Lauterbach

Example 2:

Example 3:

PRINT Data.TByte(D:0x200)

PRINT Data.TByte(0x200) // fails - parameter is a numeric constant
 // and no address

 // access mode specifier e.g. "D:" or "P:"
 // is missing

// Set bit 4 of 32-bit value in memory
Data.Set A:0x10200 %Long Data.Long(A:0x10200)|0x10

// Clear second byte of 32-bit value in memory
Data.Set A:0x10300 %Long Data.Long(A:0x10300)&~0xff00
General Function Reference | 142©1989-2024 Lauterbach

Data.<value_width>.<endianness>() Mem. contents in specified byte order

Reads a value of the size <value_width> from memory at the given address in the given byte order.

The address must be classified, e.g. D:0x200, while each symbol has its own implicit memory class.

The possible memory classes depend on the target CPU. The appropriate list can be found in the chapter
“Access Classes” of the particular Processor Architecture Manual.

Syntax: Data.<value_width>.<endianness>(<address>)

<value_width>: Byte | Short | Word | TByte | Long | PByte | HByte | SByte | SLong | Quad |
LongLong

<endianness>: LittleEndian | BigEndian

Full function
name only
required for
HELP.Index:

Data.Short.BigEndian(<address>)
Data.Short.LittleEndian(<address>)
Data.Word.BigEndian(<address>)
Data.Word.LittleEndian(<address>)
Data.Long.BigEndian(<address>)
Data.Long.LittleEndian(<address>)
Data.LongLong.BigEndian(<address>)
Data.LongLong.LittleEndian(<address>)
Data.Quad.BigEndian(<address>)
Data.Quad.LittleEndian(<address>)

<value_width>.
<endianness>

Description of Data.<value_width>.<endianness>()

Short.BigEndian Returns a word (16-bit) from memory, while the byte order of the word is
forced to big endian.
Same as function Data.Word.BigEndian().

Short.LittleEndian Returns a word (16-bit) from memory, while the byte order of the word is
forced to little endian.
Same as function Data.Word.LittleEndian().

Word.BigEndian Returns a word (16-bit) from memory, while the byte order of the word is
forced to big endian.
Same as function Data.Short.BigEndian().

Word.LittleEndian Returns a word (16-bit) from memory, while the byte order of the word is
forced to little endian.
Same as function Data.Short.LittleEndian().

Long.BigEndian Returns a long value (32-bit) from memory, while the byte order of the word is
forced to big endian.

Long.LittleEndian Returns a long value (32-bit) from memory, while the byte order of the word is
forced to little endian.

LongLong.BigEn-
dian

Returns a 64-bit value from memory, while the byte order of the word is forced
to big endian.
Same as function Data.Quad.BigEndian().
General Function Reference | 143©1989-2024 Lauterbach

Parameter Type: Address.

Return Value Type: Hex value.

Examples:

LongLong.LittleEn-
dian

Returns a 64-bit value from memory, while the byte order of the word is forced
to little endian.
Same as function Data.Quad.LittleEndian().

Quad.BigEndian Returns a 64-bit value from memory, while the byte order of the word is forced
to big endian.
Same as function Data.LongLong.BigEndian().

Quad.LittleEndian Returns a 64-bit value from memory, while the byte order of the word is forced
to little endian.
Same as function Data.LongLong.LittleEndian().

// Set bit 4 of 32-bit value in memory
Data.Set A:0x10200 %Long %BE Data.Long.BigEndian(A:0x10200)|0x10

// Clear second byte of 32-bit value in memory
Data.Set A:0x10300 %Long %BE Data.Long.BigEndian(A:0x10300)&~0xff00

<value_width>.
<endianness>

Description of Data.<value_width>.<endianness>()
General Function Reference | 144©1989-2024 Lauterbach

Data.<value_width>.<access_width>() Mem. contents in specified width
[build 86536 - DVD 09/2017]

Reads a value of the size <value_width> from memory at the given address. The memory is therefore
accessed with <access_width> if this access width is supported by the CPU and/or memory class.

The address must be classified, e.g. D:0x200, while each symbol has its own implicit memory class.

The possible memory classes depend on the target CPU. The appropriate list can be found in the chapter
“Access Classes” of the particular Processor Architecture Manual.

Parameter Type: Address.

Return Value Type: Hex value.

Syntax: Data.<value_width>.<access_width>(<address>)

<value_width>: WORD | LONG | QUAD

<access_
width>:

Byte | Word | Long

Full function
name only
required for
HELP.Index:

Data.Word.Byte(<address>)
Data.Word.Word(<address>)

Data.Long.Byte(<address>)
Data.Long.Word(<address>)
Data.Long.Long(<address>)

Data.Quad.Byte(<address>)
Data.Quad.Word(<address>)
Data.Quad.Long(<address>)
Data.Quad.Quad(<address>)

<value_width>.
<access_width>

Description of Data.<value_width>.<access_width>()

Word.Byte Performs two 8-bit accesses to return a 16-bit value from memory.

Word.Word Alias for Data.Word().

Long.Byte Performs four 8-bit accesses to return a 32-bit value from memory.

Long.Word Performs two 16-bit accesses to return a 32-bit value from memory.

Long.Long Alias for Data.Long().

Quad.Byte Performs eight 8-bit accesses to return a 64-bit value from memory.

Quad.Word Performs four 16-bit accesses to return a 64-bit value from memory.

Quad.Long Performs two 32-bit accesses to return a 64-bit value from memory.

Quad.Quad Alias for Data.Quad().
General Function Reference | 145©1989-2024 Lauterbach

Example:

See also commands: MAP.BUS8, MAP.BUS16, and MAP.BUS32

Data.AL.ERRORS() Get number of errors detected by Data.AllocList

Returns the number of errors detected by the Data.AllocList command.

Return Value Type: Decimal value.

Data.Float() Get floating point number

Reads a floating point number from memory.

Parameter and Description:

Return Value Type: Float.

Examples:

ECHO Data.Long.Byte(D:0x200)

Syntax: Data.AL.ERRORS()

Syntax: Data.Float("<format>",<address>)

<format> Parameter Type: String.

<address> Parameter Type: Address.

PRINT Data.Float("IEEE",D:0x200)
PRINT Data.Float("IEEE",Var.ADDRESS(f_voltage[0].fVal))
PRINT Data.Float("IEEEDBL",D:0x200)
General Function Reference | 146©1989-2024 Lauterbach

Data.STRing() Get zero-terminated string

Reads a zero-terminated string from memory. The address must be classified, e.g. D:0x200, while each
symbol has its own implicit memory class.

Parameter Type: Address.

Return Value Type: String.

Example:

Syntax: Data.STRing(<address>)

LOCAL &str1 &str2

Data.Set VM:0x0 "Hello World!" 0 ;set two zero-terminated strings
Data.Set VM:0x30 "Hello Universe!" 0 ;to the TRACE32 virtual memory

&str1=Data.STRing(VM:0x0) ;read the first string
&str2=Data.STRing(VM:0x30) ;read the second string

PRINT "&str1 &str2" ;print both to the message line
AREA.view ;display both in the AREA window

A In the byte-formatted output, 00 indicates a zero-terminated string.

B In the ASCII-formatted output, NU indicates a zero-terminated string.

A B
General Function Reference | 147©1989-2024 Lauterbach

Data.STRingN() Get zero-terminated string with a maximum length
[build 43885 - DVD 02/2013]

Reads a string from memory. The result is a zero-terminated string. The address must be classified, e.g.
D:0x3a0, while each symbol has its own implicit memory class. If the string length is smaller than <length>,
only <length> characters are returned.

Parameter and Description:

Return Value Type: String.

Example:

Data.SUM() Get checksum

Gets the checksum of the last executed Data.SUM command.

Return Value Type: Hex value.

Example:

Syntax: Data.STRingN(<address>,<length>)

<address> Parameter Type: Address.

<length> Parameter Type: Decimal or hex or binary value.

PRINT Data.STRingN(D:0x3a0,10.) ;reads 10 characters starting at
 ;memory address D:0x3a0

Syntax: Data.SUM()

Data.Set P:0x00--0xff %Byte 1
Data.SUM P:0x00--0xff
PRINT Data.SUM() ;displays the value 0x100
General Function Reference | 148©1989-2024 Lauterbach

Data.SWAP.<value_width>.<swap_width>() Swap byte groups in word
[build 116471 - DVD 02/2020]

Swaps byte groups of the size <swap_width> in <value>. The input <value> is truncated or extended to the
given <value_width>. This can be used to swap a data word between big and little endianness for example.

Parameter Type: Hex value.

Return Value Type: Hex value.

Examples:

Syntax: Data.SWAP.<value_width>.<swap_width>(<value>)

<value_width>: Word | Long | Quad

<swap_width>: Byte | Word | Long

Full function
name only
required for
HELP.Index:

Data.SWAP.Word.Byte(<value>)

Data.SWAP.Long.Byte(<value>)
Data.SWAP.Long.Word(<value>)

Data.SWAP.Quad.Byte(<value>)
Data.SWAP.Quad.Word(<value>)
Data.SWAP.Quad.Long(<value>)

<value_width>.
<swap_width>

Description of Data.SWAP.<value_width>.<swap_width>()

Word.Byte Swaps bytes in a 16-bit word <value>[15:0].
Result: <value>[7:0][15:8]

Long.Byte Swaps bytes in a 32-bit word <value>[31:0].
Result: <value>[7:0][15:8][23:16][31:24]

Long.Word Swaps 16-bit words in a 32-bit word <value>[31:0].
Result: <value>[15:0][31:16]

Quad.Byte Swaps bytes in a 64-bit word <value>[63:0].
Result: <value>[7:0][15:8][23:16][31:24][39:32][47:40][55:48][63:56]

Quad.Word Swaps 16-bit words in a 64-bit word <value>[63:0].
Result: <value>[15:0][31:16][47:32][63:48]

Quad.Long Swaps 32-bit words in a 64-bit word <value>[63:0].
Result: <value>[31:0][63:32]

 // Result:
PRINT Data.SWAP.Long.Byte(0xFF339922) // 0x229933FF
PRINT Data.SWAP.Long.Word(0xFF339922) // 0x9922FF33
PRINT Data.SWAP.Word.Byte(0xFF339922) // 0x2299 (truncated)
PRINT Data.SWAP.Quad.Long(0x9922) // 0x0000992200000000 (extended)
General Function Reference | 149©1989-2024 Lauterbach

Data.WSTRING() Get zero-terminated wide string

Reads a zero-terminated wide string from memory. The address must be classified, e.g. D:0x200, while
each symbol has its own implicit memory class. The function extracts the least significant byte of each wide
character.

If a BOM is found at the beginning of the string, it is removed from the output. An error is thrown if the BOM
does not match the current endianness of the core.

Parameter Type: Address.

Return Value Type: String.

Example:

See also: Data.STRing()

Data.WSTRING.BigEndian() Get big-endian wide string
[build 43885 - DVD 02/2013]

Reads a zero-terminated big-endian wide string from memory. The address must be classified, e.g.
D:0x200, while each symbol has its own implicit memory class. The function extracts the least significant
byte of each wide character.

If a BOM is found at the beginning of the string, it is removed from the output. An error is thrown if the BOM
signals that the string is not big-endian.

Parameter Type: Address.

Return Value Type: String.

Syntax: Data.WSTRING(<address>)

PRINT Data.WSTRING(D:0x200)

Syntax: Data.WSTRING.BigEndian(<address>)
General Function Reference | 150©1989-2024 Lauterbach

Data.WSTRING.LittleEndian() Get little-endian wide string
[build 43885 - DVD 02/2013]

Reads a zero-terminated little-endian wide string from memory. The address must be classified, e.g.
D:0x200, while each symbol has its own implicit memory class. The function extracts the least significant
byte of each wide character.

If a BOM is found at the beginning of the string, it is removed from the output. An error is thrown if the BOM
signals that the string is not little-endian.

Parameter Type: Address.

Return Value Type: String.

Syntax: Data.WSTRING.LittleEndian(<address>)
General Function Reference | 151©1989-2024 Lauterbach

DEBUGGER Function

DEBUGGER.FEATURE() Check debugger feature
[build 140670 - DVD 02/2022]

Returns TRUE if the started PowerView executable contains an instruction set simulator.

Parameter Type: String.

Return Value Type: Boolean.

Syntax: DEBUGGER.FEATURE(<feature>)

<feature>: INSTRUCTIONSETSIMULATION
General Function Reference | 152©1989-2024 Lauterbach

DEBUGMODE Function

DEBUGMODE() Current debug mode

Returns the current debug mode.

Return Value Type: String.

Return Value and Description:

Example: If the DEBUGMODE() function returns a value other than HLL, then the Mode.Hll command
automatically sets the debug mode to HLL.

Syntax: DEBUGMODE()

A Displays the current debug mode in the state line.

B Right-click the current debug mode to change the debug mode manually.

ASM Assembler mode. For more information, see Mode.Asm command.

MIX Mixed mode. For more information, see Mode.Mix command.

HLL High-level language mode. For more information, see Mode.Hll command.

IF DEBUGMODE()!="HLL"
Mode.Hll

BA
General Function Reference | 153©1989-2024 Lauterbach

DISASSEMBLE Function

DISASSEMBLE.ADDRESS() Disassembled instruction at address
[build 18929 - DVD 12/2009]

Returns the disassembled instruction at a given address.

Parameter Type: Address.

Return Value Type: String.

Syntax: DISASSEMBLE.ADDRESS(<address>)
General Function Reference | 154©1989-2024 Lauterbach

DONGLEID Function

DONGLEID() Serial number of USB WibuKey

Returns the serial number of your USB WibuKey.

Return Value Type: Decimal value.

Syntax: DONGLEID(<wibukey_index>)

<wibukey_
index>:

0 …
General Function Reference | 155©1989-2024 Lauterbach

ELA Function (ARM Coresight Embedded Logic Analyzer)

ELABASE() ELA base address
[build 77745 - DVD 02/2017]

Returns the base address of the ARM Coresight Embedded Logic Analyzer.

Return Value Type: Address.

See also: ELA command group.

DPP Function (C166/ST10 only)

DPP() Content of DPP register
C166/ST10 only

Returns the content of the selected DPPn register.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Syntax: ELABASE()

Syntax: DPP(<register>)
General Function Reference | 156©1989-2024 Lauterbach

EPOC Functions

In This Section

See also

❏ EPOC.DATAADDRESS() ❏ EPOC.ENTRYPOINT() ❏ EPOC.TEXTADDRESS()

EPOC.DATAADDRESS() Start address of data area (EPOC debugger)
For EPOC debugger dbg only

Returns the start address of the data area of the currently active debug task.

Return Value Type: Hex value.

EPOC.ENTRYPOINT() Entry address of debug task
For EPOC debugger dbg only

Returns the entry address of the currently active debug task.

Return Value Type: Hex value.

EPOC.TEXTADDRESS() Start address of code area (EPOC debugger)
For EPOC debugger dbg only

Returns the start address of the code area of the currently active debug task.

Return Value Type: Hex value.

Syntax: EPOC.DATAADDRESS()

Syntax: EPOC.ENTRYPOINT()

Syntax: EPOC.TEXTADDRESS()
General Function Reference | 157©1989-2024 Lauterbach

ERROR Functions (target-dependent)

ERROR.ADDRESS() Address of last occurred memory access error

Returns the address of the occurred error from the last executed TRACE32 command.

Return Value Type: Address

Syntax: ERROR.ADDRESS()

ON.ERROR GOSUB error_handler

<Data.Set commands>

ON.ERROR nothing
ENDDO

error_handler:
 LOCAL &addr &cont
 &addr=ERROR.ADDRESS()
 DIALOG.YESNO "Error occurred accessing address &addr, continue?"
 ENTRY &cont
 IF &cont==FALSE()
 ENDDO
RETURN
General Function Reference | 158©1989-2024 Lauterbach

ETM Functions

This figure provides an overview of the return values of some of the functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

In This Section

See also

■ ETM ❏ ETM() ❏ ETM.ADDRCOMP() ❏ ETM.ADDRCOMPTOTAL()
❏ ETM.COUNTERS() ❏ ETM.DATACOMP() ❏ ETM.EXTIN() ❏ ETM.EXTOUT()
❏ ETM.FIFOFULL() ❏ ETM.MAP() ❏ ETM.PROTOCOL() ❏ ETM.SEQUENCER()
❏ ETM.TraceCore()

ETM() TRUE if ETM trace is available
[Go to figure]

Returns TRUE if ETM trace is available.

Return Value Type: Boolean.

Syntax: ETM()

ETM()

ETM.EXTOUT() ETM.EXTINT()

ETM.DATACOMP()
General Function Reference | 159©1989-2024 Lauterbach

ETM.ADDRCOMP() For internal usage only

Returns the index number of the last ETM address comparator assigned (for internal usage only).

Return Value Type: Decimal value.

ETM.ADDRCOMPTOTAL() Number of ETM address comparator pair

Returns the number of ETM address comparator pairs available.

Return Value Type: Decimal value.

ETM.COUNTERS() Number of ETM counters

Returns the number of ETM counters available.

Return Value Type: Decimal value.

ETM.DATACOMP() Number of ETM data comparators
[Go to figure]

Returns the number of ETM data comparators available.

Return Value Type: Decimal value.

Syntax: ETM.ADDRCOMP()

Syntax: ETM.ADDRCOMPTOTAL()

Syntax: ETM.COUNTERS()

Syntax: ETM.DATACOMP()
General Function Reference | 160©1989-2024 Lauterbach

ETM.EXTIN() Number of internal ETM inputs
[Go to figure]

Returns the number of external ETM inputs.

Return Value Type: Decimal value.

ETM.EXTOUT() Number of external ETM outputs
[Go to figure]

Returns the number of external ETM outputs.

Return Value Type: Decimal value.

ETM.FIFOFULL() ETM fifofull logic

Returns 1 if ETM fifofull logic available.

Return Value Type: Decimal value.

ETM.MAP() Number of ETM memory map decoders

Returns the number of ETM memory map decoders.

Return Value Type: Decimal value.

Syntax: ETM.EXTIN()

Syntax: ETM.EXTOUT()

Syntax: ETM.FIFOFULL()

Syntax: ETM.MAP()
General Function Reference | 161©1989-2024 Lauterbach

ETM.PROTOCOL() Version of ETM protocol

Returns the ETM protocol version.

Return Value Type: Decimal value.

ETM.SEQUENCER() Number of ETM sequencers

Returns the number of ETM sequencers available.

Return Value Type: Decimal value.

ETM.TraceCore() TRUE if the core is traced
Arm [build 127768 - DVD 02/2021]

Allows to read back the configuration set by ETM.TraceCORE. Returns TRUE if the specified core is traced.

Parameter Type: Decimal value.

Return Value Type: Boolean.

Syntax: ETM.PROTOCOL()

Syntax: ETM.SEQUENCER()

Syntax: ETM.TraceCore(<n>)
General Function Reference | 162©1989-2024 Lauterbach

EXTENDED Function (Z80 only)

EXTENDED() TRUE if register CBAR > 0

Returns TRUE if the register CBAR is > 0 (only Z80).

Return Value Type: Boolean.

Syntax: EXTENDED()
General Function Reference | 163©1989-2024 Lauterbach

FDX Function

FDX.INSTRING() Content at FDX memory address

Returns the content at the given FDX memory address.

Parameter Type: Address.

Return Value Type: String.

FDX.TargetSTALLS() Monitor FDX communication stalls on the target
[build 147494 - DVD 09/2022]

Returns TRUE when one of the FDX channels has been signalled as a stall of the FIFO used to transfer
data from the target to the host since the last initialization.

Return Value Type: Boolean.

Syntax: FDX.INSTRING(<address>)

Syntax: FDX.TargetSTALLS()
General Function Reference | 164©1989-2024 Lauterbach

FLAG Functions

In This Section

See also

❏ FLAG() ❏ FLAG.READ() ❏ FLAG.WRITE()

FLAG() TRUE if hardware flag system available

Returns TRUE if hardware flag system is available.

Return Value Type: Boolean.

FLAG.READ() FLAG memory bytes with read access bit

Returns the number of bytes with set Read access bit of the Flag memory.

Parameter Type: Address range.

Return Value Type: Decimal value.

FLAG.WRITE() FLAG memory bytes with write access bit

Returns the number of bytes with set Write access bit of the Flag memory.

Parameter Type: Address range.

Return Value Type: Decimal value.

Syntax: FLAG()

Syntax: FLAG.READ(<address_range>)

Syntax: FLAG.WRITE(<address_range>)
General Function Reference | 165©1989-2024 Lauterbach

FLASH Functions

This figure provides an overview of the return values of some of the functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

In This Section

See also

■ FLASH ❏ FLASH.CFI.SIZE()
❏ FLASH.CFI.WIDTH() ❏ FLASH.CLocK.Frequency()
❏ FLASH.ID() ❏ FLASH.List.STATE.PENDING()
❏ FLASH.List.TYPE() ❏ FLASH.ProgramMODE()
❏ FLASH.ProgramMODE.OPTION() ❏ FLASH.SECTOR.BEGIN()
❏ FLASH.SECTOR.END() ❏ FLASH.SECTOR.EXIST()
❏ FLASH.SECTOR.EXTRAvalue() ❏ FLASH.SECTOR.NEXT()
❏ FLASH.SECTOR.OPTION() ❏ FLASH.SECTOR.OTP()
❏ FLASH.SECTOR.RANGE() ❏ FLASH.SECTOR.SIZE()
❏ FLASH.SECTOR.STATE() ❏ FLASH.SECTOR.TYPE()
❏ FLASH.SECTOR.WIDTH() ❏ FLASH.TARGET.BUILD()
❏ FLASH.TARGET.CODERANGE() ❏ FLASH.TARGET.DATARANGE()
❏ FLASH.TARGET.FILE() ❏ FLASH.TARGET2.CODERANGE()
❏ FLASH.TARGET2.DATARANGE() ❏ FLASH.TARGET2.FILE()
❏ FLASH.UNIT() ❏ FLASH.UNIT.BEGIN()
❏ FLASH.UNIT.END() ❏ FLASH.UNIT.EXIST()
❏ FLASH.UNIT.NEXT()

A Alias range.

NOTE: All FLASH.SECTOR.*() functions do not take any ALIAS range into account, but
observe only declared sectors.
For an example of an ALIAS range, see [A] in the figure above.

FLASH.SECTOR.BEGIN()
Each row stands for one sector.

FLASH.List.STATE.PENDING()

FLASH.SECTOR.END()

FLASH.UNIT.EXIST()
Unit 1. consists of multiple sectors.A
General Function Reference | 166©1989-2024 Lauterbach

FLASH.CFI.SIZE() Size of FLASH devices
[build 13759]

Returns the size of single or parallel CFI-conform FLASH devices.

Parameter and Description:

Return Value Type: Hex value. Returns 0 if TRACE32 cannot read the CFI information.

Example:

FLASH.CFI.WIDTH() Data bus width of FLASH devices
[build 13759]

Returns the data bus width of single or parallel CFI-conform FLASH devices.

Parameter Type: Address.

Return Value Type: String. Returns an empty string if TRACE32 cannot read the CFI information.

FLASH.CLocK.Frequency() FLASH clock value
[build 32807 - DVD 06/2011]

Returns the FLASH clock value configured by the FLASH.CLocK command. In case of the
FLASH.CLocK AUTO command, the function returns the frequency of the last time-measurement.

Return Value Type: Decimal value.

Syntax: FLASH.CFI.SIZE(<address>,<bus_width>)

<address> Parameter Type: Address.

<bus_width> Parameter Type: String.

PRINT FLASH.CFI.SIZE(P:0x0,Word)
PRINT FLASH.CFI.SIZE(D:0x40000000,Long)

Syntax: FLASH.CFI.WIDTH(<address>)

Syntax: FLASH.CLocK.Frequency()
General Function Reference | 167©1989-2024 Lauterbach

FLASH.ID() FLASH manufacturer and device ID
[build 104365 - DVD 02/2019]

After the FLASH.GETID command has been executed, you can use the FLASH.ID() function to return
individual values from the output of the FLASH.GETID command, such as the manufacturer ID or device ID
of a FLASH device.

Parameter Type: String.

Parameter and Description:

Return Value Type: Hex value. Returns 0 if (a) the requested ID does not exist or (b) the FLASH.GETID
command has not yet been executed or (c) the FLASH.GETID command has encountered an error.

Example:

Syntax: FLASH.ID(<id_type>)

<id_type>: MANID | MANIDBANK | DEVID | DEVID2 | DEVID3

MANID Manufacturer ID

MANIDBANK Manufacturer ID bank

DEVID, DEVID2,
DEVID3

Device ID 1, 2, or 3

FLASH.GETID 0x0 Word ;print the FLASH manufacturer ID and the device
 ;IDs to the message area A000
AREA.view ;optional step: open an AREA window to view the
 ;output of the FLASH.GETID command

RePeaT 2. ;optional step: insert two empty lines
 PRINT ""

;you can now use the FLASH.ID() function to return individual values:
PRINT "Manufacturer ID: " FLASH.ID(MANID)
PRINT "Device ID 1 : " FLASH.ID(DEVID)

A Output of the FLASH.GETID command

B Individual values returned by the FLASH.ID() function from the output of the FLASH.GETID
command.

A

B

General Function Reference | 168©1989-2024 Lauterbach

FLASH.List.STATE.PENDING() Number of pending sectors
[build 27943 - DVD 06/2011] [Go to figure]

Returns the number of pending sectors in the FLASH.List window.

Return Value Type: Decimal value.

Example: The function FLASH.List.STATE.PENDING() returns the number of modified sectors when
AUTO or ReProgram mode is active.

FLASH.List.TYPE() FLASH family code of FLASH list entry
[build 59355]

Returns the FLASH family code of a FLASH list entry. The code is displayed in the type column of the
FLASH.List window.

Parameter Type: String.

Return Value Type: Address.

Example:

Syntax: FLASH.List.STATE.PENDING()

FLASH.ReProgram.ALL
Data.LOAD.auto *
PRINT "Modified sectors: " FLASH.List.STATE.PENDING()
FLASH.ReProgram.off

Syntax: FLASH.List.TYPE(<address>)

PRINT FLASH.List.TYPE(C:0x08000001) ;returns ALIAS

PRINT FLASH.List.TYPE(C:0x0C004003) ;returns TARGET
General Function Reference | 169©1989-2024 Lauterbach

FLASH.ProgramMODE() FLASH programming modes
[build 91427 - DVD 02/2018]

Returns the active FLASH programming mode.

Return Value Type: String. An empty string is returned if none of the FLASH programming modes listed in
the table below is active.

Return Value and Description:

Example:

Syntax: FLASH.ProgramMODE()

AUTO The auto programming mode has been activated with FLASH.AUTO.

Program The FLASH programming mode has been activated with FLASH.Program.

ReProgram The FLASH reprogramming mode has been activated with
FLASH.ReProgram.

FLASH.List

;activate the FLASH reprogramming mode
FLASH.ReProgram C:0xA0004000--0xA000BFFF ;the active mode is shown in
 ;the 'state' column of the
 ;FLASH.List window

PRINT FLASH.ProgramMODE() ;returns the active mode
 ;'ReProgram'
General Function Reference | 170©1989-2024 Lauterbach

FLASH.ProgramMODE.OPTION() FLASH programming options
[build 91427 - DVD 02/2018]

Returns the active FLASH programming option.

Return Value Type: String. An empty string is returned if none of the options listed in the table below is
active.

Return Value and Description:

Example:

Syntax: FLASH.ProgramMODE.OPTION()

/OTP FLASH programming for the OTP sector is active. See also
FLASH.Program ... /OTP.

/CENSORSHIP Auto programming for the FLASH security bytes is active. See also
FLASH.AUTO … /CENSORSHIP.

FLASH.Program 6. /OTP ;activate the FLASH programming mode
 ;for the OTP sector

FLASH.List ;the active option OTP is shown in the
 ;'state' col. of the FLASH.List window

PRINT FLASH.ProgramMODE() ;returns the active mode 'Program'

PRINT FLASH.ProgramMODE.OPTION() ;returns the active option '/OTP'
General Function Reference | 171©1989-2024 Lauterbach

FLASH.SECTOR.BEGIN() Start address
[build 32807 - DVD 02/2012] [Go to figure]

Returns the start address of the sector. Please read the NOTE regarding the FLASH.SECTOR.*() functions.

Parameter Type: Address.

Return Value Type: Address.

FLASH.SECTOR.END() End address
[build 32807 - DVD 02/2012] [Go to figure]

Returns the end address of the sector. Please read the NOTE regarding the FLASH.SECTOR.*()
functions.

Parameter Type: Address.

Return Value Type: Address.

FLASH.SECTOR.EXIST() TRUE if sector exists
[build 32807 - DVD 02/2012]

Returns TRUE if the sector exists. Please read the NOTE regarding the FLASH.SECTOR.*() functions.

Parameter Type: Address.

Return Value Type: Boolean.

Syntax: FLASH.SECTOR.BEGIN(<address>)

Syntax: FLASH.SECTOR.END(<address>)

Syntax: FLASH.SECTOR.EXIST(<address>)
General Function Reference | 172©1989-2024 Lauterbach

FLASH.SECTOR.EXTRAvalue() Extra value of FLASH.Create
[build 78728 - DVD 02/2017]

Returns the extra value created with the command FLASH.Create. Please read the NOTE regarding the
FLASH.SECTOR.*() functions.

The extra value and other information is displayed in the extra column of the FLASH.List window. The
function FLASH.SECTOR.EXTRAvalue(), however, returns only the extra value.

Parameter Type: Address.

Return Value Type: Hex value.

Example:

Syntax: FLASH.SECTOR.EXTRAvalue(<address>)

; <extra_value>
; |
FLASH.Create 2. 0x00684000--0x00687FFF NOP Quad 0x0101 /INFO "HSM data"

FLASH.List

;returns 101, i.e. the <extra_value>, without leading zeros
PRINT FLASH.SECTOR.EXTRAvalue(C:0x00684000)

A The extra value, here 101, is displayed with leading zeros in the FLASH.List window.

A

General Function Reference | 173©1989-2024 Lauterbach

FLASH.SECTOR.NEXT() Address of next sector
[build 32807 - DVD 02/2012]

Returns the address of the next sector or address 0x0. Please read the NOTE regarding the
FLASH.SECTOR.*() functions.

Parameter Type: Address.

Return Value Type: Address.

FLASH.SECTOR.OTP() TRUE if OTP sector
[build 49133]

Returns TRUE if the sector is declared as OTP. Please read the NOTE regarding the
FLASH.SECTOR.*() functions.

Parameter Type: Address.

Return Value Type: Boolean.

Syntax: FLASH.SECTOR.NEXT(<address>)

Syntax: FLASH.SECTOR.OTP(<address>)
General Function Reference | 174©1989-2024 Lauterbach

FLASH.SECTOR.OPTION() Options of a FLASH sector
[build 107517 - DVD 09/2019]

Returns the options of a FLASH sector in the same syntax as used by the FLASH.Create command.
Please read the NOTE regarding the FLASH.SECTOR.*() functions.

Parameter and Description:

Return Value Type: String. An empty string is returned if the option is not used for a sector.

Example:

Syntax: FLASH.SECTOR.OPTION(<address>,<option> | ALL)

<address> Parameter Type: Address. Any address of a sector. The address has to be
classified, e.g. C:0x1000000.

<option> Parameter Type: String. You can pass any <option> of the FLASH.Create
command, provided the result of the option is displayed in the FLASH.List
window in the extra column. See screenshot below.

An error message is displayed if an invalid option name is used.

ALL Parameter Type: String. Returns all options of a sector that are displayed in
the extra column. See screenshot below.

NOTE: To return the extra value of a sector, use FLASH.SECTOR.EXTRAvalue().

FLASH.Create 0x1000000--0x100FFFF 0x4000 TARGET Long 0x0 \
 /AutoInc /KEEP 0x1003FFC--0x1003FFF
FLASH.Create 0x0400000--0x0403FFF 0x4000 TARGET Long 0x500 \
 /OTP /INFO "UTEST sector"
FLASH.List

PRINT FLASH.SECTOR.OPTION(C:0x1000000,KEEP)
 ;returns: /KEEP 0x1003FFC--0x1003FFF

PRINT FLASH.SECTOR.OPTION(C:0x0400000,ALL)
 ;returns: /OTP /INFO "UTEST sector"

FLASH.SECTOR.EXTRAvalue().
The option AutoInc of FLASH.Create affects the extra value.

Examples of <options>
displayed in the extra
column.
FLASH.SECTOR.OPTION()
General Function Reference | 175©1989-2024 Lauterbach

FLASH.SECTOR.RANGE() Address range of a FLASH sector
[build 79101 - DVD 02/2017]

Returns the address range of a sector. Please read the NOTE regarding the FLASH.SECTOR.*() functions.

Parameter Type: Address.

Return Value Type: Address range.

FLASH.SECTOR.SIZE() Size in bytes

Returns the size of the flash sector in bytes. Please read the NOTE regarding the FLASH.SECTOR.*()
functions.

Parameter Type: Address.

Return Value Type: Hex value.

FLASH.SECTOR.STATE() FLASH programming state

Returns the FLASH programming state of a sector. The state is displayed in the state column of the
FLASH.List window.

Please read the NOTE regarding the FLASH.SECTOR.*() functions.

Parameter Type: Address.

Return Value Type: String. An empty string is returned if the specified address is not inside any sector
or if the state column is empty.

Syntax: FLASH.SECTOR.RANGE(<address>)

Syntax: FLASH.SECTOR.SIZE(<address>)

Syntax: FLASH.SECTOR.STATE(<address>)
General Function Reference | 176©1989-2024 Lauterbach

FLASH.SECTOR.TYPE() FLASH family code of sector
[build 49128]

Returns the FLASH family code of a sector. The code is displayed in the type column of the FLASH.List
window.

Please read the NOTE regarding the FLASH.SECTOR.*() functions.

Parameter Type: Address.

Return Value Type: String. An empty string is returned if the specified address is not inside any sector.

Example:

Syntax: FLASH.SECTOR.TYPE(<address>)

PRINT FLASH.SECTOR.TYPE(C:0x08000001) ;returns an empty string because
 ;the address is neither in the
 ;sectors of unit 1. nor unit 2.

PRINT FLASH.SECTOR.TYPE(C:0x0C004003) ;returns TARGET

A Sectors of unit 1. B Sectors of unit 2.

A

B

General Function Reference | 177©1989-2024 Lauterbach

FLASH.SECTOR.WIDTH() Width of FLASH sector
[build 50663]

Returns the width of a FLASH sector. The information is displayed in the width column of the
FLASH.List window.

Please read the NOTE regarding the FLASH.SECTOR.*() functions.

Parameter Type: Address.

Return Value Type: String. Returns an empty string if the address is not inside any sector.

FLASH.TARGET.BUILD() Build number of FLASH algorithm file
[build 33191 - DVD 02/2012]

Returns the build number of the FLASH algorithm binary file or 0 if the file has no build number. The build
number of the FLASH algorithm binary is independent of the TRACE32 build number.

Parameter Type: String.

Return Value Type: Decimal value.

Syntax: FLASH.SECTOR.WIDTH(<address>)

Syntax: FLASH.TARGET.BUILD(<file>)
General Function Reference | 178©1989-2024 Lauterbach

FLASH.TARGET.CODERANGE() Code range of FLASH algorithm
[build 89348 - DVD 02/2018]

Returns the address range where the code of the FLASH algorithm binary file and the software breakpoint is
located. The address range is declared with the FLASH.TARGET or FLASH.TARGET2 command.

Return Value Type: Address range.

FLASH.TARGET.DATARANGE() Data range of FLASH algorithm
[build 89348 - DVD 02/2018]

Returns the address range where the argument buffer, the data buffer, and the stack used by the FLASH
algorithm binary file are located. The address range is declared with the FLASH.TARGET or
FLASH.TARGET2 command.

Return Value Type: Address range.

FLASH.TARGET.FILE() Name of FLASH algorithm file

Returns the file name of the FLASH algorithm binary declared with the FLASH.TARGET or
FLASH.TARGET2 command.

Return Value Type: String.

Syntax: FLASH.TARGET.CODERANGE()

FLASH.TARGET2.CODERANGE()

Syntax: FLASH.TARGET.DATARANGE()

FLASH.TARGET2.DATARANGE()

Syntax: FLASH.TARGET.FILE()
[build 48531]

FLASH.TARGET2.FILE()
[build 67392 - DVD 02/2016]
General Function Reference | 179©1989-2024 Lauterbach

FLASH.UNIT() Unit number of FLASH sector
[build 41711]

Returns the unit number of a FLASH sector. Returns 0 if the sector does not exist.

Parameter Type: Address.

Return Value Type: Decimal value.

FLASH.UNIT.BEGIN() Unit start address
[build 41711]

Returns the start address of the unit or displays the error #emu_flashnfnd if the unit does not exist.

Parameter Type: Decimal value.

Return Value Type: Address.

FLASH.UNIT.END() Unit end address
[build 41711]

Returns the end address of the unit or displays the error #emu_flashnfnd if the unit does not exist.

Parameter Type: Decimal value.

Return Value Type: Address.

Syntax: FLASH.UNIT(<address>)

Syntax: FLASH.UNIT.BEGIN(<unit>)

Syntax: FLASH.UNIT.END(<unit>)
General Function Reference | 180©1989-2024 Lauterbach

FLASH.UNIT.EXIST() TRUE if unit exists
[build 41711] [Go to figure]

Returns TRUE if the unit exists, otherwise FALSE.

Parameter Type: Decimal value.

Return Value Type: Boolean.

FLASH.UNIT.NEXT() Number of next unit
[build 41711]

Returns the number of the next unit. Returns 0 if there is no next unit.

Parameter Type: Decimal value.

Return Value Type: Decimal value.

Syntax: FLASH.UNIT.EXIST(<unit>)

Syntax: FLASH.UNIT.NEXT(<unit>)
General Function Reference | 181©1989-2024 Lauterbach

FLASHFILE Functions

In This Section

See also

■ FLASHFILE ❏ FLASHFILE.GETBADBLOCK.COUNT()
❏ FLASHFILE.GETBADBLOCK.NEXT() ❏ FLASHFILE.SPAREADDRESS()

FLASHFILE.GETBADBLOCK.COUNT() Number of bad blocks

After the FLASHFILE.GETBADBLOCK command has been executed, this function returns the number of
the bad blocks on the NAND flash memory.

Return Value Type: Hex value.

Example:

FLASHFILE.GETBADBLOCK.NEXT() Address of bad block
[Example]

After the FLASHFILE.GETBADBLOCK command has been executed, this function returns the addresses
of the bad blocks on the NAND flash memory.

Return Value Type: Hex value.

Syntax: FLASHFILE.GETBADBLOCK.COUNT()

FLASHFILE.GETBADBLOCK 0x0--0xFFFFF ; test range 0x0--0xFFFFF for bad
 ; blocks

&badblockcount=FLASHFILE.GETBADBLOCK.COUNT()

PRINT "Number of bad blocks: " &badblockcount

Syntax: FLASHFILE.GETBADBLOCK.NEXT()
General Function Reference | 182©1989-2024 Lauterbach

Example:

FLASHFILE.SPAREADDRESS() Address of spare area

Returns the address of a NAND flash spare area (SP) based on the specified main area address.
<address> is the address of the main area.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Example: The page size of our example NAND flash main / spare area is 2048 byte / 64 byte, and each row
stands for one page.

FLASHFILE.GETBADBLOCK 0x0--0xFFFFF ; test range 0x0--0xFFFFF for bad
 ; blocks

&badblockcount=FLASHFILE.GETBADBLOCK.COUNT()
&loopNum=&badblockcount

WHILE (&loopNum>0)
(
 PRINT %Hex "Bad block address: 0x" FLASHFILE.GETBADBLOCK.NEXT()
 &loopNum=&loopNum-1.
)

Syntax: FLASHFILE.SPAREADDRESS(<address>)

; <main_area_address>
PRINT FLASHFILE.SPAREADDRESS(0x800) ;returns the corresponding
 ;spare area address, here:
 ;0x40

0x0

0x800

Main Area

0x0

SP

0x40

0x1000 0x80

address address
General Function Reference | 183©1989-2024 Lauterbach

FPU Functions (Floating Point Unit)

In This Section

See also

■ FPU ❏ FPU() ❏ FPU.RAW() ❏ FPUCR()

FPU() FPU register contents

Returns the FPU register contents.

Parameter Type: String.

Return Value Type: Float.

FPUCR() FPU control register contents

Returns the FPU control register contents.

Parameter Type: String.

Return Value Type: Hex value.

FPU.RAW() FPU register raw contents
AndeStar, ARM, C2000, ColdFire, MIPS32, MMDSP, PowerPC, SH

Returns the hexadecimal raw content of the given FPU control register.

Parameter Type: String.

Return Value Type: Hex value.

Syntax: FPU(<name>)

Syntax: FPUCR(<name>)

Syntax: FPU.RAW(<name>)
General Function Reference | 184©1989-2024 Lauterbach

FXU Function

FXU() Content of FXU register
RH850 [build 81540 - DVD 09/2017]

Returns the content of the selected FXU register.

Parameter Type: String.

Return Value Type: String.

See also: FXU command group.

GROUP Function

GROUP.EXIST() TRUE if group exists

Returns TRUE if a group name already exists, FALSE otherwise.

Parameter Type: String.

Return Value Type: Boolean.

See also: GROUP command group.

Syntax: FXU(<register_name>)

Syntax: GROUP.EXIST(<group_name>)
General Function Reference | 185©1989-2024 Lauterbach

Hardware Functions

In This Section

The hardware function allows to check which TRACE32 hardware is plugged in.

See also

❏ hardware.COMBIPROBE() ❏ hardware.ESI()
❏ hardware.ICD() ❏ hardware.POWERINTEGRATOR()
❏ hardware.POWERINTEGRATOR2() ❏ hardware.POWERNEXUS()
❏ hardware.POWERPROBE() ❏ hardware.POWERTRACE()
❏ hardware.POWERTRACE2() ❏ hardware.POWERTRACE2LITE()
❏ hardware.POWERTRACE3() ❏ hardware.POWERTRACEPX()
❏ hardware.POWERTRACESERIAL() ❏ hardware.QUADPROBE()
❏ hardware.UTRACE()

hardware.COMBIPROBE() TRUE if CombiProbe

Returns TRUE if a COMBIPROBE hardware is connected.

Return Value Type: Boolean.

hardware.ESI() TRUE if EPROM Simulator

Returns TRUE if the debugger is running via the ESI (EPROM Simulator) hardware.

Return Value Type: Boolean.

Syntax: hardware.COMBIPROBE()

Syntax: hardware.ESI()
ESI() (deprecated)
General Function Reference | 186©1989-2024 Lauterbach

hardware.ICD() TRUE if TRACE32 debug hardware

Returns TRUE if TRACE32 PowerView communicates with the target via a TRACE32 debug hardware.
Unlike the hardware.POWERDEBUG() function, this also includes legacy debug modules.

Return Value Type: Boolean.

hardware.POWERDEBUG() TRUE if TRACE32 PowerDebug hardware

Returns TRUE if TRACE32 PowerView communicates with the target via a µTrace (MicroTrace), POWER
DEBUG or POWERTRACE / ETHERNET hardware module.

Return Value Type: Boolean.

hardware.POWERINTEGRATOR() TRUE if a PowerIntergrator

Returns TRUE if a POWER INTEGRATOR hardware module is connected.

Return Value Type: Boolean.

hardware.POWERINTEGRATOR2() TRUE if a PowerIntegrator II

Returns TRUE if a POWERINTEGRATOR II hardware module is connected.

Return Value Type: Boolean.

Syntax: hardware.ICD()
BDM() (deprecated)
DEBUGger() (deprecated)
ICD() (deprecated)

Syntax: hardware.POWERDEBUG()
POWERDEBUG() (deprecated)

Syntax: hardware.POWERINTEGRATOR()
POWERINTEGRATOR() (deprecated)
INTEGRATOR() (deprecated)

Syntax: hardware.POWERINTEGRATOR2()
POWERINTEGRATOR2() (deprecated)
General Function Reference | 187©1989-2024 Lauterbach

hardware.POWERNEXUS() TRUE is a NEXUS Adapter

Returns TRUE if a NEXUS ADAPTER is connected.

Return Value Type: Boolean.

hardware.POWERPROBE() TRUE is a PowerProbe

Returns TRUE if a POWERPROBE hardware module is connected.

Return Value Type: Boolean.

hardware.POWERTRACE() TRUE if a PowerTrace Module

Returns TRUE if a POWERTRACE module is connected.

Additional prerequisite is that a PREPROCESSOR / NEXUS ADAPTER is also plugged in. This is not
required for POWER TRACE SERIAL.

Return Value Type: Boolean.

hardware.POWERTRACE2() TRUE if a PowerTrace II
[build 14028 - DVD 10/2008]

Returns TRUE if a POWER TRACE II or POWER TRACE II LITE hardware module is connected. Additional
prerequisite is that a PREPROCESSOR / NEXUS ADAPTER is also plugged in.

Return Value Type: Boolean.

Syntax: hardware.POWERNEXUS()
POWERNEXUS() (deprecated)

Syntax: hardware.POWERPROBE()
POWERPROBE() (deprecated)
PROBE() (deprecated)

Syntax: hardware.POWERTRACE()
POWERTRACE() (deprecated)

Syntax: hardware.POWERTRACE2()
POWERTRACE2() (deprecated)
General Function Reference | 188©1989-2024 Lauterbach

hardware.POWERTRACE2LITE() TRUE if a PowerTrace II LITE
[build 117875 - DVD 09/2020]

Returns TRUE if a POWER TRACE II LITE hardware module is connected. Additional prerequisite is that a
PREPROCESSOR / NEXUS ADAPTER is also plugged in.

Return Value Type: Boolean.

hardware.POWERTRACE3() TRUE if a PowerTrace III
[build 124115 - DVD 09/2021]

Returns TRUE if a POWER TRACE III hardware module is connected. Additional prerequisite is that a
PREPROCESSOR / NEXUS ADAPTER is also plugged in.

Return Value Type: Boolean.

hardware.POWERTRACEPX() TRUE if a PowerTrace PX
[build 79974 - DVD 02/2017]

Returns TRUE if a POWER TRACE PX hardware module is connected. Additional prerequisite is that a
PREPROCESSOR / NEXUS ADAPTER is also plugged in.

Return Value Type: Boolean.

hardware.POWERTRACESERIAL() TRUE if a PowerTrace Serial
[build 78458 - DVD 02/2017]

Returns TRUE if a POWER TRACE SERIAL hardware module is connected.

Return Value Type: Boolean.

Syntax: hardware.POWERTRACE2LITE()

Syntax: hardware.POWERTRACE3()

Syntax: hardware.POWERTRACEPX()

Syntax: hardware.POWERTRACESERIAL()
General Function Reference | 189©1989-2024 Lauterbach

hardware.POWERTRACESERIAL2() TRUE if a PowerTrace Serial II
[build 158903 - DVD 03/2023]

Returns TRUE if a POWER TRACE SERIAL II hardware module is connected.

Return Value Type: Boolean.

hardware.QUADPROBE() TRUE if QuadProbe
[build 63955 - DVD 09/2016]

Returns TRUE if a QUADPROBE hardware is plugged.

Return Value Type: Boolean.

hardware.UTRACE() TRUE if µTrace
[build 46956 - DVD 2013/08]

Returns TRUE if TRACE32 PowerView communicates with the target via a µTrace (MicroTrace),

Return Value Type: Boolean.

Syntax: hardware.POWERTRACESERIAL2()

Syntax: hardware.QUADPROBE()

Syntax: hardware.UTRACE()
General Function Reference | 190©1989-2024 Lauterbach

HVX Function

HVX() Content of HVX register
[build 61364 - DVD 09/2015]

Returns the content of the selected HVX register.

Parameter Type: String.

Return Value Type: String.

See also: HVX command group.

Syntax: HVX(<register_name>)
General Function Reference | 191©1989-2024 Lauterbach

I2C Functions

In This Section

See also

■ I2C ❏ I2C.DATA() ❏ I2C.PIN()

I2C.DATA() Data read by I2C.TRANSFER
[build 62704 - DVD 09/2015]

Returns byte <index> read with the command I2C.TRANSFER.

Parameter Type: Decimal value.

Return Value Type: Decimal value.

I2C.PIN() Pin status
[build 62704 - DVD 09/2015]

Returns the pin status 0 or 1.

Parameter Type: String.

Return Value Type: Binary value.

See also: I2C.PIN

Syntax: I2C.DATA(<index>)
CAnalyzer.I2C.DATA(<index>) (deprecated)

Syntax: I2C.PIN(<pin_name>)

<pin_name>: SCL | SDA
General Function Reference | 192©1989-2024 Lauterbach

ID Functions

In This Section

See also

❏ ID.CABLE() ❏ ID.POWERTRACEAUXPORT()
❏ ID.PREPROcessor() ❏ ID.SERialPort1()
❏ ID.WHISKER() ❏ IDCODE()
❏ IDCODENUMBER()

ID.CABLE() Hardware ID of debug cable

Returns the hardware ID of the debug cable (not the serial number).

Return Value Type: Hex value.

ID.POWERTRACEAUXPORT() Hardware ID of device at PT aux port
[build 132426 - DVD 02/2021]

Returns the hardware ID (not the serial number) of the device of a logic analyzer extension plugged into a
PowerTrace device.

Return Value Type: Hex value.

To get the serial number, use the function VERSION.SERIAL.POWERTRACEAUXPORT().

Return Values for PowerTrace III or PowerTrace Serial 2

The return value corresponds to the extension device plugged into the port labelled AUX PORT V1.

Syntax: ID.CABLE()

Syntax: ID.POWERTRACEAUXPORT()

Return Values

0x00 No extension

0x27 LA-2500 Mixed-Signal Probe COB 2/MicroTrace/PT-III

0xFF Unknown extension, please update the TRACE32 software.
General Function Reference | 193©1989-2024 Lauterbach

Return Values for PowerTrace II or PowerTrace Serial

The return value corresponds to the extension plugged into the port labelled LOGIC ANALYZER PROBE:

ID.PREPROcessor() Hardware ID of preprocessor
[build 12440 - DVD 10/2008]

Returns the hardware ID of the preprocessor (not the serial number).

Return Value Type: Hex value.

To return the serial number, use the function VERSION.SERIAL.PREPROcessor().

Return Values

0x00 No extension

0x07 LA-7945 Standard Probe for PowerIntegrator

0x08 LA-7949 Analog Probe for PI/PT-II/CombiProbe/µTrace (MicroTrace)

0xFF Unknown extension, please update the TRACE32 software.

Syntax: ID.PREPROcessor()

HEADID() (deprecated)
[build 07808 - DVD 09/2007]
General Function Reference | 194©1989-2024 Lauterbach

ID.SERialPort1() Type-ID of Adapter or Preprocessor at PowerTrace Serial
[build 156822 - DVD 02/2023]

Returns a 16-bit ID specifying the type of the Lauterbach device plugged to Serial Port 1 of a
PowerTrace Serial.

Return Value Type: Hex value.

Return Value and Description:

Syntax: ID.SERialPort1()

0x2082 Aurora 2 Preprocessor

0x208A PCIe Gen 4 Preprocessor

0x2002 PCIe Gen 3 x8 Slot-Card-Adapter

0x2009 PCIe Gen 3 x4 Slot-Card-Adapter

0x200A PCIe Gen 3 x1 Slot-Card-Adapter

0x2004 Adapter for AGBT

0x200B Adapter for AGBT/SGBT via HSTCU

0x2003 Universal Trace Adapter

0x2006 Adapter for RH850-34pin

0x2007 Adapter for RH850-40pin
General Function Reference | 195©1989-2024 Lauterbach

ID.WHISKER() ID of whisker cable
[build 63343 - DVD 09/2015]

Returns the ID of the whisker cable connected to the connector specified by <int>.

Parameter Type: Decimal value.

Return Value Type: Hex value.

Use cases for the function ID.WHISKER(<int>):

• Scripts that use TRACE32 commands that only work if a specific whisker is connected. E.g.
using the ETA command group requires that a Conv. CombiProbe/µTrace (MicroTrace) to PI-
Analog Probe plus an Analog Probe for PI/PT-II/CombiProbe/µTrace (MicroTrace) is connected.

• A script designed for different tool configurations can use this function to parenthesize
commands applicable only for a individual configuration.

Syntax: ID.WHISKER(<int>)
General Function Reference | 196©1989-2024 Lauterbach

Parameters and Return Values for µTrace (MicroTrace), CombiProbe and CombiProbe 2

Not all whiskers are supported on both ports. For whiskers that occupy both ports of the CombiProbe, the ID
is returned by ID.WHISKER(0.) and ID.WHISKER(1.) returns 0x00.

The function hardware.UTRACE() returns TRUE if a µTrace (MicroTrace) is connected. The function
hardware.COMBIPROBE() returns TRUE if a CombiProbe or CombiProbe 2 is connected.

<int> Parameter

0 For connector A

1 For connector B

Return Values

0x00 No whisker

0x01 LA-4505 MIPI34 Whisker for CombiProbe/MicroTrace

0x02 LA-4515 DCI OOB Whisker for CombiProbe (Version 1)

0x04 LA-4551 Whisker Cable TriCore DAP for CombiProbe (no longer supported)

0x05 LA-4509 CombiProbe Intel x86/x64 MIPI34 (no series termination).

0x08 LA-4508 Conv. CombiProbe/µTrace (MicroTrace) to PI-Analog Probe plus
LA-7949 Analog Probe for PI/PT-II/CombiProbe/µTrace (MicroTrace)

0x09 LA-4515 DCI OOB Whisker for CombiProbe (Version 2)

0x0B LA-4400 USB-C Breakout Module (Type-C Port)

0x0E LA-4553 AUTO26 Whisker for CombiProbe or
LA-2763 Whisker dsPIC Dual Core for CombiProbe

0x10 LA-4511 Whisker Cable MIPI60-C for CombiProbe or
LA-4517 Whisker Cable MIPI60-C for CombiProbe Long

0x11 LA-4571 Whisker Cable MIPI60-Cv2 for CombiProbe (Version 2)

0x12 LA-4513 MIPI20T-HS Whisker for CombiProbe/MicroTrace

0x26 LA-4571 Whisker Cable MIPI60-Cv2 for CombiProbe (Version 2.1)

0x27 LA-2500 Mixed-Signal Probe COB 2/MicroTrace/PT-III

0xFF Unknown whisker, please update the TRACE32 software.

μTRACE® FOR CORTEX®-M / USB 3

TRIG

POWER
7-9V

POWER

RECORD

RUNNING

μTRACE

B A

U
SB

A
U

X
 P

O
RT

 V
1

D
EB

U
G

/T
RA

C
E

W
H

IS
KE

R

COMBIPROBE

B A

D
E

B
U

G
 C

A
B

LE

L
A

U
T

E
R

B
A

C
H

L
A

U
T

E
R

B
A

C
H

C
O

M
B

IP
R

O
B

E

CABLE

B A
General Function Reference | 197©1989-2024 Lauterbach

Parameters and Return Values for QuadProbe

The function hardware.QUADPROBE() returns TRUE if a TRACE32 QuadProbe is connected.

<int> Parameter

0 For connector A

1 For connector B

2 For connector C

3 For connector D

Return Values

0x32 LA-4611 Whisker MIPI60-Q QuadProbe Intel® x86/x64 connected.

0x00 No whisker connected.

0xff Unknown whisker, please update the TRACE32 software.

QUADPROBE

L
A

U
T

E
R

B
A

C
H

L
A

U
T

E
R

B
A

C
H

CD

CABLE

B A

Q
U

A
D

P
R

O
B

E

D
E

B
U

G
 C

A
B

LE

P
O

W
E

R
7-

9V

C B AD
General Function Reference | 198©1989-2024 Lauterbach

IDCODE() ID code of TAP in JTAG chain
[build 17669 - DVD 12/2009]

Returns the JTAG ID code of the n-th TAP in your JTAG chain after executing SYStem.DETECT
IDCode.

Parameter Type: Decimal value.

Return Value Type: Hex value.

Example:

IDCODENUMBER() Number of detected TAPs
[build 17669 - DVD 12/2009]

Returns the number of TAPs detected by SYStem.DETECT IDCode.

Return Value Type: Decimal value.

Syntax: IDCODE(<n>)

SYStem.DETECT IDCode
PRINT "1st device in JTAG daisy chain is 0x" %Hex IDCODE(0)

Syntax: IDCODENUMBER()
General Function Reference | 199©1989-2024 Lauterbach

Integrator Functions

In This Section

See also

❏ Integrator() ❏ Integrator.ADC.ENABLE()
❏ Integrator.ADC.SHUNT() ❏ Integrator.COUNTER.EVENT()
❏ Integrator.COUNTER.EXTERN() ❏ Integrator.COUNTER.TIME()
❏ Integrator.DIALOGDSEL() ❏ Integrator.DIALOGDSELGET()
❏ Integrator.DSEL() ❏ Integrator.FIND.PI_CHANNEL()
❏ Integrator.FIND.PI_WORD() ❏ Integrator.FIRST()
❏ Integrator.FLAG() ❏ Integrator.GET()
❏ Integrator.MAXSIZE() ❏ Integrator.PROBE()
❏ Integrator.PROGRAMFILENAME() ❏ Integrator.RECORD.DATA()
❏ Integrator.RECORD.TIME() ❏ Integrator.RECORDS()
❏ Integrator.REF() ❏ Integrator.SIZE()
❏ Integrator.STATE() ❏ Integrator.TRACK.RECORD()
❏ Integrator.USB()

Integrator() TRUE if PowerIntegrator

Returns TRUE if a PowerIntegrator is connected.

Return Value Type: Boolean.

Integrator.FIRST() Get record number of first trace record
[build 71062 - DVD 09/2016]

Returns the record number of the first record. The first record is the record with the lowest record number.

Return Value Type: Decimal value.

Syntax: Integrator()

Syntax: Integrator.FIRST()
General Function Reference | 200©1989-2024 Lauterbach

Integrator.ADC.ENABLE() Bitmask of enabled analog channels

Returns the bitmask of enabled analog channels of the Analog Probe.

Parameter Type: String.

Return Value Type: Boolean.

Integrator.ADC.SHUNT() Shunt-resistor value

Returns the shunt-resistor value of the specified current measurement <channel> of the Analog Probe.

Parameter Type: String.

Return Value Type: Float.

Integrator.ANALOG()

Returns a value different from zero if analog probes are plugged in a PowerIntegrator hardware. For
connector A..F, J..O the values are: 0x0001..0x0020, 0x0100..0x2000.

Return Value Type: Hex value.

Integrator.COUNTER.EVENT() Get value of trigger program event counter

Returns the value of an event counter of the PowerIntegrator CTU.

Parameter Type: String.

Return Value Type: Decimal value.

Syntax: Integrator.ADC.ENABLE(<channel>)

Syntax: Integrator.ADC.SHUNT(<channel>)

Syntax: Integrator.ANALOG()

Syntax: Integrator.COUNTER.EVENT(<counter_name>)
General Function Reference | 201©1989-2024 Lauterbach

Integrator.COUNTER.EXTERN() Value of trigger program external counter

Returns the value of an extern counter of the PowerIntegrator CTU.

Parameter Type: String.

Return Value Type: Decimal value.

Integrator.COUNTER.TIME() Get value of trigger program time counter

Returns the value of an time counter of the PowerIntegrator CTU.

Parameter Type: String.

Return Value Type: Time value.

Integrator.DIALOGDSEL() For internal usage only

For internal usage only.

Parameter Type: String.

Return Value Type: Hex value.

Integrator.DIALOGDSELGET() For internal usage only

For internal usage only.

Return Value Type: String.

Syntax: Integrator.COUNTER.EXTERN(<counter_name>)

Syntax: Integrator.COUNTER.TIME(<counter_name>)

Syntax: Integrator.DIALOGDSEL(<string>)

Syntax: Integrator.DIALOGDSELGET()
General Function Reference | 202©1989-2024 Lauterbach

Integrator.DSEL() For internal usage only

For internal usage only.

Return Value Type: String.

Integrator.FIND.PI_CHANNEL() For internal usage only

Returns if the specified signal-name is defined (internal use only).

Parameter Type: String.

Return Value Type: Hex value.

Integrator.FIND.PI_WORD() TRUE if signal word is defined

Returns TRUE if the specified signal-word is defined.

Parameter Type: String.

Return Value Type: Boolean.

Integrator.FLAG() Check state of trigger program FLAG

Returns the value of a flag of the PowerIntegrator CTU.

Parameter Type: String.

Return Value Type: Boolean.

Syntax: Integrator.DSEL()

Syntax: Integrator.FIND.PI_CHANNEL(<signal_name>)

Syntax: Integrator.FIND.PI_WORD(<signal_word>)

Syntax: Integrator.FLAG(<flag_name>)
General Function Reference | 203©1989-2024 Lauterbach

Integrator.GET() Value of channel

Returns the current value of the channel.

Parameter Type: String.

Return Value Type: Hex value.

Integrator.MAXSIZE() Get max. size of trace buffer in records

Returns the maximum size of the PowerIntegrator trace buffer in records (value depends on the actual
selected tracing mode too).

Return Value Type: Decimal value.

Integrator.PROBE() For internal usage only

Returns the bitmask of connected probes (internal use only).

Return Value Type: Hex value.

Integrator.PROGRAMFILENAME() File name of trigger program

Returns the file name of the active trigger program.

Return Value Type: String.

Syntax: Integrator.GET(<channel_name>)

0 High

1 Low

Syntax: Integrator.MAXSIZE()

Syntax: Integrator.PROBE()

Syntax: Integrator.PROGRAMFILENAME()
General Function Reference | 204©1989-2024 Lauterbach

Integrator.RECORD.DATA() Get data recorded in trace record

Returns the sampled data from the specified record.

Parameter and Description:

Return Value Type: Hex value.

Integrator.RECORD.TIME() Get timestamp of trace record

Returns the timestamp from the specified record. For an example, see Analyzer.RECORD.TIME().

Parameter Type: Decimal value.

Return Value Type: Time value.

Integrator.RECORDS() Get number of used trace records

Returns the number of records.

Return Value Type: Decimal value.

Integrator.REF() Get record number of reference record

The command Integrator.REF allows to mark a trace record as reference record. The function returns the
record number of the reference record.

Return Value Type: Decimal value.

Syntax: Integrator.RECORD.DATA(<record_number>,<channel>)

<record_number> Parameter Type: Decimal value.

<channel> Parameter Type: String.

Syntax: Integrator.RECORD.TIME(<record_number>)

Syntax: Integrator.RECORDS()

Syntax: Integrator.REF()
General Function Reference | 205©1989-2024 Lauterbach

Integrator.SIZE() Get current trace buffer size in records

Returns the actual defined logical size of the Power Integrator trace buffer in records.

Return Value Type: Decimal value.

Integrator.STATE() Get state of the Integrator

Returns the state of the Integrator.

Return Value Type: Hex value.

Return Value and Description:

Integrator.TRACK.RECORD() Get record number matching search

After a successful search operation, this function returns the record number. For an example, see
Analyzer.TRACK.RECORD().

Return Value Type: Decimal value.

Syntax: Integrator.SIZE()

Syntax: Integrator.STATE()

0 OFF state

1 Arm state

2 break state

3 trigger state

4 DISable state

Syntax: Integrator.TRACK.RECORD()
General Function Reference | 206©1989-2024 Lauterbach

Integrator.USB() For internal usage only

Returns a value not equal to 0 if an USB2 probe is connected (internal use only).

Return Value Type: Hex value.

Syntax: Integrator.USB()
General Function Reference | 207©1989-2024 Lauterbach

INTERFACE Functions

This figure provides an overview of the return values of some of the functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

The INTERFACE functions return the PBI= setting in the configuration file (by default config.t32) irrespective
of the current system mode setting. The system mode settings, such as SYStem.Mode Up or
SYStem.Mode Down, are shown in the SYStem.state window. They can be returned with the
SYStem.Mode() function.

To open the configuration file of a TRACE32 instance:

1. Choose Help menu > About TRACE32.

2. In the VERSION window, click the edit button.

In This Section

See also

❏ INTERFACE.CADI() ❏ INTERFACE.GDB() ❏ INTERFACE.GDI() ❏ INTERFACE.HOST()
❏ interface.HOSTMCI() ❏ INTERFACE.IRIS() ❏ INTERFACE.MCD() ❏ INTERFACE.NAME()
❏ INTERFACE.QNX() ❏ INTERFACE.SIM()

INTERFACE.CADI() TRUE if connection to target is via CADI interface

Returns TRUE if the debugger is connected to the target via the CADI interface (PBI=CADI).

Return Value Type: Boolean.

Syntax: INTERFACE.CADI()

INTERFACE.SIM()
General Function Reference | 208©1989-2024 Lauterbach

INTERFACE.GDB() TRUE if connection to target is via GDB interface

Returns TRUE if the debugger is connected to the target via the GDB interface (PBI=GDB).

Return Value Type: Boolean.

INTERFACE.GDI() TRUE if connection to target via GDI interface

Returns TRUE if the debugger is connected to the target via the GDI interface (PBI=GDI).

Return Value Type: Boolean.

INTERFACE.HOST() TRUE if application is debugged on host

Returns TRUE if the debugger is connected to the application via the Native Host Debugging interface
(PBI=HOST).

Return Value Type: Boolean.

interface.HOSTMCI() TRUE if TRACE32 debug driver runs on host
[build 38565 - DVD 08/2012]

Returns TRUE if the TRACE32 debug driver runs on the host to access the target CPU by native
connections or artificial back-end interfaces. The result reflects the settings PBI=MCILIB or
PBI=MCISERVER of the config file.

Return Value Type: Boolean.

Syntax: INTERFACE.GDB()

Syntax: INTERFACE.GDI()
GDI() (deprecated)

Syntax: INTERFACE.HOST()

Syntax: interface.HOSTMCI()
General Function Reference | 209©1989-2024 Lauterbach

INTERFACE.IRIS() TRUE if connection to target is via IRIS interface

Returns TRUE if the debugger is connected to the target via the IRIS interface (PBI=IRIS).

Return Value Type: Boolean.

INTERFACE.MCD() TRUE if connection to target via MCD interface

Returns TRUE if the debugger is connected to the target via the MCD interface (PBI=MCD).

Return Value Type: Boolean.

INTERFACE.NAME() Name of debugger
[build 76305 - DVD 09/2016]

Returns the name of the debugger this GUI is connected to. This is the same name as printed in the
VERSION.view window, e.g. “Power Debug USB 3.0”, “Simulator” or “GDI”.

Return Value Type: String.

INTERFACE.QNX() TRUE if PBI=QNX

Returns TRUE if TRACE32 is connected to a process-level debugger for QNX (PBI=QNX).

Return Value Type: Boolean.

Syntax: INTERFACE.IRIS()

Syntax: INTERFACE.MCD()

Syntax: INTERFACE.NAME()

Syntax: INTERFACE.QNX()
General Function Reference | 210©1989-2024 Lauterbach

INTERFACE.SIM() TRUE if simulator
[Go to figure]

Returns TRUE if the debugger is running on the Lauterbach Instruction Set Simulator (PBI=SIM).

Return Value Type: Boolean.

Syntax: INTERFACE.SIM()
SIMULATOR() (deprecated)
General Function Reference | 211©1989-2024 Lauterbach

IOBASE Functions

In This Section

See also

❏ IOBASE() ❏ IOBASE.ADDRESS() ❏ IOBASE2()

IOBASE() Base address of internal I/O’s

Gets the base address of the internal I/O’s without access class.

Return Value Type: Hex value.

IOBASE.ADDRESS() Base address of internal I/O’s with access class

Gets the base address of the internal I/O’s with access class.

Return Value Type: Address.

IOBASE2() Second base address of internal I/O’s

Gets the second base address of the internal I/O’s without access class.

Return Value Type: Hex value.

Syntax: IOBASE()

Syntax: IOBASE.ADDRESS()

Syntax: IOBASE2()
General Function Reference | 212©1989-2024 Lauterbach

IProbe Functions

These figures provide an overview of the return values of some of the functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

IProbe.STATE()

IProbe.RECORDS()

IProbe.SIZE()
IProbe.MAXSIZE()

IProbe.GET()

IProbe.TRACK.RECORD()

IProbe.ADC.ENABLE() IProbe.ADC.SHUNT()

IProbe.ANALOG()

IProbe.PROBE()
General Function Reference | 213©1989-2024 Lauterbach

In This Section

See also

■ IProbe ❏ IProbe() ❏ IProbe.ADC.ENABLE() ❏ IProbe.ADC.SHUNT()
❏ IProbe.ANALOG() ❏ IProbe.FIRST() ❏ IProbe.GET() ❏ IProbe.MAXSIZE()
❏ IProbe.PROBE() ❏ IProbe.RECORD.DATA() ❏ IProbe.RECORD.TIME() ❏ IProbe.RECORDS()
❏ IProbe.REF() ❏ IProbe.SIZE() ❏ IProbe.STATE() ❏ IProbe.TRACK.RECORD()

IProbe() TRUE if IPROBE

Returns TRUE if the debugger is running on a TRACE32-IPROBE hardware.

Return Value Type: Boolean.

IProbe.ADC.ENABLE() TRUE if channel is enabled
[Go to figure]

Returns TRUE if the specified analog channel of the IProbe is enabled.

Parameter Type: String.

Return Value Type: Boolean.

Example 1:

Syntax: IProbe()

Syntax: IProbe.ADC.ENABLE(<channel>)

; The prefix ip stands for the IProbe of the Analog Probe.

; Returns FALSE if the V0 check box on the POD IP window is cleared.
PRINT IProbe.ADC.ENABLE(ip.V0)

; Returns TRUE if the V1 check box on the POD IP window is selected.
PRINT IProbe.ADC.ENABLE(ip.V1)
General Function Reference | 214©1989-2024 Lauterbach

Example 2: To programmatically clear or select a checkbox on the POD IP window, use the POD.ADC
command in a PRACTICE script file (*.cmm).

IProbe.ADC.SHUNT() Shunt resistor value of channel
[Go to figure]

Returns the shunt-resistor value of the specified current measurement <channel> of the IProbe.

Parameter Type: String.

Return Value Type: Float.

Example:

; Opens the POD IP window.
POD IP

; The keyword ON is used to select the V0 check box.
POD.ADC IP V0.ON
; Returns TRUE because the V0 check box is selected.
PRINT IProbe.ADC.ENABLE(ip.V0) ; The prefix ip stands for the
 ; IProbe of the Analog Probe.

; The keyword OFF is used to clear the V0 check box.
POD.ADC IP V0.OFF
; Returns FALSE because the V0 check box is cleared.
PRINT IProbe.ADC.ENABLE(ip.V0)

Syntax: IProbe.ADC.SHUNT(<channel>)

; The prefix ip stands for the IProbe of the Analog Probe.

; Returns the shunt-resistor value of the current channel I0.
PRINT IProbe.ADC.SHUNT(ip.I0)
General Function Reference | 215©1989-2024 Lauterbach

IProbe.ANALOG() TRUE if Analog Probe is plugged
[Go to figure]

When the PowerTrace II / PowerTrace III is powered up, this function returns if the connector of an Analog
Probe is plugged.

Return Value Type: Boolean.

Return Value and Description:

IProbe.FIRST() Get record number of first trace record
[build 71062 - DVD 09/2016]

Returns the record number of the first record. The first record is the record with the lowest record number.

Return Value Type: Decimal value.

IProbe.GET() Value of channel
[Go to figure]

Returns the current value of the channel. This function is primarily intended for the digital channels of the
Standard Probe.

Parameter Type: String.

Return Value Type: Hex value. If there is no current value, the function returns 0FFFFFFFFFFFFFFFF.

Example:

Syntax: IProbe.ANALOG()

TRUE The connector of an Analog Probe is plugged in at the socket labeled
LOGIC ANALYZER PROBE.

FALSE The connector of the Analog Probe is not plugged in at the socket labeled
LOGIC ANALYZER PROBE.

Syntax: IProbe.FIRST()

Syntax: IProbe.GET(<channel_name>)

PRINT IProbe.GET(ip.V1) ; Returns a hexadecimal value.

PRINT IProbe.GET(ip.V1)+0. ; Convert hex value to a decimal value.
General Function Reference | 216©1989-2024 Lauterbach

IProbe.MAXSIZE() Get max. size of trace buffer in records
[Go to figure]

Returns the maximum size of the IProbe trace buffer in records. To return a user-defined trace buffer
size, use the function IProbe.SIZE().

Return Value Type: Decimal value.

Example: The command IProbe.SIZE is used to reduce the trace buffer size, e.g. to 600000 records, to
speed up analysis. Using IProbe.MAXSIZE(), you can easily restore the maximum trace buffer size.

IProbe.PROBE()
[Go to figure]

When the PowerTrace II / PowerTrace III is powered up, this function returns if a connector is plugged.

Return Value Type: Boolean.

Return Value and Description:

To check if the connector belongs to an Analog Probe, use the function IProbe.ANALOG().

Syntax: IProbe.MAXSIZE()

; Reduce the trace buffer size to the specified number of records.
IProbe.SIZE 600000.

; Restore the maximum trace buffer size.
IProbe.SIZE IProbe.MAXSIZE()

Syntax: IProbe.PROBE()

TRUE A connector is plugged in at the socket labeled LOGIC ANALYZER
PROBE.

FALSE No connector plugged in at the socket labeled LOGIC ANALYZER
PROBE.
General Function Reference | 217©1989-2024 Lauterbach

IProbe.RECORD.DATA() Get data recorded in trace record

Returns the sampled data from the specified record.

Parameter and Description:

Return Value Type: Hex value.

IProbe.RECORD.TIME() Get timestamp of trace record

Returns the timestamp from the specified record.

Parameter Type: Decimal value.

Return Value Type: Time value.

Example: For an example, see Analyzer.RECORD.TIME().

Syntax: IProbe.RECORD.DATA(<record_number>,<channel>)

<record_number> Parameter Type: Decimal value.

<channel> Parameter Type: String.

Syntax: IProbe.RECORD.TIME(<record_number>)
General Function Reference | 218©1989-2024 Lauterbach

IProbe.RECORDS() Get number of used trace records
[Go to figure]

Returns the number of records in the IProbe trace buffer.

Return Value Type: Decimal value.

Examples:

Syntax: IProbe.RECORDS()

; Print the number of records to the message bar below the command line.
PRINT IProbe.RECORDS()

; Opens an IProbe.List window.
IProbe.List /Track

; Go to the first record of the analog trace data.
IProbe.GOTO -IProbe.Records() ; Please note the minus sign.

; Go to the last record of the analog trace data.
IProbe.GOTO IProbe.RECORDS() ; No minus sign in this case.
General Function Reference | 219©1989-2024 Lauterbach

IProbe.REF() Get record number of reference record

Returns the record number of the reference record.

Return Value Type: Decimal value.

Example 1: The IProbe.REF() function is used as an argument in the IProbe.GOTO command to jump
back to the reference record.

Example 2: The IProbe.View window is opened to display more information about the reference record.

IProbe.SIZE() Get current trace buffer size in records
[Go to figure]

Returns the user-defined logical size of the TRACE32-IPROBE trace buffer in records. To return the
maximum size, use the function IProbe.MAXSIZE(). For more information about the IProbe trace buffer size,
refer to the command IProbe.SIZE.

Return Value Type: Decimal value.

Syntax: IProbe.REF()

IProbe.GOTO IProbe.REF() ; Jump back to the reference record.

LOCAL &refNo

; Get the number of the reference record.
&refNo=IProbe.Ref()

; Open the window with the reference record number displayed.
IProbe.View &refNo

Syntax: IProbe.SIZE()
General Function Reference | 220©1989-2024 Lauterbach

IProbe.STATE() Get state of IProbe
[Go to figure]

Returns the state of the IProbe.

Return Value Type: Hex value.

Return Value and Description:

IProbe.TRACK.RECORD() Get record number matching search
[Go to figure]

After a successful search operation, this function returns the record number. The record number returned is
the number of the first record that matches the search criterion.

Return Value Type: Decimal value.

Example:

Syntax: IProbe.STATE()

0 OFF state

1 Arm state

2 break state

3 trigger state

4 DISable state

Syntax: IProbe.TRACK.RECORD()

; Prerequisite: Analog trace data was recorded using the IProbe.

; In the power channel p0, search for 0.17xxxx.
IProbe.Find , IProbe.p0 0.17

IF FOUND()
(; Returns the first record matching the search criterion.
 AREA ; Print the record number to the AREA window.
 PRINT IProbe.TRACK.RECORD()

 ; Lists all matching records in a FindALL window.
 IProbe.FindALL , IProbe.p0 0.17 /Track
)

General Function Reference | 221©1989-2024 Lauterbach

JTAG Functions

In This Section

See also

■ JTAG ■ JTAG.SEQuence
■ JTAG.X7EFUSE ■ JTAG.XUSEFUSE
❏ JTAG.MIPI34() ❏ JTAG.PIN()
❏ JTAG.SEQuence.EXIST() ❏ JTAG.SEQuence.LOCKED()
❏ JTAG.SEQuence.RESULT() ❏ JTAG.SHIFT()
❏ JTAG.X7EFUSE.CNTL() ❏ JTAG.X7EFUSE.DNA()
❏ JTAG.X7EFUSE.KEY() ❏ JTAG.X7EFUSE.RESULT()
❏ JTAG.X7EFUSE.USER() ❏ JTAG.XUSEFUSE.CNTL()
❏ JTAG.XUSEFUSE.DNA() ❏ JTAG.XUSEFUSE.KEY()
❏ JTAG.XUSEFUSE.RESULT() ❏ JTAG.XUSEFUSE.RSA()
❏ JTAG.XUSEFUSE.SEC() ❏ JTAG.XUSEFUSE.USER()
❏ JTAG.XUSEFUSE.USER128()

JTAG.MIPI34() Query special MIPI34 pins
[build 112622 - DVD 02/2020]

Query special pins on MIPI34 connector. Only works in conjunction with the CombiProbe/µTrace
(MicroTrace) MIPI34 whisker.

The parameter must be a valid <pin> argument of the command JTAG.MIPI34, e. g. PIN12.

Parameter Type: String.

Return Value Type: Decimal value.

Return Value and Description:

Syntax: JTAG.MIPI34(<pin>)

0 The pin was measured at a low state.

1 The pin was measured at a high state.

-1 The pin could not be read (incorrect parameter or not a MIPI-34 whisker).
General Function Reference | 222©1989-2024 Lauterbach

JTAG.PIN() Level of JTAG signal

Reads the level of a JTAG signal. See command JTAG.PIN.

Parameter Type: String.

Return Value Type: Hex value.

JTAG.SEQuence.RESULT() Get result of JTAG sequence
ARC, ARM, TeakLite, Xtensa [build 97116 - DVD 09/2018]

Any JTAG sequence can assign values to the global sequence variables Result0 and Result1.
The function JTAG.SEQuence.RESULT() returns the value of these two global sequence variables.

Parameter Type: Decimal value.

Return Value Type: Hex value.

Example:

JTAG.SEQuence.EXIST() Check if a JTAG sequence exists
ARC, ARM, TeakLite, Xtensa [build 93345 - DVD 09/2018]

Returns TRUE if the specified JTAG sequence name exists.

Parameter Type: String. For a description of <seq_name>, see JTAG.SEQuence.ADD.

Return Value Type: Boolean.

Syntax: JTAG.PIN(<signal_name>)

Syntax: JTAG.SEQuence.RESULT(<global_seq_variable>)

<global_seq_
variable>:

0 | 1

SILENT.JTAG.SEQuence.Execute PowerCheck
IF JTAG.SEQuence.RESULT(0)==1
 ECHO "Power OK"

Syntax: JTAG.SEQuence.EXIST(<seq_name>)
General Function Reference | 223©1989-2024 Lauterbach

JTAG.SEQuence.LOCKED() Check if a JTAG sequence is locked
ARC, ARM, TeakLite, Xtensa [build 93345 - DVD 09/2018]

Returns TRUE if the specified JTAG sequence exists but is locked. A sequence is locked if it is assigned to
an event (e.g. with SYStem.CONFIG.MULTITAP.JtagSEQuence) or if the sequence is an internal one
which was created by TRACE32 after using SYStem.CPU.

Parameter Type: String. For a description of <seq_name>, see JTAG.SEQuence.ADD.

Return Value Type: Boolean.

JTAG.SHIFT() TDO output of JTAG shift

Reads the TDO output of a JTAG shift. LSB first. Limited to 64 bit. See commands JTAG.SHIFTREG
and JTAG.SHIFTTDI.

If you shift more than 64 bits with JTAG.SHIFTREG or JTAG.SHIFTTDI only the first 64-bits received by
the debugger, are returned by JTAG.SHIFT().

Return Value Type: Hex value.

Syntax: JTAG.SEQuence.LOCKED(<seq_name>)

Syntax: JTAG.SHIFT()
General Function Reference | 224©1989-2024 Lauterbach

JTAG.X7EFUSE.RESULT() Result of JTAG.X7EFUSE command
[build 76023 - DVD 09/2016]

Returns information about the success of a previous JTAG.X7EFUSE command.

Return Value Type: Decimal value.

Return Value and Description:

Example: See JTAG.X7EFUSE command.

Syntax: JTAG.X7EFUSE.RESULT()

0. OK, no fuses were blown.

1. OK, fuses were blown as requested.

2. Error, but no fuses were blown.

3. Error, at least one fuse was blown, but there was not yet any attempt to
program sensitive data (KEY or USER).

4. Error, programming or verifying KEY or USER failed. However, all
requested CNTL flags (if any) were programmed successfully.

5. Error while programming or verifying CNTL flags. The specified security
settings may not be in effect. It could be possible to extract secret KEY or
USER data that was previously programmed.
General Function Reference | 225©1989-2024 Lauterbach

JTAG.X7EFUSE.CNTL() CNTL flags read by JTAG.X7EFUSE command
[build 76023 - DVD 09/2016]

Returns CNTL flags read by the previous JTAG.X7EFUSE command. See Xilinx application note XAPP
1239, Using Encryption to Secure a 7 Series FPGA Bitstream, for a description of the values.

Return Value Type: Hex value.

Example:

JTAG.X7EFUSE.DNA() DNA value read by JTAG.X7EFUSE command
[build 76023 - DVD 09/2016]

Returns the unique DNA value stored in every Xilinx 7-series device, as read by the previous
JTAG.X7EFUSE command.

Return Value Type: Hex value.

Example: See JTAG.X7EFUSE command.

Syntax: JTAG.X7EFUSE.CNTL()

JTAG.X7EFUSE /DEVICE XC7K325T

IF JTAG.X7EFUSE.RESULT()==0.
(
 IF (JTAG.X7EFUSE.CNTL()&1.<<0.)!=0
 PRINT "CFG_AES_ONLY is set!"
 IF (JTAG.X7EFUSE.CNTL()&1.<<1.)!=0
 PRINT "AES_EXCLUSIVE is set!"
 IF (JTAG.X7EFUSE.CNTL()&1.<<2.)!=0
 PRINT "W_EN_B_KEY_USER is set!"
 IF (JTAG.X7EFUSE.CNTL()&1.<<3.)!=0
 PRINT "R_EN_B_KEY is set!"
 IF (JTAG.X7EFUSE.CNTL()&1.<<4.)!=0
 PRINT "R_EN_B_USER is set!"
 IF (JTAG.X7EFUSE.CNTL()&1.<<5.)!=0
 PRINT "W_EN_B_CNTL is set!"
)

Syntax: JTAG.X7EFUSE.DNA()
General Function Reference | 226©1989-2024 Lauterbach

JTAG.X7EFUSE.KEY() AES key read by JTAG.X7EFUSE command
[build 76023 - DVD 09/2016]

Returns the KEY value as read by the previous JTAG.X7EFUSE command. If prohibited by the
R_EN_B_KEY flag, return zeros instead. The returned value is encoded as a hexadecimal string with the
same bit order as the one stored in the.nky file.

Return Value Type: String.

Example: See JTAG.X7EFUSE.

JTAG.X7EFUSE.USER() User code read by JTAG.X7EFUSE command
[build 76023 - DVD 09/2016]

Returns the USER value as read by the previous JTAG.X7EFUSE command. If prohibited by the
R_EN_B_USER flag, return zeros instead.

Return Value Type: Hex value.

Example: See JTAG.X7EFUSE.

Syntax: JTAG.X7EFUSE.KEY()

Syntax: JTAG.X7EFUSE.USER()
General Function Reference | 227©1989-2024 Lauterbach

JTAG.XUSEFUSE.RESULT() Result of JTAG.XUSEFUSE command
[build 109218 - DVD 09/2019]

Returns information about the success of a previous JTAG.XUSEFUSE command.

Return Value Type: Decimal value.

Return Value and Description:

Example: See JTAG.XUSEFUSE command.

JTAG.XUSEFUSE.CNTL() CNTL value read by JTAG.XUSEFUSE command
[build 109218 - DVD 09/2019]

Returns the register value of the CNTL register read by a previous JTAG.XUSEFUSE command. See Xilinx
user guide UG570, UltraScale Architecture Configuration, for a description of the value.

Return Value Type: Hex value.

Example:

Syntax: JTAG.XUSEFUSE.RESULT()

0 OK, the command was executed successfully.

1 Error, but no fuses were blown.

2 Error, fuses might be blown. Verify the current values by using the
command JTAG.XUSEFUSE with the /READ option.

3 Error while verifying the AES key. The CRCs of the given key and stored
key are not the same.

Syntax: JTAG.XUSEFUSE.CNTL()

SYStem.JtagClock 1.0MHz

JTAG.XUSEFUSE /READ 0x0

IF ((JTAG.XUSEFUSE.RESULT()!=1.)&&(JTAG.XUSEFUSE.RESULT()!=2.))
(
 IF (JTAG.XUSEFUSE.CNTL()&1.<<5.)!=0
 PRINT "W_DIS_CNTL is set!"
 IF (JTAG.XUSEFUSE.CNTL()&1.<<7.)!=0
 PRINT "W_DIS_KEY is set!"
)

General Function Reference | 228©1989-2024 Lauterbach

JTAG.XUSEFUSE.DNA() DNA value read by JTAG.XUSEFUSE command
[build 109218 - DVD 09/2019]

Returns the unique DNA value stored in every Xilinx UltraScale series device, as read by the previous
JTAG.XUSEFUSE command.

Return Value Type: String.

Example:

JTAG.XUSEFUSE.KEY() AES key read by JTAG.XUSEFUSE command
[build 109218 - DVD 09/2019]

Returns the KEY value as stated by the previous JTAG.XUSEFUSE command. If the key stored on the
FPGA is not the same as the one provided by the user, the function JTAG.XUSEFUSE.RESULT() will return
the value 3. The returned value is encoded as a hexadecimal string with the same bit order as the one
stored in the *.nkz file.

Return Value Type: String.

Example:

Syntax: JTAG.XUSEFUSE.DNA()

SYStem.JtagClock 1.0MHz

JTAG.XUSEFUSE /READ 0x0

PRINT JTAG.XUSEFUSE.DNA()

Syntax: JTAG.XUSEFUSE.KEY()

SYStem.JtagClock 1.0MHz

JTAG.XUSEFUSE /READ \
0x0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF

IF JTAG.XUSEFUSE.RESULT()==0.
 PRINT "AES KEY matches the value: "
ELSE IF JTAG.XUSEFUSE.RESULT()==3.
 PRINT "AES KEY does not match the value: "
ELSE
 PRINT "Error while verifying the key: "

PRINT %CONTinue JTAG.XUSEFUSE.KEY()
General Function Reference | 229©1989-2024 Lauterbach

JTAG.XUSEFUSE.RSA() RSA hash read by JTAG.XUSEFUSE command
[build 109218 - DVD 09/2019]

Returns the value of the RSA hash value as read by the previous JTAG.XUSEFUSE command. If prohibited
by the flags in the CNTL register, the return value is 0xFFF...FF. The retuned value is encoded as a
hexadecimal string with the same bit order as the one stored in the *.nkz file.

Return Value Type: String.

Example: See JTAG.XUSEFUSE

JTAG.XUSEFUSE.SEC() SEC value read by JTAG.XUSEFUSE command
[build 109218 - DVD 09/2019]

Returns the register value of the SEC register read by a previous JTAG.XUSEFUSE command. See Xilinx
user guide UG570, UltraScale Architecture Configuration, for a description of the value.

Return Value Type: Hex value.

Example:

Syntax: JTAG.XUSEFUSE.RSA()

Syntax: JTAG.XUSEFUSE.SEC()

SYStem.JtagClock 1.0MHz

JTAG.XUSEFUSE /READ 0x0

IF ((JTAG.XUSEFUSE.RESULT()!=1.)&&(JTAG.XUSEFUSE.RESULT()!=2.))
(
 IF (JTAG.XUSEFUSE.SEC()&1.<<2.)!=0
 PRINT "RSA authentication is forced!"
 IF (JTAG.XUSEFUSE.CNTL()&1.<<4.)!=0
 PRINT "Xilinx test access is disabled!"
)

General Function Reference | 230©1989-2024 Lauterbach

JTAG.XUSEFUSE.USER() User code read by JTAG.XUSEFUSE command
[build 109218 - DVD 09/2019]

Returns the register value as read by a previous JTAG.XUSEFUSE command. If prohibited by the flags in
the CNTL register, the return value is 0xFFF...FF.

Return Value Type: Hex value.

Example: See JTAG.XUSEFUSE

JTAG.XUSEFUSE.USER128() 128 bit User code read by JTAG.XUSEFUSE
[build 109218 - DVD 09/2019]

Returns the 128 bit USER value as read by a previous JTAG.XUSEFUSE command. If prohibited by the
flags in the CNTL register, the return value is 0xFFF...FF. The returned value is encoded as a hexadecimal
string with the same bit order as the one stored in the *.nkz file.

Return Value Type: String.

Example:

Syntax: JTAG.XUSEFUSE.USER()

Syntax: JTAG.XUSEFUSE.USER128()

SYStem.JtagClock 1.0MHz

JTAG.XUSEFUSE /READ 0x0

IF ((JTAG.XUSEFUSE.RESULT()!=1.)&&(JTAG.XUSEFUSE.RESULT()!=2.))
 PRINT JTAG.XUSEFUSE.USER128()
ELSE
 PRINT "Error while reading the eFUSE values!"
General Function Reference | 231©1989-2024 Lauterbach

LOGGER Functions

This figure provides an overview of the return values of some of the LOGGER functions. For descriptions of
the illustrated functions and the functions not shown here, see below.

In This Section

See also

❏ LOGGER.FIRST() ❏ LOGGER.RECORD.ADDRESS()
❏ LOGGER.RECORD.DATA() ❏ LOGGER.RECORD.OFFSET()
❏ LOGGER.RECORD.TIME() ❏ LOGGER.RECORDS()
❏ LOGGER.REF() ❏ LOGGER.SIZE()
❏ LOGGER.STATE()

LOGGER.FIRST() Get record number of first trace record
[build 71062 - DVD 09/2016]

Returns the record number of the first record. The first record is the record with the lowest record number.

Return Value Type: Decimal value.

Syntax: LOGGER.FIRST()

LOGGER.SIZE()
LOGGER.RECORDS()

LOGGER.STATE()
General Function Reference | 232©1989-2024 Lauterbach

LOGGER.RECORD.ADDRESS() Get address recorded in trace record
[build 38764]

Returns the sampled address (access class and offset) from the specified record.

Parameter Type: Decimal value.

Return Value Type: Address.

LOGGER.RECORD.DATA() Get data recorded in trace record
[build 38764]

Returns the sampled data of the specified record.

Parameter Type: Decimal value.

Return Value Type: Hex value.

LOGGER.RECORD.OFFSET() Get address in trace record as number
[build 38764]

Returns the address-offset of the sampled address from the specified record.

Parameter Type: Decimal value.

Return Value Type: Hex value.

Syntax: LOGGER.RECORD.ADDRESS(<record_number>)

Syntax: LOGGER.RECORD.DATA(<record_number>)

Syntax: LOGGER.RECORD.OFFSET(<record_number>)
General Function Reference | 233©1989-2024 Lauterbach

LOGGER.RECORD.TIME() Get timestamp of trace record
[[build 38764]

Returns the timestamp of the specified record. For an example, see Analyzer.RECORD.TIME().

Parameter Type: Decimal value.

Return Value Type: Time value.

LOGGER.RECORDS() Get number of used trace records
[Go to figure]

Returns the number of records used for Logger trace.

Return Value Type: Decimal value.

LOGGER.REF() Get record number of reference record

Returns the number of the selected reference record in the Logger trace.

Return Value Type: Decimal value.

LOGGER.SIZE() Get current trace buffer size in records
[build 38323 - DVD 08/2012] [Go to figure]

Returns the size of the Logger trace buffer. The size is given by the logger buffer size of the target
application.

Return Value Type: Decimal value.

Syntax: LOGGER.RECORD.TIME(<record_number>)

Syntax: LOGGER.RECORDS()

Syntax: LOGGER.REF()

Syntax: LOGGER.SIZE()
General Function Reference | 234©1989-2024 Lauterbach

LOGGER.STATE() Get state of Logger trace
[Go to figure]

Returns the state of the Logger trace.

Return Value Type: Hex value.

Return Value and Description:

Syntax: LOGGER.STATE()

0 OFF state

1 Arm state

2 break state

3 trigger state

4 DISable state
General Function Reference | 235©1989-2024 Lauterbach

MachO Format Function (Apple)

MACHO.LASTUUID() Universally unique identifier of MachO file

Returns the 128-bit universally unique identifier (UUID) of the file loaded with the last
Data.LOAD.MachO command. With no MachO file was load yet or the last file did not contain an UUID
the string “no UUID read” will be returned.

Return Value Type: String.

Syntax: MACHO.LASTUUID()
General Function Reference | 236©1989-2024 Lauterbach

MAP Functions

In This Section

See also

■ MAP ❏ MAP.ROMSIZE()

MAP.ROMSIZE() Size of the defined ROM

Returns the total size of the defined ROM.

Return Value Type: Decimal value.

Syntax: MAP.ROMSIZE()
General Function Reference | 237©1989-2024 Lauterbach

MCDS Functions

This figure provides an overview of the return values of some of the functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

In This Section

See also

■ MCDS ❏ MCDS.GAP()
❏ MCDS.MODULE.NAME() ❏ MCDS.MODULE.NUMBER()
❏ MCDS.MODULE.REVision() ❏ MCDS.MODULE.TYPE()
❏ MCDS.SIZE() ❏ MCDS.STATE()
❏ MCDS.TraceBuffer.LowerGAP() ❏ MCDS.TraceBuffer.SIZE()
❏ MCDS.TraceBuffer.UpperGAP()

MCDS.STATE()

MCDS.TraceBuffer.LowerGAP()

MCDS.TraceBuffer.UpperGAP()

MCDS.TraceBuffer.state

MCDS.TraceBuffer.SIZE()
General Function Reference | 238©1989-2024 Lauterbach

MCDS.MODULE.NAME() Name of MCDS module
[build 70152 - DVD 09/2016]

Returns the name of the MCDS module according to CPU selection.

Return Value Type: String.

Return Value and Description:

MCDS.MODULE.NUMBER() Number-part of MCDS module ID
[build 70152 - DVD 09/2016]

Returns the number-part of the MCDS module ID of the attached chip.

Return Value Type: Hex value.

Return Value and Description:

MCDS.MODULE.REVision() Revision-part of MCDS module ID
[build 70152 - DVD 09/2016]

Returns the revision-part of the MCDS module ID of the attached chip.

Return Value Type: Hex value.

Syntax: MCDS.MODULE.NAME()

<undefined> Unknown or undefined MCDS module. Contact technical support.

<none> Devices does not feature an MCDS module.

MCDS Standard MCDS module.

MCDSlight MCDSlight module

miniMCDS miniMCDS module.

Syntax: MCDS.MODULE.NUMBER()

0xFFFF MCDS ID register could not be read. Switch to SYStem.Mode Up if
necessary.

0x0000 Devices does not feature an MCDS module.

other MCDS_ID.NUMBER (16 bit)

Syntax: MCDS.MODULE.REVision()
General Function Reference | 239©1989-2024 Lauterbach

Return Value and Description:

MCDS.MODULE.TYPE() Type-part of MCDS module ID
[build 70152 - DVD 09/2016]

Returns the type-part of the MCDS module ID of the attached chip.

Return Value Type: Hex value.

Return Value and Description:

MCDS.STATE() MCDS module is switched on/off
[Go to figure]

Returns the state of the MCDS module.

Return Value Type: Hex value.

Return Value and Description:

See also: Command group MCDS

0xFF MCDS ID register could not be read. Switch to SYStem.Mode Up if
necessary.

0x00 Devices does not feature an MCDS module.

other MCDS_ID.REVISION (8 bit)

Syntax: MCDS.MODULE.TYPE()

0xFF MCDS ID register could not be read. Switch to SYStem.Mode Up if
necessary.

0x00 Devices does not feature an MCDS module.

(other) MCDS_ID.TYPE (8 bit)

Syntax: MCDS.STATE()

0 OFF

1 ON
General Function Reference | 240©1989-2024 Lauterbach

MCDS.TraceBuffer.LowerGAP() Trace buffer lower gap
[Go to figure]

Returns the size of the lower EMEM tiles of the currently selected memory array not used as trace buffer.

Return Value Type: Decimal value.

Syntax: MCDS.TraceBuffer.LowerGAP()
General Function Reference | 241©1989-2024 Lauterbach

MCDS.TraceBuffer.SIZE() Trace buffer size
[Go to figure]

Returns the size of the EMEM tiles of the currently selected memory array used as trace buffer.

Return Value Type: Decimal value.

MCDS.TraceBuffer.UpperGAP() Trace buffer upper gap
[Go to figure]

Returns the size of the upper EMEM tiles of the currently selected memory array not used as trace buffer.

Return Value Type: Decimal value.

Syntax: MCDS.TraceBuffer.SIZE()
MCDS.SIZE() (deprecated)

Syntax: MCDS.TraceBuffer.UpperGAP()
MCDS.GAP() (deprecated)
General Function Reference | 242©1989-2024 Lauterbach

MMU Functions (Memory Management Unit)

This figure provides an overview of the return values of some of the functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

In This Section

See also

■ MMU ❏ MMU()
❏ MMU.DEFAULTPT() ❏ MMU.DEFAULTPT.ZONE()
❏ MMU.DEFAULTTRANS.LOGRANGE() ❏ MMU.DEFAULTTRANS.PHYSADDR()
❏ MMU.FORMAT() ❏ MMU.FORMAT.DETECTED()
❏ MMU.FORMAT.ZONE() ❏ MMU.INTERMEDIATE()
❏ MMU.INTERMEDIATE.VALID() ❏ MMU.INTERMEDIATEEX()
❏ MMU.INTERMEDIATEEX.VALID() ❏ MMU.LINEAR()
❏ MMU.LINEAR.VALID() ❏ MMU.LINEAREX()
❏ MMU.LINEAREX.VALID() ❏ MMU.LOGICAL()
❏ MMU.LOGICAL.VALID() ❏ MMU.PHYSICAL()
❏ MMU.PHYSICAL.VALID() ❏ MMU.PHYSICALEX()
❏ MMU.PHYSICALEX.VALID()

MMU() Value of MMU register

Returns an MMU register value.

Syntax: MMU(<register_name>)

MMU.FORMAT.ZONE() MMU.DEFAULTPT.ZONE()

MMU.DEFAULTTRANS.LOGRANGE.ZONE() MMU.DEFAULTTRANS.PHYSADDR.ZONE()
General Function Reference | 243©1989-2024 Lauterbach

Parameter Type: String.
Return Value Type: Hex value.

MMU.DEFAULTPT() Base address of default page table
[Go to figure]

Both MMU functions return the base address of the default page table that has been set with the
MMU.FORMAT command.
Syntax 1: The returned base address is located in the currently active zone of the core.
Syntax 2: The returned base address is located in the zone that is selected with <address>.

Return Value Type: Address. If the CPU has no MMU, a zero address is returned.

Parameter and Description:

Example - Syntax 2:

Syntax 1: MMU.DEFAULTPT()
[build 61046 - DVD 02/2015]

Syntax 2: MMU.DEFAULTPT.ZONE(<address>)
[build 106522 - DVD 09/2019]

<address>: <access_class>:[<machine_id>:::]0x0

<access_class> Mandatory if SYStem.Option.ZoneSPACES is ON.
See access class in the glossary.pdf.

<machine_id> Mandatory if SYStem.Option.MACHINESPACES is ON.
See machine ID in the glossary.pdf.

0x0 Fixed <address> suffix.

;optional step: list the base addresses of the default page tables
;per zone
TRANSlation.state ;see column 'Default page table'

;let's return the base address of the default page table of
;machine '0:::' in the secure zone 'Z'
PRINT MMU.DEFAULTPT.ZONE(Z:0:::0x0) ;result 'Z:0:::0x0:0x1000000'
 ;see [A] below

A

General Function Reference | 244©1989-2024 Lauterbach

MMU.DEFAULTTRANS.<range>() Query MMU setup
[Go to figure] [Examples]

Both MMU functions return settings that have been made with the MMU.FORMAT command.
Syntax 1: The returned settings are located in the currently active zone of the core.
Syntax 2: The returned settings are located in the zone that is selected with <address>.

Return Value and Description:

Parameter and Description:

Syntax 1: MMU.DEFAULTTRANS.<range>()

Syntax 2: MMU.DEFAULTTRANS.<range>.ZONE(<address>)

<range>: LOGRANGE | PHYSADDR

<address>: <access_class>:[<machine_id>:::]0x0

Full function
name only
required for
HELP.Index:

MMU.DEFAULTTRANS.LOGRANGE()
MMU.DEFAULTTRANS.PHYSADDR()
[build 95143 - DVD 09/2018]

MMU.DEFAULTTRANS.LOGRANGE.ZONE(<address>)
MMU.DEFAULTTRANS.PHYSADDR.ZONE(<address>)
[build 106522 - DVD 09/2019]

<range> Description

LOGRANGE Return Value Type: Address range.
Use this keyword to get the logical address range of the default translation.

PHYSADDR Return Value Type: Address.
Use this keyword to get the physical base address of the default translation.

<access_class> Parameter Type: Address.
Mandatory if SYStem.Option.ZoneSPACES is ON.
See access class in the glossary.pdf.

<machine_id> Parameter Type: Address.
Mandatory if SYStem.Option.MACHINESPACES is ON.
See machine ID in the glossary.pdf.

0x0 Fixed <address> suffix.
General Function Reference | 245©1989-2024 Lauterbach

Examples - Syntax 1

Example 1: The function returns the logical address range of the default translation that is currently active
on the core.

Example 2: The function returns the physical base address of the default translation that is currently active
on the core.

Example - Syntax 2

Example 3: Based on the zones N:0x2::: and H:0x0::: passed as arguments, the function
MMU.DEFAULTTRANS.LOGRANGE.ZONE() returns the logical address ranges of these zones.

MMU.FORMAT STD 0x88000000 0x80000000--0x9FFFFFFF 0x10000000

PRINT MMU.DEFAULTTRANS.LOGRANGE()
 ;returns C:0x80000000--0x9FFFFFFF

MMU.FORMAT STD 0x88000000 0x80000000--0x9FFFFFFF 0x10000000
PRINT MMU.DEFAULTTRANS.PHYSADDR() ;returns A:0x10000000

MMU.FORMAT STD H:0x0:::0x10000 H:0x0:::0xA0000000--0xAFFFFFFF \
 A:0x20000000 /MACHINE 0
PRINT MMU.DEFAULTTRANS.LOGRANGE.ZONE(H:0x0:::0x0)
 ;returns H:0:::0xA0000000--0xAFFFFFFF

MMU.FORMAT QNX N:0x2:::0x40000 N:0x2:::0xC0000000--0xCFFFFFFF \
 I:0x30000000 /MACHINE 2
PRINT MMU.DEFAULTTRANS.LOGRANGE.ZONE(N:0x2:::0x0)
 ;returns NSD:2:::0xC0000000--0xCFFFFFFF

A Logical address range. C Physical address range.

B Zone of the logical address range.

A

A
B

C

General Function Reference | 246©1989-2024 Lauterbach

MMU.FORMAT() Currently selected MMU format
 [Go to figure]

Both MMU functions return the MMU format of the default page table that has been set with the
MMU.FORMAT command.
Syntax 1: The returned MMU format is the format of the currently active zone of the core.
Syntax 2: The returned MMU format is the format of the zone that is selected with <address>.

Parameter and Description:

Return Value Type: String. If the CPU has no MMU, an empty string is returned.

Example - Syntax 2:

Syntax 1: MMU.FORMAT()
[build 53385 - DVD 08/2014]

Syntax 2: MMU.FORMAT.ZONE(<address>)
[build 106522 - DVD 09/2019]

<address>: <access_class>:[<machine_id>:::]0x0

<access_class> Parameter Type: Address.
Mandatory if SYStem.Option.ZoneSPACES is ON.
See access class in the glossary.pdf.

<machine_id> Parameter Type: Address.
Mandatory if SYStem.Option.MACHINESPACES is ON.
See machine ID in the glossary.pdf.

0x0 Fixed <address> suffix.

PRINT MMU.FORMAT.ZONE(N:2:::0x0) ;returns QNX

MMU.FORMAT()
MMU.FORMAT.ZONE()
General Function Reference | 247©1989-2024 Lauterbach

MMU.FORMAT.DETECTED() Auto-detection of page table format
Intel® x86, RISC-V [build 106522 - DVD 09/2019]

Auto-detects the page table format used by the kernel in the currently active zone of the core. Then the
function returns the name of the page table format. The auto-detection works only if MMU.FORMAT is set to
STD.

Return Value Type: String.

Return Value and Description: For a list of format names, see:

• “<format> Options for x86” (general_ref_m.pdf)

• “<format> Options for RISC-V” (general_ref_m.pdf)

Example:

Syntax: MMU.FORMAT.DETECTED()

MMU.FORMAT STD
PRINT MMU.FORMAT.DETECTED() ;returns the name of the standard format
 ;derived from the CPU state, e.g.
 ;the format name P32
General Function Reference | 248©1989-2024 Lauterbach

MMU.FORMAT.DETECTED.ZONE() Auto-detection of page table format
Intel® x86 [build 106522 - DVD 09/2019]

Auto-detects the page table format used by the kernel and returns its name. The returned page table format
refers to the zone that is selected with <address>. The auto-detection works only if MMU.FORMAT is set to
STD.

Parameter Type: Address.

Parameter and Description:

Return Value Type: String.

Return Value and Description: For a list of format names, see:

• “<format> Options for x86” (general_ref_m.pdf)

• “<format> Options for RISC-V” (general_ref_m.pdf)

Example:

Syntax: MMU.FORMAT.DETECTED.ZONE(<address>)

<address>: <access_class>:[<machine_id>:::]0x0

<access_class> Mandatory if SYStem.Option.ZoneSPACES is ON.
See access class in the glossary.pdf.

<machine_id> Mandatory if SYStem.Option.MACHINESPACES is ON.
See machine ID in the glossary.pdf.

0x0 Fixed <address> suffix.

SYStem.Option.MACHINESPACES ON
MMU.FORMAT STD /MACHINE 2
PRINT MMU.FORMAT.DETECTED.ZONE(I:3:::0)
 ;returns the name of the standard
 ;page table format used in zone "I:3:::0"
 ;and derived from the CPU state, e.g.
 ;the format name "EPT4L"

MMU.FORMAT.DETECTED.ZONE()
General Function Reference | 249©1989-2024 Lauterbach

MMX Function (MultiMedia eXtension)

MMX() Value of MMX register

Returns the content of the selected MMX register. See also MMX command group.

Parameter Type: String.

Return Value Type: Hex value.

MONITOR Function

MONITOR() TRUE if debugger is running as monitor

Returns TRUE if the debugger is running as monitor.

Return Value Type: Boolean.

Syntax: MMX(<register_name>)

Syntax: MONITOR()
General Function Reference | 250©1989-2024 Lauterbach

NEXUS Functions

This figure provides an overview of the return values of some of the NEXUS functions. For descriptions of
the illustrated functions and the functions not shown here, see below.

In This Section

See also

❏ NEXUS() ❏ NEXUS.PortMode() ❏ NEXUS.PortSize() ❏ NEXUS.RTTBUILD()

NEXUS() TRUE if Nexus trace is supported

Returns TRUE if the selected CPU supports a Nexus trace.

Return Value Type: Boolean.

NEXUS.RTTBUILD() RTT build register
ARC [build 93248 - DVD 02/2018]

Returns the RTT build register.

Parameter Type: Decimal value.

Syntax: NEXUS()

Syntax: NEXUS.RTTBUILD(<register_index>)

<register_
index>:

0

NEXUS.PortMode()

NEXUS.PortSize()
General Function Reference | 251©1989-2024 Lauterbach

Return Value Type: Hex value. Returns 0 if the command NEXUS.RTTBUILD was not used or if there is no
RTT trace source.

NEXUS.PortMode() Current PortMode setting
[Go to figure]

Returns the current Nexus PortMode setting.

Return Value Type: String.

NEXUS.PortSize() Current PortSize setting
[build 39453 - DVD 08/2012] [Go to figure]

Returns the current Nexus PortSize setting.

Return Value Type: String.

Syntax: NEXUS.PortMode()

Syntax: NEXUS.PortSize()
General Function Reference | 252©1989-2024 Lauterbach

Onchip Functions

In This Section

See also

❏ Onchip() ❏ Onchip.FIRST()
❏ Onchip.FLOW.ERRORS() ❏ Onchip.FLOW.FIFOFULL()
❏ Onchip.MAXSIZE() ❏ Onchip.RECORD.ADDRESS()
❏ Onchip.RECORD.DATA() ❏ Onchip.RECORD.OFFSET()
❏ Onchip.RECORD.TIME() ❏ Onchip.RECORDS()
❏ Onchip.REF() ❏ Onchip.SIZE()
❏ Onchip.STATE() ❏ Onchip.TraceCONNECT()
❏ Onchip.TRACK.RECORD()

Onchip() TRUE if the onchip trace is available

Returns TRUE if an onchip trace is available.

Return Value Type: Boolean.

Onchip.FIRST() Get record number of first trace record
[build 71062 - DVD 09/2016]

Returns the record number of the first record. The first record is the record with the lowest record number.

Return Value Type: Decimal value.

Onchip.FLOW.ERRORS() Get number of flow errors / hard errors

Returns the number of flow errors / harderrors in the trace recording.

Return Value Type: Decimal value.

Syntax: Onchip()

Syntax: Onchip.FIRST()

Syntax: Onchip.FLOW.ERRORS()
General Function Reference | 253©1989-2024 Lauterbach

Please be aware that the return value of this function is the accumulated count of events that were
encountered while processing the trace recording. All opened windows showing trace data contribute to this
value. The value is reset when a new trace recording is made, or when the Trace.FLOWSTART or
Trace.FLOWPROCESS command is executed.

The use of this function is only recommended if you want to find out if a specified part of a trace recording is
error free. The part to be analyzed can be defined using Trace.STATistic.FIRST and
Trace.STATistic.LAST. If the defined part is error free (and thus this function returns zero), the analysis
results are reliable as well.

Example 1: This script shows how to return only the number of flow errors and hard errors in the trace that
is currently visible within the Onchip.List window. If you now scroll up or down in the Onchip.List window or
increase the window size, more trace data will be decoded, and thus the number of errors returned by the
function may increase.

Example 2: This script shows how to obtain the exact number of flow errors in the whole trace recording.

Onchip.FLOW.FIFOFULL() Get number of FIFO overflows

Returns the number of target FIFO overflows in the trace recording.

Return Value Type: Decimal value.

Please be aware that the return value of this function is the accumulated count of events that were
encountered while processing the trace recording. All opened windows showing trace data contribute to this
value. The value is reset when a new trace recording is made, or when the Trace.FLOWSTART or
Trace.FLOWPROCESS command is executed.

The use of this function is only recommended if you want to find out if a specified part of a trace recording is
error free. The part to be analyzed can be defined using Trace.STATistic.FIRST and
Trace.STATistic.LAST. If the defined part is error free (and thus this function returns zero), the analysis
results are reliable as well.

Onchip.List

PRINT Onchip.FLOW.ERRORS()

; scroll up or down in the window

PRINT Onchip.FLOW.ERRORS()

Trace.Find FLOWERROR /ALL
PRINT FOUND.COUNT()

Syntax: Onchip.FLOW.FIFOFULL()
General Function Reference | 254©1989-2024 Lauterbach

Onchip.MAXSIZE() Get max. size of trace buffer in records
[build 38323 - DVD 08/2012]

Returns the maximum possible size of the Onchip trace buffer in records.

Return Value Type: Decimal value.

Onchip.RECORD.ADDRESS() Get address recorded in trace record
[build 38764]

Returns the sampled address (access class and offset) from the specified record.

Parameter Type: Decimal value.

Return Value Type: Address.

Onchip.RECORD.DATA() Get data recorded in trace record
[build 38764]

Returns the sampled data of the specified record.

Parameter Type: Decimal value.

Return Value Type: Hex value.

Onchip.RECORD.OFFSET() Get address in trace record as number
[build 38764]

Returns the address-offset of the sampled address from the specified record.

Parameter Type: Decimal value.

Return Value Type: Hex value.

Syntax: Onchip.MAXSIZE()

Syntax: Onchip.RECORD.ADDRESS(<record_number>)

Syntax: Onchip.RECORD.DATA(<record_number>)

Syntax: Onchip.RECORD.OFFSET(<record_number>)
General Function Reference | 255©1989-2024 Lauterbach

Onchip.RECORD.TIME() Get timestamp of trace record
[build 38764]

Returns the timestamp of the specified record.

Parameter Type: Decimal value.

Return Value Type: Time value.

Example: For an example, see Analyzer.RECORD.TIME().

Onchip.RECORDS() Get number of used trace records

The number of records currently stored in the on-chip trace buffer.

Return Value Type: Decimal value.

Onchip.REF() Get record number of reference record

Returns the number of the selected reference record in the Onchip trace.

Return Value Type: Decimal value.

Onchip.SIZE() Get current trace buffer size in records

Size of on-chip memory to be used as on-chip trace buffer in trace records.

Return Value Type: Decimal value.

Syntax: Onchip.RECORD.TIME(<record_number>)

Syntax: Onchip.RECORDS()

Syntax: Onchip.REF()

Syntax: Onchip.SIZE()
General Function Reference | 256©1989-2024 Lauterbach

Onchip.STATE() Get state of Onchip trace

Returns the state of the on-chip trace.

Return Value Type: Hex value.

Return Value and Description:

Onchip.TraceCONNECT() Name of trace sink of the SoC
[build 80222 - DVD 02/2017]

Returns the name of the currently selected trace sink of the SoC. In case no trace-sink is selected/available,
the function returns NONE. The trace sink is selected with the <trace>.TraceCONNECT command.

Return Value Type: String.

Example: ARM Coresight system with two ETFs

Syntax: Onchip.STATE()

0 OFF state

1 Arm state

2 break state

3 trigger state

4 DISable state

Syntax: Onchip.TraceCONNECT()

SYStem.CONFIG ETF1 Base DAP:<address>
SYStem.CONFIG ETR2 Base DAP:<address>
Onchip.TraceCONNECT ETF1
PRINT Onchip.TraceCONNECT() ; returns "ETF1"
Onchip.TraceCONNECT ETF2
PRINT Onchip.TraceCONNECT() ; returns "ETF2"
General Function Reference | 257©1989-2024 Lauterbach

Onchip.TRACK.RECORD() Get record number matching search

After a successful search operation, this function returns the record number.

Return Value Type: Decimal value.

Example: For an example, see Analyzer.TRACK.RECORD().

Syntax: Onchip.TRACK.RECORD()
General Function Reference | 258©1989-2024 Lauterbach

PBI Function

PBI() Name of used debug back-end
[build 25366 - DVD 02/2011]

Returns the name of the used debug back-end. For further information, refer to “Section PBI” in TRACE32
Installation Guide, page 42 (installation.pdf).

Return Value Type: String.

Syntax: PBI()
General Function Reference | 259©1989-2024 Lauterbach

PCI Functions

In This Section

See also

■ PCI ❏ PCI.Read.B() ❏ PCI.Read.L() ❏ PCI.Read.W()

PCI.Read.B() Byte from PCI register

Reads a byte from selected PCI register. For a description of the parameters, click here.

Return Value Type: Hex value.

PCI.Read.L() Long from PCI register

Reads a long from selected PCI register. For a description of the parameters, click here.

Return Value Type: Hex value.

PCI.Read.W() Word from PCI register

Reads a word from selected PCI register. For a description of the parameters, click here.

Parameter and Description:

Return Value Type: Hex value.

Syntax: PCI.Read.B(<bus>,<device>,<function>,<register>)

Syntax: PCI.Read.L(<bus>,<device>,<function>,<register>)

Syntax: PCI.Read.W(<bus>,<device>,<function>,<register>)

<bus> Parameter Type: Decimal or hex or binary value. PCI bus number.

<device> Parameter Type: Decimal or hex or binary value. PCI device number.

<function> Parameter Type: Decimal or hex or binary value. PCI function number.

<register> Parameter Type: Decimal or hex or binary value. PCI register number.
General Function Reference | 260©1989-2024 Lauterbach

PER Functions

In This Section

See also

■ PER ❏ PER.ADDRESS() ❏ PER.ARG() ❏ PER.BASE()
❏ PER.Buffer.Byte() ❏ PER.Buffer.Long() ❏ PER.Buffer.LongLong() ❏ PER.Buffer.Quad()
❏ PER.Buffer.Short() ❏ PER.Buffer.Word() ❏ PER.Byte() ❏ PER.EVAL()
❏ PER.HByte() ❏ PER.Long() ❏ PER.Long.BigEndian() ❏ PER.Long.LittleEndian()
❏ PER.LongLong() ❏ PER.LongLong.BigEndian() ❏ PER.LongLong.LittleEndian() ❏ PER.PByte()
❏ PER.Quad() ❏ PER.Quad.BigEndian() ❏ PER.Quad.LittleEndian() ❏ PER.SAVEINDEX()
❏ PER.SByte() ❏ PER.Short() ❏ PER.Short.BigEndian() ❏ PER.Short.LittleEndian()
❏ PER.SLong() ❏ PER.TByte() ❏ PER.VALUE() ❏ PER.VALUE.STRING()
❏ PER.Word() ❏ PER.Word.BigEndian() ❏ PER.Word.LittleEndian()

PER.<width>() Memory contents in default endianness
[build 76251 - DVD 09/2016]

The PER.<width>() functions return memory contents in the default endianness of the architecture.

Parameter Type: Address.

Return Value Type: Hex value.

The PER.<width>() functions are used in PER files and are synonyms for the Data.<width>() functions.
However, the difference between the two function groups is that the return values of the PER.<width>()
functions are based on dualport accesses, provided the respective PER file is opened with the DualPort
option e.g.:

Syntax: PER.<width>(<address>)

<width>: Byte | Short | Word | TByte | Long | PByte | HByte | SByte | SLong | Quad |
LongLong

Full function
name only
required for
HELP.Index:

PER.Byte(<address>)
PER.Short(<address>)
PER.Word(<address>)
PER.TByte(<address>)
PER.Long(<address>)
PER.PByte(<address>)
PER.HByte(<address>)
PER.SByte(<address>)
PER.SLong(<address>)
PER.Quad(<address>)
PER.LongLong(<address>)

PER.view <file>.per /DualPort
General Function Reference | 261©1989-2024 Lauterbach

PER.<width>.<endianness>() Memory contents in specified endianness
[build 76251 - DVD 09/2016]

The PER.<width>.<endianness>() functions return memory contents in the specified endianness.

Parameter Type: Address.

Return Value Type: Hex value.

<width> Description of PER.<width>()

Byte Returns a single byte from memory.

Short Returns a word (16-bit) from memory.

Word Returns a word (16-bit) from memory.

TByte Returns a 3-byte value from memory.

Long Returns a long value (32-bit) from memory.

PByte Returns a 5-byte value from memory.

HByte Returns a 6-byte value from memory.

SByte Returns a 7-byte value from memory.

SLong Reads signed long value from memory - sign extended internally to a 64-bit
value.

Quad Returns a 64-bit value from memory.

LongLong Returns a 64-bit value from memory.

Syntax: PER.<width>.<endianness>(<address>)

<width>: Byte | Short | Word | TByte | Long | PByte | HByte | SByte | SLong | Quad |
LongLong

<endianness>: LittleEndian | BigEndian

Full function
name only
required for
HELP.Index:

PER.Short.BigEndian(<address>)
PER.Short.LittleEndian(<address>)
PER.Word.BigEndian(<address>)
PER.Word.LittleEndian(<address>)
PER.Long.BigEndian(<address>)
PER.Long.LittleEndian(<address>)
PER.LongLong.BigEndian(<address>)
PER.LongLong.LittleEndian(<address>)
PER.Quad.BigEndian(<address>)
PER.Quad.LittleEndian(<address>)
General Function Reference | 262©1989-2024 Lauterbach

The PER.<width>.<endianness>() functions are used in PER files and are synonyms for the
Data.<width>.<endianness>() functions. However, the difference between the two function groups is that the
return values of the PER.<width>.<endianness>() functions are based on dualport accesses, provided the
respective PER file is opened with the DualPort option e.g.:

PER.ADDRESS() Address of register(field)
[build 147535 - DVD 09/2022]

Returns the address of the register stated as <path>. Refer to PER.Set.ByName for a description of <path>.
PER.Set.CONDitions may be used to read addresses from within IF conditions.

Parameter Type: String.

Return Value Type: Address.

PER.view <file>.per /DualPort

<width>.<endianness> Description of PER.<width>.<endianness>()

Short.BigEndian Returns a word (16-bit) from memory, while the byte order of the word
is forced to big endian.

Short.LittleEndian Returns a word (16-bit) from memory, while the byte order of the word
is forced to little endian.

Word.BigEndian Returns a word (16-bit) from memory, while the byte order of the word
is forced to big endian.

Word.LittleEndian Returns a word (16-bit) from memory, while the byte order of the word
is forced to little endian.

Long.BigEndian Returns a long value (32-bit) from memory, while the byte order of the
word is forced to big endian.

Long.LittleEndian Returns a long value (32-bit) from memory, while the byte order of the
word is forced to endian endian.

LongLong.BigEndian Returns a 64-bit value from memory, while the byte order of the word is
forced to big endian.

LongLong.LittleEndian Returns a 64-bit value from memory, while the byte order of the word is
forced to little endian.

Quad.BigEndian Returns a 64-bit value from memory, while the byte order of the word is
forced to big endian.

Quad.LittleEndian Returns a 64-bit value from memory, while the byte order of the word is
forced to little endian.

Syntax: PER.ADDRESS("<path>")
General Function Reference | 263©1989-2024 Lauterbach

PER.ADDRESS.<sub_cmd>() Check access security in PER file
32-bit and 64-bit ARM cores

The PER.ADDRESS.<sub_cmd>() functions are used in PER files and are synonyms respectively for the
ADDRESS.isNONSECURE(), ADDRESS.isNONSECUREEX(), ADDRESS.isSECURE(), and
ADDRESS.isSECUREEX() functions. However, the difference between the two function groups is that the
return values of the PER.ADDRESS.<sub_cmd>() functions are based on the access class provided as
parameter and can be overriden using the options Secure or NonSecure, e.g.:

Parameter Type: Address.

Return Value Type: Boolean.

PER.ARG() Argument of PER.view command

Returns the (optional) argument of the PER.view command. Only useful inside peripheral definition files.

Return Value Type: Hex value.

Syntax: PER.ADDRESS.<sub_cmd>(<address>)

<width>: isNONSECURE | isNONSECUREEX | isSECURE | isSECUREEX

Full function
name only
required for
HELP.Index:

PER.ADDRESS.isNONSECURE(<address>)
PER.ADDRESS.isNONSECUREEX(<address>)
PER.ADDRESS.isSECURE(<address>)
PER.ADDRESS.isSECUREEX(<address>)

PER.view <file>.per /Secure
PER.view <file>.per /NonSecure

<sub_cmd> Description of PER.ADDRESS.<sub_cmd>()

isNONSECURE Checks if the address, inside a peripheral definition file (PER file),
passed as parameter will force a non-secure (TrustZone) access.

isNONSECUREEX Checks if the address, inside a peripheral definition file (PER file),
passed as parameter combined with the current CPU status will cause
a non-secure (TrustZone) access.

isSECURE Checks if the address, inside a peripheral definition file (PER file),
passed as a parameter will force a Secure (TrustZone) access.

isSECUREEX Checks if the address, inside a peripheral definition file (PER file),
passed as a parameter combined with the current CPU status will
cause an Secure (TrustZone) access.

Syntax: PER.ARG()
General Function Reference | 264©1989-2024 Lauterbach

PER.ARG.ADDRESS() Address argument of PER.view command

Returns the (optional) address argument of the PER.view command. Only useful inside peripheral definition
files.

Return Value Type: Address.

PER.BASE() Last BASE address
[build 159996 - DVD 09/2023]

Returns the address last passed to the BASE command. Only to be used within peripheral files.

Return Value Type: Address.

Syntax: PER.ARG.ADDRESS()

Syntax: PER.BASE()
General Function Reference | 265©1989-2024 Lauterbach

PER.Buffer.<width>() Value from buffer

Parameter and Description:

Return Value Type: Hex value.

Syntax: PER.Buffer.<width>(<index>)

<width>: Byte | Short | Word | Long | LongLong | Quad

(Full function
name only
required for
HELP.Index):

PER.Buffer.Byte(<index>)
PER.Buffer.Short(<index>)
PER.Buffer.Word(<index>)
PER.Buffer.Long(<index>)
PER.Buffer.LongLong(<index>)
PER.Buffer.Quad(<index>)

<width> Description of PER.Buffer.<width>()

Byte Returns a byte from the SGROUP buffer. Only useful within a SGROUP of
a PER-file.

Short
Word

Returns a 16-bit word from the SGROUP buffer. Only useful within a
SGROUP of a PER-file.

Long Returns a 32-bit word from the SGROUP buffer. Only useful within a
SGROUP of a PER-file.

LongLong
Quad

Returns a 64-bit from the SGROUP buffer. Only useful within a SGROUP
of a PER-file.

<index> Parameter Type: Decimal or hex or binary value.
General Function Reference | 266©1989-2024 Lauterbach

PER.EVAL() Value of expression in PER file

Returns the value of a expression (defined with BASE) inside a peripheral definition file (PER file), which
was defined after a BASE, IF, ELIF or ELSE command.

Parameter Type: Decimal or hex or binary value.

The parameter defines which expression is returned (0=first one).

Return Value Type: Address.

PER.FILENAME() PER file name

Returns the file name of the active peripheral definition file (PER file).

Return Value Type: String.

Syntax: PER.EVAL(<integer>)

NOTE 1: The function returns only the last evaluated value of the expression. It will not
evaluated the expression again.

Expressions after BASE, will be evaluated by a GROUP command after the
BASE command in a PER file.

NOTE 2: The function must only be used in the context of IF or ELIF.

Syntax: PER.FILENAME()
General Function Reference | 267©1989-2024 Lauterbach

PER.SAVEINDEX() Value from indexed register
[build 142258 - DVD 02/2022]

Function returns memory contents at Address (<address>) while a value (<index_value>) is temporarily set
in an index register (<index_address>). The access width can be set individually.

Sequence:

• Backup memory contents of memory location <index_address>

• Set value <index_value> to <index_addr>

• Read memory contents at memory location <address> using <width>

• Restore memory contents of memory location <index_address>

Parameter and Description:

Return Value Type: Hex value.

See also: per_prog.pdf - SAVEINDEX.

PER.VALUE() Value of register(field)
[build 147535 - DVD 09/2022]

Returns the value of the register or register field stated as <path>. Refer to PER.Set.ByName for a
description of <path>. PER.Set.CONDitions may be used to read values from within IF conditions.

Parameter Type: String.

Return Value Type: Hex value.

Syntax: PER.SAVEINDEX(<address>,<width>,<index_address>,<index_width>, \
<index_value>)

<address> Address to read.
Parameter Type: Address.

<width> Access width of <address>.
Parameter Type: Decimal or hex or binary value.

<index_address> Address of index register.
Parameter Type: Address.

<index_width> Access width of <index_address>.
Parameter Type: Decimal or hex or binary value.

<index_value> Index value.
Parameter Type: Decimal or hex or binary value.

Syntax: PER.VALUE("<path>")
General Function Reference | 268©1989-2024 Lauterbach

PER.VALUE.STRING() Value of BITFLD as string
[build 147535 - DVD 09/2022]

Returns the <choice> value of a BITFLD. Refer to PER.Set.ByName for a description of <path>.
PER.Set.CONDitions may be used to read choices from within IF conditions.

Parameter Type: String.

Return Value Type: String.

Syntax: PER.VALUE.STRING("<path>")
General Function Reference | 269©1989-2024 Lauterbach

PERF Functions (Performance)

This figure provides an overview of the return values of some of the PERF functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

In This Section

See also

■ PERF ❏ PERF.MEMORY.HITS()
❏ PERF.MEMORY.SnoopAddress() ❏ PERF.MEMORY.SnoopSize()
❏ PERF.METHOD() ❏ PERF.MODE()
❏ PERF.PC.HITS() ❏ PERF.RATE()
❏ PERF.RunTime() ❏ PERF.SNOOPFAILS()
❏ PERF.STATE() ❏ PERF.TASK.HITS()

PERF.MEMORY.HITS() Number of memory samples

Number of hits for the given memory value and core number.
Parameter and Description:

Return Value Type: Decimal value.

Syntax: PERF.MEMORY.HITS(<value>,<core>)

<value> Parameter Type: Decimal or hex or binary value.

<core> Parameter Type: Decimal value. If <core> is -1, the number of hits is returned
for all cores.

PERF.METHOD()

PERF.STATE()

PERF.MEMORY.SnoopSize()

PERF.MODE()
General Function Reference | 270©1989-2024 Lauterbach

PERF.MEMORY.SnoopAddress() Snoop memory address

Returns the snoop memory address.

Return Value Type: Address.

PERF.MEMORY.SnoopSize() Snoop size
[Go to figure]

Returns the snoop size in bytes (1, 2, 4, or 8).

Return Value Type: Hex value.

PERF.METHOD() Recording method
[Go to figure]

Returns the recording method of the Performance Analyzer.

Return Value Type: Hex value.

Return Value and Description:

Syntax: PERF.MEMORY.SnoopAddress()

Syntax: PERF.MEMORY.SnoopSize()

Syntax: PERF.METHOD()

0 HARDWARE method

1 BusSnoop method

2 StopAndGo method

3 Trace method

4 Snoop method

5 DCC method
General Function Reference | 271©1989-2024 Lauterbach

PERF.MODE() Get Performance Analyzer recording mode
[Go to figure]

Returns the current recording mode of the Performance Analyzer.

Return Value Type: Hex value.

Return Value and Description:

PERF.PC.HITS() Number of PC samples

Number of program counter hits for the given address range and core number.

Parameter and Description:

Return Value Type: Decimal value.

PERF.RATE() Number of snoops per second

Returns the number of snoops per second.

Return Value Type: Decimal value.

Syntax: PERF.MODE()

1 PC mode

2 FLAGs mode

8 TASK mode

9 PCTASK mode

10 MEMory mode

11 PCMEMory mode

40 LeVel mode

Syntax: PERF.PC.HITS(<address_range>,<core>)

<address_range> Parameter Type: Address range.

<core> Parameter Type: Decimal value. If <core> is -1, the number of hits is returned
for all cores.

Syntax: PERF.RATE()
General Function Reference | 272©1989-2024 Lauterbach

PERF.RunTime() Retained time for program run

Percentage of time retained for the actual program run when the StopAndGo method is used.

Return Value Type: String.

PERF.SNOOPFAILS() Number of snoop fails

Returns the number of snoop fails.

Return Value Type: Decimal value.

PERF.STATE() Get state of Performance Analyzer
[Go to figure]

Returns the state of the Performance Analyzer.

Return Value Type: Hex value.

Return Value and Description:

Syntax: PERF.RunTime()

Syntax: PERF.SNOOPFAILS()

Syntax: PERF.STATE()

0 DISable state

1 OFF state

2 Arm state
General Function Reference | 273©1989-2024 Lauterbach

PERF.TASK.HITS() Number of task samples

Returns the number of hits for the given task magic number and core number.

Parameter and Description:

Return Value Type: Decimal value.

Syntax: PERF.TASK.HITS(<task_magic>,<core>)

<task_magic> Parameter Type: Decimal or hex or binary value.

<core> Parameter Type: Decimal value. If <core> is -1, the number of hits is returned
for all cores.
General Function Reference | 274©1989-2024 Lauterbach

Port Analyzer Functions

In This Section

See also

❏ PORT.GET() ❏ PORT.MAXSIZE() ❏ PORT.RECORDS() ❏ PORT.REF()
❏ PORT.SIZE() ❏ PORT.STATE() ❏ PORT.TRACK.RECORD()

PORT.GET() Value of channel

Returns the current value of the given port channel.

Parameter Type: String.

Return Value Type: Hex value.

PORT.MAXSIZE() Get max. size of trace buffer in records
[build 38323 - DVD 08/2012]

Returns the maximum possible trace buffer size of the port analyzer in records.

Return Value Type: Decimal value.

PORT.RECORDS() Get number of used trace records

Returns the number of records in the port analyzer.

Return Value Type: Decimal value.

Syntax: PORT.GET(<channel_name>)

Syntax: PORT.MAXSIZE()

Syntax: PORT.RECORDS()
General Function Reference | 275©1989-2024 Lauterbach

PORT.REF() Get record number of reference record

Returns the number of the selected reference record in the Port Analyzer.

Return Value Type: Decimal value.

PORT.SIZE() Get current trace buffer size in records
[build 38323 - DVD 08/2012]

Returns the size of the Port Analyzer trace buffer to be used in trace records.

Return Value Type: Decimal value.

PORT.STATE() Get state of Port Analyzer

Returns the state of the Port Analyzer.

Return Value Type: Hex value.

Return Value and Description:

PORT.TRACK.RECORD() Get record number matching search

After a successful search operation, this function returns the record number. For an example, see
Analyzer.TRACK.RECORD().

Syntax: PORT.REF()

Syntax: PORT.SIZE()

Syntax: PORT.STATE()

0 Off state

1 Arm state

2 Break state

3 Trigger state

6 Slave state

Syntax: PORT.TRACK.RECORD()
General Function Reference | 276©1989-2024 Lauterbach

Return Value Type: Decimal value.

PORTANALYZER()

Returns TRUE if a port analyzer hardware is plugged.

Return Value Type: Boolean.

PORTSHARING Function

PORTSHARING() Current setting of PortSHaRing
ICD-TriCore, ICD-PCP, ICD-GTM, RH850

Returns the current setting of SYStem.CONFIG PortSHaRing.

Return Value Type: Decimal value.

Return Value and Description:

Syntax: PORTANALYZER()

Syntax: PORTSHARING()
ETK() (deprecated)

0 OFF

1 ON

2 AUTO
General Function Reference | 277©1989-2024 Lauterbach

POWER Functions

In This Section

See also

❏ hardware.POWERDEBUG() ❏ hardware.POWERINTEGRATOR()
❏ hardware.POWERINTEGRATOR2() ❏ hardware.POWERNEXUS()
❏ hardware.POWERTRACE() ❏ hardware.POWERTRACE2()
❏ hardware.POWERTRACE2LITE() ❏ hardware.POWERTRACE3()
❏ hardware.POWERTRACEPX() ❏ hardware.POWERTRACESERIAL()
General Function Reference | 278©1989-2024 Lauterbach

PowerProbe Functions

In This Section

See also

❏ hardware.POWERPROBE() ❏ PROBE.GET() ❏ PROBE.MAXSIZE() ❏ PROBE.RECORD.DATA()
❏ PROBE.RECORD.TIME() ❏ PROBE.RECORDS() ❏ PROBE.REF() ❏ PROBE.SIZE()
❏ PROBE.STATE() ❏ PROBE.TRACK.RECORD()

PROBE.COUNTER.EVENT() Get value of trigger program event counter

Returns the value of an event counter of the PowerProbe CTU.

Parameter Type: String.

Return Value Type: Decimal value.

PROBE.COUNTER.EXTERN() Get value of trigger program external counter

Returns the value of an extern counter of the PowerProbe CTU.

Parameter Type: String.

Return Value Type: Decimal value.

PROBE.COUNTER.TIME() Get value of trigger program time counter

Returns the value of a time counter of the PowerProbe CTU.

Parameter Type: String.

Return Value Type: Time value.

Syntax: PROBE.COUNTER.EVENT(<counter_name>)

Syntax: PROBE.COUNTER.EXTERN(<counter_name>)

Syntax: PROBE.COUNTER.TIME(<counter_name>)
General Function Reference | 279©1989-2024 Lauterbach

Probe.FIRST() Get record number of first trace record
[build 71062 - DVD 09/2016]

Returns the record number of the first record. The first record is the record with the lowest record number.

Return Value Type: Decimal value.

PROBE.FLAG() Check state of trigger program FLAG

Returns the value of a flag of the PowerProbe CTU.

Parameter Type: String.

Return Value Type: Boolean.

PROBE.GET() Value of channel

Returns the current value of the given channel.

Parameter Type: String.

Return Value Type: Hex value.

PROBE.MAXSIZE() Get max. size of trace buffer in records

The maximum number of records, which can be recorded by the PowerProbe (value depends on the actual
selected tracing mode too).

Return Value Type: Decimal value.

Syntax: Probe.FIRST()

Syntax: PROBE.FLAG(<flag_name>)

Syntax: PROBE.GET(<channel_name>)

Syntax: PROBE.MAXSIZE()
General Function Reference | 280©1989-2024 Lauterbach

PROBE.RECORD.DATA() Get data recorded in trace record

Returns the sampled data from the specified record.

Parameter and Description:

Return Value Type: Hex value.

PROBE.RECORD.TIME() Get timestamp of trace record

Returns the timestamp from the specified record. For an example, see Analyzer.RECORD.TIME().

Parameter Type: Decimal value.

Return Value Type: Time value.

PROBE.RECORDS() Get number of used trace records

Returns the number of records recorded by the PowerProbe.

Return Value Type: Decimal value.

PROBE.REF() Get record number of reference record

Returns the number of the selected reference record in the Onchip trace.

Return Value Type: Decimal value.

Syntax: PROBE.RECORD.DATA(<record_number>,<channel>)

<record_number> Parameter Type: Decimal value.

<channel> Parameter Type: String.

Syntax: PROBE.RECORD.TIME(<record_number>)

Syntax: PROBE.RECORDS()

Syntax: PROBE.REF()
General Function Reference | 281©1989-2024 Lauterbach

PROBE.SIZE() Get current trace buffer size in records

Returns the actual defined logical size of the PowerProbe trace buffer in records.

Return Value Type: Decimal value.

PROBE.STATE() Get state of PowerProbe

Returns the state of the PowerProbe.

Return Value Type: Hex value.

Return Value and Description:

Syntax: PROBE.SIZE()

Syntax: PROBE.STATE()

0 OFF state

1 Arm state

2 break state

3 trigger state

4 DISable state
General Function Reference | 282©1989-2024 Lauterbach

PROBE.TRACK.RECORD() Get record number matching search

After a successful search operation, this function returns the record number. For an example, see
Analyzer.TRACK.RECORD().

Return Value Type: Decimal value.

Syntax: PROBE.TRACK.RECORD()
General Function Reference | 283©1989-2024 Lauterbach

Program Pointer Function

PP() Address of program pointer (access class, space ID, program counter)

Returns the address of the program pointer, which consists of the access class + the CPU program counter
(PC). See [A] and [C] in the example.

Additionally, the function PP() returns the space ID as a hex value if SYStem.Option.MMUSPACES is set to
ON. See [B] in the example.

Return Value Type: Address.

Example:

See also: Register().

Syntax: PP()

PRINT PP() ;prints to the TRACE32 message line: SR:0x0:0x464
 ;see screenshot

A Access class.

B Space ID.

C Content of CPU program counter (PC). See also Register.view window.

A B

C

General Function Reference | 284©1989-2024 Lauterbach

Register Functions

Register() Content of register

Returns the content of a register.

Parameter and Description:

Return Value Type: Hex value.

Example:

See also: PP().

Syntax: Register(<register_name> | PP)

A Register names.

B Register contents.

C Register content of the program counter (PC).

<register_name> Parameter Type: String. The architecture-specific register names are
displayed in the Register.view window.

PP Parameter Type: String. A TRACE32 built-in keyword that can be used to
return the register content of the program counter (PC) regardless of its
real <register_name>.
That is, the keyword PP is an architecture-independent register name for
the program counter.

Register.view ;opens the Register.view window

PRINT Register(R13) ;prints the content of the register named R13 to
 ;the TRACE32 message line

PRINT Register(PP) ;returns the content of the program counter (PC)
 ;- regardless of its real <register_name>

C

A B
General Function Reference | 285©1989-2024 Lauterbach

Register.LIST() First / next register name
[build 64613 - DVD 09/2015]

Returns the first / next valid register name.

Parameter and Description: You can pass an empty string as a register name or a real register name.

Return Value Type: String.

Example: The function Register.LIST() is used to loop through all register names and print them to the
AREA.view window.

Syntax: Register.LIST("" | "<register_name>")

Empty string Parameter Type: String. Passing an empty string returns the first register
name.
For example, the register name R0 for the ARM architecture.
See [A] in figure below.

<register_name> Parameter Type: String. Passing a real register name returns the name of
the next register.
For example, if you pass PC as register name, the function returns CPSR
as the next register name for the ARM architecture.
See [B] in figure below.

Register.view
AREA.view

®=Register.LIST("") ;returns the first register name
PRINT "®" ;and prints it to the AREA window

WHILE "®">"" ;loop through all register names
(
 PRINT Register.LIST("®") ;print register name
 ®=Register.LIST("®") ;get next register name
)

A B
General Function Reference | 286©1989-2024 Lauterbach

Register.Valid() Valid register value
[build 160975 - DVD 09/2023]

Returns TRUE if the register value is available.

Parameter and Description:

Return Value Type: Boolean.

Syntax: Register.Valid(<register_name>)

<register_name> Parameter Type: String. The architecture-specific register names are
displayed in the Register.view window.

PRINT Register.Valid(R0) ; returns FALSE as the R0 value is not
 ; available
PRINT Register.Valid(R5) ; returns TRUE
General Function Reference | 287©1989-2024 Lauterbach

RTS Functions

This figure provides an overview of the return values the RTS functions. For descriptions of the illustrated
functions, see below.

In This Section

See also

■ RTS ❏ RTS.BUSY() ❏ RTS.ERROR() ❏ RTS.FIFOFULL()
❏ RTS.NOCODE() ❏ RTS.RECORD() ❏ RTS.RECORDS()

RTS.ERROR() Check for flowerrors during RTS processing
[Go to figure]

Returns TRUE if flowerrors where detected during RTS processing.

Return Value Type: Boolean.

RTS.NOCODE() Check for RTS NOCODE error
[build 78366 - DVD 02/2017]

Returns TRUE if code was missing in VM for decoding.

Return Value Type: Boolean.

Syntax: RTS.ERROR()

Syntax: RTS.NOCODE()

RTS.RECORDS()

RTS.ERROR()
General Function Reference | 288©1989-2024 Lauterbach

RTS.FIFOFULL() Check for FIFO full error in RTS
[build 78366 - DVD 02/2017]]

Returns TRUE if the target trace FIFO buffer overflowed during the recording.

Return Value Type: Boolean.

RTS.RECORD() Find record causing an error in RTS
[build 78366 - DVD 02/2017]

Returns the record number of the error that stopped RTS.

Return Value Type: Decimal value.

RTS.RECORDS() Get number of trace records transferred to RTS
[Go to figure [build 47027 - DVD 08/2013]

Returns the number of trace records transferred to the host for RTS processing.

Return Value Type: Decimal value.

RTS.BUSY() Check if RTS is busy
[build 115124 - DVD 02/2020]

Returns TRUE when RTS trace is off and processing is catching up.

Return Value Type: Boolean.

Syntax: RTS.FIFOFULL()

Syntax: RTS.RECORD()

Syntax: RTS.RECORDS()

Syntax: RTS.BUSY()
General Function Reference | 289©1989-2024 Lauterbach

RunTime Functions

In This Section

See also

■ RunTime ❏ RunTime.ACCURACY() ❏ RunTime.ACTUAL() ❏ RunTime.LAST()
❏ RunTime.LASTRUN() ❏ RunTime.REFA() ❏ RunTime.REFB()

RunTime.ACCURACY() Accuracy of run-time counter

Returns the measurement error of the RunTime counter in seconds.

Return Value Type: Time value.

RunTime.ACTUAL()

Returns the value displayed in the actual column of the RunTime.state window (as time from zero).

Return Value Type: Time value.

RunTime.LAST()

Returns the value displayed in the laststart column of the RunTime.state window (as time from zero).

Return Value Type: Time value.

Syntax: RunTime.ACCURACY()

Syntax: RunTime.ACTUAL()

Syntax: RunTime.LAST()
General Function Reference | 290©1989-2024 Lauterbach

RunTime.LASTRUN()

Returns the time of the last single step or the time between the last go and break of the program.

Return Value Type: Time value.

RunTime.REFA()

Returns the value displayed in the ref A column of the RunTime.SHOW window (as time from zero).

Return Value Type: Time value.

RunTime.REFB()

Returns the value displayed in the ref B column of the RunTime.SHOW window (as time from zero).

Return Value Type: Time value.

Syntax: RunTime.LASTRUN()

Syntax: RunTime.REFA() (deprecated)

Syntax: RunTime.REFB() (deprecated)
General Function Reference | 291©1989-2024 Lauterbach

SMMU Functions

SMMU.BaseADDRESS() Base address of SMMU
ARM, ARMv8-A [build 64463 - DVD 09/2015]

Returns the base address of hardware system MMU (SMMU). SMMUs are created with the
SMMU.ADD command.

Parameter Type: String.

Return Value Type: Address.

Example:

SMMU.StreamID2SMRG() Find match for stream ID
ARM, ARMv8-A [build 64463 - DVD 09/2015] [Example]

Finds a matching stream mapping register group (SMRG) for a given <stream_id> using the SMMU stream
ID matching algorithm.

Parameter and Description:

Syntax: SMMU.BaseADDRESS("<smmu_name>")

;define a new SMMU named "myGPU" for a graphics processing unit
; <smmu_name> <base_address>
SMMU.ADD "myGPU" MMU500 A:0x50000000

;returns AZSD:0x0:0x50000000 as <base_address>
PRINT SMMU.BaseADDRESS("myGPU)

Syntax: SMMU.StreamID2SMRG("<name>",<stream_id>)

<name> Parameter Type: String. Specifies the SMMU to be searched. The SMMU
<name> must be quoted.

<stream_id> Parameter Type: Decimal or hex or binary value. Stream ID of a memory
transaction stream.
General Function Reference | 292©1989-2024 Lauterbach

Return Value and Description:

Example: This PRACTICE script opens the SMMU.StreamMapTable window, searches for the
<stream_id> 0x3464, and highlights the matching SMRG 0x0464 in yellow.

For the SMRG 0x0464, the function SMMU.StreamID2SMRG() returns the index 11 (decimal).

The row highlighted in yellow in the SMMU.StreamMapTable window is a correct match for the
StreamID 0x3464 we searched for.

Range: 0 to (max.
number of index
entries-1).

Return Value Type: Decimal value. If exactly one matching SMRG was
found, the function returns the index of the matching SMRG.
See also column index in the SMMU.StreamMapTable window.

-1 Return Value Type: Decimal value. If no matching SMRG was found for the
given <stream_id>, -1 will be returned.

-2 Return Value Type: Decimal value. If more than one matching SMRG was
found for the given <stream_id>, -2 will be returned.
Additionally, a warning message will be printed to the AREA window.

NOTE: If more than one SMRG matches a given <stream_id>, a stream
matching fault occurs in the SMMU hardware.

;open the window and highlight the matching SMRG in yellow
SMMU.StreamMapTable myGPU /StreamID 0x3464

;return the index of the SMRG as a decimal value
&index=SMMU.StreamID2SMRG("myGPU",0x3464)

;print the index as hex and decimal to the AREA window
PRINT "hex: 0x" CONVert.INTTOHEX(&index) " decimal: &index"
AREA.view

NOTE: At first glance, the StreamID 0x3464 does not seem to match the SMRG 0x0464.

However, if you take the ID mask 0x7000 (= 0y0111_0000_0000_0000) into
account, the match is correct.
General Function Reference | 293©1989-2024 Lauterbach

SNOOPer Functions

This figure provides an overview of the return values of some of the SNOOPer functions. For descriptions of
the illustrated functions and the functions not shown here, see below.

In This Section

See also

❏ SNOOPer.FIRST() ❏ SNOOPer.MAXSIZE()
❏ SNOOPer.RECORD.ADDRESS() ❏ SNOOPer.RECORD.DATA()
❏ SNOOPer.RECORD.OFFSET() ❏ SNOOPer.RECORD.TIME()
❏ SNOOPer.RECORDS() ❏ SNOOPer.REF()
❏ SNOOPer.SIZE() ❏ SNOOPer.STATE()

SNOOPer.FIRST() Get record number of first trace record
[build 71062 - DVD 09/2016]

Returns the record number of the first record. The first record is the record with the lowest record number.

Return Value Type: Decimal value.

Syntax: SNOOPer.FIRST()

SNOOPer.RECORDS()

SNOOPer.STATE()

SNOOPer.MAXSIZE()
SNOOPer.SIZE()
General Function Reference | 294©1989-2024 Lauterbach

SNOOPer.MAXSIZE() Get max. size of trace buffer in records
[build 38323 - DVD 08/2012] [Go to figure]

Returns the maximum possible number of records.

Return Value Type: Decimal value.

SNOOPer.RECORD.ADDRESS() Get address recorded in trace record
[build 38764]

Returns the sampled address (access class and offset) from the specified record.

Parameter Type: Decimal value.

Return Value Type: Address.

SNOOPer.RECORD.DATA() Get data recorded in trace record
[build 38764]

Returns the sampled data of the specified record.

Parameter Type: Decimal value.

Return Value Type: Hex value.

SNOOPer.RECORD.OFFSET() Get address in trace record as number
[build 38764]

Returns the address-offset of the sampled address from the specified record.

Parameter Type: Decimal value.

Return Value Type: Hex value.

Syntax: SNOOPer.MAXSIZE()

Syntax: SNOOPer.RECORD.ADDRESS(<record_number>)

Syntax: SNOOPer.RECORD.DATA(<record_number>)

Syntax: SNOOPer.RECORD.OFFSET(<record_number>)
General Function Reference | 295©1989-2024 Lauterbach

SNOOPer.RECORD.TIME() Get timestamp of trace record
[build 38764]

Returns the timestamp of the specified record. For an example, see Analyzer.RECORD.TIME().

Parameter Type: Decimal value.

Return Value Type: Time value.

SNOOPer.RECORDS() Get number of used trace records
[Go to figure]

The number of records currently recorded in the SNOOPer trace buffer.

Return Value Type: Decimal value.

SNOOPer.REF() Get record number of reference record

The number of the selected reference record in the SNOOPer trace.

Return Value Type: Decimal value.

SNOOPer.SIZE() Get current trace buffer size in records
[build 38323 - DVD 08/2012] [Go to figure]

Returns the currently defined size of the SNOOPer trace buffer in records.

Return Value Type: Decimal value.

Syntax: SNOOPer.RECORD.TIME(<record_number>)

Syntax: SNOOPer.RECORDS()

Syntax: SNOOPer.REF()

Syntax: SNOOPer.SIZE()
General Function Reference | 296©1989-2024 Lauterbach

SNOOPer.STATE() Get state of SNOOPer trace
[Go to figure]

Returns the state of the SNOOPer trace.

Return Value Type: Hex value.

Return Value and Description:

Syntax: SNOOPer.STATE()

0 OFF state

1 Arm state

2 break state

3 trigger state

4 DISable state
General Function Reference | 297©1989-2024 Lauterbach

STATE Functions (Target State)

In This Section

See also

❏ STATE.HALT() ❏ STATE.NOCPUACCESS() ❏ STATE.NOCTIACCESS() ❏ STATE.OSLK()
❏ STATE.POWER() ❏ STATE.PROCESSOR() ❏ STATE.RESET() ❏ STATE.RUN()
❏ STATE.TARGET()

STATE.HALT()

Returns the state of the “halt” display (i.e. no CPU cycles).

Return Value Type: Boolean.

STATE.OSLK()
32-bit and 64-bit ARM cores [build 67684 - DVD 02/2016]

Returns the current state of the OS-lock bit of the CPU.

Return Value Type: Boolean.

Return Value and Description:

Syntax: STATE.HALT()

Syntax: STATE.OSLK()

TRUE The CPU is running and OS-lock bit is set.

FALSE FALSE can mean either case 1 or case 2:
• Case 1: The CPU is running and OS-lock bit is cleared.
• Case 2: The debugger has connected to the CPU and detected that

the CPU has stopped.
General Function Reference | 298©1989-2024 Lauterbach

STATE.POWER()
[Example]

Returns the state of the target power line.

Return Value Type: Boolean.

Return Value and Description:

Syntax: STATE.POWER()

TRUE Power is applied.

FALSE Power is not applied.

NOTE: Please check the power-off voltage if the power-off state cannot be detected.
Especially for low-power applications, the debug/trace-signal current can be
enough to power the application:
Target power does not drop to GND level -> power-off cannot be detected.
General Function Reference | 299©1989-2024 Lauterbach

Example

In the following example, the message box is displayed as long as power is applied to the target board. The
message box disappears only if these conditions are met:

• You have unplugged all connectors from the target board.

• You have clicked OK.

+CONV.CHAR(0x0d)+ creates a line break on the GUI. A backslash \ is used as a line continuation
character in PRACTICE script files (*.cmm). No white space permitted after the backslash.

STATE.PROCESSOR()

Returns the name of the processor, which was selected with the command SYStem.CPU. This function
is an alias for SYStem.CPU().

Return Value Type: String.

LOCAL &msgA &msgB &msgC ; PRACTICE macros for the message texts A, B, C

&msgA="1. Power OFF PandaBoard."+CONV.CHAR(0x0d)+\
"2. Click 'OK'."+CONV.CHAR(0x0d)+"3. Power ON PandaBoard."

&msgB="Waiting for PandaBoard to power up..."

&msgC="PandaBoard is now powered up again."

AREA.view ; Opens the AREA.view window.

WHILE STATE.POWER() ; While power is on...
 DIALOG.OK "&msgA" ; ...prompt the user to power off the board.

PRINT "&msgB" ; Now prompt the user to power up the board again.

WAIT STATE.POWER() ; Wait for the user to respond as requested.

AREA.Clear ; Clear the previous message from the AREA.view window.

PRINT "&msgC" ; Display success message.

Syntax: STATE.PROCESSOR()
General Function Reference | 300©1989-2024 Lauterbach

STATE.RESET()

Returns the state of the target reset line.

Return Value Type: Boolean.

STATE.RUN()

Returns the state of the run-flag (CPU running in target).

Return Value Type: Boolean.

STATE.TARGET() State of target displayed in TRACE32 state line

Returns the message about the target state displayed in the state line. For example, system down,
system ready, running, stopped.

Return Value Type: String.

SPE Function

SPE() Content from SPE register

Returns the content of the selected SPE register. See also SPE command group.

Parameter Type: String.

Return Value Type: Hex value.

Syntax: STATE.RESET()

Syntax: STATE.RUN()
RUN() (deprecated)

Syntax: STATE.TARGET()

Syntax: SPE(<register_name>)
General Function Reference | 301©1989-2024 Lauterbach

SSE Function

SSE() Segment from SSE register

Returns a 32-bit segment of the selected 128-bit SSE register. See also SSE command group.

Parameter Type: String.

Parameter and Description:

Return Value Type: Hex value.

Example: This demo script returns 32-bit values of the register XMM1 from the column 0 (bits 31 to 0)
and the column 2 (bits 95 to 64) of the SSE.view window.

Syntax: SSE(<register_name>.<column_number>)

<register_name> The register names are listed in the SSE.view window.

<column_number> The column numbers start at 0 and are read from right to left in the
SSE.view window. See example below.

A column k corresponds to the bit range (k · 32 + 31)-(k · 32),
where 0<=k<=3

SSE.view
SSE.Set XMM1 689 789 809 9009
PRINT "Register|Bit Range|Col.|Value"
PRINT " XMM1 | 31-0 | 0 | " SSE(XMM1.0) ;32-bit value from col. 0
PRINT " XMM1 | 95-64 | 2 | " SSE(XMM1.2) ;32-bit value from col. 2

A Register names.

0 - 3 Column numbers - from right to left - in the SSE.view window.

0123
A

General Function Reference | 302©1989-2024 Lauterbach

Stimuli Generator Function

hardware.STG() TRUE if Stimuli Generator hardware

Returns TRUE if Stimuli Generator hardware is available.

Return Value Type: Boolean.

Syntax: hardware.STG()
STG() (deprecated)
General Function Reference | 303©1989-2024 Lauterbach

sYmbol Functions

In This Section

See also

■ sYmbol ❏ sYmbol.AutoLOAD.CHECK()
❏ sYmbol.AutoLOAD.CHECKCMD() ❏ sYmbol.AutoLOAD.CONFIG()
❏ sYmbol.BEGIN() ❏ sYmbol.COUNT()
❏ sYmbol.END() ❏ sYmbol.EPILOG()
❏ sYmbol.EXIST() ❏ sYmbol.EXIT()
❏ sYmbol.FUNCTION() ❏ sYmbol.IMPORT()
❏ sYmbol.ISFUNCTION() ❏ sYmbol.ISVARIABLE()
❏ sYmbol.LANGUAGE() ❏ sYmbol.LIST.PROGRAM()
❏ sYmbol.LIST.SOURCE() ❏ sYmbol.MATCHES()
❏ sYmbol.NAME() ❏ sYmbol.NAME.AT()
❏ sYmbol.NEXT.BEGIN() ❏ sYmbol.RANGE()
❏ sYmbol.SEARCHFILE() ❏ sYmbol.SECADDRESS()
❏ sYmbol.SECEND() ❏ sYmbol.SECEXIST()
❏ sYmbol.SECNAME() ❏ sYmbol.SECPRANGE()
❏ sYmbol.SECRANGE() ❏ sYmbol.SIZEOF()
❏ sYmbol.SOURCEFILE() ❏ sYmbol.SOURCELINE()
❏ sYmbol.SOURCEPATH() ❏ sYmbol.STATE()
❏ sYmbol.TRANSPOSE() ❏ sYmbol.TYPE()
❏ sYmbol.VARNAME()

sYmbol.AutoLOAD.CHECK() Update option for the symbol autoloader
[build 71364 - DVD 09/2016]

Returns the update option of the symbol autoloader that was given with sYmbol.AutoLOAD.CHECK.

Return Value Type: String. Returns an empty string if no automatic update is configured.

sYmbol.AutoLOAD.CHECKCMD() Load command for symbol autoloader
[build 71364 - DVD 09/2016]

Returns the command that was specified to be used to load a symbol file with the symbol autoloader (e.g. as
parameter to sYmbol.AutoLOAD.CHECKCoMmanD).

Return Value Type: String. Returns an empty string if the symbol autoloader is not configured.

Syntax: sYmbol.AutoLOAD.CHECK()

Syntax: sYmbol.AutoLOAD.CHECKCMD()
General Function Reference | 304©1989-2024 Lauterbach

sYmbol.AutoLOAD.CONFIG() Used sub-command
[build 71364 - DVD 09/2016]

Returns the sub-command that was used to configure the symbol autoloader. E.g. “CHECKCoMmanD” if
sYmbol.AutoLOAD.CHECKCoMmanD was used.

Return Value Type: String. Returns an empty string if the symbol autoloader is not configured.

sYmbol.BEGIN() First address of symbol
[build 18430 - DVD 12/2009]

Returns the first address occupied by the symbol. A symbol name used alone represent the beginning
address too. Function only implemented to have a counterpart of function the sYmbol.END().

Parameter Type: Symbol.

Return Value Type: Address.

Example:

Syntax: sYmbol.AutoLOAD.CONFIG()

Syntax: sYmbol.BEGIN(<symbol>)

Data.Print sYmbol.BEGIN(vbfield)
Data.Print vbfield // displays the identical value
General Function Reference | 305©1989-2024 Lauterbach

sYmbol.COUNT() Number of symbols

Returns the number of symbols defined with the specified name. The wildcards ‘*’ and ‘?’ are supported.

Parameter Type: Symbol.

Return Value Type: Decimal value.

Examples:

sYmbol.ECA.BINary.GAPNUMBER() Number of observability gaps

Returns the number of observability gaps detected by the command sYmbol.ECA.BINary.PROCESS.

The function returns the error code -1, if no symbols are loaded or a numeric overflow was detected.

Return Value Type: Decimal value.

sYmbol.END() Last address of symbol

Returns the last address occupied by the symbol.

Parameter Type: Symbol.

Return Value Type: Address.

Example:

Syntax: sYmbol.COUNT(<symbol>)

ECHO sYmbol.COUNT(func*)
ECHO sYmbol.COUNT(func2?)

Syntax: sYmbol.ECA.BINary.GAPNUMBER()

Syntax: sYmbol.END(<symbol>)

Data.Print sYmbol.END(vbfield)
General Function Reference | 306©1989-2024 Lauterbach

sYmbol.EPILOG() Address of return point
[build 72285 - DVD 09/2016]

Returns the last address of the specified function where the local variables are still valid, i.e. the address of
the return point. Prerequisite: The function has exactly one return point.

Parameter Type: Symbol.

Return Value Type: Address.

Example 1: The function sYmbol.EPILOG() is used to display the address of the return point in the
Data.Print window.

Example 2: The function sYmbol.EPILOG() is used to set a breakpoint to the return point in order to watch
the local variable __struct_result in the Var.Watch window.

Syntax: sYmbol.EPILOG(<symbol>)

List.auto func1 ;optional step: display the function
Go.Return ;optional step: go to the address of
 ;the return point
Data.Print sYmbol.EPILOG(func1) ;get the address of the return point
 ;and display it in the Data.Print
 ;window

Break.Set sYmbol.EPILOG(func4) ;set a breakpoint to the return point
 ;address of ‘func4’
Go ;start the program execution
WAIT !STATE.RUN() ;wait until program stops

Var.Watch %Open.ON __struct_result //watch local variable ‘__struct_re.’
General Function Reference | 307©1989-2024 Lauterbach

sYmbol.EXIST() TRUE if symbol exists

Returns TRUE if the symbol exists in the TRACE32 symbol database or FALSE otherwise.

Parameter Type: Symbol.

Return Value Type: Boolean.

Example 1:

Example 2: The sYmbol.EXIST() function can be used together with the Trace.Find command in a
PRACTICE script. This prevents the PRACTICE script from stopping if the searched symbol does not exist,
and eliminates the need for an error handler.

sYmbol.EXIT() Exit address of function

Returns the exit address of the specified function.

Parameter Type: Symbol.

Return Value Type: Address.

Example:

Syntax: sYmbol.EXIST(<symbol>)

PRINT sYmbol.EXIST(vbfield)
PRINT sYmbol.EXIST(qwertzuiop)

IF sYmbol.EXIST(qwertzuiop)
(
 Trace.Find , Address qwertzuiop
 IF FOUND()
 PRINT "Record number of 'qwertzuiop' is: " Analyzer.TRACK.RECORD()
)
ELSE
(
 PRINT "The symbol 'qwertzuiop' does not exist in the symbol database."
)

Syntax: sYmbol.EXIT(<symbol>)

Data.Print sYmbol.EXIT(func40)
PRINT ADDRESS.OFFSET(sYmbol.EXIT(func40)))
General Function Reference | 308©1989-2024 Lauterbach

sYmbol.FUNCTION() Function name

Returns the path and name of the function that includes the specified address. The address has to be
classified, e.g. P:0x200

Parameter Type: Address.

Return Value Type: String.

Example:

sYmbol.IMPORT() Import file names

Returns the name of the next not yet processed import file name. This function can be used to walk through
the list of import names (Only relevant for *.exe target programs, on Windows CE for example).

Return Value Type: String.

sYmbol.ISFUNCTION() TRUE if symbol is function
[build 135097 - DVD 09/2021]

Returns TRUE if the selected symbol is function.

Parameter Type: Symbol.

Return Value Type: Boolean.

Example:

Syntax: sYmbol.FUNCTION(<address>)

PRINT sYmbol.FUNCTION(P:0x40001000)

Syntax: sYmbol.IMPORT()

Syntax: sYmbol.ISFUNCTION(<symbol>)

Print sYmbol.ISFUNCTION(func1) ; return TRUE
General Function Reference | 309©1989-2024 Lauterbach

sYmbol.ISVARIABLE() TRUE if symbol is variable
[build 135097 - DVD 09/2021]

Returns TRUE if the selected symbol is variable.

Parameter Type: Symbol.

Return Value Type: Boolean.

Syntax: sYmbol.ISVARIABLE(<symbol>)
General Function Reference | 310©1989-2024 Lauterbach

sYmbol.LANGUAGE() Selected high-level language
[build 122228 - DVD 09/2020]

Returns the currently selected language for high-level expressions.

Return Value Type: String.

sYmbol.List.MAP.<x>() Information about address ranges on the target
[build 86990 - DVD 09/2017]

Parameter and Description:

Syntax: sYmbol.LANGUAGE()

Syntax: sYmbol.List.MAP.<x>()

<x>: COUNT | BEGIN | END | RANGE

(Full function
name only
required for
HELP.Index):

sYmbol.List.MAP.COUNT()
sYmbol.List.MAP.BEGIN(<index>)
sYmbol.List.MAP.END(<index>)
sYmbol.List.MAP.RANGE(<index>)

<x> Description of sYmbol.List.MAP.<x>()

COUNT Returns the number of address ranges loaded to the target with the
Data.LOAD.* <file> commands.
Return Value Type: Decimal value.

BEGIN(<index>) Returns the start address of the range <index>.
Parameter Type: Decimal value.
Return Value Type: Address.

END(<index>) Returns the end address of the range <index>.
Parameter Type: Decimal value.
Return Value Type: Address.

RANGE(<index>) Returns the range <index>.
Parameter Type: Decimal value.
Return Value Type: Address range.

<index> The individual <index> numbers of the ranges are listed in the load order
column of the sYmbol.List.MAP window.
To return the highest <index> number, use sYmbol.List.MAP.COUNT().
General Function Reference | 311©1989-2024 Lauterbach

Example:

sYmbol.LIST.PROGRAM() Path and file name of binary files
[build 42354 - DVD 02/2013]

Returns the path and file name of a loaded target binary, e.g. an ELF file.

Parameter and Description:

Return Value Type: String.

SYStem.Up ;connect to target
Data.LOAD.Elf sieve_flash_thumb_ii_v7m.elf ;load application to target
&i=1.
RePeaT sYmbol.List.MAP.COUNT() ;loop through number of address ranges
(;let’s use PRINTF to format the output to the AREA.view window
 PRINTF "%s%i%s" "Range " &i " starts at "
 PRINTF %CONTinue "0x%x%s" sYmbol.List.MAP.BEGIN(&i) "."
 &i=&i+1.
)

Syntax: sYmbol.LIST.PROGRAM(1 | 0)

1 Parameter Type: Decimal or hex value.
Starts with the first target binary listed in the sYmbol.List.Program
window.

0 Parameter Type: Decimal or hex value.
Continues with the next target binary in the list. To return all loaded target
binaries, call the function repeatedly until an empty string is returned.
General Function Reference | 312©1989-2024 Lauterbach

sYmbol.List.PROGRAM.<x>() Information about loaded programs
[build 141685 - DVD 02/2022]

Parameter and Description:

Syntax: sYmbol.List.PROGRAM.<x>()

<x>: COUNT | COMMAND | FORMAT | FILE | NAME | RANGE

(Full function
name only
required for
HELP.Index):

sYmbol.List.PROGRAM.COUNT()
sYmbol.List.PROGRAM.COMMAND(<index>)
sYmbol.List.PROGRAM.FORMAT(<index>)
sYmbol.List.PROGRAM.FILE(<index>)
sYmbol.List.PROGRAM.NAME(<index>)
sYmbol.List.PROGRAM.RANGE(<index>)

<x> Description of sYmbol.List.PROGRAM.<x>()

COUNT Returns the number of programs loaded to the symbol table with the
Data.LOAD.* <file> commands.
Return Value Type: Decimal value.

COMMAND(<index>) Returns the commandline how <index> got added to the symbol database.
Parameter Type: Decimal value.
Return Value Type: String.

FORMAT(<index>) Returns the format of program <index>.
Parameter Type: Decimal value.
Return Value Type: String.

FILE(<index>) Returns the path of file <index>.
Parameter Type: Decimal value.
Return Value Type: String.

NAME(<index>) Returns the symbol database name of <index>.
Parameter Type: Decimal value.
Return Value Type: String.

RANGE(<index>) Returns the range <index>.
Parameter Type: Decimal value.
Return Value Type: Address range.

<index> The individual <index> numbers address the lines in the
sYmbol.List.Program window.
To return the highest <index> number, use
sYmbol.List.PROGRAM.COUNT().
General Function Reference | 313©1989-2024 Lauterbach

Example:

sYmbol.List.SECtion.<x>() Information about section ranges
[build 141685 - DVD 02/2022]

; load file to symbol database
Data.LOAD.Elf ~~/demo/arm/compiler/gnu-pic/sieve_arm.elf /NoCODE
Data.LOAD.Elf ~~/demo/arm/compiler/gnu-pic/sieve_thumb_v4.elf \

0x80000000 /NoCODE /NoClear
&i=1.
RePeaT sYmbol.List.PROGRAM.COUNT() ; loop through number of programs
(; lets use PRINTF to format output to AREA.view window
 PRINTF "Program %i Name: %s" &i sYmbol.List.PROGRAM.NAME(&i)
 PRINTF " Format: %s" sYmbol.List.PROGRAM.FORMAT(&i)
 PRINTF " File: %s" sYmbol.List.PROGRAM.FILE(&i)
 PRINTF " Range: %#!R" sYmbol.List.Program.RANGE(&i)
 &i=&i+1.
)

Syntax: sYmbol.List.SECtion.<x>()

<x>: COUNT | PATH | RANGE

(Full function
name only
required for
HELP.Index):

sYmbol.List.SECtion.COUNT()
sYmbol.List.SECtion.PATH(<index>)
sYmbol.List.SECtion.RANGE(<index>)
General Function Reference | 314©1989-2024 Lauterbach

Parameter and Description:

Example:

<x> Description of sYmbol.List.PROGRAM.<x>()

COUNT Returns the number of sections loaded to the symbol table with the
Data.LOAD.* <file> commands.
Return Value Type: Decimal value.

PATH(<index>) Returns the symbol path <index>.
Parameter Type: Decimal value.
Return Value Type: String.

RANGE(<index>) Returns the range <index>.
Parameter Type: Decimal value.
Return Value Type: Address range.

<index> The individual <index> numbers address the lines in the
sYmbol.List.SECtion window.
To return the highest <index> number, use
sYmbol.List.SECtion.COUNT().

; load file to symbol database
Data.LOAD.Elf ~~/demo/arm/compiler/gnu-pic/sieve_arm.elf /NoCODE
&i=1.
RePeaT sYmbol.List.SECtion.COUNT() ; loop through number of sections
(; lets use PRINTF to format output to AREA.view window
 PRINTF "Range %i Path: %-24s Range: %#!R" &i \

sYmbol.List.SECtion.PATH(&i) sYmbol.List.SECtion.RANGE(&i)
 &i=&i+1.
)

General Function Reference | 315©1989-2024 Lauterbach

sYmbol.LIST.SOURCE() File location of source file
[build 42354 - DVD 02/2013]

Via the TRACE32 Remote API, 3rd-party tools can use the sYmbol.LIST.SOURCE() together with the
T32Cmd() interface function to request the file location of all source files, e.g. *.c files, used to build the
currently loaded target binary, e.g. an ELF file.

Because a target binary consists of more than one source file, it is necessary to call the
sYmbol.LIST.SOURCE() function repeatedly until an empty string is returned.

Parameter and Description:

Return Value Type: String.

sYmbol.MATCHES() Number of occurrences

Returns the number of hits of a preceding command like sYmbol.Browse or sYmbol.ForEach.

Return Value Type: Decimal value.

Syntax: sYmbol.LIST.SOURCE(<start_over>,<filter>,<refresh_source_list>)

<start_over> Parameter Type: Decimal or hex value.
• 1: Starts with the first source file listed in the sYmbol.List.SOURCE

window, e.g. a *.c. file.
• 0: Continue with the next source file in the list.

<filter> Parameter Type: Decimal or hex value.
• 0: Returns the file path of all files referenced in the symbol file,

regardless if found on the local machine or not.
• 1: Returns the file location of all files that are currently loaded by

TRACE32 PowerView. This implies that the files are found on the
local machine.

• 2: Returns the file path of files that are not found by TRACE32
PowerView.

• 4: Returns the file path of files referenced in the symbol file, but do
not contain any sourcecode with debug information. Such files will
never show up in the List window.

<refresh_source_list> Parameter Type: Decimal or hex value.
• 1: Tells TRACE32 PowerView to refresh the internal source file list

before returning file locations.
• 0: Does not refresh the internal source file list, i.e. files not opened

in a Data.List window will be unknown / missing.

Syntax: sYmbol.MATCHES()
General Function Reference | 316©1989-2024 Lauterbach

Example:

sYmbol.NAME() Symbol path and name based on address

Returns the symbol path and name of a specific address. The address has to be classified, e.g.
D:0x200. If the address is within the body of a function, the result is the same as returned by
sYmbol.FUNCTION().

Parameter Type: Address.

Return Value Type: String.

Example:

sYmbol.NAME.AT() Resolve ambiguous symbols based on address
[build 54072 - DVD 09/2014]

Returns the symbol path and name of an <address>.

The function tries to find the symbol in the symbol database which fits best to the specified context address.
Address, space ID, and access class of the specific context address are used as filter criteria to find the best
match.

The function is useful if the same symbol name exists more than once in the symbol database. The function
allows to find the symbol which belongs to a specific program address range or a specific task (space ID). In
addition in ARM architectures, the function finds the symbol which belongs to a specific ARM Zone
(non-secure, secure, hypervisor, see SYStem.Option.ZoneSPACES).

Parameter and Description:

Return Value Type: String. Returns an empty string if no matching symbol is found.

sYmbol.Browse func*0
PRINT sYmbol.MATCHES()
ENDDO

Syntax: sYmbol.NAME(<address>)

PRINT sYmbol.NAME(D:0x40005EB8)

Syntax: sYmbol.NAME.AT(<address>,<context_address>)

<address> Parameter Type: String.

<context_address> Parameter Type: Address.
General Function Reference | 317©1989-2024 Lauterbach

Examples:

sYmbol.NEXT.BEGIN() Start address of next symbol
[build 33011 - DVD 02/2012]

Returns the start address of the next symbol.

Parameter Type: Symbol.

Return Value Type: Address.

sYmbol.RANGE() Address range of symbol

Returns the address range occupied by the symbol (e.g. function or variable).

Parameter Type: Symbol.

Return Value Type: Address range.

Example:

sYmbol.SEARCHFILE() Absolute path of source file

Walks through the search path for source files and returns the absolute path of the first found file.

Parameter Type: String.

Return Value Type: String. If no file is found the function returns an empty string.

PRINT sYmbol.NAME.AT(sieve,D:0x00209860)
PRINT sYmbol.NAME.AT(main,D:0x02A3:0x0)
PRINT sYmbol.NAME.AT(__per_cpu_offset,H:0x0)
PRINT sYmbol.NAME.AT(__per_cpu_offset,N:0x0)

Syntax: sYmbol.NEXT.BEGIN(<symbol>)

Syntax: sYmbol.RANGE(<symbol>)

Data.Print sYmbol.RANGE(flags)

Syntax: sYmbol.SEARCHFILE(<file>)
General Function Reference | 318©1989-2024 Lauterbach

Example:

PRINT sYmbol.SEARCHFILE(demo.c)
PRINT sYmbol.SEARCHFILE(.src\sieve.c)
General Function Reference | 319©1989-2024 Lauterbach

sYmbol.SECADDRESS() Start address of section

Returns the logical start address of the named section.

Parameter Type: String.

Return Value Type: Address.

sYmbol.SECEND() End address of section

Returns the logical end address of the named section.

Parameter Type: String.

Return Value Type: Address.

sYmbol.SECEXIST() Check for existence of a section
[build 115086 - DVD 02/2020]

Returns TRUE if the named section exists.

Parameter Type: String

Return Value Type: Boolean.

Syntax: sYmbol.SECADDRESS(<section>)

Syntax: sYmbol.SECEND(<section>)

Syntax: sYmbol.SECEXIST(<section>)
General Function Reference | 320©1989-2024 Lauterbach

sYmbol.SECNAME() Section name
[build 96314 - DVD 09/2018]

Returns the name of the section at the specified address.

Parameter Type: Address.

Return Value Type: String.

See also: sYmbol.List.SECtion window.

sYmbol.SECPRANGE() Physical address range of section

Returns the physical address range occupied by the named section.

Parameter Type: String.

Return Value Type: Address range.

sYmbol.SECRANGE() Logical address range of section

Returns the logical address range occupied by the named section.

Parameter Type: String.

Return Value Type: Address range.

Syntax: sYmbol.SECNAME(<address>)

Syntax: sYmbol.SECPRANGE(<section>)

Syntax: sYmbol.SECRANGE(<section>)
General Function Reference | 321©1989-2024 Lauterbach

sYmbol.SIZEOF() Size of debug symbol

Returns the size occupied by the specified debug symbol in memory (e.g. function, variable, module).

Parameter Type: Symbol.

Return Value Type: Hex value.

Example:

sYmbol.SOURCEFILE() Name of source file

Returns the name of the source file for the specified program address or symbol. The address has to be
classified, e.g. P:0x200. In this example, P: stands for the memory class Program Memory.

This function can only be used with program addresses/symbols. It returns an empty string for data
addresses / variables.

Parameter and Description:

Return Value Type: String.

Syntax: sYmbol.SIZEOF(<symbol>)

Data.Print flags++sYmbol.SIZEOF(flags)

Data.Find flags++sYmbol.SIZEOF(flags) 0x00
IF FOUND()
(

Data.Set TRACK.ADDRESS() 0xEE
Data.Print TRACK.ADDRESS()

)
ENDDO

Syntax: sYmbol.SOURCEFILE(<address> | <symbol>[,<want_load_path>])

<address> Parameter Type: Address.

<symbol> Parameter Type: Symbol.

<want_load_path> Parameter Type: Boolean.
Returns the file loading path, if parameter is true or omitted. Otherwise the
compilation file path, generated at build time, is returned.
General Function Reference | 322©1989-2024 Lauterbach

Example:

sYmbol.SOURCELINE() HLL-line number of address

Returns the HLL-line number of the specified address. The address has to be classified, e.g. P:0x200. In this
example, P stands for the memory class Program Memory.

Parameter Type: Address.

Return Value Type: Decimal value.

Example 1:

Example 2: A user-defined command with the name EDT is created. When you execute it, TRACE32 opens
the source file in your external editor (here: TextPad) and positions the curser in the line where the program
counter (PC) is located in TRACE32.

PRINT sYmbol.SOURCEFILE(main)
PRINT sYmbol.SOURCEFILE(main,FALSE())

Syntax: sYmbol.SOURCELINE(<address>)

PRINT sYmbol.SOURCELINE(P:0x40005EB8)

; command extension to call external editor
; adapt path and parameter syntax to your own editor, e.g.:
; - uedit32.exe filename/line
; - textpad.exe filename(line)

ON CMD EDT GOSUB
(
 LOCAL &file &line &cmdline
 ENTRY &file
 IF "&file"==""
 (
 &file=sYmbol.SOURCEFILE(P:Register(pc))
 &line=sYmbol.SOURCELINE(P:Register(pc))
 &line=STRing.CUT("&line",-1.)
)
 &cmdline="OS.Command start textpad.exe &file(&line)"
 &cmdline
 RETURN
)
STOP
ENDDO
General Function Reference | 323©1989-2024 Lauterbach

sYmbol.SOURCEPATH() TRUE if path is search path

Returns TRUE if the given directory name is already defined as directory search path (by
sYmbol.SourcePATH or loader option /PATH).

Parameter Type: String.

Return Value Type: Boolean.

Example:

sYmbol.STATE() Value from sYmbol.state window
[build 53267 - DVD 08/2014]

Returns a value from the window sYmbol.STATE specified by its name.

Parameter Type: String.

Return Value Type: String.

Example:

sYmbol.TRANSPOSE() Transpose program and module names
[build 122118 - DVD 09/2020]

Allows to transpose program and module names following this rule:

Syntax: sYmbol.SOURCEPATH(<directory_path>)

&my_path=sYmbol.SOURCEFILE(main)
&my_path=OS.FILE.PATH(&my_path)
PRINT "&my_path"
sYmbol.SourcePATH.Set &my_path
PRINT sYmbol.SOURCEPATH(&my_path)
sYmbol.SourcePATH.List
ENDDO

Syntax: sYmbol.STATE(<name>)

&functions=sYmbol.STATE(functions)
PRINT %Decimal &functions " known functions in your target program(s)"

Syntax: sYmbol.TRANSPOSE(<name>)
General Function Reference | 324©1989-2024 Lauterbach

1. A ‘_’ is added as first characcter, if the name begins with 0--9 or ‘$’.

2. Any character expect 0--9, A--Z, a--z is replaced by a ‘_’.

This transposing can be switched off by adding the option /NoTranspose to any Data.LOAD comman.

Parameter Type: String.

Return Value Type: String.

Example:

sYmbol.TYPE() Type of symbol

Returns the basic type of a symbol.

Parameter Type: Symbol.

Return Value Type: Hex value.

Return Value and Description:

Examples:

PRINT sYmbol.TRANSPOSE(“1_test-12@test-bay”)
; prints “_1_test_12_test_bay” to AREA

Syntax: sYmbol.TYPE(<symbol>)

0 Symbol does not exist.

1 Plain label without type information.

2 HLL function.

3 HLL variable.

(-) Other values may be defined in the future.

PRINT sYmbol.TYPE(qwertzuiop)
PRINT sYmbol.TYPE(_main)
PRINT sYmbol.TYPE(sieve)
PRINT sYmbol.TYPE(flags)
General Function Reference | 325©1989-2024 Lauterbach

sYmbol.VARNAME() Name of variable or structure element

Returns the name of the variable or structure element at the specified address.

Parameter Type: Address.

Return Value Type: String.

Syntax: sYmbol.VARNAME(<address>)
General Function Reference | 326©1989-2024 Lauterbach

SYStem Functions

This figure provides an overview of the return values of some of the SYStem functions. For descriptions of
the illustrated SYStem functions and other SYStem functions, see below.

In This Section

See also

■ SYStem ❏ SYStem.ACCESS.DENIED()
❏ SYStem.AMBA() ❏ SYStem.BigEndian()
❏ SYStem.CADIconfig.RemoteServer() ❏ SYStem.CADIconfig.Traceconfig()
❏ SYStem.CONFIG.DEBUGPORT() ❏ SYStem.CONFIG.DEBUGPORTTYPE()
❏ SYStem.CONFIG.DRPOST() ❏ SYStem.CONFIG.DRPRE()
❏ SYStem.CONFIG.IRPOST() ❏ SYStem.CONFIG.IRPRE()
❏ SYStem.CONFIG.JTAGTAP() ❏ SYStem.CONFIG.ListCORE()
❏ SYStem.CONFIG.ListSIM() ❏ SYStem.CONFIG.Slave()
❏ SYStem.CONFIG.TAPState() ❏ SYStem.CPU()
❏ SYStem.DCI.Bridge() ❏ SYStem.DCI.BssbClock()
❏ SYStem.DCI.TIMEOUT() ❏ SYStem.GTL.CALLCOUNTER()
❏ SYStem.GTL.CONNECTED() ❏ SYStem.GTL.CYCLECOUNTER()
❏ SYStem.GTL.LIBname() ❏ SYStem.GTL.PLUGINVERSION()
❏ SYStem.GTL.VENDORID() ❏ SYStem.GTL.VERSION()
❏ SYStem.HOOK() ❏ SYStem.IMASKASM()
❏ SYStem.IMASKHLL() ❏ SYStem.INSTANCE()
❏ SYStem.INSTANCECOUNT() ❏ SYStem.IRISconfig.RemoteServer()
❏ SYStem.JtagClock() ❏ SYStem.LittleEndian()
❏ SYStem.MCDCommand.ResultString() ❏ SYStem.MCDconfig.LIBrary()
❏ SYStem.Mode() ❏ SYStem.NOTRAP()
❏ SYStem.Option.DUALPORT() ❏ SYStem.Option.EnReset()
❏ SYStem.Option.HRCWOVerRide() ❏ SYStem.Option.MACHINESPACES()
❏ SYStem.Option.MMUSPACES() ❏ SYStem.Option.ResBreak()
❏ SYStem.Option.SPILLLOCation() ❏ SYStem.Option.ZoneSPACES()
❏ SYStem.RESetBehavior() ❏ SYStem.Up()
❏ SYStem.USECORE() ❏ SYStem.USEMASK()

SYStem.CONFIG.DRPRE()
SYStem.CONFIG.DRPOST()
SYStem.CONFIG.IRPRE()
SYStem.CONFIG.IRPOST()

SYStem.CONFIG.DEBUGPORT()

SYStem.CONFIG.Slave()

SYStem.CONFIG.DEBUGPORTTYPE()
General Function Reference | 327©1989-2024 Lauterbach

SYStem.ACCESS.DENIED() TRUE if memory access is denied

Returns whether memory accesses are allowed during real-time emulation.

Return Value Type: Boolean.

Example:

SYStem.AMBA() TRUE if AMBA bus mode is selected

Returns TRUE if SYStem.Option.AMBA is active.

Refer to “Arm Debugger” (debugger_arm.pdf) for more information.

Return Value Type: Boolean.

SYStem.BigEndian() TRUE if target core runs in big endian mode
[build 05147 - DVD 12/2009]

Returns TRUE if target core runs in big endian mode.

Return Value Type: Boolean.

Syntax: SYStem.ACCESS.DENIED()

SYStem.MemAccess Denied
PRINT SYStem.ACCESS.DENIED() ;returns TRUE

Syntax: SYStem.AMBA()

Syntax: SYStem.BigEndian()
General Function Reference | 328©1989-2024 Lauterbach

SYStem.CADIconfig.RemoteServer()
[build 76257 - DVD 09/2016]

Returns the information about the connection to the CADI server. The connection is configured with the
command SYStem.CADIconfig.RemoteServer.

Parameter Type: Decimal or hex or binary value.

Parameter and Description:

Return Value Type: String.

Return Value and Description:

• IP address or host name or port depend on the parameter passed to the function.

• For local settings, localhost without any port is returned.

Examples:

Syntax: SYStem.CADIconfig.RemoteServer(<key>)

<key>: 1 | 2 | 3

1 Returns the IP address or host name of the remote computer where the
virtual target including the CADI server is running.

2 Returns the TCP/IP port of the CADI server.

3 Returns the IP address or host name and the port as follows:
<ip>:<port>

SYStem.CADIconfig.RemoteServer
PRINT SYStem.CADIconfig.RemoteServer(3) ;returns localhost

SYStem.CADIconfig.RemoteServer 192.168.178.2 7002.
PRINT SYStem.CADIconfig.RemoteServer(1) ;returns 192.168.178.2
PRINT SYStem.CADIconfig.RemoteServer(3) ;returns 192.168.178.2:7002

SYStem.CADIconfig.RemoteServer RmtPC 7000.
PRINT SYStem.CADIconfig.RemoteServer(2) ;returns RmtPC
General Function Reference | 329©1989-2024 Lauterbach

SYStem.CADIconfig.Traceconfig()
[build 76257 - DVD 09/2016]

Returns information about the connection to the CADI trace plug-in. The connection is configured with the
command SYStem.CADIconfig.Traceconfig.

Parameter Type: Decimal or hex or binary value.

Parameter and Description:

Return Value Type: String.

Syntax: SYStem.CADIconfig.Traceconfig(1 | 2 | 3)

1 Returns the IP address of the host machine where the virtual target is
running.

2 Returns the TCP/IP port of the trace plug-in.

3 Returns the IP address and the port as follows: <ip>:<port>
General Function Reference | 330©1989-2024 Lauterbach

SYStem.CONFIG.<tap_position>()
[build 45294 - DVD 08/2013] [Go to figure]

Returns the effective JTAG PRE and POST settings of the core to be debugged. See also command
SYStem.CONFIG.DRPRE.

Parameter and Description:

Return Value Type: Decimal value.

SYStem.CONFIG.DEBUGPORT()
[build 53511 - DVD 08/2014] [Go to figure]

Returns the selected debug port.

Details about the meaning of the return value can be found in the description of the
SYStem.CONFIG.DEBUGPORT command.

Return Value Type: String.

SYStem.CONFIG.DEBUGPORTTYPE()
[build 53511 - DVD 08/2014] [Go to figure]

Returns the selected debug port type, e.g. JTAG, CJTAG.

Syntax: SYStem.CONFIG.<tap_position>(<core_index>)

<tap_position>: DRPOST | DRPRE | IRPOST | IRPRE

Full function
name only
required for
HELP.Index:

SYStem.CONFIG.DRPOST(<core_index>)
SYStem.CONFIG.DRPRE(<core_index>)
SYStem.CONFIG.IRPOST(<core_index>)
SYStem.CONFIG.IRPRE(<core_index>)

<core_index> Parameter Type: Decimal or hex or binary value.
• The index number of the core is 0 if you are debugging only one

core.
• If you are debugging multiple cores in an SMP debug session and if

the cores use different TAP controller in the JTAG scan chain, then
<core_index> refers to the core of interest.

Syntax: SYStem.CONFIG.DEBUGPORT()

Syntax: SYStem.CONFIG.DEBUGPORTTYPE()
DEBUGPORT.TYPE() (deprecated)
General Function Reference | 331©1989-2024 Lauterbach

Return Value Type: String.

SYStem.CONFIG.JTAGTAP() Return the JTAG PRE and POST settings
[build 103442 - DVD 02/2019] [Examples]

Returns the JTAG PRE and POST settings of the core TAP, DAP TAP, ETB TAP and others used for
debugging. See also commands SYStem.CONFIG.IRPRE, SYStem.CONFIG DAPIRPRE, etc. in the
Processor Architecture Manuals.

Parameter and Description:

Return Value Type: Decimal value.

Syntax: SYStem.CONFIG.JTAGTAP(<item>,<config_index>)

<item>: [<component>]IRPRE[.<subitem>]
[<component>]DRPRE[.<subitem>]
[<component>]IRPOST[.<subitem>]
[<component>]DRPOST[.<subitem>]

<component>: DAP | DAP2 | ETB | … (depending on the CPU architecture)

<subitem>: ABSOLUTE | FIXED

<item> Parameter Type: String.

Name of the JTAG TAP coordinate which reflects a setting in the
SYStem.CONFIG.state /Jtag window, e.g. the setting for DAPIRPOST.

Per default, the value entered by the user is returned.

<subitem> Parameter Type: String.

Per default, the value entered by the user is returned.
• FIXED returns the preconfigured value in TRACE32 relative to the

SoC.
• ABSOLUTE returns the preconfigured value + the value entered by

the user.

<config_index> Parameter Type: Decimal value.

Index of the physical core TAP; in case of DAP or ETB the value must be
0.
• 1<= x <= CONFIGNUMBER().
• 0 is an alias for the first physical core or items that are shared

among multiple cores.
General Function Reference | 332©1989-2024 Lauterbach

Example 1: For the ARM architecture

;[A] returns the value entered by the user for DAPIRPOST
PRINT "A: " SYStem.CONFIG.JTAGTAP(DAPIRPOST,0) ;returns 0

;[B] returns the preconfigured value for DAPIRPOST relative
;to the SoC
PRINT "B: " SYStem.CONFIG.JTAGTAP(DAPIRPOST.FIXED,0) ;returns 4

;[A]+[B] returns the value entered by the user + the
;preconfigured value. In this case the result is again 4
PRINT "A+B = " SYStem.CONFIG.JTAGTAP(DAPIRPOST.ABSOLUTE,0) ;returns 4

;now the SoC is daisy-chained with another SoC which has
;the IR-length 8 and the DR-length 1
SYStem.CONFIG DAPIRPOST 8.
SYStem.CONFIG DAPDRPOST 1.

;[C] returns the value entered by the user for DAPIRPOST
PRINT "C: " SYStem.CONFIG.JTAGTAP(DAPIRPOST,0) ;returns 8

;[D] returns the preconfigured value for DAPIRPOST relative
;to the SoC
PRINT "D: " SYStem.CONFIG.JTAGTAP(DAPIRPOST.FIXED,0) ;returns 4

;[C]+[D] returns the value entered by the user + the
;preconfigured value. Now the result is 12
PRINT "C+D = " SYStem.CONFIG.JTAGTAP(DAPIRPOST.ABSOLUTE,0) ;returns 12

A B C D
General Function Reference | 333©1989-2024 Lauterbach

Example 2: For the MIPS architecture

PRINT CONFIGNUMBER() ;returns the upper bound of <config_index>, here 2

;[A] returns the value entered by the user for IRPOST
PRINT "A: " SYStem.CONFIG.JTAGTAP(IRPOST,2) ;returns 0

;[B] returns the preconfigured value for IRPOST relative
;to the SoC
PRINT "B: " SYStem.CONFIG.JTAGTAP(IRPOST.FIXED,2) ;returns 5

;[A]+[B] returns the value entered by the user + the
;preconfigured value. in this case the result is again 5
PRINT "A+B = " SYStem.CONFIG.JTAGTAP(IRPOST.ABSOLUTE,2) ;returns 5

;now the SoC is daisy-chained with another SoC which has the
;IR-length 8 and the DR-length 1
SYStem.CONFIG IRPOST 8.
SYStem.CONFIG DRPOST 1.

;[C] returns the value entered by the user for IRPOST
PRINT "C: " SYStem.CONFIG.JTAGTAP(IRPOST,2) ;returns 8

;[D] returns the preconfigured value for DAPIRPOST relative
;to the SoC
PRINT "D: " SYStem.CONFIG.JTAGTAP(IRPOST.FIXED,2) ;returns 5

;[C]+[D] returns the value entered by the user + the
;preconfigured value. now the result is 13
PRINT "C+D = " SYStem.CONFIG.JTAGTAP(IRPOST.ABSOLUTE,2) ;returns 13

A

B

C

D

General Function Reference | 334©1989-2024 Lauterbach

SYStem.CONFIG.ListCORE()
[Examples]

Returns the core list from the virtual target platform only once with first call of the function
SYStem.CONFIG.ListCORE() or the command SYStem.CONFIG.ListCORE. This will require a
SYStem.Mode Down state. All later function calls return the core list from a table stored locally.

Parameter and Description:

Return Value Type: String.

Return Value and Description:

Examples for SYStem.CONFIG.ListCORE():

Syntax: SYStem.CONFIG.ListCORE(<line_number>,"<column_string>")

<line_number> Parameter Type: Decimal or hex value. A numerical input indicating the line
number for the search; <line_number> equals the core # number.
Range:
• 0x0 or 0. returns the number of available lines, i.e. cores.
• -1 re-reads the core information for the virtual target platform.

<column_string> Parameter Type: String. A case sensitive search string that must match
the searched column name. An empty string "" is allowed.

String If the search string <column_string> is found, the complete element is
returned as a string.

Empty string If the search string <column_string> does not match a column name
and/or the <line_number> was out of its currently valid range, an empty
string is returned.

;returns the number of cores
PRINT SYStem.CONFIG.ListCORE(0,"")

;returns the value at the intersection of the 2nd row and the column
;labeled "simulation".
PRINT SYStem.CONFIG.ListCORE(2,"simulation")

;returns an empty string because the column labeled "SimulatioN" does not
;exist. Remember that the "<column_string>" is case-sensitive.
PRINT SYStem.CONFIG.ListCORE(2,"SimulatioN")

PRINT SYStem.CONFIG.ListCORE(200.,"device")

PRINT SYStem.CONFIG.ListCORE(2,"core")
General Function Reference | 335©1989-2024 Lauterbach

SYStem.CONFIG.ListSIM()

The function returns a string, and both parameters are mandatory. The content of the simulation list is read
from the virtual target platform only once with first call of the function SYStem.CONFIG.ListSIM() or the
command SYStem.CONFIG.ListSIMulation. This will require a SYStem.Mode Down state. All later
function calls return strings from a table stored locally.

Parameter and Description:

Return Value Type: String.

Return Value and Description:

SYStem.CONFIG.Slave()
[build 45263 - DVD 08/2013] [Go to figure]

Returns TRUE if setting SYStem.CONFIG Slave is set to ON.

Return Value Type: Boolean.

;re-reads the core information for the virtual target platform
PRINT SYStem.CONFIG.ListCORE(-1,"")

;returns the updated value at the intersection of the 2nd row and the
column labeled "core"
PRINT SYStem.CONFIG.ListCORE(2,"core")

Syntax: SYStem.CONFIG.ListSIM(<line_number>,"<column_string>")

<line_number> Parameter Type: Decimal or hex value. A numerical input, indicating the
line number for the search; <line_number> equals the core # number.
Range:
• 0x0 or 0. returns the number of available lines, i.e. cores.
• -1 re-reads the core information for the virtual target platform.

<column_string> Parameter Type: String. A case-sensitive search string that must match
the searched column name. An empty string "" is allowed.

String If the search string <column_string> was found, the complete element is
returned as a string.

Empty string If the search string <column_string> does not match a column name
and/or the <line_number> was out of its currently valid range, an empty
string is returned.

Syntax: SYStem.CONFIG.Slave()
General Function Reference | 336©1989-2024 Lauterbach

SYStem.CONFIG.TAPState()
[build 71651 - DVD 02/2016]

Returns the default JTAG TAP state configured with the command SYStem.CONFIG TAPState.

Return Value Type: Decimal value.

Return Value and Description:

SYStem.CPU() Name of processor
[build 51040 - DVD 02/2014]

Returns the name of the processor, which was selected with the command SYStem.CPU. This function
is an alias for STATE.PROCESSOR().

Return Value Type: String.

Syntax: SYStem.CONFIG.TAPState()

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan

5 Update-DR

6 Capture-DR

7 Select-DR-Scan

8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle

13 Update-IR

14 Capture-IR

15 Test-Logic Reset

Syntax: SYStem.CPU()
CPU() (deprecated)
General Function Reference | 337©1989-2024 Lauterbach

SYStem.GTL.CALLCOUNTER() Amount of calls to GTL library
[build 59192 - DVD 02/2015]

Retrieves the number of calls to the GTL library to measure performance.

Return Value Type: Decimal value.

SYStem.GTL.CONNECTED() Connection status
[build 101750 - DVD 09/2018]

Returns TRUE if all configured transactors are connected to the simulation or emulation.

Return Value Type: Boolean.

SYStem.GTL.CYCLECOUNTER() load GTL interface for bit banging protocol
[build 147511 - DVD 09/2022]

Retrieves the number of clock cycles of the executed protocol since the last call. In case of JTAG,
SYStem.GTL.CYCLECOUNTER() counts the JTAG clock cycles.

Return Value Type: Decimal value.

SYStem.GTL.LIBname() Name of GTL library

Returns the name of the GTL library that was passed by the command SYStem.GTL.LIBname.

Return Value Type: String.

Syntax: SYStem.GTL.CALLCOUNTER()

Syntax: SYStem.GTL.CONNECTED()

Syntax: SYStem.GTL.CYCLECOUNTER()

Syntax: SYStem.GTL.LIBname()
General Function Reference | 338©1989-2024 Lauterbach

SYStem.GTL.ModelINFO() Info string from GTL API
[build 140736 - DVD 02/2022]

Returns the info string of the nth model enumerated from GTL API. The info string can be used to pass
information about the model.

If n equals -1, the function returns the info string of the current model. The index for iteration start by 0. The
returned values are valid for all values n where SYStem.GTL.ModelNAME(n) returns a valid name.

Parameter Type: Decimal value.

Return Value Type: String.

Example:

SYStem.GTL.ModelNAME() Model Name

Returns the name of a certain model.

Parameter Type: Decimal value.

Return Value Type: String.

SYStem.GTL.PLUGINVERSION() Version number

Returns the version number of the GTL API retrieved from the GTL library/plug-in.

Return Value Type: Decimal value.

Syntax: SYStem.GTL.ModelINFO(<n>)

LOCAL &n
&n=0.
while SYStem.GTL.ModelNAME(&n)!=""
(
 PRINT "Model: " SYStem.GTL.ModelNAME(&n) " Info: "
SYStem.GTL.ModelINFO(&n)
 &n=&n+1.
)
ENDDO

Syntax: SYStem.GTL.ModelNAME(<index>)

Syntax: SYStem.GTL.PLUGINVERSION()
General Function Reference | 339©1989-2024 Lauterbach

SYStem.GTL.TransactorNAME() Transactor name

Returns the name of a transactor.

Parameter Type: Decimal value.

Return Value Type: String.

SYStem.GTL.TransactorTYPE() Transactor type

Returns the type of a transactor.

Parameter Type: Decimal value.

Return Value Type: String.

Return Value and Description: Types can be JTAGPROBE, GPIO, TRACE, BUSMASTER,...

SYStem.GTL.VENDORID() Vendor ID

Returns the vendor ID retrieved from the GTL library.

Return Value Type: String.

Syntax: SYStem.GTL.TransactorNAME(<index>)

Syntax: SYStem.GTL.TransactorTYPE(<index>)

Syntax: SYStem.GTL.VENDORID()
General Function Reference | 340©1989-2024 Lauterbach

SYStem.GTL.VERSION() Version number

Returns the version number of the GTL API of TRACE32.

Return Value Type: Decimal value.

SYStem.HOOK()

Returns address of the hook function defined with SYStem.Option.HOOK.

Return Value Type: Hex value.

SYStem.IMASKASM()

Returns the TRUE if interrupts are disabled during assembler stepping due to the setting
SYStem.Option.IMASKASM ON.

Return Value Type: Boolean.

SYStem.IMASKHLL()

Returns the TRUE if interrupts are disabled during HLL stepping due to the setting
SYStem.Option.IMASKHLL ON.

Return Value Type: Boolean.

Syntax: SYStem.GTL.VERSION()

Syntax: SYStem.HOOK()

Syntax: SYStem.IMASKASM()

Syntax: SYStem.IMASKHLL()
General Function Reference | 341©1989-2024 Lauterbach

SYStem.INSTANCE() Index of TRACE32 PowerView instance
[build 26061]

If a TRACE32 PowerView instance belongs to an AMP debug session, then this function returns the index of
the TRACE32 PowerView instance.

Return Value Type: Hex value.

Return Value and Description:

For information about CORE= and INSTANCE=, refer to:

• “Section PBI” (installation.pdf)

 Example:

SYStem.INSTANCECOUNT() Count of GUIs connected to a PowerDebug
[build 111259 - DVD 09/2019]

This function returns the number of TRACE32 PowerView GUIs connected to the same PowerDebug box.

Return Value Type: Decimal value.

Syntax: SYStem.INSTANCE()

0x1… If the PowerView instances have been started via the T32Start utility, then
the return values correspond to the values that T32Start has assigned to
the PowerView instances.

Without the use of T32Start, the return value corresponds to the <index>
value you have specified for INSTANCE=<index> in the config file.

0x0 The index of a PowerView instance is 0x0 (a) if the configuration file
contains the setting CORE=0 or (b) if TRACE32 was started as TRACE32
Instruction Set Simulator (PBI=SIM in the config file).

;the instance indexes of all PowerView GUIs participating in an
;AMP debug session are printed to their respective message lines
InterCom.execute ALL ECHO SYStem.INSTANCE()

Syntax: SYStem.INSTANCECOUNT()
General Function Reference | 342©1989-2024 Lauterbach

SYStem.IRISconfig.RemoteServer()
[build 109127 - DVD 09/2019]

Returns the details about the connection to the IRIS server. The connection is configured with the command
SYStem.IRISconfig.RemoteServer.

Parameter Type: Decimal or hex or binary value.

Parameter and Description:

Return Value Type: String.

SYStem.JtagClock()

Returns the JTAG clock set with the command SYStem.JtagClock.

Return Value Type: Decimal value.

SYStem.LittleEndian()
[build 05147 - DVD 12/2009]

Returns TRUE if target core runs in little endian mode.

Return Value Type: Boolean.

Syntax: SYStem.IRISconfig.RemoteServer(<key>)

<key>: 1 | 2 | 3

1 Returns the IP address or host name of the remote computer where the
virtual target including the IRIS server is running.

2 Returns the TCP/IP port of the IRIS server.

3 Returns the IP address and the port as follows: <ip>:<port>.

Syntax: SYStem.JtagClock()

Syntax: SYStem.LittleEndian()
General Function Reference | 343©1989-2024 Lauterbach

SYStem.MCDCommand.ResultString()
[build 136589 - DVD 09/2021]

Returns the answer-string of the MCD server given by the last call of SYStem.MCDCommand. The
maximum length of this string is 100 characters. It returns an empty string if no answer is available.

Return Value Type: String.

SYStem.MCDconfig.LIBrary()
[build 76420 - DVD 09/2016]

Returns the path and/or file name of the used MCD library.

Parameter and Description:

Return Value Type: String.

SYStem.Mode()

Returns the actual debugger mode.

Return Value Type: Hex value.

Syntax: SYStem.MCDCommand.ResultString()

Syntax: SYStem.MCDconfig.LIBrary(<key>)

<key>: 1 | 2 | 3

1 Parameter Type: Decimal or hex or binary value.
Returns the file name of the library, e.g. mcddrv.dll

2 Parameter Type: Decimal or hex or binary value.
Returns the path of the library, e.g. c:\virtual_target\mcd\

3 Parameter Type: Decimal or hex or binary value.
Returns the path and the file name of the library, e.g.
c:\virtual_target\mcd\mcddrv.dll

Syntax: SYStem.Mode()
General Function Reference | 344©1989-2024 Lauterbach

Return Value and Description:

SYStem.NOTRAP() 1 if the option NOTRAP is active

Returns 1 if the command SYStem.Option.NOTRAP is active.

Return Value Type: Hex value.

SYStem.Option.DUALPORT() State of like-named command
Only available for architectures having the like-named command [build 108886 - DVD 09/2019]

Returns TRUE if the command SYStem.Option.DUALPORT is set to ON, else the function returns FALSE.

Return Value Type: Boolean.

SYStem.Option.MACHINESPACES() State of like-named command
ARM, PowerPC, Intel® x86 [build 104967 - DVD 02/2019]

Returns TRUE if the command SYStem.Option.MACHINESPACES is set to ON, else the function returns
FALSE.

Return Value Type: Boolean.

0 Down

1 StandBy

2 NoDebug

4 Prepare

11 Up

12 Up (StandBy)

13 Prepare (StandBy)

Syntax: SYStem.NOTRAP()

Syntax: SYStem.Option.DUALPORT()

Syntax: SYStem.Option.MACHINESPACES()
General Function Reference | 345©1989-2024 Lauterbach

Example:

SYStem.Option.MMUSPACES() State of like-named command
ARM, PowerPC, Intel® x86 [build 104967 - DVD 02/2019]

Returns TRUE if the command SYStem.Option.MMUSPACES is set to ON, else the function returns
FALSE.

Return Value Type: Boolean.

Example

SYStem.Option.EnReset() State of like-named command
ARM [build 135725 - DVD 09/2021]

Returns the current state of SYStem.Option.EnReset as TRUE or FALSE.

Return Value Type: Boolean.

SYStem.Option.ResBreak() State of like-named command
ARM [build 134096 - DVD 09/2021]

Returns the current state of SYStem.Option.ResBreak as TRUE or FALSE.

Return Value Type: Boolean.

IF SYStem.Option.MACHINESPACES()==FALSE()
 SYStem.Option.MACHINESPACES ON

Syntax: SYStem.Option.MMUSPACES()

IF SYStem.Option.MMUSPACES()==FALSE()
 SYStem.Option.MMUSPACES ON

Syntax: SYStem.Option.EnReset()

Syntax: SYStem.Option.ResBreak()
General Function Reference | 346©1989-2024 Lauterbach

SYStem.Option.SPILLLOCation() State of like-named command
XTENSA [build 141496 - DVD 02/2022]

Returns the current state of SYStem.Option.SPILLLOCation as TRUE or FALSE.

Return Value Type: Hex value.

SYStem.Option.ZoneSPACES() State of like-named command
ARM, PowerPC, Intel® x86 [build 104967 - DVD 02/2019]

Returns TRUE if the command SYStem.Option.ZoneSPACES is set to ON, else the function returns
FALSE.

Return Value Type: Boolean.

Example

Syntax: SYStem.Option.SPILLLOCation()

Syntax: SYStem.Option.ZoneSPACES()

IF SYStem.Option.ZoneSPACES()==FALSE()
 SYStem.Option.ZoneSPACES ON
General Function Reference | 347©1989-2024 Lauterbach

SYStem.RESetBehavior() Current setting of RESetBehavior
TriCore

Returns the current setting of SYStem.Option.RESetBehavior.

Return Value Type: String.

Example:

SYStem.Up() TRUE if debugger has access to debug resources

Returns whether the actual mode of the probe is up (see also SYStem.Mode() function).

Return Value Type: Boolean.

Example 1:

Syntax: SYStem.RESetBehavior()

HALT
RestoreGo
RunRestore

For a description of the return values, see
SYStem.Option.RESetBehavior in “TriCore Debugger and Trace”
(debugger_tricore.pdf).

SYStem.Option.RESetBehavior Halt
PRINT SYstem.RESetBehvior() ;returns the string HALT

Syntax: SYStem.Up()

IF !SYStem.Up() ;alternatively: IF SYStem.Up()==FALSE()
(
 ;your code
)
ELSE
(
 ;your code
)

General Function Reference | 348©1989-2024 Lauterbach

Example 2: This script shows how to access a peripheral register on the AHB bus prior to
SYStem.Mode Up or Attach, e.g. to disable a watchdog.

SYStem.Mode Prepare

IF SYStem.Up()==TRUE() ; if Prepare was successful
(
 ; configure peripheral register before SYStem.Mode Up or Attach
 Data.Set EAHB:<peripheral_address> %Long 0x1
)

General Function Reference | 349©1989-2024 Lauterbach

SYStem.USECORE()

Returns the value of CORE= from the PBI= section in the config file.

If CORE= or INSTANCE= or both are missing in the config file, then SYStem.USECORE() returns 1 by
default. That is, in this case the return value is equivalent to the explicit setting CORE=1 in the config file.

For information about CORE= and INSTANCE=, refer to:

• “Section PBI” (installation.pdf)

Return Value Type: Hex value.

Example: In this script, a second instance is started, and then SYStem.USECORE() is used to return the
value of CORE=.

Syntax: SYStem.USECORE()

;returns 1
PRINT SYStem.USECORE()

;starts a 2nd TRACE32 PowerView instance with the user-defined name
;’secondInst’, clones and extends the current config file for the 2nd
;instance
TargetSystem.NewInstance secondInst /ChipIndex 10. /ONCE

;the CONVert.HEXTOIN() function is used to convert the hex return value
;of SYStem.USECORE() to the decimal value 10
InterCom.execute secondInst PRINT CONVert.HEXTOINT(SYStem.USECORE())
General Function Reference | 350©1989-2024 Lauterbach

SYStem.USEMASK()

Returns the USEMASK of this TRACE32 PowerView GUI.

Return Value Type: Hex value.

The USEMASK selects the Lauterbach device, when several devices are connected to each other via
PODBUS IN/OUT. The bitmask defines which devices (PowerDebug, PowerTrace, PowerProbe, ...) are
controlled by the host application program. A '1' means control the device, a '0' means skip the device. The
left most bit controls the first device on the bus i.e. the device with the host connection (USB, ETH). Normally
a use mask will contain a single set bit e.g. “1000”, indicating that only one of the devices in the PODBUS is
used by the respective program. When using PowerView to control two devices the use mask will contain
two ’1’ bits. An example for this is a PowerDebug device and a PowerProbe device which are used to record
signals corresponding to a debug session of PowerDebug. Using this mechanism it is possible to combine a
debugger and a PowerProbe device, independently of their position in the PODBUS chain.

The USEMASK is set in the TRACE32 configuration file (config.t32) with option USE=<bits> in the section
PBI=

However the function SYStem.USEMASK() returns the value set in USE= in an inverse bit-order. The same
value is also shown in the VERSION.HARDWARE window.

The function returns 0xFFFFFFFFFFFFFFFF for a single debugger (where USE= was not set).

Syntax: SYStem.USEMASK()

device USE= PRINT %BINary SYStem.USEMASK() VERSION.HARDWARE
 1st 100 00000001 0x0001
 2nd 010 00000010 0x0002
 3rd 001 00000100 0x0003
General Function Reference | 351©1989-2024 Lauterbach

TASK Functions

The TASK functions can be used after OS-aware debugging has been configured, as described in the
Configuration chapters of the “OS Awareness Manuals” (rtos_<os>.pdf).

In the following, we list the TASK functions that work with all OS-aware configurations.

For the TASK functions that work only with specific OS-aware configurations, refer to the “OS Awareness
Manuals” (rtos_<os>.pdf).

This figure provides an overview of the return values of some of the TASK functions. For descriptions of the
illustrated TASK functions and other TASK functions, see below.

In This Section

See also

■ TASK ❏ TASK()
❏ TASK.ACCESS() ❏ TASK.ACCESS.ZONE()
❏ TASK.BACK() ❏ TASK.CONFIG()
❏ TASK.CONFIGFILE() ❏ TASK.COUNT()
❏ TASK.CURRENT.MACHINEID() ❏ TASK.CURRENT.SPACEID()
❏ TASK.CURRENT.TASK() ❏ TASK.CURRENT.TASKNAME()
❏ TASK.FIRST() ❏ TASK.FORE()
❏ TASK.ID() ❏ TASK.MACHINE.ACCESS()
❏ TASK.MACHINE.ID() ❏ TASK.MACHINE.NAME()
❏ TASK.MACHINE.VTTB() ❏ TASK.MACHINEID()
❏ TASK.MAGIC() ❏ TASK.MAGICADDRESS()
❏ TASK.MAGICRANGE() ❏ TASK.MAGICSIZE()
❏ TASK.NAME() ❏ TASK.NEXT()
❏ TASK.ORTIFILE() ❏ TASK.SPACE.COUNT()
❏ TASK.SPACEID()

TASK()

TASK.NAME() TASK.ID()

TASK.MAGIC() TASK.SPACEID()
General Function Reference | 352©1989-2024 Lauterbach

TASK() Name of current task
[Go to figure]

Returns the name of the current task.
Short for TASK.CURRENT.TASKNAME()

Return Value Type: String.

TASK.ACCESS() Access class
[build 69123]

Returns the access class set by the command TASK.ACCESS.

Return Value Type: String.

TASK.ACCESS.ZONE() Access class zone
[build 68412]

Returns the access class zone set by the command TASK.ACCESS.

Return Value Type: String.

TASK.BACK() Background task number

Returns the background task number.

Return Value Type: Hex value.

Syntax: TASK()

Syntax: TASK.ACCESS()

Syntax: TASK.ACCESS.ZONE()

Syntax: TASK.BACK()
General Function Reference | 353©1989-2024 Lauterbach

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

Example 1:

Example 2:

TASK.CONFIGFILE() Path of loaded OS Awareness
[build 78972]

Returns the file (with path) used to load an OS Awareness with TASK.CONFIG.

Return Value Type: String.

TASK.COUNT() Number of tasks
[build 123903]

Returns the number of tasks in the task list.

Return Value Type: Hex value.

Syntax: TASK.CONFIG(magic | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

The task is identified by a unique value called task magic number. The
magic numbers of the tasks are displayed in the magic column of the
TASK.List.tasks window.

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

PRINT TASK.CONFIG(magic)

PRINT TASK.CONFIG(magicsize)

Syntax: TASK.CONFIGFILE()

Syntax: TASK.COUNT()
General Function Reference | 354©1989-2024 Lauterbach

TASK.CURRENT.MACHINEID() ID of current machine
[build 137549]

Returns the ID of the current machine. Only valid if SYStem.Option MACHINESPACES is set.

Return Value Type: Hex value.

TASK.CURRENT.SPACEID() ID of current MMU space
[build 137549]

Returns the ID of the current MMU space. Only valid if SYStem.Option MMUSPACES is set.

Return Value Type: Hex value.

TASK.CURRENT.TASK() Magic value of current task
[build 137549]

Returns the “magic value” of the current task.

Return Value Type: Hex value.

TASK.CURRENT.TASKNAME() Name of current task
[build 137549]

Returns the name of the current task.

Return Value Type: String.

Syntax: TASK.CURRENT.MACHINEID()

Syntax: TASK.CURRENT.SPACEID()

Syntax: TASK.CURRENT.TASK()

Syntax: TASK.CURRENT.TASKNAME()
General Function Reference | 355©1989-2024 Lauterbach

TASK.FIRST() First task in list
[build 123903]

Returns the task magic number of the first task in the task list.

Return Value Type: Hex value.

TASK.FORE() Foreground task number

Returns the foreground task number.

Return Value Type: Hex value.

TASK.ID() ID of task
[Go to figure]

Returns the ID of the specified task name.

Parameter Type: String.

Return Value Type: Hex value.

TASK.MACHINE.ACCESS() Default access class
[build 92265 - DVD 01/2018]

Returns the default access class of the machine specified by <machine_id>.

This function is useful on systems with a hypervisor after SYStem.Option.MACHINESPACES has been set
to ON. For some hypervisors it is difficult to determine whether a given guest machine runs in the guest
mode (hardware virtualized machines) or in the host/hypervisor mode (pseudo virtualized machines). The
TASK.MACHINE.ACCESS() function can be used to find out with which access class a logical addresses of
a given machine must be prefixed.

Syntax: TASK.FIRST()

Syntax: TASK.FORE()

Syntax: TASK.ID("<task_name>")

Syntax: TASK.MACHINE.ACCESS(<machine_id>)
General Function Reference | 356©1989-2024 Lauterbach

Examples:

• On Intel systems the default access class may be based on H: (machines running in VMX host
mode) or G: (machines running in VMX guest mode).

• On ARM systems, the default access class may be based on H: (machines running in hypervisor
mode) or N: (machines running in non-secure/guest mode).

Parameter Type: Decimal value.

Return Value Type: String.

TASK.MACHINE.ID() ID of machine
[build 123903]

Returns the ID of the given machine name if the machine exists.
Returns “1F” if the machine does not exist.

The machine name is set by a Hypervisor Awareness or by an extension name (see also the command
EXTension.LOAD).

Parameter Type: String.

Return Value Type: Hex value.

TASK.MACHINE.NAME() Name of machine
[build 92273 - DVD 02/2018]

Returns the name of the given machine ID if the machine exists.
Returns the machine ID if the machine exists but does not have a name.
Returns “(unknown)” if the machine does not exist.

The machine name is set by a Hypervisor Awareness or by an extension name (see also the command
EXTension.LOAD).

Parameter and Description:

Syntax: TASK.MACHINE.ID("<machine_name>")
TASK.MACHINEID("<machine_name>") (deprecated)

Syntax: TASK.MACHINE.NAME(<machine_id> | <machine_magic>)

<machine_id> Parameter Type: Decimal or hex or binary value.

For information about the parameter, see machine ID.

<machine_magic> Parameter Type: Decimal or hex or binary value.
General Function Reference | 357©1989-2024 Lauterbach

Return Value Type: String.

Example 1: This script lists all functions of the machine with ID 1 in the sYmbol.Browse.Function window,
provided the symbol program name is identical to the machine name.

Example 2: Based on the specified address, the ADDRESS.MACHINEID() function extracts the machine
ID. The machine ID is then passed to the TASK.MACHINE.NAME() function, which returns the machine
name belonging to the machine ID.

TASK.MACHINE.VTTB() VTTB of machine
[

Returns the virtualization translation table base address of the given machine if the machine exists.
Returns -1 if the machine does not exist.

Parameter and Description:

Return Value Type: Hex value.

TASK.MAGIC() Task magic number
[Go to figure]

Returns the task magic number of the specified task name.

Parameter Type: String.

Return Value Type: Hex value.

LOCAL &machinename
&machinename=TASK.MACHINE.NAME(1)
sYmbol.Browse.Function \\&machinename**

PRINT TASK.MACHINE.NAME(ADDRESS.MACHINEID(P:0x1:::0x3000))

Syntax: TASK.MACHINE.VTTB(<machine_id> | <machine_magic>)

<machine_id> Parameter Type: Decimal or hex or binary value.

For information about the parameter, see machine ID.

<machine_magic> Parameter Type: Decimal or hex or binary value.

Syntax: TASK.MAGIC("<task_name>")
General Function Reference | 358©1989-2024 Lauterbach

TASK.MAGICADDRESS() "magic address"
[build 123903]

Returns the address of the memory location holding the running task of the specified core and machine (aka
"magic_address").

Parameter and Description:

Return Value Type: Address.

TASK.MAGICRANGE() Range of "magic address"
[build 123903]

Returns the range of the memory location holding the running task of the specified core and machine (aka
"magic_address").

Parameter and Description:

Return Value Type: Address.

TASK.MAGICSIZE() Size of "magic address"
[build 123903]

Returns the size of the memory location holding the running task of the specified core and machine (aka
"magic_address").

Syntax: TASK.MAGICADDRESS([<core>[,<machine_id>]])

<core> Parameter Type: Hex value.

<machine_id> Parameter Type: Hex value.

NONE If no parameter is given the function returns the address holding the running
task of the core and machine currently in use.

Syntax: TASK.MAGICRANGE([<core>[,<machine_id>]])

<core> Parameter Type: Hex value.

<machine_id> Parameter Type: Hex value.

NONE If no parameter is given the function returns the range of the memory
location holding the running task of the core and machine currently in use.

Syntax: TASK.MAGICSIZE([<core>[,<machine_id>]])
General Function Reference | 359©1989-2024 Lauterbach

Parameter and Description:

Return Value Type: Address.

TASK.NAME() Name of task
[Go to figure]

Returns a task name based on the specified task magic number.

Parameter Type: Hex value.

Return Value Type: String.

Example:

TASK.NEXT() Next task in list
[build 123903]

Returns the task magic number of the task following the specified task in the task list.

Parameter Type: Hex value.

Return Value Type: Hex value.

<core> Parameter Type: Hex value.

<machine_id> Parameter Type: Hex value.

NONE If no parameter is given the function returns the size of the memory location
holding the running task of the core and machine currently in use.

Syntax: TASK.NAME(<task_magic>)

PRINT TASK.NAME(0xEBF2F9C0)

Syntax: TASK.NEXT(<task_magic>)
General Function Reference | 360©1989-2024 Lauterbach

TASK.ORTIFILE() Path of loaded ORTI file
[build 143513 - DVD 02/2022]

Returns the file (with path) used to load an ORTI file with TASK.ORTI/EXT.ORTI.LOAD. The optional
parameter <machine_id> can be used in hypervisor and iAMP setups to specify the machine ID the ORTI
file was loaded to.

Parameter and Description:

Return Value Type: String.

Example:

TASK.SPACE.COUNT() Number of spaces
[build 123903]

Returns the number of address spaces in the list of spaces.

Return Value Type: Hex value.

Syntax: TASK.ORTIFILE([<machine_id>])

<machine_id> Optional: Machine ID the ORTI file was loaded to. Useful for
hypervisor/iAMP setups.
Parameter Type: Decimal or hex or binary value.

; Single OS case
CD C:\Projects\os1
TASK.ORTI deploy/os.orti
PRINT TASK.ORTIFILE()
; Result: "C:\Projects\os1\deploy\os.orti"

; Hypervisor/iAMP scenario
CD C:\Projects
EXT.ORTI.LOAD os1/deploy/os.orti /MACHINE 1.
EXT.ORTI.LOAD os2/deploy/os.orti /MACHINE 2.
PRINT TASK.ORTIFILE(2.)
; Result: "C:\Projects\os2\deploy\os.orti"
PRINT TASK.ORTIFILE(1.)
; Result: "C:\Projects\os1\deploy\os.orti"
PRINT TASK.ORTIFILE(3.)
; Result: ""

Syntax: TASK.SPACE.COUNT()
General Function Reference | 361©1989-2024 Lauterbach

TASK.SPACEID() Space ID of task
[Go to figure]

Returns the space ID of the specified task name.

Parameter Type: String.

Return Value Type: Hex value.

Syntax: TASK.SPACEID("<task_name>")
General Function Reference | 362©1989-2024 Lauterbach

TERM Functions (Terminal Window)

In This Section

See also

■ TERM ❏ TERM.LINE() ❏ TERM.NEWHANDLE() ❏ TERM.READBUSY()
❏ TERM.RETURNCODE() ❏ TERM.TRIGGERED()

TERM.LINE() Get line from terminal window

Returns the content of the specified line from the active terminal window.

Parameter and Description:

Return Value Type: String.

TERM.NEWHANDLE() Get next free terminal handle
[build 168780 - DVD 09/2024]

Returns the next free handle for terminal operations.

Return Value Type: String.

Syntax: TERM.LINE(<channel>,<line_number>)
TERM.LINE(<address>,<line_number>) (deprecated)

<channel>: #<number>

<channel> Parameter Type: String. Handle to refer to a terminal. A new handle can be
created with TERM.METHOD.

<address> Parameter Type: Address. <address> is the communication port of the virtual
terminal.

<line_number> Parameter Type: Decimal value.

Syntax: TERM.NEWHANDLE()
General Function Reference | 363©1989-2024 Lauterbach

Example:

TERM.READBUSY() TRUE as long as TERM.READ is in progress
[build 143560 - DVD 02/2022]

Returns TRUE as long as a TERM.READ command is in progress.

Return Value Type: Boolean.

Example:

TERM.RETURNCODE() Get returncode from terminal routine
[build 58677 - DVD 02/2015]

Returns the return value of the semihosting function from the active terminal window.

Parameter and Description:

PRIVATE &th
&th=TERM.NEWHANDLE()
TERM.METHOD #&th COM COM1
TERM.view #&th

Syntax: TERM.READBUSY()

TERM.READ #1 <file_name> ; start upload
SCREEN.ALWAYS ; to make upload as fast as possible

;PRACTICE will loop through this while loop until the read is done
WHILE TERM.READBUSY(#1)
(
 //Some PRACTICE commands
)

SCREEN.ON

Syntax: TERM.RETURNCODE(<channel>)
TERM.RETURNCODE(<address>) (deprecated)

<channel>: #<number>

<channel> Parameter Type: String. Handle to refer to a terminal. A new handle can be
created with TERM.METHOD.

<address> Parameter Type: Address. <address> is the communication port of the virtual
terminal.
General Function Reference | 364©1989-2024 Lauterbach

Return Value Type: Decimal value.

TERM.TRIGGERED() Get trigger state of terminal window
[build 95013 - DVD 09/2018]

Returns TRUE once the message string to be searched for in the active terminal window has been printed to
the active terminal window. Use the TERM.TRIGGER command to specify the message string you want.

Parameter and Description:

Return Value Type: Boolean.

Example 1:

Example 2: Refer to the TERM.TRIGGER command.

Syntax: TERM.TRIGGERED(<channel>)
TERM.TRIGGERED(<address_out>) (deprecated)

<channel>: #<number>

<channel> Parameter Type: String. Handle to refer to a terminal. A new handle can be
created with TERM.METHOD.

<address_out> Parameter Type: Address.
The address parameter is only required for memory-based data exchange
(SingleE, BufferE, SingleS, BufferS). Pass an arbitrary address for all non-
memory-based methods e.g. Serial Console/COM.

TERM.TRIGGER #3 "Hit any key"
SCREEN.WAIT TERM.TRIGGERED(#3)
General Function Reference | 365©1989-2024 Lauterbach

TPIU Functions

This figure provides an overview of the return values of the functions. For descriptions of the illustrated
functions, see below.

In This Section

See also

■ TPIU ❏ TPIU.PortMode() ❏ TPIU.PortSize() ❏ TPIU.SWVPrescaler()

TPIU.PortMode() Port mode setting
[build 65602 - DVD 09/2015] [Go to figure]

Returns current PortMode setting of the TPIU made with the command TPIU.PortMode. For example,
Bypass, Wrapper, Continuous, NRZ.

Return Value Type: String.

TPIU.PortSize() Port size setting
[build 65602 - DVD 09/2015] [Go to figure]

Returns the current PortSize setting of the TPIU made with the command TPIU.PortSize.

Return Value Type: String.

Syntax: TPIU.PortMode()

Syntax: TPIU.PortSize()

TPIU.SWVPrescaler()

TPIU.PortMode()

TPIU.PortSize()
General Function Reference | 366©1989-2024 Lauterbach

Return Value and Description:

TPIU.SWVPrescaler() SWVPrescaler value
[build 65602 - DVD 09/2015] [Go to figure]

Returns the current SWVPrescaler value set with the command TPIU.SWVPrescaler.

Return Value Type: Decimal value.

TPUBASE Function

TPUBASE.ADDRESS() Address of TPU

Returns the address where the TPU is located.

Return Value Type: Address.

1, 2, 3, 4, ... Port size setting for parallel trace.

1Lane, 2Lane, 3Lane,
4Lane

Port size setting for serial trace.

SWV Port size setting for SerialWireViewer.

Syntax: TPIU.SWVPrescaler()

Syntax: TPUBASE.ADDRESS()
General Function Reference | 367©1989-2024 Lauterbach

Trace Functions

This figure provides an overview of the return values of some of the Trace functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

In This Section

See also

■ Trace ❏ Trace.FIRST() ❏ Trace.FLOW() ❏ Trace.FLOW.ERRORS()
❏ Trace.FLOW.FIFOFULL() ❏ Trace.MAXSIZE() ❏ Trace.METHOD() ❏ Trace.METHOD.Analyzer()
❏ Trace.METHOD.ART() ❏ Trace.METHOD.CAnalyzer() ❏ Trace.METHOD.FDX() ❏ Trace.METHOD.HAnalyzer()
❏ Trace.METHOD.Integrator() ❏ Trace.METHOD.IProbe() ❏ Trace.METHOD.LA() ❏ Trace.METHOD.LOGGER()
❏ Trace.METHOD.ONCHIP() ❏ Trace.METHOD.Probe() ❏ Trace.METHOD.SNOOPer() ❏ Trace.RECORD.ADDRESS()
❏ Trace.RECORD.DATA() ❏ Trace.RECORD.OFFSET() ❏ Trace.RECORD.TIME() ❏ Trace.RECORDS()
❏ Trace.SIZE() ❏ Trace.STATE() ❏ Trace.STATistic.COUNT() ❏ Trace.STATistic.EXIST()
❏ Trace.STATistic.FIRST() ❏ Trace.STATistic.IMAX() ❏ Trace.STATistic.IMIN() ❏ Trace.STATistic.Internal()
❏ Trace.STATistic.LAST() ❏ Trace.STATistic.MAX() ❏ Trace.STATistic.MIN() ❏ Trace.STATistic.Total()
❏ Trace.TraceCONNECT()

Trace.FIRST() Get record number of first trace record
[build 71062 - DVD 09/2016]

Returns the record number of the first record. The first record is the record with the lowest record number.

Syntax: Trace.FIRST()

Trace.RECORDS()

Trace.MAXSIZE()
Trace.SIZE()

Trace.STATE()

Trace.METHOD()
Trace.METHOD.ANALYZER()
Trace.METHOD.ART()
Trace.METHOD....()
General Function Reference | 368©1989-2024 Lauterbach

Return Value Type: Decimal value.

Trace.FLOW() TRUE if trace method is flow trace
[build 70748 - DVD 09/2016]

Returns TRUE if the selected trace method is a flow trace.

Return Value Type: Boolean.

Trace.FLOW.ERRORS() Get number of flow errors / hard errors

Returns the number of flow errors and hard errors found while processing the trace recording.

Return Value Type: Decimal value.

Please be aware that the return value of this function is the accumulated count of events that were
encountered while processing the trace recording. All opened windows showing trace data contribute to this
value. The value is reset when a new trace recording is made, or when the Trace.FLOWSTART or
Trace.FLOWPROCESS command is executed.

The use of this function is only recommended if you want to find out if a specified part of a trace recording is
error free. The part to be analyzed can be defined using Trace.STATistic.FIRST and
Trace.STATistic.LAST. If the defined part is error free (and thus this function returns zero), the analysis
results are reliable as well.

Example 1: This script shows how to return only the number of flow errors and hard errors in the trace that
is currently visible within the Trace.List window. If you now start scrolling up or down in the race.List
window or increase the window size, more trace data will be decoded, and thus the number of errors
returned by the function may increase.

Syntax: Trace.FLOW()

Syntax: Trace.FLOW.ERRORS()

Trace.List

PRINT Trace.FLOW.ERRORS()

; scroll up or down in the window

PRINT Trace.FLOW.ERRORS()
General Function Reference | 369©1989-2024 Lauterbach

Example 2: This script shows how to obtain the exact number of flow errors in the whole trace recording.

Trace.FLOW.FIFOFULL() Get number of FIFO overflows

Returns the number of FIFO overflows found while processing the trace recording.

Return Value Type: Decimal value.

Please be aware that the return value of this function is the accumulated count of events that were
encountered while processing the trace recording. All opened windows showing trace data contribute to this
value. The value is reset when a new trace recording is made, or when the Trace.FLOWSTART or
Trace.FLOWPROCESS command is executed.

The use of this function is only recommended if you want to find out if a specified part of a trace recording is
error free. The part to be analyzed can be defined using Trace.STATistic.FIRST and
Trace.STATistic.LAST. If the defined part is error free (and thus this function returns zero), the analysis
results are reliable as well.

The example below shows how to obtain the exact number of flow errors in the whole trace recording.

Trace.MAXSIZE() Get max. size of trace buffer in records
[build 38323 - DVD 08/2012] [Go to figure]

Returns the maximum possible number of records.

Return Value Type: Decimal value.

Trace.Find FLOWERROR /ALL
PRINT FOUND.COUNT()

Syntax: Trace.FLOW.FIFOFULL()

Trace.Find FIFOFULL /ALL
PRINT FOUND.COUNT()

Syntax: Trace.MAXSIZE()
General Function Reference | 370©1989-2024 Lauterbach

Trace.METHOD() Currently configured trace method
[build 60615 - DVD 02/2015] [Go to figure]

Returns the long form of the currently configured trace method.

Return Value Type: String.

Trace.METHOD.Analyzer() TRUE if the trace method is Analyzer
[Go to figure]

Returns TRUE if the trace method is Analyzer.

The trace method is set with the command Trace.METHOD.Analyzer.

Return Value Type: Boolean.

Trace.METHOD.ART() TRUE if the trace method is ART
[Go to figure]

Returns TRUE if the trace method is ART.

The trace method is set with the command Trace.METHOD.ART.

Return Value Type: Boolean.

Trace.METHOD.CAnalyzer() TRUE if the trace method is CAnalyzer
[Go to figure]

Returns TRUE if the trace method is CAnalyzer (CombiProbe).

The trace method is set with the command Trace.METHOD.CAnalyzer.

Return Value Type: Boolean.

Syntax: Trace.METHOD()

Syntax: Trace.METHOD.Analyzer()

Syntax: Trace.METHOD.ART()

Syntax: Trace.METHOD.CAnalyzer()
General Function Reference | 371©1989-2024 Lauterbach

Trace.METHOD.FDX() TRUE if the trace method is FDX
[Go to figure]

Returns TRUE if the trace method is FDX.

The trace method is set with the command Trace.METHOD.FDX.

Return Value Type: Boolean.

Trace.METHOD.HAnalyzer() TRUE if the trace method is HAnalyzer

Returns TRUE if the trace method is HAnalyzer (Trace-over-USB).

The trace method is set with the command Trace.METHOD.HAnalyzer.

Return Value Type: Boolean.

Trace.METHOD.Integrator() TRUE if the trace method uses the Integrator
[Go to figure]

Returns TRUE if the trace method uses the Integrator hardware analyzer.

The trace method is set with the command Trace.METHOD.Integrator.

Return Value Type: Boolean.

Trace.METHOD.IProbe() TRUE if the trace method uses the IProbe
[build 60615 - DVD 02/2015] [Go to figure]

Returns TRUE if the trace method uses the IProbe of PowerTrace II / PowerTrace III hardware analyzer.

The trace method is set with the command Trace.METHOD.IProbe.

Return Value Type: Boolean.

Syntax: Trace.METHOD.FDX()

Syntax: Trace.METHOD.HAnalyzer()

Syntax: Trace.METHOD.Integrator()

Syntax: Trace.METHOD.IProbe()
General Function Reference | 372©1989-2024 Lauterbach

Trace.METHOD.LA() TRUE if the trace method is LA
[Go to figure]

Returns TRUE if the trace method is LA.

The trace method is set with the command Trace.METHOD.LA.

Return Value Type: Boolean.

Trace.METHOD.LOGGER() TRUE if the trace method is LOGGER
[Go to figure]

Returns TRUE if the trace method is LOGGER.

The trace method is set with the command Trace.METHOD.LOGGER.

Return Value Type: Boolean.

Trace.METHOD.ONCHIP() TRUE if the trace method is ONCHIP
[Go to figure]

Returns TRUE if the trace method is ONCHIP.

The trace method is set with the command Trace.METHOD.Onchip.

Return Value Type: Boolean.

Trace.METHOD.Probe() TRUE if trace method uses the PowerProbe
[Go to figure]

Returns TRUE if the trace method uses the PowerProbe hardware analyzer.

Return Value Type: Boolean.

Syntax: Trace.METHOD.LA()

Syntax: Trace.METHOD.LOGGER()

Syntax: Trace.METHOD.ONCHIP()

Syntax: Trace.METHOD.Probe()
General Function Reference | 373©1989-2024 Lauterbach

Trace.METHOD.SNOOPer() TRUE if the trace method is SNOOPer
[Go to figure]

Returns TRUE if the trace method is SNOOPer.

The trace method is set with the command Trace.METHOD.SNOOPer.

Return Value Type: Boolean.

Trace.RECORD.ADDRESS() Get address recorded in trace record
[build 38764]

Returns the sampled address (access class and offset) from the specified record.

Parameter Type: Decimal value.

Return Value Type: Address.

Trace.RECORD.DATA() Get data recorded in trace record
[build 38764]

Returns the sampled data of the specified record.

Parameter Type: Decimal value.

Return Value Type: Hex value.

Syntax: Trace.METHOD.SNOOPer()

Syntax: Trace.RECORD.ADDRESS(<record_number>)

Syntax: Trace.RECORD.DATA(<record_number>)
General Function Reference | 374©1989-2024 Lauterbach

Trace.RECORD.OFFSET() Get address in trace record as number
[build 38764]

Returns the address-offset of the sampled address from the specified record.

Parameter Type: Decimal value.

Return Value Type: Hex value.

Example:

Trace.RECORD.TIME() Get timestamp of trace record
[build 38764]

Returns the timestamp of the specified record. For an example, see Analyzer.RECORD.TIME().

Parameter Type: Decimal value.

Return Value Type: Time value.

Trace.RECORDS() Get number of used trace records
[build 38323 - DVD 08/2012] [Go to figure]

Returns the number of records currently recorded in the trace buffer.

If the state is OFF and the current mode is STREAM, this function will block until all buffered data has been
received.

Return Value Type: Decimal value.

Syntax: Trace.RECORD.OFFSET(<record_number>)

PRINT Trace.RECORD.OFFSET(-000009.)

Syntax: Trace.RECORD.TIME(<record_number>)

Syntax: Trace.RECORDS()
General Function Reference | 375©1989-2024 Lauterbach

Trace.SIZE() Get current trace buffer size in records
[build 38323 - DVD 08/2012] [Go to figure]

Returns the currently defined size of the trace buffer to be used for recording in records.

Return Value Type: Decimal value.

Trace.STATE() Get state of PowerTrace hardware
[build 54721 - DVD 09/2014] [Go to figure]

Returns the state of the PowerTrace hardware.

If the state is OFF and the current mode is STREAM, this function will block until all buffered data has been
received.

Return Value Type: Hex value.

Return Value and Description:

Syntax: Trace.SIZE()

Syntax: Trace.STATE()

0 OFF state

1 Arm state

2 break state

3 trigger state

4 DISable state

8 SPY state

9 OFF state, but data is still being processed (PIPE and RTS modes only)
General Function Reference | 376©1989-2024 Lauterbach

Trace.STATistic.COUNT() Number of occurences of selected function
[build 121928 - DVD 09/2020]

Returns the number of occurences of the selected function in the trace statistic results.

Return Value Type: Decimal value.

Trace.STATistic.EXIST() TRUE if function exists in trace statistics
[build 121928 - DVD 09/2020]

Returns TRUE if the selected function exists in the trace statistic results.

Return Value Type: Boolean.

Trace.STATistic.FIRST() Record number of start point for statistic analysis
[build 169552 - DVD 09/2024]

Returns the number of the record set by Trace.STATistic.FIRST command. If this is not the case, it returns
the first record number in the trace.

Return Value Type: Decimal value.

Trace.STATistic.IMAX() Longest time between function entry and exit
[build 121928 - DVD 09/2020]

Returns the longest time between function entry and exit without called sub-functions.

Return Value Type: Time value.

Syntax: Trace.STATistic.COUNT(<address>)

Syntax: Trace.STATistic.EXIST(<address>)

Syntax: Trace.STATistic.FIRST()

Syntax: Trace.STATistic.IMAX(<address>)
General Function Reference | 377©1989-2024 Lauterbach

Trace.STATistic.IMIN() Shortest time between function entry and exit
[build 121928 - DVD 09/2020]

Returns the shortest time between function entry and exit without called sub-functions.

Return Value Type: Time value.

Trace.STATistic.Internal() Time spent within the selected function
[build 121928 - DVD 09/2020]

Returns the time spent within the selected function in the trace statistic results.

Return Value Type: Time value.

Trace.STATistic.LAST() Record number of end point for statistic analysis
[build 169552 - DVD 09/2024]

Returns the number of the record set by Trace.STATistic.LAST command. If this is not the case, it returns
the last record number in the trace.

Return Value Type: Decimal value.

Trace.STATistic.MAX() Maximum time of selected function
[build 121928 - DVD 09/2020]

Returns the longest measured time it took to execute the function.

Return Value Type: Time value.

Syntax: Trace.STATistic.IMIN(<address>)

Syntax: Trace.STATistic.Internal(<address>)

Syntax: Trace.STATistic.LAST()

Syntax: Trace.STATistic.MAX(<address>)
General Function Reference | 378©1989-2024 Lauterbach

Trace.STATistic.MIN() Minimum time of selected function
[build 121928 - DVD 09/2020]

Returns the shortest measured time it took to execute the function.

Return Value Type: Time value.

Trace.STATistic.Total() Total time of selected function
[build 121928 - DVD 09/2020]

 Returns the total time within the selected function in the trace statistic results.

Return Value Type: Time value.

Syntax: Trace.STATistic.MIN(<address>)

Syntax: Trace.STATistic.Total(<address>)
General Function Reference | 379©1989-2024 Lauterbach

Trace.TraceCONNECT() Name of trace sink of the SoC
[build 80222 - DVD Feb/2017]

Returns the name of the currently selected trace sink of the SoC. In case no trace-sink is selected/available,
the function returns NONE. The trace sink is selected with the <trace>.TraceCONNECT command.

Return Value Type: String.

Example: See Onchip.TraceCONNECT().

Syntax: Trace.TraceCONNECT()
General Function Reference | 380©1989-2024 Lauterbach

TRACEPORT Function

In This Section

See also

■ TRACEPORT ❏ TRACEPORT.LaneCount()

TRACEPORT.LaneCount() Number of serial lanes
[build 104159 - DVD 02/2019]

Returns the number of serial lanes for the specified traceport <index>.

Parameter Type: Decimal value.

Return Value Type: Decimal value.

Example 1:

Example 2:

Syntax: TRACEPORT.LaneCount(<index>)

<index>: 1. … <n>

TRACEPORT.state ;optional step: open window for
 ;traceport 1. (= <index>)
ECHO TRACEPORT.LaneCount(1.) ;returns 3., see screenshot below

TRACEPORT2.state ;optional step: open window for
 ;traceport 2. (= <index>)
ECHO TRACEPORT.LaneCount(2.)
General Function Reference | 381©1989-2024 Lauterbach

TRACK Functions

In This Section

See also

❏ TRACK.ADDRESS() ❏ TRACK.COLUMN() ❏ TRACK.LINE() ❏ TRACK.RECORD()
❏ TRACK.STRing() ❏ TRACK.TIME()

TRACK.ADDRESS() Get tracking address

Returns the tracking address e.g. after search or memory test commands, such as Data.Find or Data.Test.

Return Value Type: Address.

Example:

TRACK.COLUMN() Number of column where the found item starts

After a successful search operation, this function returns the column number.

Return Value Type: Decimal value.

TRACK.LINE() Number of line containing the found item

After a successful search operation, this function returns the line number.

Syntax: TRACK.ADDRESS()

Data.Find flags++0xFF 0x01
IF FOUND()==TRUE()
(

Data.Set TRACK.ADDRESS() 0xAA
Data.Print TRACK.ADDRESS()

)

Syntax: TRACK.COLUMN()

Syntax: TRACK.LINE()
General Function Reference | 382©1989-2024 Lauterbach

Return Value Type: Decimal value.

Example: The function TRACK.LINE() is used to automatically scroll to the required line number in the
TYPE window, where the search string was found.

See also: FIND and ComPare.

LOCAL &file &line
&file="~~/demo/arm/compiler/gnu/src/sieve.c"

FIND &file , "main(" ;search for the string "main(" in whole file
&line=TRACK.LINE() ;return the line number of the first occurrence

IF FOUND()==TRUE() ;if found, open file in TYPE window and
(;scroll to the &line where the string was found
 TYPE &file &line /LineNumbers
)

General Function Reference | 383©1989-2024 Lauterbach

TRACK.RECORD() Number of record containing the found item

After a successful search operation, this function returns the record number. For an example, see
Analyzer.TRACK.RECORD().

Return Value Type: Decimal value.

TRACK.STRing() Current selection in a TRACE32 window

Returns a singe-line or multi-line selection made by a user in a TRACE32 window. For information about
how to return values and selections from user-defined dialogs, see DIALOG Functions.

Return Value Type: String.

Syntax: TRACK.RECORD()

Syntax: TRACK.STRing()
SELECTION.STRing() (deprecated)
General Function Reference | 384©1989-2024 Lauterbach

TRACK.TIME() Timestamp of current tracking record

Returns the timestamp of the current tracking record in relation to the zero-time reference point.

Return Value Type: Time value.

Example:

Syntax: TRACK.TIME()

;set the zero-time reference point to record no. -12000.
ZERO.offset Trace.RECORD.TIME(-12000.)

;set the tracking record to the record -10000.
Trace.TRACK -10000.

PRINT "TRACK.TIME() result: " %COLOR.MAROON TRACK.TIME() ;see [A] below

;display the result in the trace listing with the ti.zero column as the
;first column followed by all DEFault columns
Trace.List %TimeFixed TIme.Zero DEFault /Track

e.g. -12000.

Zero-time reference point

e.g. -14000. e.g. -10000.

Tracking record

records

TRACK.TIME()

Record

A

General Function Reference | 385©1989-2024 Lauterbach

TRANS Functions (Debugger Address Translation)

In This Section

See also

■ TRANSlation ❏ TRANS.ENABLE()
❏ TRANS.INTERMEDIATE() ❏ TRANS.INTERMEDIATE.VALID()
❏ TRANS.INTERMEDIATEEX() ❏ TRANS.INTERMEDIATEEX.VALID()
❏ TRANS.LINEAR() ❏ TRANS.LINEAR.VALID()
❏ TRANS.LINEAREX() ❏ TRANS.LINEAREX.VALID()
❏ TRANS.LIST.LOGRANGE() ❏ TRANS.LIST.NUMBER()
❏ TRANS.LIST.PHYSADDR() ❏ TRANS.LIST.TYPE()
❏ TRANS.LOGICAL() ❏ TRANS.LOGICAL.VALID()
❏ TRANS.PHYSICAL() ❏ TRANS.PHYSICAL.VALID()
❏ TRANS.PHYSICALEX() ❏ TRANS.PHYSICALEX.VALID()
❏ TRANS.TABLEWALK()

TRANS.LIST.NUMBER() Number of TRANS.List entries

Both functions return the number of entries in the TRANSlation.List window.

Syntax 1: The queried entry is located in the currently active zone of the core.
Syntax 2: The queried entry is located in the zone that is selected with <address>.

Return Value Type: Decimal value.

The type of entries in the TRANSlation.List window which can be queried are

• static translations created with command TRANSlation.Create or MMU.Scan

• protected address ranges created with command TRANSlation.Protect

• transparent entries created with command TRANSlation.TRANSparent

• common ranges created with command TRANSlation.COMMON or
TRANSlation.COMMON.ADD

Note that default translations created with command MMU.FORMAT and displayed in the first lines of the
TRANSlation.List window can not be queried with this set of functions. Use function
MMU.DEFAULTTRANS.<range> to query default translations.

Syntax 1: TRANS.LIST.NUMBER()

Syntax 2: TRANS.LIST.NUMBER.ZONE(<address>)

<address>: <access_class>:[<machine_id>:::]0x0
General Function Reference | 386©1989-2024 Lauterbach

Parameter and Description:

TRANS.LIST.LOGRANGE() Query TRANS.List entry

Both functions return the logical address range of entry <entry_index> in the in the TRANSlation.List
window.

Syntax 1: The queried entry is located in the currently active zone of the core.
Syntax 2: The queried entry is located in the zone that is selected with <address>.

Return Value Type: Address.range

Note: an address offset of 0xFFFFFFFF (for 32-bit architectures) or 0xFFFFFFFFFFFFFFFF (for 64-bit
architectures) is returned if <entry_index> does not select any existing entry.

Parameter and Description:

<access_class> Mandatory if SYStem.Option.ZoneSPACES is ON.
See access class in the glossary.pdf.

<machine_id> Mandatory if SYStem.Option.MACHINESPACES is ON.
See machine ID in the glossary.pdf.

0x0 Fixed <address> suffix.

Syntax 1: TRANS.LIST.LOGRANGE(<entry_index>)

Syntax 2: TRANS.LIST.LOGRANGE.ZONE(<entry_index>, <address>)

<address>: <access_class>:[<machine_id>:::]0x0

<entry_index> the index of the queried entry.
Positive numbers query the entries in the TRANSlation.List window, starting
with 0 for the first entry in the window. Negative numbers query entries in a
reverse sequence, starting with the last entry.

<access_class> Mandatory if SYStem.Option.ZoneSPACES is ON.
See access class in the glossary.pdf.

<machine_id> Mandatory if SYStem.Option.MACHINESPACES is ON.
See machine ID in the glossary.pdf.

0x0 Fixed <address> suffix.
General Function Reference | 387©1989-2024 Lauterbach

Example - Syntax 2:

TRANS.LIST.PHYSADDR() Query TRANS.List entry

Both functions return the physical base address of entry <entry_index> in the in the TRANSlation.List
window.

Syntax 1: The queried entry is located in the currently active zone of the core.
Syntax 2: The queried entry is located in the zone that is selected with <address>.

Return Value Type: Address.

Note: an address offset of 0xFFFFFFFF (for 32-bit architectures) or 0xFFFFFFFFFFFFFFFF (for 64-bit
architectures) is returned if <entry_index> does not select any existing entry.

;optional step: list all translation entries
TRANSlation.list

; display the logical address range of the first entry in the
TRANSlation.List window
PRINT TRANS.LIST.LOGRANGE(0)

; display the logical address range of the second entry in the
TRANSlation.List window for machine ’2:::’ in the nonsecure zone ’N’
PRINT TRANS.LIST.LOGRANGE.ZONE(1, N:2:::0)

; display the logical address range of the last entry in the
TRANSlation.List window
PRINT TRANS.LIST.LOGRANGE(-1)

; display the logical address range of the second last entry in the
TRANSlation.List window
PRINT TRANS.LIST.LOGRANGE(-2)

Syntax 1: TRANS.LIST.PHYSADDR(<entry_index>)

Syntax 2: TRANS.LIST.PHYSADDR.ZONE(<entry_index>, <address>)

<address>: <access_class>:[<machine_id>:::]0x0
General Function Reference | 388©1989-2024 Lauterbach

Parameter and Description:

TRANS.LIST.TYPE() Query TRANS.List entry

Both functions return one of the follow strings, indicating the type of entry <entry_index> in the in the
TRANSlation.List window:

Syntax 1: The queried entry is located in the currently active zone of the core.
Syntax 2: The queried entry is located in the zone that is selected with <address>.

Return Value Type: String.

<entry_index> the index of the queried entry.
Positive numbers query the entries in the TRANSlation.List window, starting
with 0 for the first entry in the window. Negative numbers query entries in a
reverse sequence, starting with the last entry.

<access_class> Mandatory if SYStem.Option.ZoneSPACES is ON.
See access class in the glossary.pdf.

<machine_id> Mandatory if SYStem.Option.MACHINESPACES is ON.
See machine ID in the glossary.pdf.

0x0 Fixed <address> suffix.

Syntax 1: TRANS.LIST.TYPE(<entry_index>)

Syntax 2: TRANS.LIST.TYPE.ZONE(<entry_index>, <address>)

<address>: <access_class>:[<machine_id>:::]0x0

TRANSLATION the queried entry is a translation entry created with command
TRANSlation.Create or MMU.Scan

TRANSPARENT the queried entry is a transparent entry created with command
TRANSlation.TRANSparent

PROTECTED the queried entry is a protected entry created with command
TRANSlation.Protect

COMMON the queried entry is a common address range created with command
TRANSlation.COMMON or TRANSlation.COMMON.ADD

empty string <entry_index> does not select a valid entry
General Function Reference | 389©1989-2024 Lauterbach

Parameter and Description:

TRANS.ENABLE() TRUE if address translation is enabled

Returns TRUE if the address translation of the debugger is enabled with the command
TRANSlation.ON.

Return Value Type: Boolean.

TRANS.INTERMEDIATE() Convert a guest logical address
ARM and Intel®

Converts a guest logical address to an intermediate address if the stage 2 address translation (for ARM

targets) or Extended Physical Translation (for Intel® targets) is enabled.

TRANS.INTERMEDIATE() behaves like TRANS.PHYSICAL() and converts <address> to a physical
address if:

• <address> is not a guest logical address

• or the stage 2 translation / Extended Physical Translation in the target MMU is not available or
disabled.

<entry_index> the index of the queried entry.
Positive numbers query the entries in the TRANSlation.List window, starting
with 0 for the first entry in the window. Negative numbers query entries in a
reverse sequence, starting with the last entry.

<access_class> Mandatory if SYStem.Option.ZoneSPACES is ON.
See access class in the glossary.pdf.

<machine_id> Mandatory if SYStem.Option.MACHINESPACES is ON.
See machine ID in the glossary.pdf.

0x0 Fixed <address> suffix.

Syntax: TRANS.ENABLE()

Syntax 1: TRANS.INTERMEDIATE(<address>)
MMU.INTERMEDIATE(<address>) (alias)

Syntax 2: TRANS.INTERMEDIATEEX(<address>)
MMU.INTERMEDIATEEX(<address>) (alias)
General Function Reference | 390©1989-2024 Lauterbach

Syntax 1: No access class expansion of <address> is done prior to the translation. Tries to translate
<address> as it is. Use this syntax to do a translation only. The result is independent of the current CPU
mode.

Syntax 2: The access class of <address> is expanded prior to the translation, missing information is added
from the current PC’s access class. Use this syntax to get the same translation result as a standard access
to the target. The translation result may depend on the current CPU mode.

Parameter Type: Address.

Return Value Type: Address.

TRANS.INTERMEDIATE.VALID() TRUE if address translation is valid
ARM and Intel®

Checks whether a valid guest logical-to-intermediate address translation exists for the specified address.

Syntax 1: No access class expansion of <address> is done prior to the translation.

Syntax 2: The access class of <address> is expanded prior to the translation, missing information is
added from the current PC’s access class.

Parameter Type: Address.

Return Value Type: Boolean.

TRANS.LINEAR() Convert logical to linear address
Intel®

Converts a logical address to a linear address.

Syntax 1: No access class expansion of <address> is done prior to the translation. Tries to translate
<address> as it is. Use this syntax to do a translation only. The result is independent of the current CPU
mode.

Syntax 1: TRANS.INTERMEDIATE.VALID(<address>)
MMU.INTERMEDIATE.VALID(<address>) (alias)

Syntax 2: TRANS.INTERMEDIATEEX.VALID(<address>)
MMU.INTERMEDIATEEX.VALID(<address>) (alias)

Syntax 1: TRANS.LINEAR(<address>)
MMU.LINEAR(<address>) (alias)

Syntax 2: TRANS.LINEAREX(<address>)
MMU.LINEAREX(<address>) (alias)
General Function Reference | 391©1989-2024 Lauterbach

Syntax 2: The access class of <address> is expanded prior to the translation, missing information is
added from the current PC’s access class. Use this syntax to get the same translation result as a
standard access to the target. The translation result may depend on the current CPU mode.

Parameter Type: Address.

Return Value Type: Address.

TRANS.LINEAR.VALID() TRUE if address translation is valid
Intel®

Checks whether a valid logical-to-linear address translation exists for the specified address.

Syntax 1: No access class expansion of <address> is done prior to the translation.

Syntax 2: The access class of <address> is expanded prior to the translation, missing information is
added from the current PC’s access class.

Parameter Type: Address.

Return Value Type: Boolean.

TRANS.LOGICAL() Convert physical to logical address

Converts a physical address to a logical address using the TRACE32 static translation table. No access
class expansion is done prior to the translation. This function tries to translate <address> as it is. The result
is independent of the current CPU mode.

Syntax 1: TRANS.LINEAR.VALID(<address>)
MMU.LINEAR.VALID(<address>) (alias)

Syntax 2: TRANS.LINEAREX.VALID(<address>)
MMU.LINEAREX.VALID(<address>) (alias)

Syntax: TRANS.LOGICAL(<physical_address>)
MMU.LOGICAL(<physical_address>) (alias)
General Function Reference | 392©1989-2024 Lauterbach

Use the command TRANSlation.List to view the static translation table.
If the static translation table contains more than one valid entry matching the specified <physical_address>,
then the first entry will be used for the address conversion.

Parameter Type: Address.

Return Value Type: Address.

TRANS.LOGICAL.VALID() TRUE if address translation is valid

Checks whether a valid physical-to-logical address translation exists for the specified physical address. Only
the static translation table will be searched, no page tables. No access class expansion of <address> is
done prior to the translation.

Parameter Type: Address.

Return Value Type: Boolean.

TRANS.PHYSICAL() Convert logical to physical address

Converts a logical address to a physical address.

Syntax 1: No access class expansion of <address> is done prior to the translation. Tries to translate
<address> as it is. Use this syntax to do a translation only. The result is independent of the current CPU
mode.

NOTE: • TRANS.LOGICAL(<physical_address>) does not search in page tables.

• If you want to search through the entries of a page table, you must first
use the command MMU.SCAN to read the contents of the page table into
the static translation table.

• If you want to search through the entries of a page table, you can also
use the command MMU.INFO <physical_address> to search the system
page tables for entries that yield <physical_address>.

Syntax: TRANS.LOGICAL.VALID(<physical_address>)
MMU.LOGICAL.VALID(<physical_address>) (alias)

Syntax 1: TRANS.PHYSICAL(<address>)
MMU.PHYSICAL(<address>) (alias)

Syntax 2: TRANS.PHYSICALEX(<address>)
MMU.PHYSICALEX(<address>) (alias)
General Function Reference | 393©1989-2024 Lauterbach

Syntax 2: The access class of <address> is expanded prior to the translation, missing information is
added from the current PC’s access class. Use this syntax to get the same translation result as a
standard access to the target. The translation result may depend on the current CPU mode.

Parameter Type: Address.

Return Value Type: Address.

Use ADDRESS.PHYSICAL() to check whether the translation was successful and the result is really a
physical address.

If the translation failed, ADDRESS.PHYSICAL(TRANS.PHYSICAL(<address>)) will return FALSE.
General Function Reference | 394©1989-2024 Lauterbach

Example:

; This is an example for the ARM simulator
; It demonstrates the difference between functions
; TRANS.PHYSICAL() and TRANS.PHYSICALEX()

; Select a CPU with trust zone (nonsecure/secure mode)
SYStem.CPU CORTEXA5
AREA.View

; Let’s make the static address translation zone specific so that it is
; easier to demonstrate the difference between TRANS.PHYSICAL()
; and TRANS.PHYSICALEX()
SYStem.Option.ZoneSPACES ON

SYStem.UP

Register.Set M 0x13 ; set CPU to supervisor mode
Register.Set NS 1 ; set CPU to nonsecure mode
; Now the PC’s access class is NSD:

; Define a static translation for a nonsecure address range
TRANSlation.Create N:0xA0000000--0xAFFFFFFFF A:0x30000000

TRANSlation.List ; show the static translation list
TRANSlation.ON ; enable the debugger address translation

; 1. Try to translate an address with unspecific access class
PRINT TRANS.PHYSICAL(D:0xA0005000)
; the result is D:0xA0005000 because there is no translation
; for D:0xA0005000 with SYStem.Option.ZoneSPACES ON
; There is a translation for nonsecure addresses only.

; 2. Try to translate an address with unspecific access class,
; now with access class expansion using the PC’s access class
PRINT TRANS.PHYSICALEX(D:0xA0005000)
; the result is ANSD:0x0:0x30005000 because D:0xA0005000 becomes
; NSD:0xA0005000 after the access class is expanded

; 3. Now do the same like TRANS.PHYSICALEX(), but in two distinct steps
PRINT TRANS.PHYSICAL(ADDRESS.EXPANDACCESS(D:0xA0005000))
; the result is A:0x30005000 again, the same as in 2.
General Function Reference | 395©1989-2024 Lauterbach

TRANS.PHYSICAL.VALID() TRUE if address translation is valid

Checks whether a valid logical-to-physical address translation exists for the specified address.

Syntax 1: No access class expansion of <address> is done prior to the translation.

Syntax 2: The access class of <address> is expanded prior to the translation, missing information is
added from the current PC’s access class.

Parameter Type: Address.

Return Value Type: Boolean.

TRANS.TABLEWALK() TRUE if address translation table walk is ON

Returns TRUE if the table walk for address translation is enabled in the debugger with the command
TRANSlation.TableWalk ON.

Return Value Type: Boolean.

Syntax 1: TRANS.PHYSICAL.VALID(<address>)
MMU.PHYSICAL.VALID() (alias)

Syntax 2: TRANS.PHYSICALEX.VALID(<address>)
MMU.PHYSICALEX.VALID() (alias)

Syntax: TRANS.TABLEWALK()
General Function Reference | 396©1989-2024 Lauterbach

TSS Function

TSS() TSS base address

Returns the TSS base address of the last loaded object file (only 80386).

Return Value Type: Hex value.

Syntax: TSS()
General Function Reference | 397©1989-2024 Lauterbach

Var Functions

In This Section

See also

■ Var ❏ Var.ADDRESS() ❏ Var.BITPOS() ❏ Var.BITSIZE()
❏ Var.END() ❏ Var.EXIST() ❏ Var.FVALUE() ❏ Var.ISBIT()
❏ Var.RANGE() ❏ Var.SIZEOF() ❏ Var.STRing() ❏ Var.TYPEOF()
❏ Var.VALUE()

Var.ADDRESS() Address of HLL expression

Returns the address of the HLL expression.

Parameter Type: String.

Return Value Type: Address.

Example:

Var.BITPOS() Bit position inside a C bit field

Returns the start bit position of an element inside a bit field.

Parameter Type: String.

Return Value Type: Hex value.

Example:

Syntax: Var.ADDRESS(<hll_expression>)

Data.Print Var.ADDRESS(flags)
Data.Print Var.ADDRESS(flags[3])

Syntax: Var.BITPOS(<hll_expression>)

PRINT Var.BITPOS(vbfield.d)
General Function Reference | 398©1989-2024 Lauterbach

Var.BITSIZE() Size of bit field element

Returns the size in bits of a bit field element.

Parameter Type: String.

Return Value Type: Hex value.

Example:

Var.END() Last address of HLL expression

Returns the last address occupied by the HLL expression.

Parameter Type: String.

Return Value Type: Address.

Example:

Syntax: Var.BITSIZE(<hll_expression>)

PRINT %Decimal Var.BITSIZE(vbfield.f)

Syntax: Var.END(<hll_expression>)

Data.Print Var.END(vbfield)
General Function Reference | 399©1989-2024 Lauterbach

Var.EXIST() TRUE if HLL expression exists
[build 94851 - DVD 09/2018]

Returns TRUE if an HLL expression is syntactically valid or if an HLL variable exists.

Parameter Type: String.

Return Value Type: Boolean.

Example 1:

Example 2: Remember that inline comments for Var.* commands must start with //.

Syntax: Var.EXIST(<hll_expression>)

;your code
Data.LOAD.Elf "armle.axf" /StripPATH /LowerPATH
;your code

PRINT Var.EXIST(sieve) ;returns TRUE
PRINT Var.EXIST(flags) ;returns TRUE

PRINT Var.EXIST(\val1) ;returns FALSE

Var.NEWLOCAL int \val1 //let’s now create the TRACE32-internal
 ;variable \val1
PRINT Var.EXIST(\val1) ;returns TRUE because now it exists

Var.set \val1=0x42 //initialize the TRACE32-internal variable

PRINT Var.EXIST(\val1==0x5) ;returns TRUE because syntactically
 ;\val1==0x5 is a valid HLL expression
General Function Reference | 400©1989-2024 Lauterbach

Var.FVALUE() Contents of HLL expression

Returns the contents of the HLL expression.

Parameter Type: String.

Return Value Type: Float.

Example:

Var.ISBIT() TRUE if HLL expression is a bit field element

Returns whether the HLL expression is a bit field element or not.

Parameter Type: String.

Return Value Type: Boolean.

Example:

Syntax: Var.FVALUE(<hll_expression>)

PRINT Var.FVALUE(ast.float)
PRINT Var.FVALUE(i)
PRINT Var.FVALUE(ast.left->x)

Syntax: Var.ISBIT(<hll_expression>)

PRINT Var.ISBIT(vbfield.f)
PRINT Var.ISBIT(vbfield)
General Function Reference | 401©1989-2024 Lauterbach

Var.RANGE() Address range of HLL expression

Returns the address range occupied by the HLL expression in memory.

Parameter Type: String.

Return Value Type: Address range.

Example:

Var.SIZEOF() Size of HLL expression

Returns the size occupied by the HLL expression in memory.

Parameter Type: String.

Return Value Type: Hex value.

Example:

Syntax: Var.RANGE(<hll_expression>)

PRINT Var.RANGE(flags) ;returns the address range D:0x6EA4--0x6EB6

Data.Print Var.RANGE(flags)

Data.Find Var.RANGE(flags) 0x00
IF FOUND()
(

Data.Set TRACK.ADDRESS() 0xBB
Data.Print TRACK.ADDRESS()

)
ENDDO

Syntax: Var.SIZEOF(<hll_expression>)

Data.Print flags++Var.SIZEOF(flags)

Data.Find flags++Var.SIZEOF(flags) 0x00
IF FOUND()
(

Data.Set TRACK.ADDRESS() 0xDD
Data.Print TRACK.ADDRESS()

)
ENDDO
General Function Reference | 402©1989-2024 Lauterbach

Var.STRing() Zero-terminated string or variable contents

Returns a zero-terminated string, if <hll_expression> is a pointer to character or an array of characters.
Returns a string that represents the variable contents otherwise.

Parameter Type: String.

Return Value Type: String.

Example:

Var.TYPEOF() Type of HLL expression
[build 28656 - DVD 06/2011] [Example]

Returns the type of the HLL expression. The expressions can also be TRACE32-internal variables, which
are created with the commands Var.NEWLOCAL and Var.NEWGLOBAL.

Parameter Type: String.

Return Value Type: String.

Example:

Syntax: Var.STRing(<hll_expression>)

&enumvalue=Var.STRing(ptr->member)
PRINT "&enumvalue"

Syntax: Var.TYPEOF(<hll_expression>)

;Create some TRACE32-internal variables, integer \val1 and
;character array \myStr, on the local PRACTICE stack frame
;Use the backslash for TRACE32-internal variables: '\val1', '\myStr'
Var.NEWLOCAL int \val1
Var.NEWLOCAL char[6][20] \myStr

//see Var.NEWLOCAL command for information about the local PRACTICE
//stack frame and on how to initialize TRACE32-internal variables

;Returns the type of the TRACE32-internal variables as a string
PRINT Var.TYPEOF(\val1) ;Returns in this case: "int"
PRINT Var.TYPEOF(\myStr) ;Returns in this case: "char [6][20]"

;Returns the type of the HLL expression as a string
;Omit the backslash for HLL expressions, here for 'flags'
PRINT Var.TYPEOF(flags) ;Returns in this case: "unsigned char [19]"
General Function Reference | 403©1989-2024 Lauterbach

Var.VALUE() Value of HLL expression

Returns the contents of the HLL expression.

Parameter Type: String.

Return Value Type: Hex value.

Example:

Syntax: Var.VALUE(<hll_expression>)

PRINT Var.VALUE(ast.field1)
PRINT Var.VALUE(i)
PRINT Var.VALUE(ast.left->count)
PRINT %Decimal Var.VALUE(func5(7,8,9))
General Function Reference | 404©1989-2024 Lauterbach

VCO Function

VCO() Frequency of VCO generator

Returns the set frequency of the VCO generator.

Return Value Type: Decimal value.

Syntax: VCO()
General Function Reference | 405©1989-2024 Lauterbach

VERSION Functions

This figure provides an overview of the return values of some of the VERSION functions. For descriptions of
the illustrated functions and the functions not shown here, see below.

For more information, see also:

• “Appendix - About the TRACE32 Software Version Numbers” (ide_user.pdf)

• “LICENSE Functions” (ide_func.pdf)

In This Section

See also

■ VERSION ❏ VERSION.BUILD()
❏ VERSION.BUILD.BASE() ❏ VERSION.CABLE()
❏ VERSION.DATE() ❏ VERSION.ENVironment()
❏ VERSION.FirmWare.DEBUG() ❏ VERSION.SERIAL()
❏ VERSION.SERIAL.CABLE() ❏ VERSION.SERIAL.DEBUG()
❏ VERSION.SERIAL.Integrator() ❏ VERSION.SERIAL.NEXUSadapter()
❏ VERSION.SERIAL.POWERPROBE() ❏ VERSION.SERIAL.POWERTRACEAUXPORT()
❏ VERSION.SERIAL.PREPROcessor() ❏ VERSION.SERIAL.SERialPort1()
❏ VERSION.SERIAL.TRACE() ❏ VERSION.SERIAL.WHISKER()
❏ VERSION.SOFTWARE() ❏ VERSION.SOFTWARE.TYPE()

VERSION.ENVironment(<name>)

Development Branch

Release Branch

26464. 28724.Build numbers:

time

VERSION.BUILD.BASE()
for the
lower build number

VERSION.BUILD()
for the
upper build number
General Function Reference | 406©1989-2024 Lauterbach

VERSION.BUILD() Upper build number
[Go to figure]

Returns the upper build number of TRACE32, e.g. 28724. Alias for SOFTWARE.BUILD().
The same version information is displayed in the VERSION.SOFTWARE window.

The VERSION.BUILD() number is greater than the VERSION.BUILD.BASE() number if the TRACE32
executable is a build from a branch with some changes (e.g. in the case of a release branch after a feature
freeze with included bug-fixes).

The VERSION.BUILD() number equals the VERSION.BUILD.BASE() number if the TRACE32 executable
is a snapshot build from the development branch. A snapshot build is also referred to as an interim build.

Return Value Type: Decimal value.

VERSION.BUILD.BASE() Lower build number
[build 15283 - DVD 10/2008] [Go to figure]

Returns the lower build number of TRACE32, e.g. 26464. Alias for SOFTWARE.BUILD.BASE().

Return Value Type: Decimal value.

Syntax: VERSION.BUILD()

Syntax: VERSION.BUILD.BASE()
General Function Reference | 407©1989-2024 Lauterbach

VERSION.CABLE() Hardware version of debug cable

Returns the hardware version of the debug cable.

Return Value Type: Decimal value.

VERSION.DATE() Version date YYYY/MM
[build 32168 - DVD 02/2012]

Returns the date of the main software in the form YYYY/MM. e.g. "2016/07"

Return Value Type: String.

VERSION.ENVironment() TRACE32 environment setting
[build 38327 - DVD 08/2012] [Go to figure]

Returns a single TRACE32 environment setting as shown in the VERSION.ENVironment window.

Parameter and Description:

Return Value Type: String.

Example:

Syntax: VERSION.CABLE()

Syntax: VERSION.DATE()

Syntax: VERSION.ENVironment(<name>)

<name> Parameter Type: String. Specify the environment setting by name.

;returns the path of the used TRACE32 config file
PRINT VERSION.ENVironment(CONFIG)

;returns the version number of the used QT-Library
PRINT VERSION.ENVironment(QT)
General Function Reference | 408©1989-2024 Lauterbach

VERSION.FirmWare.DEBUG() Version number of firmware
[build 34337 - DVD 02/2012]

Returns the version number of the firmware of a PowerDebug or PowerTrace module - if the module is the
first Podbus device. Otherwise it returns zero.

Return Value Type: Float.

VERSION.SERIAL() Serial number

Returns the serial number of the system.

Return Value Type: String.

VERSION.SERIAL.CABLE() First serial number of debug cable
[build 21341 - DVD 04/2010]

Returns the first serial number of the plugged debug cable. It is the same value that is also shown in the
VERSION.HARDWARE window. To return all serial numbers, use LICENSE.SERIAL().

Return Value Type: String.

Syntax: VERSION.FirmWare.DEBUG()

Syntax: VERSION.SERIAL()

Syntax: VERSION.SERIAL.CABLE()

First device in PodBus device chain
General Function Reference | 409©1989-2024 Lauterbach

VERSION.SERIAL.DEBUG() Serial number of debug module
[build 11815 - DVD 10/2008]

Returns the serial number of the debug module. It is the same value that is also shown in the
VERSION.HARDWARE window.

Return Value Type: String.

VERSION.SERIAL.Integrator() Serial number of PowerIntegrator
[build 59902 - DVD 02/2015]

Returns the serial number of the PowerIntegrator or PowerIntegrator-II. It is the same value that is also
shown in the VERSION.HARDWARE window.

Return Value Type: String.

VERSION.SERIAL.NEXUSadapter() Serial number of nexus adapter
[build 59902 - DVD 02/2015]

Returns the serial number of the nexus adapter or preprocessor. It is the same value that is also shown in
the VERSION.HARDWARE window.

Return Value Type: String.

VERSION.SERIAL.PREPROcessor() Serial number of preprocessor
[build 11815 - DVD 10/2008]

Returns the serial number of the preprocessor. It is the same value that is also shown in the
VERSION.HARDWARE window.

Return Value Type: String.

Syntax: VERSION.SERIAL.DEBUG()

Syntax: VERSION.SERIAL.Integrator()

Syntax: VERSION.SERIAL.NEXUSadapter()

Syntax: VERSION.SERIAL.PREPROcessor()
General Function Reference | 410©1989-2024 Lauterbach

VERSION.SERIAL.POWERPROBE() Serial number of PowerProbe
[build 59902 - DVD 02/2015]

Returns the serial number of the PowerProbe. It is the same value that is also shown in the
VERSION.HARDWARE window.

Return Value Type: String.

VERSION.SERIAL.POWERTRACEAUXPORT() S/N of device at PT aux port
[build 133662 - DVD 02/2021]

Returns the serial number of the Lauterbach device plugged to the AUX PORT of a PowerTrace. It is the
same value that is also shown in the VERSION.HARDWARE window.

Return Value Type: String.

VERSION.SERIAL.SERialPort1() S/N of device at Serial Port 1 of PT Serial
[build 156822 - DVD 02/2023]

Returns the serial number of the Lauterbach device (adapter or preprocessor) plugged to the Serial Port 1 of
a PowerTrace Serial.

Return Value Type: String.

VERSION.SERIAL.WHISKER() S/N of whiskers at CombiProbe or µTrace
[build 133662 - DVD 02/2021]

Returns the serial number of the whisker cable connected to the connector specified by <int> plugged to a
CombiProbe, µTrace (MicroTrace), or QuadProbe or.
It is the same value that is also shown in the VERSION.HARDWARE window.
For the meaning of the <int> Parameter see command ID.WHISKER().
Note, that only some whisker actually contain a serial number. For all the others, the function returns an
empty string.

Return Value Type: String.

Syntax: VERSION.SERIAL.POWERPROBE()

Syntax: VERSION.SERIAL.POWERTRACEAUXPORT()

Syntax: VERSION.SERIAL.SERialPort1()

Syntax: VERSION.SERIAL.WHISKER(<int>)
General Function Reference | 411©1989-2024 Lauterbach

VERSION.SERIAL.TRACE() Serial number of trace module
[build 11815 - DVD 10/2008]

Returns the serial number of the trace module. It is the same value that is also shown in the
VERSION.HARDWARE window.

Return Value Type: String.

Syntax: VERSION.SERIAL.TRACE()
General Function Reference | 412©1989-2024 Lauterbach

VERSION.SOFTWARE() Release build or nightly build, etc.
[build 24375 - DVD 11/2010]

Returns the version of the main software. Alias for SOFTWARE.VERSION().

Return Value Type: String.

Return Value Format: <type>.<year>.<month>.<build_number> where the building block <type> can be
one of the following:

• R: release build

• P: pre-release build

• N: nightly build

• S: interim build (“snapshot”)

• F: feature build

For more information about the <type> building blocks, see “Appendix - About the TRACE32 Software
Version Numbers” in PowerView User’s Guide, page 129 (ide_user.pdf).

Examples:

Syntax: VERSION.SOFTWARE()

PRINT VERSION.SOFTWARE() ;print the software version

;check whether the TRACE32 software being used matches a certain release
IF VERSION.SOFTWARE()!="R.2010.07.000024615"
 PRINT "wrong TRACE32 SW started"
General Function Reference | 413©1989-2024 Lauterbach

VERSION.SOFTWARE.TYPE() Software build type
[build 160045 - DVD 09/2023]

Returns the version type of the main software.

Return Value Type: String.

Return Value Format: <type> :

• R: release build

• P: pre-release build

• N: nightly build

• S: interim build (“snapshot”)

• F: feature build

For more information about the <type> building blocks, see “Appendix - About the TRACE32 Software
Version Numbers” in PowerView User’s Guide, page 129 (ide_user.pdf).

Examples:

Syntax: VERSION.SOFTWARE.TYPE()

PRINT VERSION.SOFTWARE.TYPE() ;print the software version type

;check whether the TRACE32 software being used is not a release version
IF VERSION.SOFTWARE.TYPE()!="R"
 PRINT "wrong TRACE32 SW started"
General Function Reference | 414©1989-2024 Lauterbach

VPU Functions

In This Section

See also

■ VPU ❏ VPU() ❏ VPUCR()

VPU() Value of VPU register

Returns the content of the selected VPU register.

Parameter Type: String.

Return Value Type: Hex value.

Example:

VPUCR() Value of VRSAVE or VSCR register

Returns the content of the registers VRSAVE or VSCR.

Parameter Type: String.

Return Value Type: Hex value.

Example:

Syntax: VPU(<register_name>.W0 .. .W3)

PRINT VPU(VR2.W3) ;returns word 3 of register VR2

Syntax: VPUCR(<register>)

<register>: VRSAVE | VSCR

PRINT VPUCR(VRSAVE) ;returns the content of register VRSAVE
General Function Reference | 415©1989-2024 Lauterbach

	General Function Reference
	History
	In This Document
	How This Document is Organized
	Difference between Functions and Commands in TRACE32
	Purpose of Functions
	Example 1: Return Status of the Target
	Example 2: Return Status of a TRACE32 Tool
	Example 3: Return the Version Number
	Example 4: Convert a String

	How to Use Functions
	Example 1: In PRACTICE Scripts
	Example 2: As Parameters in Commands
	Example 3: Together with the Output Commands PRINT and Data.Print
	Example 4: Address Function and Their Access Class Specifiers

	Which Return Values of Functions can be Printed?
	Related Documents

	ACCESS Functions
	In This Section
	ACCESS.isGUEST() TRUE if access class belongs to guest
	ACCESS.isHYPERVISOR() TRUE if access class belongs to hypervisor

	ADDRESS Functions
	In This Section
	ADDRESS.ACCESS() Access class as ordinal number
	ADDRESS.ACCESS.CMP() Compare access classes
	ADDRESS.ACCESS.CMPSTRICT() Compare access classes, strict
	ADDRESS.EXPANDACCESS() Fully qualified access class
	ADDRESS.INSTR.LEN() Length of instruction
	ADDRESS.isDATA() Check if memory class refers to data
	ADDRESS.isGUEST() TRUE if address is guest address
	ADDRESS.isHYPERVISOR() TRUE if address is hypervisor address
	ADDRESS.isINTERMEDIATE() Check if intermediate address
	ADDRESS.isNONSECURE() TRUE if non-secure (TrustZone) access
	ADDRESS.isNONSECUREEX() TRUE if non-secure access
	ADDRESS.MACHINEID() Extract machine ID
	ADDRESS.MAU() Minimal addressable unit size (MAU)
	ADDRESS.OFFSET() Address without class
	ADDRESS.isONCHIP() TRUE if on-chip address area
	ADDRESS.isPHYSICAL() TRUE if physical address
	ADDRESS.isPROGRAM() TRUE if program address
	ADDRESS.isSECURE() TRUE if secure (TrustZone) access
	ADDRESS.isSECUREEX() TRUE if secure access
	ADDRESS.RANGE.BEGIN() Lowest address value of address range
	ADDRESS.RANGE.END() Highest address value of address range
	ADDRESS.RANGE.SIZE() Size of address range
	ADDRESS.SEGMENT() Segment of an address
	ADDRESS.STRACCESS() Access class of an address

	Analyzer Functions
	In This Section
	Analyzer() Check if Analyzer command group is available
	Analyzer.CONFIG.<powertrace>() Check if specified PowerTrace connected
	Analyzer.COUNTER.EVENT() Get value of trigger program event counter
	Analyzer.COUNTER.TIME() Get value of trigger program time counter
	Analyzer.DSEL() For internal usage only
	Analyzer.FIRST() Get record number of first trace record
	Analyzer.FLOW.ERRORS() Get number of flow errors / hard errors
	Analyzer.FLOW.FIFOFULL() Get number of FIFO overflows
	Analyzer.FOCUS.EYE() Check quality of data eye
	Analyzer.ISCHANNELUP() Check if serial link is established
	Analyzer.MAXSIZE() Get max. size of trace buffer in records
	Analyzer.MODE() Get Analyzer recording mode
	Analyzer.MODE.FLOW() Check if Analyzer operates as flowtrace
	Analyzer.PCIE.CONFIG() Value of register field from PCIe configuration
	Analyzer.PCIE.ISCONFIGURED() TRUE if prerequisites are fulfilled
	Analyzer.PCIE.Register() Value of 32-bit register from PCIe configuration
	Analyzer.PROBEREVISION() Get revision of StarCore NEXUS probe
	Analyzer.RECORDS() Get number of used trace records
	Analyzer.RECORD.ADDRESS() Get address recorded in trace record
	Analyzer.RECORD.DATA() Get data recorded in trace record
	Analyzer.RECORD.OFFSET() Get address in trace record as number
	Analyzer.RECORD.TIME() Get timestamp of trace record
	Analyzer.REF() Get record number of reference record
	Analyzer.SIZE() Get current trace buffer size in records
	Analyzer.STATE() Get state of Analyzer
	Analyzer.THRESHOLD() Get threshold voltage of parallel preprocessor
	Analyzer.TraceCONNECT() Name of trace sink of the SoC
	Analyzer.TRACK.RECORD() Get record number matching search
	Analyzer.TRIGGER.TIME() Time of trigger point in trace

	ARM Function
	ARMARCHVERSION() ARM architecture version of CPU

	Advanced Register Trace (ART) Functions
	In This Section
	ART.FIRST() Get record number of first trace record
	ART.MAXSIZE() Get max. size of trace buffer in records
	ART.MODE() Get ART recording mode
	ART.RECORD.ADDRESS() Get address recorded in trace record
	ART.RECORD.OFFSET() Get address in trace record as number
	ART.RECORD.TIME() Get timestamp of trace record
	ART.RECORDS() Get number of used trace records
	ART.REF() Get record number of reference record
	ART.SIZE() Get current trace buffer size in records
	ART.STATE() Get state of ART trace
	ART.TRACK.RECORD() Get record number matching search

	AUTOFOCUS Functions
	In This Section
	AUTOFOCUS() TRUE if AutoFocus preprocessor attached
	AUTOFOCUS.OK() TRUE if command execution successful
	AUTOFOCUS.FREQUENCY() Frequency of trace-port clock

	AVX Functions
	In This Section
	AVX() Content of AVX register
	AVX512() Content of AVX512 register

	Break Functions
	In This Section
	Break.Alpha.EXIST() TRUE if Alpha breakpoint exists
	Break.Beta.EXIST() TRUE if Beta breakpoint exist
	Break.Charly.EXIST() TRUE if Charly breakpoint exists
	Break.Program.EXIST() TRUE if enabled program breakpoint exists
	Break.ReadWrite.EXIST() TRUE if enabled data address breakpoint exists

	BMC Functions (Benchmark Counter)
	In This Section
	BMC.CLOCK() Frequency of core clock
	BMC.COUNTER() Value of a benchmark counter
	BMC.COUNTER.BYNAME() Value of a benchmark counter
	BMC.COUNTER.CORE() Value of a benchmark counter
	BMC.COUNTER.BYNAME.CORE() Value of a benchmark counter
	BMC.OVERFLOW() TRUE if benchmark counter overflow
	BMC.OVERFLOW.BYNAME() TRUE if benchmark counter overflow
	BMC.OVERFLOW.CORE() TRUE if benchmark counter overflow
	BMC.OVERFLOW.BYNAME.CORE() TRUE if benchmark counter overflow

	Boundary Scan Description Language (BSDL) Functions
	In This Section
	BSDL.CHECK.BYPASS() Chain bypass test
	BSDL.CHECK.FLASHCONF() Flash configuration test
	BSDL.CHECK.IDCODE() Chain IDCODE test
	BSDL.GetDRBit() Data register bit
	BSDL.GetPortLevel() Port level value

	CABLE Functions
	In This Section
	CABLE.GalvanicISOlation() Cable has galvanic isolation
	CABLE.GalvanicISOlation.FIRMWARE() Adapter firmware version
	CABLE.GalvanicISOlation.SERIAL() Serial number of adapter
	CABLE.NAME() Name of debug cable
	CABLE.SERIAL() Serial number of debug cable
	CABLE.TWOWIRE() TRUE if two-wire debugging supported

	CACHE Functions
	In This Section
	CACHE.DC.DIRTY() Dirty-flag of L1 Data Cache Line
	CACHE.DC.DIRTYMASK() Dirty-flag mask of L1 Data Cache Line
	CACHE.DC.LRU() LRU information of L1 Data Cache Line
	CACHE.DC.TAG() Address Tag of L1 Data Cache Line
	CACHE.DC.VALID() Valid-flag of L1 Data Cache Line
	CACHE.DC.VALIDMASK() Valid-flag mask of L1 Data Cache Line
	CACHE.IC.DIRTY() Dirty-flag of L1 Unified Cache Line
	CACHE.IC.DIRTYMASK() Dirty-flag mask of L1 Unified Cache Line
	CACHE.IC.LRU() LRU information of L1 Instruction Cache Line
	CACHE.IC.TAG() Address Tag of L1 Instruction Cache Line
	CACHE.IC.VALID() Valid-flag of L1 Instruction Cache Line
	CACHE.IC.VALIDMASK() Valid-flag mask of L1 Instruction Cache Line
	CACHE.L2.DIRTY() Dirty-flag of L2 Cache Line
	CACHE.L2.DIRTYMASK() Dirty-flag mask of L2 Cache Line
	CACHE.L2.LRU() LRU information of L2 Cache Line
	CACHE.L2.SHARED() Shared-flag of L2 Cache Line
	CACHE.L2.SHAREDMASK() Shared-flag mask of L2 Cache Line
	CACHE.L2.TAG() Address Tag of L2 Cache Line
	CACHE.L2.VALID() Valid-flag of L2 Cache Line
	CACHE.L2.VALIDMASK() Valid-flag mask of L2 Cache Line
	CACHE.L3.DIRTY() Dirty-flag of L3 Cache Line
	CACHE.L3.DIRTYMASK() Dirty-flag of L3 Cache Line
	CACHE.L3.LRU() LRU information of L3 Cache Line
	CACHE.L3.TAG() Address Tag of L3 Cache Line
	CACHE.L3.VALID() Valid-flag of L3 Cache Line
	CACHE.L3.VALIDMASK() Valid-flag mask of L3 Cache Line

	CAnalyzer Functions
	In This Section
	CAnalyzer() Check if CAnalyzer command group is available
	CAnalyzer.BOTHCables() TRUE if both debug cables are plugged
	CAnalyzer.CableTYPE() Type of adapter
	CAnalyzer.DebugCable() CombiProbe whisker cable is A or B
	CAnalyzer.FEATURE() Query features of CAnalyzer hardware
	CAnalyzer.FIRST() Get record number of first trace record
	CAnalyzer.MAXSIZE() Get max. size of trace buffer in records
	CAnalyzer.PIN() Status of trace pins
	CAnalyzer.RECORD.ADDRESS() Get address recorded in trace record
	CAnalyzer.RECORD.DATA() Get data recorded in trace record
	CAnalyzer.RECORD.OFFSET() Get address in trace record as number
	CAnalyzer.RECORD.TIME() Get timestamp of trace record
	CAnalyzer.RECORDS() Get number of used trace records
	CAnalyzer.REF() Get record number of reference record
	CAnalyzer.SIZE() Get current trace buffer size in records
	CAnalyzer.STATE() Get state of Compact Analyzer
	CAnalyzer.TraceCLOCK() Get trace port frequency
	CAnalyzer.TraceCONNECT() Name of trace sink of the SoC
	CAnalyzer.TracePort() CombiProbe whisker cable is A or B
	CAnalyzer.TRACK.RECORD() Get record number matching search

	CERBEURS Functions
	CERBERUS.IOINFO() IOINFO of Cerberus module
	CERBERUS.IOINFO.IFLCK() TRUE if IF_LCK bit in Cerberus INONFO set

	CHIP Functions
	CHIP.EmulationDevice() TRUE if emulation device
	CHIP.STEPping() Major silicon step of an TriCore AURIX device

	CIProbe Functions (Analog Probe for CombiProbe or µTrace)
	In This Section
	CIProbe() TRUE if Compact Analyzer hardware
	CIProbe.ADC.ENABLE() TRUE if channel is enabled
	CIProbe.ADC.SHUNT() Get shunt-resistor value
	CIProbe.MAXSIZE() Get max. size of trace buffer in records
	CIProbe.RECORDS() Get number of used trace records
	CIProbe.SIZE() Get current trace buffer size in records
	CIProbe.STATE() Get state of Compact Analyzer for CIProbe
	CIProbe.TRACK.RECORD() Get record number matching search

	CMI Function
	CMIBASE() Base addresses of CMI modules

	COMPonent Functions
	In This Section
	COMPonent.AVAILABLE() TRUE if debug/trace peripherals available on CPU
	COMPonent.BASE() Base address of debug/trace peripherals
	COMPonent.NAME() User-defined name of debug/trace peripherals
	COMPonent.TYPE() Type of debug/trace peripherals
	COMPonentNAME() Name of debug/trace peripheral
	COMPonentNUMBER() Number of valid debug/trace peripherals

	CORE Functions
	In This Section
	CONFIGNUMBER() Number of cores configured in TRACE32
	CORE() Get the selected core
	CORE.ISACTIVE() TRUE if this core is active
	CORE.ISASSIGNED() TRUE if physical core is assigned to debug session
	CORE.LOGICALTOPHYSICAL() This is the physical core number
	CORE.NAMES() Physical core names assigned to TRACE32
	CORENAME() Name of core within selected chip
	CORE.NUMBER() Number of logical cores
	CORE.PHYSICALTOLOGICAL() Logical core number of physical core

	Count Functions
	In This Section
	Count.Frequency() Frequency of last measurement
	Count.LEVEL() Level of frequency counter input
	Count.Time() Time of last measurement
	Count.VALUE() Samples of the Count.GO command

	COVerage Functions
	In This Section
	COVerage.BDONE() Byte count of all executed instructions
	COVerage.IDLE() TRUE if all trace data for code coverage are processed
	COVerage.LOAD.KEY() Key from last ACD file
	COVerage.Percentage() Percentage of code coverage
	COVerage.SCOPE() Degree of code coverage
	COVerage.SourceMetric() Active code coverage criterion
	COVerage.TreeWalk() Walk symbol tree

	CPU Functions
	In This Section
	CPU.ADDRESS() Start address of memory section
	CPU.ADDRESS.PhysicalINDEX() Section start address of given core
	CPU.FEATURE() TRUE if CPU feature exists
	CPU.PINCOUNT() For internal usage only
	CPUBONDOUT() Name of boundout processor
	CPUCOREVERSION() Core or architecture version of CPU
	CPUDERIVATE() Main part of processor name
	CPUFAMILY() Family name of processor
	CPUHELP() For internal usage only
	CPUIS() TRUE if search string matches processor name
	CPUIS64BIT() TRUE if 64-bit architecture

	DAP Functions
	In This Section
	DAP.Available() TRUE if debugging via DAP is supported
	DAP.USER<x>() Status of the DAP user pin

	Data Functions
	In This Section
	Data.<value_width>() Memory contents in default endianness
	Data.<value_width>.<endianness>() Mem. contents in specified byte order
	Data.<value_width>.<access_width>() Mem. contents in specified width
	Data.AL.ERRORS() Get number of errors detected by Data.AllocList
	Data.Float() Get floating point number
	Data.STRing() Get zero-terminated string
	Data.STRingN() Get zero-terminated string with a maximum length
	Data.SUM() Get checksum
	Data.SWAP.<value_width>.<swap_width>() Swap byte groups in word
	Data.WSTRING() Get zero-terminated wide string
	Data.WSTRING.BigEndian() Get big-endian wide string
	Data.WSTRING.LittleEndian() Get little-endian wide string

	DEBUGGER Function
	DEBUGGER.FEATURE() Check debugger feature

	DEBUGMODE Function
	DEBUGMODE() Current debug mode

	DISASSEMBLE Function
	DISASSEMBLE.ADDRESS() Disassembled instruction at address

	DONGLEID Function
	DONGLEID() Serial number of USB WibuKey

	ELA Function (ARM Coresight Embedded Logic Analyzer)
	ELABASE() ELA base address

	DPP Function (C166/ST10 only)
	DPP() Content of DPP register

	EPOC Functions
	In This Section
	EPOC.DATAADDRESS() Start address of data area (EPOC debugger)
	EPOC.ENTRYPOINT() Entry address of debug task
	EPOC.TEXTADDRESS() Start address of code area (EPOC debugger)

	ERROR Functions (target-dependent)
	ERROR.ADDRESS() Address of last occurred memory access error

	ETM Functions
	In This Section
	ETM() TRUE if ETM trace is available
	ETM.ADDRCOMP() For internal usage only
	ETM.ADDRCOMPTOTAL() Number of ETM address comparator pair
	ETM.COUNTERS() Number of ETM counters
	ETM.DATACOMP() Number of ETM data comparators
	ETM.EXTIN() Number of internal ETM inputs
	ETM.EXTOUT() Number of external ETM outputs
	ETM.FIFOFULL() ETM fifofull logic
	ETM.MAP() Number of ETM memory map decoders
	ETM.PROTOCOL() Version of ETM protocol
	ETM.SEQUENCER() Number of ETM sequencers
	ETM.TraceCore() TRUE if the core is traced

	EXTENDED Function (Z80 only)
	EXTENDED() TRUE if register CBAR > 0

	FDX Function
	FDX.INSTRING() Content at FDX memory address
	FDX.TargetSTALLS() Monitor FDX communication stalls on the target

	FLAG Functions
	In This Section
	FLAG() TRUE if hardware flag system available
	FLAG.READ() FLAG memory bytes with read access bit
	FLAG.WRITE() FLAG memory bytes with write access bit

	FLASH Functions
	In This Section
	FLASH.CFI.SIZE() Size of FLASH devices
	FLASH.CFI.WIDTH() Data bus width of FLASH devices
	FLASH.CLocK.Frequency() FLASH clock value
	FLASH.ID() FLASH manufacturer and device ID
	FLASH.List.STATE.PENDING() Number of pending sectors
	FLASH.List.TYPE() FLASH family code of FLASH list entry
	FLASH.ProgramMODE() FLASH programming modes
	FLASH.ProgramMODE.OPTION() FLASH programming options
	FLASH.SECTOR.BEGIN() Start address
	FLASH.SECTOR.END() End address
	FLASH.SECTOR.EXIST() TRUE if sector exists
	FLASH.SECTOR.EXTRAvalue() Extra value of FLASH.Create
	FLASH.SECTOR.NEXT() Address of next sector
	FLASH.SECTOR.OTP() TRUE if OTP sector
	FLASH.SECTOR.OPTION() Options of a FLASH sector
	FLASH.SECTOR.RANGE() Address range of a FLASH sector
	FLASH.SECTOR.SIZE() Size in bytes
	FLASH.SECTOR.STATE() FLASH programming state
	FLASH.SECTOR.TYPE() FLASH family code of sector
	FLASH.SECTOR.WIDTH() Width of FLASH sector
	FLASH.TARGET.BUILD() Build number of FLASH algorithm file
	FLASH.TARGET.CODERANGE() Code range of FLASH algorithm
	FLASH.TARGET.DATARANGE() Data range of FLASH algorithm
	FLASH.TARGET.FILE() Name of FLASH algorithm file
	FLASH.UNIT() Unit number of FLASH sector
	FLASH.UNIT.BEGIN() Unit start address
	FLASH.UNIT.END() Unit end address
	FLASH.UNIT.EXIST() TRUE if unit exists
	FLASH.UNIT.NEXT() Number of next unit

	FLASHFILE Functions
	In This Section
	FLASHFILE.GETBADBLOCK.COUNT() Number of bad blocks
	FLASHFILE.GETBADBLOCK.NEXT() Address of bad block
	FLASHFILE.SPAREADDRESS() Address of spare area

	FPU Functions (Floating Point Unit)
	In This Section
	FPU() FPU register contents
	FPUCR() FPU control register contents
	FPU.RAW() FPU register raw contents

	FXU Function
	FXU() Content of FXU register

	GROUP Function
	GROUP.EXIST() TRUE if group exists

	Hardware Functions
	In This Section
	hardware.COMBIPROBE() TRUE if CombiProbe
	hardware.ESI() TRUE if EPROM Simulator
	hardware.ICD() TRUE if TRACE32 debug hardware
	hardware.POWERDEBUG() TRUE if TRACE32 PowerDebug hardware
	hardware.POWERINTEGRATOR() TRUE if a PowerIntergrator
	hardware.POWERINTEGRATOR2() TRUE if a PowerIntegrator II
	hardware.POWERNEXUS() TRUE is a NEXUS Adapter
	hardware.POWERPROBE() TRUE is a PowerProbe
	hardware.POWERTRACE() TRUE if a PowerTrace Module
	hardware.POWERTRACE2() TRUE if a PowerTrace II
	hardware.POWERTRACE2LITE() TRUE if a PowerTrace II LITE
	hardware.POWERTRACE3() TRUE if a PowerTrace III
	hardware.POWERTRACEPX() TRUE if a PowerTrace PX
	hardware.POWERTRACESERIAL() TRUE if a PowerTrace Serial
	hardware.POWERTRACESERIAL2() TRUE if a PowerTrace Serial II
	hardware.QUADPROBE() TRUE if QuadProbe
	hardware.UTRACE() TRUE if µTrace

	HVX Function
	HVX() Content of HVX register

	I2C Functions
	In This Section
	I2C.DATA() Data read by I2C.TRANSFER
	I2C.PIN() Pin status

	ID Functions
	In This Section
	ID.CABLE() Hardware ID of debug cable
	ID.POWERTRACEAUXPORT() Hardware ID of device at PT aux port
	ID.PREPROcessor() Hardware ID of preprocessor
	ID.SERialPort1() Type-ID of Adapter or Preprocessor at PowerTrace Serial
	ID.WHISKER() ID of whisker cable
	IDCODE() ID code of TAP in JTAG chain
	IDCODENUMBER() Number of detected TAPs

	Integrator Functions
	In This Section
	Integrator() TRUE if PowerIntegrator
	Integrator.FIRST() Get record number of first trace record
	Integrator.ADC.ENABLE() Bitmask of enabled analog channels
	Integrator.ADC.SHUNT() Shunt-resistor value
	Integrator.ANALOG()
	Integrator.COUNTER.EVENT() Get value of trigger program event counter
	Integrator.COUNTER.EXTERN() Value of trigger program external counter
	Integrator.COUNTER.TIME() Get value of trigger program time counter
	Integrator.DIALOGDSEL() For internal usage only
	Integrator.DIALOGDSELGET() For internal usage only
	Integrator.DSEL() For internal usage only
	Integrator.FIND.PI_CHANNEL() For internal usage only
	Integrator.FIND.PI_WORD() TRUE if signal word is defined
	Integrator.FLAG() Check state of trigger program FLAG
	Integrator.GET() Value of channel
	Integrator.MAXSIZE() Get max. size of trace buffer in records
	Integrator.PROBE() For internal usage only
	Integrator.PROGRAMFILENAME() File name of trigger program
	Integrator.RECORD.DATA() Get data recorded in trace record
	Integrator.RECORD.TIME() Get timestamp of trace record
	Integrator.RECORDS() Get number of used trace records
	Integrator.REF() Get record number of reference record
	Integrator.SIZE() Get current trace buffer size in records
	Integrator.STATE() Get state of the Integrator
	Integrator.TRACK.RECORD() Get record number matching search
	Integrator.USB() For internal usage only

	INTERFACE Functions
	In This Section
	INTERFACE.CADI() TRUE if connection to target is via CADI interface
	INTERFACE.GDB() TRUE if connection to target is via GDB interface
	INTERFACE.GDI() TRUE if connection to target via GDI interface
	INTERFACE.HOST() TRUE if application is debugged on host
	interface.HOSTMCI() TRUE if TRACE32 debug driver runs on host
	INTERFACE.IRIS() TRUE if connection to target is via IRIS interface
	INTERFACE.MCD() TRUE if connection to target via MCD interface
	INTERFACE.NAME() Name of debugger
	INTERFACE.QNX() TRUE if PBI=QNX
	INTERFACE.SIM() TRUE if simulator

	IOBASE Functions
	In This Section
	IOBASE() Base address of internal I/O’s
	IOBASE.ADDRESS() Base address of internal I/O’s with access class
	IOBASE2() Second base address of internal I/O’s

	IProbe Functions
	In This Section
	IProbe() TRUE if IPROBE
	IProbe.ADC.ENABLE() TRUE if channel is enabled
	IProbe.ADC.SHUNT() Shunt resistor value of channel
	IProbe.ANALOG() TRUE if Analog Probe is plugged
	IProbe.FIRST() Get record number of first trace record
	IProbe.GET() Value of channel
	IProbe.MAXSIZE() Get max. size of trace buffer in records
	IProbe.PROBE()
	IProbe.RECORD.DATA() Get data recorded in trace record
	IProbe.RECORD.TIME() Get timestamp of trace record
	IProbe.RECORDS() Get number of used trace records
	IProbe.REF() Get record number of reference record
	IProbe.SIZE() Get current trace buffer size in records
	IProbe.STATE() Get state of IProbe
	IProbe.TRACK.RECORD() Get record number matching search

	JTAG Functions
	In This Section
	JTAG.MIPI34() Query special MIPI34 pins
	JTAG.PIN() Level of JTAG signal
	JTAG.SEQuence.RESULT() Get result of JTAG sequence
	JTAG.SEQuence.EXIST() Check if a JTAG sequence exists
	JTAG.SEQuence.LOCKED() Check if a JTAG sequence is locked
	JTAG.SHIFT() TDO output of JTAG shift
	JTAG.X7EFUSE.RESULT() Result of JTAG.X7EFUSE command
	JTAG.X7EFUSE.CNTL() CNTL flags read by JTAG.X7EFUSE command
	JTAG.X7EFUSE.DNA() DNA value read by JTAG.X7EFUSE command
	JTAG.X7EFUSE.KEY() AES key read by JTAG.X7EFUSE command
	JTAG.X7EFUSE.USER() User code read by JTAG.X7EFUSE command
	JTAG.XUSEFUSE.RESULT() Result of JTAG.XUSEFUSE command
	JTAG.XUSEFUSE.CNTL() CNTL value read by JTAG.XUSEFUSE command
	JTAG.XUSEFUSE.DNA() DNA value read by JTAG.XUSEFUSE command
	JTAG.XUSEFUSE.KEY() AES key read by JTAG.XUSEFUSE command
	JTAG.XUSEFUSE.RSA() RSA hash read by JTAG.XUSEFUSE command
	JTAG.XUSEFUSE.SEC() SEC value read by JTAG.XUSEFUSE command
	JTAG.XUSEFUSE.USER() User code read by JTAG.XUSEFUSE command
	JTAG.XUSEFUSE.USER128() 128 bit User code read by JTAG.XUSEFUSE

	LOGGER Functions
	In This Section
	LOGGER.FIRST() Get record number of first trace record
	LOGGER.RECORD.ADDRESS() Get address recorded in trace record
	LOGGER.RECORD.DATA() Get data recorded in trace record
	LOGGER.RECORD.OFFSET() Get address in trace record as number
	LOGGER.RECORD.TIME() Get timestamp of trace record
	LOGGER.RECORDS() Get number of used trace records
	LOGGER.REF() Get record number of reference record
	LOGGER.SIZE() Get current trace buffer size in records
	LOGGER.STATE() Get state of Logger trace

	MachO Format Function (Apple)
	MACHO.LASTUUID() Universally unique identifier of MachO file

	MAP Functions
	In This Section
	MAP.ROMSIZE() Size of the defined ROM

	MCDS Functions
	In This Section
	MCDS.MODULE.NAME() Name of MCDS module
	MCDS.MODULE.NUMBER() Number-part of MCDS module ID
	MCDS.MODULE.REVision() Revision-part of MCDS module ID
	MCDS.MODULE.TYPE() Type-part of MCDS module ID
	MCDS.STATE() MCDS module is switched on/off
	MCDS.TraceBuffer.LowerGAP() Trace buffer lower gap
	MCDS.TraceBuffer.SIZE() Trace buffer size
	MCDS.TraceBuffer.UpperGAP() Trace buffer upper gap

	MMU Functions (Memory Management Unit)
	In This Section
	MMU() Value of MMU register
	MMU.DEFAULTPT() Base address of default page table
	MMU.DEFAULTTRANS.<range>() Query MMU setup
	MMU.FORMAT() Currently selected MMU format
	MMU.FORMAT.DETECTED() Auto-detection of page table format
	MMU.FORMAT.DETECTED.ZONE() Auto-detection of page table format

	MMX Function (MultiMedia eXtension)
	MMX() Value of MMX register

	MONITOR Function
	MONITOR() TRUE if debugger is running as monitor

	NEXUS Functions
	In This Section
	NEXUS() TRUE if Nexus trace is supported
	NEXUS.RTTBUILD() RTT build register
	NEXUS.PortMode() Current PortMode setting
	NEXUS.PortSize() Current PortSize setting

	Onchip Functions
	In This Section
	Onchip() TRUE if the onchip trace is available
	Onchip.FIRST() Get record number of first trace record
	Onchip.FLOW.ERRORS() Get number of flow errors / hard errors
	Onchip.FLOW.FIFOFULL() Get number of FIFO overflows
	Onchip.MAXSIZE() Get max. size of trace buffer in records
	Onchip.RECORD.ADDRESS() Get address recorded in trace record
	Onchip.RECORD.DATA() Get data recorded in trace record
	Onchip.RECORD.OFFSET() Get address in trace record as number
	Onchip.RECORD.TIME() Get timestamp of trace record
	Onchip.RECORDS() Get number of used trace records
	Onchip.REF() Get record number of reference record
	Onchip.SIZE() Get current trace buffer size in records
	Onchip.STATE() Get state of Onchip trace
	Onchip.TraceCONNECT() Name of trace sink of the SoC
	Onchip.TRACK.RECORD() Get record number matching search

	PBI Function
	PBI() Name of used debug back-end

	PCI Functions
	In This Section
	PCI.Read.B() Byte from PCI register
	PCI.Read.L() Long from PCI register
	PCI.Read.W() Word from PCI register

	PER Functions
	In This Section
	PER.<width>() Memory contents in default endianness
	PER.<width>.<endianness>() Memory contents in specified endianness
	PER.ADDRESS() Address of register(field)
	PER.ADDRESS.<sub_cmd>() Check access security in PER file
	PER.ARG() Argument of PER.view command
	PER.ARG.ADDRESS() Address argument of PER.view command
	PER.BASE() Last BASE address
	PER.Buffer.<width>() Value from buffer
	PER.EVAL() Value of expression in PER file
	PER.FILENAME() PER file name
	PER.SAVEINDEX() Value from indexed register
	PER.VALUE() Value of register(field)
	PER.VALUE.STRING() Value of BITFLD as string

	PERF Functions (Performance)
	In This Section
	PERF.MEMORY.HITS() Number of memory samples
	PERF.MEMORY.SnoopAddress() Snoop memory address
	PERF.MEMORY.SnoopSize() Snoop size
	PERF.METHOD() Recording method
	PERF.MODE() Get Performance Analyzer recording mode
	PERF.PC.HITS() Number of PC samples
	PERF.RATE() Number of snoops per second
	PERF.RunTime() Retained time for program run
	PERF.SNOOPFAILS() Number of snoop fails
	PERF.STATE() Get state of Performance Analyzer
	PERF.TASK.HITS() Number of task samples

	Port Analyzer Functions
	In This Section
	PORT.GET() Value of channel
	PORT.MAXSIZE() Get max. size of trace buffer in records
	PORT.RECORDS() Get number of used trace records
	PORT.REF() Get record number of reference record
	PORT.SIZE() Get current trace buffer size in records
	PORT.STATE() Get state of Port Analyzer
	PORT.TRACK.RECORD() Get record number matching search
	PORTANALYZER()

	PORTSHARING Function
	PORTSHARING() Current setting of PortSHaRing

	POWER Functions
	In This Section

	PowerProbe Functions
	In This Section
	PROBE.COUNTER.EVENT() Get value of trigger program event counter
	PROBE.COUNTER.EXTERN() Get value of trigger program external counter
	PROBE.COUNTER.TIME() Get value of trigger program time counter
	Probe.FIRST() Get record number of first trace record
	PROBE.FLAG() Check state of trigger program FLAG
	PROBE.GET() Value of channel
	PROBE.MAXSIZE() Get max. size of trace buffer in records
	PROBE.RECORD.DATA() Get data recorded in trace record
	PROBE.RECORD.TIME() Get timestamp of trace record
	PROBE.RECORDS() Get number of used trace records
	PROBE.REF() Get record number of reference record
	PROBE.SIZE() Get current trace buffer size in records
	PROBE.STATE() Get state of PowerProbe
	PROBE.TRACK.RECORD() Get record number matching search

	Program Pointer Function
	PP() Address of program pointer (access class, space ID, program counter)

	Register Functions
	Register() Content of register
	Register.LIST() First / next register name
	Register.Valid() Valid register value

	RTS Functions
	In This Section
	RTS.ERROR() Check for flowerrors during RTS processing
	RTS.NOCODE() Check for RTS NOCODE error
	RTS.FIFOFULL() Check for FIFO full error in RTS
	RTS.RECORD() Find record causing an error in RTS
	RTS.RECORDS() Get number of trace records transferred to RTS
	RTS.BUSY() Check if RTS is busy

	RunTime Functions
	In This Section
	RunTime.ACCURACY() Accuracy of run-time counter
	RunTime.ACTUAL()
	RunTime.LAST()
	RunTime.LASTRUN()
	RunTime.REFA()
	RunTime.REFB()

	SMMU Functions
	SMMU.BaseADDRESS() Base address of SMMU
	SMMU.StreamID2SMRG() Find match for stream ID

	SNOOPer Functions
	In This Section
	SNOOPer.FIRST() Get record number of first trace record
	SNOOPer.MAXSIZE() Get max. size of trace buffer in records
	SNOOPer.RECORD.ADDRESS() Get address recorded in trace record
	SNOOPer.RECORD.DATA() Get data recorded in trace record
	SNOOPer.RECORD.OFFSET() Get address in trace record as number
	SNOOPer.RECORD.TIME() Get timestamp of trace record
	SNOOPer.RECORDS() Get number of used trace records
	SNOOPer.REF() Get record number of reference record
	SNOOPer.SIZE() Get current trace buffer size in records
	SNOOPer.STATE() Get state of SNOOPer trace

	STATE Functions (Target State)
	In This Section
	STATE.HALT()
	STATE.OSLK()
	STATE.POWER()
	STATE.PROCESSOR()
	STATE.RESET()
	STATE.RUN()
	STATE.TARGET() State of target displayed in TRACE32 state line

	SPE Function
	SPE() Content from SPE register

	SSE Function
	SSE() Segment from SSE register

	Stimuli Generator Function
	hardware.STG() TRUE if Stimuli Generator hardware

	sYmbol Functions
	In This Section
	sYmbol.AutoLOAD.CHECK() Update option for the symbol autoloader
	sYmbol.AutoLOAD.CHECKCMD() Load command for symbol autoloader
	sYmbol.AutoLOAD.CONFIG() Used sub-command
	sYmbol.BEGIN() First address of symbol
	sYmbol.COUNT() Number of symbols
	sYmbol.ECA.BINary.GAPNUMBER() Number of observability gaps
	sYmbol.END() Last address of symbol
	sYmbol.EPILOG() Address of return point
	sYmbol.EXIST() TRUE if symbol exists
	sYmbol.EXIT() Exit address of function
	sYmbol.FUNCTION() Function name
	sYmbol.IMPORT() Import file names
	sYmbol.ISFUNCTION() TRUE if symbol is function
	sYmbol.ISVARIABLE() TRUE if symbol is variable
	sYmbol.LANGUAGE() Selected high-level language
	sYmbol.List.MAP.<x>() Information about address ranges on the target
	sYmbol.LIST.PROGRAM() Path and file name of binary files
	sYmbol.List.PROGRAM.<x>() Information about loaded programs
	sYmbol.List.SECtion.<x>() Information about section ranges
	sYmbol.LIST.SOURCE() File location of source file
	sYmbol.MATCHES() Number of occurrences
	sYmbol.NAME() Symbol path and name based on address
	sYmbol.NAME.AT() Resolve ambiguous symbols based on address
	sYmbol.NEXT.BEGIN() Start address of next symbol
	sYmbol.RANGE() Address range of symbol
	sYmbol.SEARCHFILE() Absolute path of source file
	sYmbol.SECADDRESS() Start address of section
	sYmbol.SECEND() End address of section
	sYmbol.SECEXIST() Check for existence of a section
	sYmbol.SECNAME() Section name
	sYmbol.SECPRANGE() Physical address range of section
	sYmbol.SECRANGE() Logical address range of section
	sYmbol.SIZEOF() Size of debug symbol
	sYmbol.SOURCEFILE() Name of source file
	sYmbol.SOURCELINE() HLL-line number of address
	sYmbol.SOURCEPATH() TRUE if path is search path
	sYmbol.STATE() Value from sYmbol.state window
	sYmbol.TRANSPOSE() Transpose program and module names
	sYmbol.TYPE() Type of symbol
	sYmbol.VARNAME() Name of variable or structure element

	SYStem Functions
	In This Section
	SYStem.ACCESS.DENIED() TRUE if memory access is denied
	SYStem.AMBA() TRUE if AMBA bus mode is selected
	SYStem.BigEndian() TRUE if target core runs in big endian mode
	SYStem.CADIconfig.RemoteServer()
	SYStem.CADIconfig.Traceconfig()
	SYStem.CONFIG.<tap_position>()
	SYStem.CONFIG.DEBUGPORT()
	SYStem.CONFIG.DEBUGPORTTYPE()
	SYStem.CONFIG.JTAGTAP() Return the JTAG PRE and POST settings
	SYStem.CONFIG.ListCORE()
	SYStem.CONFIG.ListSIM()
	SYStem.CONFIG.Slave()
	SYStem.CONFIG.TAPState()
	SYStem.CPU() Name of processor
	SYStem.GTL.CALLCOUNTER() Amount of calls to GTL library
	SYStem.GTL.CONNECTED() Connection status
	SYStem.GTL.CYCLECOUNTER() load GTL interface for bit banging protocol
	SYStem.GTL.LIBname() Name of GTL library
	SYStem.GTL.ModelINFO() Info string from GTL API
	SYStem.GTL.ModelNAME() Model Name
	SYStem.GTL.PLUGINVERSION() Version number
	SYStem.GTL.TransactorNAME() Transactor name
	SYStem.GTL.TransactorTYPE() Transactor type
	SYStem.GTL.VENDORID() Vendor ID
	SYStem.GTL.VERSION() Version number
	SYStem.HOOK()
	SYStem.IMASKASM()
	SYStem.IMASKHLL()
	SYStem.INSTANCE() Index of TRACE32 PowerView instance
	SYStem.INSTANCECOUNT() Count of GUIs connected to a PowerDebug
	SYStem.IRISconfig.RemoteServer()
	SYStem.JtagClock()
	SYStem.LittleEndian()
	SYStem.MCDCommand.ResultString()
	SYStem.MCDconfig.LIBrary()
	SYStem.Mode()
	SYStem.NOTRAP() 1 if the option NOTRAP is active
	SYStem.Option.DUALPORT() State of like-named command
	SYStem.Option.MACHINESPACES() State of like-named command
	SYStem.Option.MMUSPACES() State of like-named command
	SYStem.Option.EnReset() State of like-named command
	SYStem.Option.ResBreak() State of like-named command
	SYStem.Option.SPILLLOCation() State of like-named command
	SYStem.Option.ZoneSPACES() State of like-named command
	SYStem.RESetBehavior() Current setting of RESetBehavior
	SYStem.Up() TRUE if debugger has access to debug resources
	SYStem.USECORE()
	SYStem.USEMASK()

	TASK Functions
	In This Section
	TASK() Name of current task
	TASK.ACCESS() Access class
	TASK.ACCESS.ZONE() Access class zone
	TASK.BACK() Background task number
	TASK.CONFIG() OS Awareness configuration information
	TASK.CONFIGFILE() Path of loaded OS Awareness
	TASK.COUNT() Number of tasks
	TASK.CURRENT.MACHINEID() ID of current machine
	TASK.CURRENT.SPACEID() ID of current MMU space
	TASK.CURRENT.TASK() Magic value of current task
	TASK.CURRENT.TASKNAME() Name of current task
	TASK.FIRST() First task in list
	TASK.FORE() Foreground task number
	TASK.ID() ID of task
	TASK.MACHINE.ACCESS() Default access class
	TASK.MACHINE.ID() ID of machine
	TASK.MACHINE.NAME() Name of machine
	TASK.MACHINE.VTTB() VTTB of machine
	TASK.MAGIC() Task magic number
	TASK.MAGICADDRESS() "magic address"
	TASK.MAGICRANGE() Range of "magic address"
	TASK.MAGICSIZE() Size of "magic address"
	TASK.NAME() Name of task
	TASK.NEXT() Next task in list
	TASK.ORTIFILE() Path of loaded ORTI file
	TASK.SPACE.COUNT() Number of spaces
	TASK.SPACEID() Space ID of task

	TERM Functions (Terminal Window)
	In This Section
	TERM.LINE() Get line from terminal window
	TERM.NEWHANDLE() Get next free terminal handle
	TERM.READBUSY() TRUE as long as TERM.READ is in progress
	TERM.RETURNCODE() Get returncode from terminal routine
	TERM.TRIGGERED() Get trigger state of terminal window

	TPIU Functions
	In This Section
	TPIU.PortMode() Port mode setting
	TPIU.PortSize() Port size setting
	TPIU.SWVPrescaler() SWVPrescaler value

	TPUBASE Function
	TPUBASE.ADDRESS() Address of TPU

	Trace Functions
	In This Section
	Trace.FIRST() Get record number of first trace record
	Trace.FLOW() TRUE if trace method is flow trace
	Trace.FLOW.ERRORS() Get number of flow errors / hard errors
	Trace.FLOW.FIFOFULL() Get number of FIFO overflows
	Trace.MAXSIZE() Get max. size of trace buffer in records
	Trace.METHOD() Currently configured trace method
	Trace.METHOD.Analyzer() TRUE if the trace method is Analyzer
	Trace.METHOD.ART() TRUE if the trace method is ART
	Trace.METHOD.CAnalyzer() TRUE if the trace method is CAnalyzer
	Trace.METHOD.FDX() TRUE if the trace method is FDX
	Trace.METHOD.HAnalyzer() TRUE if the trace method is HAnalyzer
	Trace.METHOD.Integrator() TRUE if the trace method uses the Integrator
	Trace.METHOD.IProbe() TRUE if the trace method uses the IProbe
	Trace.METHOD.LA() TRUE if the trace method is LA
	Trace.METHOD.LOGGER() TRUE if the trace method is LOGGER
	Trace.METHOD.ONCHIP() TRUE if the trace method is ONCHIP
	Trace.METHOD.Probe() TRUE if trace method uses the PowerProbe
	Trace.METHOD.SNOOPer() TRUE if the trace method is SNOOPer
	Trace.RECORD.ADDRESS() Get address recorded in trace record
	Trace.RECORD.DATA() Get data recorded in trace record
	Trace.RECORD.OFFSET() Get address in trace record as number
	Trace.RECORD.TIME() Get timestamp of trace record
	Trace.RECORDS() Get number of used trace records
	Trace.SIZE() Get current trace buffer size in records
	Trace.STATE() Get state of PowerTrace hardware
	Trace.STATistic.COUNT() Number of occurences of selected function
	Trace.STATistic.EXIST() TRUE if function exists in trace statistics
	Trace.STATistic.FIRST() Record number of start point for statistic analysis
	Trace.STATistic.IMAX() Longest time between function entry and exit
	Trace.STATistic.IMIN() Shortest time between function entry and exit
	Trace.STATistic.Internal() Time spent within the selected function
	Trace.STATistic.LAST() Record number of end point for statistic analysis
	Trace.STATistic.MAX() Maximum time of selected function
	Trace.STATistic.MIN() Minimum time of selected function
	Trace.STATistic.Total() Total time of selected function
	Trace.TraceCONNECT() Name of trace sink of the SoC

	TRACEPORT Function
	In This Section
	TRACEPORT.LaneCount() Number of serial lanes

	TRACK Functions
	In This Section
	TRACK.ADDRESS() Get tracking address
	TRACK.COLUMN() Number of column where the found item starts
	TRACK.LINE() Number of line containing the found item
	TRACK.RECORD() Number of record containing the found item
	TRACK.STRing() Current selection in a TRACE32 window
	TRACK.TIME() Timestamp of current tracking record

	TRANS Functions (Debugger Address Translation)
	In This Section
	TRANS.LIST.NUMBER() Number of TRANS.List entries
	TRANS.LIST.LOGRANGE() Query TRANS.List entry
	TRANS.LIST.PHYSADDR() Query TRANS.List entry
	TRANS.LIST.TYPE() Query TRANS.List entry
	TRANS.ENABLE() TRUE if address translation is enabled
	TRANS.INTERMEDIATE() Convert a guest logical address
	TRANS.INTERMEDIATE.VALID() TRUE if address translation is valid
	TRANS.LINEAR() Convert logical to linear address
	TRANS.LINEAR.VALID() TRUE if address translation is valid
	TRANS.LOGICAL() Convert physical to logical address
	TRANS.LOGICAL.VALID() TRUE if address translation is valid
	TRANS.PHYSICAL() Convert logical to physical address
	TRANS.PHYSICAL.VALID() TRUE if address translation is valid
	TRANS.TABLEWALK() TRUE if address translation table walk is ON

	TSS Function
	TSS() TSS base address

	Var Functions
	In This Section
	Var.ADDRESS() Address of HLL expression
	Var.BITPOS() Bit position inside a C bit field
	Var.BITSIZE() Size of bit field element
	Var.END() Last address of HLL expression
	Var.EXIST() TRUE if HLL expression exists
	Var.FVALUE() Contents of HLL expression
	Var.ISBIT() TRUE if HLL expression is a bit field element
	Var.RANGE() Address range of HLL expression
	Var.SIZEOF() Size of HLL expression
	Var.STRing() Zero-terminated string or variable contents
	Var.TYPEOF() Type of HLL expression
	Var.VALUE() Value of HLL expression

	VCO Function
	VCO() Frequency of VCO generator

	VERSION Functions
	In This Section
	VERSION.BUILD() Upper build number
	VERSION.BUILD.BASE() Lower build number
	VERSION.CABLE() Hardware version of debug cable
	VERSION.DATE() Version date YYYY/MM
	VERSION.ENVironment() TRACE32 environment setting
	VERSION.FirmWare.DEBUG() Version number of firmware
	VERSION.SERIAL() Serial number
	VERSION.SERIAL.CABLE() First serial number of debug cable
	VERSION.SERIAL.DEBUG() Serial number of debug module
	VERSION.SERIAL.Integrator() Serial number of PowerIntegrator
	VERSION.SERIAL.NEXUSadapter() Serial number of nexus adapter
	VERSION.SERIAL.PREPROcessor() Serial number of preprocessor
	VERSION.SERIAL.POWERPROBE() Serial number of PowerProbe
	VERSION.SERIAL.POWERTRACEAUXPORT() S/N of device at PT aux port
	VERSION.SERIAL.SERialPort1() S/N of device at Serial Port 1 of PT Serial
	VERSION.SERIAL.WHISKER() S/N of whiskers at CombiProbe or µTrace
	VERSION.SERIAL.TRACE() Serial number of trace module
	VERSION.SOFTWARE() Release build or nightly build, etc.
	VERSION.SOFTWARE.TYPE() Software build type

	VPU Functions
	In This Section
	VPU() Value of VPU register
	VPUCR() Value of VRSAVE or VSCR register

