LAUTERBACH A

General Function Reference

General Function Reference

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
PRACTICE Script LANQUAQJEcccceceriiiismmrriisssmmsssisssmsssssssssmsssssssssmssssssssmssssssssnmssssssssnmssssssssmnmssnnas r—~
TRACES32 FUNCHONS ..ocoiiiieiiicccerresscee s ssss e s s ss s cme s essssmme s s esssmmmn s e e s s smmn s e e e s samme s e enssmmmn e eensnmmnnnnas —~
General FUNction ReferencCeccccccccmmmiminiiiisssiissssssmcsens s sssssssssssmssmmsssssnsssssssssssssnssmsnsnssnns 1
LT3 o 24

L T I TE= 30 Lo 1 4 = o 26
How This Document is Organized 26
Difference between Functions and Commands in TRACE32 27
Purpose of Functions 28
Example 1: Return Status of the Target 28
Example 2: Return Status of a TRACES32 Tool 28
Example 3: Return the Version Number 28
Example 4: Convert a String 28

How to Use Functions 29
Example 1: In PRACTICE Scripts 29
Example 2: As Parameters in Commands 29
Example 3: Together with the Output Commands PRINT and Data.Print 30
Example 4: Address Function and Their Access Class Specifiers 30

Which Return Values of Functions can be Printed? 31
Related Documents 31
ACCESS FUNCLIONSccciceccccerniniisssssssssssmmsne s s n s s sssssssssmmsmms s s s s s e s sssssssssssmmmsmssns s s nssnnssnssnnnnns 32

In This Section 32
ACCESS.isGUEST() TRUE if access class belongs to guest 32
ACCESS.isHYPERVISOR() TRUE if access class belongs to hypervisor 33
ADDRESS FUNCHIONS ... s s sr s s sssmm s s s s s s s s smmmmmm e s s n s e e e s e s s s mnnnn 34

In This Section 34
ADDRESS.ACCESS() Access class as ordinal number 34
ADDRESS.ACCESS.CMP() Compare access classes 34
ADDRESS.ACCESS.CMPSTRICTY() Compare access classes, strict 35
ADDRESS.EXPANDACCESS() Fully qualified access class 35
ADDRESS.INSTR.LEN() Length of instruction 36
ADDRESS.isDATA() Check if memory class refers to data 36
ADDRESS.isGUEST() TRUE if address is guest address 37
©1989-2024 Lauterbach General Function Reference 2

ADDRESS.isHYPERVISOR() TRUE if address is hypervisor address 37
ADDRESS.isINTERMEDIATE() Check if intermediate address 38
ADDRESS.isNONSECURE() TRUE if non-secure (TrustZone) access 38
ADDRESS.isNONSECUREEX() TRUE if non-secure access 39
ADDRESS.MACHINEID() Extract machine ID 39
ADDRESS.MAU() Minimal addressable unit size (MAU) 40
ADDRESS.OFFSET() Address without class 41
ADDRESS.isONCHIP() TRUE if on-chip address area 41
ADDRESS.isPHYSICAL() TRUE if physical address 41
ADDRESS.isPROGRAM() TRUE if program address 42
ADDRESS.isSECURE() TRUE if secure (TrustZone) access 42
ADDRESS.isSECUREEX() TRUE if secure access 43
ADDRESS.RANGE.BEGIN() Lowest address value of address range 44
ADDRESS.RANGE.END() Highest address value of address range 44
ADDRESS.RANGE.SIZE() Size of address range 45
ADDRESS.SEGMENTY() Segment of an address 46
ADDRESS.STRACCESS() Access class of an address 46
ANAlyzer FUNCHIONSoiiiiiiicis i s s s s s s s e mn e e n e 47
In This Section 48
Analyzer() Check if Analyzer command group is available 48
Analyzer. CONFIG.<powertrace>() Check if specified PowerTrace connected 49
Analyzer. COUNTER.EVENT() Get value of trigger program event counter 49
Analyzer. COUNTER.TIME() Get value of trigger program time counter 50
Analyzer.DSEL() For internal usage only 50
Analyzer.FIRST() Get record number of first trace record 50
Analyzer.FLOW.ERRORS() Get number of flow errors / hard errors 50
Analyzer.FLOW.FIFOFULL() Get number of FIFO overflows 51
Analyzer.FOCUS.EYE() Check quality of data eye 53
Analyzer.ISCHANNELUP() Check if serial link is established 54
Analyzer. MAXSIZE() Get max. size of trace buffer in records 55
Analyzer. MODE() Get Analyzer recording mode 55
Analyzer. MODE.FLOW() Check if Analyzer operates as flowtrace 55
Analyzer.PCIE.CONFIG() Value of register field from PCle configuration 56
Analyzer.PCIE.ISCONFIGURED() TRUE if prerequisites are fulfilled 57
Analyzer.PCIE.Register() Value of 32-bit register from PCle configuration 57
Analyzer.PROBEREVISION() Get revision of StarCore NEXUS probe 58
Analyzer. RECORDS() Get number of used trace records 58
Analyzer. RECORD.ADDRESS() Get address recorded in trace record 58
Analyzer. RECORD.DATA() Get data recorded in trace record 59
Analyzer. RECORD.OFFSET() Get address in trace record as number 59
Analyzer.RECORD.TIME() Get timestamp of trace record 60
Analyzer.REF() Get record number of reference record 61
Analyzer.SIZE() Get current trace buffer size in records 61
©1989-2024 Lauterbach General Function Reference 3

Analyzer.STATE() Get state of Analyzer 61
Analyzer. THRESHOLD() Get threshold voltage of parallel preprocessor 62
Analyzer. TraceCONNECT() Name of trace sink of the SoC 62
Analyzer. TRACK.RECORD() Get record number matching search 63
Analyzer. TRIGGER.TIME() Time of trigger point in trace 63
{11 1T 4T ' o 65
ARMARCHVERSION() ARM architecture version of CPU 65
Advanced Register Trace (ART) FUNCLIONScccccciiiiiicmmriniinsr s nnssss s s e 66
In This Section 66
ART.FIRST() Get record number of first trace record 66
ART.MAXSIZE() Get max. size of trace buffer in records 67
ART.MODE() Get ART recording mode 67
ART.RECORD.ADDRESS() Get address recorded in trace record 67
ART.RECORD.OFFSET() Get address in trace record as number 68
ART.RECORD.TIME() Get timestamp of trace record 68
ART.RECORDS() Get number of used trace records 68
ART.REF() Get record number of reference record 68
ART.SIZE() Get current trace buffer size in records 69
ART.STATE() Get state of ART trace 69
ART.TRACK.RECORD() Get record number matching search 69
AUTOFOCUS FUNCLIONS ..eeeiiieeiies s isss e s s s as s s s s sas s s s s sams snsms s ms snsmnnas 70
In This Section 70
AUTOFOCUS() TRUE if AutoFocus preprocessor attached 70
AUTOFOCUS.OK() TRUE if command execution successful 70
AUTOFOCUS.FREQUENCY() Frequency of trace-port clock 70
N ¥ T e o = 71
In This Section 71
AVX() Content of AVX register 71
AVX512() Content of AVX512 register 72
Break FUNCHIONS ...eciiiieei e s s s s s s s s s e e 73
In This Section 73
Break.Alpha.EXIST() TRUE if Alpha breakpoint exists 73
Break.Beta.EXIST() TRUE if Beta breakpoint exist 73
Break.Charly.EXIST() TRUE if Charly breakpoint exists 74
Break.Program.EXIST() TRUE if enabled program breakpoint exists 74
Break.ReadWrite.EXIST() TRUE if enabled data address breakpoint exists 74
BMC Functions (Benchmark COUNtEr)ccccieecmimiiismmrmnsiess s ssssess s s s ssssn s 75
In This Section 75
BMC.CLOCK() Frequency of core clock 75
BMC.COUNTER() Value of a benchmark counter 75
BMC.COUNTER.BYNAME() Value of a benchmark counter 76
©1989-2024 Lauterbach General Function Reference 4

BMC.COUNTER.CORE() Value of a benchmark counter 76
BMC.COUNTER.BYNAME.CORE() Value of a benchmark counter 77
BMC.OVERFLOW() TRUE if benchmark counter overflow 77
BMC.OVERFLOW.BYNAME() TRUE if benchmark counter overflow 77
BMC.OVERFLOW.CORE() TRUE if benchmark counter overflow 78
BMC.OVERFLOW.BYNAME.CORE() TRUE if benchmark counter overflow 78
Boundary Scan Description Language (BSDL) FUNCtionsccccccmiviminnmnsesnnssnsnnsens 79
In This Section 79
BSDL.CHECK.BYPASS() Chain bypass test 79
BSDL.CHECK.FLASHCONF() Flash configuration test 79
BSDL.CHECK.IDCODE() Chain IDCODE test 79
BSDL.GetDRBit() Data register bit 80
BSDL.GetPortLevel() Port level value 80
CABLE FUNCHIONS ...occicccciiciecccmmennnnsssssssssssssmmssns s s s sesssss s ssssmmss s s s ne s sesssnssssnmmnmmssnssnnssnnsnnssnnnnns 81
In This Section 81
CABLE.GalvaniclSOlation() Cable has galvanic isolation 81
CABLE.GalvaniclSOlation.FIRMWARE() Adapter firmware version 81
CABLE.GalvaniclSOlation.SERIAL() Serial number of adapter 81
CABLE.NAME() Name of debug cable 82
CABLE.SERIAL() Serial number of debug cable 82
CABLE.TWOWIRE() TRUE if two-wire debugging supported 82
L0 X 0 o | 3 T £ 83
In This Section 83
CACHE.DC.DIRTY() Dirty-flag of L1 Data Cache Line 83
CACHE.DC.DIRTYMASK() Dirty-flag mask of L1 Data Cache Line 84
CACHE.DC.LRU() LRU information of L1 Data Cache Line 84
CACHE.DC.TAG() Address Tag of L1 Data Cache Line 84
CACHE.DC.VALID() Valid-flag of L1 Data Cache Line 85
CACHE.DC.VALIDMASK() Valid-flag mask of L1 Data Cache Line 85
CACHE.IC.DIRTY() Dirty-flag of L1 Unified Cache Line 86
CACHE.IC.DIRTYMASK() Dirty-flag mask of L1 Unified Cache Line 86
CACHE.IC.LRU() LRU information of L1 Instruction Cache Line 86
CACHE.IC.TAG() Address Tag of L1 Instruction Cache Line 87
CACHE.IC.VALID() Valid-flag of L1 Instruction Cache Line 87
CACHE.IC.VALIDMASK() Valid-flag mask of L1 Instruction Cache Line 87
CACHE.L2.DIRTY() Dirty-flag of L2 Cache Line 88
CACHE.L2.DIRTYMASK() Dirty-flag mask of L2 Cache Line 88
CACHE.L2.LRU() LRU information of L2 Cache Line 88
CACHE.L2.SHARED() Shared-flag of L2 Cache Line 89
CACHE.L2.SHAREDMASK() Shared-flag mask of L2 Cache Line 89
CACHE.L2.TAG() Address Tag of L2 Cache Line 89
CACHE.L2.VALID() Valid-flag of L2 Cache Line 90
©1989-2024 Lauterbach General Function Reference 5

CACHE.L2.VALIDMASK() Valid-flag mask of L2 Cache Line 90

CACHE.L3.DIRTY() Dirty-flag of L3 Cache Line 90
CACHE.L3.DIRTYMASK() Dirty-flag of L3 Cache Line 91
CACHE.L3.LRU() LRU information of L3 Cache Line 91
CACHE.L3.TAG() Address Tag of L3 Cache Line 91
CACHE.L3.VALID() Valid-flag of L3 Cache Line 92
CACHE.L3.VALIDMASK() Valid-flag mask of L3 Cache Line 92
CARNalyzer FUNCLIONSccccoiiiiiieiiriinsssns s ms s s s s sms s s ssmm s s s amn e s e ssmmn s s e s amn s nensan 93
In This Section 93
CAnalyzer() Check if CAnalyzer command group is available 94
CAnalyzer.BOTHCables() TRUE if both debug cables are plugged 94
CAnalyzer.CableTYPE() Type of adapter 94
CAnalyzer.DebugCable() CombiProbe whisker cable is A or B 95
CAnalyzer.FEATURE() Query features of CAnalyzer hardware 95
CAnalyzer.FIRST() Get record number of first trace record 97
CAnalyzer. MAXSIZE() Get max. size of trace buffer in records 97
CAnalyzer.PIN() Status of trace pins 98
CAnalyzer.RECORD.ADDRESS() Get address recorded in trace record 98
CAnalyzer.RECORD.DATA() Get data recorded in trace record 98
CAnalyzer.RECORD.OFFSET() Get address in trace record as number 99
CAnalyzer.RECORD.TIME() Get timestamp of trace record 99
CAnalyzer.RECORDS() Get number of used trace records 929
CAnalyzer.REF() Get record number of reference record 99
CAnalyzer.SIZE() Get current trace buffer size in records 100
CAnalyzer.STATE() Get state of Compact Analyzer 100
CAnalyzer.TraceCLOCK() Get trace port frequency 101
CAnalyzer.TraceCONNECTY() Name of trace sink of the SoC 102
CAnalyzer.TracePort() CombiProbe whisker cableis AorB 102
CAnalyzer. TRACK.RECORD() Get record number matching search 102
CERBEURS FUNCHONSoeeecciiiiiiiiiiisssssssscmnennsnssssssssssssssssmssssssnssssssssssssmmmmmssss s snssnsssnssnnnnns 103
CERBERUS.IOINFO() IOINFO of Cerberus module 103
CERBERUS.IOINFO.IFLCK() TRUE if IF_LCK bit in Cerberus INONFO set 103
L0 11 o LT 3T ' o N 104
CHIP.EmulationDevice() TRUE if emulation device 104
CHIP.STEPping() Maijor silicon step of an TriCore AURIX device 104
CIProbe Functions (Analog Probe for CombiProbe or pTrace)cccccecmriecemissesnsssanens 105
In This Section 105
CIProbe() TRUE if Compact Analyzer hardware 105
CIProbe.ADC.ENABLE() TRUE if channel is enabled 105
ClIProbe.ADC.SHUNTY() Get shunt-resistor value 105
CIProbe.MAXSIZE() Get max. size of trace buffer in records 106
CIProbe.RECORDS() Get number of used trace records 106

©1989-2024 Lauterbach General Function Reference | 6

ClProbe.SIZE()
CIProbe.STATE()
CIProbe.TRACK.RECORD()

Get current trace buffer size in records 106
Get state of Compact Analyzer for CIProbe 107
Get record number matching search 107

CIMI FUNCRION .uiieeciiireesiiremssissesssssssssrsnsssssassssssssssssnssssssssssssssssssnssssssnsssssnssssensssssnsssssnnssssnnssnsnns 108
CMIBASE() Base addresses of CMI modules 108
COMPONENT FUNCHIONS ..ccuiiieceiireesirsessiirsssssrsssssssnsssssansssssssssssnssssssnsssssnsssssnsssssansssssnssssnnssssens 109
In This Section 109

COMPonent. AVAILABLE()
COMPonent.BASE()
COMPonent.NAME()

TRUE if debug/trace peripherals available on CPU 109
Base address of debug/trace peripherals 110
User-defined name of debug/trace peripherals 110

COMPonent. TYPE() Type of debug/trace peripherals 111
COMPonentNAME() Name of debug/trace peripheral 111
COMPonentNUMBER() Number of valid debug/trace peripherals 112
L0201 2 1 T Ty e o T 113
In This Section 113
CONFIGNUMBER() Number of cores configured in TRACE32 114
CORE() Get the selected core 114

CORE.ISACTIVE() TRUE if this core is active 115

CORE.ISASSIGNED()

TRUE if physical core is assigned to debug session 116

CORE.LOGICALTOPHYSICAL() This is the physical core number 117
CORE.NAMES() Physical core names assigned to TRACE32 118
CORENAME() Name of core within selected chip 119
CORE.NUMBER() Number of logical cores 119
CORE.PHYSICALTOLOGICAL() Logical core number of physical core 121
Lo T 41 LTy T 1 o 3 =N 122
In This Section 122
Count.Frequency() Frequency of last measurement 122
Count.LEVEL() Level of frequency counter input 122
Count.Time() Time of last measurement 123
Count.VALUE() Samples of the Count.GO command 123
COVerage FUNCHIONSccccciiiiiiiir i ss s s s s e s e s e amn e e san 124
In This Section 124
COVerage.BDONE() Byte count of all executed instructions 125
COVerage.IDLE() TRUE if all trace data for code coverage are processed 125
COVerage.LOAD.KEY() Key from last ACD file 126
COVerage.Percentage() Percentage of code coverage 126
COVerage.SCOPE() Degree of code coverage 126
COVerage.SourceMetric() Active code coverage criterion 128
COVerage.TreeWalk() Walk symbol tree 129
L0 o 0 T3 o7 1 ' o 130
In This Section 130
©1989-2024 Lauterbach General Function Reference | 7

CPU.ADDRESS() Start address of memory section 130
CPU.ADDRESS.PhysicallINDEX() Section start address of given core 130
CPU.FEATURE() TRUE if CPU feature exists 131
CPU.PINCOUNTY() For internal usage only 136
CPUBONDOUT() Name of boundout processor 136
CPUCOREVERSION() Core or architecture version of CPU 136
CPUDERIVATE() Main part of processor name 137
CPUFAMILY() Family name of processor 137
CPUHELP() For internal usage only 137
CPUIS() TRUE if search string matches processor name 138
CPUIS64BIT() TRUE if 64-bit architecture 138
[N T T (o 3 139
In This Section 139
DAP.Available() TRUE if debugging via DAP is supported 139
DAP.USER<x>() Status of the DAP user pin 139

[T 1 TN U 3 T 1 o o T 140
In This Section 140
Data.<value_width>() Memory contents in default endianness 140
Data.<value_width>.<endianness>() Mem. contents in specified byte order 143
Data.<value_width>.<access_width>() Mem. contents in specified width 145
Data.AL.ERRORS() Get number of errors detected by Data.AllocList 146
Data.Float() Get floating point number 146
Data.STRing() Get zero-terminated string 147
Data.STRingN() Get zero-terminated string with a maximum length 148
Data.SUM() Get checksum 148
Data.SWAP.<value_width>.<swap_width>() Swap byte groups in word 149
Data.WSTRING() Get zero-terminated wide string 150
Data.WSTRING.BigEndian() Get big-endian wide string 150
Data.WSTRING.LittleEndian() Get little-endian wide string 151
DEBUGGER FUNCLION ... nss s s sn s s s s sm s s smn s s s s mn s s s e 152
DEBUGGER.FEATURE() Check debugger feature 152
DEBUGMODE FUNCHON ...coiiiiiiiimiinimsissmsnssms s s s s ss s sassns sms s s samssnsss s s ssmssnssnssnssmsnnssans 153
DEBUGMODE() Current debug mode 153
DISASSEMBLE FUNCHIONceeiiiiiiis s s s s s s s s s smnn e ms s mn nnasnns 154
DISASSEMBLE.ADDRESS() Disassembled instruction at address 154
DONGLEID FUNCHIONcueeiiieiiiiiesrnssssssss s s s s s s s ss s s s s ssms s s s s nnssm s s snsannssans 155
DONGLEID() Serial number of USB WibuKey 155
ELA Function (ARM Coresight Embedded Logic Analyzer)cccccuivvmmmmnnnssmnnnnnssnnenns 156
ELABASE() ELA base address 156
DPP Function (C166/ST10 ONIY) ..ccccciriiiiemmrmiiiemnnniisssmsssssssssss s ssmms s s ssssss s sssssmsssssssssmsnnsnas 156
DPP() Content of DPP register 156
©1989-2024 Lauterbach General Function Reference | 8

[20 T O3 L 3T £ o = 157
In This Section 157
EPOC.DATAADDRESS() Start address of data area (EPOC debugger) 157
EPOC.ENTRYPOINT() Entry address of debug task 157
EPOC.TEXTADDRESS() Start address of code area (EPOC debugger) 157

ERROR Functions (target-dependent) ... ssssesses 158
ERROR.ADDRESS() Address of last occurred memory access error 158

8 I 0T T £ o 159
In This Section 159
ETM() TRUE if ETM trace is available 159
ETM.ADDRCOMP() For internal usage only 160
ETM.ADDRCOMPTOTAL() Number of ETM address comparator pair 160
ETM.COUNTERS() Number of ETM counters 160
ETM.DATACOMP() Number of ETM data comparators 160
ETM.EXTIN() Number of internal ETM inputs 161
ETM.EXTOUT() Number of external ETM outputs 161
ETM.FIFOFULL() ETM fifofull logic 161
ETM.MAP() Number of ETM memory map decoders 161
ETM.PROTOCOL() Version of ETM protocol 162
ETM.SEQUENCER() Number of ETM sequencers 162
ETM.TraceCore() TRUE if the core is traced 162

EXTENDED Function (Z80 ONlY)ccciiciemmriinismmsrinssmsssssssmss s sssssssss s ssmsss s ssssssssssnsssnsssssnas 163
EXTENDED() TRUE if register CBAR>0 163

L9) G ¥ [T 1T o 164
FDX.INSTRING() Content at FDX memory address 164
FDX.TargetSTALLS() Monitor FDX communication stalls on the target 164

FLAG FUNCLIONSoooiiiiiiiiiiiciisemsmmens s snssssssssssssmmms s s s s s s esssnss s ssmsmmsse s s s s s sanssnsssssnnnnmmnnnssnns nnnns 165
In This Section 165
FLAG() TRUE if hardware flag system available 165
FLAG.READ() FLAG memory bytes with read access bit 165
FLAG.WRITE() FLAG memory bytes with write access bit 165

FLASH FUNCHIONS ..t s s s s s s s s n s s e mn e 166
In This Section 166
FLASH.CFI.SIZE() Size of FLASH devices 167
FLASH.CFI.WIDTHY() Data bus width of FLASH devices 167
FLASH.CLocK.Frequency() FLASH clock value 167
FLASH.ID() FLASH manufacturer and device ID 168
FLASH.List. STATE.PENDING() Number of pending sectors 169
FLASH.List. TYPE() FLASH family code of FLASH list entry 169
FLASH.ProgramMODE() FLASH programming modes 170
FLASH.ProgramMODE.OPTION() FLASH programming options 171

©1989-2024 Lauterbach General Function Reference | 9

FLASH.SECTOR.BEGIN() Start address 172
FLASH.SECTOR.END() End address 172
FLASH.SECTOR.EXIST() TRUE if sector exists 172
FLASH.SECTOR.EXTRAvalue() Extra value of FLASH.Create 173
FLASH.SECTOR.NEXTY() Address of next sector 174
FLASH.SECTOR.OTP() TRUE if OTP sector 174
FLASH.SECTOR.OPTION() Options of a FLASH sector 175
FLASH.SECTOR.RANGE() Address range of a FLASH sector 176
FLASH.SECTOR.SIZE() Size in bytes 176
FLASH.SECTOR.STATE() FLASH programming state 176
FLASH.SECTOR.TYPE() FLASH family code of sector 177
FLASH.SECTOR.WIDTH() Width of FLASH sector 178
FLASH.TARGET.BUILD() Build number of FLASH algorithm file 178
FLASH. TARGET.CODERANGE() Code range of FLASH algorithm 179
FLASH. TARGET.DATARANGE() Data range of FLASH algorithm 179
FLASH.TARGET.FILE() Name of FLASH algorithm file 179
FLASH.UNIT() Unit number of FLASH sector 180
FLASH.UNIT.BEGIN() Unit start address 180
FLASH.UNIT.END() Unit end address 180
FLASH.UNIT.EXIST() TRUE if unit exists 181
FLASH.UNIT.NEXT() Number of next unit 181
FLASHFILE FUNCHIONSceiiiiccir i iemmn s smss s s smms s s s mm s s e ssmn s s s e mmn s s 182
In This Section 182
FLASHFILE.GETBADBLOCK.COUNTY() Number of bad blocks 182
FLASHFILE.GETBADBLOCK.NEXT() Address of bad block 182
FLASHFILE.SPAREADDRESS() Address of spare area 183
FPU Functions (Floating Point UnNit) ..o e e 184
In This Section 184
FPU() FPU register contents 184
FPUCR() FPU control register contents 184
FPU.RAW() FPU register raw contents 184
U I LTy e o o 185
FXU() Content of FXU register 185
1€1 {0 LU0 o ¥ T o] o 185
GROUP.EXIST() TRUE if group exists 185
Hardware FUNCLIONS ... e s s e 186
In This Section 186
hardware. COMBIPROBE() TRUE if CombiProbe 186
hardware.ESI() TRUE if EPROM Simulator 186
hardware.ICD() TRUE if TRACES32 debug hardware 187
hardware. POWERDEBUG() TRUE if TRACES32 PowerDebug hardware 187
hardware. POWERINTEGRATOR() TRUE if a Powerlntergrator 187
©1989-2024 Lauterbach General Function Reference | 10

hardware. POWERINTEGRATOR2() TRUE if a PowerIntegrator Il 187
hardware. POWERNEXUS() TRUE is a NEXUS Adapter 188
hardware. POWERPROBE() TRUE is a PowerProbe 188
hardware. POWERTRACE() TRUE if a PowerTrace Module 188
hardware. POWERTRACEZ2() TRUE if a PowerTrace Il 188
hardware. POWERTRACE2LITE() TRUE if a PowerTrace Il LITE 189
hardware. POWERTRACE3() TRUE if a PowerTrace Il 189
hardware. POWERTRACEPX() TRUE if a PowerTrace PX 189
hardware. POWERTRACESERIAL() TRUE if a PowerTrace Serial 189
hardware. POWERTRACESERIAL2() TRUE if a PowerTrace Serial I 190
hardware. QUADPROBE() TRUE if QuadProbe 190
hardware.UTRACE() TRUE if yTrace 190
L 0 G U T3 T 1o o 191
HVX() Content of HVX register 191
L O L 3T) o T 192
In This Section 192
[2C.DATA() Data read by I2C.TRANSFER 192
12C.PIN() Pin status 192
ID FUNCHIONS ...coiiiceciiiieinr s issss s s s s s s s e s s e amme s e e mmme s e e mmmnn 193
In This Section 193
ID.CABLE() Hardware ID of debug cable 193
ID.POWERTRACEAUXPORT() Hardware ID of device at PT aux port 193
ID.PREPROcessor() Hardware ID of preprocessor 194
ID.SERialPort1() Type-ID of Adapter or Preprocessor at PowerTrace Serial 195
ID.WHISKER() ID of whisker cable 196
IDCODE() ID code of TAP in JTAG chain 199
IDCODENUMBER() Number of detected TAPs 199
Integrator FUNCLIONSeeeiiiiiiri s s s s s e e e 200
In This Section 200
Integrator() TRUE if Powerlntegrator 200
Integrator.FIRST() Get record number of first trace record 200
Integrator. ADC.ENABLE() Bitmask of enabled analog channels 201
Integrator. ADC.SHUNT() Shunt-resistor value 201
Integrator. ANALOG() 201

Integrator. COUNTER.EVENT()
Integrator. COUNTER.EXTERN()
Integrator. COUNTER.TIME()
Integrator.DIALOGDSELY()
Integrator.DIALOGDSELGETY()
Integrator.DSEL()
Integrator.FIND.PI_CHANNEL()
Integrator.FIND.PI_WORD()

Get value of trigger program event counter 201
Value of trigger program external counter 202
Get value of trigger program time counter 202

For internal usage only 202
For internal usage only 202
For internal usage only 203
For internal usage only 203
TRUE if signal word is defined 203

©1989-2024 Lauterbach General Function Reference | 11

Integrator.FLAG() Check state of trigger program FLAG 203
Integrator.GET() Value of channel 204
Integrator. MAXSIZE() Get max. size of trace buffer in records 204
Integrator.PROBE() For internal usage only 204
Integrator. PROGRAMFILENAME() File name of trigger program 204
Integrator. RECORD.DATA() Get data recorded in trace record 205
Integrator. RECORD.TIME() Get timestamp of trace record 205
Integrator. RECORDS() Get number of used trace records 205
Integrator.REF() Get record number of reference record 205
Integrator.SIZE() Get current trace buffer size in records 206
Integrator.STATE() Get state of the Integrator 206
Integrator. TRACK.RECORD() Get record number matching search 206
Integrator.USB() For internal usage only 207
INTERFACE FUNCHIONScoiiiciiiimsr e mns s snsass s s ssmss s s s s s s mmn s s s mmn s s s smmnns 208
In This Section 208
INTERFACE.CADI() TRUE if connection to target is via CADI interface 208
INTERFACE.GDB() TRUE if connection to target is via GDB interface 209
INTERFACE.GDI() TRUE if connection to target via GDI interface 209
INTERFACE.HOSTY() TRUE if application is debugged on host 209
interface.HOSTMCI() TRUE if TRACE32 debug driver runs on host 209
INTERFACE.IRIS() TRUE if connection to target is via IRIS interface 210
INTERFACE.MCD() TRUE if connection to target via MCD interface 210
INTERFACE.NAME() Name of debugger 210
INTERFACE.QNX() TRUE if PBI=QNX 210
INTERFACE.SIM() TRUE if simulator 211
IOBASE FUNCHIONS ceeeccciiiiiiiiinissssssscesns s ssssss s s ssssmmmss s s s s s s nessssssssmmmnmmsss s s nesnsssnsssnnnmnnnnnnns 212
In This Section 212
IOBASE() Base address of internal I/O’s 212
IOBASE.ADDRESS() Base address of internal 1/0’s with access class 212
IOBASE2() Second base address of internal I/0’s 212
IProbe FUNCLIONScoiiiiiiiimrr s sms s s s s s s s s amm s s e 213
In This Section 214
IProbe() TRUE if IPROBE 214
IProbe.ADC.ENABLE() TRUE if channel is enabled 214
IProbe.ADC.SHUNT() Shunt resistor value of channel 215
IProbe.ANALOG() TRUE if Analog Probe is plugged 216
IProbe.FIRST() Get record number of first trace record 216
IProbe.GET() Value of channel 216
IProbe.MAXSIZE() Get max. size of trace buffer in records 217
IProbe.PROBE() 217
IProbe.RECORD.DATA() Get data recorded in trace record 218
IProbe.RECORD.TIME() Get timestamp of trace record 218
©1989-2024 Lauterbach General Function Reference | 12

IProbe.RECORDS() Get number of used trace records 219
IProbe.REF() Get record number of reference record 220
IProbe.SIZE() Get current trace buffer size in records 220
IProbe.STATE() Get state of IProbe 221
IProbe. TRACK.RECORD() Get record number matching search 221
JTAG FUNCHIONS ... cmrnn s rs s s ssssms e s s s e ss s s s ssssmmmm s e e s e s e e s n s s mmmmnmmssn e s e nnsnnnnnn 222
In This Section 222
JTAG.MIPI34() Query special MIPI34 pins 222
JTAG.PIN() Level of JTAG signal 223
JTAG.SEQuence.RESULTY() Get result of JTAG sequence 223
JTAG.SEQuence.EXIST() Check if a JTAG sequence exists 223
JTAG.SEQuence.LOCKED() Check if a JTAG sequence is locked 224
JTAG.SHIFT() TDO output of JTAG shift 224
JTAG.X7EFUSE.RESULTY() Result of JTAG.X7EFUSE command 225
JTAG.X7EFUSE.CNTL() CNTL flags read by JTAG.X7EFUSE command 226
JTAG.X7EFUSE.DNA() DNA value read by JTAG.X7EFUSE command 226
JTAG.X7EFUSE.KEY() AES key read by JTAG.X7EFUSE command 227
JTAG.X7EFUSE.USER() User code read by JTAG.X7EFUSE command 227
JTAG.XUSEFUSE.RESULT() Result of JTAG.XUSEFUSE command 228
JTAG.XUSEFUSE.CNTL() CNTL value read by JTAG.XUSEFUSE command 228
JTAG.XUSEFUSE.DNA() DNA value read by JTAG.XUSEFUSE command 229
JTAG.XUSEFUSE.KEY() AES key read by JTAG.XUSEFUSE command 229
JTAG.XUSEFUSE.RSA() RSA hash read by JTAG.XUSEFUSE command 230
JTAG.XUSEFUSE.SEC() SEC value read by JTAG.XUSEFUSE command 230
JTAG.XUSEFUSE.USER() User code read by JTAG.XUSEFUSE command 231
JTAG.XUSEFUSE.USER128() 128 bit User code read by JTAG.XUSEFUSE 231
LOGGER FUNCHIONSceeiiiicrn i ccersessm e s s e s ssssmme s e s s s e s smmme e e s smmn s e e e ssmmn s eensmmnnnnas 232
In This Section 232
LOGGER.FIRST() Get record number of first trace record 232
LOGGER.RECORD.ADDRESS() Get address recorded in trace record 233
LOGGER.RECORD.DATA() Get data recorded in trace record 233
LOGGER.RECORD.OFFSET() Get address in trace record as number 233
LOGGER.RECORD.TIME() Get timestamp of trace record 234
LOGGER.RECORDS() Get number of used trace records 234
LOGGER.REF() Get record number of reference record 234
LOGGER.SIZE() Get current trace buffer size in records 234
LOGGER.STATE() Get state of Logger trace 235
MachO Format FUNCHION (APPIE) ..ccceceeriiiirmmrriniemns s rssess s ssssms s s s ssms s s s amm s s e anmne 236
MACHO.LASTUUID() Universally unique identifier of MachO file 236
N o T 4T 1 o o L= 237
In This Section 237
MAP.ROMSIZE() Size of the defined ROM 237
©1989-2024 Lauterbach General Function Reference | 13

103 B 2SN ¥ T T e o L= 238
In This Section 238
MCDS.MODULE.NAME() Name of MCDS module 239
MCDS.MODULE.NUMBER() Number-part of MCDS module ID 239
MCDS.MODULE.REVision() Revision-part of MCDS module ID 239
MCDS.MODULE.TYPE() Type-part of MCDS module ID 240
MCDS.STATE() MCDS module is switched on/off 240
MCDS.TraceBuffer.LowerGAP() Trace buffer lower gap 241
MCDS.TraceBuffer.SIZE() Trace buffer size 242
MCDS.TraceBuffer.UpperGAP() Trace buffer upper gap 242

MMU Functions (Memory Management Unit) ..o snssess s snssssenes 243
In This Section 243
MMU() Value of MMU register 243
MMU.DEFAULTPT() Base address of default page table 244
MMU.DEFAULTTRANS.<range>() Query MMU setup 245
MMU.FORMAT() Currently selected MMU format 247
MMU.FORMAT.DETECTED() Auto-detection of page table format 248
MMU.FORMAT.DETECTED.ZONE() Auto-detection of page table format 249

MMX Function (MultiMedia eXtension) ... s esas 250
MMX() Value of MMX register 250

MONITOR FUNCHON ...ceeiieiiietsiiess s s s s s s s s s s s s s s am s e s n s s 250
MONITOR() TRUE if debugger is running as monitor 250

NEXUS FUNCHONS ...ooiieiiiiismiis s s s s s s s s s s s s s s nsmnnnaan 251
In This Section 251
NEXUS() TRUE if Nexus trace is supported 251
NEXUS.RTTBUILD() RTT build register 251
NEXUS.PortMode() Current PortMode setting 252
NEXUS.PortSize() Current PortSize setting 252

10 10T 41T o LT3 T ' o 253
In This Section 253
Onchip() TRUE if the onchip trace is available 253
Onchip.FIRST() Get record number of first trace record 253
Onchip.FLOW.ERRORS() Get number of flow errors / hard errors 253
Onchip.FLOW.FIFOFULL() Get number of FIFO overflows 254
Onchip.MAXSIZE() Get max. size of trace buffer in records 255
Onchip.RECORD.ADDRESS() Get address recorded in trace record 255
Onchip.RECORD.DATA() Get data recorded in trace record 255
Onchip.RECORD.OFFSET() Get address in trace record as number 255
Onchip.RECORD.TIME() Get timestamp of trace record 256
Onchip.RECORDS() Get number of used trace records 256
Onchip.REF() Get record number of reference record 256
Onchip.SIZE() Get current trace buffer size in records 256

©1989-2024 Lauterbach General Function Reference | 14

Onchip.STATE() Get state of Onchip trace 257
Onchip.TraceCONNECTY() Name of trace sink of the SoC 257
Onchip. TRACK.RECORD() Get record number matching search 258

[= I 1T 4 o7 1 o o 259
PBI() Name of used debug back-end 259
0] I T 4 o7 1 o o = 260
In This Section 260
PCl.Read.B() Byte from PCI register 260
PCl.Read.L() Long from PCI register 260
PCl.Read.W() Word from PCI register 260
g L B T 4o 1o 3 = 261
In This Section 261
PER.<width>() Memory contents in default endianness 261
PER.<width>.<endianness>() Memory contents in specified endianness 262
PER.ADDRESS() Address of register(field) 263
PER.ADDRESS.<sub_cmd>() Check access security in PER file 264
PER.ARG() Argument of PER.view command 264
PER.ARG.ADDRESS() Address argument of PER.view command 265
PER.BASE() Last BASE address 265
PER.Buffer.<width>() Value from buffer 266
PER.EVAL() Value of expression in PER file 267
PER.FILENAME() PER file name 267
PER.SAVEINDEX() Value from indexed register 268
PER.VALUE() Value of register(field) 268
PER.VALUE.STRING() Value of BITFLD as string 269
PERF Functions (Performance)cccccccmiiiimmminiessrmns s s ssss s sssssss s s sssssssss s 270
In This Section 270
PERF.MEMORY.HITS() Number of memory samples 270
PERF.MEMORY.SnoopAddress() Snoop memory address 271
PERF.MEMORY.SnoopSize() Snoop size 271
PERF.METHOD() Recording method 271
PERF.MODE() Get Performance Analyzer recording mode 272
PERF.PC.HITS() Number of PC samples 272
PERF.RATE() Number of snoops per second 272
PERF.RunTime() Retained time for program run 273
PERF.SNOOPFAILS() Number of snoop fails 273
PERF.STATE() Get state of Performance Analyzer 273
PERF.TASK.HITS() Number of task samples 274
Port Analyzer FUNCLIONSccccciiiiiimr s ess s s s s s s e e s 275
In This Section 275
PORT.GET() Value of channel 275
PORT.MAXSIZE() Get max. size of trace buffer in records 275
©1989-2024 Lauterbach General Function Reference | 15

PORTSHARING Function

POWER Functions

PowerProbe Functions

RTS Functions

RunTime Functions

PORT.RECORDS()
PORT.REF()
PORT.SIZE()
PORT.STATE()
PORT.TRACK.RECORD()
PORTANALYZER()

PORTSHARING()

In This Section

In This Section
PROBE.COUNTER.EVENT()
PROBE.COUNTER.EXTERN()
PROBE.COUNTER.TIME()
Probe.FIRST()
PROBE.FLAG()
PROBE.GET()
PROBE.MAXSIZE()
PROBE.RECORD.DATA()
PROBE.RECORD.TIME()
PROBE.RECORDS()
PROBE.REF()
PROBE.SIZE()
PROBE.STATE()
PROBE.TRACK.RECORD()

Program Pointer Function

Get number of used trace records

Get record number of reference record
Get current trace buffer size in records
Get state of Port Analyzer

Get record number matching search

Get value of trigger program event counter
Get value of trigger program external counter
Get value of trigger program time counter
Get record number of first trace record
Check state of trigger program FLAG
Value of channel

Get max. size of trace buffer in records
Get data recorded in trace record

Get timestamp of trace record

Get number of used trace records

Get record number of reference record
Get current trace buffer size in records
Get state of PowerProbe

Get record number matching search

PP() Address of program pointer (access class, space ID, program counter)

Register Functions
Register()
Register.LIST()
Register.Valid()

In This Section
RTS.ERROR()
RTS.NOCODE()
RTS.FIFOFULL()
RTS.RECORD()
RTS.RECORDS()
RTS.BUSY()

Content of register
First / next register name
Valid register value

Check for flowerrors during RTS processing
Check for RTS NOCODE error

Check for FIFO full error in RTS

Find record causing an error in RTS

Get number of trace records transferred to RTS

Check if RTS is busy

©1989-2024 Lauterbach

General Function Reference

In This Section 290

RunTime.ACCURACY() Accuracy of run-time counter 290
RunTime.ACTUAL() 290
RunTime.LAST() 290
RunTime.LASTRUN() 291
RunTime.REFA() 291
RunTime.REFB() 291
SMMU FUNCLIONSeeeeiiiiiiiemisiisasns s sssssms s s s s s s s e mn s s s mm e e amn e s e e amn s e e nnamnn e nnnnnn 292
SMMU.BaseADDRESS() Base address of SMMU 292
SMMU.StreamID2SMRG() Find match for stream ID 292
ES7 1[0 101 27T g ST T { o o 1= 294
In This Section 294
SNOOPer.FIRST() Get record number of first trace record 294
SNOOPer.MAXSIZE() Get max. size of trace buffer in records 295
SNOOPer.RECORD.ADDRESS() Get address recorded in trace record 295
SNOOPer.RECORD.DATA() Get data recorded in trace record 295
SNOOPer.RECORD.OFFSET() Get address in trace record as number 295
SNOOPer.RECORD.TIME() Get timestamp of trace record 296
SNOOPer.RECORDS() Get number of used trace records 296
SNOOPer.REF() Get record number of reference record 296
SNOOPer.SIZE() Get current trace buffer size in records 296
SNOOPer.STATE() Get state of SNOOPer trace 297
STATE Functions (Target State) ... s ssnas 298
In This Section 298
STATE.HALTY() 298
STATE.OSLK() 298
STATE.POWER() 299
STATE.PROCESSOR() 300
STATE.RESET() 301
STATE.RUN() 301
STATE.TARGET() State of target displayed in TRACE32 state line 301
£ o N 1T 4T o o 301
SPE() Content from SPE register 301
SSE FUNCLION ... ierccr e e s rrsss s e se s e e es s me s re s s mn e s e e s s mme e e en s s mne s eensmmeenennssnmennensnnn 302
SSE() Segment from SSE register 302
Stimuli Generator FUNCHON ... s 303
hardware.STG() TRUE if Stimuli Generator hardware 303
SYMDBOI FUNCHIONS ...ttt s s s s s s e amn e e nnas 304
In This Section 304
sYmbol.AutoLOAD.CHECK() Update option for the symbol autoloader 304
sYmbol.AutoLOAD.CHECKCMD() Load command for symbol autoloader 304

©1989-2024 Lauterbach General Function Reference | 17

sYmbol.AutoLOAD.CONFIG() Used sub-command 305
sYmbol.BEGIN() First address of symbol 305
sYmbol. COUNT() Number of symbols 306
sYmbol.ECA.BINary. GAPNUMBER() Number of observability gaps 306
sYmbol.END() Last address of symbol 306
sYmbol.EPILOG() Address of return point 307
sYmbol. EXIST() TRUE if symbol exists 308
sYmbol.EXIT() Exit address of function 308
sYmbol.FUNCTION() Function name 309
sYmbol.IMPORT() Import file names 309
sYmbol.ISFUNCTION() TRUE if symbol is function 309
sYmbol.ISVARIABLE() TRUE if symbol is variable 310
sYmbol.LANGUAGE() Selected high-level language 311
sYmbol.List. MAP.<x>() Information about address ranges on the target 311
sYmbol.LIST.PROGRAM() Path and file name of binary files 312
sYmbol.List. PROGRAM.<x>() Information about loaded programs 313
sYmbol.List.SECtion.<x>() Information about section ranges 314
sYmbol.LIST.SOURCE() File location of source file 316
sYmbol. MATCHES() Number of occurrences 316
sYmbol.NAME() Symbol path and name based on address 317
sYmbol.NAME.AT() Resolve ambiguous symbols based on address 317
sYmbol.NEXT.BEGIN() Start address of next symbol 318
sYmbol. RANGE() Address range of symbol 318
sYmbol.SEARCHFILE() Absolute path of source file 318
sYmbol. SECADDRESS() Start address of section 320
sYmbol.SECEND() End address of section 320
sYmbol. SECEXIST() Check for existence of a section 320
sYmbol.SECNAME() Section name 321
sYmbol. SECPRANGE() Physical address range of section 321
sYmbol. SECRANGE() Logical address range of section 321
sYmbol.SIZEOF() Size of debug symbol 322
sYmbol.SOURCEFILE() Name of source file 322
sYmbol. SOURCELINE() HLL-line number of address 323
sYmbol.SOURCEPATH() TRUE if path is search path 324
sYmbol.STATE() Value from sYmbol.state window 324
sYmbol. TRANSPOSE() Transpose program and module names 324
sYmbol. TYPE() Type of symbol 325
sYmbol.VARNAME() Name of variable or structure element 326
£33 (=1 o T8 ¥ e o o = 327
In This Section 327
SYStem.ACCESS.DENIED() TRUE if memory access is denied 328
SYStem.AMBA() TRUE if AMBA bus mode is selected 328
SYStem.BigEndian() TRUE if target core runs in big endian mode 328
©1989-2024 Lauterbach General Function Reference | 18

SYStem.CADIconfig.RemoteServer()
SYStem.CADIconfig.Traceconfig()
SYStem.CONFIG.<tap_position>()
SYStem.CONFIG.DEBUGPORT()
SYStem.CONFIG.DEBUGPORTTYPE()
SYStem.CONFIG.JTAGTAP()
SYStem.CONFIG.ListCORE()
SYStem.CONFIG.ListSIM()
SYStem.CONFIG.Slave()
SYStem.CONFIG.TAPState()
SYStem.CPU()
SYStem.GTL.CALLCOUNTER()
SYStem.GTL.CONNECTED()
SYStem.GTL.CYCLECOUNTER()
SYStem.GTL.LIBname()
SYStem.GTL.ModelINFO()
SYStem.GTL.ModelNAME()
SYStem.GTL.PLUGINVERSION()
SYStem.GTL.TransactorNAME()
SYStem.GTL.TransactorTYPE()
SYStem.GTL.VENDORID()
SYStem.GTL.VERSION()
SYStem.HOOK()
SYStem.IMASKASM()
SYStem.IMASKHLLY()
SYStem.INSTANCE()
SYStem.INSTANCECOUNTY()
SYStem.IRISconfig.RemoteServer()
SYStem.JtagClock()
SYStem.LittleEndian()
SYStem.MCDCommand.ResultString()
SYStem.MCDconfig.LIBrary()
SYStem.Mode()
SYStem.NOTRAP()
SYStem.Option.DUALPORTY()
SYStem.Option.MACHINESPACES()
SYStem.Option.MMUSPACES()
SYStem.Option.EnReset()
SYStem.Option.ResBreak()
SYStem.Option.SPILLLOCation()
SYStem.Option.ZoneSPACES()
SYStem.RESetBehavior()
SYStem.Up()

Return the JTAG PRE and POST settings

Name of processor

Amount of calls to GTL library
Connection status

load GTL interface for bit banging protocol
Name of GTL library

Info string from GTL API
Model Name

Version number

Transactor name

Transactor type

Vendor ID

Version number

Index of TRACES32 PowerView instance
Count of GUIs connected to a PowerDebug

1 if the option NOTRAP is active
State of like-named command
State of like-named command
State of like-named command
State of like-named command
State of like-named command
State of like-named command
State of like-named command

Current setting of RESetBehavior

TRUE if debugger has access to debug resources

329
330
331
331
331
332
335
336
336
337
337
338
338
338
338
339
339
339
340
340
340
341
341
341
341
342
342
343
343
343
344
344
344
345
345
345
346
346
346
347
347
348
348

©1989-2024 Lauterbach

General Function Reference

| 19

SYStem.USECORE() 350
SYStem.USEMASK() 351
TASK FUNCHONS ...t s s s s s s s s s s sam s e s e nn e 352
In This Section 352
TASK() Name of current task 353
TASK.ACCESS() Access class 353
TASK.ACCESS.ZONE() Access class zone 353
TASK.BACK() Background task number 353
TASK.CONFIG() OS Awareness configuration information 354
TASK.CONFIGFILE() Path of loaded OS Awareness 354
TASK.COUNTY() Number of tasks 354
TASK.CURRENT.MACHINEID() ID of current machine 355
TASK.CURRENT.SPACEID() ID of current MMU space 355
TASK.CURRENT.TASK() Magic value of current task 355
TASK.CURRENT.TASKNAME() Name of current task 355
TASK.FIRST() First task in list 356
TASK.FORE() Foreground task number 356
TASK.ID() ID of task 356
TASK.MACHINE.ACCESS() Default access class 356
TASK.MACHINE.ID() ID of machine 357
TASK.MACHINE.NAME() Name of machine 357
TASK.MACHINE.VTTB() VTTB of machine 358
TASK.MAGIC() Task magic number 358
TASK.MAGICADDRESS() 'magic address' 359
TASK.MAGICRANGE() Range of 'magic address' 359
TASK.MAGICSIZE() Size of 'magic address' 359
TASK.NAME() Name of task 360
TASK.NEXT() Next task in list 360
TASK.ORTIFILE() Path of loaded ORTI file 361
TASK.SPACE.COUNT() Number of spaces 361
TASK.SPACEID() Space ID of task 362
TERM Functions (Terminal WindOW)cccccuiiimmmmmninsmmmmnssssnnsessssssssssssssssss s ssssssmsssnas 363
In This Section 363
TERM.LINE() Get line from terminal window 363
TERM.NEWHANDLE() Get next free terminal handle 363
TERM.READBUSY() TRUE as long as TERM.READ is in progress 364
TERM.RETURNCODE() Get returncode from terminal routine 364
TERM.TRIGGERED() Get trigger state of terminal window 365
LI L8 0T T 4o o = 366
In This Section 366
TPIU.PortMode() Port mode setting 366
TPIU.PortSize() Port size setting 366
©1989-2024 Lauterbach General Function Reference | 20

TPIU.SWVPrescaler() SWVPrescaler value 367
TPUBASE FUNCLIONccccccccceccciersnn s sssssssssm s s e s s e s s ssssssssssmssmmn s e s s s s s snssnnsssssmmsmmssns s nnssnnnsns 367
TPUBASE.ADDRESS() Address of TPU 367
L= (o= T3 e 1o o T 368
In This Section 368
Trace.FIRST() Get record number of first trace record 368
Trace.FLOW() TRUE if trace method is flow trace 369
Trace.FLOW.ERRORS() Get number of flow errors / hard errors 369
Trace.FLOW.FIFOFULL() Get number of FIFO overflows 370
Trace.MAXSIZE() Get max. size of trace buffer in records 370
Trace.METHOD() Currently configured trace method 371
Trace.METHOD.Analyzer() TRUE if the trace method is Analyzer 371
Trace.METHOD.ART() TRUE if the trace method is ART 371
Trace.METHOD.CAnalyzer() TRUE if the trace method is CAnalyzer 371
Trace.METHOD.FDX() TRUE if the trace method is FDX 372
Trace.METHOD.HAnalyzer() TRUE if the trace method is HAnalyzer 372
Trace.METHOD.Integrator() TRUE if the trace method uses the Integrator 372
Trace.METHOD.IProbe() TRUE if the trace method uses the IProbe 372
Trace.METHOD.LA() TRUE if the trace method is LA 373
Trace. METHOD.LOGGER() TRUE if the trace method is LOGGER 373
Trace.METHOD.ONCHIP() TRUE if the trace method is ONCHIP 373
Trace.METHOD.Probe() TRUE if trace method uses the PowerProbe 373
Trace.METHOD.SNOOPer() TRUE if the trace method is SNOOPer 374
Trace. RECORD.ADDRESS() Get address recorded in trace record 374
Trace.RECORD.DATA() Get data recorded in trace record 374
Trace.RECORD.OFFSET() Get address in trace record as number 375
Trace.RECORD.TIME() Get timestamp of trace record 375
Trace.RECORDS() Get number of used trace records 375
Trace.SIZE() Get current trace buffer size in records 376
Trace.STATE() Get state of PowerTrace hardware 376
Trace.STATistic. COUNT() Number of occurences of selected function 377
Trace.STATistic.EXIST() TRUE if function exists in trace statistics 377
Trace.STATistic.FIRST() Record number of start point for statistic analysis 377
Trace.STATistic.IMAX() Longest time between function entry and exit 377
Trace.STATistic.IMIN() Shortest time between function entry and exit 378
Trace.STATistic.Internal() Time spent within the selected function 378
Trace.STATistic.LAST() Record number of end point for statistic analysis 378
Trace.STATistic. MAX() Maximum time of selected function 378
Trace.STATistic.MIN() Minimum time of selected function 379
Trace.STATistic.Total() Total time of selected function 379
Trace.TraceCONNECT() Name of trace sink of the SoC 380
TRACEPORT FUNCLIONceecececiiniiinissssssssssssmsssn s nssssssss s ssmsmmssss s s s s sssssssssssnnsmmmsesssnsssnssnnnnns 381
©1989-2024 Lauterbach General Function Reference 21

In This Section 381
TRACEPORT.LaneCount() Number of serial lanes 381
TRACK FUNCHONS ...eeceiieiiiiems s s s s s as s s s smn s s s namn s am s e nn e 382
In This Section 382
TRACK.ADDRESS() Get tracking address 382
TRACK.COLUMNY() Number of column where the found item starts 382
TRACK.LINE() Number of line containing the found item 382
TRACK.RECORD() Number of record containing the found item 384
TRACK.STRing() Current selection in a TRACE32 window 384
TRACK.TIME() Timestamp of current tracking record 385
TRANS Functions (Debugger Address Translation) ... 386
In This Section 386
TRANS.LIST.NUMBER() Number of TRANS.List entries 386
TRANS.LIST.LOGRANGE() Query TRANS.List entry 387
TRANS.LIST.PHYSADDR() Query TRANS.List entry 388
TRANS.LIST.TYPE() Query TRANS.List entry 389
TRANS.ENABLE() TRUE if address translation is enabled 390
TRANS.INTERMEDIATE() Convert a guest logical address 390
TRANS.INTERMEDIATE.VALID() TRUE if address translation is valid 391
TRANS.LINEAR() Convert logical to linear address 391
TRANS.LINEAR.VALID() TRUE if address translation is valid 392
TRANS.LOGICAL() Convert physical to logical address 392
TRANS.LOGICAL.VALID() TRUE if address translation is valid 393
TRANS.PHYSICAL() Convert logical to physical address 393
TRANS.PHYSICAL.VALID() TRUE if address translation is valid 396
TRANS.TABLEWALK() TRUE if address translation table walk is ON 396
JLIES 350 T 10T (o o 397
TSS() TSS base address 397
722 L ¥ T e T 398
In This Section 398
Var.ADDRESS() Address of HLL expression 398
Var.BITPOS() Bit position inside a C bit field 398
Var.BITSIZE() Size of bit field element 399
Var.END() Last address of HLL expression 399
Var.EXIST() TRUE if HLL expression exists 400
Var.FVALUE() Contents of HLL expression 401
Var.ISBIT() TRUE if HLL expression is a bit field element 401
Var.RANGE() Address range of HLL expression 402
Var.SIZEOF() Size of HLL expression 402
Var.STRing() Zero-terminated string or variable contents 403
Var.TYPEOF() Type of HLL expression 403
Var.VALUE() Value of HLL expression 404
©1989-2024 Lauterbach General Function Reference | 22

Y0 @ J T T Yo 4 Lo Y 405

VCO() Frequency of VCO generator 405
VERSION FUNCHIONS ..coeeiiiesiis s isms s s e s s s s s s s s s nsmn s mn s s nnsmns 406
In This Section 406
VERSION.BUILD() Upper build number 407
VERSION.BUILD.BASE() Lower build number 407
VERSION.CABLE() Hardware version of debug cable 408
VERSION.DATE() Version date YYYY/MM 408
VERSION.ENVironment() TRACES32 environment setting 408
VERSION.FirmWare.DEBUG() Version number of frmware 409
VERSION.SERIAL() Serial number 409
VERSION.SERIAL.CABLE() First serial number of debug cable 409
VERSION.SERIAL.DEBUG() Serial number of debug module 410
VERSION.SERIAL.Integrator() Serial number of Powerlntegrator 410
VERSION.SERIAL.NEXUSadapter() Serial number of nexus adapter 410
VERSION.SERIAL.PREPROcessor() Serial number of preprocessor 410
VERSION.SERIAL.POWERPROBE() Serial number of PowerProbe 411
VERSION.SERIAL.POWERTRACEAUXPORT() S/N of device at PT aux port 411
VERSION.SERIAL.SERialPort1() S/N of device at Serial Port 1 of PT Serial 411
VERSION.SERIAL.WHISKER() S/N of whiskers at CombiProbe or yTrace 411
VERSION.SERIAL.TRACE() Serial number of trace module 412
VERSION.SOFTWARE() Release build or nightly build, etc. 413
VERSION.SOFTWARE.TYPE() Software build type 414
VPU FUNCHIONS ..cooiiiiciicciesecmmenn s nssssssssssssssmmm s s s s sn s sss s s sssmmmsns s s s s nnssnssssssnsnmmnsnssnnssnssnnssnssnnnnns 415
In This Section 415
VPU() Value of VPU register 415
VPUCR() Value of VRSAVE or VSCR register 415

©1989-2024 Lauterbach General Function Reference | 23

General Function Reference

History

Version 06-Jun-2024

27-May-2024
13-May-2024
08-May-2024
03-May-2024
27-Mar-2024
25-Jan-2024
20-Nov-2023
21-Aug-2023
06-Jun-2023
05-Jun-2023

02-May-2023

18-Apr-2023
20-Feb-2023
18-Nov-2022

18-Nov-2022

02-Nov-2022

22-Aug-2022

09-May-2022

New functions Trace.STATistic.FIRST() and Trace.STATistic.LAST().
New function COVerage.IDLE().

New functions COMPonentNAME() and COMPonentNUMBER().
New function TERM.NEWHANDLE().

New function ID.POWERTRACEAUXPORT().

New function sYmbol.ECA.BINary.GAPNUMBER().

New function COVerage.Percentage().

New function Register.Valid().

New function VERSION.SOFTWARE.TYPE().

New function PER.BASE().

New functions: Analyzer. CONFIG.POWERTRACESERIAL2() and
hardware. POWERTRACESERIAL2Y).

New optional parameter for Symbol. SOURCEFILE().
New functions: ID.SERialPort1() and VERSION.SERIAL.SERialPort1().
New function: PBI().

New functions: VERSION.SERIAL.Integrator, VERSION.SERIAL.NEXUSadapter, and
VERSION.SERIAL.POWERPROBE.

All hardware functions are now grouped in the chapter ‘Hardware Functions'. The
descriptions have also been updated.

New THUMB parameter for CPU.FEATURE() function supported by the Arm architecture.

New functions: SYStem.GTL.CALLCOUNTER() and SYStem.GTL.CYCLECOUNTER).

©1989-2024 Lauterbach

General Function Reference |

24

09-May-2022
06-May-2022

08-Apr-2022

01-Apr-2022

30-Mar-2022
09-Mar-2022
04-Mar-2022
04-Mar-2022
24-Feb-2022
10-Feb-2022
03-Feb-2022
19-Jan-2022
Dec-2021

Nov-2021

New function: FDX.TargetSTALLS().
New functions: PER.ADDRESS(), PER.VALUE(), and PER.VALUE.STRING().

Added optional parameters to the functions TASK.MAGICADDRESS(),
TASK.MAGICRANGE(), and TASK.MAGICSIZE().

Removed functions: hardware.SCU(), hardware.TA32(), SYStem.TRACEEXT(),

SYStem.TRACEINT(), and Analyzer.CONFIG.RISCTRACE().

New function: sYmbol. TRANSPOSE().

New function: COVerage.LOAD.KEY/().

New function: ETM.TraceCORE().

New function: CABLE.GalvaniclSOlation.FIRMWARE().

Removed functions: INTERFACE.VAST() and INTERFACE.VDI().

New function: COMPonent. TYPE().

New function: TERM.READBUSY().

New function: PER.SAVEINDEX().

New functions: sYmbol.List. PROGRAM.<x>(), and sYmbol.List. SECtion.<x>().

New functions: SYStem.GTL.ModelINFO(), SYStem.GTL.ModelNAME(),
SYStem.GTL.TransactorNAME(), SYStem.GTL.TransactorTYPE(), and
DEBUGGER.FEATURE().

©1989-2024 Lauterbach

General Function Reference

25

In This Document

This document lists all the target-related functions and tool-related functions available for the different debug
systems.

In addition, the document provides important background information about functions in TRACE32 and
explains the purpose and use of functions in TRACE32.

The capital letters in function names represent the short form of the function. Any function name can be
written in its long or short form. For example Data.Byte () could be also written as D.B ()

How This Document is Organized

J Difference between Functions and Commands in TRACE32: This section is primarily intended for
users who are new to TRACE32. As a new user, make sure that you also read the next two sections.

. Purpose of Functions: Briefly describes and illustrates the purpose of functions in TRACES32 by way
of four examples.

. How to Use Functions: Briefly describes and illustrates how to use functions in TRACES32 by way of
four examples.

J Which return values of functions can be printed?: Provides background information.

J Groups of Functions (e.g. ACCESS Functions, ADDRESS Functions etc.): Describes the farget-
related and tool-related functions, including source code examples, screenshots, and photos.

©1989-2024 Lauterbach General Function Reference | 26

Difference between Functions and Commands in TRACE32

In TRACES2, functions are not the same as commands. Commands are used to perform actions, e.g. open
a window, modify configuration settings, etc. Whereas functions are used to return information about hard
and software and convert formats and data.

Functions have trailing parentheses(), whereas commands are used without parentheses:

Function()

Command

SYStem.UP()

SYStem.state

Functions and commands can have identical names to emphasize that they are related. But this is not
always the case, as the example below shows:

Related function and command

Function()

Command

identical names

Analyzer.SIZE()

Analyzer.SIZE <records>

not identical names

STATE.RUN ()

Go

Next:
o Purpose of Functions
. How to Use Functions

©1989-2024 Lauterbach

General Function Reference |

27

Purpose of Functions

Functions in TRACES32 have two main purposes:
1. Return status information about:
- The target (see Example 1)
- The TRACE32 tools (see Example 2)
- The TRACE32 software (see Example 3)

2. Convert specific formats or data into other formats or data (see Example 4).

Example 1: Return Status of the Target

Returns the status of the target:

PRINT STATE.RUN () ; Returns the status of the run-flag
; as a boolean.
; TRUE: cpu is running in the target
; (or is out of control).
; FALSE: cpu is not running.

Example 2: Return Status of a TRACE32 Tool

Returns the status of a TRACE32 tool, here the serial cable:

PRINT VERSION.SERIAL.CABLE() ; Returns the serial number of
; the debug license
; (Nexus adapter or debug cable).

Example 3: Return the Version Number

Returns the version number of the TRACE32 software:

PRINT VERSION.SOFTWARE () ; Returns the version number of
; your TRACE32 installation.

PRINT SOFTWARE.VERSION () ; Alternative command

Example 4: Convert a String

Convert a string to upper case:

PRINT STRing.UPR("hello world") ; Converts the string to HELLO WORLD

©1989-2024 Lauterbach General Function Reference | 28

How to Use Functions

In TRACES2, you can use functions as follows:

1.
2.

Within PRACTICE scripts (see Example 1)

To parametrize commands (see Example 2)

Type them directly into the TRACE32 command line

- Example 3 points out the importance of the output commands PRINT and Data.Print

- Example 4 points out the importance of access class specifiers for address functions.

Example 1: In PRACTICE Scripts

Functions are normally used within PRACTICE scripts:

; verify the FLASH contents
Data.LOAD.COSMIC demo.hl2 /DIFF
IF FOUND()
PRINT "Verify error after FLASH programming"
ELSE
PRINT "FLASH programming completed successfully"

Example 2: As Parameters in Commands

Functions can be used to parametrize commands:

Get the value of register 13, and then dump the memory contents
starting at this address

-
I
.
I

Data.dump Register (R13) ; Command: Data.dump

Function Register() is used as command
; parameter.

; R13: Register 13 of ARM family chips

; Note: "R" is part of the register name.

; Here, the register name is AL.

Data.dump Register (AL) ; AL: Lower 8 bit of register AX of the
; x86 family.

©1989-2024 Lauterbach General Function Reference

29

Example 3: Together with the Output Commands PRINT and Data.Print

You can type functions directly into the TRACE32 command line. In this case it is necessary to use an
additional output command like PRINT or Data.Print, depending on the return value of the function.

; Returns the current working directory.
PRINT "Working directory is: " 0S.PresentWorkingDirectory ()

‘B:iPRINT "Working directory is: " 05.PWD() i |
T) (o) (i) (e) (i) (o) i e
orking directory is: C:\T32\demo‘\arm'compiler‘arm

ST:000019F8 \\thumble\arm\main system ready
emulate trigzer | davicas | | trace | | Data | | Var | |
ST:000019F8 \\thumble\arm\main system ready

Example 4: Address Function and Their Access Class Specifiers

An address function, such as Data.Long(), always requires a parameter together with an access class
specifier. In the example below, the access class specifier is D for data memory. A plain integer value, such
as 0x1234ffff, without an access class specifier is not a valid address.

; Returns the memory contents of a long value (32-bit) from the

; data memory (D:)
PRINT Data.Long (D:0x1234abc8)

; 'D:1024.’ is a valid, decimal address due to postfix "."
PRINT Data.Long(D:1024.)

; Fails because the address does not have a access class specifier.

I

PRINT Data.Long (0x1234ffff)

| ¥ \I\

F?iPRINT Data. Long (D:0x1234abc8) i

[[okl |[formats |[<item= | ‘B::
12345678
SR:00000000 system ready —
emulate trigger | devices | | trace | | Data | | Var | I_(
SR:00000000 system ready
Thg a\c;_c ess class sp;)ecmer For lists of target-specific
is D (View menu > Dump) memory class specifiers, see
TRACE32 > Help menu >
it B-pata.d x1234abc8) /DIALOG = .
o i i L= e ES processor Architecture
34ABCS [(#iFind...] [Modify... | | [tong ~| FIE [ITrack @Hex [Asci Manual.

0 4 8 C
:1234ABCO | 00000000 00000000+12345678 00000000
:1234A8D0 | 00000000 00000000 00000000 00000000
:1234ABe0 | 00000000 00000000 00000000 00000000
:1234ABF0 | 00000000 00000000 00000000 00000000
:1234AC00 | 00000000 00000000 00000000 0000COCOO

Simply search for “Access
Classes”.

©1989-2024 Lauterbach General Function Reference | 30

Which Return Values of Functions can be Printed?

The following return values of functions can be printed:
J Addresses

o ASCII values

J Boolean
J Numerical values:
- Binary
- Decimal
- Float
- Hex
J Ranges, address ranges, time ranges
. String
o Time values

Related Documents

For training material, refer to:

J Training PRACTICE

For more functions, refer to:
o PowerView Function Reference

o Stimuli Generator Function Reference

©1989-2024 Lauterbach General Function Reference | 31

ACCESS Functions

In This Section

See also
0 ACCESS.isGUEST() (1 ACCESS.isHYPERVISOR()
ACCESS.isGUEST() TRUE if access class belongs to guest
[build 90005 - DVD 02/2018]
Syntax: ACCESS.isGUEST(<address>)

Returns TRUE if the access class of the specified <address> belongs to a guest in the hypervisor

environment.

. For ARM, this is the non-secure access class (N: and related ones).
. For x86, this is the guest access class (G: and related ones).

J For PowerPC, this is the guest access class (G: and related ones).

Parameter Type: Address.

Return Value Type: Boolean.

NOTE: If SYStem.Option.MACHINESPACES is set to ON, then the machine ID of an
address is the better criterion to determine whether the address belongs to a

guest machine or the hypervisor.
See function ADDRESS.isGUEST().

Examples:

; on ARM, guest machines are usually running in non-secure mode, so
; guest addresses usually use access class N: and related.

PRINT ACCESS.isGUEST (N:0xC0000000) ; TRUE

PRINT ACCESS.isGUEST (H:0xC0000000) ; FALSE

©1989-2024 Lauterbach General Function Reference | 32

ACCESS.isHYPERVISOR() TRUE if access class belongs to hypervisor

[build 90005 - DVD 02/2018]

Syntax: ACCESS.isHYPERVISOR(<address>)

Returns TRUE if the access class belongs to the hypervisor in the hypervisor environment.

J For ARM, this is the hypervisor access class (H: and related ones).
. For x86, this is the host access class (H: and related ones).
. For PowerPC, this is the hypervisor access class (H: and related ones).

Parameter Type: Address.

Return Value Type: Boolean.

NOTE: If SYStem.Option.MACHINESPACES is set to ON, then the machine ID of an
address is the better criterion to determine whether the address belongs to a

guest machine or the hypervisor.
See function ADDRESS.isGUEST().

Examples:

; on ARM, the host machine which runs the hypervisor is usually running
; in hypervisor mode, so hypervisor addresses use access class H: and

; related

PRINT ACCESS.isHYPERVISOR (H:0xC0000000) ; TRUE
PRINT ACCESS.isHYPERVISOR (N:0xC0000000) ; FALSE
PRINT ACCESS.isHYPERVISOR (Z:0xC0000000) ; FALSE

©1989-2024 Lauterbach General Function Reference | 33

ADDRESS Functions

In This Section

See also

0O ADDRESS.ACCESS()

0 ADDRESS.ACCESS.CMPSTRICT()
0O ADDRESS.INSTR.LEN()

0O ADDRESS.isGUEST()

0 ADDRESS.isINTERMEDIATE()
0O ADDRESS.isNONSECUREEX()
0O ADDRESS.isPHYSICAL()

0 ADDRESS.isSECURE()

0O ADDRESS.MACHINEID()

0O ADDRESS.OFFSET()

0 ADDRESS.RANGE.END()

O ADDRESS.SEGMENT/()

0O ADDRESS.STRACCESS()

ADDRESS.ACCESS()

0O ADDRESS.ACCESS.CMP()
0O ADDRESS.EXPANDACCESS()
0O ADDRESS.isDATA()

0O ADDRESS.isHYPERVISOR()
0O ADDRESS.isNONSECURE()
O ADDRESS.isONCHIP()

0O ADDRESS.isPROGRAM()

0O ADDRESS.isSECUREEX()
O ADDRESS.MAU()

0O ADDRESS.RANGE.BEGIN()
0O ADDRESS.RANGE.SIZE()
O ADDRESS.SPACE()

O ADDRESS.WIDTH()

Access class as ordinal number

Syntax: ADDRESS.ACCESS(<address>)
ADDRESS.SPACE(<address>) (deprecated)

Gets the access class as ordinal number from the address.

Parameter Type: Address.

Return Value Type: Hex value.

ADDRESS.ACCESS.CMP()

Compare access classes

[build 110619 - DVD 02/2020]

Syntax: ADDRESS.ACCESS.CMP(<address1>,<address2>)

Compares the access classes of <address1> and <address2> and returns TRUE if they are equal, FALSE
otherwise. Missing information in one address will be neglected and the comparison may still return TRUE if

the rest of the access class information is equal.

Parameter Type: Address.

Return Value Type: Boolean.

©1989-2024 Lauterbach

General Function Reference | 34

Examples:

PRINT ADDRESS.ACCESS.CMP (NP:0x10,NP:0x60)

; TRUE
PRINT ADDRESS.ACCESS.CMP(N:0x50,NP:0x60) ; TRUE
PRINT ADDRESS.ACCESS.CMP (ND:0x50,NP:0x50) ; FALSE
ADDRESS.ACCESS.CMPSTRICTY() Compare access classes, strict

[build 110619 - DVD 02/2020]

Syntax: ADDRESS.ACCESS.CMPSTRICT(<address1>,<address2>)

Compares the access classes of <address1>and <address2> and returns TRUE if they are equal, FALSE
otherwise. Missing information in one address will yield the comparison to be FALSE.

Parameter Type: Address.

Return Value Type: Boolean.

Examples:
PRINT ADDRESS.ACCESS.CMP (NP:0x10,NP:0x60) ; TRUE
PRINT ADDRESS.ACCESS.CMP (N:0x50,NP:0x60) ; FALSE
PRINT ADDRESS.ACCESS.CMP (ND:0x50,NP:0x50) ; FALSE
ADDRESS.EXPANDACCESS() Fully qualified access class

[build 75614 - DVD 09/2016]

Syntax: ADDRESS.EXPANDACCESS(<address>)

Converts an address combining the passed access class and the current CPU status. The returned access
class can be referred to as fully qualified.

Parameter Type: Address.

Return Value Type: Address.

In this example, the passed access classes (C and A) and the returned expanded access classes

(NSD and ANSD) belong to an ARM Cortex-A9 with TrustZone, which is in the non-secure supervisor
state.

PRINT ADDRESS.EXPANDACCESS (C:0x0) ; returns NSD:0x0
PRINT ADDRESS.EXPANDACCESS (A:0x0) ; returns ANSD:0x0

©1989-2024 Lauterbach General Function Reference | 35

ADDRESS.INSTR.LEN() Length of instruction

[build 18929 - DVD 12/2009]

Syntax: ADDRESS.INSTR.LEN(<address>)

Returns the length in bytes of the instruction at a given address.
Parameter Type: Address.

Return Value Type: Hex value.

ADDRESS.isDATA() Check if memory class refers to data

Syntax: ADDRESS.isDATA(<address>)

Returns TRUE when the memory class of the address is referring to data.
Parameter Type: Address.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 36

ADDRESS.isGUEST() TRUE if address is guest address

[build 90005 - DVD 02/2018]

Syntax: ADDRESS.isGUEST(<address>)

Returns TRUE if the machine ID of the specified <address> belongs to a guest machine in the hypervisor
environment. The use of this function requires SYStem.Option.MACHINESPACES to be set to ON.

Parameter Type: Address. Remember to include the machine ID in the <address>.
Return Value Type: Boolean.
Examples:

SYStem.Option.MACHINESPACES ON

; 1f the machine ID of an address is > 0, it is a guest address -
; regardless of the access class.

PRINT ADDRESS.1sGUEST(D:0x1:::0xC0000000) ; TRUE
PRINT ADDRESS.1sGUEST(D:0x0:::0xC0000000) ; FALSE
ADDRESS.isHYPERVISOR() TRUE if address is hypervisor address

[build 90005 - DVD 02/2018]

Syntax: ADDRESS.isHYPERVISOR(<address>)

Returns TRUE if the machine ID of the specified <address> belongs to the host machine where the
hypervisor is running. The use of this function requires SYStem.Option.MACHINESPACES to be set to ON.

Parameter Type: Address. Remember to include the machine ID in the <address>.
Return Value Type: Boolean.
Examples:

SYStem.Option.MACHINESPACES ON
; 1f the machine ID of an address is 0, it is a hypervisor address -
; regardless of the access class.

PRINT ADDRESS.isHYPERVISOR (D:0x0:::0xC0000000) ; TRUE

PRINT ADDRESS.isHYPERVISOR (D:0x1:::0xC0000000) ; FALSE

©1989-2024 Lauterbach General Function Reference | 37

ADDRESS.isINTERMEDIATE() Check if intermediate address

Syntax: ADDRESS.isINTERMEDIATE(<address>)

Returns TRUE when the memory class of the address is an intermediate address.
Parameter Type: Address.

Return Value Type: Boolean.

ADDRESS.isNONSECURE() TRUE if non-secure (TrustZone) access
32-bit and 64-bit ARM cores [build 77032 - DVD 02/16]
Syntax: ADDRESS.isNONSECURE(<address>)

Checks if the address passed as parameter will force a non-secure (TrustZone) access.
Parameter Type: Address.
Return Value Type: Boolean.

Example:

PRINT ADDRESS.isNONSECURE (AHB:0x0)
PRINT ADDRESS.isNONSECURE (ZAHB:0x0)
PRINT ADDRESS.isNONSECURE (NAHB: 0x0)

; returns FALSE()
; returns FALSE()
; returns TRUE ()

©1989-2024 Lauterbach General Function Reference | 38

ADDRESS.isNONSECUREEX() TRUE if non-secure access

32-bit and 64-bit ARM cores [build 77032 - DVD 02/2016]

Syntax: ADDRESS.isNONSECUREEX(<address>)

Checks if the address passed as parameter combined with the current CPU status will cause a non-secure
(TrustZone) access. This function is a combination of ADDRESS.isNONSECURE() and
ADDRESS.EXPANDACCESS().

Parameter Type: Address.
Return Value Type: Boolean.

In example 1, the CPU is in non-secure state.

Register.Set NS 1 ; non-secure state
PRINT ADDRESS.isNONSECUREEX (AHB:0x0) ; returns TRUE ()
PRINT ADDRESS.isNONSECUREEX (ZAHB:0x0) ; returns FALSE()
PRINT ADDRESS.isNONSECUREEX (NAHB:0xO0) ; returns TRUE ()

In example 2, the CPU is in secure state.

Register.Set NS 0 ; secure state

PRINT ADDRESS.1sNONSECUREEX (AHB:0x0) ; returns FALSE ()

PRINT ADDRESS.1sNONSECUREEX (ZAHB:0x0) ; returns FALSE ()

PRINT ADDRESS.1sNONSECUREEX (NAHB:0x0) ; returns TRUE ()
ADDRESS.MACHINEID() Extract machine ID

[build 90005 - DVD 02/2018]

Syntax: ADDRESS.MACHINEID(<address>)

Extracts the machine ID from the specified <address>.
Parameter Type: Address.
Return Value Type: Decimal value.
Examples:
SYStem.Option.MACHINESPACES ON

ECHO ADDRESS.MACHINEID(D:0x3:::0xC0000000) ; returns 3.

ECHO ADDRESS.MACHINEID(H:0x0:::0xC0000000) ; returns 0.

©1989-2024 Lauterbach General Function Reference | 39

ADDRESS.MAU() Minimal addressable unit size (MAU)

[build 86067 - TRACES32 Release 09/2017]

Syntax: ADDRESS.MAU(<address>)

Data.MAU(<address>) (deprecated)
[build 42354 - DVD 02/2013]

ADDRESS.WIDTH(<address>) (deprecated)
[build 20337 - DVD 12/2009]

Returns the minimal addressable unit size.

Parameter Type: Address.

Return Value Type: Decimal value.

In this example, the TRACES32 Instruction Set Simulator for ARM is used. The return value 1 means

that each address points to 1 byte in memory. The return value 4 means that each address points to 4
bytes in memory.

ECHO ADDRESS.MAU (D:0x1) ;returns 1
Data.dump D:0x1 /Byte /NoAscii

ECHO ADDRESS.MAU (C15:0x1) ;returns 4
Data.dump C15:0x1 /NoAscii

i# BuData.dump D:0xl /Byte /NoAscii EI@ 141 BuData.dump C15:0x1 /NoAscii EI@
address | O 12 3 4 5 & 7 | address I 1] |
SD: 00000000 | OJ+00§00 00 00 00 00 0O - C15:00000000 OOOOOOOI)OOOOOOOOI -
SD: 00000008 | O3===="00 00 00 00 00 00 - C15:00000002 | 0000007 S -
4 I I I3 4 I I I3
|A| IEI

A The address 0x1 of the access class SD: points to 1 byte in memory.

B The address 0x1 of the Coprocessor access class C15: points to 4 bytes in memory.

©1989-2024 Lauterbach General Function Reference | 40

ADDRESS.OFFSET() Address without class

Syntax: ADDRESS.OFFSET(<address>)

The <address>-object of TRACE32, which is often returned by other functions, always contains the class
and the numerical value of the specific memory address. The function ADDRESS.OFFSET() returns that
numerical value from <address>. The class is omitted.

Parameter Type: Address.

Return Value Type: Hex value.

Example:

PRINT ADDRESS.OFFSET (SR:0000FF8) ;returns OFF8

PRINT ADDRESS.OFFSET (TRACK.ADDRESS ())

PRINT ADDRESS.OFFSET (sieve) ;returns 2228
ADDRESS.isONCHIP() TRUE if on-chip address area
C166

Syntax: ADDRESS.isONCHIP(<address>)

Returns TRUE when the address refers to on-chip address area.
Parameter Type: Address.
Return Value Type: Boolean.
ADDRESS.isPHYSICALY() TRUE if physical address

Syntax: ADDRESS.isPHYSICAL (<address>)

Returns TRUE when the memory class of the address is a physical address.
Useful to determine if TRANS.PHYSICAL() succeed in translating a logical to a physical address.

Parameter Type: Address.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 41

ADDRESS.isPROGRAM() TRUE if program address

Syntax: ADDRESS.isPROGRAM(<address>)

Returns TRUE when the memory class of the address is referring to program.
Parameter Type: Address.

Return Value Type: Boolean.

ADDRESS.isSECURE() TRUE if secure (TrustZone) access
32-bit and 64-bit ARM cores [build 77032 - DVD 02/2016]
Syntax: ADDRESS.isSECURE(<address>)

Checks if the address passed as a parameter will force a Secure (TrustZone) access.
Parameter Type: Address.
Return Value Type: Boolean.

Example:

PRINT ADDRESS.isSECURE (AHB:0x0)
PRINT ADDRESS.isSECURE (ZAHB:0x0)
PRINT ADDRESS.isSECURE (NAHB: 0x0)

; returns FALSE()
; returns TRUE ()
; returns FALSE()

©1989-2024 Lauterbach General Function Reference | 42

ADDRESS.isSECUREEX() TRUE if secure access

32-bit and 64-bit ARM cores [build 77032 - DVD 02/2016]

Syntax: ADDRESS.isSECUREEX(<address>)

Checks if the address passed as a parameter combined with the current CPU status will cause an Secure
(TrustZone) access. Basically this function is a combination of ADDRESS.isSECURE() and
ADDRESS.EXPANDACCESS().

Parameter Type: Address.
Return Value Type: Boolean.

In example 1, the CPU is in non-secure state.

Register.Set NS 1 ; non-secure state
PRINT ADDRESS.1sSECUREEX (AHB:0x0) ; returns FALSE()
PRINT ADDRESS.1sSECUREEX (ZAHB:0x0) ; returns TRUE ()
PRINT ADDRESS.isSECUREEX (NAHB:0xO0) ; returns FALSE()

In example 2, the CPU is in secure state.

Register.Set NS 0 ; secure state
PRINT ADDRESS.1sSECUREEX (AHB:0x0) ; returns TRUE ()
PRINT ADDRESS.1sSECUREEX (ZAHB:0x0) ; returns TRUE ()
PRINT ADDRESS.1sSECUREEX (NAHB:0x0) ; returns FALSE ()

©1989-2024 Lauterbach General Function Reference | 43

ADDRESS.RANGE.BEGIN() Lowest address value of address range

[build 66601 - DVD 09/2015]

Syntax: ADDRESS.RANGE.BEGIN(<addressrange>)

Returns the lowest address value from <addressrange>.
Parameter Type: Address range.
Return Value Type: Address.

Example:

PRINT ADDRESS.RANGE.BEGIN(P:0x1000--0x2000)
PRINT ADDRESS.RANGE.BEGIN (Var.RANGE (flags))
PRINT ADDRESS.RANGE.BEGIN(P:0x20..0x30||P:0x13++0x03)

; returns P:0x1000

; returns P:0x13

ADDRESS.RANGE.END() Highest address value of address range

[build 66601 - DVD 09/2015]

Syntax: ADDRESS.RANGE.END(<addressrange>)

Returns the highest address value from <addressrange>.
Parameter Type: Address range.
Return Value Type: Address.

Examples:

PRINT ADDRESS.RANGE.END (P:0x1000--0x2000) // returns P:0x2000
PRINT ADDRESS.RANGE.END (Var.RANGE (flags))
PRINT ADDRESS.RANGE.END(P:0x20..0x30||P:0x13++0x03) // returns P:0x30

©1989-2024 Lauterbach General Function Reference | 44

ADDRESS.RANGE.SIZE()

Size of address range

Syntax:

[build 80994 - DVD 02/2017]

ADDRESS.RANGE.SIZE(<addressrange>)

Returns the size of an address range.

Parameter Type: Address range.

Return Value Type: Hex value.

Example: In this script, the start and end address of the HLL variable £1ags is calculated as well as the
size of its address range. The output to the AREA.view window is formatted with the PRINTF command.

PRIVATE &rg

&rg="flags"

PRINTF %COLOR.RED "%1l6s: %s"

PRINTF "%16s: S#!A"
PRINTF "%16s: S#!A"
PRINTF "%16s: %i bytes "
PRINTF %CONTinue " (%$#x)"
AREA.view
= | BuAREAview =n| Wl <
address range of: flags ~

start: D:0x6EA4
end: D:0xGEB6

zize: 19 bytes (0x13)

"address range of" "&rg"

"start"
" end n
"size"

ADDRESS .RANGE.BEGIN (Var .RANGE (&rg))
ADDRESS .RANGE. END (Var .RANGE (&rg))
ADDRESS.RANGE.SIZE (Var .RANGE (&rg))
ADDRESS.RANGE.SIZE (Var.RANGE (&rg))

©1989-2024 Lauterbach

General Function Reference | 45

ADDRESS.SEGMENT() Segment of an address

[build 22265 - DVD 04/2010]

Syntax: ADDRESS.SEGMENT(<address>)

Returns the segment (space ID) of an address.
Parameter Type: Address.

Return Value Type: Hex value.

Example:

PRINT ADDRESS.SEGMENT (D:0x012A:0xC00208A)

ADDRESS.STRACCESS() Access class of an address

[build 51173 - DVD 02/2014]

Syntax: ADDRESS.STRACCESS(<address>)

Returns the access class of an address. Useful in combination with TRANS.PHYSICAL() to verify that the
translation was successful and the returned address is really physical or linear.

Parameter Type: Address.
Return Value Type: String.
Example:

TRANSlation.Create 0--1000 9000
TRANSlation.ON

PRINT TRANS.PHYSICAL (vm:0) // returns AVM:9000 (for
// architectures with MMU)

PRINT ADDRESS.OFFSET (TRANS.PHYSICAL (VM:0)) // returns 0x9000

PRINT ADDRESS.STRACCESS (TRANS.PHYSICAL(VM:0)) // returns "AVM:"

©1989-2024 Lauterbach General Function Reference | 46

Analyzer Functions

This figure provides an overview of the return values of some of the Analyzer functions. For descriptions of
the illustrated functions and the functions not shown here, see below.

Analyzer.STATE()
Analyzer.RECORDS()
A1 Bufnalyzer.state EI
state I [used ACCESS — TDelay
© DIsable I 0.
@ OFF 740544. 0% « || [& |
© Arm - SIZE — ==y — CLOCK ——— ETM Analyzer.SIZE()
(©) trigger 1073741824 J | | — THreshold = | STM | |
© break = 0.00 = Analyzer. THRESHOLD()
spy Mode @ vee
SLAVE © cLock
— commands — Ela O OCKIWING [&auz |
© autofocus
® TERMination
E L RTS
[¥] AutoArm I_I [TestFocus | | | [¥ advanced)
[C] AutoInit ¥ AutoFoous
[C] selfarm
Analyzer.MODE()
B::
|fou|nd in (-9530112.)--(-1.) at|[-1387626.] Analyzer. TRACK.RECORD()

emulate trigzer | [devices | trace |[Datm |

SR:100012C4 ‘\\demo\demo\sieve+0x88

Analyzer.RECORD.ADDRESS()

£ B:Analyzer.List ti.zero DEFault /Track EI
(&t |3 Goto...|[3 Find... |[e chart L!Proﬁle | B MPs][vl‘-‘bIE][Al
record [ti.zero run |address lcycle |data symbo |
L ags | I-< 1 = FALSE; ~
o ol o2 mxof h E59F0020 1 0x74 =
:%ggg 11.759s R:00 0229(etc \Mharml e\ar‘m\s‘l eve+lx El AnalyzerRECORDDATA()
sotess| [FT7ese) b | [omo0eoad] oooozmsossso [E055500] [armTetarme=T everbarc——J8
—0:_1894J 11.759s D: ooooz'z'EZ_rd Tong DOO0GEA4 “\\armleharm'sievet+0x9C
-0118393 | §11.759s R:000022A8 fetch EAFFFFFE “Marmleharm'sieve+Ox80 -
[[| +
Analyzer.RECORD.TIME()

©1989-2024 Lauterbach General Function Reference | 47

In This Section

See also

1 Analyzer() 1 Analyzer.CONFIG()

1 Analyzer. CONFIG.POWERTRACE() 1 Analyzer. CONFIG.POWERTRACEZ2()

[Analyzer. CONFIG.POWERTRACES() 1 Analyzer. CONFIG.POWERTRACESERIAL()

1 Analyzer. CONFIG.POWERTRACESERIAL2() [Analyzer. COUNTER.EVENT()

1 Analyzer.COUNTER.TIME() 1 Analyzer.DSEL()

1 Analyzer.FIRST() 1 Analyzer.FLOW.ERRORS()

1 Analyzer.FLOW.FIFOFULL() [Analyzer.FOCUS.EYE()

1 AnalyzerISCHANNELUP() 1 Analyzer.MAXSIZE()

1 Analyzer.MODE() 1 Analyzer.PROBEREVISION()

1 Analyzer.RECORD.ADDRESS() 1 Analyzer.RECORD.DATA()

1 Analyzer.RECORD.OFFSET() 1 Analyzer.RECORD.TIME()

1 Analyzer.RECORDS() 1 Analyzer.REF()

1 Analyzer.SIZE() 1 Analyzer.STATE()

1 Analyzer. THRESHOLD() 1 Analyzer.Trace CONNECT()

1 Analyzer. TRACK.RECORD() 1 Analyzer.TRIGGER.TIME()
Analyzer() Check if Analyzer command group is available

Syntax: Analyzer()
Analyzer.CONFIG() (deprecated)

Returns TRUE in the following cases:

J A TRACER32 trace hardware is connected (not TRACE32 CombiProbe and TRACES32 uTrace
(MicroTrace)).

. A TRACEB32 Instruction Set Simulator is used.

. A TRACE32 Front-End is used to debug a virtual target that provide trace memory.

. A TRACE32 Front-End is used to debug a RTL simulations / emulations that provides trace
capability.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 48

Analyzer.CONFIG.<powertrace>() Check if specified PowerTrace connected

Syntax: Analyzer.CONFIG.<powertrace()

<powertrace>: POWERTRACE | POWERTRACE2 | POWERTRACESERIAL |
POWERTRACE3

Full function Analyzer.CONFIG.POWERTRACE()

name only Analyzer.CONFIG.POWERTRACE2()

required for Analyzer.CONFIG.POWERTRACESERIAL()

HELP.Index. Analyzer.CONFIG.POWERTRACESERIAL2()

Analyzer.CONFIG.POWERTRACE3()

Returns TRUE if the connected TRACE32 tool includes the specified PowerTrace type, FALSE otherwise.

<powertrace> Description

POWERTRACE Returns TRUE in case of TRACE32 POWERTRACE / ETHERNET.
POWERTRACE?2 Returns TRUE in case of TRACE32 POWERTRACE II.
POWERTRACESERIAL Returns TRUE in case of TRACE32 POWERTRACE SERIAL.

POWERTRACESERIAL2

Returns TRUE in case of TRACE32 POWERTRACE SERIAL II.

POWERTRACES3

Returns TRUE in case of TRACE32 POWERTRACE III.

Return Value Type: Boolean.

Analyzer.COUNTER.EVENT() Get value of trigger program event counter

NEXUS MPC5XXX MDO8/MDO12/MDO16

Syntax: Analyzer.COUNTER.EVENT(<counter_name>)

The trigger unit allows to count events by using EVENTCOUNTERs. EVENTCOUNTERS have to be
declared in the trigger program by the following command:

I EVENTCOUNTER <counter_name> [<event>]

Returns the current value of <counter_name> if the trigger program is loaded.

Parameter Type: String.

Return Value Type: Decimal value.

©1989-2024 Lauterbach

General Function Reference | 49

Analyzer.COUNTER.TIME() Get value of trigger program time counter

Syntax: Analyzer.COUNTER.TIME(<counter_name>)

The trigger unit allows to count events by using TIMECOUNTERs. TIMECOUNTERS have to be declared in
the trigger program by the following command:

I TIMECOUNTER <counter_name> [<time>]

Returns the current value of <counter_name> if the trigger program is loaded.
Parameter Type: String.

Return Value Type: Time value.

Analyzer.DSEL() For internal usage only

Syntax: Analyzer.DSEL()

Reserved for internal usage.

Return Value Type: String.

Analyzer.FIRST() Get record number of first trace record
[build 71062 - DVD 09/2016]

Syntax: Analyzer.FIRST()

Returns the record number of the first record. The first record is the record with the lowest record number.

Return Value Type: Decimal value.

Analyzer.FLOW.ERRORS() Get number of flow errors / hard errors

Syntax: Analyzer.FLOW.ERRORS()

Returns the number of flow errors / hard errors found while processing the trace recording.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 50

Please be aware that the return value of this function is the accumulated count of events that were
encountered while processing the trace recording. All opened windows showing trace data contribute to this
value. The value is reset when a new trace recording is made, or when the Trace.FLOWSTART or
Trace.FLOWPROCESS command is executed.

The use of this function is only recommended if you want to find out if a specified part of a trace recording is
error free. The part to be analyzed can be defined using Trace.STATistic.FIRST and
Trace.STATistic.LAST. If the defined part is error free (and thus this function returns zero), the analysis
results are reliable as well.

Example 1: This script shows how to return only the number of flow errors and hard errors in the trace that
is currently visible within the Analyzer.List window. If you now scroll up or down in the Analyzer.List window
or increase the window size, more trace data will be decoded, and thus the number of errors returned by the
function may increase.

Analyzer.List
PRINT Analyzer.FLOW.ERRORS ()
; scroll up or down in the window

PRINT Analyzer.FLOW.ERRORS ()

Example 2: This script shows how to obtain the exact number of flow errors in the whole trace recording.

Trace.Find FLOWERROR /ALL
PRINT FOUND.COUNT ()

Analyzer.FLOW.FIFOFULLY() Get number of FIFO overflows

Syntax: Analyzer.FLOW.FIFOFULLY)

Returns the number of FIFO overflows found while processing the trace recording.
Return Value Type: Decimal value.

Please be aware that the return value of this function is the accumulated count of events that were
encountered while processing the trace recording. All opened windows showing trace data contribute to this
value. The value is reset when a new trace recording is made, or when the Trace.FLOWSTART or
Trace.FLOWPROCESS command is executed.

The use of this function is only recommended if you want to find out if a specified part of a trace recording is
error free. The part to be analyzed can be defined using Trace.STATistic.FIRST and
Trace.STATistic.LAST. If the defined part is error free (and thus this function returns zero), the analysis
results are reliable as well.

©1989-2024 Lauterbach General Function Reference | 51

Example: This script shows how to obtain the exact number of FIFO overflows in the whole trace recording.

Analyzer.Find FIFOFULL /ALL
PRINT FOUND.COUNT ()

©1989-2024 Lauterbach General Function Reference | 52

Analyzer.FOCUS.EYE() Check quality of data eye

PowerTrace Serial, Preprocessor AutoFocus I [build 33694 - DVD 02/2012]

Syntax:

Analyzer.FOCUS.EYE(<channel>,<c_time>,<c_voltage>,<tm>,<am>,<n>)

Checks a data eye previously scanned by the Analyzer.TestFocusEye command against violations. This
function allows you to determine the quality of a data eye via a PRACTICE script, and not just through visual

inspection.

Parameter and Description: Use the following parameters to define the region of interest (ROI) that you
want to check within the data eye:

<c_voltage>

<channel> Parameter Type: String. For a list of channel names, refer to the
Analyzer.ShowFocusEye command. To check all channels, use "all"
<c_time>, Parameter Type: Float. Time is given on the x-axis, voltage is given on the

y-axis.
The intersection of the two values defines the center C of the ROI.

<tm> Parameter Type: Float. Time
<am> Parameter Type: Float. Voltage
<n> Parameter Type: Float. Changes the ROI from a rectangle to a hexagon.

Rectangle: n=1.0
Hexagon: n>1.0
The greater n, the wider the hexagon.

Return Value Type: Hex value.

Example: The function returns O if the data eye is clean, and it returns non-zero if there is anything in the
data eye. The last tested pattern is shown in the Analyzer.ShowFocusEye window.

©1989-2024 Lauterbach

General Function Reference | 53

FHHH AR H A HH AR A A SRR H AR H AR H AR H ISR

#
Fm————— + - - - - # - # -——-
/ \ # # ”
+ C + # Am
#:4 : \ / #:# v
: # : o + - - - - # : # -——-
0 # : : : : # 0
HAH S S H A H A H A F S F A F S F S F S F S F S F S FHHHH#
< Tm/n>
<- Tm ->

LOCAL &val

;Check the quality of the data eye for channel TS
&val=Analyzer .FOCUS.EYE(TS,0.0,1.65,2.0,0.7,1.0)
IF &val==0

PRINT "Data eye is OK"

;Check the quality of the data eye for all channels
PRINT Analyzer.FOCUS.EYE("all",3.0,0.9,4.0,0.5,2.0)

Analyzer.ISCHANNELUP() Check if serial link is established

PowerTrace Serial, PREPROCESSOR SERIAL

Syntax: Analyzer.lSCHANNELUP()

Returns TRUE is the channel training was successful and the serial link is established. An established serial
link is the prerequisite for receiving trace data.

In the case of FALSE you have to repeat the channel training.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 54

Analyzer.MAXSIZE() Get max. size of trace buffer in records
[build 38323 - DVD 08/2012]

Syntax: Analyzer.MAXSIZE()

Returns the maximum size of the Analyzer trace buffer in records if a TRACES32 trace hardware is
connected.

Returns the current size of the Analyzer trace buffer in records if a TRACE32 Instruction Set Simulator or a
TRACES2 Front-End is used.

Return Value Type: Decimal value.

Analyzer.MODE() Get Analyzer recording mode

Syntax: Analyzer.MODE()

Returns the current recording mode of the analyzer.
Return Value Type: Decimal value.

Return Value and Description:

0 Fifo mode

1 Stack mode

2 Leash mode

3 PIPE mode

4 RTS mode (real time profiling)
5 STREAM mode (endless trace)

Analyzer.MODE.FLOW() Check if Analyzer operates as flowtrace

[Go to figure]

Syntax: Analyzer.MODE.FLOW() (deprecated)

Returns TRUE if the analyzer operates as FlowTrace.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 55

Analyzer.PCIE.CONFIG() Value of register field from PCle configuration

[build 97410 - DVD 09/2018]

Syntax: Analyzer.PCIE.CONFIG(" <register_field>")
<register_ DevicelD | VendorID | STATus | CoMmanD | ClassCode | REVision |
field>: HeaderType | BaseAddressRegister0 | BaseAddressRegister1 |

BaseAddressRegister2 | BaseAddressRegister3 | BaseAddressRegister4 |
BaseAddressRegister5 | SubsystemID | SubsystemVendorID |
MaxPayloadSizeSupported | MaxPayloadSize | MaxLinkSpeed |
MaxLinkWidth | LinkSpeed | LinkWidth

Returns the value of the specified register field from the PCle configuration space of the analyzer.
Parameter Type: String.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 56

Analyzer.PCIE.ISCONFIGURED() TRUE if prerequisites are fulfilled

[build 97410 - DVD 09/2018]

Syntax: Analyzer.PCIE.ISCONFIGURED()

Returns TRUE if the analyzer configuration is complete, so that the PCle link can be used for data transfer.
Return Value Type: Boolean.

Example 1: This script checks if the manual PCle trace setup performed in the previous steps was
successful. The previous setup steps are not shown in this script.

IF Analyzer.PCIE.ISCONFIGURED ()==FALSE ()
(
IF Analyzer.ISCHANNELUP ()==FALSE ()
;PCIe hardware link is down
ELSE

;PCIe link is up, but configuration is not complete

Example 2: This script instructs TRACE32 to wait until the target operating system has successfully
configured the analyzer for PCle trace.

SCREEN.WAIT Analyzer.ISCHANNELUP ()
SCREEN.WAIT Analyzer.PCIE.ISCONFIGURED ()
SYStem.Mode.Attach

Break
Analyzer.PCIE.Register() Value of 32-bit register from PCle configuration
[build 97410 - DVD 09/2018]
Syntax: Analyzer.PCIE.Register(<register_offset>)

Returns the value of the specified 32-bit register from the PCle configuration space of the analyzer. The
register offset is given in 32-bit increments.

Parameter Type: Decimal or hex or binary value. Range: 0. to 1023.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 57

Analyzer.PROBEREVISION() Get revision of StarCore NEXUS probe

StarCore

Syntax: Analyzer.PROBEREVISION()

Returns the revision number of the NEXUS probe.The StarCore NEXUS probe is out of production since
2010.

Return Value Type: Decimal value.

Analyzer.RECORDS() Get number of used trace records

[Go to figure]

Syntax: Analyzer.RECORDS()

Returns the number of records in the Analyzer.

If the state is OFF and the current mode is STREAM, this function will block until all buffered data has been
received.

Return Value Type: Decimal value.

Analyzer.RECORD.ADDRESS() Get address recorded in trace record

[Go to figure]

Syntax: Analyzer.RECORD.ADDRESS(<record_number>)

Returns the address from the specified record of the Analyzer trace. If the specified record does not contain
an address C:0x0 is returned.

Parameter Type: Decimal value.
Return Value Type: Address.
Example 1:

PRINT Analyzer .RECORD.ADDRESS(-9.) ;return value example: R:0x226C

©1989-2024 Lauterbach General Function Reference | 58

Example 2: This example shows how to return the address recorded in the reference record. The address
is then used to display the memory contents of the trace reference record in a Data.dump window.

Analyzer.List DEFault /Track ;open an Analyzer.List window
Analyzer .REF -11895. ;set this trace record as reference record
Analyzer .GOTO Analyzer.REF() ;go to the specified trace reference record

;get the address of the trace reference record, and then display the
;memory contents for this trace reference record in a Data.dump window
Data.dump Analyzer.RECORD.ADDRESS(Analyzer.REF()) /Track

In the Analyzer.List window, right-click another trace record, and then select Set Ref.
After you have set a new trace reference record, the Data.dump window updates accordingly because of

the Track option.
Analyzer.RECORD.DATA() Get data recorded in trace record
[Go to figure]
Syntax: Analyzer.RECORD.DATA(<record_number>)

Returns the data from the specified record of the Analyzer trace. If the specified record does not contain
data the function returns OFFFFFFFFFFFFFFFF.

Parameter Type: Decimal value.

Return Value Type: Hex value.

Analyzer.RECORD.OFFSET() Get address in trace record as number

Syntax: Analyzer.RECORD.OFFSET(<record_number>)

Returns the number within the address from the specified record of the Analyzer trace. If the specified record
does not contain an address 0 is returned.

PRINT Analyzer.RECORD.ADDRESS (-100.) ; prints NR:0xFFFF:0xC0014A08

PRINT Analyzer.RECORD.OFFSET (-100.) ; prints 0xC0014A08

Parameter Type: Decimal value.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 59

Analyzer.RECORD.TIME()

Get timestamp of trace record

Syntax:

Returns the timestamp of the specified record in fixed length format. The timestamp is relative to the trace

zero point. For details refer to Trace.ZERO.

Analyzer.RECORD.TIME(<record_number>)

[build 38323 - DVD 08/2012]

If the record does not provide timing information (dummy record), the timestamp of the preceding record is

returned.
Parameter Type: Decimal value.
Return Value Type: Time value.

Example:

Trace.List %TimeFixed TIme.ZERO DEFault /Track

PRINT Analyzer .RECORD.TIME (-119700.)

£ [BuTrace List %:TimeFixed TIme ZERO DEFault /Track] =n| Wl <
[Berr (A Goto...)[FiFind... | fdchart || ElProfie || BMPS || % More |[X Less
record §:i. zero run |address cle |data symbol |
12. 0084080005 | R:00002234 Tetc E3520012 “harmleharmysievetOx0C ~
684 for (i =07; i <= SIZE ; flags[i++ 1 = TRUE) ; =]
cmp r2,#0x12 -
-119702 12.008408100s R:00002238 fetch DADO 5 Wharmlelarm'sievet+0Ox10
+ ble 0x225 i
-119701 12.008408200s | R:00002258 fetch EAFFFFFE ‘\\armle\arm\sieve+Ox30 Il
L b 0x2240 —
-119700 R:00002240 fetcl E3AD4001 Yarmleharmisieve+Ox1s
684 for (1 =0 ; i <= 5IZE ; flags[i++] = TRUE) ;
mowv r4,#0x1
-119699 12.008408400s R:00002244 fetch E1AQE00Z ‘\armleharm\sieve+0x1C
mowv ril4,r2
-119698 12.008408500s R:00002248 fetch E0822004 ‘\\armle\arm\sieve+Ox20 52
4 | i b
‘B: :
components| [tracs Data J[wvar [wst |[PERF |[svstem |[step |[Go |[Break |[symbol |
C-T:-119700 -13.323ms || C-Z: +12.008s stopped
[
E::[PRINT Analyzer.RECORD. TIME(-119700.) B::
12.008408300s
[[ok]] [<string>] [<rangss] [<address>] [<time>] [] [trace] [Data] [Var] [List

©1989-2024 Lauterbach

General Function Reference

60

Analyzer.REF() Get record number of reference record

Syntax: Analyzer.REF()

The command Analyzer.REF allows to mark a trace record as reference record. The function returns the
record number of the reference record.

Return Value Type: Decimal value.

Analyzer.SIZE() Get current trace buffer size in records
[Go to figure]

Syntax: Analyzer.SIZE()

Returns the current size of the trace buffer in records.

Return Value Type: Decimal value.

Analyzer.STATE() Get state of Analyzer

[Go to figure]

Syntax: Analyzer.STATE()

Returns the current state of the Analyzer. If the state is OFF and the current mode is STREAM, this function
will block until all buffered data has been received.

Return Value Type: Hex value.

Return Value and Description:

0 OFF state

1 Arm state

break state

trigger state

DISable state

Analyzer hardware not available.

© | a0 |DdN

OFF state, but data is still being processed (PIPE and RTS modes only)

©1989-2024 Lauterbach General Function Reference | 61

Analyzer. THRESHOLD() Get threshold voltage of parallel preprocessor

[Go to figure]
Syntax: Analyzer. THRESHOLD()
Returns the threshold voltage of the parallel preprocessor.
Return Value Type: Float.
Analyzer.TraceCONNECT() Name of trace sink of the SoC

[build 80222 - DVD Feb/2017]

Syntax: Analyzer.TraceCONNECT()

Returns the name of the currently selected trace sink of the SoC. In case no trace-sink is selected/available,
the function returns NONE. The trace sink is selected with the <trace>.TraceCONNECT command.

Return Value Type: String.

Example: See Onchip.TraceCONNECTY().

©1989-2024 Lauterbach General Function Reference | 62

Analyzer. TRACK.RECORD() Get record number matching search

[Go to figure]

Syntax: Analyzer.TRACK.RECORD()

After a successful search operation, this function returns the record number.
Return Value Type: Decimal value.

Example: This example shows how to search for and return the record numbers of the first, second, and all
records of the symbol sieve.

; Finds the first occurrence of the symbol sieve
Trace.Find , Address sieve
; Returns the record number of the first occurrence
IF FOUND()

PRINT Analyzer.TRACK.RECORD()

; Search for the next occurrence of the symbol sieve
Trace.Find ; Running the command without any arguments
; repeats the previous search
; Returns the record number of the next occurrence
IF FOUND()
PRINT Analyzer.TRACK.RECORD()

Analyzer.TRIGGER.TIME() Time of trigger point in trace

[build 78297 - DVD 02/2017]

Syntax: Analyzer.TRIGGER.TIME()

Returns the time of the trigger point in the trace.

Return Value Type: Time value.

©1989-2024 Lauterbach General Function Reference | 63

Example:

;define trace trigger point at function entry of func20 ()
Break.Set func20 /TraceTrigger

;and trace a little bit longer
Trace.TDelay 1%

;run program for trace recording

;show statistics +/-100 us around the trigger point at func20 ()
PRINT Analyzer.TRIGGER.TIME ()

Trace.STATistic.FIRST Analyzer.TRIGGER.TIME()-100.us
Trace.STATistic.LAST Analyzer.TRIGGER.TIME()+100.us
Trace.STATistic.sYmbol

1 BuTrace.List ti.zero def EI@
[P, [Goto...|[F3Find... [fiChart | EProfile || BEMPS || % More || X Less
record [ti.zero run |address cycle |data symbol t1.back |
funcla{ (long) 44, (short) 55); ;
652 funczo({ (short) 33, (short) 44, (short) 55 J; -
mowv r2,#0x37 5
mowv rl,#0x2C
mowv ro, #0x21
b b1 0x43000604
int funcz2o(x1, x2, x3) /* Parameter: 3 Short */
519 short x1, x2, x3;
1s1 ro,r0,#0x10
+0000000016 | 837.230s R:480006D8 ptrace Y demo' demo' Func2 0+0x4 1.200us
1s1 ri,rl,#0x10
asr ro,ro,#0x10
asr rl,rl,#0x10
{
521 return x1*x2*x3; 57
4 I3
= | BuAREAview =n| Wl <
-
B37.229937345s -
q [[T N G
F| BuTrace STATistic.sYmbol =n| Wl <
[& setup... | iii Groups... || 22 Gonfig... |[Goto....|[= Detzied || E[Tree || AviChart |[BE Profile |
items: 7. total: 197.885us samples: 453,
range: -305..319
address |[total min max avr count ratio® [|1% 2% 5% 10% 20% 50% |
other) 1.597us 1.597us 1.597us 1.597us 0. 0. 806% [+ "
funclo 72.443us 72.443us 72.443us 72.443us 1.(1/0) | 36.608%
main 3.648us 0.000us 3.632us 3.648us 1.(1/0) 1. 843% | e——
funcll 3.124us 3.124us 3.124us 3.124us 1. 1.575% |e—
funcl3 28.873us 28.873us 28.873us 28.873us 1. 14.591%
funczo 1.200us 1.200us 1.200us 1.200us 1. 0. 606% |+
zieve | B87.000us - 87.000us 87.000us 1.(0/1) | 43.965%
q [[T] G

©1989-2024 Lauterbach General Function Reference | 64

ARM Function

ARMARCHVERSION()

ARM architecture version of CPU

ARM debuggers

Syntax:

<parameter>:

[build 57602 - DVD 02/2015]

ARMARCHVERSION([" <parameter>"1)

minor
major

Returns the ARM architecture version of the selected CPU.

The parameter is optional (see table below).

Return Value Type: Decimal value.

Return Value and Description:

Parameter Return value Description
None 0x0 ARMv4 / ARM7
Ox1 ARMv4 / ARM9
0x5 ARMv5
0x6 ARMv6
0x7 ARMv7
0x8 Armv8
Ox8<x> Armv8.x, e.g. 0x81 for Armv8.1
0x9<x> Armv9.x, e.g. 0x91 for Armv9.1
minor Returns minor version number.
E.g. ARMARCHVERSION ("minor") returns "0x1" for Armv8.1.
major Returns major version number.
E.g. ARMARCHVERSION ("major") returns "0x8" for Armv8.1.

©1989-2024 Lauterbach

General Function Reference

65

Advanced Register Trace (ART) Functions

This figure provides an overview of the return values of some of the ART functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

ART.STATE()
ART.RECORDS)()

.ART.SIZE()

' B::ART.state E :lD D@
state I Ified
*) DIsable |
9 OFF 8.

) Arm SIZE
_ trigger 256.
_ break

Maode
commands F Ffo]——ARTMODE()

RESet @ Stack
& Init
@ SnapShot| | | [C] Breakpoints
7 List
AutoArm
AutoInit

—

SelfArm

In This Section

See also
1 ART.FIRST() 1 ART.MAXSIZE() 1 ART.MODE() 1 ART.RECORD.ADDRESS()
0 ART.RECORD.OFFSET() 1 ART.RECORD.TIME() 1 ART.RECORDS() 0 ART.REF()
0 ART.SIZE() O ART.STATE() J ART.TRACK.RECORD()
ART.FIRST() Get record number of first trace record
[build 71062 - DVD 09/2016]
Syntax: ART.FIRST()

Returns the record number of the first record. The first record is the record with the lowest record number.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 66

ART.MAXSIZE() Get max. size of trace buffer in records

[build 38323 - DVD 08/2012]

Syntax: ART.MAXSIZE()

Returns the maximum possible size of the ART trace buffer in records.

Return Value Type: Decimal value.

ART.MODE() Get ART recording mode

[Go to figure]

Syntax: ART.MODE()

Returns the current recording mode of the ART.
Return Value Type: Decimal value.

Return Value and Description:

0 Fifo mode
1 Stack mode
ART.RECORD.ADDRESS() Get address recorded in trace record
[build 38764]
Syntax: ART.RECORD.ADDRESS(<record_number>)

Returns the sampled address (access class and offset) from the specified record.
Parameter Type: Decimal value.

Return Value Type: Address.

©1989-2024 Lauterbach General Function Reference | 67

ART.RECORD.OFFSET() Get address in trace record as number

[build 38764]
Syntax: ART.RECORD.OFFSET(<record_number>)
Returns the address-offset of the sampled address from the specified record.
Parameter Type: Decimal value.
Return Value Type: Hex value.
ART.RECORD.TIME() Get timestamp of trace record
[build 38764]

Syntax: ART.RECORD.TIME(<record_number>)

Returns the timestamp of the specified record. For an example, see Analyzer.RECORD.TIME().
Parameter Type: Decimal value.

Return Value Type: Time value.

ART.RECORDS() Get number of used trace records

[build 38323 - DVD 08/2012] [Go to figure]

Syntax: ART.RECORDS()

Returns the number of records stored in the trace buffer.

Return Value Type: Decimal value.

ART.REF() Get record number of reference record
[build 38323 - DVD 08/2012]

Syntax: ART.REF()

The number of the selected reference record in the analyzer trace.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 68

ART.SIZE() Get current trace buffer size in records
[build 38323 - DVD 08/2012] [Go to figure]

Syntax: ART.SIZE()

Returns the size of the trace buffer.

Return Value Type: Decimal value.

ART.STATE() Get state of ART trace

[build 38323 - DVD 08/2012] [Go to figure]

Syntax: ART.STATE()

Returns the state of the ART trace.
Return Value Type: Hex value.

Return Value and Description:

0 OFF state
1 Arm state
2 break state
3 trigger state
4 DISable state
ART.TRACK.RECORD() Get record number matching search
[build 38323 - DVD 08/2012]
Syntax: ART.TRACK.RECORD()

After a successful search operation, this function returns the record number. For an example, see
Analyzer.TRACK.RECORD().

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 69

AUTOFOCUS Functions

In This Section

See also

0 AUTOFOCUS() 0O AUTOFOCUS.FREQUENCY()
0 AUTOFOCUS.OK()

AUTOFOCUS() TRUE if AutoFocus preprocessor attached

[build 07808 - DVD 09/2007]

Syntax: AUTOFOCUS()

Returns TRUE if an AutoFocus preprocessor is attached.

Return Value Type: Boolean.

AUTOFOCUS.OK() TRUE if command execution successful

[build 23129, DVD 11/2010]

Syntax: AUTOFOCUS.OK()

Returns TRUE if the last execution of the command Analyzer.AutoFocus or Analyzer.TestFocus was
successful.

Return Value Type: Boolean.

AUTOFOCUS.FREQUENCY() Frequency of trace-port clock

[build 23129, DVD 11/2010]

Syntax: AUTOFOCUS.FREQUENCY()

Returns the frequency of the trace-port clock detected by the last execution of the command
Analyzer.AutoFocus or Analyzer.TestFocus was successful.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 70

AVX Functions

In This Section

See also
B AVX B AVX512 a AVX() Qa AVX512()
AVX() Content of AVX register
Syntax: AVX(<register_name>.<column_number>)

Returns a 32-bit segment of the selected 256-bit AVX register. See also AVX command group.
Parameter Type: String.

Parameter and Description:

<register_name> The register names are listed in the AVX.view window.

<column_number> The column numbers start at 0 and are read from right to left in the
AVX.view window. See example below.

A column k corresponds to the bitrange (k - 32 + 31)-(k - 32),
where 0<=k<=7

Return Value Type: Hex value.

Example: This demo script returns 32-bit values of the register YMM1 from the column 0 (bits 31 to 0)
and the column 7 (bits 255 to 224) of the AVX.view window.

AVX.view
AVX.Set YMM1 123 243 345 67 689 789 809 9009
PRINT "Register|Bit Range|Col.|Value"

PRINT " YMM1 | 31-0 | 0 | " AVX(YMM1.0) ;32-bit value from col. 0
PRINT " YMM1 | 255-224 | 7 | " AVX(YMM1.7) ;32-bit value from col. 7
B:AVK.view [=|[= | | | =|B:AREAview =N =R

00000000 00000000 00000000 00000000 COODODOO 00000000 00000000 O00DODO0DO . -
00000123 00000243 00000345 00000067 00000689 00000789 00000809 00009009 Register |Bit Range|Col. |value
0000U55Y' 00000000 00000000 00000000 00000000 00000000 00000000 O0OCTTwT YMM1 | 31-0 | 0 | 9009
yMM3 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 - YMM1 | 255-224 | 7 | 123 ~
[4 2
Iﬁl__IEI______IE
A Register names. 0-7 Column numbers - from right to left - in the AVX.view window.

©1989-2024 Lauterbach General Function Reference | 71

AVX512() Content of AVX512 register

Syntax: AVX512(<register_name>.<column_number>)

Returns a 32-bit segment of the selected 512-bit AVX512 register. See also AVX512 command group.
Parameter Type: String.

Parameter and Description:

<register_name> The register names are listed in the AVX512.view window.
<column_number> The column numbers start at 0 and are read from right to left in the
AVX512.view window.

For an example, refer to the related function AVX().

A column k corresponds to the bitrange (k - 32 + 31)-(k - 32),
where 0<=k<=15

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 72

Break Functions

In This Section

See also

1 Break.Alpha.EXIST() J Break.Beta.EXIST() 1 Break.Charly.EXIST() J Break.Program.EXIST()
1 Break.ReadWrite.EXIST()

Break.Alpha.EXIST() TRUE if Alpha breakpoint exists

[build 75340 - DVD 09/2016]

Syntax: Break.Alpha.EXIST(<address>)

Returns TRUE if an Alpha breakpoint exists.
Parameter Type: Address.

Return Value Type: Boolean.

Example:
List.Mix ;optional step: display a listing
Break.Set func2 /Alpha ;set an Alpha breakpoint at the
;symbol 'func2'
PRINT Break.Alpha.EXIST (func2) ;returns TRUE, i.e. the Alpha breakpoint
;exists at the symbol 'func2'
Break.Beta.EXIST() TRUE if Beta breakpoint exist
[build 75340 - DVD 09/2016]
Syntax: Break.Beta.EXIST(<address>)

Returns TRUE if a Beta breakpoint exists.
Parameter Type: Address.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 73

Break.Charly.EXIST() TRUE if Charly breakpoint exists

[build 75340 - DVD 09/2016]

Syntax: Break.Charly.EXIST(<address>)

Returns TRUE if a Charly breakpoint exists.
Parameter Type: Address.

Return Value Type: Boolean.

Break.Program.EXIST() TRUE if enabled program breakpoint exists

[build 85294 - DVD 09/2017]

Syntax: Break.Program.EXIST(<address>)

Returns TRUE if an enabled program breakpoint exists at the given address location.
Parameter Type: Address.

Return Value Type: Boolean.

Break.ReadWrite.EXIST() TRUE if enabled data address breakpoint exists

[build 85294 - DVD 09/2017]

Syntax: Break.ReadWrite.EXIST(<address>)

Returns TRUE if an enabled data address breakpoint (read, write, or read-write) exists at the given address
location.

Parameter Type: Address.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 74

BMC Functions (Benchmark Counter)

In This Section

See also
H BMC 1 BMC.CLOCK()
1 BMC.COUNTER() 0 BMC.COUNTER.BYNAME()
1 BMC.COUNTER.BYNAME.CORE() 1 BMC.COUNTER.CORE()
O BMC.OVERFLOW/() O BMC.OVERFLOW.BYNAME()
O BMC.OVERFLOW.BYNAME.CORE() O BMC.OVERFLOW.CORE()
BMC.CLOCK() Frequency of core clock
[build 72352 - DVD 09/2016]
Syntax: BMC.CLOCK()

Returns the frequency set with the BMC.CLOCK command.

Return Value Type: Decimal value.

BMC.COUNTER() Value of a benchmark counter

Syntax: BMC.COUNTER(<counter_index>)

Returns the counter value of the benchmark counter with the specified index. See also BMC command
group. In a multicore environment, the BMC.COUNTER() function returns the accumulated value of all
cores.

Parameter Type: Decimal value.
Return Value Type: Hex value.
Example: For PMN3 use BMC.COUNTER(3).

PRINT BMC.COUNTER(3) ;prints the result to the TRACE32 message line

©1989-2024 Lauterbach General Function Reference | 75

BMC.COUNTER.BYNAME() Value of a benchmark counter

Syntax: BMC.COUNTER.BYNAME(" <counter_name>")

Returns the counter value of the benchmark counter with the specified name. See also BMC command
group. In a multicore environment, the BMC.COUNTER.BYNAME() function returns the accumulated
value of all cores.

Parameter Type: String.
Return Value Type: Hex value.

Example: For ETM1 use BMC.COUNTER.BYNAME("ETM1").

;prints the result to the TRACE32 message line
PRINT BMC.COUNTER.BYNAME ("ETM1")

BMC.COUNTER.CORE() Value of a benchmark counter

Syntax: BMC.COUNTER.CORE(<counter_index>, <core_index>)

Returns the counter value of the benchmark counter of the specified core and index. See also BMC
command group.

Parameter and Description:

<counter_index> Parameter Type: Decimal value.

<core_index> Parameter Type: Decimal value.

Return Value Type: Hex value.

Example: For PMN3 of core #1 use BMC.COUNTER.CORE(S3, 1).

;prints the result to the TRACE32 message line
PRINT BMC.COUNTER.CORE(3, 1)

©1989-2024 Lauterbach General Function Reference | 76

BMC.COUNTER.BYNAME.CORE() Value of a benchmark counter

Syntax: BMC.COUNTER.BYNAME.CORE(" <counter_name>", <core_index>)

Returns the counter value of the benchmark counter with the specified name. See also BMC command
group. In a multicore environment, the BMC.COUNTER.BYNAME.CORE() function returns the
accumulated value of all cores.

Parameter Type: String.
Return Value Type: Hex value.

Example: For PMNO of core #1 use BMC.COUNTER.CORE("PMNO0", 1).

;prints the result to the TRACE32 message line
PRINT BMC.COUNTER.BYNAME.CORE ("PMNO", 1)

BMC.OVERFLOW() TRUE if benchmark counter overflow

[build 72015 - DVD 08/2016]

Syntax: BMC.OVERFLOW(<counter_index>)

Returns TRUE if the benchmark counter has overflown. In a multicore environment, the BMC.OVERFLOW
function returns the OR’ed overflow status of all cores.

Parameter Type: Decimal value.

Return Value Type: Boolean.

BMC.OVERFLOW.BYNAME() TRUE if benchmark counter overflow

[build 72015 - DVD 08/2016]

Syntax: BMC.OVERFLOW.BYNAME(<counter_name>)

Returns TRUE if the benchmark counter has overflown. In a multicore environment, the
BMC.OVERFLOW.BYNAME() function returns the OR’ed overflow status of all cores.

Parameter Type: String.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 77

BMC.OVERFLOW.CORE() TRUE if benchmark counter overflow

[build 72015 - DVD 08/2016]

Syntax: BMC.OVERFLOW.CORE(<counter_index>, <core_index>)

Returns TRUE if the benchmark counter of the specified core has overflown.

Parameter and Description:

<counter_index> Parameter Type: Decimal value.

<core_index> Parameter Type: Decimal value.

Return Value Type: Boolean.

BMC.OVERFLOW.BYNAME.CORE() TRUE if benchmark counter overflow

[build 72015 - DVD 08/2016]

Syntax: BMC.OVERFLOW.BYNAME.CORE(" <counter_name>", <core_index>)

Returns TRUE if the benchmark counter of the specified core has overflown.

Parameter and Description:

<counter_name> Parameter Type: String.

<core_index> Parameter Type: Decimal value.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 78

Boundary Scan Description Language (BSDL) Functions

In This Section

See also
B BSDL 1 BSDL.CHECK.BYPASS()
0 BSDL.CHECK.FLASHCONF() 1 BSDL.CHECK.IDCODE()
(1 BSDL.GetDRBit() (1 BSDL.GetPortLevel()
BSDL.CHECK.BYPASS() Chain bypass test
[build 28569 - DVD 06/2011]
Syntax: BSDL.CHECK.BYPASS()

Executes a boundary scan BYPASS test and returns TRUE if it passes.

Return Value Type: Boolean.

BSDL.CHECK.FLASHCONF() Flash configuration test

[build 28569 - DVD 06/2011]

Syntax: BSDL.CHECK.FLASHCONF()

Checks the FLASH definition and the pin mapping for the boundary scan interface; returns TRUE, when
FLASH configuration has no errors.

Return Value Type: Boolean.

BSDL.CHECK.IDCODE() Chain IDCODE test

[build 28569 - DVD 06/2011]

Syntax: BSDL.CHECK.IDCODE()

Executes a boundary scan IDCODE test and returns TRUE if it passes.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 79

BSDL.GetDRBIt() Data register bit

[build 35348 - DVD 08/2012]

Syntax: BSDL.GetDRBit(<chip_number>,<bit_number>)

Returns the last read value of bit <bit_number>from chip <chip_number>. If the requested bit was not
read before, -1 is returned.

Parameter and Description:

<chip_number> Parameter Type: Decimal or hex or binary value. Number of IC in the
boundary scan chain. Range: 1. to <n>.

<bit_number> Parameter Type: Decimal or hex or binary value. Bit index of the current
data register. Range: 0. to <i>.

Return Value Type: Decimal value.

BSDL.GetPortLevel() Port level value

[build 36947 - DVD 08/2012]

Syntax: BSDL.GetPortLevel(<chip_number>,"<port_name>")

Returns the port level of <port_name> from chip <chip_number> from the last boundary scan capture.

Parameter and Description:

<chip_number> Parameter Type: Decimal or hex or binary value. Number of IC in the
boundary scan chain. Range: 1. to <n>.

<port_name> Parameter Type: String. Valid port name from the BSDL file for the
specified <chip_number>.

Return Value Type: Decimal value.

Return Value and Description:

0 Low signal level

1 High signal level

2 Unknown level (e.g. floating output port)
-1 Error

©1989-2024 Lauterbach General Function Reference | 80

CABLE Functions

In This Section

See also
[CABLE.GalvaniclSOlation() d CABLE.GalvaniclSOlation.FIRMWARE()
0 CABLE.GalvaniclSOlation.SERIAL() 0 CABLE.NAME()
1 CABLE.SERIAL() 1 CABLE.TWOWIRE()
CABLE.GalvaniclSOlation() Cable has galvanic isolation
[build 81072 - DVD 02/2017]
Syntax: CABLE.GalvaniclSOlation()

Returns TRUE if the cable has galvanic isolation.

Return Value Type: Boolean.

CABLE.GalvaniclSOlation.FIRMWARE() Adapter firmware version

[build 81097 - DVD 02/2017]

Syntax: CABLE.GalvaniclSOlation.FIRMWARE()

Return the firmware version of the galvanic isolation adapter as a string. The same string is also shown in
the VERSION.HARDWARE window. An empty string is returned if no adapter is plugged.

Return Value Type: String.

CABLE.GalvaniclSOlation.SERIAL() Serial number of adapter

[build 81072 - DVD 02/2017]

Syntax: CABLE.GalvaniclSOlation.SERIAL()

Returns the serial number of the galvanic isolation adapter. The same serial number is also shown in the
VERSION.HARDWARE window. An empty string is returned if no adapter is plugged.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 81

CABLE.NAME() Name of debug cable

[build 21341 - DVD 04/2010]

Syntax: CABLE.NAME()

Returns the debug cable name. The same cable name is also shown in the VERSION.HARDWARE
window.

Return Value Type: String.

Example:
PRINT CABLE.NAME () ; Returns the cable name, e.g.:
; - OCDS Uni-Dir Debug Cable VO
; — ARM Debug Cable V4b
CABLE.SERIAL() Serial number of debug cable
[build 21341 - DVD 04/2010]
Syntax: CABLE.SERIAL()

Returns the first serial number of the plugged debug cable. It is the same serial number that is also shown in
the VERSION.HARDWARE window.

Return Value Type: String.

CABLE.TWOWIRE() TRUE if two-wire debugging supported

[build 21341 - DVD 04/2010]

Syntax: CABLE.TWOWIRE()

Returns TRUE if the used debug hardware supports two-wire debugging like cJTAG or SWD.
Return Value Type: Boolean.
Example:

;Check if the cpu family is ARM. If not, the block is skipped.
IF CPUFAMILY ()=="ARM"
(
IF CABLE.TWOWIRE () ;DebugCable supports Serial Wire Debug (SWD) ?
SYStem.CONFIG SWD

©1989-2024 Lauterbach General Function Reference | 82

CACHE Functions

In This Section

The CACHE functions give access to the status data of all cache lines, e.g. Valid, Dirty tag address and
others. Cache lines are addressed by their Set and Way indices.

If the target processor implements an L1 Unified Cache (used for both instruction and data), use the
CACHE.IC functions to access the status information.

See also

B CACHE

0O CACHE.DC.TAG()

O CACHE.IC.DIRTYMASK()
O CACHE.IC.VALIDMASK()
0O CACHE.L2.SHARED()

0O CACHE.L2.VALIDMASK()
0O CACHE.L3.TAG()

opooooood

CACHE.DC.DIRTY()

CACHE.DC.DIRTY() 0 CACHE.DC.DIRTYMASK()
CACHE.DC.VALID() 0 CACHE.DC.VALIDMASK()
CACHE.IC.LRU() 0 CACHE.IC.TAG()

CACHE.L2.DIRTY() 0 CACHE.L2.DIRTYMASK()
CACHE.L2.SHAREDMASK() @ CACHE.L2.TAG()

CACHE.L3.DIRTY() 0 CACHE.L3.DIRTYMASK()
CACHE.L3.VALID() 0 CACHE.L3.VALIDMASK()

0 CACHE.DC.LRU()
1 CACHE.IC.DIRTY()
0 CACHE.IC.VALID()
0 CACHE.L2.LRU()
0 CACHE.L2.VALID()
0 CACHE.L3.LRU()

Dirty-flag of L1 Data Cache Line

Syntax: CACHE.DC.DIRTY(<set>,<way>)

Returns TRUE if the specified set/way of the data cache is DIRTY.

On processors with unified L1 cache, use CACHE.IC.DIRTY().

Parameter and Description:

<set>

Parameter Type: Decimal or hex or binary value.

<way>

Parameter Type: Decimal or hex or binary value.

Return Value Type: Boolean

©1989-2024 Lauterbach

General Function Reference | 83

CACHE.DC.DIRTYMASK() Dirty-flag mask of L1 Data Cache Line

Syntax: CACHE.DC.DIRTYMASK(<set>,<way>)

Returns a value containing all DIRTY flags of the specified set/way of the data cache. Use for caches with
multiple DIRTY flags/sectors per cache line.

On processors with unified L1 cache, use CACHE.IC.DIRTYMASK().

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

CACHE.DC.LRU() LRU information of L1 Data Cache Line

[build 52317]

Syntax: CACHE.DC.LRU(<set>)

Returns the index of the least recently used (next to be replaced) way of the specified set. Only a few
processors provide this information.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

CACHE.DC.TAG() Address Tag of L1 Data Cache Line

Syntax: CACHE.DC.TAG(<set>,<way>)

Returns the address tag of the specified set/way of the data cache.
On processors with unified L1 cache, use CACHE.IC.TAG().

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 84

CACHE.DC.VALID() Valid-flag of L1 Data Cache Line

Syntax: CACHE.DC.VALID(<set>,<way>)

Returns TRUE if the specified set/way of the data cache is VALID.
On processors with unified L1 cache, use CACHE.IC.VALID().

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Boolean.

CACHE.DC.VALIDMASK() Valid-flag mask of L1 Data Cache Line

Syntax: CACHE.DC.VALIDMASK(<set>,<way>)

Returns a value containing all VALID flags of the specified set/way of the data cache. Use for caches with
multiple valid flags/sectors per cache line.

Use CACHE.IC.VALIDMASK() for systems with unified L1 cache.

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 85

CACHE.IC.DIRTY() Dirty-flag of L1 Unified Cache Line

Syntax: CACHE.IC.DIRTY(<set>,<way>)

Returns TRUE if the specified set/way of the unified L1 cache is DIRTY. For instruction caches, the result is
always FALSE.

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Boolean.

CACHE.IC.DIRTYMASK() Dirty-flag mask of L1 Unified Cache Line

Syntax: CACHE.IC.DIRTYMASK(<set>,<way>)

For processors with unified L1 cache. Returns a value containing all DIRTY flags of the specified set/way of
the cache line, and zero for pure instruction caches. Use for caches with multiple dirty flags/sectors per
cache line.

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

CACHE.IC.LRU() LRU information of L1 Instruction Cache Line

[build 52317]

Syntax: CACHE.IC.LRU(<set>)

Returns the index of the least recently used (next to be replaced) way of the specified set. Only a few
processors provide this information.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 86

CACHE.IC.TAG() Address Tag of L1 Instruction Cache Line

Syntax: CACHE.IC.TAG(<set>,<way>)

Returns the address tag of the specified set/way of the instruction (or unified) cache.

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

CACHE.IC.VALID() Valid-flag of L1 Instruction Cache Line

Syntax: CACHE.IC.VALID(<set>,<way>)

Returns TRUE if the specified set/way of the instruction (or unified) cache is VALID.

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Boolean.

CACHE.IC.VALIDMASK() Valid-flag mask of L1 Instruction Cache Line

Syntax: CACHE.IC.VALIDMASK(<set>,<way>)

Returns a value containing all VALID flags of the specified set/way of the instruction (or unified) cache. Use
for caches with multiple valid flags/sectors per cache line.

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 87

CACHE.L2.DIRTY() Dirty-flag of L2 Cache Line

Syntax: CACHE.L2.DIRTY(<set>,<way>)

Returns TRUE if the specified set/way of the L2 cache has the DIRTY flag set. If the cache ways are split up
in sectors, the result is true if at least one of the DIRTY flags is set.

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Boolean.

CACHE.L2.DIRTYMASK() Dirty-flag mask of L2 Cache Line

Syntax: CACHE.L2.DIRTYMASK(<set>,<way>)

Returns a value containing all DIRTY flags of the specified set/way of the L2 cache. Use for caches with
multiple dirty flags/sectors per cache line.

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

CACHE.L2.LRU() LRU information of L2 Cache Line

[build 52317]

Syntax: CACHE.L2.LRU(<set>)

Returns the index of the least recently used (next to be replaced) way of the specified set. Only a few
processors provide this information.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 88

CACHE.L2.SHARED() Shared-flag of L2 Cache Line

Syntax: CACHE.L2.SHARED(<set>,<way>)

Returns TRUE if the specified set/way of the L2 cache has the SHARED flag set. If the cache ways are spilit
up in sectors, the result is true if at least one of the SHARED flags is set.

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Boolean.

CACHE.L2.SHAREDMASK() Shared-flag mask of L2 Cache Line

Syntax: CACHE.L2.SHAREDMASK(<set>,<way>)

Returns a value containing all SHARED flags of the specified set/way of the L2 cache. Use for caches with
multiple shared flags/sectors per cache line.

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

CACHE.L2.TAG() Address Tag of L2 Cache Line

Syntax: CACHE.L2.TAG(<set>,<way>)

Returns the address tag of the specified set/way of the L2 cache.

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 89

CACHE.L2.VALID() Valid-flag of L2 Cache Line

Syntax: CACHE.L2.VALID(<set>,<way>)

Returns TRUE if the specified set/way of the L2 cache has the VALID flag set. If the cache ways are split up
in sectors, the result is true if at least one of the VALID flags is set.

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Boolean.

CACHE.L2.VALIDMASK() Valid-flag mask of L2 Cache Line

Syntax: CACHE.L2.VALIDMASK(<set>,<way>)

Returns a value containing all VALID flags of the specified set/way of the L2 cache. Use for caches with
multiple valid flags/sectors per cache line.

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

CACHE.L3.DIRTY() Dirty-flag of L3 Cache Line

Syntax: CACHE.L3.DIRTY(<set>,<way>)

Returns TRUE if the specified set/way of the L3 cache has the DIRTY flag set. If the cache ways are split up
in sectors, the result is true if at least one of the DIRTY flags is set.

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 90

CACHE.L3.DIRTYMASK() Dirty-flag of L3 Cache Line

Syntax: CACHE.L3.DIRTYMASK(<set>,<way>)

Returns a value containing all DIRTY flags of the specified set/way of the L3 cache. Use for caches with
multiple dirty flags/sectors per cache line.

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

CACHE.L3.LRU() LRU information of L3 Cache Line

[build 52317]

Syntax: CACHE.L3.LRU(<set>)

Returns the index of the least recently used (next to be replaced) way of the specified set. Only a few
processors provide this information.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

CACHE.L3.TAG() Address Tag of L3 Cache Line

Syntax: CACHE.L3.TAG(<set>,<way>)

Returns the address tag of the specified set/way of the L3 cache.

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 91

CACHE.L3.VALID() Valid-flag of L3 Cache Line

Syntax: CACHE.L3.VALID(<set>,<way>)

Returns TRUE if the specified set/way of the L3 cache has the VALID flag set. If the cache ways are split up
in sectors, the result is true if at least one of the VALID flags is set.

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Boolean.

CACHE.L3.VALIDMASK() Valid-flag mask of L3 Cache Line

Syntax: CACHE.L3.VALIDMASK(<set>,<way>)

Returns a value containing all VALID flags of the specified set/way of the L3 cache. Use for caches with
multiple valid flags/sectors per cache line.

Parameter and Description:

<set> Parameter Type: Decimal or hex or binary value.

<way> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 92

CAnalyzer Functions

This figure provides an overview of the return values of some of the CAnalyzer functions. For descriptions of
the illustrated functions and the functions not shown here, see below.

CAnalyzer.STATE()
CAnalyzer.RECORDS()
ol? BuCAnalyzerstate =0 ESH =
- state | used ACCESS — TDelay
) DISable | auto v 0.
© OFF 119904. 0% ~ | [[&Tru |
© Arm - SIZE —mmg ~ CLOCK ——— ETM CAnaIyzer.SIZE()
© trigger 134217728, — TSELect —— STM
e | sy CAnalyzer MAXSIZE()
SPY ~ Mode — THreshald —
@ Fifo 090 v | TOut
— commands — | © Stack [CTBusa
O Leash
© STREAM
O PIPE
] List RTS
[C] AutoArm
[C] AutoInit
[C] seffarm
CAnalyzer.BOTHCables()
y CAnalyzer.DebugCable()
ol CAnalyzer.TracePort()
by
&
5 £
8
| ﬂ eS| }Jﬂ//. - 1
- CAnalyzer.CableTYPE()

hardware.COMBIPROBE() ID.WHISKER()

In This Section

See also

1 CAnalyzer() 1 CAnalyzer.BOTHCables()

d CAnalyzer.CableTYPE() 1 CAnalyzer.DebugCable()

1 CAnalyzer.FEATURE() 1 CAnalyzer.FIRST()

1 CAnalyzer.MAXSIZE() 1 CAnalyzer.PIN()

1 CAnalyzer.RECORD.ADDRESS() 1 CAnalyzer.RECORD.DATA()
1 CAnalyzer.RECORD.OFFSET() 1 CAnalyzer.RECORD.TIME()
1 CAnalyzer.RECORDS() 1 CAnalyzer.REF()

[CAnalyzer.SIZE() 1 CAnalyzer.STATE()

1 CAnalyzer.TraceCLOCK() 1 CAnalyzer.TraceCONNECT()
1 CAnalyzer.TracePort() 1 CAnalyzer. TRACK.RECORD()

©1989-2024 Lauterbach General Function Reference | 93

CAnalyzer() Check if CAnalyzer command group is available
[Go to figure]

Syntax: CAnalyzer()

Returns TRUE if a Compact Analyzer hardware is available, meaning that the CAnalyzer.* command group
and the <trace>.METHOD CAnalyzer selection can be used.

Refer to “CAnalyzer” in General Commands Reference Guide C, page 26 (general_ref_c.pdf) for more
information.

Return Value Type: Boolean.

CAnalyzer.BOTHCables() TRUE if both debug cables are plugged

[build 49264 - DVD 02/2014] [Go to figure]

Syntax: CAnalyzer.BOTHCables()

Returns TRUE if both DebugCableA and DebugCableB are plugged to the CombiProbe or pTrace
(MicroTrace).

Return Value Type: Boolean.

CAnalyzer.CableTYPE() Type of adapter

[Go to figure]

Syntax: CAnalyzer.CableTYPE(<int>)

Parameter Type: Decimal value.
Return Value Type: Decimal value.

Returns the type of adapter plugged to the Compact Analyzer hardware. This function is similar to the
function ID.WHISKER(), except for the following differences:

o It returns a decimal value instead of a hexadecimal value.

. In simulator mode or if the plugged whisker is LA-4509 COMBIPROBE-IN-MIPI34, it returns the
value 1.

o For the QuadProbe, it always returns 0.

Lauterbach recommends using ID.WHISKER() in new scripts.

©1989-2024 Lauterbach General Function Reference | 94

Example:

;return value 1 means that a standard whisker cable is plugged at
;connector A
PRINT CAnalyzer.CableTYPE (0)

CAnalyzer.DebugCable() CombiProbe whisker cable is A or B

[build 49264 - DVD 02/2014] [Go to figure]

Syntax: CAnalyzer.DebugCable()

Returns which CombiProbe whisker cable is used for debugging: "A" or "B"

Return Value Type: String.

CAnalyzer.FEATURE() Query features of CAnalyzer hardware

[build 81635 - DVD 02/2017]

Syntax: CAnalyzer.FEATURE(<feature>)

Returns whether the Lauterbach hardware that provides the CAnalyzer functionality supports a certain
feature. The return value of this function only depends on the Lauterbach hardware and possibly the
TRACERS2 software version, not on any user settings or the target system.

The main use of this function is for scripts to avoid using commands that may be locked.
Parameter Type: String.
Return Value Type: Boolean.

Return Value and Description:

TRUE() Feature is supported by current hardware and software. This does not
imply that the feature is usable with the current target system.

FALSE() Feature is not supported or not known to the current software version.

©1989-2024 Lauterbach General Function Reference | 95

The following <feature> parameters are currently supported:

<feature> Description

sSwv Hardware supports ARM Serial Wire Viewer / Serial Wire Output.

SWV.SAMPLE Hardware supports setting sample delays for individual bits of an SWV
transmission and also supports focus diagnostics (see
CAnalyzer.ShowFocus, implies SWV).

PTI Hardware supports any parallel trace port.

PTI.SAMPLE Hardware supports setting individual sample delays for individual data lines of

a parallel trace port and also supports focus diagnostics (see
CAnalyzer.ShowFocus, implies PTI).

PTLTERMINATION

Hardware supports parallel termination for the data lines of a parallel trace
port that can be controlled using the command CAnalyzer.TERMination
(implies PTI).

TPIU Hardware supports decoding and filtering options for ARM TPIU / CoreSight
trace ports (implies PTI).
TPIU.SAMPLE Shorthand for TPIU and PTI.SAMPLE.

TPIU.TERMINATION

Shorthand for TPIU and PTL.TERMINATION.

STP Hardware supports decoding and filtering options for direct STM (STPv1 or
STPv2) output (implies PTI).
STP.SAMPLE Shorthand for STP and PT.SAMPLE.
Example:

; Script produced by STORE * CAnalyzerFocus. To avoid "Command locked"
; error messages when executing this script on different hardware, all
; commands are guarded by explicit checks whether hardware support is

; available.

IF CAnalyzer ()
(

IF CAnalyzer.FEATURE (TPIU.SAMPLE)

(
CAnalyzer
CAnalyzer
CAnalyzer
CAnalyzer
)

.SAMPLE DO -1.555
.SAMPLE D1 -2.177
.SAMPLE D2 -2.177
.SAMPLE D3 -1.866

CAnalyzer.THreshold 1.3
IF CAnalyzer.FEATURE (TPIU.TERMination)

(
CAnalyzer

)

.TERMination ON

©1989-2024 Lauterbach

General Function Reference | 96

CAnalyzer.FIRST() Get record number of first trace record
[build 71062 - DVD 09/2016]

Syntax: CAnalyzer.FIRST()

Returns the record number of the first record. The first record is the record with the lowest record number.

Return Value Type: Decimal value.

CAnalyzer.MAXSIZE() Get max. size of trace buffer in records

[Go to figure]

Syntax: CAnalyzer.MAXSIZE()

Returns the maximum possible size of the Compact Analyzer trace buffer in records (value depends on the
currently selected tracing mode, t00).

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 97

CAnalyzer.PIN() Status of trace pins

[build 62704 - DVD 09/2015]

Syntax: CAnalyzer.PIN(<pin_name>)

Returns the status of trace pins as binary.
Parameter Type: String.

Return Value Type: Binary value.

CAnalyzer.RECORD.ADDRESS() Get address recorded in trace record

[build 38764]

Syntax: CAnalyzer.RECORD.ADDRESS(<record_number=)

Returns the sampled address (access class and offset) from the specified record. For an example, see
Analyzer.RECORD.ADDRESS).

Parameter Type: Decimal value.

Return Value Type: Address.

CAnalyzer.RECORD.DATA() Get data recorded in trace record

[build 38764]

Syntax: CAnalyzer.RECORD.DATA(<record_number>)

Returns the sampled data of the specified record.
Parameter Type: Decimal value.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 98

CAnalyzer.RECORD.OFFSET() Get address in trace record as number

Syntax: CAnalyzer.RECORD.OFFSET(<record_number>)

Returns the address-offset of the sampled address from the specified record.
Parameter Type: Decimal value.

Return Value Type: Hex value.

CAnalyzer.RECORD.TIME() Get timestamp of trace record

[build 38764]

Syntax: CAnalyzer.RECORD.TIME(<record_number>)

Returns the timestamp of the specified record. For an example, see Analyzer.RECORD.TIME().

Parameter Type: Decimal value.

Return Value Type: Time value.

CAnalyzer.RECORDS() Get number of used trace records

[Go to figure]

Syntax: CAnalyzer.RECORDS()

Returns the number of records in the Compact Analyzer.

If the state is OFF and the current mode is STREAM, this function will block until all buffered data has been
received.

Return Value Type: Decimal value.

CAnalyzer.REF() Get record number of reference record

Syntax: CAnalyzer.REF()

Returns the number of the selected reference record in the Compact Analyzer trace.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 99

CAnalyzer.SIZE() Get current trace buffer size in records

[Go to figure]
Syntax: CAnalyzer.SIZE()
Returns the actual defined logical size of the Compact Analyzer trace buffer in records.
Return Value Type: Decimal value.
CAnalyzer.STATE() Get state of Compact Analyzer
Go to figure]

Syntax: CAnalyzer.STATE()

Returns the state of the Compact Analyzer.

If the state is OFF and the current mode is STREAM, this function will block until all buffered data has been
received.

Return Value Type: Hex value.

Return Value and Description:

0 OFF state

1 Arm state

break state

trigger state

DISable state

SPY state

© | 0|~ WOW|DdN

OFF state, but data is still being processed (PIPE and RTS modes only)

©1989-2024 Lauterbach General Function Reference | 100

CAnalyzer.TraceCLOCK() Get trace port frequency

[build 62692 - DVD 09/2015]

Syntax: CAnalyzer.TraceCLOCK()

Get the current value of the CAnalyzer.TraceCLOCK setting. This is useful to query the SWV baud rate
detected by the CAnalyzer.AutoFocus command from a PRACTICE script.

If the frequency was not yet set or automatic detection was unsuccessful, a negative value is returned.
Otherwise, the frequency is returned in Hz.

Return Value Type: Decimal value.
Example 1: Print the detected trace clock after automatic detection

; Set the trace output to Serial Wire Viewer mode
TPIU.PortType SWV

; Perform automatic rate detection
CAnalyzer.AutoFocus

IF CAnalyzer.TraceCLOCK ()>=0.
(
PRINT "Detected baud rate is " \
FORMAT .FLOAT (0, 3,CAnalyzer.TraceCLOCK () /1.0e6) \
" MHz."

Example 2: A script to automatically find a suitable SWV prescaler is included with your TRACE32
installation. To access this script, run the following command

PSTEP ~~/demo/arm/etc/serial_wire_ viewer/swv_autocalibration.cmm

©1989-2024 Lauterbach General Function Reference | 101

CAnalyzer.TraceCONNECT() Name of trace sink of the SoC

[build 80222 - DVD Feb/2017]

Syntax: CAnalyzer.TraceCONNECT()

Returns the name of the currently selected trace sink of the SoC. In case no trace-sink is selected/available,
the function returns NONE. The trace sink is selected with the <trace>.TraceCONNECT command.

Return Value Type: String.

Example: See Onchip.TraceCONNECTY().

CAnalyzer.TracePort() CombiProbe whisker cable is A or B
[build 49264 - DVD 02/2014] [Go to figure]

Syntax: CAnalyzer.TracePort()

Returns which CombiProbe whisker cable is used for tracing: "A" or "B"

Return Value Type: String.

CAnalyzer.TRACK.RECORD() Get record number matching search

Syntax: CAnalyzer.TRACK.RECORD()

After a successful search operation, this function returns the record number. For an example, see
Analyzer.TRACK.RECORD().

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 102

CERBEURS Functions

CERBERUS.IOINFO() IOINFO of Cerberus module

TriCore [build 66413 - DVD 02/2016]

Syntax: CERBERUS.IOINFO()

Returns the IOINFO of the Cerberus module.

Return Value Type: Hex value.

CERBERUS.IOINFO.IFLCK() TRUE if IF_LCK bit in Cerberus INONFO set

TriCore [build 66413 - DVD 02/2016]

Syntax: CERBERUS.IOINFO.IFLCK()

Returns TRUE if the IF_LCK bit in the Cerberus IOINFO is set, FALSE otherwise.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 103

CHIP Functions

CHIP.EmulationDevice() TRUE if emulation device
[build 74844 - DVD 09/2016]

Syntax: CHIP.EmulationDevice()

For PowerPC: This function returns TRUE if an Emulation Device was detected.

For TriCore/PCP/GTM/C166/XC2000ED: This function returns TRUE if an Emulation Device was selected
in the CPU list, e.g. TC1797ED, TC275TE.

Return Value Type: Boolean.

CHIP.STEPping() Major silicon step of an TriCore AURIX device

TriCore [build 49713 - DVD 02/2014]

Syntax: CHIP.STEPping()

Returns the major silicon step of an TriCore AURIX device.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 104

ClProbe Functions (Analog Probe for CombiProbe or pTrace)

In This Section

See also
1 CIProbe() 1 ClIProbe.ADC.ENABLE() 1 CIProbe.ADC.SHUNT() 1 ClIProbe.MAXSIZE()
1 CIProbe.RECORDS)() O ClIProbe.SIZE() 0 CIProbe.STATE() O CIProbe. TRACK.RECORD()
CIProbe() TRUE if Compact Analyzer hardware
Syntax: ClIProbe()

Returns TRUE if a Compact Analyzer (CombiProbe or pTrace (MicroTrace)) hardware is plugged and used
with a logic analyzer/analog probe.

Return Value Type: Boolean.

CIProbe.ADC.ENABLE() TRUE if channel is enabled

Syntax: ClIProbe.ADC.ENABLE(<channel>)

Returns TRUE if the specified analog channel of the Analog Probe is enabled.

Return Value Type: Boolean.

CIProbe.ADC.SHUNT() Get shunt-resistor value

Syntax: CIProbe.ADC.SHUNT(<channel>)

Returns the shunt-resistor value of the specified current measurement <channel> of the Analog Probe.

Return Value Type: Float.

©1989-2024 Lauterbach General Function Reference | 105

ClIProbe.MAXSIZE() Get max. size of trace buffer in records

[build 38323 - DVD 08/2012]

Syntax: ClIProbe.MAXSIZE()

Returns the maximum size of the Compact Analyzer (CombiProbe) trace buffer, which is assigned to the
ClProbe, in records.

Return Value Type: Decimal value.

CIProbe.RECORDS() Get number of used trace records

Syntax: CIProbe.RECORDS()

The number of records currently stored in the trace buffer.

Return Value Type: Decimal value.

ClIProbe.SIZE() Get current trace buffer size in records
[build 38323 - DVD 08/2012]

Syntax: ClIProbe.SIZE()

Returns the actual defined logical size of the Compact Analyzer (CombiProbe) trace buffer which is
assigned to the CIProbe, in records.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 106

ClIProbe.STATE() Get state of Compact Analyzer for CIProbe

Syntax: ClIProbe.STATE()

Returns the state of the Compact Analyzer for CIProbe.
Return Value Type: Hex value.

Return Value and Description:

0 OFF state
1 Arm state
2 break state
3 trigger state
4 DISable state
CIProbe.TRACK.RECORD() Get record number matching search
Syntax: CIProbe.TRACK.RECORD()

After a successful search operation, this function returns the record number. For an example, see
Analyzer.TRACK.RECORD().

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 107

CMI Function

CMIBASE() Base addresses of CMI modules
[build 58596]
Syntax: CMIBASE(<instance>)
<instance>: 1.12.

Returns the base address of the primary or secondary CMI module. A base address is set with the
command SYStem.CONFIG.CMI.Base.

Parameter Type: Decimal value.

Return Value Type: Address.

©1989-2024 Lauterbach General Function Reference | 108

COMPonent Functions

This figure provides an overview of the return values of the COMPonent functions. For descriptions of the
illustrated functions, see below.

COMPonent.AVAILABLE()

& B::5YStem, CONFIG.state /COmponents EI@

| DebugPort ” Jtag ” MultiTap ” DAP " COmponent5|

|— Select components to display - v|

DTM

Type Generic >

ETM — COMPonent.BASE()
‘ Base APB:OXS000E000 [...

FUNNEL1 — I = COMPonent.NAME()

Base APB:0x80004000 [...] Name "mySystemFunnel” [...]

ATBSource ETM 0 DTM 2 (=

In This Section

See also
1 COMPonent.AVAILABLE() 1 COMPonent.BASE() 1 COMPonent.NAME() 1 COMPonent. TYPE()
COMPonent.AVAILABLE() TRUE if debug/trace peripherals available on
CPU
[Go to figure]
Syntax: COMPonent.AVAILABLE("<component_name>")

Returns TRUE if the specified debug/trace peripheral <component_name> is available on this CPU.
Parameter Type: String.

Return Value Type: Boolean.

Example:

; set up base address of ETBl and make it available
SYStem.CONFIG.ETB1.Base 0x123

; prints TRUE
PRINT COMPonent.AVAILABLE ("ETB1")

©1989-2024 Lauterbach General Function Reference | 109

COMPonent.BASE() Base address of debug/trace peripherals

[Go to figure]

Syntax: COMPonent.BASE(" <component_name>",<core>)

Returns the base address for the specified debug/trace peripheral <component_name> and <core>.

Parameter and Description:

<component_name> Parameter Type: String.

<core> Parameter Type: Decimal value.
In case <core> is -1, the current core is used.

Return Value Type: Address.
Example:

; set up base address of ETB1
SYStem.CONFIG.ETB1l.Base 0x123

; print offset of base address (123)
PRINT ADDRESS.OFFSET (COMPonent.BASE("ETB1",-1))

COMPonent.NAME() User-defined name of debug/trace peripherals

[build 94361 - DVD 09/2018] [Go to figure]

Syntax: COMPonent.NAME("<component_name>",<core>)

Returns the user-defined name for the specified debug/trace peripheral <component_name> and <core>, if
a name was defined for that component with the command SYStem.CONFIG.<component>.Name.

Parameter and Description:

<component_name> Parameter Type: String.

<core> Parameter Type: Decimal value.
In case <core> is -1, the current core is used.

Return Value Type: String. An empty string is returned if the component does not exist or has no user-
defined name.

©1989-2024 Lauterbach General Function Reference | 110

Example:

; assign a user-defined name to the lst CoreSight Funnel
SYStem.CONFIG.FUNNEL].Name "STM-Funnel"

; print name of the lst Funnel
ECHO COMPonent .NAME ("FUNNEL1",-1)

Type of debug/trace peripherals

[build 95283 - DVD 09/2018]

COMPonent.TYPE()

Syntax: COMPonent.TYPE(" <component_name>")
Returns the user-defined type for the specified debug/trace peripheral <component_name>.

Parameter Type: String.

Return Value Type: String. An empty string is returned if the component does not exist.

Name of debug/trace peripheral
[build 169044 - DVD 09/2024]

COMPonentNAME()

Syntax: COMPonentNAME("<component_type>",<index>)

Returns the name of the n-th component of the specified <component_type>, where n is the given <index>.

Parameter and Description:

<component_type> Parameter Type: String.
<index> Parameter Type: Decimal value.
0 <= index < COMPonentNUMBER(" <component_type>")

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 111

Example:

SYStem.CONFIG.ETB1l.Base APB:0x4
SYStem.CONFIG.ETB2.Base APB:0x8
SYStem.CONFIG.ETB5.Base APB:0xC
&1i=0.

RePeaT COMPonentNUMBER ("ETB")

(

PRINT "base address of " COMPonentNAME ("ETB", &i) " is " \
COMPonent . BASE (COMPonentNAME ("ETB", &i), -1.)
&i=&i+1.
)
= | B:AREA = =R
tase address of ETBl is APB:0x4
base address of ETBZ is APB:0x3
base address of ETBS is APB:0x0C
COMPonentNUMBER() Number of valid debug/trace peripherals

[build 169044 - DVD 09/2024]

Syntax: COMPonentNUMBER(" <component_type>")

Returns the count of valid components belonging to the specified type <component_type>.
Parameter Type: String.

Return Value Type: Decimal value.

Example:

SYStem.CONFIG.ETB1.Base APB:0x4

SYStem.CONFIG.ETB2.Base APB:0x8

SYStem.CONFIG.ETB5.Base APB:(0xC

PRINT COMPonentNUMBER ("ETB") " configured ETB components"
; prints “3 configured ETB components” to AREA

©1989-2024 Lauterbach General Function Reference

112

CORE Functions

These figures provide an overview of the return values of some of the functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

&2 B:5YStem.CONFIG =N Eoh(
Debugport | JTAG Miscellaneous
IRPOST IRPRE .
= SYStem.CONFIG.CoreNumber 6. informs
TDIPh - DRPOST » P»|- DRPRE — P TDO TRACES32 that this multicore chip has six cores.
] - ‘ (The right arrow button is deactivated at core 6.)
CONFIGNUMBER()

CORE.NUMBER()
|

| B B:CORE.SHOWACTIVE = = | Cores
B:: v [0
o 1 2 B assignment: 1, 2, 4, 5 1

[&J[&Jﬂ] j el) var [other][previoms]
B MIx

CORE() The same values as in the CORE.SHOWACTIVE window (left)

In This Section

See also

B CORE 1 CONFIGNUMBER()

1 CORE() 1 CORE.ISACTIVE()

1 CORE.ISASSIGNED() 1 CORE.LOGICALTOPHYSICAL()
1 CORE.NAMES() 1 CORE.NUMBER()

1 CORE.PHYSICALTOLOGICAL() 1 CORENAME()

O CORENUMBER()

©1989-2024 Lauterbach General Function Reference | 113

CONFIGNUMBER() Number of cores configured in TRACE32

[build 34251 - DVD 02/2012] [Go to figure]

Syntax: CONFIGNUMBER()

Returns the number of cores as set by the command SYStem.CONFIG.CoreNumber.
Return Value Type: Decimal value.

Example:

;Inform TRACE32 about the total number of cores of a multicore chip
SYStem.CONFIG.CoreNumber 6.

;Specify the location of the debug registers (CoreSight ARM only)
SYStem.CONFIG COREBASE 100, 200, 300, 400, 500, 600

;Start core assignment at this <core> of this <chip>

SYStem.CONFIG.CORE 1. 1.

;— The cores 1, 2, 4, 5 (= four cores) are assigned to the TRACE32
; PowerView GUI

;- The cores 3 and 6 are skipped (= two cores)

CORE.ASSIGN 1. 2. 4. 5.
SYStem.Up

;Open the configuration window.
SYStem.CONFIG.state /Jtag ;When clicking the right arrow button on
;the JTAG tab, you cannot go beyond core 6.

;Returns 6 because you have informed TRACE32 that this multicore

;chip has 6 cores.
PRINT CONFIGNUMBER ()

CORE() Get the selected core

[Go to figure]

Syntax: CORE()

Returns the core selected with the CORE.select or CORE.List command.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 114

CORE.ISACTIVE() TRUE if this core is active

[build 73978 - DVD 09/2016]

Syntax: CORE.ISACTIVE(" <core>")

Returns TRUE if the specified core is active, FALSE if the core is inactive.

Parameter Type: String. If the <core> consists of just a number, then append a dot; see example 2. The
core names are displayed in the Cores drop-down list of the state line and in the CORE.SHOWACTIVE
window. If the string is empty, then the state of the currently selected core is returned.

Return Value Type: Boolean.
Example 1: This script line shows how to specify a core name in a big.LITTLE system

PRINT CORE.ISACTIVE("1lb") ;prints TRUE to the message line if the core
;named "lb" is active

Example 2: This script line shows how to specify a core name in an SMP system

PRINT CORE.ISACTIVE("3.") ;prints TRUE to the message line if core
;number 3 is active
;remember to append a dot to the core number

Example 3:

PRINT CORE.ISACTIVE (CORE.NAMES(5.))

©1989-2024 Lauterbach General Function Reference | 115

CORE.ISASSIGNED() TRUE if physical core is assigned to debug session

[build 65779 - DVD 09/2015]

Syntax: CORE.ISASSIGNED(<core_number>)

Returns TRUE if a physical core is assigned to the current debug session, FALSE otherwise. To assign
cores to TRACE32, use CORE.ASSIGN.

Parameter and Description:

<core_number> Parameter Type: Decimal value. Number of a physical core.
Range: 1. <= core_number <= CONFIGNUMBER()
. Min.: 1.

J Max.: Return value of CONFIGNUMBER()

Return Value Type: Boolean.

Example:

; The physical cores 1, 3, 5 are assigned to the debug session.
;The other cores are skipped.
CORE.ASSIGN 1. 3. 5.

SYStem.Up

;Returns FALSE in this example because the physical core 2 was skipped.
IF CORE.ISASSIGNED(2.)==TRUE()
(
PRINT CORE.PHYSICALTOLOGICAL(2)
)

©1989-2024 Lauterbach General Function Reference | 116

CORE.LOGICALTOPHYSICAL() This is the physical core number

[build 65779 - DVD 09/2015]

Syntax: CORE.LOGICALTOPHYSICAL(<core_number>)

Returns the physical core number of a logical core.

Parameter and Description:

<core_number>

Parameter Type: Decimal value. Core number of a logical core.
Range: 0. <= core_number <= CORE.NUMBER()

J Min.: 0.

. Max.: Return value of CORE.NUMBER()-1.

Return Value Type: Decimal

value.

Return Value and Description:

1..<n>

Number of the physical core. The highest number <n> equals the return
value of CONFIGNUMBERY).

Error message

The error message “value too large” is displayed if <core_number> is out
of bounds.

Example:

; The physical cores 1, 2, 3, 4 are assigned to the debug session.

CORE.ASSIGN 1. 2.

SYStem.Up

3. 4.

PRINT CORE.LOGICALTOPHYSICAL(O.) CORE.LOGICALTOPHYSICAL(1.)
PRINT CORE.LOGICALTOPHYSICAL(2.) CORE.LOGICALTOPHYSICAL(3.)

;Result:

;The logical core numbers 0, 1, 2, 3 correspond to
; the physical core numbers 1, 2, 3, 4

See also: CORE.PHYSICALTOLOGICAL(), CORE.ISASSIGNED()

©1989-2024 Lauterbach

General Function Reference | 117

CORE.NAMES() Physical core names assigned to TRACES32

[build 73978 - DVD 09/2016]

Syntax: CORE.NAMES(<index>)

Retrieves all physical core names of the SMP system.
Parameter Type: Decimal value.
Return Value Type: String.

Example: The CORE.NAMES() function is used to loop through the cores assigned to TRACE32, and
the CORE.ISACTIVE() function returns whether a core is active or inactive.

SYStem.CPU CortexalS5A7
SYStem.CONFIG.CoreNumber 14.

;assign the cores of a big.LITTLE SMP system to TRACE32
CORE.ASSIGN BIGLITTLE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

;enter debug mode
SYStem.Up

GOSUB printstate
CORE . SHOWACTIVE
ENDDO
printstate:

&1i=0.
nextcore:
&name=CORE .NAMES (&1)
IF "&name"!=""
(
&state=CORE.ISACTIVE ("&name")
IF &state==TRUE ()
PRINT "active core : &name"
&i=&1i+1.
GOTO nextcore

RETURN

©1989-2024 Lauterbach General Function Reference | 118

CORENAME() Name of core within selected chip

ICD-ARM [Go to figure]

Syntax: CORENAME()

Returns the name of the core within a selected chip.

Return Value Type: String. The name and spelling is the same that is shown in the
SYStem.CONFIG.state window on the Miscellaneous tab.

CORE.NUMBER() Number of logical cores

[build 65779 - DVD 09/2015] [Go to figure] [Examples]

Syntax: CORE.NUMBER()
CORENUMBER() (deprecated)

Returns the number of logical cores assigned to the current debug session.

For each assigned core, the CORE.SHOWACTIVE window and the Cores list contain one entry. To assign
cores to TRACES32, use the command CORE.ASSIGN.

NOTE: Do not confuse the number of cores currently assigned to TRACES32 with the actual
number of cores physically implemented on a multicore chip.
It is possible to assign fewer cores to TRACES32 than there are on a multicore
chip.

Return Value Type: Decimal value.

Return Value and Description:

1 Single-core debug session.

Integer greater than 1 SMP debug session (Symmetrical Multicore Processing).

©1989-2024 Lauterbach General Function Reference | 119

Example 1: Let's assume a multicore chip has 6 cores, and just 4 of them are assigned to TRACE32. As a

result, CORE.NUMBER() returns 4.

;select a multicore chip
SYStem.CPU CortexA7MPCore

;Inform TRACE32 about the total number of cores of a multicore chip
SYStem.CONFIG.CoreNumber 4.

;Specify the location of the debug registers (CoreSight ARM only)
SYStem.CONFIG COREBASE DAP:0x100 DAP:0x200 DAP:0x300 DAP:0x400
;Start core assignment at this <core> of this <chip>
SYStem.CONFIG.CORE 1. 1.

;- The cores 1, 2, 4 (= three cores) are assigned to the TRACE32
; PowerView GUI

;- The core 3 1is skipped

CORE.ASSIGN 1. 2. 4.

;Prints 3 because three cores were assigned to the debug session
PRINT CORE.NUMBER ()

Example 2: A single-core debug session is set up for core 3 of a multicore chip.

SYStem.CPU CortexA7MPCore ;select a multicore chip

;Inform TRACE32 about the total number of cores of a multicore chip
SYStem.CONFIG.CoreNumber 4.

;Specify the location of the debug registers (CoreSight ARM only)
SYStem.CONFIG COREBASE DAP:0x100 DAP:0x200 DAP:0x300 DAP:0x400

;Start core assignment at this <core> of this <chip>

SYStem.CONFIG.CORE 1. 1.
CORE.ASSIGN 3. ;assign only core 3 to the debug session
©1989-2024 Lauterbach General Function Reference | 120

CORE.PHYSICALTOLOGICAL() Logical core number of physical core

[build 65779 - DVD 09/2015]

Syntax: CORE.PHYSICALTOLOGICAL(<core_number>)

Returns the logical core number of a physical core. If the core is not assigned to the current debug session,
an error is shown in the message line.

Parameter and Description:

<core_number> Parameter Type: Decimal value. Number of a physical core.
Range: 1. <= core_number <= CONFIGNUMBER()
. Min.: 1.

J Max.: The return value of CONFIGNUMBER()

Return Value Type: Decimal value.

Return Value and Description:

0..<n> Number of the logical core. The highest number <n> equals the return
value of CORE.NUMBER().

Error message The error message “value not allowed” is displayed if <core_number>
refers to a physical core that is not assigned to the current debug session.
See CORE.ISASSIGNED().

Example: For each physical core assigned to the TRACE32 PowerView GUI, the physical and logical core
numbers are printed to an AREA.view window.

&physical=1. ; the number of the first physical core is always 1

WHILE &physical<=CONFIGNUMBER ()

(
IF CORE.ISASSIGNED (&physical)==TRUE ()

(

;returns the physical core number for this logical core

PRINT "Physical core: " &physical
PRINT %CONTinue " (logical: " CORE.PHYSICALTOLOGICAL (&physical) ")"
)
&physical=&physical+l. ;increment to next physical core
)
= | BoAREAView = | = == | Reason forthe gaps inthe sequence of physical core numbers:
Physical core: 1 (logical: 0) . | Onlythe cores 1, 2, 4, and 5 were assigned with the command
hysical core: 2 Qogtcal: 1 CORE.ASSIGN 1. 2. 4.5.
Physical core: 5 (logical: 3) = | The cores 3 and 6 were intentionally skipped.

FRT 3

See also: CORE.LOGICALTOPHYSICAL()

©1989-2024 Lauterbach General Function Reference | 121

Count Functions

The Count functions give access to the measurement results of the Count.state window.

In This Section

See also
B Count 1d Count.Frequency() 1 Count.LEVEL() 1 Count.Time()

0 Count.VALUE()

Count.Frequency() Frequency of last measurement
[build 67178 - DVD 02/2016]

Syntax: Count.Frequency()

Returns the frequency in Hz of the last measurement started with the command Count.GO. If the last
measurement was not a frequency measurement, the function aborts with an error.

Return Value Type: Decimal value.

Example:

; select signal source (here: MCKO) and operation mode
Count.Select MCKO
Count .Mode Frequency

do measurement

7

Count.Go
PRINT "F=" Count.Frequency () "Hz" ;Output: "F=169440Hz"
Count.LEVEL() Level of frequency counter input
Syntax: Count.LEVEL()
Current logical level of the frequency counter input.
Return Value Type: Time value.
General Function Reference | 122

©1989-2024 Lauterbach

Count.Time() Time of last measurement
[build 67178 - DVD 02/2016]

Syntax: Count.Time()

Returns the time of the last period or pulse duration measurement started with the command Count.GO. If
the last measurement was not a period or pulse duration measurement, the function aborts with an error.

Return Value Type: Time value.
Example:

; select signal source (here: PowerProbe eXt.3) and operation mode
Probe.CSelect eXt.3
Count .Mode Period

; do measurement

Count.Go

PRINT "Period=" Count.Time () ;Output: "Period=0.000105900s"
Count.VALUE() Samples of the Count.GO command

Syntax: Count.VALUE()

If the Counter is configured to count events, this function returns the result samples when the command
Count.GO is issued. If the Counter is configured for frequency, period or pulse duration measurement, the
result of the function is undefined.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 123

COVerage Functions

This figure provides an overview of the return values of some of the functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

CQOVerage.SCOPE() CQOVerage.BDONE()
@ B:COVerage.ListFunc EI@
S s, [Goto... @Lu;t [+Add |[5ZLoad...| 52 save...] ®Inrt

addr‘ess tree coverage |executed [0% 100 |brancilizs ok taken not Baken |never |

R:0000104C--000022F7 = harm partial [87.531% 78.846% 41. 3. 0. 8. | .
R:0000104C--00001053 [funco never 0. 000% - 0. 0. 0. 0.
R:00001054--00001063 [funcl ok |100. 000% - 0. 0. 0. 0.

R :00001064--0000110F [func2 partial |100.000% 25.000% 1. 0. 0. 3. ||=
R:00001110--0000115F [func2a ok |100. 000% 100. 000% 1. 0. 0. 0.
R:00001160--000011A3 [funczb ok [100. 0005 | =———— (100 000% 1. 0. 0. 0.
R:000011A4--00001296 [func2c partial [100.000% | ———— | 100 000% 1. 0. 0. 0.
R:0000129C--000012F3 [func2d ok [100. 0005 | =———— (100 000% 1. 0. 0. 0.
R:000012F4--00001303 [func3 partial | 50.000% |e— - 0. 0. 0. 0.
R:00001304--00001336 [funcd partial | 92.857% | ———s————————— - 0. 0. 0. 0.
R:0000133C--00001353 [funcs partial | 66.G66% |n———————— - 0. 0. 0. 0.
R:00001354--000013C7 [funcé partial | 93.103% | —.n— - 0. 0. 0. 0.
R:000013C8--00001453 [func? partial | 91.4258% | =— —— - 0. 0. 0. 0.

R:00001454--000016EF [funcs partial [100. 000% | —— - 0. 0. 0. 0. |~
] 1 ¢

& B:COVerage.state
METHOD

©) ART

@ INCremental SPY (I RTS
state Option
OFF StaticInfo
@ 0N
SourceMetric

commands ObjectCode - commands

CQOVerage.SourceMetric()

+ ADD macchPolicy E Load
[@mt]| | [ecc | || [Esave |
RESet List

o/
Bz
3

istFunc
ine

= [

In This Section

See also

B COVerage
1 COVerage.Percentage()

d COVerage.BDONE() (d COVerage.IDLE() d COVerage.LOAD.KEY()
d COVerage.SCOPE() 1 COVerage.SourceMetric() d COVerage.TreeWalk()

©1989-2024 Lauterbach

General Function Reference | 124

COVerage.BDONE() Byte count of all executed instructions
[Go to figure]

Syntax: COVerage.BDONE(<address_range>)

Returns a byte count of all instructions that have been executed.

Parameter Type: Address range.

Return Value and Description:

The data is invalid, or the user has clicked Stop on the TRACE32 main

-1
toolbar to abort the function.

Greater than or equal Byte count of all executed instructions within the specified range.

to0

Return Value Type: Decimal value.
Example: Different types of input parameters are shown. The function accepts both address ranges and

other functions that return address ranges as input.

; address range
PRINT COVerage.BDONE (P:0x1FFFC220--P:0x1FFFC299)

; function main
PRINT COVerage.BDONE (Var.RANGE (main))

; module crt0 of the executable sort
PRINT COVerage.BDONE (sYmbol.RANGE (\\sort\crt0))

NOTE: The specified range has to be identical to the limits of the function / functions
being tested. Otherwise inaccuracies may occur.
COVerage.IDLE() TRUE if all trace data for code coverage are processed
[build 169162 - DVD 09/2024]
Syntax: COVerage.IDLE()

Returns TRUE if all available trace data for code coverage have been processed. This function is useful for
detecting whether the processing of RTS and SPY modes has been completed.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 125

COVerage.LOAD.KEY() Key from last ACD file

[build 113973 - DVD 02/2020]

Syntax: COVerage.LOAD.KEY()

Returns the key from the last ACD file (*.acd) that was loaded with COVerage.LOAD.

Return Value Type: String.

COVerage.Percentage() Percentage of code coverage
[build 164726 - DVD 02/2024]

Syntax: COVerage.Percentage(<symbol_name>)

Returns the percentage of achieved code coverage for the specified symbol using the currently selected
source metric.

Parameter Type: String.

Return Value Type: Float.

COVerage.SCOPE() Degree of code coverage

[build 37864 - DVD 08/2012] [Go to figure]

Syntax: COVerage.SCOPE(<address_range>)

Returns the degree of code coverage within the specified range.
Parameter Type: Address range.
Return Value Type: Decimal value.

Return Value and Description:

-1 Returns -1 if the data is invalid or if the user has clicked Stop on the
TRACE32 main toolbar to abort the function.

0 At least one instruction not fully executed.

1 At least one branch only taken.

At least one branch never taken.

At least one branch never and one only taken.

AW DN

Fully executed.

©1989-2024 Lauterbach General Function Reference | 126

Example: This script demonstrates the usage of the COVerage.SCOPE() function with different types of
input parameters. The function COVerage.SCOPE() accepts both address ranges and other functions that

return address ranges as input.

; address range
COVerage.SCOPE(P: 0x1FFFC220--P: 0x1FFFC299)

; function main
COVerage.SCOPE (Var .RANGE (main))

; module crt0 of the executable sort
COVerage.SCOPE (sYmbol .RANGE (\ \sort\crt0))

The specified range has to be identical to the limits of the function / functions

NOTE:
being tested. Otherwise inaccuracies may occur.

General Function Reference | 127

©1989-2024 Lauterbach

COVerage.SourceMetric() Active code coverage criterion

[build 96054 - DVD 09/2018]

Syntax: COVerage.SourceMetric()

Returns the current code coverage criterion for HLL lines that was set with the command
COVerage.Option.SourceMetric.

Return Value Type: String.

Return Value and Description:

ObjectCode The tags of the corresponding block of assembly instructions are mapped
to the HLL line.

Statement Statement coverage

Decision Decision coverage

MCDC Modified condition/decision coverage (MC/DC)

For details, see COVerage.Option.SourceMetric.

Example: See ~~/demo/coverage/multi_file_report/create_report.cmm.

©1989-2024 Lauterbach General Function Reference | 128

COVerage.TreeWalk() Walk symbol tree
[build 69632 - DVD 02/2016]
Syntax: COVerage.TreeWalk(<action>)
<action>: Init | Recurse | CONTinue

Traverses the code coverage tree that has been prepared by the command COVerage.TreeWalkSETUP.

Parameter Type: String.

Parameter and Description:

Init Returns the first node of the tree.
Recurse Returns the next node of the tree.
Continue Returns the next node on the same or higher level.

Return Value Type: String.
Example 1:

PRIVATE &node

COVerage.TreeWalkSETUP ; create a tree with all
; code coverage symbols

&node=COVerage.TreeWalk ("Init") ; get the first tree element

WHILE "&node"!=""
(

IF STRing.SCAN("&node","\",0.)==0. ; element is a module

(

PRINT "The next module is: &node"

)
ELSE IF STRing.

(

SCAN ("&node","--",0.)>-1. ; element is an HLL line

PRINT "The next HLL line is: &node"

)
ELSE

(

; element is a function

PRINT "The next function is: &node"

)
&node=COVerage.

TreeWalk ("Recurse") ; get the next tree element

Example 2: A more complex demo script is included in your TRACES2 installation. To access the script, run

this command:

B::CD.PSTEP ~~/demo/coverage/multi_file_report/create_report.cmm

©1989-2024 Lauterbach

General Function Reference | 129

CPU Functions

In This Section

See also
B SYStem.CPU a CPU()
O CPU.ADDRESS() 0 CPU.ADDRESS.PhysicalNDEX()
O CPU.FEATURE() O CPU.PINCOUNT/()
O CPU.SUBFAMILY/() O CPUBONDOUT()
0O CPUCOREVERSION() 0O CPUDERIVATE()
O CPUFAMILY() O CPUHELP()
Q CPUIS() O CPUIS64BIT()
CPU.ADDRESS() Start address of memory section
ARG, TtCore [build 106881 - DVD 09/2019]
Syntax: CPU.ADDRESS(<section>)
<section>: XCCM | YCCM
(ARC)
<section>: SFR | CSFR
(TriCore)

Returns the start address of the memory or register block <section>.
Parameter Type: String.

Return Value Type: Address.

CPU.ADDRESS.PhysicalINDEX() Section start address of given core
TriCore [build 125278 - DVD 09/2020]
Syntax: CPU.ADDRESS.PhysicalINDEX(" <section>",<core_number>)

Returns the start address of the memory or register block <section> for the given core.

©1989-2024 Lauterbach General Function Reference | 130

Parameter and Description:

<section>

Parameter Type: String. Name of the memory or register block. For legal
values see CPU.ADDRESS().

<core_number>

Parameter Type: Decimal value. Number of a physical core.
Range: 1. <= core_number <= CONFIGNUMBER()

. MIN.: 1.
J MAX.: The return value of CONFIGNUMBER()

Return Value Type: Address.

CPU.FEATURE()

TRUE if CPU feature exists

[build 57631] [Example]

Syntax: CPU.FEATURE(<feature_string>)

Tests whether the selected CPU has a certain feature. The function returns TRUE if the CPU implements
the specified feature. If the feature it not supported, or if <feature_string> is unknown, the function returns
FALSE. The tables below show the generic and architecture dependent feature strings.

Parameter Type: String.

Parameter and Description:

All Architectures - Allowed keywords for <feature_string>

<feature_string>

Description

BMC
[build 71934 - DVD 02/2016]

TRUE if the selected CPU implements benchmark counters / performance
monitors.

IPA

TRUE if the core uses intermediate physical addresses for guest address
translation (hypervisor).

MACHINESPACES

TRUE if command SYStem.Option.MACHINESPACES can be used for
this CPU to enable machine-specific address spaces (hypervisor).

MMU

TRUE if the selected core has a memory management unit (MMU).

PCSNOOP
[build 67662 - DVD 02/2016]

TRUE if the program counter of the selected CPU can be read by the
debugger while the CPU is running.

ZONESPACES

TRUE if command SYStem.Option.ZoneSPACES can be used for this
CPU to enable zone-specific (CPU mode-specific) address spaces.

©1989-2024 Lauterbach

General Function Reference | 131

ARM Architecture - Allowed keywords for <feature_string>

<feature_string> Description

BIGLITTLE TRUE if the selected CPU supports the ARM bigLITTLE technology.

CONDISA TRUE if the instruction set architecture of the selected core provides for
conditional instructions.

CONDTRACE TRUE if the trace data for conditional instructions indicates whether the
condition code check was passed or failed.

CORESIGHT TRUE if the selected CPU supports the ARM Coresight debug and trace
technology.

CP15 TRUE if the selected CPU supports CP15 register access.

DTLBDUMP TRUE if the selected CPU supports data TLB dumping using command
MMU.DUMP.DTLB.

EXTENDEDPHYSI- TRUE if the selected CPU has 32bit logical adresses and more than 32bit

CALADDRESS physical adresses. Physical addresses are displayed with bits 32 and
larger separated by a colon (A:0x00:0x00000000).

FPU TRUE if the selected CPU has a Vector Floating Point (VFP) coprocessor.

HYPERVISOR TRUE if the selected CPU has a hypervisor zone (ARM Virtualization
Extension).

ITLBDUMP TRUE if the selected CPU supports instruction TLB dumping using
command MMU.DUMP.ITLB.

JAZELLE TRUE if the selected CPU has the ARM Jazelle execution mode.

L1DCACHE TRUE if the selected CPU has a level 1 data cache.

L1DCACHEDUMP TRUE if the selected CPU supports level 1 data cache dump using
command CACHE.DUMP.

L1ICACHE TRUE if the selected CPU has a level 1 instruction cache.

L1ICACHEDUMP TRUE if the selected CPU supports level 1 instruction cache dumping
using command CACHE.DUMP.

L2CACHE TRUE if the selected CPU has a level 2 cache.

L2CACHEDUMP TRUE if the selected CPU supports level 2 cache dump using command
CACHE.DUMP.

LPAE TRUE if the selected CPU has a memory management unit (MMU) and
supports the Large Physical Address Extension (LPAE) mode.

MPU TRUE if the selected CPU has a memory protection unit (MPU).

NEON TRUE if the selected CPU has a ARM NEON Extension.

SECURE TRUE if the selected CPU has a secure zone (e.g. ARM TrustZone).

SECUREEL2 TRUE if the selected CPU has a non-secure and a secure EL2 mode.

©1989-2024 Lauterbach

General Function Reference | 132

<feature_string>

Description

SME TRUE if the selected CPU has a scalable matrix extension (SME).

SPR TRUE if the selected CPU supports SPR register access.

SVE TRUE if the selected CPU has a scalable vector extension (SVE).

THUMB TRUE if the selected CPU supports thumb instruction set.

TLBODUMP TRUE if the selected CPU supports TLBO dumping using command
MMU.DUMP.TLBO.

TLB1DUMP TRUE if the selected CPU supports TLB1 dumping using command
MMU.DUMP.TLB1.

VBAR TRUE if the VBAR register is available in the selected CPU.

C6000 Architecture - Allowed keywords for <feature_string>

<feature_string>

Description

CONDISA TRUE if the instruction set architecture of the selected core provides for
conditional instructions.
CONDTRACE TRUE if the trace data for conditional instructions indicates whether the

condition code check was passed or failed.

C7000 Architecture - Allowed keywords for <feature_string>

<feature_string>

Description

CONDISA TRUE if the instruction set architecture of the selected core provides for
conditional instructions.

CONDTRACE TRUE if the trace data for conditional instructions indicates whether the
condition code check was passed or failed.

L2CACHE TRUE if the selected core has a L2 cache.

©1989-2024 Lauterbach

General Function Reference |

133

PowerPC Architecture - Allowed keywords for <feature_string>

<feature_string>

Description

BMC TRUE if the selected core has performance monitor registers (PMR).

CONDISA TRUE if the instruction set architecture of the selected core provides for
conditional instructions.

CONDTRACE TRUE if the trace data for conditional instructions indicates whether the
condition code check was passed or failed.

COREMPU TRUE if the selected core has a memory protection unit (MPU).

EFPU TRUE if the selected core has the EFPU floating point unit.

EFPU2 TRUE if the selected core has the EFPU2 floating point unit.

FLE TRUE if the selected core supports the std. PowerPC opcodes.

FPU TRUE if the selected core has the standard PowerPC FPU floating point
unit.

HYPERVISOR TRUE if the selected core implements the hypervisor programming model.

L1DCACHE TRUE if the selected core has an L1 data cache.

L1ICACHE TRUE if the selected core has an L1 instruction cache.

L1UNIFIEDCACHE

TRUE if the selected core has a unified L1 cache.

L2CACHE

TRUE if the selected core has a L2 cache.

ONCHIP_PCFIFO

TRUE if the selected core has the PCFIFO on-chip trace
(MPC55XX/56XX).

ONCHIP_TR2MEM

TRUE if the processor implements trace-to-memory (MPC57XX/QorlQ).

SPE

TRUE if the selected core has the signal processing engine (SPE).

VLE

TRUE if the selected core supports variable length encoded instruction
set.

©1989-2024 Lauterbach

General Function Reference | 134

RHB850 Architecture - Allowed keywords for <feature_string>

<feature_string>

Description

[build 108274 - DVD 09/2019]

CONDISA TRUE if the instruction set architecture of the selected core provides for
conditional instructions.

CONDTRACE TRUE if the trace data for conditional instructions indicates whether the
condition code check was passed or failed.

FPU TRUE if the selected core has a floating point unit (FPU).

FXU TRUE if the selected CPU has FXU registers (extended floating point unit).

MPU

TRUE if the selected CPU has a memory protection unit (MPU).

RISC-V Architecture - Allowed keywords for <feature_string>

<feature_string> Description

CONDISA TRUE if the instruction set architecture of the selected core provides for
conditional instructions.

CONDTRACE TRUE if the trace data for conditional instructions indicates whether the
condition code check was passed or failed.

FPU TRUE if the selected core has a floating point unit (FPU).

VPU TRUE if the selected core has a vector processing unit (VPU).

TRICORE Architecture - Allowed keywords for <feature_string>

<feature_string> Description

CONDISA TRUE if the instruction set architecture of the selected core provides for
conditional instructions.

CONDTRACE TRUE if the trace data for conditional instructions indicates whether the
condition code check was passed or failed.

HSM TRUE if the selected CPU has an HSM core.

[build 124752 - DVD 09/2020]

©1989-2024 Lauterbach

General Function Reference |

135

XTENSA Architecture - Allowed keywords for <feature_string>

<feature_string> Description

CONDISA TRUE if the instruction set architecture of the selected core provides for
conditional instructions.

CONDTRACE TRUE if the trace data for conditional instructions indicates whether the
condition code check was passed or failed.

Return Value Type: Boolean.

Example:
SYStem.CPU CortexAlS5 ;select CPU CortexAlS5
PRINT CPU.FEATURE (SECURE) ; SECURE feature available? --> TRUE
CPU.PINCOUNT() For internal usage only
[build 75532 - DVD 09/2016]
Syntax: CPU.PINCOUNT()

For internal use only.

CPUBONDOUT() Name of boundout processor

Syntax: CPUBONDOUT()

Returns the name of the bondout processor.

Return Value Type: String.

CPUCOREVERSION() Core or architecture version of CPU

Syntax: CPUCOREVERSION()

Returns the CPU’s core or architecture version, e.g. “TriCore v1.3.1”.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 136

CPUDERIVATE()

Main part of processor name

Syntax: CPUDERIVATE()

Returns the main part of the processor name.

Return Value Type: String.

CPUFAMILY()

Family name of processor

Syntax: CPUFAMILY()

Returns the family name of the processor.

Return Value Type: String.

CPUHELP()

For internal usage only

Syntax: CPUHELP()

Reserved for internal usage.

Return Value Type: String.

©1989-2024 Lauterbach

General Function Reference

137

CPUIS() TRUE if search string matches processor name

Syntax: CPUIS(<search_string>)

Returns a boolean value after comparing the currently selected name of the processor with the given search
string. The search string can contain wildcards and characters are not interpreted as case-sensitive.

Parameter Type: String.
Return Value Type: Boolean.
Example:

IF (CPUIS("TC*ED"))
PRINT "TriCore Emulation Device detected"

g instead of the more complex alternative:

IF ((CPU()=="TC1798ED") || (CPU()=="TC1793ED") || (CPU()=="TC1791ED")
PRINT "TriCore Emulation Device detected"

CPUIS64BIT() TRUE if 64-bit architecture

Syntax: CPUIS64BIT()
ARMG64() (deprecated)

Returns TRUE when the target architecture is 64-bit e.g. ARM64.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 138

DAP Functions

In This Section

See also
0 DAPAvailable() 0 DAPUSERO() 0 DAPUSER(1()
DAP.Available() TRUE if debugging via DAP is supported
Syntax: DAP.Available()

Returns TRUE if both the attached debug cable and the selected CPU support debugging via the DAP
interface.

Return Value Type: Boolean.

DAP.USER<x>() Status of the DAP user pin
ICD-TriCore and ICD-C166
Syntax: DAP.USERO()
DAP.USER1()

Returns the status of the DAP USERO or USER1 pin. Low level is FALSE, high level is TRUE. For details, see
“Application Note Debug Cable TriCore” (app_tricore_ocds.pdf).

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 139

Data Functions

In This Section

See also

1 Data.AL.ERRORS()
Data.Float()

Data.Long()
Data.Long.Byte()
Data.Long.Long()
Data.LongLong()
Data.LonglLong.LittleEndian()
Data.PByte()
Data.Quad.BigEndian()
Data.Quad.LittleEndian()
Data.Quad.Quad()
Data.SByte()
Data.Short.BigEndian()
Data.SLong()
Data.STRingN()

Data.TByte()
Data.Word.BigEndian()
Data.Word.LittleEndian()
Data.WSTRING()

Data. WSTRING.LittleEndian()

I S

Data.<value_width>()

Iy I)

Data.Byte()

Data.HByte()
Data.Long.BigEndian()
Data.Long.LittleEndian()
Data.Long.Word()
Data.LongLong.BigEndian()
Data.MAU()

Data.Quad()
Data.Quad.Byte()
Data.Quad.Long()
Data.Quad.Word()
Data.Short()
Data.Short.LittleEndian()
Data.STRing()

Data.SUM()

Data.Word()
Data.Word.Byte()
Data.Word.Word()
Data.WSTRING.BigEndian()

Memory contents in default endianness

[Examples]

Byte | Short | Word | TByte | Long | PByte | HByte | SByte | SLong | Quad |

Syntax: Data.<value_width>(<address>)
<value_width>:

LongLong
Full function Data.Byte(<address>)
name only Data.Short(<address>)
required for Data.Word(<address>)
HELP.Index: Data.TByte(<address>)

Data.Long(<address>)

Data.PByte(<address>)
Data.HByte(<address>)
Data.SByte(<address>)

Data.SLong(<address>)

Data.Quad(<address>)

Data.LongLong(<address>)

Reads a value from memory using the specified <width>and <address>. The address must be classified,
e.g. D:0x200, while each symbol has its own implicit memory class.

©1989-2024 Lauterbach

General Function Reference | 140

The possible memory classes depend on the target CPU. The appropriate list can be found in the chapter
“Access Classes’ of the particular Processor Architecture Manual.

<value_width>

Description of Data.<value_width>()

Byte

Returns a single byte from memory.

Short
[build 20186 - DVD 12/2009]

Returns a word (16-bit) from memory. Same as function Data.Word().

NOTE: Please don’t mix up the function Data.Short () and its function
short form D.s () withthe command Data.Set and its command short
form Dp.s

NOTE: D.s() was an alias for Data.STRing() in former versions of
TRACE32.

[build 20186 - DVD 12/2009]

Word Returns a word (16-bit) from memory.

TByte Returns a 3-byte value from memory.

Long Returns a long value (32-bit) from memory.
NOTE: Please don’t mix up the function Data.Long() and its function
shortform D.L() withthe command Data.List and its command short
form D.L

PByte Returns a 5-byte value from memory.

HByte Returns a 6-byte value from memory.

SByte Returns a 7-byte value from memory.

SLong Returns a signed long value from memory - sign extended internally to a 64-
bit value.

Quad Returns a 64-bit value from memory. Same as function Data.LongLong().

LonglLong Returns a 64-bit value from memory. Same as function Data.Quad().

Parameter Type: Address.

Return Value Type: Hex value.

Example 1:

PRINT Data.Byte(D:0x200) // long form of the function name

PRINT Data.Byte(a+17.) // prints the memory contents of the address

// of target program symbol "a" plus offset
// 17 independent of the symbol type

PRINT Data.Byte (0x200) // fails - parameter is a numeric constant

// and no address
// access mode specifier e.g. "D:" or "P:"
// 1is missing

©1989-2024 Lauterbach

General Function Reference | 141

Example 2:

PRINT Data.TByte(D:0x200)

PRINT Data.TByte (0x200) // fails - parameter is a numeric constant
// and no address
// access mode specifier e.g. "D:" or "P:"
// 1s missing

Example 3:

// Set bit 4 of 32-bit value in memory
Data.Set A:0x10200 %Long Data.Long(A:OXlO2OO)|OXlO

// Clear second byte of 32-bit value in memory
Data.Set A:0x10300 %Long Data.Long (A:0x10300)&~0x£f£00

©1989-2024 Lauterbach General Function Reference | 142

Data.<value_width>.<endianness>() Mem. contents in specified byte order

Syntax:

<value_width>:

<endianness>:

Full function
name only

required for
HELP.Index:

Data.<value_width>.<endianness>(<address>)

Byte | Short | Word | TByte | Long | PByte | HByte | SByte | SLong | Quad |
LongLong

LittleEndian | BigEndian

Data.Short.BigEndian(<address>)
Data.Short.LittleEndian(<address>)
Data.Word.BigEndian(<address>)
Data.Word.LittleEndian(<address>)
Data.Long.BigEndian(<address>)
Data.Long.LittleEndian(<address>)
Data.LonglLong.BigEndian(<address>)
Data.LongLong.LittleEndian(<address>)
Data.Quad.BigEndian(<address>)
Data.Quad.LittleEndian(<address>)

Reads a value of the size <value_width>from memory at the given address in the given byte order.

The address must be classified, e.g. D:0x200, while each symbol has its own implicit memory class.

The possible memory classes depend on the target CPU. The appropriate list can be found in the chapter
“Access Classes’ of the particular Processor Architecture Manual.

<value_width>.
<endianness>

Description of Data.<value_width>.<endianness>()

Short.BigEndian

Returns a word (16-bit) from memory, while the byte order of the word is
forced to big endian.
Same as function Data.Word.BigEndian().

Short.LittleEndian

Returns a word (16-bit) from memory, while the byte order of the word is
forced to little endian.
Same as function Data.Word.LittleEndian().

Word.BigEndian

Returns a word (16-bit) from memory, while the byte order of the word is
forced to big endian.
Same as function Data.Short.BigEndian().

Word.LittleEndian

Returns a word (16-bit) from memory, while the byte order of the word is
forced to little endian.
Same as function Data.Short.LittleEndian().

Long.BigEndian

Returns a long value (32-bit) from memory, while the byte order of the word is
forced to big endian.

Long.LittleEndian

Returns a long value (32-bit) from memory, while the byte order of the word is
forced to little endian.

LongLong.BigEn-
dian

Returns a 64-bit value from memory, while the byte order of the word is forced
to big endian.
Same as function Data.Quad.BigEndian().

©1989-2024 Lauterbach

General Function Reference | 143

<value_width>. Description of Data.<value_width>.<endianness>()
<endianness>

LongLong.LittleEn- Returns a 64-bit value from memory, while the byte order of the word is forced
dian to little endian.
Same as function Data.Quad.LittleEndian().

Quad.BigEndian Returns a 64-bit value from memory, while the byte order of the word is forced
to big endian.
Same as function Data.LongLong.BigEndian().

Quad.LittleEndian Returns a 64-bit value from memory, while the byte order of the word is forced
to little endian.
Same as function Data.LongLong.LittleEndian().

Parameter Type: Address.
Return Value Type: Hex value.
Examples:

// Set bit 4 of 32-bit value in memory
Data.Set A:0x10200 %Long %BE Data.Long.BigEndian (A:0x10200) |0x10

// Clear second byte of 32-bit value in memory
Data.Set A:0x10300 %Long $%BE Data.Long.BigEndian (A:0x10300)&~0xf£f00

©1989-2024 Lauterbach General Function Reference | 144

Data.<value_width>.<access_width>() Mem. contents in specified width
[build 86536 - DVD 09/2017]

Syntax: Data.<value_width>.<access_width>(<address>)

<value_width>: WORD | LONG | QUAD

<access_ Byte | Word | Long

width>:

Full function Data.Word.Byte(<address>)
name only Data.Word.Word(<address>)
required for

HELP.Index: Data.Long.Byte(<address>)

Data.Long.Word(<address>)
Data.Long.Long(<address>)

Data.Quad.Byte(<address>)

Data.Quad.Word(<address>)
Data.Quad.Long(<address>)
Data.Quad.Quad(<address>)

Reads a value of the size <value_width>from memory at the given address. The memory is therefore
accessed with <access_width> if this access width is supported by the CPU and/or memory class.

The address must be classified, e.g. D:0x200, while each symbol has its own implicit memory class.

The possible memory classes depend on the target CPU. The appropriate list can be found in the chapter
“Access Classes’ of the particular Processor Architecture Manual.

<value_width>. Description of Data.<value_width>.<access_width>()
<access_width>

Word.Byte Performs two 8-bit accesses to return a 16-bit value from memory.
Word.Word Alias for Data.Word().

Long.Byte Performs four 8-bit accesses to return a 32-bit value from memory.
Long.Word Performs two 16-bit accesses to return a 32-bit value from memory.
Long.Long Alias for Data.Long().

Quad.Byte Performs eight 8-bit accesses to return a 64-bit value from memory.
Quad.Word Performs four 16-bit accesses to return a 64-bit value from memory.
Quad.Long Performs two 32-bit accesses to return a 64-bit value from memory.
Quad.Quad Alias for Data.Quad().

Parameter Type: Address.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 145

Example:

ECHO Data.Long.Byte(D:0x200)

See also commands: MAP.BUS8, MAP.BUS16, and MAP.BUS32

Data.AL.ERRORS() Get number of errors detected by Data.AllocList

Syntax: Data.AL.ERRORS()

Returns the number of errors detected by the Data.AllocList command.

Return Value Type: Decimal value.

Data.Float() Get floating point number

Syntax: Data.Float(" <format>",<address>)

Reads a floating point number from memory.

Parameter and Description:

<format>

Parameter Type: String.

<address> Parameter Type: Address.

Return Value Type: Float.

Examples:

PRINT Data.Float ("IEEE",D:0x200)

PRINT Data.Float ("IEEE",Var.ADDRESS (f_voltage[0].fVal))
PRINT Data.Float ("IEEEDBL",D:0x200)

©1989-2024 Lauterbach General Function Reference | 146

Data.STRing() Get zero-terminated string

Syntax: Data.STRing(<address>)

Reads a zero-terminated string from memory. The address must be classified, e.g. D:0x200, while each
symbol has its own implicit memory class.

Parameter Type: Address.
Return Value Type: String.
Example:

LOCAL &strl &str2

S |B:AREAview [o= |G|

BBEB FﬂE E
5FUt241,2!F4

Data.Set VM:0x0 "Hello World!" O ;set two zero-terminated strings
Data.Set VM:0x30 "Hello Universe!" 0 ;to the TRACE32 virtual memory
&strl=Data.STRing (VM:0x0) ;read the first string
&str2=Data.STRing (VM:0x30) ;read the second string
PRINT "&strl &str2" ;print both to the message line
AREA.view ;display both in the AREA window
14} B::Data.dump VM:0:0 /Byte /SpotLight El-@

address [0 1 2 3 4 5 6 7 8 9 A B C D 1234567 89ABCDEF
00000000 [*48 6b 6 BC BE 20 57 bk 2 BC B4 21 00 73 elToWor 1d1%s6-
00000010 | AC 92 56 5D 68 71 61 17 92 DL AQ 17 9A 44 t3v]hgat3131.0i |

B5 BF 55 74 F2 94 Bl 3B E2 89

BE 20 55 GE 69 76 @5 72 @3

WM
WM
VM:00000020 | 38 1B D9
WM
WM

AL g

&D

TEE
ellooUniverse!l’
v]5%

: 65
;00000040 | FD 76 5D BE 99 D7 04 3C Ab 9A 40 63 Ab Syff4C % :3TE<iiluggL
4 2
A B
=

A In the byte-formatted output, 00 indicates a zero-terminated string.

Hello world! Hello Universe! =
4 2

B In the ASCII-formatted output, NU indicates a zero-terminated string.

©1989-2024 Lauterbach General Function Reference | 147

Data.STRingN() Get zero-terminated string with a maximum length
[build 43885 - DVD 02/2013]

Syntax: Data.STRingN(<address>,<length>)

Reads a string from memory. The result is a zero-terminated string. The address must be classified, e.g.
D:0x3a0, while each symbol has its own implicit memory class. If the string length is smaller than <length>,
only <length> characters are returned.

Parameter and Description:

<address> Parameter Type: Address.

<length> Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

Example:
PRINT Data.STRingN(D:0x3a0,10.) ;reads 10 characters starting at
;memory address D:0x3a0
Data.SUM() Get checksum
Syntax: Data.SUM()

Gets the checksum of the last executed Data.SUM command.
Return Value Type: Hex value.
Example:

Data.Set P:0x00--0xff %$Byte 1
Data.SUM P:0x00--0xff
PRINT Data.SUM /() ;displays the value 0x100

©1989-2024 Lauterbach General Function Reference | 148

Data.SWAP.<value_width>.<swap_width>() Swap byte groups in word

[build 116471 - DVD 02/2020]

Syntax: Data.SWAP.<value_width>.<swap_width>(<value>)
<value_width>: Word | Long | Quad

<swap_width>: Byte | Word | Long

Full function Data.SWAP.Word.Byte(<value>)
name only

required for Data.SWAP.Long.Byte(<value>)
HELP.Index: Data.SWAP.Long.Word(<value>)

Data.SWAP.Quad.Byte(<value>)
Data.SWAP.Quad.Word(<value>)
Data.SWAP.Quad.Long(<value>)

Swaps byte groups of the size <swap_width> in <value>. The input <value> is truncated or extended to the
given <value_width>. This can be used to swap a data word between big and little endianness for example.

<value_width>. Description of Data.SWAP.<value_width>.<swap_width>()
<swap_width>

Word.Byte Swaps bytes in a 16-bit word <value>[15:0].
Result: <value>[7:0][15:8]

Long.Byte Swaps bytes in a 32-bit word <value>[31:0].
Result: <value>[7:0][15:8][23:16][31:24]

Long.Word Swaps 16-bit words in a 32-bit word <value>[31:0].
Result: <value>[15:0][31:16]

Quad.Byte Swaps bytes in a 64-bit word <value>[63:0].
Result: <value>[7:0][15:8][23:16][31:24][39:32][47:40][55:48][63:56]

Quad.Word Swaps 16-bit words in a 64-bit word <value>[63:0].
Result: <value>[15:0][31:16][47:32][63:48]

Quad.Long Swaps 32-bit words in a 64-bit word <value>[63:0].
Result: <value>[31:0][63:32]

Parameter Type: Hex value.
Return Value Type: Hex value.
Examples:

// Result:
PRINT Data.SWAP.Long.Byte (0xFF339922) // 0x229933FF
PRINT Data.SWAP.Long.Word (0xFF339922) // 0x9922FF33
PRINT Data.SWAP.Word.Byte (0xFF339922) // 0x2299 (truncated)
PRINT Data.SWAP.Quad.Long (0x9922) // 0x0000992200000000 (extended)

©1989-2024 Lauterbach General Function Reference | 149

Data.WSTRING() Get zero-terminated wide string

Syntax: Data.WSTRING(<address>)

Reads a zero-terminated wide string from memory. The address must be classified, e.g. D:0x200, while
each symbol has its own implicit memory class. The function extracts the least significant byte of each wide
character.

If a BOM is found at the beginning of the string, it is removed from the output. An error is thrown if the BOM
does not match the current endianness of the core.

Parameter Type: Address.
Return Value Type: String.
Example:

PRINT Data.WSTRING (D:0x200)

See also: Data.STRing()

Data.WSTRING.BigEndian() Get big-endian wide string

[build 43885 - DVD 02/2013]

Syntax: Data.WSTRING.BigEndian(<address>)

Reads a zero-terminated big-endian wide string from memory. The address must be classified, e.g.
D:0x200, while each symbol has its own implicit memory class. The function extracts the least significant
byte of each wide character.

If a BOM is found at the beginning of the string, it is removed from the output. An error is thrown if the BOM
signals that the string is not big-endian.

Parameter Type: Address.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 150

Data.WSTRING.LittleEndian() Get little-endian wide string

[build 43885 - DVD 02/2013]

Syntax: Data.WSTRING.LittleEndian(<address>)

Reads a zero-terminated little-endian wide string from memory. The address must be classified, e.g.
D:0x200, while each symbol has its own implicit memory class. The function extracts the least significant
byte of each wide character.

If a BOM is found at the beginning of the string, it is removed from the output. An error is thrown if the BOM
signals that the string is not little-endian.

Parameter Type: Address.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 151

DEBUGGER Function

DEBUGGER.FEATURE() Check debugger feature
[build 140670 - DVD 02/2022]
Syntax: DEBUGGER.FEATURE(<feature>)
<feature>: INSTRUCTIONSETSIMULATION

Returns TRUE if the started PowerView executable contains an instruction set simulator.
Parameter Type: String.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 152

DEBUGMODE Function

DEBUGMODE() Current debug mode

Syntax: DEBUGMODE()

Returns the current debug mode.

A Displays the current debug mode in the state line.

B Right-click the current debug mode to change the debug mode manually.

Return Value Type: String.

Return Value and Description:

ASM Assembler mode. For more information, see Mode.Asm command.
MIX Mixed mode. For more information, see Mode.Mix command.
HLL High-level language mode. For more information, see Mode.HIl command.

Example: If the DEBUGMODE() function returns a value other than HLL, then the Mode.HIl command
automatically sets the debug mode to HLL.

IF DEBUGMODE () !="HLL"
Mode.H11

©1989-2024 Lauterbach General Function Reference | 153

DISASSEMBLE Function

DISASSEMBLE.ADDRESS() Disassembled instruction at address

[build 18929 - DVD 12/2009]

Syntax: DISASSEMBLE.ADDRESS(<address>)

Returns the disassembled instruction at a given address.
Parameter Type: Address.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 154

DONGLEID Function

DONGLEID() Serial number of USB WibuKey
Syntax: DONGLEID(<wibukey_index>)
<wibukey,_ 0..
index>:

Returns the serial number of your USB WibuKey.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 155

ELA Function (ARM Coresight Embedded Logic Analyzer)

ELABASE()

ELA base address

Syntax: ELABASE()

[build 77745 - DVD 02/2017]

Returns the base address of the ARM Coresight Embedded Logic Analyzer.

Return Value Type: Address.

See also: ELA command group.

DPP Function (C166/ST10 only)

DPP()

Content of DPP register

C166/ST10 only

Syntax: DPP(<register>)

Returns the content of the selected DPPn register.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach

General Function Reference

156

EPOC Functions

In This Section

See also
1 EPOC.DATAADDRESS() 1 EPOC.ENTRYPOINT() 1 EPOC.TEXTADDRESS()
EPOC.DATAADDRESS() Start address of data area (EPOC debugger)

For EPOC debugger dbg only

Syntax: EPOC.DATAADDRESS()

Returns the start address of the data area of the currently active debug task.

Return Value Type: Hex value.

EPOC.ENTRYPOINT() Entry address of debug task

For EPOC debugger dbg only

Syntax: EPOC.ENTRYPOINT()

Returns the entry address of the currently active debug task.

Return Value Type: Hex value.

EPOC.TEXTADDRESS() Start address of code area (EPOC debugger)

For EPOC debugger dbg only

Syntax: EPOC.TEXTADDRESS()

Returns the start address of the code area of the currently active debug task.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 157

ERROR Functions (target-dependent)

ERROR.ADDRESS() Address of last occurred memory access error

Syntax: ERROR.ADDRESS()

Returns the address of the occurred error from the last executed TRACE32 command.

Return Value Type: Address

ON.ERROR GOSUB error_handler
<Data.Set commands>

ON.ERROR nothing
ENDDO

error_handler:
LOCAL &addr &cont
&addr=ERROR .ADDRESS ()
DIALOG.YESNO "Error occurred accessing address &addr, continue?"
ENTRY &cont
IF &cont==FALSE ()
ENDDO
RETURN

©1989-2024 Lauterbach General Function Reference | 158

ETM Functions

This figure provides an overview of the return values of some of the functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

ETM.DATACOMP() |

¢ BiETMstate [F=5 Eol 5

etm control trace TImeMode resources SyncPeriod Tracelnclude

ETM() e @ 0 Trace [CleeC AComp: [
_ION [CIDBGRQ DComp: FifoLevel TraceExclude

Soppingareaioints STALL 1 Cyclefoourate CComp: Q
commands [[CetaSuppress CLOCK Counter: TracelD
trigger DataTrace Seq: 1. DataViewInclude
EXUIn: sy |- TracePriority ()
M on/off [petaaePresore [C] TimeStamps| | ExtInBus: 0. DataViewExclude
[T Tmeampl0% — == ExtOut: FunnelHoldTime [
level [ClcprT Version:
ist ContextID
ETM.EXTOUT() ETM.EXTINT()
In This Section
See also
mETM a ETM() 0 ETM.ADDRCOMP() J ETM.ADDRCOMPTOTAL()

O ETM.COUNTERS()

0 ETM.DATACOMP()

0O ETM.EXTIN()

0 ETM.EXTOUT()

Q0 ETM.FIFOFULL() 0 ETM.MAP() 0O ETM.PROTOCOLY() 0 ETM.SEQUENCER()
1 ETM.TraceCore()
ETM() TRUE if ETM trace is available
[Go to figure]
Syntax: ETM()

Returns TRUE if ETM trace is available.

Return Value Type: Boolean.

©1989-2024 Lauterbach

General Function Reference |

159

ETM.ADDRCOMP() For internal usage only

Syntax: ETM.ADDRCOMP()

Returns the index number of the last ETM address comparator assigned (for internal usage only).

Return Value Type: Decimal value.

ETM.ADDRCOMPTOTAL() Number of ETM address comparator pair

Syntax: ETM.ADDRCOMPTOTAL()

Returns the number of ETM address comparator pairs available.

Return Value Type: Decimal value.

ETM.COUNTERS() Number of ETM counters

Syntax: ETM.COUNTERS()

Returns the number of ETM counters available.

Return Value Type: Decimal value.

ETM.DATACOMP() Number of ETM data comparators

[Go to figure]

Syntax: ETM.DATACOMP()

Returns the number of ETM data comparators available.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 160

ETM.EXTIN()

Number of internal ETM inputs

Syntax: ETM.EXTIN()

Returns the number of external ETM inputs.

Return Value Type: Decimal value.

ETM.EXTOUT()

[Go to figure]

Number of external ETM outputs

Syntax: ETM.EXTOUT()

Returns the number of external ETM outputs.

Return Value Type: Decimal value.

ETM.FIFOFULL()

[Go to figure]

ETM fifofull logic

Syntax: ETM.FIFOFULL()

Returns 1 if ETM fifofull logic available.

Return Value Type: Decimal value.

ETM.MAP()

Number of ETM memory map decoders

Syntax: ETM.MAP()

Returns the number of ETM memory map decoders.

Return Value Type: Decimal value.

©1989-2024 Lauterbach

General Function Reference | 161

ETM.PROTOCOL() Version of ETM protocol

Syntax: ETM.PROTOCOL()

Returns the ETM protocol version.

Return Value Type: Decimal value.

ETM.SEQUENCER() Number of ETM sequencers

Syntax: ETM.SEQUENCER()

Returns the number of ETM sequencers available.

Return Value Type: Decimal value.

ETM.TraceCore() TRUE if the core is traced

Arm [build 127768 - DVD 02/2021]

Syntax: ETM.TraceCore(<n>)

Allows to read back the configuration set by ETM.TraceCORE. Returns TRUE if the specified core is traced.
Parameter Type: Decimal value.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 162

EXTENDED Function (Z80 only)

EXTENDED() TRUE if register CBAR > 0

Syntax: EXTENDED()

Returns TRUE if the register CBAR is > 0 (only Z80).

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 163

FDX Function

FDX.INSTRING() Content at FDX memory address

Syntax: FDX.INSTRING(<address>)

Returns the content at the given FDX memory address.
Parameter Type: Address.

Return Value Type: String.

FDX.TargetSTALLS() Monitor FDX communication stalls on the target

[build 147494 - DVD 09/2022]

Syntax: FDX.TargetSTALLS()

Returns TRUE when one of the FDX channels has been signalled as a stall of the FIFO used to transfer
data from the target to the host since the last initialization.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 164

FLAG Functions

In This Section

See also
0 FLAG() 0 FLAG.READ() 0 FLAG.WRITE()
FLAG() TRUE if hardware flag system available
Syntax: FLAG()

Returns TRUE if hardware flag system is available.

Return Value Type: Boolean.

FLAG.READ() FLAG memory bytes with read access bit

Syntax: FLAG.READ(<address_range>)

Returns the number of bytes with set Read access bit of the Flag memory.
Parameter Type: Address range.

Return Value Type: Decimal value.

FLAG.WRITE() FLAG memory bytes with write access bit

Syntax: FLAG.WRITE(<address_range>)

Returns the number of bytes with set Write access bit of the Flag memory.
Parameter Type: Address range.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 165

FLASH Functions

This figure provides an overview of the return values of some of the functions. For descriptions of the

illustrated functions and the functions not shown here, see below.

FLASH.List. STATE.PENDING()

A BFLASH.List

(=[O el

[4 state || #fReset || O off (O Cancel|[@ Pr|gram|[@ ReProgram || @ Auto || d#CFL |

address [type width |state
:08000000--0801FFFF [ALIAS
:0CO00000--0C003Fgg [TARGET
1 0C004000- - - |[TARGET
:0CO08000--C A FF |TARGET
s 0CO0C000--C FF |TARGET
s0C010000--0- 205050 FF |TARGET

:0C014000--0C017FFF |TARGET
:0C018000--0C0O1EFFF |TARGET
:0C01C000--0CO1FFFF |TARGET

[alalalalalalialalal

unit |extra

FLASH.UNIT.EXIST()

| FLASH.SECTOR.END()

FLASH.SECTOR.BEGIN()

Each row stands for one sector.

A Alias range.

Unit 1. consists of multiple sectors.

NOTE:

All FLASH.SECTOR.*() functions do not take any ALIAS range into account, but
observe only declared sectors.
For an example of an ALIAS range, see [A] in the figure above.

In This Section

See also

B FLASH 1 FLASH.CFIL.SIZE()

1 FLASH.CFL.WIDTH() 1 FLASH.CLocK.Frequency()

0 FLASH.ID() (J FLASH.List.STATE.PENDING()
1 FLASH.List. TYPE() 1 FLASH.ProgramMODE()

1 FLASH.ProgramMODE.OPTION() 1 FLASH.SECTOR.BEGIN()

1 FLASH.SECTOR.END() 1 FLASH.SECTOR.EXIST()

1 FLASH.SECTOR.EXTRAvalue() 1 FLASH.SECTOR.NEXT()

1 FLASH.SECTOR.OPTION() 1 FLASH.SECTOR.OTP()

J FLASH.SECTOR.RANGE() J FLASH.SECTOR.SIZE()

1 FLASH.SECTOR.STATE() 1 FLASH.SECTOR.TYPE()

1 FLASH.SECTOR.WIDTH() 1 FLASH.TARGET.BUILD()

1 FLASH.TARGET.CODERANGE() 1 FLASH.TARGET.DATARANGE()
1 FLASH.TARGET.FILE() 1 FLASH.TARGET2.CODERANGE()
1 FLASH.TARGET2.DATARANGE() 1 FLASH.TARGET2.FILE()

0 FLASH.UNIT() J FLASH.UNIT.BEGIN()

1 FLASH.UNIT.END() 1 FLASH.UNIT.EXIST()

0 FLASH.UNIT.NEXT()

©1989-2024 Lauterbach

General Function Reference

166

FLASH.CFI.SIZE() Size of FLASH devices

[build 13759]

Syntax: FLASH.CFI.SIZE(<address>,<bus_width>)

Returns the size of single or parallel CFl-conform FLASH devices.

Parameter and Description:

<address> Parameter Type: Address.

<bus_width> Parameter Type: String.

Return Value Type: Hex value. Returns 0 if TRACE32 cannot read the CFl information.
Example:

PRINT FLASH.CFI.SIZE(P:0x0,Word)
PRINT FLASH.CFI.SIZE(D:0x40000000,Long)

FLASH.CFI.WIDTH() Data bus width of FLASH devices

[build 13759]

Syntax: FLASH.CFI.WIDTH(<address>)

Returns the data bus width of single or parallel CFl-conform FLASH devices.
Parameter Type: Address.

Return Value Type: String. Returns an empty string if TRACE32 cannot read the CFl information.

FLASH.CLocK.Frequency() FLASH clock value

[build 32807 - DVD 06/2011]

Syntax: FLASH.CLocK.Frequency()

Returns the FLASH clock value configured by the FLASH.CLocK command. In case of the
FLASH.CLocK AUTO command, the function returns the frequency of the last time-measurement.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 167

FLASH.ID() FLASH manufacturer and device ID

[build 104365 - DVD 02/2019]

Syntax: FLASH.ID(<id_type>)

<id_type>: MANID | MANIDBANK | DEVID | DEVID2 | DEVID3

After the FLASH.GETID command has been executed, you can use the FLASH.ID() function to return
individual values from the output of the FLASH.GETID command, such as the manufacturer ID or device ID
of a FLASH device.

Parameter Type: String.

Parameter and Description:

MANID Manufacturer ID
MANIDBANK Manufacturer ID bank
DEVID, DEVID2, DevicelD 1,2, 0r 3
DEVID3

Return Value Type: Hex value. Returns 0 if (a) the requested ID does not exist or (b) the FLASH.GETID
command has not yet been executed or (c) the FLASH.GETID command has encountered an error.

Example:
FLASH.GETID 0x0 Word ;print the FLASH manufacturer ID and the device
;IDs to the message area A000
AREA.view ;optional step: open an AREA window to view the
;output of the FLASH.GETID command
RePeaT 2. ;optional step: insert two empty lines
PRINT ""
;you can now use the FLASH.ID() function to return individual values:
PRINT "Manufacturer ID: " FLASH.ID(MANID)
PRINT "Device ID 1 : " FLASH.ID(DEVID)
[suareaview =
anufacturer ID: 0001 AMD i
bt BT
Device ID 3: 2200

anufacturer ID:
Dev‘l ce ID 1 : 2?E -

A Output of the FLASH.GETID command

B Individual values returned by the FLASH.ID() function from the output of the FLASH.GETID
command.

©1989-2024 Lauterbach General Function Reference | 168

FLASH.List.STATE.PENDING() Number of pending sectors

[build 27943 - DVD 06/2011] [Go to figure]

Syntax: FLASH.List.STATE.PENDING()

Returns the number of pending sectors in the FLASH.List window.
Return Value Type: Decimal value.

Example: The function FLASH.List.STATE.PENDING() returns the number of modified sectors when
AUTO or ReProgram mode is active.

FLASH.ReProgram.ALL

Data.LOAD.auto *

PRINT "Modified sectors: " FLASH.List.STATE.PENDING ()
FLASH.ReProgram.off

FLASH.List.TYPE() FLASH family code of FLASH list entry

[build 59355]

Syntax: FLASH.List.TYPE(<address>)

Returns the FLASH family code of a FLASH list entry. The code is displayed in the type column of the
FLASH.List window.

Parameter Type: String.
Return Value Type: Address.
Example:

PRINT FLASH.List.TYPE(C:0x08000001) ;returns ALIAS

PRINT FLASH.List.TYPE (C:0x0C004003) ;returns TARGET

Am BuFLASH.List =n| Wl <
[& state | P Reset || Do# L0 cancel|[@ Program || @ ReProgam || @ Auto |[A CAI |
addres:{|[type width |[state |unit |extra |
C:08000000--0801FFFIJ|ALIAS C : 0C000000--0C0O1FFFF
C:0C000000--0C003FFI) | TARGET Long 1.
C:0C004000--0C007FFI)| TARGET Long 1.
C:0C008000--0C0O0BFFI)|TARGET Long 1.
C:0C00C000--0C00FFFI | TARGET Long 1.
C:0C010000--0C0O13FFI)|TARGET Long 2.
C:0C014000--0C0O1L7FFI) | TARGET Long 2.
C:0C013000--0C0O1BFFI)|TARGET Long 2.
C:0C01C000--0CO1FFFIY| TARGET Long 2.
J 4 }

©1989-2024 Lauterbach General Function Reference | 169

FLASH.ProgramMODE() FLASH programming modes

[build 91427 - DVD 02/2018]

Syntax: FLASH.ProgramMODE()

Returns the active FLASH programming mode.

Return Value Type: String. An empty string is returned if none of the FLASH programming modes listed in
the table below is active.

Return Value and Description:

AUTO The auto programming mode has been activated with FLASH.AUTO.
Program The FLASH programming mode has been activated with FLASH.Program.
ReProgram The FLASH reprogramming mode has been activated with
FLASH.ReProgram.
Example:

FLASH.List

;activate the FLASH reprogramming mode

FLASH.ReProgram C:0xA0004000--0xA000BFFF ;the active mode is shown in
;the 'state' column of the
;FLASH.List window

PRINT FLASH.ProgramMODE () ;returns the active mode
; 'ReProgram'

A BiFLASH.List =N Eoh(=|B:AREAview | o | B |5
[& state | #PReset || O off |[O cancel] @ Progmm| @® ReProgram || @ Auto || A CFL | ReProgram D
address [type width [state |un o= | py o

C :30000000--80FFFFFF |ALIAS | C : ADOOOO00--ADOFFFFFF ~

C:AQ000000--ADO0O3FFF |TARGET Long 1. BMHD=C : ADOO0000--AD00001F

C:AQOO4000--ADD07FFF (TARGET Long §reprog (1.

C :ADDOB000--ADODEBFFF |TARGET Long §reprog (1.

C:AD0OCO00--ADOOFFFF |TARGET Long See 1. BMHD=C : ADOOFFEO--ADOOFFFF

C:AQ0010000--AD013FFF |TARGET Long |nop 1.

C:A0014000--A0017FFF |NOP Long 1.

C:AD013000--A001EFFF |NOP Long 1.

C:AQ00LCO00--ADOLFFFF |TARGET Long 1. BMHD=C : ADOL1FFEO--ADOLFFFF

C:AD020000--AD027FFF |TARGET Long 1. BMHD=C : ADO20000--A002001F &

4 2

©1989-2024 Lauterbach General Function Reference | 170

FLASH.ProgramMODE.OPTION() FLASH programming options

[build 91427 - DVD 02/2018]

Syntax: FLASH.ProgramMODE.OPTION()

Returns the active FLASH programming option.

Return Value Type: String. An empty string is returned if none of the options listed in the table below is
active.

Return Value and Description:

/OTP FLASH programming for the OTP sector is active. See also
FLASH.Program ... /OTP.

/CENSORSHIP Auto programming for the FLASH security bytes is active. See also
FLASH.AUTO ... /CENSORSHIP.

Example:
FLASH.Program 6. /OTP ;activate the FLASH programming mode
;for the OTP sector
FLASH.List ;the active option OTP is shown in the
; 'state' col. of the FLASH.List window
PRINT FLASH.ProgramMODE () ;returns the active mode 'Program'

PRINT FLASH.ProgramMODE.OPTION () ;returns the active option '/OTP'

A BiFLASH.List =N Eoh(=|B:AREAview | o | B |5
[& state | #FReset || O off |[O cance|| @ Program || |® ReProgam || @ Auto |[A cAI | Eg.?.g'"am 1
address [type widtlfl |state, |unit f=xtra | a o

C:00400000--00403FFF [TARGET Quad m [10000500 OTP UTEST ~

C:00800000--00803FFF |TARGET Quad R = 0000000

C:00804000--00807FFF |TARGET Quad |nop 1. 00000001

C:00808000--0080FFFF |TARGET Quad |nop 1. 0oooo002 &

4 I3

©1989-2024 Lauterbach General Function Reference | 171

FLASH.SECTOR.BEGIN() Start address

[build 32807 - DVD 02/2012] [Go to figure]

Syntax: FLASH.SECTOR.BEGIN(<address>)

Returns the start address of the sector. Please read the NOTE regarding the FLASH.SECTOR.*() functions.
Parameter Type: Address.

Return Value Type: Address.

FLASH.SECTOR.END() End address

[build 32807 - DVD 02/2012] [Go to figure]

Syntax: FLASH.SECTOR.END(<address>)

Returns the end address of the sector. Please read the NOTE regarding the FLASH.SECTOR.*()
functions.

Parameter Type: Address.

Return Value Type: Address.

FLASH.SECTOR.EXIST() TRUE if sector exists

[build 32807 - DVD 02/2012]

Syntax: FLASH.SECTOR.EXIST(<address>)

Returns TRUE if the sector exists. Please read the NOTE regarding the FLASH.SECTOR.*() functions.
Parameter Type: Address.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 172

FLASH.SECTOR.EXTRAvalue()

Extra value of FLASH.Create

Syntax:

FLASH.SECTOR.EXTRAvalue(<address>)

[build 78728 - DVD 02/2017]

Returns the extra value created with the command FLASH.Create. Please read the NOTE regarding the
FLASH.SECTOR.*() functions.

The extra value and other information is displayed in the extra column of the FLASH.List window. The
function FLASH.SECTOR.EXTRAvalue(), however, returns only the extra value.

Parameter Type: Address.

Return Value Type: Hex value.

Example:

FLASH.Create 2.
FLASH.List

;returns 101,

i.e.

the <extra_value>,

PRINT FLASH.SECTOR.EXTRAvalue (C:0x00684000)

<extra_value>

0x00684000--0x00687FFF NOP Quad 0x0101 /INFO "HSM data"

without leading zeros

A BFLASH.List

(=[O el

[#hstate | #FReset || Qoff |[O cancel|[@ Program || @ ReProgram || @ Auto |[d#cFL |

address [type width |state |unit |extra |
C:00400000--00403FFF [TARGET Quad [ooooos00 OTP UTEST ~
C:00404000--00407FFF |NOP Quad 1. 0oo00000 BAF
C:0060C000--0060FFFF |NOP Quad 1. 00000005
C:00610000--0061FFFF |NOP Quad 1. 0O00000A
C:00620000--0062FFFF |NOP Quad 1. 0o00000B
C:00680000--00683FFF |NOP Quad 2. 0000100
C:00684000--00687FFF |NOP Quad 2. 00000101 H5M data
C:00800000--0080FFFF |TARGET Quad 3. 0oo00200 &

A The extra value, here 101, is displayed with leading zeros in the FLASH.List window.

©1989-2024 Lauterbach

General Function Reference | 173

FLASH.SECTOR.NEXT() Address of next sector

[build 32807 - DVD 02/2012]

Syntax: FLASH.SECTOR.NEXT(<address>)

Returns the address of the next sector or address 0x0. Please read the NOTE regarding the
FLASH.SECTOR.*() functions.

Parameter Type: Address.

Return Value Type: Address.

FLASH.SECTOR.OTP() TRUE if OTP sector

[build 49133]

Syntax: FLASH.SECTOR.OTP(<address>)

Returns TRUE if the sector is declared as OTP. Please read the NOTE regarding the
FLASH.SECTOR.*() functions.

Parameter Type: Address.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 174

FLASH.SECTOR.OPTION() Options of a FLASH sector

[build 107517 - DVD 09/2019]

Syntax: FLASH.SECTOR.OPTION(<address>,<option> | ALL)

Returns the options of a FLASH sector in the same syntax as used by the FLASH.Create command.
Please read the NOTE regarding the FLASH.SECTOR.*() functions.

Parameter and Description:

<address> Parameter Type: Address. Any address of a sector. The address has to be
classified, e.g. C:0x1000000.

<option> Parameter Type: String. You can pass any <option> of the FLASH.Create
command, provided the result of the option is displayed in the FLASH.List
window in the extra column. See screenshot below.

An error message is displayed if an invalid option name is used.

ALL Parameter Type: String. Returns all options of a sector that are displayed in
the extra column. See screenshot below.

NOTE: To return the extra value of a sector, use FLASH.SECTOR.EXTRAvalue().

Return Value Type: String. An empty string is returned if the option is not used for a sector.
Example:

FLASH.Create 0x1000000--0x100FFFF 0x4000 TARGET Long 0x0 \
/AutoInc /KEEP 0x1003FFC--0x1003FFF
FLASH.Create 0x0400000--0x0403FFF 0x4000 TARGET Long 0x500 \
/OTP /INFO "UTEST sector"

FLASH.List

PRINT FLASH.SECTOR.OPTION(C:0x1000000,KEEP)
;returns: /KEEP 0x1003FFC--0x1003FFF

PRINT FLASH.SECTOR.OPTION(C:0x0400000,ALL)
;returns: /OTP /INFO "UTEST sector"

Bu:FLASH.List -IEI .
iz : = @B Examples of <options>
[& state || #FReset || O off |[O cancel|][@ Program || @ ReProgam || @ Auto |[A CFI | . .
address |[type width |state |unit |extra | d'SpIayed in the extra
C:00400000--00403FFF (TARGET Long 1. 00000500 OTP UTEST sector 2
C:01000000--01003FFF [TARGET Long 1. |00000D000 KEEP=C:01003FFC--01003FFF column.
C:01004000--01007FFF [TARGET Long 1. |00000001
C:01008000--0100BFFF [TARGET Long 1. |00000002 | FLASH.SECTOR.OPT|ON()
C:0100C000--0100FFFF [TARGET Long 1. 100000003 ji
}

FLASH.SECTOR.EXTRAvalue().
The option Autolnc of FLASH.Create affects the extra value.

©1989-2024 Lauterbach General Function Reference | 175

FLASH.SECTOR.RANGE() Address range of a FLASH sector

[build 79101 - DVD 02/2017]

Syntax: FLASH.SECTOR.RANGE(<address>)

Returns the address range of a sector. Please read the NOTE regarding the FLASH.SECTOR.*() functions.
Parameter Type: Address.

Return Value Type: Address range.

FLASH.SECTOR.SIZE() Size in bytes

Syntax: FLASH.SECTOR.SIZE(<address>)

Returns the size of the flash sector in bytes. Please read the NOTE regarding the FLASH.SECTOR.*()
functions.

Parameter Type: Address.

Return Value Type: Hex value.

FLASH.SECTOR.STATE() FLASH programming state

Syntax: FLASH.SECTOR.STATE(<address>)

Returns the FLASH programming state of a sector. The state is displayed in the state column of the
FLASH.List window.

Please read the NOTE regarding the FLASH.SECTOR.*() functions.
Parameter Type: Address.

Return Value Type: String. An empty string is returned if the specified address is not inside any sector
or if the state column is empty.

©1989-2024 Lauterbach General Function Reference | 176

FLASH.SECTOR.TYPE()

FLASH family code of sector

Syntax:

[build 49128]

FLASH.SECTOR.TYPE(<address>)

Returns the FLASH family code of a sector. The code is displayed in the type column of the FLASH.List

window.

Please read the NOTE regarding the FLASH.SECTOR.*() functions.

Parameter Type: Address.

Return Value Type: String. An empty string is returned if the specified address is not inside any sector.

Example:

PRINT FLASH.SECTOR.TYPE (C:0x08000001)

PRINT FLASH.SECTOR.TYPE (C:0x0C004003) ;returns TARGET

A BFLASH.List

(=[O el

[4 State | o Reset || O off (O Cancel|[@ Program|[® ReProgram || @ Auto || A CFI |

address [type width |[state |unit |extra |
C:08000000--0801FFFF |ALTAS C : 0C000000--0C0O1FFFF P
C:0C000000--0C003FFF |TARGET Long 1.‘
C:0C004000--0C007FFF |TARGET Long 1.
C:0C008000--0C00BFFF |TARGET Long 1.
C:0C00C000--0C00FFFF |TARGET Long 1.‘
C:0C010000--0C013FFF |TARGET Long 2.‘
C:0C014000--0C017FFF |TARGET Long 2.
C:0C018000--0C0O1BFFF |TARGET Long 2.
C:0C01C000--0C01FFFF |TARGET Long 2.‘ |

4

A Sectors of unit 1.

B Sectors of unit 2.

;returns an empty string because
;the address is neither in the
;sectors of unit 1. nor unit 2.

©1989-2024 Lauterbach

General Function Reference

177

FLASH.SECTOR.WIDTH() Width of FLASH sector

[build 50663]

Syntax: FLASH.SECTOR.WIDTH(<address>)

Returns the width of a FLASH sector. The information is displayed in the width column of the
FLASH.List window.

Please read the NOTE regarding the FLASH.SECTOR.*() functions.
Parameter Type: Address.

Return Value Type: String. Returns an empty string if the address is not inside any sector.

FLASH.TARGET.BUILD() Build number of FLASH algorithm file

[build 33191 - DVD 02/2012]

Syntax: FLASH.TARGET.BUILD(<file>)

Returns the build number of the FLASH algorithm binary file or 0 if the file has no build number. The build
number of the FLASH algorithm binary is independent of the TRACES32 build number.

Parameter Type: String.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 178

FLASH.TARGET.CODERANGE() Code range of FLASH algorithm

[build 89348 - DVD 02/2018]

Syntax: FLASH.TARGET.CODERANGE()

FLASH.TARGET2.CODERANGE()

Returns the address range where the code of the FLASH algorithm binary file and the software breakpoint is
located. The address range is declared with the FLASH.TARGET or FLASH.TARGET2 command.

Return Value Type: Address range.

FLASH.TARGET.DATARANGE() Data range of FLASH algorithm

[build 89348 - DVD 02/2018]

Syntax: FLASH.TARGET.DATARANGE()

FLASH.TARGET2.DATARANGE()

Returns the address range where the argument buffer, the data buffer, and the stack used by the FLASH
algorithm binary file are located. The address range is declared with the FLASH.TARGET or
FLASH.TARGET2 command.

Return Value Type: Address range.

FLASH.TARGET.FILE() Name of FLASH algorithm file
Syntax: FLASH.TARGET.FILE()
[build 48531]

FLASH.TARGET2.FILE()
[build 67392 - DVD 02/2016]

Returns the file name of the FLASH algorithm binary declared with the FLASH.TARGET or
FLASH.TARGET2 command.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 179

FLASH.UNIT() Unit number of FLASH sector

[build 41711]
Syntax: FLASH.UNIT(<address>)
Returns the unit number of a FLASH sector. Returns 0 if the sector does not exist.
Parameter Type: Address.
Return Value Type: Decimal value.
FLASH.UNIT.BEGIN() Unit start address
[build 41711]

Syntax: FLASH.UNIT.BEGIN(<unit>)

Returns the start address of the unit or displays the error #emu_flashnfnd if the unit does not exist.
Parameter Type: Decimal value.

Return Value Type: Address.

FLASH.UNIT.END() Unit end address

[build 41711]

Syntax: FLASH.UNIT.END(<unit>)

Returns the end address of the unit or displays the error #emu_flashnfnd if the unit does not exist.
Parameter Type: Decimal value.

Return Value Type: Address.

©1989-2024 Lauterbach General Function Reference | 180

FLASH.UNIT.EXIST() TRUE if unit exists

[build 41711] [Go to figure]

Syntax: FLASH.UNIT.EXIST(<unit>)

Returns TRUE if the unit exists, otherwise FALSE.
Parameter Type: Decimal value.

Return Value Type: Boolean.

FLASH.UNIT.NEXT() Number of next unit

[build 41711]

Syntax: FLASH.UNIT.NEXT(<unit>)

Returns the number of the next unit. Returns 0 if there is no next unit.
Parameter Type: Decimal value.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 181

FLASHFILE Functions

In This Section

See also

B FLASHFILE 1 FLASHFILE.GETBADBLOCK.COUNTY()
1 FLASHFILE.GETBADBLOCK.NEXT() 1 FLASHFILE.SPAREADDRESS()

FLASHFILE.GETBADBLOCK.COUNT() Number of bad blocks

Syntax: FLASHFILE.GETBADBLOCK.COUNT()

After the FLASHFILE.GETBADBLOCK command has been executed, this function returns the number of
the bad blocks on the NAND flash memory.

Return Value Type: Hex value.

Example:

FLASHFILE.GETBADBLOCK 0x0--0xXFFFFF ; test range 0x0--0xXFFFFF for bad
; blocks

&badblockcount=FLASHFILE.GETBADBLOCK .COUNT ()

PRINT "Number of bad blocks: " &badblockcount
FLASHFILE.GETBADBLOCK.NEXT() Address of bad block
[Example]
Syntax: FLASHFILE.GETBADBLOCK.NEXT()

After the FLASHFILE.GETBADBLOCK command has been executed, this function returns the addresses
of the bad blocks on the NAND flash memory.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 182

Example:

FLASHFILE.GETBADBLOCK 0x0--0xFFFFF ; test range 0x0--O0xXFFFFF for bad
; blocks

&badblockcount=FLASHFILE.GETBADBLOCK.COUNT ()
&1loopNum=&badblockcount

WHILE (&loopNum>0)

(
PRINT $%Hex "Bad block address: 0x" FLASHFILE.GETBADBLOCK.NEXT ()
&1loopNum=&loopNum-1 .

FLASHFILE.SPAREADDRESS() Address of spare area

Syntax: FLASHFILE.SPAREADDRESS(<address>)

Returns the address of a NAND flash spare area (SP) based on the specified main area address.
<address> is the address of the main area.

Parameter Type: Decimal or hex or binary value.
Return Value Type: Hex value.

Example: The page size of our example NAND flash main / spare area is 2048 byte / 64 byte, and each row
stands for one page.

address Main Area SP address
0x0 0x0
0x800 0x40
0x1000 0x80

H <main_area_address>

PRINT FLASHFILE.SPAREADDRESS (0x800) ;returns the corresponding
;spare area address, here:
; 0x40

©1989-2024 Lauterbach General Function Reference | 183

FPU Functions (Floating Point Unit)

In This Section

See also
B FPU Q FPU() O FPU.RAW() Q FPUCR()
FPU() FPU register contents
Syntax: FPU(<name>)

Returns the FPU register contents.
Parameter Type: String.

Return Value Type: Float.

FPUCR() FPU control register contents

Syntax: FPUCR(<name>)

Returns the FPU control register contents.
Parameter Type: String.

Return Value Type: Hex value.

FPU.RAW() FPU register raw contents

AndeStar, ARM, C2000, ColdFire, MIPS32, MMDSP, PowerPC, SH

Syntax: FPU.RAW(<name>)

Returns the hexadecimal raw content of the given FPU control register.
Parameter Type: String.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 184

FXU Function

FXU() Content of FXU register

RH850 [build 81540 - DVD 09/2017]

Syntax: FXU(<register_name>)

Returns the content of the selected FXU register.
Parameter Type: String.
Return Value Type: String.

See also: FXU command group.

GROUP Function
GROUP.EXIST() TRUE if group exists
Syntax: GROUP.EXIST(<group_name>)

Returns TRUE if a group name already exists, FALSE otherwise.
Parameter Type: String.
Return Value Type: Boolean.

See also: GROUP command group.

©1989-2024 Lauterbach General Function Reference | 185

Hardware Functions

In This Section

The hardware function allows to check which TRACE32 hardware is plugged in.

See also
1 hardware.COMBIPROBE() 1 hardware.ESI()
1 hardware.ICD() 1 hardware. POWERINTEGRATOR()
1 hardware. POWERINTEGRATOR2() 1 hardware. POWERNEXUS()
1 hardware.POWERPROBE() 1 hardware.POWERTRACE()
1 hardware. POWERTRACEZ2() 1 hardware. POWERTRACE2LITE()
1 hardware. POWERTRACES3() 1 hardware. POWERTRACEPX()
O hardware. POWERTRACESERIAL() 0 hardware.QUADPROBE()
1 hardware.UTRACE()
hardware.COMBIPROBE() TRUE if CombiProbe
Syntax: hardware.COMBIPROBE()

Returns TRUE if a COMBIPROBE hardware is connected.

Return Value Type: Boolean.

hardware.ESI() TRUE if EPROM Simulator

Syntax: hardware.ESI()
ESI() (deprecated)

Returns TRUE if the debugger is running via the ESI (EPROM Simulator) hardware.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 186

hardware.ICD() TRUE if TRACES32 debug hardware

Syntax: hardware.ICD()
BDM() (deprecated)
DEBUGger() (deprecated)
ICD() (deprecated)

Returns TRUE if TRACE32 PowerView communicates with the target via a TRACES32 debug hardware.
Unlike the hardware.POWERDEBUG() function, this also includes legacy debug modules.

Return Value Type: Boolean.

hardware.POWERDEBUG() TRUE if TRACE32 PowerDebug hardware

Syntax: hardware.POWERDEBUG()
POWERDEBUG() (deprecated)

Returns TRUE if TRACE32 PowerView communicates with the target via a pTrace (MicroTrace), POWER
DEBUG or POWERTRACE / ETHERNET hardware module.

Return Value Type: Boolean.

hardware.POWERINTEGRATOR() TRUE if a Powerlntergrator
Syntax: hardware.POWERINTEGRATOR()
POWERINTEGRATOR() (deprecated)
INTEGRATOR() (deprecated)

Returns TRUE if a POWER INTEGRATOR hardware module is connected.

Return Value Type: Boolean.

hardware.POWERINTEGRATOR2() TRUE if a Powerlntegrator Il

Syntax: hardware.POWERINTEGRATOR2()
POWERINTEGRATORZ2() (deprecated)

Returns TRUE if a POWERINTEGRATOR Il hardware module is connected.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 187

hardware.POWERNEXUS() TRUE is a NEXUS Adapter

Syntax: hardware.POWERNEXUS()
POWERNEXUS() (deprecated)

Returns TRUE if a NEXUS ADAPTER is connected.

Return Value Type: Boolean.

hardware.POWERPROBE() TRUE is a PowerProbe

Syntax: hardware.POWERPROBE()
POWERPROBE() (deprecated)
PROBE() (deprecated)

Returns TRUE if a POWERPROBE hardware module is connected.

Return Value Type: Boolean.

hardware.POWERTRACE() TRUE if a PowerTrace Module

Syntax: hardware.POWERTRACE()
POWERTRACE() (deprecated)

Returns TRUE if a POWERTRACE module is connected.

Additional prerequisite is that a PREPROCESSOR / NEXUS ADAPTER is also plugged in. This is not
required for POWER TRACE SERIAL.

Return Value Type: Boolean.

hardware.POWERTRACE2() TRUE if a PowerTrace Il

[build 14028 - DVD 10/2008]

Syntax: hardware.POWERTRACEZ2()
POWERTRACE2() (deprecated)

Returns TRUE if a POWER TRACE Il or POWER TRACE Il LITE hardware module is connected. Additional
prerequisite is that a PREPROCESSOR / NEXUS ADAPTER is also plugged in.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 188

hardware.POWERTRACE2LITE() TRUE if a PowerTrace Il LITE

[build 117875 - DVD 09/2020]

Syntax: hardware.POWERTRACE2LITE()

Returns TRUE if a POWER TRACE Il LITE hardware module is connected. Additional prerequisite is that a
PREPROCESSOR / NEXUS ADAPTER is also plugged in.

Return Value Type: Boolean.

hardware.POWERTRACE3() TRUE if a PowerTrace lli

[build 124115 - DVD 09/2021]

Syntax: hardware.POWERTRACE3()

Returns TRUE if a POWER TRACE Il hardware module is connected. Additional prerequisite is that a
PREPROCESSOR / NEXUS ADAPTER is also plugged in.

Return Value Type: Boolean.

hardware.POWERTRACEPX() TRUE if a PowerTrace PX

[build 79974 - DVD 02/2017]

Syntax: hardware.POWERTRACEPX()

Returns TRUE if a POWER TRACE PX hardware module is connected. Additional prerequisite is that a
PREPROCESSOR / NEXUS ADAPTER is also plugged in.

Return Value Type: Boolean.

hardware. POWERTRACESERIAL() TRUE if a PowerTrace Serial

[build 78458 - DVD 02/2017]

Syntax: hardware.POWERTRACESERIAL()

Returns TRUE if a POWER TRACE SERIAL hardware module is connected.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 189

hardware.POWERTRACESERIAL2() TRUE if a PowerTrace Serial I

[build 158903 - DVD 03/2023]

Syntax: hardware.POWERTRACESERIAL2()

Returns TRUE if a POWER TRACE SERIAL Il hardware module is connected.

Return Value Type: Boolean.

hardware.QUADPROBE() TRUE if QuadProbe

[build 63955 - DVD 09/2016]

Syntax: hardware.QUADPROBE()

Returns TRUE if a QUADPROBE hardware is plugged.

Return Value Type: Boolean.

hardware.UTRACE() TRUE if yTrace

[build 46956 - DVD 2013/08]

Syntax: hardware.UTRACE()

Returns TRUE if TRACES32 PowerView communicates with the target via a pyTrace (MicroTrace),

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 190

HVX Function

HVX() Content of HVX register

[build 61364 - DVD 09/2015]

Syntax: HVX(<register_name>)

Returns the content of the selected HVX register.
Parameter Type: String.
Return Value Type: String.

See also: HVX command group.

©1989-2024 Lauterbach General Function Reference | 191

I2C Functions

In This Section

See also
B 12C 0 12C.DATA() Q 12C.PIN()
I2C.DATA() Data read by I2C.TRANSFER
[build 62704 - DVD 09/2015]
Syntax: 12C.DATA(<index>)

CAnalyzer.I2C.DATA(<index>) (deprecated)

Returns byte <index> read with the command I2C.TRANSFER.
Parameter Type: Decimal value.

Return Value Type: Decimal value.

12C.PIN() Pin status
[build 62704 - DVD 09/2015]
Syntax: 12C.PIN(<pin_name>)
<pin_name>: SCL | SDA

Returns the pin status 0 or 1.
Parameter Type: String.
Return Value Type: Binary value.

See also: 12C.PIN

©1989-2024 Lauterbach General Function Reference | 192

ID Functions

In This Section

See also

1 ID.CABLE() 1 ID.POWERTRACEAUXPORT()
1 ID.PREPROcessor() 1 ID.SERialPort1()

O ID.WHISKER() 0 IDCODE()

1 IDCODENUMBER()

ID.CABLE() Hardware ID of debug cable

Syntax: ID.CABLE()

Returns the hardware ID of the debug cable (not the serial number).

Return Value Type: Hex value.

ID.POWERTRACEAUXPORT() Hardware ID of device at PT aux port

[build 132426 - DVD 02/2021]

Syntax: ID.POWERTRACEAUXPORT()

Returns the hardware ID (not the serial number) of the device of a logic analyzer extension plugged into a
PowerTrace device.

Return Value Type: Hex value.
To get the serial number, use the function VERSION.SERIAL.POWERTRACEAUXPORT().

Return Values for PowerTrace lll or PowerTrace Serial 2

The return value corresponds to the extension device plugged into the port labelled AUX PORT V1.

Return Values

0x00 No extension

0x27 LA-2500 Mixed-Signal Probe COB 2/MicroTrace/PT-lI|
OxFF Unknown extension, please update the TRACE32 software.

©1989-2024 Lauterbach General Function Reference | 193

Return Values for PowerTrace Il or PowerTrace Serial

The return value corresponds to the extension plugged into the port labelled LOGIC ANALYZER PROBE:

Return Values

0x00 No extension

0x07 LA-7945 Standard Probe for PowerIntegrator

0x08 LA-7949 Analog Probe for PI/PT-1/CombiProbe/uTrace (MicroTrace)

OxFF Unknown extension, please update the TRACE32 software.
ID.PREPROcessor() Hardware ID of preprocessor

[build 12440 - DVD 10/2008]
Syntax: ID.PREPROCcessor()

HEADID() (deprecated)
[build 07808 - DVD 09/2007]

Returns the hardware ID of the preprocessor (not the serial number).

Return Value Type: Hex value.

To return the serial number, use the function VERSION.SERIAL.PREPROcessor().

©1989-2024 Lauterbach

General Function Reference | 194

ID.SERialPort1() Type-ID of Adapter or Preprocessor at PowerTrace Serial

[build 156822 - DVD 02/2023]

Syntax: ID.SERialPort1()

Returns a 16-bit ID specifying the type of the Lauterbach device plugged to Serial Port 1 of a
PowerTrace Serial.

Return Value Type: Hex value.

Return Value and Description:

0x2082 Aurora 2 Preprocessor

0x208A PCle Gen 4 Preprocessor

0x2002 PCle Gen 3 x8 Slot-Card-Adapter
0x2009 PCle Gen 3 x4 Slot-Card-Adapter
0x200A PCle Gen 3 x1 Slot-Card-Adapter
0x2004 Adapter for AGBT

0x200B Adapter for AGBT/SGBT via HSTCU
0x2003 Universal Trace Adapter

0x2006 Adapter for RH850-34pin

0x2007 Adapter for RH850-40pin

©1989-2024 Lauterbach General Function Reference | 195

ID.WHISKER() ID of whisker cable

[build 63343 - DVD 09/2015]

Syntax: ID.WHISKER(<int>)

Returns the ID of the whisker cable connected to the connector specified by <int>.
Parameter Type: Decimal value.
Return Value Type: Hex value.

Use cases for the function ID.WHISKER(<int>):

. Scripts that use TRACE32 commands that only work if a specific whisker is connected. E.g.
using the ETA command group requires that a Conv. CombiProbe/pTrace (MicroTrace) to PI-
Analog Probe plus an Analog Probe for PI/PT-lIl/CombiProbe/uTrace (MicroTrace) is connected.

. A script designed for different tool configurations can use this function to parenthesize
commands applicable only for a individual configuration.

©1989-2024 Lauterbach General Function Reference | 196

Parameters and Return Values for pTrace (MicroTrace), CombiProbe and CombiProbe 2

MTRACE" FOR CORTEX"-M / USB 3

A

BA

—COMBIPROBE —|

<int> Parameter
0 For connector A
1 For connector B
Return Values
0x00 No whisker
0x01 LA-4505 MIPI134 Whisker for CombiProbe/MicroTrace
0x02 LA-4515 DCI OOB Whisker for CombiProbe (Version 1)
0x04 LA-4551 Whisker Cable TriCore DAP for CombiProbe (no longer supported)
0x05 LA-4509 CombiProbe Intel x86/x64 MIPI34 (no series termination).
0x08 LA-4508 Conv. CombiProbe/uTrace (MicroTrace) to PI-Analog Probe plus
LA-7949 Analog Probe for PI/PT-I/CombiProbe/uTrace (MicroTrace)
0x09 LA-4515 DCI OOB Whisker for CombiProbe (Version 2)
0x0B LA-4400 USB-C Breakout Module (Type-C Port)
OxOE LA-4553 AUTO26 Whisker for CombiProbe or
LA-2763 Whisker dsPIC Dual Core for CombiProbe
0x10 LA-4511 Whisker Cable MIPI60-C for CombiProbe or
LA-4517 Whisker Cable MIPI60-C for CombiProbe Long
0x11 LA-4571 Whisker Cable MIPI60-Cv2 for CombiProbe (Version 2)
0x12 LA-4513 MIPI20T-HS Whisker for CombiProbe/MicroTrace
0x26 LA-4571 Whisker Cable MIP160-Cv2 for CombiProbe (Version 2.1)
0x27 LA-2500 Mixed-Signal Probe COB 2/MicroTrace/PT-lII
OxFF Unknown whisker, please update the TRACES32 software.

Not all whiskers are supported on both ports. For whiskers that occupy both ports of the CombiProbe, the ID
is returned by ID.WHISKER(0.) and ID.WHISKER(1.) returns 0x00.

The function hardware.UTRACE() returns TRUE if a pTrace (MicroTrace) is connected. The function
hardware.COMBIPROBE() returns TRUE if a CombiProbe or CombiProbe 2 is connected.

©1989-2024 Lauterbach

General Function Reference | 197

Parameters and Return Values for QuadProbe

—‘ B : 1
i

[—
LAUTERBACH
QUADPROBE
LAUTERBACH.

DCBA

—— QUADPROBE —

<int> Parameter

0 For connector A
1 For connector B
2 For connector C
3 For connector D

Return Values

0x32 LA-4611 Whisker MIPI60-Q QuadProbe Intel® x86/x64 connected.
0x00 No whisker connected.
Oxff Unknown whisker, please update the TRACES32 software.

The function hardware.QUADPROBE() returns TRUE if a TRACE32 QuadProbe is connected.

©1989-2024 Lauterbach General Function Reference | 198

IDCODE() ID code of TAP in JTAG chain

[build 17669 - DVD 12/2009]

Syntax: IDCODE(<n>)

Returns the JTAG ID code of the n-th TAP in your JTAG chain after executing SYStem.DETECT
IDCode.

Parameter Type: Decimal value.
Return Value Type: Hex value.
Example:

SYStem.DETECT IDCode
PRINT "lst device in JTAG daisy chain is 0x" $%$Hex IDCODE(0)

IDCODENUMBER() Number of detected TAPs

[build 17669 - DVD 12/2009]

Syntax: IDCODENUMBER()

Returns the number of TAPs detected by SYStem.DETECT IDCode.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 199

Integrator Functions

In This Section

See also
[Integrator() 1 Integrator, ADC.ENABLE()
1 Integrator, ADC.SHUNT() 1 Integrator. COUNTER.EVENTY()
1 Integrator. COUNTER.EXTERN() 1 Integrator. COUNTER.TIME()
1 Integrator.DIALOGDSEL() 1 Integrator.DIALOGDSELGET()
1 Integrator.DSEL() 1 Integrator.FIND.PI_CHANNEL()
1 Integrator.FIND.PI_WORD() 1 Integrator.FIRST()
1 Integrator.FLAG() 1 Integrator.GET()
1 Integrator. MAXSIZE() 1 Integrator.PROBE()
1 Integrator. PROGRAMFILENAME() 1 Integrator. RECORD.DATA()
1 Integrator. RECORD.TIME() 1 Integrator. RECORDS()
1 Integrator.REF() 1 Integrator.SIZE()
1 Integrator.STATE() 1 Integrator. TRACK.RECORD()
[Integrator.USB()

Integrator() TRUE if PowerIntegrator

Syntax: Integrator()

Returns TRUE if a Powerlntegrator is connected.

Return Value Type: Boolean.

Integrator.FIRST()

Get record number of first trace record

Syntax: Integrator.FIRST()

[build 71062 - DVD 09/2016]

Returns the record number of the first record. The first record is the record with the lowest record number.

Return Value Type: Decimal value.

©1989-2024 Lauterbach

General Function Reference | 200

Integrator. ADC.ENABLE() Bitmask of enabled analog channels

Syntax: Integrator. ADC.ENABLE(<channel>)

Returns the bitmask of enabled analog channels of the Analog Probe.
Parameter Type: String.

Return Value Type: Boolean.

Integrator. ADC.SHUNT() Shunt-resistor value

Syntax: Integrator.ADC.SHUNT(<channel>)

Returns the shunt-resistor value of the specified current measurement <channel> of the Analog Probe.
Parameter Type: String.

Return Value Type: Float.

Integrator, ANALOG()

Syntax: Integrator. ANALOG()

Returns a value different from zero if analog probes are plugged in a Powerlntegrator hardware. For
connector A..F, J..O the values are: 0x0001..0x0020, 0x0100..0x2000.

Return Value Type: Hex value.

Integrator. COUNTER.EVENT() Get value of trigger program event counter

Syntax: Integrator. COUNTER.EVENT(<counter_name>)

Returns the value of an event counter of the PowerIntegrator CTU.
Parameter Type: String.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 201

Integrator. COUNTER.EXTERN() Value of trigger program external counter

Syntax: Integrator. COUNTER.EXTERN(<counter_name>)

Returns the value of an extern counter of the Powerlntegrator CTU.
Parameter Type: String.

Return Value Type: Decimal value.

Integrator. COUNTER.TIME() Get value of trigger program time counter

Syntax: Integrator. COUNTER.TIME(<counter_name>)

Returns the value of an time counter of the Powerlntegrator CTU.
Parameter Type: String.

Return Value Type: Time value.

Integrator.DIALOGDSEL() For internal usage only

Syntax: Integrator.DIALOGDSEL (<string>)

For internal usage only.
Parameter Type: String.

Return Value Type: Hex value.

Integrator.DIALOGDSELGET() For internal usage only

Syntax: Integrator.DIALOGDSELGET()

For internal usage only.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 202

Integrator.DSEL() For internal usage only

Syntax: Integrator.DSEL()

For internal usage only.

Return Value Type: String.

Integrator.FIND.PI_CHANNEL() For internal usage only

Syntax: Integrator.FIND.PI_CHANNEL(<signal_name>)

Returns if the specified signal-name is defined (internal use only).
Parameter Type: String.

Return Value Type: Hex value.

Integrator.FIND.PI_WORD() TRUE if signal word is defined

Syntax: Integrator.FIND.PI_WORD(<signal_word>)

Returns TRUE if the specified signal-word is defined.
Parameter Type: String.

Return Value Type: Boolean.

Integrator.FLAG() Check state of trigger program FLAG

Syntax: Integrator.FLAG(<flag_name>)

Returns the value of a flag of the Powerlntegrator CTU.
Parameter Type: String.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 203

Integrator.GET() Value of channel

Syntax: Integrator.GET(<channel_name>)

Returns the current value of the channel.
Parameter Type: String.

Return Value Type: Hex value.

0 High
1 Low
Integrator.MAXSIZE() Get max. size of trace buffer in records
Syntax: Integrator.MAXSIZE()

Returns the maximum size of the Powerlntegrator trace buffer in records (value depends on the actual
selected tracing mode t00).

Return Value Type: Decimal value.

Integrator.PROBE() For internal usage only

Syntax: Integrator.PROBE()

Returns the bitmask of connected probes (internal use only).

Return Value Type: Hex value.

Integrator. PROGRAMFILENAME() File name of trigger program

Syntax: Integrator.PROGRAMFILENAME()

Returns the file name of the active trigger program.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 204

Integrator.RECORD.DATA() Get data recorded in trace record

Syntax: Integrator.RECORD.DATA(<record_number>,<channel>)

Returns the sampled data from the specified record.

Parameter and Description:

<record_number> Parameter Type: Decimal value.

<channel> Parameter Type: String.

Return Value Type: Hex value.

Integrator. RECORD.TIME() Get timestamp of trace record

Syntax: Integrator.RECORD.TIME(<record_number>)

Returns the timestamp from the specified record. For an example, see Analyzer.RECORD.TIME().
Parameter Type: Decimal value.

Return Value Type: Time value.

Integrator.RECORDS() Get number of used trace records

Syntax: Integrator. RECORDS()

Returns the number of records.

Return Value Type: Decimal value.

Integrator.REF() Get record number of reference record

Syntax: Integrator.REF()

The command Integrator.REF allows to mark a trace record as reference record. The function returns the
record number of the reference record.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 205

Integrator.SIZE() Get current trace buffer size in records

Syntax: Integrator.SIZE()

Returns the actual defined logical size of the Power Integrator trace buffer in records.

Return Value Type: Decimal value.

Integrator.STATE() Get state of the Integrator

Syntax: Integrator.STATE()

Returns the state of the Integrator.
Return Value Type: Hex value.

Return Value and Description:

0 OFF state
1 Arm state
2 break state
3 trigger state
4 DiSable state
Integrator. TRACK.RECORD() Get record number matching search
Syntax: Integrator. TRACK.RECORD()

After a successful search operation, this function returns the record number. For an example, see
Analyzer.TRACK.RECORD().

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 206

Integrator.USB() For internal usage only

Syntax: Integrator.USB()

Returns a value not equal to 0 if an USB2 probe is connected (internal use only).

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 207

INTERFACE Functions

This figure provides an overview of the return values of some of the functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

INTERFACE.SIM()

B:EDIT.OPEN "CAT32\bin\windows64\ config.£32"

(=[O el

| & Setup... ||

% save | Save As.. || [quit |[#Find... |[)[cx](9]

/7 Example of a TRACE3Z configuration file for
/) TRACE3Z Simulator (Windows)

05=

ID=5IMO02

TMP=C :'\temp
SY5=C:\T32
HELP=C:',T32\pdf

IIF‘BI=SII‘-‘I I

PRINTER=WINDOWS

J,

; temporary directory for TRACE3Z
; system directory for TRACE3Z
; help directory for TRACE3Z

-

The INTERFACE functions return the PBI= setting in the configuration file (by default config.t32) irrespective
of the current system mode setting. The system mode settings, such as SYStem.Mode Up or
SYStem.Mode Down, are shown in the SYStem.state window. They can be returned with the

SYStem.Mode() function.

To open the configuration file of a TRACE32 instance:

1. Choose Help menu > About TRACE32.

2. In the VERSION window, click the edit button.

In This Section

See also

O INTERFACE.CADI()
1 interface. HOSTMCI()
1 INTERFACE.QNX()

INTERFACE.CADI()

0 INTERFACE.GDB()
O INTERFACE.IRIS()
0 INTERFACE.SIM()

O INTERFACE.GDI()
O INTERFACE.MCD()

d INTERFACE.HOST()
d INTERFACE.NAME()

TRUE if connection to target is via CADI interface

Syntax:

INTERFACE.CADI()

Returns TRUE if the debugger is connected to the target via the CADI interface (PBI=CADI).

Return Value Type: Boolean.

©1989-2024 Lauterbach

General Function Reference | 208

INTERFACE.GDBY() TRUE if connection to target is via GDB interface

Syntax: INTERFACE.GDB()

Returns TRUE if the debugger is connected to the target via the GDB interface (PBI=GDB).

Return Value Type: Boolean.

INTERFACE.GDI() TRUE if connection to target via GDI interface

Syntax: INTERFACE.GDI()
GDI() (deprecated)

Returns TRUE if the debugger is connected to the target via the GDI interface (PBI=GDI).

Return Value Type: Boolean.

INTERFACE.HOST() TRUE if application is debugged on host

Syntax: INTERFACE.HOST()

Returns TRUE if the debugger is connected to the application via the Native Host Debugging interface
(PBI=HOST).

Return Value Type: Boolean.

interface.HOSTMCI() TRUE if TRACES32 debug driver runs on host

[build 38565 - DVD 08/2012]

Syntax: interface.HOSTMCI()

Returns TRUE if the TRACE32 debug driver runs on the host to access the target CPU by native
connections or artificial back-end interfaces. The result reflects the settings PBI=MCILIB or
PBI=MCISERVER of the config file.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 209

INTERFACE.IRIS() TRUE if connection to target is via IRIS interface

Syntax: INTERFACE.IRIS()

Returns TRUE if the debugger is connected to the target via the IRIS interface (PBI=IRIS).

Return Value Type: Boolean.

INTERFACE.MCD() TRUE if connection to target via MCD interface

Syntax: INTERFACE.MCD()

Returns TRUE if the debugger is connected to the target via the MCD interface (PBI=MCD).

Return Value Type: Boolean.

INTERFACE.NAME() Name of debugger

[build 76305 - DVD 09/2016]

Syntax: INTERFACE.NAME()

Returns the name of the debugger this GUI is connected to. This is the same name as printed in the
VERSION.view window, e.g. “Power Debug USB 3.0”, “Simulator” or “GDI”.

Return Value Type: String.

INTERFACE.QNX() TRUE if PBI=QNX

Syntax: INTERFACE.QNX()

Returns TRUE if TRACE32 is connected to a process-level debugger for QNX (PBI=QNX).

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 210

INTERFACE.SIM() TRUE if simulator

[Go to figure]

Syntax: INTERFACE.SIM()
SIMULATOR() (deprecated)

Returns TRUE if the debugger is running on the Lauterbach Instruction Set Simulator (PBI=S1M).

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 211

IOBASE Functions

In This Section

See also
0 IOBASE() 0 IOBASE.ADDRESS() 0O IOBASE2()
IOBASE() Base address of internal I/O’s
Syntax: IOBASE()

Gets the base address of the internal I/O’s without access class.

Return Value Type: Hex value.

IOBASE.ADDRESS() Base address of internal I/O’s with access class

Syntax: IOBASE.ADDRESS()

Gets the base address of the internal I/O’s with access class.

Return Value Type: Address.

IOBASE2() Second base address of internal I1/0O’s

Syntax: IOBASE2()

Gets the second base address of the internal I/O’s without access class.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 212

IProbe Functions

These figures provide an overview of the return values of some of the functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

IProbe.STATE()
IProbe.RECORDS()
|
‘Ib B:IProbe.state EI
— state used
© DiSable |
@ OFF 80318,
) Arm Size
() TRIGGER 1048576.
) Break
~mode |
IProbe.SIZE() IProbe.PROBE()
IProbe.MAXSIZE()
IProbe.GET()
3, BIProbe.GET - ‘im t
. XL S X S— IProbe. ANALOG() —=8 [52
Rg

ip.i2 ip.p0 ip.pl ip.p2 l lHJ\J

B::

|fou|nd in (-79772.)--(-1.) at|-79770. | IProbe. TRACK.RECORD()
emulat brizzer davicss trace | [D:

|C-T: -00079770 -1.021s | C-Z: +3.200us | scale:100.C

— IProbe.ADC.ENABLE() IProbe.ADC.SHUNTY()

% [poore E=Eon

— cnannel max res COmprass — sample ——
Cvo |
“vi | 0.639648 M 4,900V 0.001220
¥v2 | 2.155761 [4,900V 0.001220
@v3 | 1.040804 W 4990V 0001220V Y7 [Pr—

shunt(Ohms)

o | 0.046508 [N 0.125A 00000M0A | 1.000
vn | 0.019592 W 0.125A ooomA | 1.000
¥ | 0.026489 W 0.125A 000000A | 1.000 a1~ [=

voltage(Volts)
Meo | 0.153479 - 0.412W 0.000100W 3.300

Me1 | 0.064654 . 0.412W 0.000100W 3.300

wrz2 | 0.087414 W 0.412W 0000100W 3.300

©1989-2024 Lauterbach General Function Reference | 213

In This Section

See also

B |Probe
1 IProbe.ANALOG()
[IProbe.PROBE()

1 IProbe()
1 IProbe.FIRST()
1 IProbe.RECORD.DATA()

0 IProbe. ADC.ENABLE()
1 IProbe.GET()
1 IProbe.RECORD.TIME()

O IProbe. ADC.SHUNT()
1 IProbe.MAXSIZE()
1 IProbe.RECORDS()

0 IProbe.REF() O IProbe.SIZE() 0 IProbe.STATE() 0 IProbe. TRACK.RECORD()
IProbe() TRUE if IPROBE
Syntax: IProbe()

Returns TRUE if the debugger is running on a TRACE32-IPROBE hardware.

Return Value Type: Boolean.

IProbe.ADC.ENABLE()

TRUE if channel is enabled

Syntax:

IProbe.ADC.ENABLE(<channel>)

Returns TRUE if the specified analog channel of the IProbe is enabled.

Parameter Type: String.

Return Value Type: Boolean.

Example 1:

[Go to figure]

; The prefix ip stands for the IProbe of the Analog Probe.

; Returns FALSE if the V0 check box on the POD IP window 1is cleared.
PRINT IProbe.ADC.ENABLE (ip.VO0)

; Returns TRUE if the V1 check box on the POD IP window is selected.
PRINT IProbe.ADC.ENABLE (ip.V1)

©1989-2024 Lauterbach

General Function Reference | 214

Example 2: To programmatically clear or select a checkbox on the POD IP window, use the POD.ADC
command in a PRACTICE script file (*.cmm).

; Opens the POD IP window.
POD IP

; The keyword ON is used to select the VO check box.

POD.ADC IP VO0.ON

; Returns TRUE because the V0 check box is selected.

PRINT IProbe.ADC.ENABLE(ip.V0) ; The prefix ip stands for the
IProbe of the Analog Probe.

; The keyword OFF is used to clear the V0O check box.

POD.ADC IP VO.OFF
; Returns FALSE because the V0 check box is cleared.

PRINT IProbe.ADC.ENABLE (ip.VO0)

IProbe.ADC.SHUNT() Shunt resistor value of channel

[Go to figure]

Syntax: IProbe.ADC.SHUNT(<channel>)

Returns the shunt-resistor value of the specified current measurement <channel> of the IProbe.

Parameter Type: String.
Return Value Type: Float.

Example:

The prefix ip stands for the IProbe of the Analog Probe.

7

; Returns the shunt-resistor value of the current channel IO0.
PRINT IProbe.ADC.SHUNT (ip.IO)

©1989-2024 Lauterbach General Function Reference | 215

IProbe.ANALOG() TRUE if Analog Probe is plugged

[Go to figure]

Syntax: IProbe.ANALOG()

When the PowerTrace Il / PowerTrace lll is powered up, this function returns if the connector of an Analog
Probe is plugged.

Return Value Type: Boolean.

Return Value and Description:

TRUE The connector of an Analog Probe is plugged in at the socket labeled
LOGIC ANALYZER PROBE.

FALSE The connector of the Analog Probe is not plugged in at the socket labeled
LOGIC ANALYZER PROBE.

IProbe.FIRST() Get record number of first trace record
[build 71062 - DVD 09/2016]

Syntax: IProbe.FIRST()

Returns the record number of the first record. The first record is the record with the lowest record number.

Return Value Type: Decimal value.

IProbe.GET() Value of channel

[Go to figure]

Syntax: IProbe.GET(<channel_name>)

Returns the current value of the channel. This function is primarily intended for the digital channels of the
Standard Probe.

Parameter Type: String.

Return Value Type: Hex value. If there is no current value, the function returns OFFFFFFFFFFFFFFFF.

Example:
PRINT IProbe.GET (ip.V1) ; Returns a hexadecimal value.
PRINT IProbe.GET(ip.V1)+0. ; Convert hex value to a decimal value.

©1989-2024 Lauterbach General Function Reference | 216

IProbe.MAXSIZE()

Get max. size of trace buffer in records

Syntax:

[Go to figure]

IProbe.MAXSIZE()

Returns the maximum size of the IProbe trace buffer in records. To return a user-defined trace buffer
size, use the function IProbe.SIZE().

Return Value Type: Decimal value.

Example: The command IProbe.SIZE is used to reduce the trace buffer size, e.g. to 600000 records, to
speed up analysis. Using IProbe.MAXSIZE(), you can easily restore the maximum trace buffer size.

; Reduce the trace buffer size to the specified number of records.
IProbe.SIZE 600000.

; Restore the maximum trace buffer size.
IProbe.SIZE IProbe.MAXSIZE()

IProbe.PROBE()

Syntax:

[Go to figure]

IProbe.PROBE()

When the PowerTrace Il / PowerTrace Il is powered up, this function returns if a connector is plugged.

Return Value Type: Boolean.

Return Value and Description:

TRUE A connector is plugged in at the socket labeled LOGIC ANALYZER
PROBE.

FALSE No connector plugged in at the socket labeled LOGIC ANALYZER
PROBE.

To check if the connector belongs to an Analog Probe, use the function IProbe.ANALOG().

©1989-2024 Lauterbach

General Function Reference | 217

IProbe.RECORD.DATA() Get data recorded in trace record

Syntax: IProbe.RECORD.DATA(<record_number>,<channel>)

Returns the sampled data from the specified record.

Parameter and Description:

<record_number> Parameter Type: Decimal value.

<channel> Parameter Type: String.

Return Value Type: Hex value.

IProbe.RECORD.TIME() Get timestamp of trace record

Syntax: IProbe.RECORD.TIME(<record_number>)

Returns the timestamp from the specified record.
Parameter Type: Decimal value.
Return Value Type: Time value.

Example: For an example, see Analyzer.RECORD.TIME().

©1989-2024 Lauterbach General Function Reference | 218

IProbe.RECORDS() Get number of used trace records

[Go to figure]

Syntax: IProbe.RECORDS()

Returns the number of records in the IProbe trace buffer.
Return Value Type: Decimal value.
Examples:

; Print the number of records to the message bar below the command line.
PRINT IProbe.RECORDS /()

; Opens an IProbe.List window.
IProbe.List /Track

; Go to the first record of the analog trace data.
IProbe.GOTO -IProbe.Records() ; Please note the minus sign.

; Go to the last record of the analog trace data.
IProbe.GOTO IProbe.RECORDS() ; No minus sign in this case.

©1989-2024 Lauterbach General Function Reference | 219

IProbe.REF() Get record number of reference record

Syntax: IProbe.REF()

Returns the record number of the reference record.
Return Value Type: Decimal value.

Example 1: The IProbe.REF() function is used as an argument in the IProbe.GOTO command to jump
back to the reference record.

IProbe.GOTO IProbe.REF() ; Jump back to the reference record.

Example 2: The IProbe.View window is opened to display more information about the reference record.

LOCAL &refNo

; Get the number of the reference record.
&refNo=IProbe.Ref ()

; Open the window with the reference record number displayed.
IProbe.View &refNo

IProbe.SIZE() Get current trace buffer size in records
[Go to figure]

Syntax: IProbe.SIZE()

Returns the user-defined logical size of the TRACE32-IPROBE trace buffer in records. To return the
maximum size, use the function IProbe.MAXSIZE(). For more information about the IProbe trace buffer size,
refer to the command IProbe.SIZE.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 220

IProbe.STATE() Get state of IProbe

[Go to figure]
Syntax: IProbe.STATE()
Returns the state of the IProbe.
Return Value Type: Hex value.
Return Value and Description:
0 OFF state
1 Arm state
2 break state
3 trigger state
4 DISable state
IProbe.TRACK.RECORD() Get record number matching search
[Go to figure]
Syntax: IProbe.TRACK.RECORD()

After a successful search operation, this function returns the record number. The record number returned is
the number of the first record that matches the search criterion.

Return Value Type: Decimal value.
Example:

; Prerequisite: Analog trace data was recorded using the IProbe.

; In the power channel p0, search for 0.17xxXxx.
IProbe.Find , IProbe.p0O 0.17

IF FOUND ()

(; Returns the first record matching the search criterion.
AREA ; Print the record number to the AREA window.
PRINT IProbe.TRACK.RECORD()

; Lists all matching records in a FindALL window.
IProbe.FindALL , IProbe.p0 0.17 /Track

©1989-2024 Lauterbach General Function Reference | 221

JTAG Functions

In This Section

See also

m JTAG B JTAG.SEQuence

B JTAG.X7EFUSE B JTAG.XUSEFUSE

0 JTAG.MIPI34() 1 JTAG.PIN()

1 JTAG.SEQuence.EXIST() 1 JTAG.SEQuence.LOCKED()
1 JTAG.SEQuence.RESULT() a JTAG.SHIFT()

0 JTAG.X7EFUSE.CNTL()

0O JTAG.X7EFUSE.KEY()

0 JTAG.X7EFUSE.USER()

0 JTAG.XUSEFUSE.DNA()

0O JTAG.XUSEFUSE.RESULT()
0 JTAG.XUSEFUSE.SEC()

O JTAG.XUSEFUSE.USER128()

JTAG.MIPI34()

O JTAG.X7EFUSE.DNA()

O JTAG.X7EFUSE.RESULT()
0O JTAG.XUSEFUSE.CNTL()
O JTAG.XUSEFUSE.KEY()
O JTAG.XUSEFUSE.RSA()
0O JTAG.XUSEFUSE.USER()

Query special MIPI34 pins

[build 112622 - DVD 02/2020]

Syntax: JTAG.MIPI34(<pin>)

Query special pins on MIP134 connector. Only works in conjunction with the CombiProbe/pTrace

(MicroTrace) MIPI34 whisker.

The parameter must be a valid <pin> argument of the command JTAG.MIPI34, e. g. PIN12.

Parameter Type: String.

Return Value Type: Decimal value.

Return Value and Description:

0 The pin was measured at a low state.
1 The pin was measured at a high state.
-1 The pin could not be read (incorrect parameter or not a MIPI-34 whisker).

©1989-2024 Lauterbach

General Function Reference | 222

JTAG.PIN() Level of JTAG signal

Syntax: JTAG.PIN(<signal_name>)

Reads the level of a JTAG signal. See command JTAG.PIN.
Parameter Type: String.

Return Value Type: Hex value.

JTAG.SEQuence.RESULT() Get result of JTAG sequence
ARC, ARM, TeakLite, Xtensa [build 97116 - DVD 09/2018]
Syntax: JTAG.SEQuence.RESULT(<global_seq_variable>)
<global_seq_ 0l1
variable>:

Any JTAG sequence can assign values to the global sequence variables Result0 and Result1.
The function JTAG.SEQuence.RESULT() returns the value of these two global sequence variables.

Parameter Type: Decimal value.
Return Value Type: Hex value.

Example:

SILENT.JTAG.SEQuence.Execute PowerCheck
IF JTAG.SEQuence.RESULT (0)==1
ECHO "Power OK"

JTAG.SEQuence.EXIST() Check if a JTAG sequence exists
ARC, ARM, TeakLite, Xtensa [build 93345 - DVD 09/2018]
Syntax: JTAG.SEQuence.EXIST(<seq_name>)

Returns TRUE if the specified JTAG sequence name exists.

Parameter Type: String. For a description of <seq_name>, see JTAG.SEQuence.ADD.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 223

JTAG.SEQuence.LOCKED() Check if a JTAG sequence is locked

ARC, ARM, TeakLite, Xtensa [build 93345 - DVD 09/2018]

Syntax: JTAG.SEQuence.LOCKED(<seq_name>)

Returns TRUE if the specified JTAG sequence exists but is locked. A sequence is locked if it is assigned to
an event (e.g. with SYStem.CONFIG.MULTITAP.JtagSEQuence) or if the sequence is an internal one
which was created by TRACES32 after using SYStem.CPU.

Parameter Type: String. For a description of <seq_name>, see JTAG.SEQuence.ADD.

Return Value Type: Boolean.

JTAG.SHIFT() TDO output of JTAG shift

Syntax: JTAG.SHIFT()

Reads the TDO output of a JTAG shift. LSB first. Limited to 64 bit. See commands JTAG.SHIFTREG
and JTAG.SHIFTTDI.

If you shift more than 64 bits with JTAG.SHIFTREG or JTAG.SHIFTTDI only the first 64-bits received by
the debugger, are returned by JTAG.SHIFT().

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 224

JTAG.X7EFUSE.RESULT() Result of JTAG.X7EFUSE command

Syntax:

[build 76023 - DVD 09/2016]

JTAG.X7EFUSE.RESULT()

Returns information about the success of a previous JTAG.X7EFUSE command.

Return Value Type: Decimal value.

Return Value and Description:

0. OK, no fuses were blown.

1. OK, fuses were blown as requested.

2. Error, but no fuses were blown.

3. Error, at least one fuse was blown, but there was not yet any attempt to
program sensitive data (KEY or USER).

4, Error, programming or verifying KEY or USER failed. However, all
requested CNTL flags (if any) were programmed successfully.

5. Error while programming or verifying CNTL flags. The specified security
settings may not be in effect. It could be possible to extract secret KEY or
USER data that was previously programmed.

Example: See JTAG.X7EFUSE command.

©1989-2024 Lauterbach

General Function Reference | 225

JTAG.X7EFUSE.CNTL() CNTL flags read by JTAG.X7EFUSE command

[build 76023 - DVD 09/2016]

Syntax: JTAG.X7EFUSE.CNTL()

Returns CNTL flags read by the previous JTAG.X7EFUSE command. See Xilinx application note XAPP
1239, Using Encryption to Secure a 7 Series FPGA Bitstream, for a description of the values.

Return Value Type: Hex value.
Example:

JTAG.X7EFUSE /DEVICE XC7K325T

IF JTAG.X7EFUSE.RESULT ()==0.
(
IF (JTAG.X7EFUSE.CNTL()&1.<<0.)!=0
PRINT "CFG_AES_ONLY is set!"
IF (JTAG.X7EFUSE.CNTL()&1l.<<1.)!=0
PRINT "AES_EXCLUSIVE is set!"
IF (JTAG.X7EFUSE.CNTL()&1l.<<2.)!=0
PRINT "W_EN_B_KEY_USER is set!"
IF (JTAG.X7EFUSE.CNTL()&1.<<3.)!=0
PRINT "R_EN_B_KEY is set!"
IF (JTAG.X7EFUSE.CNTL()&1.<<4.)!=0
PRINT "R_EN_B USER is set!"
IF (JTAG.X7EFUSE.CNTL()&1.<<5.)!=0

PRINT "W_EN_B _CNTL is set!"

JTAG.X7EFUSE.DNA() DNA value read by JTAG.X7EFUSE command

[build 76023 - DVD 09/2016]

Syntax: JTAG.X7EFUSE.DNA()

Returns the unique DNA value stored in every Xilinx 7-series device, as read by the previous
JTAG.X7EFUSE command.

Return Value Type: Hex value.

Example: See JTAG.X7EFUSE command.

©1989-2024 Lauterbach General Function Reference | 226

JTAG.X7EFUSE.KEY() AES key read by JTAG.X7EFUSE command

[build 76023 - DVD 09/2016]

Syntax: JTAG.X7EFUSE.KEY()

Returns the KEY value as read by the previous JTAG.X7EFUSE command. If prohibited by the
R_EN_B_KEY flag, return zeros instead. The returned value is encoded as a hexadecimal string with the
same bit order as the one stored in the.nky file.

Return Value Type: String.

Example: See JTAG.X7EFUSE.

JTAG.X7EFUSE.USER() User code read by JTAG.X7EFUSE command

[build 76023 - DVD 09/2016]

Syntax: JTAG.X7EFUSE.USER()

Returns the USER value as read by the previous JTAG.X7EFUSE command. If prohibited by the
R_EN_B_USER flag, return zeros instead.

Return Value Type: Hex value.

Example: See JTAG.X7EFUSE.

©1989-2024 Lauterbach General Function Reference | 227

JTAG.XUSEFUSE.RESULT() Result of JTAG.XUSEFUSE command

[build 109218 - DVD 09/2019]

Syntax: JTAG.XUSEFUSE.RESULT()

Returns information about the success of a previous JTAG.XUSEFUSE command.
Return Value Type: Decimal value.

Return Value and Description:

0 OK, the command was executed successfully.
1 Error, but no fuses were blown.
2 Error, fuses might be blown. Verify the current values by using the

command JTAG.XUSEFUSE with the /READ option.

3 Error while verifying the AES key. The CRCs of the given key and stored
key are not the same.

Example: See JTAG.XUSEFUSE command.

JTAG.XUSEFUSE.CNTL() CNTL value read by JTAG.XUSEFUSE command

[build 109218 - DVD 09/2019]

Syntax: JTAG.XUSEFUSE.CNTL()

Returns the register value of the CNTL register read by a previous JTAG.XUSEFUSE command. See Xilinx
user guide UG570, UltraScale Architecture Configuration, for a description of the value.

Return Value Type: Hex value.
Example:

SYStem.JtagClock 1.0MHz

JTAG.XUSEFUSE /READ 0x0

IF ((JTAG.XUSEFUSE.RESULT () !=1.)&& (JTAG.XUSEFUSE.RESULT () !=2.))
(
IF (JTAG.XUSEFUSE.CNTL()&1l.<<5.)!=0
PRINT "W_DIS_CNTL is set!"
IF (JTAG.XUSEFUSE.CNTL()&1l.<<7.)!=0

PRINT "W_DIS_KEY is set!"

©1989-2024 Lauterbach General Function Reference | 228

JTAG.XUSEFUSE.DNA() DNA value read by JTAG.XUSEFUSE command

[build 109218 - DVD 09/2019]

Syntax: JTAG.XUSEFUSE.DNA()

Returns the unique DNA value stored in every Xilinx UltraScale series device, as read by the previous
JTAG.XUSEFUSE command.

Return Value Type: String.
Example:
SYStem.JtagClock 1.0MHz

JTAG.XUSEFUSE /READ 0x0

PRINT JTAG.XUSEFUSE.DNA ()

JTAG.XUSEFUSE.KEY() AES key read by JTAG.XUSEFUSE command

[build 109218 - DVD 09/2019]

Syntax: JTAG.XUSEFUSE.KEY()

Returns the KEY value as stated by the previous JTAG.XUSEFUSE command. If the key stored on the
FPGA is not the same as the one provided by the user, the function JTAG.XUSEFUSE.RESULT() will return
the value 3. The returned value is encoded as a hexadecimal string with the same bit order as the one
stored in the *.nkz file.

Return Value Type: String.
Example:

SYStem.JtagClock 1.0MHz

JTAG.XUSEFUSE /READ \
0x0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF

IF JTAG.XUSEFUSE.RESULT ()==0.

PRINT "AES KEY matches the value: "
ELSE IF JTAG.XUSEFUSE.RESULT ()==3.

PRINT "AES KEY does not match the value: "
ELSE

PRINT "Error while verifying the key: "

PRINT %CONTinue JTAG.XUSEFUSE.KEY ()

©1989-2024 Lauterbach General Function Reference | 229

JTAG.XUSEFUSE.RSA() RSA hash read by JTAG. XUSEFUSE command

[build 109218 - DVD 09/2019]

Syntax: JTAG.XUSEFUSE.RSA()

Returns the value of the RSA hash value as read by the previous JTAG.XUSEFUSE command. If prohibited
by the flags in the CNTL register, the return value is OxFFF...FF. The retuned value is encoded as a
hexadecimal string with the same bit order as the one stored in the *.nkz file.

Return Value Type: String.

Example: See JTAG.XUSEFUSE

JTAG.XUSEFUSE.SEC() SEC value read by JTAG.XUSEFUSE command

[build 109218 - DVD 09/2019]

Syntax: JTAG.XUSEFUSE.SEC()

Returns the register value of the SEC register read by a previous JTAG.XUSEFUSE command. See Xilinx
user guide UG570, UltraScale Architecture Configuration, for a description of the value.

Return Value Type: Hex value.
Example:

SYStem.JtagClock 1.0MHz

JTAG.XUSEFUSE /READ 0x0

IF ((JTAG.XUSEFUSE.RESULT () !=1.)&& (JTAG.XUSEFUSE.RESULT () !=2.))
(
IF (JTAG.XUSEFUSE.SEC()&l.<<2.)!=0
PRINT "RSA authentication is forced!"
IF (JTAG.XUSEFUSE.CNTL()&l.<<4.)!=0

PRINT "Xilinx test access is disabled!"

©1989-2024 Lauterbach General Function Reference | 230

JTAG.XUSEFUSE.USER() User code read by JTAG.XUSEFUSE command

[build 109218 - DVD 09/2019]

Syntax: JTAG.XUSEFUSE.USER()

Returns the register value as read by a previous JTAG.XUSEFUSE command. If prohibited by the flags in
the CNTL register, the return value is OxFFF...FF.

Return Value Type: Hex value.

Example: See JTAG.XUSEFUSE

JTAG.XUSEFUSE.USER128() 128 bit User code read by JTAG.XUSEFUSE

[build 109218 - DVD 09/2019]

Syntax: JTAG.XUSEFUSE.USER128()

Returns the 128 bit USER value as read by a previous JTAG.XUSEFUSE command. If prohibited by the
flags in the CNTL register, the return value is OxFFF...FF. The returned value is encoded as a hexadecimal
string with the same bit order as the one stored in the *.nkz file.

Return Value Type: String.
Example:

SYStem.JtagClock 1.0MHz
JTAG.XUSEFUSE /READ 0x0

IF ((JTAG.XUSEFUSE.RESULT () !=1.)&& (JTAG.XUSEFUSE.RESULT () !=2.))
PRINT JTAG.XUSEFUSE.USER128 ()

ELSE
PRINT "Error while reading the eFUSE values!"

©1989-2024 Lauterbach General Function Reference | 231

LOGGER Functions

This figure provides an overview of the return values of some of the LOGGER functions. For descriptions of
the illustrated functions and the functions not shown here, see below.

LOGGER.STATE()
LOGGER.RECORDS()
.LOGGER.SIZE()
&I B:LOGGER state =n| Wl <
rmte I 1led TimeStamp
7 DISable I | | @or
@ OFF 1024. ' Up
) Arm SIZE _' Down
_ trigger 1024. Rate
_) break ADDRESS 0.
SD:0x7eD0
commands
Mode Mode
9 Fifo [CI create
 Stack Oe
= st [¥] FlowTrace
[¥] AutoArm
[C] AutoInit
[T selfarm

In This Section

See also

0O LOGGER.FIRST()

0O LOGGER.RECORD.DATA(
0O LOGGER.RECORD.TIME(
0O LOGGER.REF()

0O LOGGER.STATE()

)
)

LOGGER.FIRST()

0 LOGGER.RECORD.ADDRESS()
0 LOGGER.RECORD.OFFSET()
0 LOGGER.RECORDS()

0 LOGGER.SIZE()

Get record number of first trace record

Syntax: LOGGER.FIRST()

[build 71062 - DVD 09/2016]

Returns the record number of the first record. The first record is the record with the lowest record number.

Return Value Type: Decimal value.

©1989-2024 Lauterbach

General Function Reference | 232

LOGGER.RECORD.ADDRESS() Get address recorded in trace record

[build 38764]
Syntax: LOGGER.RECORD.ADDRESS(<record_number>)
Returns the sampled address (access class and offset) from the specified record.
Parameter Type: Decimal value.
Return Value Type: Address.
LOGGER.RECORD.DATA() Get data recorded in trace record
[build 38764]
Syntax: LOGGER.RECORD.DATA(<record_number>)
Returns the sampled data of the specified record.
Parameter Type: Decimal value.
Return Value Type: Hex value.
LOGGER.RECORD.OFFSET() Get address in trace record as number
[build 38764]

Syntax: LOGGER.RECORD.OFFSET(<record_number>)

Returns the address-offset of the sampled address from the specified record.
Parameter Type: Decimal value.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 233

LOGGER.RECORD.TIME() Get timestamp of trace record

[[build 38764]

Syntax: LOGGER.RECORD.TIME(<record_number>)

Returns the timestamp of the specified record. For an example, see Analyzer.RECORD.TIME().
Parameter Type: Decimal value.

Return Value Type: Time value.

LOGGER.RECORDS() Get number of used trace records

[Go to figure]

Syntax: LOGGER.RECORDS()

Returns the number of records used for Logger trace.

Return Value Type: Decimal value.

LOGGER.REF() Get record number of reference record

Syntax: LOGGER.REF()

Returns the number of the selected reference record in the Logger trace.

Return Value Type: Decimal value.

LOGGER.SIZE() Get current trace buffer size in records

[build 38323 - DVD 08/2012] [Go to figure]

Syntax: LOGGER.SIZE()

Returns the size of the Logger trace buffer. The size is given by the logger buffer size of the target
application.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 234

LOGGER.STATE()

Get state of Logger trace

Syntax:

LOGGER.STATE()

Returns the state of the Logger trace.

Return Value Type: Hex value.

Return Value and Description:

[Go to figure]

0 OFF state

1 Arm state

2 break state

3 trigger state
4 DiSable state

©1989-2024 Lauterbach

General Function Reference

235

MachO Format Function (Apple)

MACHO.LASTUUID() Universally unique identifier of MachO file

Syntax: MACHO.LASTUUID()

Returns the 128-bit universally unique identifier (UUID) of the file loaded with the last
Data.LOAD.MachO command. With no MachO file was load yet or the last file did not contain an UUID
the string “no UUID read” will be returned.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 236

MAP Functions

In This Section

See also
H MAP 1 MAPROMSIZE()
MAP.ROMSIZE() Size of the defined ROM
Syntax: MAP.ROMSIZE()

Returns the total size of the defined ROM.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 237

MCDS Functions

This figure provides an overview of the return values of some of the functions. For descriptions of the

illustrated functions and the functions not shown here, see below.

MCDS.STATE() MCDS.TraceBuffer.state
&% B:MCDS state [r=] B Sl
meds SOURCE.Set
O oFF CpuMux0 CpuMux1 CpuMux2 SPB SRI
®on M Program Program Program [CJReadAddr . 2
[CJReadAddr ReadAddr ReadAddr | | CJReadData [IReadAddr | | [JReadAddr
RESat [JReadData ReadData ReadData | | []writeAddr [JReadData | | [JReadData
CLEAR Olwiriteaddr | | wiriteaddr | | | writeaddr | | Clwiritepata | | | L WriteAddr | | DlwriteAddr
® Init [writeData WriteData WriteData [wiriteData | | [writeData
<" INFO PTMode PTMode PTMode ELANE ELANE
« Register Fowlrae ~ FowTrace FowTrace NONE ~ NONE
TraceBuffer — Core Core
TiCored v~ NOMNE ~ NOMNE ~
commands
¥ CLOCK
) BMC TimeStamp TImeMode
&2 Trace ®oFF OFF
Oon

MCDS. TraceBuffer.UpperGAP()

&2 BaMCDSTra... [= || B |23
TraceBuffer
ARRAY UpperGAP ="
@
OxTM SIZE
DETECT LowerGAP ™ 1]

MCDS.TraceBuffer.LowerGAP()

In This Section

——— MCDS.TraceBuffer.SIZE()

See also

m MCDS
O MCDS.MODULE.NAME()

1 MCDS.MODULE.REVision()
1 MCDS.SIZE()

1 MCDS.TraceBuffer.LowerGAP()
(d MCDS.TraceBuffer.UpperGAP()

0 MCDS.GAP()

1 MCDS.MODULE.NUMBER()
O MCDS.MODULE.TYPE()

1 MCDS.STATE()

1 MCDS.TraceBuffer.SIZE()

©1989-2024 Lauterbach

General Function Reference

238

MCDS.MODULE.NAME() Name of MCDS module

[build 70152 - DVD 09/2016]

Syntax: MCDS.MODULE.NAME()

Returns the name of the MCDS module according to CPU selection.
Return Value Type: String.

Return Value and Description:

<undefined> Unknown or undefined MCDS module. Contact technical support.
<nhone> Devices does not feature an MCDS module.
MCDS Standard MCDS module.
MCDSlight MCDSIlight module
miniMCDS miniMCDS module.
MCDS.MODULE.NUMBER() Number-part of MCDS module 1D

[build 70152 - DVD 09/2016]

Syntax: MCDS.MODULE.NUMBER()

Returns the number-part of the MCDS module ID of the attached chip.
Return Value Type: Hex value.

Return Value and Description:

OxFFFF MCDS ID register could not be read. Switch to SYStem.Mode Up if
necessary.
0x0000 Devices does not feature an MCDS module.
other MCDS_ID.NUMBER (16 bit)
MCDS.MODULE.REVision() Revision-part of MCDS module 1D

[build 70152 - DVD 09/2016]

Syntax: MCDS.MODULE.REVision()

Returns the revision-part of the MCDS module ID of the attached chip.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 239

Return Value and Description:

OxFF MCDS ID register could not be read. Switch to SYStem.Mode Up if
necessary.
0x00 Devices does not feature an MCDS module.
other MCDS_ID.REVISION (8 bit)
MCDS.MODULE.TYPE() Type-part of MCDS module ID

[build 70152 - DVD 09/2016]

Syntax: MCDS.MODULE.TYPE()

Returns the type-part of the MCDS module ID of the attached chip.
Return Value Type: Hex value.

Return Value and Description:

OxFF MCDS ID register could not be read. Switch to SYStem.Mode Up if
necessary.
0x00 Devices does not feature an MCDS module.
(other) MCDS_ID.TYPE (8 bit)
MCDS.STATE() MCDS module is switched on/off
[Go to figure]
Syntax: MCDS.STATE()

Returns the state of the MCDS module.
Return Value Type: Hex value.

Return Value and Description:

0 OFF

1 ON

See also: Command group MCDS

©1989-2024 Lauterbach General Function Reference | 240

MCDS.TraceBuffer.LowerGAP() Trace buffer lower gap

[Go to figure]

Syntax: MCDS.TraceBuffer.LowerGAP()

Returns the size of the lower EMEM tiles of the currently selected memory array not used as trace buffer.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 241

MCDS.TraceBuffer.SIZE() Trace buffer size

[Go to figure]
Syntax: MCDS.TraceBuffer.SIZE()
MCDS.SIZE() (deprecated)
Returns the size of the EMEM tiles of the currently selected memory array used as trace buffer.
Return Value Type: Decimal value.
MCDS.TraceBuffer.UpperGAP() Trace buffer upper gap
[Go to figure]

Syntax: MCDS.TraceBuffer.UpperGAP()
MCDS.GAP() (deprecated)

Returns the size of the upper EMEM tiles of the currently selected memory array not used as trace buffer.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 242

MMU Functions (Memory Management Unit)

This figure provides an overview of the return values of some of the functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

3 B:TRANSIation state EI@
Address translation: ON Table walk: ON
MU spaces: OFF Zone spaces: ON Machine spaces: ON LPAE: enabled
Zone MMU format DefauTt page table |
H D H Ox10000 ~
M 5TD M OxECQOO0
N QX N Ox20000 =
I 5TD I OxBO00O0
N QX N s 1 0x40000
I: 3 5TD I:2:::0xCO000 &
IJ I I3
—
3 B:MMU.List =n| Wl <
| logical | physical type |
M:0:: :FOOO0000--FFFFFFFF AM :78000000--87FFFFFF DEFAULT)
N5SD:1:::B0000000--EFFFFFFF I:1:::23000000--32FFFFFF DEFAULT
I:1:::23000000--32FFFFFF AH:10000000--1FFFFFFF DEFAUL
NSD:2:: :CO000000--CFFFFFFF I:2:::35000000--44FFFFFF DEFAULT
I:2:::35000000--44FFFFFF AH:18000000--27FFFFFF DEFAULT
M:0:::50000000--7FFFFFFF AM :10000000--3FFFFFFF
N:1:::CO000000--FFFFFFFF
N:2:::C0000000--FFFFFFFF
4

MMU.DEFAULTTRANS.LOGRANGE.ZONE()

In This Section

MMU.DEFAULTTRANS.PHYSADDR.ZONE()

See also
m MMU O MMU()
O MMU.DEFAULTPT() O MMU.DEFAULTPT.ZONE()
O MMU.DEFAULTTRANS.LOGRANGE() O MMU.DEFAULTTRANS.PHYSADDR()
O MMU.FORMAT() O MMU.FORMAT.DETECTED()
O MMU.FORMAT.ZONE() 0O MMU.INTERMEDIATE()
0O MMU.INTERMEDIATE.VALID() 0O MMU.INTERMEDIATEEX()
O MMU.INTERMEDIATEEX.VALID() O MMU.LINEAR()
0O MMU.LINEAR.VALID() 0O MMU.LINEAREX()
0O MMU.LINEAREX.VALID() O MMU.LOGICAL()
O MMU.LOGICAL.VALID() O MMU.PHYSICAL()
O MMU.PHYSICAL.VALID() O MMU.PHYSICALEX()
O MMU.PHYSICALEX.VALID()
MMU() Value of MMU register
Syntax: MMU(<register_name>)

Returns an MMU register value.

©1989-2024 Lauterbach

General Function Reference | 243

Parameter Type: String.
Return Value Type: Hex value.

MMU.DEFAULTPT() Base address of default page table

[Go to figure]

Syntax 1: MMU.DEFAULTPT()
[build 61046 - DVD 02/2015]

Syntax 2: MMU.DEFAULTPT.ZONE(<address>)
[build 106522 - DVD 09/2019]

<address>: <access_class>:[<machine_id>:::]0x0

Both MMU functions return the base address of the default page table that has been set with the
MMU.FORMAT command.

Syntax 1: The returned base address is located in the currently active zone of the core.
Syntax 2: The returned base address is located in the zone that is selected with <address>.

Return Value Type: Address. If the CPU has no MMU, a zero address is returned.

Parameter and Description:

<access_class> Mandatory if SYStem.Option.ZoneSPACES is ON.
See access class in the glossary.pdf.

<machine_id> Mandatory if SYStem.Option.MACHINESPACES is ON.
See machine ID in the glossary.pdf.

0x0 Fixed <address> suffix.

Example - Syntax 2:

;optional step: list the base addresses of the default page tables
;per zone
TRANSlation.state ;see column 'Default page table'

;let's return the base address of the default page table of

;machine '0O:::' in the secure zone 'Z'
PRINT MMU.DEFAULTPT.ZONE(Z:0:::0x0) ;result 'Z:0:::0x0:0x1000000"
;see [A] below
&2 BuTRANSIation.state EI@

Address translation: ON Table walk: ON
MU spaces: ON Zone spaces: ON Machine spaces: ON LPAE: enabled

Z

ne MMU format DefauTt page table |
33 LINLUX H:O:::0x0:0x40000 ~

TINY Z:0:::0x0:0x1000000

LINUXSWAP3 N:l:::0x0:0xFFFFFFCO00DASOO0

LINUX N:2:::0x0:0xFFFFFRCO00CADO00

ZZ==Mxo

H BN
01t
=2
i3

5TD

©1989-2024 Lauterbach General Function Reference | 244

MMU.DEFAULTTRANS.<range>() Query MMU setup

Syntax 1:
Syntax 2:
<range>:
<address>:

Full function
name only

required for
HELP.Index:

[Go to figure] [Examples]

MMU.DEFAULTTRANS. <range>()
MMU.DEFAULTTRANS. <range>.ZONE(<address>)
LOGRANGE | PHYSADDR
<access_class>:[<machine_id>:::]0x0
MMU.DEFAULTTRANS.LOGRANGE()

MMU.DEFAULTTRANS.PHYSADDR()
[build 95143 - DVD 09/2018]

MMU.DEFAULTTRANS.LOGRANGE.ZONE(<address>)

MMU.DEFAULTTRANS.PHYSADDR.ZONE(<address>)
[build 106522 - DVD 09/2019]

Both MMU functions return settings that have been made with the MMU.FORMAT command.
Syntax 1: The returned settings are located in the currently active zone of the core.
Syntax 2: The returned settings are located in the zone that is selected with <address>.

Return Value and Description:

<range> Description
LOGRANGE Return Value Type: Address range.

Use this keyword to get the logical address range of the default translation.
PHYSADDR Return Value Type: Address.

Use this keyword to get the physical base address of the default translation.

Parameter and Description:

<access_class>

Parameter Type: Address.
Mandatory if SYStem.Option.ZoneSPACES is ON.
See access class in the glossary.pdf.

<machine_id>

Parameter Type: Address.
Mandatory if SYStem.Option.MACHINESPACES is ON.
See machine ID in the glossary.pdf.

0x0

Fixed <address> suffix.

©1989-2024 Lauterbach

General Function Reference | 245

Examples - Syntax 1

Example 1: The function returns the logical address range of the default translation that is currently active
on the core.

MMU . FORMAT STD 0x88000000 0x80000000--0x9FFFFFFF 0x10000000

PRINT MMU.DEFAULTTRANS .LOGRANGE ()
;returns C:0x80000000--0x9FFFFFFF

Example 2: The function returns the physical base address of the default translation that is currently active

on the core.
MMU . FORMAT STD 0x88000000 0x80000000--0x9FFFFFFF 0x10000000
PRINT MMU.DEFAULTTRANS.PHYSADDR () ;returns A:0x10000000

Example - Syntax 2

Example 3: Based on the zones N: 0x2::: and H: 0x0: : : passed as arguments, the function
MMU.DEFAULTTRANS.LOGRANGE.ZONE() returns the logical address ranges of these zones.

MMU.FORMAT STD H:0x0:::0x10000 H:0x0:::0xA0000000--0xXAFFFFFFF \

A:0x20000000 /MACHINE O
PRINT MMU.DEFAULTTRANS.LOGRANGE.ZONE (H:0x0:::0x0)

;returns H:0:::0xA0000000--0xAFFFFFFF

MMU . FORMAT QNX N:0x2:::0x40000 N:0x2:::0xC0000000--0xCFFFFFFF \

I:0x30000000 /MACHINE 2
PRINT MMU.DEFAULTTRANS.LOGRANGE.ZONE (N:0x2:::0x0)

;returns NSD:2:::0xC0000000--0xCFFFFFFF

‘ $2 B:MMU List ==
logical | physical type
> H:0: : :A0000000—-AFFFFFFF AH:20000000--2FFFFFFF DEFAULT y

meu. . .FO000000--FFFFFFFF AM: 700 (=== - -7FFFFFFF DEFAULT

| :1:::B0000000--BFFFFFFF 1:1:::2800) C |--37FFFFFF DEFAULT
I:1:::23000000--23FFFFFF SRRl L DEFAULT

NSD:2: : :C0000000--CFFFFFFF | IT:2:::30000000--3FFFFFFEl | DEFALL
= 35000000--35FFFFFF AH:10000000--10FFFFFF
H I:I 90040000--9004FFFF AH:00040000--0004FFFF
M === 50000000--7FFFFFFF AM:10000000--3FFFFFFF
N:1:::C0000000--FFFFFFFF
N:2:::C0000000--FFFFFFFF
4 I3

A Logical address range. C Physical address range.

B Zone of the logical address range.

©1989-2024 Lauterbach General Function Reference | 246

MMU.FORMAT() Currently selected MMU format

[Go to figure]

Syntax 1: MMU.FORMAT()
[build 53385 - DVD 08/2014]

Syntax 2: MMU.FORMAT.ZONE(<address>)
[build 106522 - DVD 09/2019]

<address>: <access_class>:[<machine_id>:::]0x0

Both MMU functions return the MMU format of the default page table that has been set with the
MMU.FORMAT command.

Syntax 1: The returned MMU format is the format of the currently active zone of the core.
Syntax 2: The returned MMU format is the format of the zone that is selected with <address>.

3 B:TRANSIation state EI@

Address translation: ON Table walk: ON
MU spaces: OFF Zone spaces: ON Machine spaces: ON LPAE: enabled

MMU format DefauTt page table
STD ‘ 100 :0x10000

5TD : :0xEQOOQD

H

M:
N:l:::0x20000
I:

N

I

H :0xBO000
1 i 0xd40000
1 0xCO000 i

MMU.FORMAT/()
MMU.FORMAT.ZONE()

Parameter and Description:

<access_class> Parameter Type: Address.
Mandatory if SYStem.Option.ZoneSPACES is ON.
See access class in the glossary.pdf.

<machine_id> Parameter Type: Address.
Mandatory if SYStem.Option.MACHINESPACES is ON.
See machine ID in the glossary.pdf.

0x0 Fixed <address> suffix.

Return Value Type: String. If the CPU has no MMU, an empty string is returned.
Example - Syntax 2:

PRINT MMU.FORMAT.ZONE (N:2:::0x0) ;returns QNX

©1989-2024 Lauterbach General Function Reference | 247

MMU.FORMAT.DETECTED() Auto-detection of page table format

Intel® x86, RISC-V [build 106522 - DVD 09/2019]

Syntax: MMU.FORMAT.DETECTED()

Auto-detects the page table format used by the kernel in the currently active zone of the core. Then the
function returns the name of the page table format. The auto-detection works only if MMU.FORMAT is set to
STD.

Return Value Type: String.

Return Value and Description: For a list of format names, see:

. “<format> Options for x86” (general_ref_m.pdf)
. “<format> Options for RISC-V” (general_ref_m.pdf)
Example:

MMU . FORMAT STD

PRINT MMU.FORMAT.DETECTED () ;returns the name of the standard format
;derived from the CPU state, e.g.
;the format name P32

©1989-2024 Lauterbach General Function Reference | 248

MMU.FORMAT.DETECTED.ZONE()

Auto-detection of page table format

Intel® x86

Syntax:

<address>:

<access_class>:[<machine_id>:::]0x0

[build 106522 - DVD 09/2019]

MMU.FORMAT.DETECTED.ZONE(<address>)

Auto-detects the page table format used by the kernel and returns its name. The returned page table format
refers to the zone that is selected with <address>. The auto-detection works only if MMU.FORMAT is set to

STD.

&3 B:TRANSIation state

(=[O el

Address translation: ON Table w
emory model: MMUSPACES Zone spa

alk: ON
ces: ON Machine spaces: ON

MMU format

DefauTt page table

LINUXE4

LINUXE4

LINUX64 (detected)
33 LINUXGY (mm—
11 |JEPT4L, (detected)

A:0x67 848000

HD:1:::0x0:0xFFFFFFFFE1C10000
HD:2:::0x0:0xFFFFFFFFE1C10000
GD:3:::0x0:0xFFFFFFFFE1C10000

MMU.FORMAT.DETECTED.ZONE()

Parameter Type: Address.

Parameter and Descriptio

n:

<access_class>

Mandatory if SYStem.Option.ZoneSPACES is ON.

See access class in the glossary.pdf.

<machine_id>

Mandatory if SYStem.Option.MACHINESPACES is ON.

See machine ID in the glossary.pdf.

0x0

Fixed <address> suffix.

Return Value Type: String.

Return Value and Description: For a list of format names, see:

. “<format> Options for x86” (general_ref_m.pdf)

. “<format> Options

Example:

for RISC-V” (general_ref_m.pdf)

SYStem.Option.MACHINESPACES ON
MMU .FORMAT STD /MACHINE 2

PRINT MMU.FORMAT

.DETECTED.ZONE (X:3:::0)

;returns the name of the standard

;page table format used in zone
;and derived from the CPU state,

;the format name

e.g.
"EPT4L"

"T:3:::0"

©1989-2024 Lauterbach

General Function Reference

249

MMX Function (MultiMedia eXtension)

MMX() Value of MMX register

Syntax: MMX(<register_name>)

Returns the content of the selected MMX register. See also MMX command group.
Parameter Type: String.

Return Value Type: Hex value.

MONITOR Function

MONITOR() TRUE if debugger is running as monitor

Syntax: MONITOR)

Returns TRUE if the debugger is running as monitor.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 250

NEXUS Functions

This figure provides an overview of the return values of some of the NEXUS functions. For descriptions of
the illustrated functions and the functions not shown here, see below.

&2 B:NEXUS state =n| Wl <
. nexus PortSize
NEXUS.PortSize() pas e o Cores | DDR/| OCeaM
@ ON PortMode selection suppression option
NEXUS.PortMode() ! M - 71BTM SpenDQM POTD
TimeStamps |- serdescfg WTM SpenWTM PTMARK
| SerDesCFG pagMm SpenPTM STALL
[REset || -rEFCIK oTM SpenDTM OFF -
& Trace || [pEFault ~| [oFF - SpenOTM
1 List FRATE PTCM SupprTHReshold
DEFault ~ BL_HTM 1/4 -
[| ust om | [&% Find DQM |

In This Section

See also
0 NEXUS() @ NEXUS.PortMode() 0 NEXUS.PortSize() 0 NEXUS.RTTBUILDY()
NEXUS() TRUE if Nexus trace is supported
Syntax: NEXUS()

Returns TRUE if the selected CPU supports a Nexus trace.

Return Value Type: Boolean.

NEXUS.RTTBUILD() RTT build register
ARC [build 93248 - DVD 02/2018]
Syntax: NEXUS.RTTBUILD(<register_index>)
<register_ 0
index>:

Returns the RTT build register.
Parameter Type: Decimal value.

©1989-2024 Lauterbach

General Function Reference | 251

Return Value Type: Hex value. Returns 0 if the command NEXUS.RTTBUILD was not used or if there is no
RTT trace source.

NEXUS.PortMode() Current PortMode setting

[Go to figure]

Syntax: NEXUS.PortMode()

Returns the current Nexus PortMode setting.

Return Value Type: String.

NEXUS.PortSize() Current PortSize setting

[build 39453 - DVD 08/2012] [Go to figure]

Syntax: NEXUS.PortSize()

Returns the current Nexus PortSize setting.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 252

Onchip Functions

In This Section

See also

(1 Onchip() (1 Onchip.FIRST()

1 Onchip.FLOW.ERRORS() 1 Onchip.FLOW.FIFOFULL()

(1 Onchip.MAXSIZE() (d Onchip.RECORD.ADDRESS()
[Onchip.RECORD.DATA() [Onchip.RECORD.OFFSET()
1 Onchip.RECORD.TIME() 1 Onchip.RECORDS()

(d Onchip.REF() (1 Onchip.SIZE()

[Onchip.STATE() d Onchip.TraceCONNECT()

0 Onchip.TRACK.RECORD()

Onchip() TRUE if the onchip trace is available

Syntax: Onchip()

Returns TRUE if an onchip trace is available.

Return Value Type: Boolean.

Onchip.FIRST() Get record number of first trace record

[build 71062 - DVD 09/2016]

Syntax: Onchip.FIRST()

Returns the record number of the first record. The first record is the record with the lowest record number.

Return Value Type: Decimal value.

Onchip.FLOW.ERRORS() Get number of flow errors / hard errors

Syntax: Onchip.FLOW.ERRORS()

Returns the number of flow errors / harderrors in the trace recording.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 253

Please be aware that the return value of this function is the accumulated count of events that were
encountered while processing the trace recording. All opened windows showing trace data contribute to this
value. The value is reset when a new trace recording is made, or when the Trace.FLOWSTART or
Trace.FLOWPROCESS command is executed.

The use of this function is only recommended if you want to find out if a specified part of a trace recording is
error free. The part to be analyzed can be defined using Trace.STATistic.FIRST and
Trace.STATistic.LAST. If the defined part is error free (and thus this function returns zero), the analysis
results are reliable as well.

Example 1: This script shows how to return only the number of flow errors and hard errors in the trace that
is currently visible within the Onchip.List window. If you now scroll up or down in the Onchip.List window or
increase the window size, more trace data will be decoded, and thus the number of errors returned by the
function may increase.

Onchip.List
PRINT Onchip.FLOW.ERRORS ()
; scroll up or down in the window

PRINT Onchip.FLOW.ERRORS ()

Example 2: This script shows how to obtain the exact number of flow errors in the whole trace recording.

Trace.Find FLOWERROR /ALL
PRINT FOUND.COUNT ()

Onchip.FLOW.FIFOFULL() Get number of FIFO overflows

Syntax: Onchip.FLOW.FIFOFULL()

Returns the number of target FIFO overflows in the trace recording.
Return Value Type: Decimal value.

Please be aware that the return value of this function is the accumulated count of events that were
encountered while processing the trace recording. All opened windows showing trace data contribute to this
value. The value is reset when a new trace recording is made, or when the Trace.FLOWSTART or
Trace.FLOWPROCESS command is executed.

The use of this function is only recommended if you want to find out if a specified part of a trace recording is
error free. The part to be analyzed can be defined using Trace.STATistic.FIRST and
Trace.STATistic.LAST. If the defined part is error free (and thus this function returns zero), the analysis
results are reliable as well.

©1989-2024 Lauterbach General Function Reference | 254

Onchip.MAXSIZE() Get max. size of trace buffer in records

[build 38323 - DVD 08/2012]

Syntax: Onchip.MAXSIZE()

Returns the maximum possible size of the Onchip trace buffer in records.

Return Value Type: Decimal value.

Onchip.RECORD.ADDRESS() Get address recorded in trace record

[build 38764]

Syntax: Onchip.RECORD.ADDRESS(<record_number>)

Returns the sampled address (access class and offset) from the specified record.
Parameter Type: Decimal value.

Return Value Type: Address.

Onchip.RECORD.DATA() Get data recorded in trace record

[build 38764]

Syntax: Onchip.RECORD.DATA(<record_number>)

Returns the sampled data of the specified record.
Parameter Type: Decimal value.

Return Value Type: Hex value.

Onchip.RECORD.OFFSET() Get address in trace record as number

[build 38764]

Syntax: Onchip.RECORD.OFFSET(<record_number>)

Returns the address-offset of the sampled address from the specified record.
Parameter Type: Decimal value.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 255

Onchip.RECORD.TIME() Get timestamp of trace record

[build 38764]
Syntax: Onchip.RECORD.TIME(<record_number>)
Returns the timestamp of the specified record.
Parameter Type: Decimal value.
Return Value Type: Time value.
Example: For an example, see Analyzer.RECORD.TIME().
Onchip.RECORDS() Get number of used trace records
Syntax: Onchip.RECORDS()
The number of records currently stored in the on-chip trace buffer.
Return Value Type: Decimal value.
Onchip.REF() Get record number of reference record
Syntax: Onchip.REF()
Returns the number of the selected reference record in the Onchip trace.
Return Value Type: Decimal value.
Onchip.SIZE() Get current trace buffer size in records

Syntax: Onchip.SIZE()

Size of on-chip memory to be used as on-chip trace buffer in trace records.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 256

Onchip.STATE()

Get state of Onchip trace

Syntax: Onchip.STATE()

Returns the state of the on-chip trace.

Return Value Type: Hex value.

Return Value and Description:

0

OFF state

Arm state

break state

trigger state

WD

DISable state

Onchip.TraceCONNECT()

Name of trace sink of the SoC

Syntax: Onchip.TraceCONNECT()

[build 80222 - DVD 02/2017]

Returns the name of the currently selected trace sink of the SoC. In case no trace-sink is selected/available,
the function returns NONE. The trace sink is selected with the <trace>.TraceCONNECT command.

Return Value Type: String.

Example: ARM Coresight system with two ETFs

SYStem.CONFIG ETF1 Base DAP:<address>
SYStem.CONFIG ETR2 Base DAP:<address>
Onchip.TraceCONNECT ETF1

PRINT Onchip.TraceCONNECT () ; returns
Onchip.TraceCONNECT ETF2
PRINT Onchip.TraceCONNECT() ; returns

n ETFl n

n ETF2 n

©1989-2024 Lauterbach

General Function Reference | 257

Onchip.TRACK.RECORD() Get record number matching search

Syntax: Onchip.TRACK.RECORD()

After a successful search operation, this function returns the record number.
Return Value Type: Decimal value.

Example: For an example, see Analyzer. TRACK.RECORD().

©1989-2024 Lauterbach General Function Reference | 258

PBI Function

PBI() Name of used debug back-end

[build 25366 - DVD 02/2011]

Syntax: PBI()

Returns the name of the used debug back-end. For further information, refer to “Section PBI” in TRACE32
Installation Guide, page 42 (installation.pdf).

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 259

PCI Functions

In This Section

See also
m PCI Q PCl.Read.B() 0 PCl.Read.L() Q PCl.Read.W()
PCl.Read.B() Byte from PCI register
Syntax: PCIl.Read.B(<bus>,<device>,<function>,<register>)

Reads a byte from selected

Return Value Type: Hex valu

PCl.Read.L()

PCI register. For a description of the parameters, click here.

e.

Long from PCI register

Syntax: PCIl.Read.L(<bus>,<device>,<function>,<register>)

Reads a long from selected

Return Value Type: Hex valu

PCl.Read.W()

PCI register. For a description of the parameters, click here.

e.

Word from PCI register

Syntax: PCIl.Read.W(<bus>,<device>,<function>,<register>)

Reads a word from selected

Parameter and Description:

PCI register. For a description of the parameters, click here.

<bus> Parameter Type: Decimal or hex or binary value. PCI bus number.
<device> Parameter Type: Decimal or hex or binary value. PCI device number.
<function> Parameter Type: Decimal or hex or binary value. PCI function number.
<register> Parameter Type: Decimal or hex or binary value. PCI register number.

Return Value Type: Hex valu

e.

©1989-2024 Lauterbach

General Function Reference | 260

PER Functions

In This Section

See also
B PER 0 PER.ADDRESS() 0 PER.ARG() 0 PER.BASE()
0 PER.Buffer.Byte() O PER.Buffer.Long() O PER.Buffer.LonglLong() O PER.Buffer.Quad()
1 PER.Buffer.Short() 1 PER.Buffer.Word() 1 PER.Byte() 1 PER.EVAL()
1 PER.HByte() 1 PER.Long() 1 PER.Long.BigEndian() 1d PER.Long.LittleEndian()
1 PER.LongLong() 1 PER.LonglLong.BigEndian() 1 PER.LongLong.LittleEndian() [PER.PByte()
0 PER.Quad() O PER.Quad.BigEndian() 0 PER.Quad.LittleEndian() 0 PER.SAVEINDEX()
0 PER.SByte() [PER.Short() 0 PER.Short.BigEndian() [PER.Short.LittleEndian()
Q PER.SLong() Q0 PER.TByte() Q PER.VALUE() Q0 PER.VALUE.STRING()
1 PER.Word() 1J PER.Word.BigEndian() 1 PER.Word.LittleEndian()
PER.<width>() Memory contents in default endianness
[build 76251 - DVD 09/2016]
Syntax: PER.<width>(<address>)
<width>: Byte | Short | Word | TByte | Long | PByte | HByte | SByte | SLong | Quad |
LongLong
Full function PER.Byte(<address>)
name only PER.Short(<address>)
required for PER.Word(<address>)
HELP.Index: PER.TByte(<address>)

PER.Long(<address>)
PER.PByte(<address>)
PER.HByte(<address>)
PER.SByte(<address>)
PER.SLong(<address>)
PER.Quad(<address>)

PER.LongLong(<address>)

The PER.<width>() functions return memory contents in the default endianness of the architecture.

Parameter Type: Address.

Return Value Type: Hex value.

The PER.<width>() functions are used in PER files and are synonyms for the Data.<width>() functions.
However, the difference between the two function groups is that the return values of the PER.<width>()
functions are based on dualport accesses, provided the respective PER file is opened with the DualPort
option e.g.:

PER.view <file>.per /DualPort

©1989-2024 Lauterbach

General Function Reference |

261

<width> Description of PER.<width>()
Byte Returns a single byte from memory.
Short Returns a word (16-bit) from memory.
Word Returns a word (16-bit) from memory.
TByte Returns a 3-byte value from memory.
Long Returns a long value (32-bit) from memory.
PByte Returns a 5-byte value from memory.
HByte Returns a 6-byte value from memory.
SByte Returns a 7-byte value from memory.
SLong Reads signed long value from memory - sign extended internally to a 64-bit
value.
Quad Returns a 64-bit value from memory.
LonglLong Returns a 64-bit value from memory.
PER.<width>.<endianness>() Memory contents in specified endianness
[build 76251 - DVD 09/2016]
Syntax: PER.<width>.<endianness>(<address>)
<width>: Byte | Short | Word | TByte | Long | PByte | HByte | SByte | SLong | Quad |
LonglLong
<endianness>: LittleEndian | BigEndian
Full function PER.Short.BigEndian(<address>)
name only PER.Short.LittleEndian(<address>)
required for PER.Word.BigEndian(<address>)
HELP.Index: PER.Word.LittleEndian(<address>)

PER.Long.BigEndian(<address>)
PER.Long.LittleEndian(<address>)
PER.LongLong.BigEndian(<address>)
PER.LongLong.LittleEndian(<address>)
PER.Quad.BigEndian(<address>)
PER.Quad.LittleEndian(<address>)

The PER.<width>.<endianness>() functions return memory contents in the specified endianness.

Parameter Type: Address.

Return Value Type: Hex value.

©1989-2024 Lauterbach

General Function Reference | 262

The PER.<width>.<endianness>() functions are used in PER files and are synonyms for the
Data.<width>.<endianness>() functions. However, the difference between the two function groups is that the
return values of the PER.<width>.<endianness>() functions are based on dualport accesses, provided the
respective PER file is opened with the DualPort option e.qg.:

PER.view <file>.per /DualPort

<width>.<endianness>

Description of PER.<width>.<endianness>()

Short.BigEndian

Returns a word (16-bit) from memory, while the byte order of the word
is forced to big endian.

Short.LittleEndian

Returns a word (16-bit) from memory, while the byte order of the word
is forced to little endian.

Word.BigEndian

Returns a word (16-bit) from memory, while the byte order of the word
is forced to big endian.

Word.LittleEndian

Returns a word (16-bit) from memory, while the byte order of the word
is forced to little endian.

Long.BigEndian

Returns a long value (32-bit) from memory, while the byte order of the
word is forced to big endian.

Long.LittleEndian

Returns a long value (32-bit) from memory, while the byte order of the
word is forced to endian endian.

LongLong.BigEndian

Returns a 64-bit value from memory, while the byte order of the word is
forced to big endian.

LongLong.LittleEndian

Returns a 64-bit value from memory, while the byte order of the word is
forced to little endian.

Quad.BigEndian

Returns a 64-bit value from memory, while the byte order of the word is
forced to big endian.

Quad.LittleEndian

Returns a 64-bit value from memory, while the byte order of the word is
forced to little endian.

PER.ADDRESS()

Address of register(field)

[build 147535 - DVD 09/2022]

Syntax: PER.ADDRESS(" <path>")

Returns the address of the register stated as <path>. Refer to PER.Set.ByName for a description of <path>.
PER.Set.CONDitions may be used to read addresses from within IF conditions.

Parameter Type: String.

Return Value Type: Address.

©1989-2024 Lauterbach General Function Reference | 263

PER.ADDRESS.<sub_cmd>() Check access security in PER file

32-bit and 64-bit ARM cores

Syntax: PER.ADDRESS.<sub_cmd>(<address>)

<width>: iSNONSECURE | isNONSECUREEX | isSECURE | isSECUREEX
Full function PER.ADDRESS.isNONSECURE(<address>)

name only PER.ADDRESS.isNONSECUREEX(<address>)

required for PER.ADDRESS.isSECURE(<address>)

HELP.Index: PER.ADDRESS.isSECUREEX(<address>)

The PER.ADDRESS. <sub_cmd>() functions are used in PER files and are synonyms respectively for the

ADDRESS.isNONSECURE(), ADD

RESS.isNONSECUREEX(), ADDRESS.isSECURE(), and

ADDRESS.isSECUREEX() functions. However, the difference between the two function groups is that the
return values of the PER.ADDRESS.<sub_cmd>() functions are based on the access class provided as
parameter and can be overriden using the options Secure or NonSecure, e.g.:

PER.view <file>.per /Secure
PER.view <file>.per /NonSecure

Parameter Type: Address.

Return Value Type: Boolean.

<sub_cmd> Description of PER.ADDRESS.<sub_cmd>()

isSNONSECURE Checks if the address, inside a peripheral definition file (PER file),
passed as parameter will force a non-secure (TrustZone) access.

isSNONSECUREEX Checks if the address, inside a peripheral definition file (PER file),
passed as parameter combined with the current CPU status will cause
a non-secure (TrustZone) access.

isSECURE Checks if the address, inside a peripheral definition file (PER file),
passed as a parameter will force a Secure (TrustZone) access.

isSSECUREEX Checks if the address, inside a peripheral definition file (PER file),
passed as a parameter combined with the current CPU status will
cause an Secure (TrustZone) access.

PER.ARG() Argument of PER.view command
Syntax: PER.ARG()

Returns the (optional) argument of the PER.view command. Only useful inside peripheral definition files.

Return Value Type: Hex value.

©1989-2024 Lauterbach

General Function Reference | 264

PER.ARG.ADDRESS() Address argument of PER.view command

Syntax: PER.ARG.ADDRESS()

Returns the (optional) address argument of the PER.view command. Only useful inside peripheral definition
files.

Return Value Type: Address.

PER.BASE() Last BASE address

[build 159996 - DVD 09/2023]

Syntax: PER.BASE()

Returns the address last passed to the BASE command. Only to be used within peripheral files.

Return Value Type: Address.

©1989-2024 Lauterbach General Function Reference | 265

PER.Buffer.<width>() Value from buffer

Syntax: PER.Buffer.<width>(<index>)

<width>: Byte | Short | Word | Long | LongLong | Quad
(Full function PER.Buffer.Byte(<index>)

name only PER.Buffer.Short(<index>)

required for PER.Buffer.Word(<index>)

HELP.Index): PER.Buffer.Long(<index>)

PER.Buffer.LongLong(<index>)
PER.Buffer.Quad(<index>)

<width> Description of PER.Buffer.<width>()

Byte Returns a byte from the SGROUP buffer. Only useful within a SGROUP of
a PER-file.

Short Returns a 16-bit word from the SGROUP buffer. Only useful within a

Word SGROUP of a PER-file.

Long Returns a 32-bit word from the SGROUP buffer. Only useful within a
SGROUP of a PER-file.

LongLong Returns a 64-bit from the SGROUP buffer. Only useful within a SGROUP

Quad of a PER-file.

Parameter and Description:

<index> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 266

PER.EVAL() Value of expression in PER file

Syntax: PER.EVAL(<integer>)

Returns the value of a expression (defined with BASE) inside a peripheral definition file (PER file), which
was defined after a BASE, IF, ELIF or ELSE command.

Parameter Type: Decimal or hex or binary value.

The parameter defines which expression is returned (O=first one).

NOTE 1: The function returns only the last evaluated value of the expression. It will not
evaluated the expression again.

Expressions after BASE, will be evaluated by a GROUP command after the
BASE command in a PER file.

NOTE 2: The function must only be used in the context of IF or ELIF.

Return Value Type: Address.

PER.FILENAME() PER file name

Syntax: PER.FILENAME()

Returns the file name of the active peripheral definition file (PER file).

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 267

PER.SAVEINDEX() Value from indexed register

[build 142258 - DVD 02/2022]

Syntax: PER.SAVEINDEX(<address>,<width>,<index_address>,<index_width>, |
<index_value>)

Function returns memory contents at Address (<address>) while a value (<index_value>) is temporarily set
in an index register (<index_address>). The access width can be set individually.

Sequence:

. Backup memory contents of memory location <index_address>

. Set value <index_value> to <index_addr>

J Read memory contents at memory location <address> using <width>
. Restore memory contents of memory location <index_address>

Parameter and Description:

<address> Address to read.
Parameter Type: Address.

<width> Access width of <address>.
Parameter Type: Decimal or hex or binary value.

<index_address> Address of index register.
Parameter Type: Address.

<index_width> Access width of <index_address>.
Parameter Type: Decimal or hex or binary value.

<index_value> Index value.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

See also: per_prog.pdf - SAVEINDEX.

PER.VALUE() Value of register(field)

[build 147535 - DVD 09/2022]

Syntax: PER.VALUE(" <path>")

Returns the value of the register or register field stated as <path>. Refer to PER.Set.ByName for a
description of <path>. PER.Set.CONDitions may be used to read values from within IF conditions.

Parameter Type: String.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 268

PER.VALUE.STRING() Value of BITFLD as string

[build 147535 - DVD 09/2022]

Syntax: PER.VALUE.STRING(" <path>")

Returns the <choice> value of a BITFLD. Refer to PER.Set.ByName for a description of <path>.
PER.Set.CONDitions may be used to read choices from within IF conditions.

Parameter Type: String.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 269

PERF Functions (Performance)

This figure provides an overview of the return values of some of the PERF functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

PERF.STATE()
&2 B:PERFstate =n| Wl <
METHOD =1 commands PERF METHOD()
BusSnoop @ StopAndGo O Trace Snoop 2 Dcﬂ ListProgram :
List TREE
state I Maode scans done Sort ListLine
* DISable I PC -I OFF ListFunc PERF.MODE()
@ OFF) TASK curr.scan Address stModule
I Arm @ MEMory sYrmbol
_PCTASK runtime @) Ratio
commands) PCMEMory 79.103%
snoops/s SnoopAddress
options 11. D:0x4A3261
[CIMMusPACES snoop fails SnoopSize I Li ;
e — — PERF.MEMORY.SnoopSize()
[¥] AutoArm
[C] AutoInit RunTime perf program file
& LiStTASK
In This Section
See also
B PERF 1 PEREMEMORY.HITS()
1 PERF.MEMORY.SnoopAddress() 1d PERFMEMORY.SnoopSize()
1 PERFEMETHOD() 1 PERFMODE()
1 PERFPC.HITS() 1 PERFRATE()
1 PERF.RunTime() 1 PERF.SNOOPFAILS()
1 PERF.STATE() 1 PERFTASK.HITS()
PERF.MEMORY.HITS() Number of memory samples
Syntax: PERF.MEMORY.HITS(<value>,<core>)
Number of hits for the given memory value and core number.
Parameter and Description:
<value> Parameter Type: Decimal or hex or binary value.
<core> Parameter Type: Decimal value. If <core>is -1, the number of hits is returned
for all cores.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 270

PERF.MEMORY.SnoopAddress()

Snoop memory address

Syntax: PERF.MEMORY.SnoopAddress()

Returns the snoop memory address.

Return Value Type: Address.

PERF.MEMORY.SnoopSize()

Snoop size

Syntax: PERF.MEMORY.SnoopSize()

Returns the snoop size in bytes (1, 2, 4, or 8).

Return Value Type: Hex value.

PERF.METHOD()

[Go to figure]

Recording method

Syntax: PERF.METHOD()

Returns the recording method of the Performance Analyzer.
Return Value Type: Hex value.

Return Value and Description:

[Go to figure]

0 HARDWARE method
1 BusSnoop method

2 StopAndGo method
3 Trace method

4 Snoop method

5 DCC method

©1989-2024 Lauterbach

General Function Reference | 271

PERF.MODE() Get Performance Analyzer recording mode

[Go to figure]
Syntax: PERF.MODE()
Returns the current recording mode of the Performance Analyzer.
Return Value Type: Hex value.
Return Value and Description:
1 PC mode
2 FLAGs mode
8 TASK mode
9 PCTASK mode
10 MEMory mode
11 PCMEMory mode
40 LeVel mode
PERF.PC.HITS() Number of PC samples
Syntax: PERF.PC.HITS(<address_range>,<core>)
Number of program counter hits for the given address range and core number.
Parameter and Description:
<address_range> Parameter Type: Address range.
<core> Parameter Type: Decimal value. If <core>is -1, the number of hits is returned
for all cores.
Return Value Type: Decimal value.
PERF.RATE() Number of snoops per second

Syntax: PERF.RATE()

Returns the number of snoops per second.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 272

PERF.RunTime()

Retained time for program run

Syntax: PERF.RunTime()

Percentage of time retained for the actual program run when the StopAndGo method is used.

Return Value Type: String.

PERF.SNOOPFAILS()

Number of snoop fails

Syntax: PERF.SNOOPFAILS()

Returns the number of snoop fails.

Return Value Type: Decimal value.

PERF.STATE() Get state of Performance Analyzer
[Go to figure]
Syntax: PERF.STATE()
Returns the state of the Performance Analyzer.
Return Value Type: Hex value.
Return Value and Description:
0 DiSable state
1 OFF state
2 Arm state
©1989-2024 Lauterbach General Function Reference | 273

PERF.TASK.HITS() Number of task samples

Syntax: PERF.TASK.HITS(<task_magic>,<core>)

Returns the number of hits for the given task magic number and core number.

Parameter and Description:

<task_magic> Parameter Type: Decimal or hex or binary value.
<core> Parameter Type: Decimal value. If <core>is -1, the number of hits is returned
for all cores.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 274

Port Analyzer Functions

In This Section

See also
0 PORT.GET() 0 PORT.MAXSIZE() 0O PORT.RECORDS() Qa PORT.REF()
0 PORT.SIZE() Q0 PORT.STATE() 0O PORT.TRACK.RECORD()
PORT.GET() Value of channel
Syntax: PORT.GET(<channel_name>)

Returns the current value of the given port channel.
Parameter Type: String.

Return Value Type: Hex value.

PORT.MAXSIZE() Get max. size of trace buffer in records

[build 38323 - DVD 08/2012]

Syntax: PORT.MAXSIZE()

Returns the maximum possible trace buffer size of the port analyzer in records.

Return Value Type: Decimal value.

PORT.RECORDS() Get number of used trace records

Syntax: PORT.RECORDS()

Returns the number of records in the port analyzer.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 275

PORT.REF() Get record number of reference record

Syntax: PORT.REF()

Returns the number of the selected reference record in the Port Analyzer.

Return Value Type: Decimal value.

PORT.SIZE() Get current trace buffer size in records

[build 38323 - DVD 08/2012]

Syntax: PORT.SIZE()

Returns the size of the Port Analyzer trace buffer to be used in trace records.

Return Value Type: Decimal value.

PORT.STATE() Get state of Port Analyzer

Syntax: PORT.STATE()

Returns the state of the Port Analyzer.
Return Value Type: Hex value.

Return Value and Description:

0 Off state
1 Arm state
2 Break state
3 Trigger state
6 Slave state
PORT.TRACK.RECORD() Get record number matching search
Syntax: PORT.TRACK.RECORD()

After a successful search operation, this function returns the record number. For an example, see
Analyzer.TRACK.RECORD().

©1989-2024 Lauterbach General Function Reference | 276

Return Value Type: Decimal value.

PORTANALYZER()

Syntax: PORTANALYZER()

Returns TRUE if a port analyzer hardware is plugged.

Return Value Type: Boolean.

PORTSHARING Function

PORTSHARING()

Current setting of PortSHaRing

ICD-TriCore, ICD-PCP, ICD-GTM, RH850

Syntax: PORTSHARING()
ETK() (deprecated)

Returns the current setting of SYStem.CONFIG PortSHaRing.

Return Value Type: Decimal value.

Return Value and Description:

0 OFF
1 ON
2 AUTO

©1989-2024 Lauterbach

General Function Reference

277

POWER Functions

In This Section

See also

1 hardware.POWERDEBUG() 1 hardware.POWERINTEGRATOR()
1 hardware.POWERINTEGRATOR2() 1 hardware. POWERNEXUS()

1 hardware. POWERTRACE() 1 hardware.POWERTRACEZ2()

1 hardware. POWERTRACE2LITE() 1 hardware. POWERTRACES()

1 hardware.POWERTRACEPX() 1 hardware.POWERTRACESERIAL()

©1989-2024 Lauterbach General Function Reference | 278

PowerProbe Functions

In This Section

See also
[hardware.POWERPROBE() 1 PROBE.GET() 1 PROBE.MAXSIZE() 1 PROBE.RECORD.DATA()
0 PROBE.RECORD.TIME() 1 PROBE.RECORDS() 0 PROBE.REF() 0 PROBE.SIZE()
J PROBE.STATE() (O PROBE.TRACK.RECORD()
PROBE.COUNTER.EVENTY() Get value of trigger program event counter
Syntax: PROBE.COUNTER.EVENT(<counter_name>)

Returns the value of an event counter of the PowerProbe CTU.
Parameter Type: String.

Return Value Type: Decimal value.

PROBE.COUNTER.EXTERN() Get value of trigger program external counter

Syntax: PROBE.COUNTER.EXTERN(<counter_name>)

Returns the value of an extern counter of the PowerProbe CTU.
Parameter Type: String.

Return Value Type: Decimal value.

PROBE.COUNTER.TIME() Get value of trigger program time counter

Syntax: PROBE.COUNTER.TIME(<counter_name>)

Returns the value of a time counter of the PowerProbe CTU.
Parameter Type: String.

Return Value Type: Time value.

©1989-2024 Lauterbach General Function Reference | 279

Probe.FIRST() Get record number of first trace record
[build 71062 - DVD 09/2016]

Syntax: Probe.FIRST()

Returns the record number of the first record. The first record is the record with the lowest record number.

Return Value Type: Decimal value.

PROBE.FLAG() Check state of trigger program FLAG

Syntax: PROBE.FLAG(<flag_name>)

Returns the value of a flag of the PowerProbe CTU.
Parameter Type: String.

Return Value Type: Boolean.

PROBE.GET() Value of channel

Syntax: PROBE.GET(<channel_name>)

Returns the current value of the given channel.
Parameter Type: String.

Return Value Type: Hex value.

PROBE.MAXSIZE() Get max. size of trace buffer in records

Syntax: PROBE.MAXSIZE()

The maximum number of records, which can be recorded by the PowerProbe (value depends on the actual
selected tracing mode t00).

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 280

PROBE.RECORD.DATA() Get data recorded in trace record

Syntax: PROBE.RECORD.DATA(<record_number>,<channel>)

Returns the sampled data from the specified record.

Parameter and Description:

<record_number> Parameter Type: Decimal value.

<channel> Parameter Type: String.

Return Value Type: Hex value.

PROBE.RECORD.TIME() Get timestamp of trace record

Syntax: PROBE.RECORD.TIME(<record_number>)

Returns the timestamp from the specified record. For an example, see Analyzer.RECORD.TIME().
Parameter Type: Decimal value.

Return Value Type: Time value.

PROBE.RECORDS() Get number of used trace records

Syntax: PROBE.RECORDS()

Returns the number of records recorded by the PowerProbe.

Return Value Type: Decimal value.

PROBE.REF() Get record number of reference record

Syntax: PROBE.REF()

Returns the number of the selected reference record in the Onchip trace.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 281

PROBE.SIZE()

Get current trace buffer size in records

Syntax:

PROBE.SIZE()

Returns the actual defined logical size of the PowerProbe trace buffer in records.

Return Value Type: Decimal value.

PROBE.STATE()

Get state of PowerProbe

Syntax:

PROBE.STATE()

Returns the state of the PowerProbe.

Return Value Type: Hex value.

Return Value and Description:

0 OFF state

1 Arm state

2 break state

3 trigger state
4 DiSable state

©1989-2024 Lauterbach

General Function Reference

282

PROBE.TRACK.RECORD() Get record number matching search

Syntax: PROBE.TRACK.RECORD()

After a successful search operation, this function returns the record number. For an example, see
Analyzer.TRACK.RECORD().

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 283

Program Pointer Function

PP() Address of program pointer (access class, space ID, program counter)

Syntax: PP()

Returns the address of the program pointer, which consists of the access class + the CPU program counter
(PC). See [A] and [C] in the example.

Additionally, the function PP() returns the space ID as a hex value if SYStem.Option.MMUSPACES is set to
ON. See [B] in the example.

Return Value Type: Address.

Example:
PRINT PP () ;prints to the TRACE32 message line: SR:0x0:0x464
;see screenshot
=1 [BeList.Mix] foe =

[H===s [# Over]@Dwerge”d’?eturn][¢up || »Go [M Break |[B¥Mode | Find:

. I B addr/Tine code labe mnemonic comment |
III ;;; ' J

EADCOO0S _mains: b 0x480

load_page(&Pagel);
Tdr ro, 0x4384
b1 0x440

1 3

SR 0000 : 000
SR :0000: 000

A Access class.
B Space ID.

C Content of CPU program counter (PC). See also Register.view window.

See also: Register().

©1989-2024 Lauterbach General Function Reference | 284

Register Functions

Register()

Content of register

Syntax: Register(<register_name> | PP)

Returns the content of a register.

. Bx: Reglster\.rlew EI-@

1]
o
o
o

\)
l
R1Z
R13 4520
1
PR

e EE
mhamn kiR
il

_5| _Stack ~

4 0430
st e[
SR 60000013

A Register names.

B Register contents.

C Register content of the program counter (PC).

Parameter and Description:

<register_name> Parameter Type: String. The architecture-specific register names are
displayed in the Register.view window.

PP Parameter Type: String. A TRACE32 built-in keyword that can be used to
return the register content of the program counter (PC) regardless of its
real <register_name>.

That is, the keyword PP is an architecture-independent register name for
the program counter.

Return Value Type: Hex value.
Example:

Register.view

PRINT Register (R13)

PRINT Register (PP)

See also: PP().

;opens the Register.view window

;prints the content of the register named R13 to
;the TRACE32 message line

;returns the content of the program counter (PC)
;- regardless of its real <register_name>

©1989-2024 Lauterbach

General Function Reference | 285

Register.LIST() First / next register name
[build 64613 - DVD 09/2015]

Syntax: Register.LIST("" | "<register name>")

Returns the first / next valid register name.

Parameter and Description: You can pass an empty string as a register name or a real register name.

Empty string Parameter Type: String. Passing an empty string returns the first register
name.

For example, the register name R0 for the ARM architecture.

See [A] in figure below.

<register_name> Parameter Type: String. Passing a real register name returns the name of
the next register.

For example, if you pass PC as register name, the function returns cPsSRr
as the next register name for the ARM architecture.

See [B] in figure below.

i:} B::Register.view EI@
[y GEAZ 5 0 5] stack | .
z WrL 1 R9 0
1 R10 0
Al = 15 Ri1 E 0
R4 1 Riz 3
RS 564C A1 OFE4
RE o RS]
R7 0 PC 2270
SP5R 10 CPSR 20000003 &
I3

Return Value Type: String.

Example: The function Register.LIST() is used to loop through all register names and print them to the
AREA.view window.

Register.view

AREA.view
®=Register .LIST("") ;returns the first register name
PRINT "®" ;and prints it to the AREA window
WHILE "®">"" ;loop through all register names
(
PRINT Register.LIST("®") ;print register name
®=Register .LIST("®") ;get next register name

©1989-2024 Lauterbach General Function Reference | 286

Register.Valid() Valid register value
[build 160975 - DVD 09/2023]

Syntax: Register.Valid(<register_name>)

Returns TRUE if the register value is available.

Parameter and Description:

<register_name> Parameter Type: String. The architecture-specific register names are
displayed in the Register.view window.

Return Value Type: Boolean.

{i} B:Register.view EI@
0 RO RS 0 _S5[sStack =
R1 R9 o
R2 R10 o
R3 R11 o
R4 40000000 R12
RS 0 R13 7FES8
R& 40080000 R14
R7 7FCO PC 1380
SPSR 10 CPSR &00000F3
W
PRINT Register.Valid(RO) ; returns FALSE as the RO value is not
; available
PRINT Register.Valid (R5) ; returns TRUE

©1989-2024 Lauterbach General Function Reference | 287

RTS Functions

This figure provides an overview of the return values the RTS functions. For descriptions of the illustrated
functions, see below.

| RTS.RECORDS()

& B:RTS.state EI@
rts utilisation errors
OFF (bad packet) — RTSERROR()
@ ON 59232. | StopOnError
data base nocode
commands 1. MB 20468.
RESet state StopOnMoaccesstocode
& Init errors] fifofulls
Illng| PROfile StopOnFifoful
[ﬁ COVerage diagnostics
= ISTAT £ List

In This Section

See also

W RTS 0 RTS.BUSY()
0 RTS.NOCODE() Q RTS.RECORD()

0 RTS.ERROR() Q RTS.FIFOFULL()

O RTS.RECORDS()

Check for flowerrors during RTS processing
[Go to figure]

RTS.ERROR()

Syntax: RTS.ERROR()

Returns TRUE if flowerrors where detected during RTS processing.

Return Value Type: Boolean.

Check for RTS NOCODE error

[build 78366 - DVD 02/2017]

RTS.NOCODE()

Syntax: RTS.NOCODE()

Returns TRUE if code was missing in VM for decoding.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 288

RTS.FIFOFULL() Check for FIFO full error in RTS

[build 78366 - DVD 02/2017]]

Syntax: RTS.FIFOFULL()

Returns TRUE if the target trace FIFO buffer overflowed during the recording.

Return Value Type: Boolean.

RTS.RECORD() Find record causing an error in RTS

[build 78366 - DVD 02/2017]

Syntax: RTS.RECORD()

Returns the record number of the error that stopped RTS.

Return Value Type: Decimal value.

RTS.RECORDS() Get number of trace records transferred to RTS

[Go to figure [build 47027 - DVD 08/2013]

Syntax: RTS.RECORDS()

Returns the number of trace records transferred to the host for RTS processing.

Return Value Type: Decimal value.

RTS.BUSY() Check if RTS is busy

[build 115124 - DVD 02/2020]

Syntax: RTS.BUSY()

Returns TRUE when RTS trace is off and processing is catching up.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 289

RunTime Functions

In This Section

See also
B RunTime Q0 RunTime. ACCURACY() O RunTime.ACTUAL() Q0 RunTime.LAST()
1 RunTime.LASTRUN() 1 RunTime.REFA() 1 RunTime.REFB()
RunTime.ACCURACY() Accuracy of run-time counter
Syntax: RunTime.ACCURACY()

Returns the measurement error of the RunTime counter in seconds.

Return Value Type: Time value.

RunTime.ACTUAL()

Syntax: RunTime.ACTUAL()

Returns the value displayed in the actual column of the RunTime.state window (as time from zero).

Return Value Type: Time value.

RunTime.LAST()

Syntax: RunTime.LAST()

Returns the value displayed in the laststart column of the RunTime.state window (as time from zero).

Return Value Type: Time value.

©1989-2024 Lauterbach General Function Reference | 290

RunTime.LASTRUN()

Syntax: RunTime.LASTRUN()

Returns the time of the last single step or the time between the last go and break of the program.

Return Value Type: Time value.

RunTime.REFA()

Syntax: RunTime.REFA() (deprecated)

Returns the value displayed in the ref A column of the RunTime.SHOW window (as time from zero).

Return Value Type: Time value.

RunTime.REFB()

Syntax: RunTime.REFB() (deprecated)

Returns the value displayed in the ref B column of the RunTime.SHOW window (as time from zero).

Return Value Type: Time value.

©1989-2024 Lauterbach General Function Reference

291

SMMU Functions

SMMU.BaseADDRESS() Base address of SMMU
ARM, ARMv8-A [build 64463 - DVD 09/2015]
Syntax: SMMU.BaseADDRESS(" <smmu_name>")

Returns the base address of hardware system MMU (SMMU). SMMUs are created with the
SMMU.ADD command.

Parameter Type: String.
Return Value Type: Address.
Example:

;define a new SMMU named "myGPU" for a graphics processing unit
2 <smmu_name> <base_address>
SMMU . ADD "myGPU" MMU500 A:0x50000000

;returns AZSD:0x0:0x50000000 as <base_address>
PRINT SMMU.BaseADDRESS ("myGPU)

SMMU.StreamIiD2SMRG() Find match for stream ID
ARM, ARMv8-A [build 64463 - DVD 09/2015] [Example]
Syntax: SMMU.StreamID2SMRG(" <name>",<stream_id>)

Finds a matching stream mapping register group (SMRG) for a given <stream_id> using the SMMU stream
ID matching algorithm.

Parameter and Description:

<name> Parameter Type: String. Specifies the SMMU to be searched. The SMMU
<name> must be quoted.

<stream_id> Parameter Type: Decimal or hex or binary value. Stream ID of a memory
transaction stream.

©1989-2024 Lauterbach General Function Reference | 292

Return Value and Description:

Range: 0 to (max.
number of index

Return Value Type: Decimal value. If exactly one matching SMRG was
found, the function returns the index of the matching SMRG.

entries-1). See also column index in the SMMU.StreamMapTable window.

-1 Return Value Type: Decimal value. If no matching SMRG was found for the
given <stream_id>, -1 will be returned.

-2 Return Value Type: Decimal value. If more than one matching SMRG was

found for the given <stream_id>, -2 will be returned.
Additionally, a warning message will be printed to the AREA window.

NOTE: If more than one SMRG matches a given <stream_id>, a stream
matching fault occurs in the SMMU hardware.

Example: This PRACTICE script opens the SMMU.StreamMapTable window, searches for the
<stream_id> 0x3464, and highlights the matching SMRG 0x0464 in yellow.

For the SMRG 0x0464,

the function SMMU.StreamID2SMRG() returns the index 11 (decimal).

;open the window and highlight the matching SMRG in yellow
SMMU . StreamMapTable myGPU /StreamID 0x3464

;return the index of the SMRG as a decimal value
&index=SMMU. StreamID2SMRG ("myGPU", 0x3464)

;print the index as hex and decimal to the AREA window

PRINT "hex: 0x" CONVert.INTTOHEX (&index) " decimal: &index"
AREA.view

$4 B:SMMU StreamMapTable myGPU I /StreamID 0:3464 I =n| Wl <

stream map reg.grp stream matching

visibility dindex ref. id

id mask [valid | context type |

sec/nsec 0x09 0x0341

0x7000 | yes =1 trs1 - =2 byp L
s1 trsl s2 trsl

sec/nece [oon | |[ootes|

ﬁx?ﬁﬁﬁl yes | s1 trsl - 52 trsl

f| = = = == 1 1 = -
iii:ﬁﬂiii 0x0D 0x0587 | 0x7000 | yes ii EE; 23 EE; £ | BaAREAview [= | =) |[Es]
zec only OxOE 0x0000 | Ox0000| no | fault L
zec only OxOF 0x0000 | Ox0000| no | fault
MMU-500 base AZS5D0:0x50000000 v hex: Ox0B decimal: 11. ~
J«‘ M 3 4 |0 3
NOTE: At first glance, the StreamID 0x3464 does not seem to match the SMRG 0x0464.

However, if you take the ID mask 0x7000 (= Oy0111_0000_0000_0000) into
account, the match is correct.

The row highlighted in yellow in the SMMU.StreamMapTable window is a correct match for the
StreamlD 0x3464 we searched for.

©1989-2024 Lauterbach

General Function Reference | 293

SNOOPer Functions

This figure provides an overview of the return values of some of the SNOOPer functions. For descriptions of
the illustrated functions and the functions not shown here, see below.

. SNOOPer.STATE()
SNOOPer.RECORDS()
<P B:SNOOPer.state EI@
I state I uf=d SELect
_) DISable [YByte flags+1 E]
@ OFF 168.
A SIEE_—y Tvake — SNOOPer.MAXSIZE()
*) trigger . ..o | Clear
e A [S— SNOOPer SIZE()
Maode Maode Maode TOut
commands @ Fifo @ Memory [C] AddressTrace @ Trace
0 Stack 7 DecC [TIchanges *) Program
5 BMC [V] SLAVE © PULSE
Rate S pC StopAndGo | | © BUSA
£ List 1.000us _) PC+MMU [CIFasT
[¥] AutoArm 1000000, ™) ETM [contextiD TDely
[C] AutoInit max D ETM32 0.
[C] selfarm 20.010ms
10.728%

In This Section

See also
1 SNOOPer.FIRST() 1 SNOOPer.MAXSIZE()
O SNOOPer.RECORD.ADDRESS() O SNOOPer.RECORD.DATA()
1 SNOOPer.RECORD.OFFSET() 1 SNOOPer.RECORD.TIME()
1 SNOOPer.RECORDS() 1 SNOOPer.REF()
0 SNOOPer.SIZE() 0 SNOOPer.STATE()
SNOOPer.FIRST() Get record number of first trace record
[build 71062 - DVD 09/2016]
Syntax: SNOOPer.FIRST()

Returns the record number of the first record. The first record is the record with the lowest record number.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 294

SNOOPer.MAXSIZE() Get max. size of trace buffer in records

[build 38323 - DVD 08/2012] [Go to figure]

Syntax: SNOOPer.MAXSIZE()

Returns the maximum possible number of records.

Return Value Type: Decimal value.

SNOOPer.RECORD.ADDRESS() Get address recorded in trace record

[build 38764]

Syntax: SNOOPer.RECORD.ADDRESS(<record_number>)

Returns the sampled address (access class and offset) from the specified record.
Parameter Type: Decimal value.

Return Value Type: Address.

SNOOPer.RECORD.DATA() Get data recorded in trace record

[build 38764]

Syntax: SNOOPer.RECORD.DATA(<record_number>)

Returns the sampled data of the specified record.
Parameter Type: Decimal value.

Return Value Type: Hex value.

SNOOPer.RECORD.OFFSET() Get address in trace record as number

[build 38764]

Syntax: SNOOPer.RECORD.OFFSET(<record_number>)

Returns the address-offset of the sampled address from the specified record.
Parameter Type: Decimal value.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 295

SNOOPer.RECORD.TIME() Get timestamp of trace record

[build 38764]

Syntax: SNOOPer.RECORD.TIME(<record_number>)

Returns the timestamp of the specified record. For an example, see Analyzer.RECORD.TIME().
Parameter Type: Decimal value.

Return Value Type: Time value.

SNOOPer.RECORDS() Get number of used trace records

[Go to figure]

Syntax: SNOOPer.RECORDS()

The number of records currently recorded in the SNOOPer trace buffer.

Return Value Type: Decimal value.

SNOOPer.REF() Get record number of reference record

Syntax: SNOOPer.REF()

The number of the selected reference record in the SNOOPer trace.

Return Value Type: Decimal value.

SNOOPer.SIZE() Get current trace buffer size in records

[build 38323 - DVD 08/2012] [Go to figure]

Syntax: SNOOPer.SIZE()

Returns the currently defined size of the SNOOPer trace buffer in records.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 296

SNOOPer.STATE()

Get state of SNOOPer trace

Syntax:

SNOOPer.STATE()

Returns the state of the SNOOPer trace.

Return Value Type: Hex value.

Return Value and Description:

[Go to figure]

0 OFF state

1 Arm state

2 break state

3 trigger state
4 DiSable state

©1989-2024 Lauterbach

General Function Reference

297

STATE Functions (Target State)

In This Section

See also
1 STATE.HALT() 1 STATE.NOCPUACCESS() [STATE.NOCTIACCESS() 1 STATE.OSLK()
1 STATE.POWER() 1 STATE.PROCESSOR() 1 STATE.RESET() 1 STATE.RUN()

O STATE.TARGET()

STATE.HALT()

Syntax: STATE.HALT()

Returns the state of the “halt” display (i.e. no CPU cycles).

Return Value Type: Boolean.

STATE.OSLK()

32-bit and 64-bit ARM cores

Syntax: STATE.OSLK()

Returns the current state of the OS-lock bit of the CPU.
Return Value Type: Boolean.

Return Value and Description:

[build 67684 - DVD 02/2016]

TRUE The CPU is running and OS-lock bit is set.

FALSE FALSE can mean either case 1 or case 2:

the CPU has stopped.

J Case 1: The CPU is running and OS-lock bit is cleared.
J Case 2: The debugger has connected to the CPU and detected that

©1989-2024 Lauterbach General Function Reference | 298

STATE.POWER()

[Example]

Syntax: STATE.POWER()

Returns the state of the target power line.

Return Value Type: Boolean.

Return Value and Description:
TRUE Power is applied.
FALSE Power is not applied.

NOTE: Please check the power-off voltage if the power-off state cannot be detected.
Especially for low-power applications, the debug/trace-signal current can be
enough to power the application:

Target power does not drop to GND level -> power-off cannot be detected.

©1989-2024 Lauterbach General Function Reference | 299

Example

In the following example, the message box is displayed as long as power is applied to the target board. The
message box disappears only if these conditions are met:

. You have unplugged all connectors from the target board.

o You have clicked OK.

TRACE32 PowerView (=23

= | B:AREAview =N =R = | B:AREAview =n| Wl <

-

1. Power OFF PandaBoard.
By 2 clickoke, ’

3. Power ON PandaBoard.
Waiting for PandaBoard to power up... ~ PandaBoard is now powered up again. -
4 L 3 4 n 3

LOCAL &msgA &msgB &msgC ; PRACTICE macros for the message texts A, B, C

&msgA="1. Power OFF PandaBoard."+CONV.CHAR (0x0d4)+\
"2. Click 'OK'."+CONV.CHAR(0x0d)+"3. Power ON PandaBoard."

&msgB="Waiting for PandaBoard to power up..."

&msgC="PandaBoard is now powered up again."

AREA.view ; Opens the AREA.view window.
WHILE STATE.POWER () ; While power is on...

DIALOG.OK "&msgA" ; ...prompt the user to power off the board.
PRINT "&msgB" ; Now prompt the user to power up the board again.
WAIT STATE.POWER() ; Wait for the user to respond as requested.

AREA.Clear ; Clear the previous message from the AREA.view window.

PRINT "&msgC" ; Display success message.

+CONV.CHAR (0x0d) + creates a line break on the GUI. A backslash \ is used as a line continuation
character in PRACTICE script files (*.cmm). No white space permitted after the backslash.

STATE.PROCESSOR()

Syntax: STATE.PROCESSOR()

Returns the name of the processor, which was selected with the command SYStem.CPU. This function
is an alias for SYStem.CPU().

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 300

STATE.RESET()

Syntax: STATE.RESET()

Returns the state of the target reset line.

Return Value Type: Boolean.

STATE.RUN()

Syntax: STATE.RUN()
RUN() (deprecated)

Returns the state of the run-flag (CPU running in target).

Return Value Type: Boolean.

STATE.TARGET() State of target displayed in TRACES32 state line

Syntax: STATE.TARGET()

Returns the message about the target state displayed in the state line. For example, system down,
system ready, running, stopped.

Return Value Type: String.

SPE Function

SPE() Content from SPE register

Syntax: SPE(<register_name>)

Returns the content of the selected SPE register. See also SPE command group.
Parameter Type: String.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 301

SSE Function

SSE() Segment from SSE register

Syntax: SSE(<register_name>.<column_number>)

Returns a 32-bit segment of the selected 128-bit SSE register. See also SSE command group.
Parameter Type: String.

Parameter and Description:

<register_name> The register names are listed in the SSE.view window.

<column_number> The column numbers start at 0 and are read from right to left in the
SSE.view window. See example below.

where 0<=k<=3

A column k corresponds to the bitrange (k - 32 + 31)-(k - 32),

Return Value Type: Hex value.

Example: This demo script returns 32-bit values of the register XMM1 from the column 0 (bits 31 to 0)

and the column 2 (bits 95 to 64) of the SSE.view window.

SSE.view
SSE.Set XMM1 689 789 809 9009
PRINT "Register|Bit Range|Col.|Value"

PRINT " XMM1 | 31-0 | 0 | " SSE(XMM1.0) ;32-bit value from col. 0
PRINT " XMM1 | 95-64 | 2 | " SSE(XMM1.2) ;32-bit value from col. 2
B::55E.view [::]IEI[::] £

00000000 00000000 00000000 00000000 -~
00000689 00000789 00000809 00009009 Register |Bit Range|Col. |value
00000000 0000UTTS 00000000 000UTTow KMML | 31-0 | 0 | 9009
00000000 00000000 00000000 00000000 - KMML | 95-64 | 2 | 789

B::AREA.view =n| Wl <

ﬁ____IEI ' -

A Register names.

0 -3 Column numbers - from right to left - in the SSE.view window.

©1989-2024 Lauterbach General Function Reference

302

Stimuli Generator Function

hardware.STG() TRUE if Stimuli Generator hardware

Syntax: hardware.STG()
STG() (deprecated)

Returns TRUE if Stimuli Generator hardware is available.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 303

sYmbol Functions

In This Section

See also

B sYmbol

1 sYmbol.AutoLOAD.CHECKCMD()
O sYmbol. BEGIN()

1 sYmbol.END()

1 sYmbol.EXIST()

0 sYmbol.FUNCTION()

1 sYmbol.ISFUNCTION()
1 sYmbol. LANGUAGE()
(d sYmbol.LIST.SOURCE()
1 sYmbol.NAME()

1 sYmbol.NEXT.BEGIN()
O sYmbol. SEARCHFILE()
1 sYmbol. SECEND()

1 sYmbol. SECNAME()

0 sYmbol. SECRANGE()
1 sYmbol. SOURCEFILE()
1 sYmbol. SOURCEPATH()
O sYmbol. TRANSPOSE()
1 sYmbol. VARNAME()

sYmbol.AutoLOAD.CHECK()

1 sYmbol.AutoLOAD.CHECK()
1 sYmbol. AutoLOAD.CONFIG()
1 sYmbol. COUNT()

1 sYmbol.EPILOG()

1 sYmbol.EXIT()

0O sYmbol.IMPORT()

1 sYmbol.ISVARIABLE()

1 sYmbol.LISTPROGRAM()
O sYmbol. MATCHES()

1 sYmbol. NAME.AT()

1 sYmbol. RANGE()

0 sYmbol. SECADDRESS()

1 sYmbol.SECEXIST()

1 sYmbol. SECPRANGE()

O sYmbol.SIZEOF()

1 sYmbol. SOURCELINE()

1 sYmbol.STATE()

O sYmbol. TYPE()

Update option for the symbol autoloader

[build 71364 - DVD 09/2016]

Syntax: sYmbol.AutoLOAD.CHECK()

Returns the update option of the symbol autoloader that was given with sYmbol.AutoLOAD.CHECK.

Return Value Type: String. Returns an empty string if no automatic update is configured.

sYmbol.AutoLOAD.CHECKCMD()

Load command for symbol autoloader

[build 71364 - DVD 09/2016]

Syntax: sYmbol.AutoLOAD.CHECKCMD()

Returns the command that was specified to be used to load a symbol file with the symbol autoloader (e.g. as
parameter to sYmbol.AutoLOAD.CHECKCoMmanD).

Return Value Type: String. Returns an empty string if the symbol autoloader is not configured.

©1989-2024 Lauterbach

General Function Reference | 304

sYmbol.AutoLOAD.CONFIG() Used sub-command

[build 71364 - DVD 09/2016]

Syntax: sYmbol.AutoLOAD.CONFIG()

Returns the sub-command that was used to configure the symbol autoloader. E.g. “CHECKCoMmanD” if
sYmbol.AutoLOAD.CHECKCoMmanD was used.

Return Value Type: String. Returns an empty string if the symbol autoloader is not configured.

sYmbol.BEGIN() First address of symbol

[build 18430 - DVD 12/2009]

Syntax: sYmbol.BEGIN(<symbol>)

Returns the first address occupied by the symbol. A symbol name used alone represent the beginning
address too. Function only implemented to have a counterpart of function the sYmbol.END().

Parameter Type: Symbol.
Return Value Type: Address.
Example:

Data.Print sYmbol.BEGIN (vbfield)
Data.Print vbfield // displays the identical value

©1989-2024 Lauterbach General Function Reference | 305

sYmbol.COUNT() Number of symbols

Syntax: sYmbol.COUNT(<symbol>)

Returns the number of symbols defined with the specified name. The wildcards ‘*’ and ‘?’ are supported.
Parameter Type: Symbol.

Return Value Type: Decimal value.

Examples:

ECHO sYmbol .COUNT (func¥*)
ECHO sYmbol .COUNT (func2?)

sYmbol.ECA.BINary.GAPNUMBER() Number of observability gaps

Syntax: sYmbol.ECA.BINary.GAPNUMBER()

Returns the number of observability gaps detected by the command sYmbol.ECA.BINary.PROCESS.
The function returns the error code -1, if no symbols are loaded or a numeric overflow was detected.

Return Value Type: Decimal value.

sYmbol.END() Last address of symbol

Syntax: sYmbol.END(<symbol>)

Returns the last address occupied by the symbol.
Parameter Type: Symbol.

Return Value Type: Address.

Example:

Data.Print sYmbol.END (vbfield)

©1989-2024 Lauterbach General Function Reference | 306

sYmbol.EPILOG() Address of return point

[build 72285 - DVD 09/2016]

Syntax: sYmbol.EPILOG(<symbol>)

Returns the last address of the specified function where the local variables are still valid, i.e. the address of
the return point. Prerequisite: The function has exactly one return point.

Parameter Type: Symbol.
Return Value Type: Address.

Example 1: The function sYmbol.EPILOG() is used to display the address of the return point in the
Data.Print window.

List.auto funcl ;optional step: display the function

Go.Return ;optional step: go to the address of
;the return point

Data.Print sYmbol.EPILOG (funcl) ;get the address of the return point
;and display it in the Data.Print
;window

Example 2: The function sYmbol.EPILOG() is used to set a breakpoint to the return point in order to watch
the local variable __struct_result in the Var.Watch window.

Break.Set sYmbol.EPILOG (func4) ;set a breakpoint to the return point
;address of ‘funcd’
Go ;start the program execution
WAIT !STATE.RUN() ;walt until program stops
Var.Watch %0pen.ON _ struct_result //watch local variable ‘__ struct_re.’
&%) B:Var.Watch F0pen.OM _struct_result EI@

~ [2]] ¥ watch (6o view] | [X]

= __struct_resuTt = 0Ox583C — (
®Hword = 0x0,
= count = 12346,
@ Teft = 0x583C,
® right = 0x0,
- fieldl = 1,
- fieldz = 2) =

4 [}

©1989-2024 Lauterbach General Function Reference | 307

sYmbol.EXIST() TRUE if symbol exists

Syntax: sYmbol.EXIST(<symbol>)

Returns TRUE if the symbol exists in the TRACE32 symbol database or FALSE otherwise.
Parameter Type: Symbol.
Return Value Type: Boolean.

Example 1:

PRINT sYmbol.EXIST (vbfield)
PRINT sYmbol.EXIST (gwertzulop)

Example 2: The sYmbol.EXIST() function can be used together with the Trace.Find command in a
PRACTICE script. This prevents the PRACTICE script from stopping if the searched symbol does not exist,
and eliminates the need for an error handler.

IF sYmbol.EXIST (gwertzuiop)
(

Trace.Find , Address gwertzuiop

IF FOUND ()

PRINT "Record number of 'qwertzuiop' is: " Analyzer.TRACK.RECORD ()

)
ELSE
(

PRINT "The symbol 'gwertzuiop' does not exist in the symbol database."
)

sYmbol.EXIT() Exit address of function

Syntax: sYmbol.EXIT(<symbol>)

Returns the exit address of the specified function.
Parameter Type: Symbol.

Return Value Type: Address.

Example:

Data.Print sYmbol.EXIT (func40)
PRINT ADDRESS.OFFSET (sYmbol.EXIT (func40)))

©1989-2024 Lauterbach General Function Reference | 308

sYmbol.FUNCTION() Function name

Syntax: sYmbol.FUNCTION(<address>)

Returns the path and name of the function that includes the specified address. The address has to be
classified, e.g. P:0x200

Parameter Type: Address.
Return Value Type: String.
Example:

PRINT sYmbol.FUNCTION (P:0x40001000)

sYmbol.IMPORT() Import file names

Syntax: sYmbol.IMPORT()

Returns the name of the next not yet processed import file name. This function can be used to walk through
the list of import names (Only relevant for *.exe target programs, on Windows CE for example).

Return Value Type: String.

sYmbol.ISFUNCTION() TRUE if symbol is function

[build 135097 - DVD 09/2021]

Syntax: sYmbol.ISFUNCTION(<symbol>)

Returns TRUE if the selected symbol is function.
Parameter Type: Symbol.

Return Value Type: Boolean.

Example:

Print sYmbol.ISFUNCTION (funcl) ; return TRUE

©1989-2024 Lauterbach General Function Reference | 309

sYmbol.ISVARIABLE() TRUE if symbol is variable

[build 135097 - DVD 09/2021]

Syntax: sYmbol.ISVARIABLE(<symbol>)

Returns TRUE if the selected symbol is variable.
Parameter Type: Symbol.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 310

sYmbol.LANGUAGE() Selected high-level language

Syntax:

[build 122228 - DVD 09/2020]

sYmbol.LANGUAGE()

Returns the currently selected language for high-level expressions.

Return Value Type: String.

sYmbol.List. MAP.<x>() Information about address ranges on the target

Syntax:
<X>.

(Full function

[build 86990 - DVD 09/2017]

sYmbol.List.MAP.<x>()
COUNT | BEGIN | END | RANGE

sYmbol.List. MAP.COUNT()

name only sYmbol.List. MAP.BEGIN(<index>)
required for sYmbol.List. MAP.END(<index>)
HELP.Index): sYmbol.List. MAP.RANGE(<index>)
<> Description of sYmbol.List.MAP.<x>()
COUNT Returns the number of address ranges loaded to the target with the

Data.LOAD.* <file> commands.
Return Value Type: Decimal value.

BEGIN(<index>)

Returns the start address of the range <index>.
Parameter Type: Decimal value.
Return Value Type: Address.

END(<index>) Returns the end address of the range <index>.
Parameter Type: Decimal value.
Return Value Type: Address.
RANGE(<index>) Returns the range <index>.

Parameter Type: Decimal value.
Return Value Type: Address range.

Parameter and Description:

<index>

The individual <index> numbers of the ranges are listed in the load order
column of the sYmbol.List. MAP window.
To return the highest <index> number, use sYmbol.List. MAP.COUNT).

©1989-2024 Lauterbach

General Function Reference | 311

Example:

SYStem.Up ;connect to target

Data.LOAD.E1f sieve_flash_thumb_ii_v7m.elf ;load application to target
&i=1.

RePeaT sYmbol.List.MAP.COUNT() ;loop through number of address ranges

(;let’s use PRINTF to format the output to the AREA.view window

PRINTF "%s%i%s" "Range " &1 " starts at "
PRINTF %CONTinue "0x%x%s" sYmbol.List.MAP.BEGIN(&i) "."
&i=&1i+1.
)
% BusYmbol.List MAP =] == = | B:AREAview [-o || B |[E3a]
address M load order Jlogical hy=1cal L
SR : 00000000--000003FF 1. SR :00000000--000003FF ASR:00000000--000003FF [FILL - Range 1 starts at Ox0.
SF|0000M40|—0000200EI 2. SR :00000440--000020086 ASR:00000440--00002008 |FILL - Range 2 starts at|0x440.| 57
J - I3 4 r
sYmbol.LIST.PROGRAM() Path and file name of binary files
[build 42354 - DVD 02/2013]
Syntax: sYmbol.LIST.PROGRAM(1 | 0)

Returns the path and file name of a loaded target binary, e.g. an ELF file.

Parameter and Description:

1 Parameter Type: Decimal or hex value.
Starts with the first target binary listed in the sYmbol.List.Program
window.

0 Parameter Type: Decimal or hex value.
Continues with the next target binary in the list. To return all loaded target
binaries, call the function repeatedly until an empty string is returned.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 312

sYmbol.List. PROGRAM.<x>() Information about loaded programs

[build 141685 - DVD 02/2022]

Syntax: sYmbol.List. PROGRAM.<x>()

<x> COUNT | COMMAND | FORMAT | FILE | NAME | RANGE
(Full function sYmbol.List. PROGRAM.COUNT()

name only sYmbol.List. PROGRAM.COMMAND(<index>)

required for sYmbol.List. PROGRAM.FORMAT(<index>)

HELP.Index): sYmbol.List. PROGRAM.FILE(<index>)

sYmbol.List. PROGRAM.NAME(<index>)
sYmbol.List. PROGRAM.RANGE(<index>)

<> Description of sYmbol.List. PROGRAM.<x>()

COUNT Returns the number of programs loaded to the symbol table with the
Data.LOAD.* <file> commands.
Return Value Type: Decimal value.

COMMAND(<index>) Returns the commandline how <index> got added to the symbol database.
Parameter Type: Decimal value.
Return Value Type: String.

FORMAT(<index>) Returns the format of program <index>.

Parameter Type: Decimal value.
Return Value Type: String.

FILE(<index>)

Returns the path of file <index>.
Parameter Type: Decimal value.
Return Value Type: String.

NAME(<index>) Returns the symbol database name of <index>.
Parameter Type: Decimal value.
Return Value Type: String.

RANGE(<index>) Returns the range <index>.

Parameter Type: Decimal value.
Return Value Type: Address range.

Parameter and Description:

<index>

The individual <index> numbers address the lines in the
sYmbol.List.Program window.

To return the highest <index> number, use
sYmbol.List. PROGRAM.COUNT().

©1989-2024 Lauterbach

General Function Reference | 313

Example:

7

load file to symbol database

Data.LOAD.El1f ~~/demo/arm/compiler/gnu-pic/sieve_arm.elf /NoCODE
Data.LOAD.El1f ~~/demo/arm/compiler/gnu-pic/sieve_thumb_v4.elf \

&i=1.

0x80000000 /NoCODE /NoClear

RePeaT sYmbol.List.PROGRAM.COUNT() ; loop through number of programs
(; lets use PRINTF to format output to AREA.view window
PRINTF "Program %i Name: %s" &i sYmbol.List.PROGRAM.NAME (&i)
PRINTF " Format: %s" sYmbol.List.PROGRAM.FORMAT (&1)
PRINTF " File: %s" sYmbol.List.PROGRAM.FILE (&i)
PRINTF " Range: %#!R" sYmbol.List.Program.RANGE (&i)

&i=&1+1.

i B::s¥Ymbol.List.Program EI@
address program altname [format Tile command |
P :00000000--00003097 [s1eve_arm ELF/DWARFZ [C:\T32\demo'arm\compilerignu-pic\sieve_arm.elT Data.LOAD.EIT ~~/demo..
FISOOOOOOOI—SOOOZSZF sieve_thumb_v4 ELF/DWARF2 |C:%T32\demo'arm\compilerignu-picisieve_thumb_v4... |Data.LOAD.ETf ~~/demo..
£ >
= B:AREAview IEIIEI
1le 'C:\T32\demo'arm'compiler\gnu-picisieve_arm.elf’ (ELF;D‘»ARFZ) Toaded.
ile 'C: \T32\dem0\ar‘m\comp1'Ier'\gnu p'lc\s‘leve thumb_v4.elf" (ELF/DWARF2) Toaded.
Program 1 Name: sieve_arm
Format: ELF/DWARF2
File: C:%T32\demo'arm'compilergnu-pichsieve_arm.elf
Range: P:0x0--0x3097
Program 2 Name: sieve_thumb_v4
Format: ELF/DWARF2
File: C:%T32\demo'arm'compilerignu-pichsieve_thumb_v4.elf
Range Pg OXSOOOOOOC -0xB000252F hd
>
. . . .
sYmbol.List.SECtion.<x>() Information about section ranges
[build 141685 - DVD 02/2022]
Syntax: sYmbol.List.SECtion.<x>()

<X>:

(Full function
name only
required for
HELP.Index):

COUNT | PATH | RANGE

sYmbol.List.SECtion.COUNT()
sYmbol.List.SECtion.PATH(<index>)
sYmbol.List.SECtion.RANGE(<index>)

©1989-2024 Lauterbach

General Function Reference | 314

<X>

Description of sYmbol.List. PROGRAM.<x>()

COUNT

Returns the number of sections loaded to the symbol table with the
Data.LOAD.* <file> commands.
Return Value Type: Decimal value.

PATH(<index>)

Returns the symbol path <index>.
Parameter Type: Decimal value.
Return Value Type: String.

RANGE(<index>)

Returns the range <index>.
Parameter Type: Decimal value.
Return Value Type: Address range.

Parameter and Description:

<index> The individual <index> numbers address the lines in the
sYmbol.List.SECtion window.
To return the highest <index> number, use
sYmbol.List.SECtion.COUNT().
Example:

; load file to symbol database
Data.LOAD.El1f ~~/demo/arm/compiler/gnu-pic/sieve_arm.elf /NoCODE

&i=1.

RePeaT sYmbol.List.SECtion.COUNT() ; loop through number of sections
(; lets use PRINTF to format output to AREA.view window
PRINTF "Range %i Path: %$-24s Range: %#!R" &i \

sYmbol .List.SECtion.PATH (&1)

&i=&1+1.

sYmbol .List.SECtion.RANGE (&1

1)

2 BusVmbol List.SECtion = =R
address path'section load [physical |

P :00000000--00003097 [\ s1eve_arm\.text L-

D:00003098--000030EF [\\sieve_arm\.rodata L-

D:000030F0--00003143 |\ sieve_arm',.got L-

D:00003144--0000315F [\\sieve_arm\.data.rel L-

D:00003160--000031A7 [\\sieve_arm\.data L-

D:000031A8--00003E13 [\\sieve_arm\.bss -

D:00003B14--00003C13 [\ sieve_arm\.stack -
= | [B:AREAview] [::::]II!II[:::]
1le "C:\T32\demo'arm'compilerignu-picisieve_arm.elt’ (ELF/DWARFZ) Toaded.
Range 1 Path: ‘‘\sieve_arm'.text Range: P:0x0--0x3097
Range 2 Path: ‘\sieve_arm\.rodata Range: D:0x3098--0x30EF
Range 3 Path: ‘\sieve_arm\.got Range: D:0x30F0--0x3143
Range 4 Path: ‘\sieve_arm\.data.rel Range: D:0x3144--0x315F
Range 5 Path: ‘‘\sieve_arm\.data Range: D:0x3160--0x31A7
Range & Path: ‘\sieve_arm\.bss Range: D:0x31A8--0x3B13
Range 7 Path: ‘\sieve_arm\.stack Range: D:0x3B1l4--0x3C13 W
£ >

©1989-2024 Lauterbach General Function Reference | 315

sYmbol.LIST.SOURCE() File location of source file

[build 42354 - DVD 02/2013]

Syntax: sYmbol.LIST.SOURCE(<start_over>,<filter>,<refresh_source_list>)

Via the TRACES32 Remote API, 3rd-party tools can use the sYmbol.LIST.SOURCE() together with the
T32Cmd() interface function to request the file location of all source files, e.g. *.c files, used to build the
currently loaded target binary, e.g. an ELF file.

Because a target binary consists of more than one source file, it is necessary to call the
sYmbol.LIST.SOURCE() function repeatedly until an empty string is returned.

Parameter and Description:

<start_over> Parameter Type: Decimal or hex value.
. 1: Starts with the first source file listed in the sYmbol.List. SOURCE
window, e.g. a *.c. file.

. 0: Continue with the next source file in the list.
<filter> Parameter Type: Decimal or hex value.
o 0: Returns the file path of all files referenced in the symbol file,
regardless if found on the local machine or not.
J 1: Returns the file location of all files that are currently loaded by

TRACES2 PowerView. This implies that the files are found on the
local machine.

. 2: Returns the file path of files that are not found by TRACE32
PowerView.

. 4: Returns the file path of files referenced in the symbol file, but do
not contain any sourcecode with debug information. Such files will
never show up in the List window.

<refresh_source_list> | Parameter Type: Decimal or hex value.

o 1: Tells TRACE32 PowerView to refresh the internal source file list
before returning file locations.
o 0: Does not refresh the internal source file list, i.e. files not opened

in a Data.List window will be unknown / missing.

Return Value Type: String.

sYmbol.MATCHES() Number of occurrences

Syntax: sYmbol.MATCHES()

Returns the number of hits of a preceding command like sYmbol.Browse or sYmbol.ForEach.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 316

Example:

sYmbol .Browse func*0
PRINT sYmbol.MATCHES ()

ENDDO
sYmbol.NAME() Symbol path and name based on address
Syntax: sYmbol.NAME(<address>)

Returns the symbol path and name of a specific address. The address has to be classified, e.qg.
D:0x200. If the address is within the body of a function, the result is the same as returned by
sYmbol.FUNCTION().

Parameter Type: Address.
Return Value Type: String.
Example:

PRINT sYmbol.NAME (D:0x40005EBS8)

sYmbol.NAME.AT() Resolve ambiguous symbols based on address
[build 54072 - DVD 09/2014]

Syntax: sYmbol.NAME.AT(<address>,<context_address>)

Returns the symbol path and name of an <address>.

The function tries to find the symbol in the symbol database which fits best to the specified context address.
Address, space ID, and access class of the specific context address are used as filter criteria to find the best
match.

The function is useful if the same symbol name exists more than once in the symbol database. The function
allows to find the symbol which belongs to a specific program address range or a specific task (space ID). In
addition in ARM architectures, the function finds the symbol which belongs to a specific ARM Zone
(non-secure, secure, hypervisor, see SYStem.Option.ZoneSPACES).

Parameter and Description:

<address> Parameter Type: String.

<context_address> Parameter Type: Address.

Return Value Type: String. Returns an empty string if no matching symbol is found.

©1989-2024 Lauterbach General Function Reference | 317

Examples:

PRINT sYmbol.NAME.AT
PRINT sYmbol.NAME.AT
PRINT sYmbol.NAME.AT
PRINT sYmbol.NAME.AT

sieve,D:0x00209860)
main,D:0x02A3:0x0)
_ _per_cpu_offset,H:0x0)
_ _per_cpu_offset,N:0x0)

e e e

sYmbol.NEXT.BEGIN() Start address of next symbol

[build 33011 - DVD 02/2012]

Syntax: sYmbol.NEXT.BEGIN(<symbol>)

Returns the start address of the next symbol.
Parameter Type: Symbol.

Return Value Type: Address.

sYmbol.RANGE() Address range of symbol

Syntax: sYmbol.RANGE(<symbol>)

Returns the address range occupied by the symbol (e.g. function or variable).
Parameter Type: Symbol.
Return Value Type: Address range.

Example:

Data.Print sYmbol.RANGE (flags)

sYmbol.SEARCHFILE() Absolute path of source file

Syntax: sYmbol.SEARCHFILE(<file>)

Walks through the search path for source files and returns the absolute path of the first found file.
Parameter Type: String.

Return Value Type: String. If no file is found the function returns an empty string.

©1989-2024 Lauterbach General Function Reference | 318

Example:

PRINT sYmbol .SEARCHFILE (demo.c)
PRINT sYmbol.SEARCHFILE(.src\sieve.c)

% BusYmbol

List. SOURCE

|[3% Clear |[_

@ Touch all|[% Search Path || £ Sources...|[% Emors... |

source file state
Lhsrohnortl. sx C:\T32 demo’armycompi lerignuysrcy,crtl. sx Toaded
srchisr.c C:4T32\ demo'arm'compilerignuisrcyisr.c Toaded
wsrchitm. o C:4T32 demo'arm' compilerignuisrcitm. c Toaded
JSsrchmonitor.c |[C:A\T32%demoharm',compilerignutsrcimonitor.c |loaded
hsrchsieve. o C:\T32 demo'arm' compilerignuisrcisieve. Toaded

nl

= | B:AREAview o -E =]

ri 4 T32\ demo’ arm' compilerignuisieve. c
]

3

©1989-2024 Lauterbach

General Function Reference

319

sYmbol.SECADDRESS()

Start address of section

Syntax: sYmbol.SECADDRESS(<section>)

Returns the logical start address of the named section.

Parameter Type: String.

Return Value Type: Address.

sYmbol.SECEND()

End address of section

Syntax: sYmbol.SECEND(<section>)

Returns the logical end address of the named section.
Parameter Type: String.

Return Value Type: Address.

sYmbol.SECEXIST()

Check for existence of a section

Syntax: sYmbol.SECEXIST(<section>)

Returns TRUE if the named section exists.
Parameter Type: String

Return Value Type: Boolean.

[build 115086 - DVD 02/2020]

©1989-2024 Lauterbach

General Function Reference

320

sYmbol.SECNAME() Section name

[build 96314 - DVD 09/2018]

Syntax: sYmbol.SECNAME(<address>)

Returns the name of the section at the specified address.
Parameter Type: Address.
Return Value Type: String.

See also: sYmbol.List.SECtion window.

sYmbol.SECPRANGE() Physical address range of section

Syntax: sYmbol.SECPRANGE(<section>)

Returns the physical address range occupied by the named section.
Parameter Type: String.

Return Value Type: Address range.

sYmbol.SECRANGE() Logical address range of section

Syntax: sYmbol.SECRANGE(<section>)

Returns the logical address range occupied by the named section.
Parameter Type: String.

Return Value Type: Address range.

©1989-2024 Lauterbach General Function Reference | 321

sYmbol.SIZEOF() Size of debug symbol

Syntax: sYmbol.SIZEOF(<symbol>)

Returns the size occupied by the specified debug symbol in memory (e.g. function, variable, module).
Parameter Type: Symbol.
Return Value Type: Hex value.

Example:

Data.Print flags++sYmbol.SIZEOF (flags)

Data.Find flags++sYmbol.SIZEOF (flags) 0x00
IF FOUND ()

(
Data.Set TRACK.ADDRESS () OxEE

Data.Print TRACK.ADDRESS ()
)

ENDDO
sYmbol.SOURCEFILE() Name of source file
Syntax: sYmbol.SOURCEFILE(<address> | <symbol>[,<want_load_path>])

Returns the name of the source file for the specified program address or symbol. The address has to be
classified, e.g. P:0x200. In this example, P: stands for the memory class Program Memory.

This function can only be used with program addresses/symbols. It returns an empty string for data
addresses / variables.

Parameter and Description:

<address> Parameter Type: Address.
<symbol> Parameter Type: Symbol.
<want_load_path> Parameter Type: Boolean.

Returns the file loading path, if parameter is true or omitted. Otherwise the
compilation file path, generated at build time, is returned.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 322

Example:

PRINT sYmbol.SOURCEFILE (main)
PRINT sYmbol.SOURCEFILE (main, FALSE ())

sYmbol.SOURCELINE() HLL-line number of address

Syntax: sYmbol.SOURCELINE(<address>)

Returns the HLL-line number of the specified address. The address has to be classified, e.g. P:0x200. In this
example, P stands for the memory class Program Memory.

Parameter Type: Address.
Return Value Type: Decimal value.

Example 1:

PRINT sYmbol.SOURCELINE (P:0x40005EBS8)

Example 2: A user-defined command with the name EDT is created. When you execute it, TRACE32 opens
the source file in your external editor (here: TextPad) and positions the curser in the line where the program
counter (PC) is located in TRACE32.

; command extension to call external editor

; adapt path and parameter syntax to your own editor, e.g.:
; - uedit32.exe filename/line

; — textpad.exe filename(line)

ON CMD EDT GOSUB
(
LOCAL &file &line &cmdline
ENTRY &file
IF "&file"==""
(
&file=sYmbol.SOURCEFILE (P:Register (pc))
&line=sYmbol . SOURCELINE (P:Register (pc))
&1line=STRing.CUT("&line",-1.)
)
&cmdline="0S.Command start textpad.exe &file(&line)™"
&cmdline
RETURN
)
STOP
ENDDO

©1989-2024 Lauterbach General Function Reference | 323

sYmbol.SOURCEPATH() TRUE if path is search path

Syntax: sYmbol.SOURCEPATH(<directory_path>)

Returns TRUE if the given directory name is already defined as directory search path (by
sYmbol.SourcePATH or loader option /PATH).

Parameter Type: String.
Return Value Type: Boolean.

Example:

&my_path=sYmbol .SOURCEFILE (main)
&my path=0S.FILE.PATH (&my_path)
PRINT "&my path"

sYmbol .SourcePATH.Set &my_path
PRINT sYmbol.SOURCEPATH (&my_path)
sYmbol .SourcePATH.List

ENDDO
sYmbol.STATE() Value from sYmbol.state window
[build 53267 - DVD 08/2014]
Syntax: sYmbol.STATE(<name>)

Returns a value from the window sYmbol.STATE specified by its name.
Parameter Type: String.
Return Value Type: String.

Example:

&functions=sYmbol.STATE (functions)
PRINT %Decimal &functions " known functions in your target program(s)"

sYmbol. TRANSPOSE() Transpose program and module names

[build 122118 - DVD 09/2020]

Syntax: sYmbol. TRANSPOSE(<name>)

Allows to transpose program and module names following this rule:

©1989-2024 Lauterbach General Function Reference | 324

1.
2.

A ‘_’is added as first characcter, if the name begins with 0--9 or ‘$’.

Any character expect 0--9, A--Z, a--z is replaced by a *_.

This transposing can be switched off by adding the option /NoTranspose to any Data.LOAD comman.

Parameter Type: String.

Return Value Type: String.

Example:

PRINT sYmbol.TRANSPOSE (“1_test-12@test-bay”)

I

prints

sYmbol.TYPE()

“ 1 test_12_ test_bay” to AREA

Type of symbol

Syntax:

sYmbol. TYPE(<symbol>)

Returns the basic type of a symbol.

Parameter Type: Symbol.

Return Value Type: Hex value.

Return Value and Description:

0

Symbol does not exist.

Plain label without type information.

HLL function.

HLL variable.

Other values may be defined in the future.

Examples:

PRINT
PRINT
PRINT
PRINT

sYmbol .
sYmbol .
sYmbol .
sYmbol .

TYPE (gwertzuiop)
TYPE (_main)
TYPE (sieve)
TYPE (flags)

©1989-2024 Lauterbach

General Function Reference | 325

sYmbol.VARNAME() Name of variable or structure element

Syntax: sYmbol.VARNAME(<address>)

Returns the name of the variable or structure element at the specified address.
Parameter Type: Address.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 326

SYStem Functions

This figure provides an overview of the return values of some of the SYStem functions. For descriptions of
the illustrated SYStem functions and other SYStem functions, see below.

£ B::SYStem. CONFIG.state /DebugPort =n| Wl <
DebugPort Itag MultiTap DAP || COmponents
DEBUGPORTI § CONNECTOR
1 [[] Tristate
[DebuuCabIeG ']
l? Shave
DEBUGPORTTYPE SWDPTARGETSEL
[T swop
[11aG 1 -
&2 B::SYStem.CONFIG state /Jtag =n| Wl <
DebugPort Jtag MultiTap DAP | COmponents
IRPOST IRPRE
12, 6.
TDI krjj- DRPOST M| core | M- DRPRE ke TDO
3. P] [S 1.

In This Section

SYStem.CONFIG.DEBUGPORTY()

SYStem.CONFIG.Slave()

SYStem.CONFIG.DEBUGPORTTYPE()

SYStem.CONFIG.DRPRE()
SYStem.CONFIG.DRPOST/()
SYStem.CONFIG.IRPRE()
SYStem.CONFIG.IRPOST()

See also

SYStem

SYStem.AMBA()
SYStem.CADIconfig.RemoteServer()
SYStem.CONFIG.DEBUGPORT()
SYStem.CONFIG.DRPOST()
SYStem.CONFIG.IRPOST()
SYStem.CONFIG.JTAGTAP()
SYStem.CONFIG.ListSIM()
SYStem.CONFIG.TAPState()
SYStem.DCI.Bridge()
SYStem.DCI.TIMEQUT()
SYStem.GTL.CONNECTED()
SYStem.GTL.LIBname()
SYStem.GTL.VENDORID()
SYStem.HOOK()
SYStem.IMASKHLL()
SYStem.INSTANCECOUNT()
SYStem.JtagClock()
SYStem.MCDCommand.ResultString()
SYStem.Mode()
SYStem.Option.DUALPORT()
SYStem.Option.HRCWOVerRide()
SYStem.Option. MMUSPACES()
SYStem.Option.SPILLLOCation()
SYStem.RESetBehavior()
SYStem.USECORE()

cdduloroodduooooddduooodddrodm

I)y

SYStem.ACCESS.DENIED()
SYStem.BigEndian()
SYStem.CADIconfig. Traceconfig()
SYStem.CONFIG.DEBUGPORTTYPE()
SYStem.CONFIG.DRPRE()
SYStem.CONFIG.IRPRE()
SYStem.CONFIG.ListCORE()
SYStem.CONFIG.Slave()
SYStem.CPU()
SYStem.DCI.BssbClock()
SYStem.GTL.CALLCOUNTER()
SYStem.GTL.CYCLECOUNTER()
SYStem.GTL.PLUGINVERSION()
SYStem.GTL.VERSION()
SYStem.IMASKASM()
SYStem.INSTANCE()
SYStem.IRISconfig.RemoteServer()
SYStem.LittleEndian()
SYStem.MCDconfig.LIBrary()
SYStem.NOTRAP()
SYStem.Option.EnReset()
SYStem.Option.MACHINESPACES()
SYStem.Option.ResBreak()
SYStem.Option.ZoneSPACES()
SYStem.Up()

SYStem.USEMASK()

©1989-2024 Lauterbach

General Function Reference

327

SYStem.ACCESS.DENIED() TRUE if memory access is denied

Syntax: SYStem.ACCESS.DENIED()

Returns whether memory accesses are allowed during real-time emulation.
Return Value Type: Boolean.
Example:

SYStem.MemAccess Denied

PRINT SYStem.ACCESS.DENIED () ;returns TRUE
SYStem.AMBA() TRUE if AMBA bus mode is selected
Syntax: SYStem.AMBA()

Returns TRUE if SYStem.Option.AMBA is active.
Refer to “Arm Debugger” (debugger_arm.pdf) for more information.

Return Value Type: Boolean.

SYStem.BigEndian() TRUE if target core runs in big endian mode

[build 05147 - DVD 12/2009]

Syntax: SYStem.BigEndian()

Returns TRUE if target core runs in big endian mode.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 328

SYStem.CADIconfig.RemoteServer()

[build 76257 - DVD 09/2016]
Syntax: SYStem.CADIconfig.RemoteServer(<key>)

<key>: 11213

Returns the information about the connection to the CADI server. The connection is configured with the
command SYStem.CADIconfig.RemoteServer.

Parameter Type: Decimal or hex or binary value.

Parameter and Description:

1 Returns the IP address or host name of the remote computer where the
virtual target including the CADI server is running.

2 Returns the TCP/IP port of the CADI server.

3 Returns the IP address or host name and the port as follows:

<ip>:<port>

Return Value Type: String.

Return Value and Description:

J IP address or host name or port depend on the parameter passed to the function.
. For local settings, Localhost without any port is returned.
Examples:

SYStem.CADIconfig.RemoteServer
PRINT SYStem.CADIconfig.RemoteServer (3) ;returns localhost

SYStem.CADIconfig.RemoteServer 192.168.178.2 7002.
PRINT SYStem.CADIconfig.RemoteServer (1) ;returns 192.168.178.2
PRINT SYStem.CADIconfig.RemoteServer (3) ;returns 192.168.178.2:7002

SYStem.CADIconfig.RemoteServer RmtPC 7000.
PRINT SYStem.CADIconfig.RemoteServer (2) ;returns RmtPC

©1989-2024 Lauterbach General Function Reference | 329

SYStem.CADIconfig.Traceconfig()

[build 76257 - DVD 09/2016]

Syntax: SYStem.CADIconfig.Traceconfig(1 | 2 | 3)

Returns information about the connection to the CADI trace plug-in. The connection is configured with the
command SYStem.CADIconfig.Traceconfig.

Parameter Type: Decimal or hex or binary value.

Parameter and Description:

1 Returns the IP address of the host machine where the virtual target is
running.

2 Returns the TCP/IP port of the trace plug-in.

3 Returns the IP address and the port as follows: <ip>:<port>

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 330

SYStem.CONFIG.<tap_position>()

[build 45294 - DVD 08/2013] [Go to figure]

Syntax: SYStem.CONFIG.<tap_position>(<core_index>)

<tap_position>: DRPOST | DRPRE | IRPOST | IRPRE

Full function SYStem.CONFIG.DRPOST(<core_index>)
name only SYStem.CONFIG.DRPRE(<core_index>)
required for SYStem.CONFIG.IRPOST(<core_index>)
HELP.Index: SYStem.CONFIG.IRPRE(<core_index>)

Returns the effective JTAG PRE and POST settings of the core to be debugged. See also command
SYStem.CONFIG.DRPRE.

Parameter and Description:

<core_index> Parameter Type: Decimal or hex or binary value.
J The index number of the core is 0 if you are debugging only one
core.
J If you are debugging multiple cores in an SMP debug session and if

the cores use different TAP controller in the JTAG scan chain, then
<core_index> refers to the core of interest.

Return Value Type: Decimal value.

SYStem.CONFIG.DEBUGPORTY()

[build 53511 - DVD 08/2014] [Go to figure]
Syntax: SYStem.CONFIG.DEBUGPORT()
Returns the selected debug port.

Details about the meaning of the return value can be found in the description of the
SYStem.CONFIG.DEBUGPORT command.

Return Value Type: String.

SYStem.CONFIG.DEBUGPORTTYPE()

[build 53511 - DVD 08/2014] [Go to figure]

Syntax: SYStem.CONFIG.DEBUGPORTTYPE()
DEBUGPORT.TYPE() (deprecated)

Returns the selected debug port type, e.g. JTAG, CJTAG.

©1989-2024 Lauterbach General Function Reference | 331

Return Value Type: String.

SYStem.CONFIG.JTAGTAP() Return the JTAG PRE and POST settings
[build 103442 - DVD 02/2019] [Examples]
Syntax: SYStem.CONFIG.JTAGTAP(<item>,<config_index>)
<item>: [<component>]IRPRE[.<subitem>]

[<component>]DRPRE[.<subitem>]
[<component>]IRPOSTI.<subitem>]
[<component>]DRPOST](.<subitem>]

<component>: DAP | DAP2 | ETB | ... (depending on the CPU architecture)

<subitem>: ABSOLUTE | FIXED

Returns the JTAG PRE and POST settings of the core TAP, DAP TAP, ETB TAP and others used for
debugging. See also commands SYStem.CONFIG.IRPRE, SYStem.CONFIG DAPIRPRE, etc. in the
Processor Architecture Manuals.

Parameter and Description:

<item> Parameter Type: String.

Name of the JTAG TAP coordinate which reflects a setting in the
SYStem.CONFIG.state /Jtag window, e.g. the setting for DAPIRPOST.

Per default, the value entered by the user is returned.

<subitem> Parameter Type: String.

Per default, the value entered by the user is returned.
. FIXED returns the preconfigured value in TRACE32 relative to the

SoC.
. ABSOLUTE returns the preconfigured value + the value entered by
the user.
<config_index> Parameter Type: Decimal value.

Index of the physical core TAP; in case of DAP or ETB the value must be

0.
. 1<= x <= CONFIGNUMBER().
. 0 is an alias for the first physical core or items that are shared

among multiple cores.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 332

Example 1: For the ARM architecture

2 B:5VStem.CONFIG state /ltag [f=lfE ==

| DebugPort " Itag " MultiTap ” COmponents ” AccessPorts |

IRPOST IRPRE
TDI ¥» — DRPOST core |- DRPRE W TDO
‘ DAPIRPOST ‘ DAPIRPRE
TDI ¥ — DAPDRPOST #»— DAPDRPRE - ¥+ TDO

+1

&2 B::SYStem.CONFIG state /Jtag =n| Wl <
| DebugPort " Itag " MultiTap ” COmponents ” AccessPorts |
IRPOST IRPRE
TDI M» - DRPOST core | #r- DRPRE M TDO
ED‘\HRR)SI' ﬁ DAPIRPRE
TDI #» — DAPDRPOST #»— DAPDRPRE - M+ TDO

1. +1

; [A] returns the value entered by the user for DAPIRPOST

PRINT "A: " SYStem.CONFIG.JTAGTAP (DAPIRPOST, 0)

;returns 0

; [B] returns the preconfigured value for DAPIRPOST relative

;to the SoC

PRINT "B: " SYStem.CONFIG.JTAGTAP (DAPIRPOST.FIXED,0)

;returns 4

; [A]+[B] returns the value entered by the user + the
;preconfigured value. In this case the result is again 4

PRINT "A+B = " SYStem.CONFIG.JTAGTAP (DAPIRPOST.ABSOLUTE, 0)

;returns 4

;now the SoC is daisy-chained with another SoC which has

;the IR-length 8 and the DR-length 1

SYStem.CONFIG DAPIRPOST 8.
SYStem.CONFIG DAPDRPOST 1.

; [C] returns the value entered by the user for DAPIRPOST

PRINT "C: " SYStem.CONFIG.JTAGTAP (DAPIRPOST, 0)

;returns 8

; [D] returns the preconfigured value for DAPIRPOST relative

;to the SoC

PRINT "D: " SYStem.CONFIG.JTAGTAP (DAPIRPOST.FIXED,0)

;returns 4

; [C]+[D] returns the value entered by the user + the
;preconfigured value. Now the result is 12

PRINT "C+D = " SYStem.CONFIG.JTAGTAP (DAPIRPOST.ABSOLUTE, 0)

;returns 12

©1989-2024 Lauterbach

General Function Reference | 333

Example 2: For the MIPS architecture

&2 B::SYStem.CONFIG state /Jtag =N Eoh(& B:5YStem.CONFIG state /Jtag =n| Wl <
| DebugPort " Jtag " COmponents ” AccessPorts ” Miscellaneous | | DebugPort " Jtag " COmponents ” AccessPorts ” Miscellaneous |
IRPOST IRPRE IRPOST IRPRE
A +5 +5 C 8. 45 +5
1uL rk — NRPIINT » #r— DRPRE M TDO 1uLwk — NRPINT » #r— DRPRE M TDO
E +1 w +1 +1 w +1
DAPIRPOST DAPIRPRE DAPIRPOST DAPIRPRE
TDI k¢ — DAPDRPOST M| DAP M~ DAPDRPRE —{ M TDO TDI k¢ — DAPDRPOST M| DAP M~ DAPDRPRE —{ M TDO
PRINT CONFIGNUMBER() ;returns the upper bound of <config_index>, here 2

; [A] returns the value entered by the user for IRPOST
PRINT "A: " SYStem.CONFIG.JTAGTAP (IRPOST, 2)

; [B] returns the preconfigured value for IRPOST relative
;to the SoC
PRINT "B: " SYStem.CONFIG.JTAGTAP (IRPOST.FIXED, 2)

; [A]+[B] returns the value entered by the user + the
;preconfigured value. in this case the result is again 5
PRINT "A+B = " SYStem.CONFIG.JTAGTAP (IRPOST.ABSOLUTE, 2)

;now the SoC is daisy-chained with another SoC which has the
;IR-length 8 and the DR-length 1

SYStem.CONFIG IRPOST 8.

SYStem.CONFIG DRPOST 1.

; [C] returns the value entered by the user for IRPOST
PRINT "C: " SYStem.CONFIG.JTAGTAP (IRPOST, 2)

; [D] returns the preconfigured value for DAPIRPOST relative
;to the SoC
PRINT "D: " SYStem.CONFIG.JTAGTAP (IRPOST.FIXED,2)

; [C]+[D] returns the value entered by the user + the
;preconfigured value. now the result is 13
PRINT "C+D = " SYStem.CONFIG.JTAGTAP (IRPOST.ABSOLUTE, 2)

;returns 0

;returns 5

;returns 5

;returns 8

;returns 5

;returns 13

©1989-2024 Lauterbach

General Function Reference |

334

SYStem.CONFIG.ListCORE()

[Examples]

Syntax: SYStem.CONFIG.ListCORE(<line_number>," <column_string>")

Returns the core list from the virtual target platform only once with first call of the function
SYStem.CONFIG.ListCORE() or the command SYStem.CONFIG.ListCORE. This will require a
SYStem.Mode Down state. All later function calls return the core list from a table stored locally.

Parameter and Description:

<line_number> Parameter Type: Decimal or hex value. A numerical input indicating the line
number for the search; <line_number> equals the core # number.

Range:

o 0x0 or 0. returns the number of available lines, i.e. cores.

J -1 re-reads the core information for the virtual target platform.

<column_string> Parameter Type: String. A case sensitive search string that must match
the searched column name. An empty string " is allowed.

Return Value Type: String.

Return Value and Description:

String If the search string <column_string> is found, the complete element is
returned as a string.

Empty string If the search string <column_string> does not match a column name
and/or the <line_number> was out of its currently valid range, an empty
string is returned.

Examples for SYStem.CONFIG.ListCORE():

;returns the number of cores
PRINT SYStem.CONFIG.LisStCORE(O,"")

;returns the value at the intersection of the 2nd row and the column
;labeled "simulation".

PRINT SYStem.CONFIG.L1isStCORE (2, "simulation")

;returns an empty string because the column labeled "SimulatioN" does not
;exist. Remember that the "<column_string>" is case-sensitive.

PRINT SYStem.CONFIG.ListCORE(2,"SimulatioN")

PRINT SYStem.CONFIG.ListCORE(200., "device")

PRINT SYStem.CONFIG.ListCORE (2, "core")

©1989-2024 Lauterbach General Function Reference | 335

;re-reads the core information for the virtual target platform
PRINT SYStem.CONFIG.ListCORE(-1,"")

;returns the updated value at the intersection of the 2nd row and the

column labeled "core"
PRINT SYStem.CONFIG.ListCORE (2, "core")

SYStem.CONFIG.ListSIM()

Syntax: SYStem.CONFIG.ListSIM(</ine_number>," <column_string>")

The function returns a string, and both parameters are mandatory. The content of the simulation list is read
from the virtual target platform only once with first call of the function SYStem.CONFIG.ListSIM() or the
command SYStem.CONFIG.ListSIMulation. This will require a SYStem.Mode Down state. All later
function calls return strings from a table stored locally.

Parameter and Description:

<line_number> Parameter Type: Decimal or hex value. A numerical input, indicating the
line number for the search; <line_number> equals the core # number.
Range:
o 0x0 or 0. returns the number of available lines, i.e. cores.
J -1 re-reads the core information for the virtual target platform.
<column_string> Parameter Type: String. A case-sensitive search string that must match
the searched column name. An empty string " is allowed.
Return Value Type: String.
Return Value and Description:
String If the search string <column_string> was found, the complete element is
returned as a string.
Empty string If the search string <column_string> does not match a column name
and/or the <line_number> was out of its currently valid range, an empty
string is returned.

SYStem.CONFIG.Slave()

[build 45263 - DVD 08/2013] [Go to figure]

Syntax: SYStem.CONFIG.Slave()

Returns TRUE if setting SYStem.CONFIG Slave is set to ON.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 336

SYStem.CONFIG.TAPState()

[build 71651 - DVD 02/2016]

Syntax: SYStem.CONFIG.TAPState()

Returns the default JTAG TAP state configured with the command SYStem.CONFIG TAPState.
Return Value Type: Decimal value.

Return Value and Description:

0 Exit2-DR
1 Exit1-DR
2 Shift-DR
3 Pause-DR
4 Select-IR-Scan
5 Update-DR
6 Capture-DR
7 Select-DR-Scan
8 Exit2-IR
9 Exit1-IR
10 Shift-IR
11 Pause-IR
12 Run-Test/Idle
13 Update-IR
14 Capture-IR
15 Test-Logic Reset
SYStem.CPU() Name of processor
[build 51040 - DVD 02/2014]
Syntax: SYStem.CPU()

CPU() (deprecated)

Returns the name of the processor, which was selected with the command SYStem.CPU. This function
is an alias for STATE.PROCESSOR().

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 337

SYStem.GTL.CALLCOUNTER() Amount of calls to GTL library

[build 59192 - DVD 02/2015]

Syntax: SYStem.GTL.CALLCOUNTER()

Retrieves the number of calls to the GTL library to measure performance.

Return Value Type: Decimal value.

SYStem.GTL.CONNECTED() Connection status

[build 101750 - DVD 09/2018]

Syntax: SYStem.GTL.CONNECTED()

Returns TRUE if all configured transactors are connected to the simulation or emulation.

Return Value Type: Boolean.

SYStem.GTL.CYCLECOUNTER() load GTL interface for bit banging protocol

[build 147511 - DVD 09/2022]

Syntax: SYStem.GTL.CYCLECOUNTER()

Retrieves the number of clock cycles of the executed protocol since the last call. In case of JTAG,
SYStem.GTL.CYCLECOUNTER() counts the JTAG clock cycles.

Return Value Type: Decimal value.

SYStem.GTL.LIBname() Name of GTL library

Syntax: SYStem.GTL.LIBname()

Returns the name of the GTL library that was passed by the command SYStem.GTL.LIBname.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 338

SYStem.GTL.ModelINFO() Info string from GTL API

[build 140736 - DVD 02/2022]

Syntax: SYStem.GTL.ModelINFO(<n>)

Returns the info string of the n" model enumerated from GTL API. The info string can be used to pass
information about the model.

If nequals -1, the function returns the info string of the current model. The index for iteration start by 0. The
returned values are valid for all values n where SYStem.GTL.ModeINAME(n) returns a valid name.

Parameter Type: Decimal value.
Return Value Type: String.
Example:

LOCAL &n
&n=0.
while SYStem.GTL.ModelNAME (&n) !=""
(
PRINT "Model: " SYStem.GTL.ModelNAME (&n) " Info:
SYStem.GTL.Model INFO (&n)
&n=&n+1.
)
ENDDO

SYStem.GTL.ModelINAME() Model Name

Syntax: SYStem.GTL.ModeINAME(<index>)

Returns the name of a certain model.
Parameter Type: Decimal value.

Return Value Type: String.

SYStem.GTL.PLUGINVERSION() Version number

Syntax: SYStem.GTL.PLUGINVERSION()

Returns the version number of the GTL API retrieved from the GTL library/plug-in.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 339

SYStem.GTL.TransactorNAME() Transactor name

Syntax: SYStem.GTL.TransactorNAME(<index>)

Returns the name of a transactor.
Parameter Type: Decimal value.

Return Value Type: String.

SYStem.GTL.TransactorTYPE() Transactor type

Syntax: SYStem.GTL.TransactorTYPE(<index>)

Returns the type of a transactor.
Parameter Type: Decimal value.
Return Value Type: String.

Return Value and Description: Types can be JTAGPROBE, GPIO, TRACE, BUSMASTER,...

SYStem.GTL.VENDORID() Vendor ID

Syntax: SYStem.GTL.VENDORID()

Returns the vendor ID retrieved from the GTL library.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 340

SYStem.GTL.VERSION() Version number

Syntax: SYStem.GTL.VERSION()

Returns the version number of the GTL APl of TRACE32.

Return Value Type: Decimal value.

SYStem.HOOK()

Syntax: SYStem.HOOK()

Returns address of the hook function defined with SYStem.Option.HOOK.

Return Value Type: Hex value.

SYStem.IMASKASNM()

Syntax: SYStem.IMASKASM()

Returns the TRUE if interrupts are disabled during assembler stepping due to the setting
SYStem.Option.IMASKASM ON.

Return Value Type: Boolean.

SYStem.IMASKHLL()

Syntax: SYStem.IMASKHLL()

Returns the TRUE if interrupts are disabled during HLL stepping due to the setting
SYStem.Option.IMASKHLL ON.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 341

SYStem.INSTANCE() Index of TRACES32 PowerView instance

[build 26061]

Syntax: SYStem.INSTANCE()

If a TRACE32 PowerView instance belongs to an AMP debug session, then this function returns the index of
the TRACES32 PowerView instance.

Return Value Type: Hex value.

Return Value and Description:

0x1... If the PowerView instances have been started via the T32Start utility, then
the return values correspond to the values that T32Start has assigned to
the PowerView instances.

Without the use of T32Start, the return value corresponds to the <index>
value you have specified for INSTANCE=<index> in the config file.

0x0 The index of a PowerView instance is 0x0 (a) if the configuration file
contains the setting CORE=0 or (b) if TRACE32 was started as TRACE32
Instruction Set Simulator (PBI=S1IM in the config file).

For information about CORE= and INSTANCE=, refer to:

J “Section PBI” (installation.pdf)

Example:

;the instance indexes of all PowerView GUIs participating in an
;AMP debug session are printed to their respective message lines
InterCom.execute ALL ECHO SYStem.INSTANCE ()

SYStem.INSTANCECOUNT() Count of GUIs connected to a PowerDebug

[build 111259 - DVD 09/2019]

Syntax: SYStem.INSTANCECOUNT()

This function returns the number of TRACE32 PowerView GUIs connected to the same PowerDebug box.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 342

SYStem.IRISconfig.RemoteServer()

[build 109127 - DVD 09/2019]
Syntax: SYStem.IRISconfig.RemoteServer(<key>)

<key>: 11213

Returns the details about the connection to the IRIS server. The connection is configured with the command
SYStem.IRISconfig.RemoteServer.

Parameter Type: Decimal or hex or binary value.

Parameter and Description:

1 Returns the IP address or host name of the remote computer where the
virtual target including the IRIS server is running.

2 Returns the TCP/IP port of the IRIS server.

3 Returns the IP address and the port as follows: <ip>:<port>.

Return Value Type: String.

SYStem.JtagClock()

Syntax: SYStem.JtagClock()

Returns the JTAG clock set with the command SYStem.JtagClock.

Return Value Type: Decimal value.

SYStem.LittleEndian()

[build 05147 - DVD 12/2009]

Syntax: SYStem.LittleEndian()

Returns TRUE if target core runs in little endian mode.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 343

SYStem.MCDCommand.ResultString()

[build 136589 - DVD 09/2021]

Syntax: SYStem.MCDCommand.ResultString()

Returns the answer-string of the MCD server given by the last call of SYStem.MCDCommand. The
maximum length of this string is 100 characters. It returns an empty string if no answer is available.

Return Value Type: String.

SYStem.MCDconfig.LIBrary()

[build 76420 - DVD 09/2016]
Syntax: SYStem.MCDconfig.LIBrary(<key>)
<key>: 11213
Returns the path and/or file name of the used MCD library.

Parameter and Description:

1 Parameter Type: Decimal or hex or binary value.
Returns the file name of the library, e.g. mcddrv.dll

2 Parameter Type: Decimal or hex or binary value.
Returns the path of the library, e.g. c:\virtual_target\mcd\

3 Parameter Type: Decimal or hex or binary value.
Returns the path and the file name of the library, e.g.
c:\virtual_target\imcd\mcddrv.dll

Return Value Type: String.

SYStem.Mode()

Syntax: SYStem.Mode()

Returns the actual debugger mode.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 344

Return Value and Description:

0 Down
1 StandBy
2 NoDebug
4 Prepare
11 Up
12 Up (StandBy)
13 Prepare (StandBy)
SYStem.NOTRAP() 1 if the option NOTRAP is active
Syntax: SYStem.NOTRAP()

Returns 1 if the command SYStem.Option.NOTRAP is active.

Return Value Type: Hex value.

SYStem.Option.DUALPORTY() State of like-named command
Only available for architectures having the like-named command [build 108886 - DVD 09/2019]
Syntax: SYStem.Option.DUALPORT()

Returns TRUE if the command SYStem.Option.DUALPORT is set to ON, else the function returns FALSE.

Return Value Type: Boolean.

SYStem.Option.MACHINESPACES() State of like-named command
ARM, PowerPC, Intel® x86 [build 104967 - DVD 02/2019]
Syntax: SYStem.Option.MACHINESPACES()

Returns TRUE if the command SYStem.Option.MACHINESPACES is set to ON, else the function returns
FALSE.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 345

Example:

IF SYStem.Option.MACHINESPACES ()==FALSE ()
SYStem.Option.MACHINESPACES ON

SYStem.Option.MMUSPACES() State of like-named command
ARM, PowerPC, Intel® x86 [build 104967 - DVD 02/2019]
Syntax: SYStem.Option.MMUSPACES()

Returns TRUE if the command SYStem.Option.MMUSPACES is set to ON, else the function returns
FALSE.

Return Value Type: Boolean.
Example

IF SYStem.Option.MMUSPACES ()==FALSE ()
SYStem.Option.MMUSPACES ON

SYStem.Option.EnReset() State of like-named command
ARM [build 135725 - DVD 09/2021]

Syntax: SYStem.Option.EnReset()

Returns the current state of SYStem.Option.EnReset as TRUE or FALSE.

Return Value Type: Boolean.

SYStem.Option.ResBreak() State of like-named command
ARM [build 134096 - DVD 09/2021]

Syntax: SYStem.Option.ResBreak()

Returns the current state of SYStem.Option.ResBreak as TRUE or FALSE.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 346

SYStem.Option.SPILLLOCation() State of like-named command

XTENSA [build 141496 - DVD 02/2022]

Syntax: SYStem.Option.SPILLLOCation()

Returns the current state of SYStem.Option.SPILLLOCation as TRUE or FALSE.

Return Value Type: Hex value.

SYStem.Option.ZoneSPACES() State of like-named command
ARM, PowerPC, Intel® x86 [build 104967 - DVD 02/2019]
Syntax: SYStem.Option.ZoneSPACES()

Returns TRUE if the command SYStem.Option.ZoneSPACES is set to ON, else the function returns
FALSE.

Return Value Type: Boolean.
Example

IF SYStem.Option.ZoneSPACES ()==FALSE ()
SYStem.Option.ZoneSPACES ON

©1989-2024 Lauterbach General Function Reference | 347

SYStem.RESetBehavior() Current setting of RESetBehavior

TriCore

Syntax: SYStem.RESetBehavior()

Returns the current setting of SYStem.Option.RESetBehavior.

Return Value Type: String.

HALT For a description of the return values, see
RestoreGo SYStem.Option.RESetBehavior in “TriCore Debugger and Trace”
RunRestore (debugger_tricore.pdf).

Example:

SYStem.Option.RESetBehavior Halt

PRINT SYstem.RESetBehvior () ;returns the string HALT
SYStem.Up() TRUE if debugger has access to debug resources
Syntax: SYStem.Up()

Returns whether the actual mode of the probe is up (see also SYStem.Mode() function).
Return Value Type: Boolean.

Example 1:

IF !SYStem.Up () ;alternatively: IF SYStem.Up ()==FALSE ()
(
;your code
)
ELSE
(
;your code

)

©1989-2024 Lauterbach General Function Reference | 348

Example 2: This script shows how to access a peripheral register on the AHB bus prior to
SYStem.Mode Up or Attach, e.g. to disable a watchdog.

SYStem.Mode Prepare

IF SYStem.Up ()==TRUE () ; 1f Prepare was successful

(
; configure peripheral register before SYStem.Mode Up or Attach
Data.Set EAHB:<peripheral_address> %Long 0x1

©1989-2024 Lauterbach General Function Reference | 349

SYStem.USECORE()

Syntax: SYStem.USECORE()

Returns the value of CORE= from the PBI= section in the config file.

If CORE= or INSTANCE= or both are missing in the config file, then SYStem.USECORE() returns 1 by
default. That is, in this case the return value is equivalent to the explicit setting CORE=1 in the config file.

For information about CORE= and INSTANCE=, refer to:

. “Section PBI” (installation.pdf)

Return Value Type: Hex value.

Example: In this script, a second instance is started, and then SYStem.USECORE() is used to return the
value of CORE=.

;returns 1
PRINT SYStem.USECORE ()

;starts a 2nd TRACE32 PowerView instance with the user-defined name

; 'secondInst’, clones and extends the current config file for the 2nd
;instance

TargetSystem.NewInstance secondInst /ChipIndex 10. /ONCE

;the CONVert.HEXTOIN() function is used to convert the hex return value
;of SYStem.USECORE() to the decimal value 10
InterCom.execute secondInst PRINT CONVert.HEXTOINT (SYStem.USECORE())

©1989-2024 Lauterbach General Function Reference | 350

SYStem.USEMASK()

Syntax: SYStem.USEMASK()

Returns the USEMASK of this TRACE32 PowerView GUI.
Return Value Type: Hex value.

The USEMASK selects the Lauterbach device, when several devices are connected to each other via
PODBUS IN/OUT. The bitmask defines which devices (PowerDebug, PowerTrace, PowerProbe, ...) are
controlled by the host application program. A '1' means control the device, a '0' means skip the device. The
left most bit controls the first device on the bus i.e. the device with the host connection (USB, ETH). Normally
a use mask will contain a single set bit e.g. “1000”, indicating that only one of the devices in the PODBUS is
used by the respective program. When using PowerView to control two devices the use mask will contain
two ’1’ bits. An example for this is a PowerDebug device and a PowerProbe device which are used to record
signals corresponding to a debug session of PowerDebug. Using this mechanism it is possible to combine a
debugger and a PowerProbe device, independently of their position in the PODBUS chain.

The USEMASK is set in the TRACES32 configuration file (config.t32) with option USE=<bits> in the section
PBI=

However the function SYStem.USEMASK() returns the value set in USE= in an inverse bit-order. The same
value is also shown in the VERSION.HARDWARE window.

The function returns OXFFFFFFFFFFFFFFFF for a single debugger (where USE= was not set).

device USE= PRINT %$BINary SYStem.USEMASK () VERSION.HARDWARE
1st 100 00000001 0x0001
2nd 010 00000010 0x0002
3rd 001 00000100 0x0003

©1989-2024 Lauterbach General Function Reference | 351

TASK Functions

The TASK functions can be used after OS-aware debugging has been configured, as described in the
Configuration chapters of the “OS Awareness Manuals” (rtos_<os>.pdf).

In the following, we list the TASK functions that work with all OS-aware configurations.

For the TASK functions that work only with specific OS-aware configurations, refer to the “OS Awareness
Manuals” (rtos_<os>.pdf).

This figure provides an overview of the return values of some of the TASK functions. For descriptions of the
illustrated TASK functions and other TASK functions, see below.

TASK.NAME() TASK.ID()
b BiTASK List =0 E=R
mag1cfname id space traceid |[core [sel stop i
E7EEEQEOfcom. Tauterbach. android. demo:FinalizerWz 2014. | 2004. | Ox07D4 (00000199 - -
EFF42680%com. lauterbach. android. demo:Binder_1 °© 2015. | 2004. | Ox07D4 |00000199 L]
E7EC7CE0 |com. lauterbach. android. demo:Binder— 2016. | 2004. | Ox07D4 |00000199 L]
EEF2F9CO0 |com. lauterbach. android. demo: Thread-66 2018. | 2004. | Ox07D4 |00000199 0. W *
EEF2F400 |com. android. calculator2 2024. | 2024. | Ox07ES |0000019A [
| E76C73E0] com. android. calculator2:GC 2028.' 2024. | Ox07E&J0000019A L] -
JI 4 I3
TASK.MAGIC() TASK() TASK.SPACEID()

In This Section

See also

W TASK O TASK()

1 TASK.ACCESS() 1 TASK.ACCESS.ZONE()

1 TASK.BACK() 1 TASK.CONFIG()

1 TASK.CONFIGFILE() 1 TASK.COUNTY()

1 TASK.CURRENT.MACHINEID() 1 TASK.CURRENT.SPACEID()
1 TASK.CURRENT.TASK() 1 TASK.CURRENT.TASKNAME()
0 TASK.FIRST() 0O TASK.FORE()

1 TASK.ID() 1 TASK.MACHINE.ACCESS()
1 TASK.MACHINE.ID() 1 TASK.MACHINE.NAME()

0 TASK.MACHINE.VTTB() 0 TASK.MACHINEID()

1 TASK.MAGIC() 1 TASK.MAGICADDRESS()
1 TASK.MAGICRANGE() 1 TASK.MAGICSIZE()

0 TASK.NAME() 0 TASK.NEXT()

1 TASK.ORTIFILE() 1 TASK.SPACE.COUNT()

]

TASK.SPACEID()

©1989-2024 Lauterbach General Function Reference | 352

TASK() Name of current task

[Go to figure]
Syntax: TASK()
Returns the name of the current task.
Short for TASK.CURRENT.TASKNAME()
Return Value Type: String.
TASK.ACCESS() Access class
[build 69123]
Syntax: TASK.ACCESS()
Returns the access class set by the command TASK.ACCESS.
Return Value Type: String.
TASK.ACCESS.ZONE() Access class zone
[build 68412]
Syntax: TASK.ACCESS.ZONE()
Returns the access class zone set by the command TASK.ACCESS.
Return Value Type: String.
TASK.BACK() Background task number

Syntax: TASK.BACK()

Returns the background task number.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 353

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

The task is identified by a unique value called task magic number. The
magic numbers of the tasks are displayed in the magic column of the
TASK.List.tasks window.

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.
Example 1:

PRINT TASK.CONFIG (magic)

Example 2:

PRINT TASK.CONFIG (magicsize)

TASK.CONFIGFILE() Path of loaded OS Awareness

[build 78972]

Syntax: TASK.CONFIGFILE()

Returns the file (with path) used to load an OS Awareness with TASK.CONFIG.

Return Value Type: String.

TASK.COUNT() Number of tasks

[build 123903]

Syntax: TASK.COUNT()

Returns the number of tasks in the task list.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 354

TASK.CURRENT.MACHINEID() ID of current machine

[build 137549]
Syntax: TASK.CURRENT.MACHINEID()
Returns the ID of the current machine. Only valid if SYStem.Option MACHINESPACES is set.
Return Value Type: Hex value.
TASK.CURRENT.SPACEID() ID of current MMU space
[build 137549]
Syntax: TASK.CURRENT.SPACEID()
Returns the ID of the current MMU space. Only valid if SYStem.Option MMUSPACES is set.
Return Value Type: Hex value.
TASK.CURRENT.TASK() Magic value of current task
[build 137549]
Syntax: TASK.CURRENT.TASK()
Returns the “magic value” of the current task.
Return Value Type: Hex value.
TASK.CURRENT.TASKNAME() Name of current task
[build 137549]

Syntax: TASK.CURRENT.TASKNAME()

Returns the name of the current task.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 355

TASK.FIRST() First task in list

[build 123903]

Syntax: TASK.FIRST()

Returns the task magic number of the first task in the task list.

Return Value Type: Hex value.

TASK.FORE() Foreground task number

Syntax: TASK.FORE()

Returns the foreground task number.

Return Value Type: Hex value.

TASK.ID() ID of task

[Go to figure]

Syntax: TASK.ID("<task_name>")

Returns the ID of the specified task name.
Parameter Type: String.

Return Value Type: Hex value.

TASK.MACHINE.ACCESS() Default access class

[build 92265 - DVD 01/2018]

Syntax: TASK.MACHINE.ACCESS(<machine_id>)

Returns the default access class of the machine specified by <machine_id>.

This function is useful on systems with a hypervisor after SYStem.Option.MACHINESPACES has been set
to ON. For some hypervisors it is difficult to determine whether a given guest machine runs in the guest
mode (hardware virtualized machines) or in the host/hypervisor mode (pseudo virtualized machines). The
TASK.MACHINE.ACCESS() function can be used to find out with which access class a logical addresses of
a given machine must be prefixed.

©1989-2024 Lauterbach General Function Reference | 356

Examples:

J On Intel systems the default access class may be based on H: (machines running in VMX host
mode) or G: (machines running in VMX guest mode).

. On ARM systems, the default access class may be based on H: (machines running in hypervisor
mode) or N: (machines running in non-secure/guest mode).

Parameter Type: Decimal value.

Return Value Type: String.

TASK.MACHINE.ID() ID of machine

[build 123903]

Syntax: TASK.MACHINE.ID("<machine_name>")
TASK.MACHINEID("<machine_name>") (deprecated)

Returns the ID of the given machine name if the machine exists.
Returns “1F” if the machine does not exist.

The machine name is set by a Hypervisor Awareness or by an extension name (see also the command
EXTension.LOAD).

Parameter Type: String.

Return Value Type: Hex value.

TASK.MACHINE.NAME() Name of machine

[build 92273 - DVD 02/2018]

Syntax: TASK.MACHINE.NAME(<machine_id> | <machine_magic>)

Returns the name of the given machine ID if the machine exists.
Returns the machine ID if the machine exists but does not have a name.
Returns “(unknown)” if the machine does not exist.

The machine name is set by a Hypervisor Awareness or by an extension name (see also the command
EXTension.LOAD).

Parameter and Description:

<machine_id> Parameter Type: Decimal or hex or binary value.

For information about the parameter, see machine ID.

<machine_magic> Parameter Type: Decimal or hex or binary value.

©1989-2024 Lauterbach General Function Reference | 357

Return Value Type: String.

Example 1: This script lists all functions of the machine with ID 1 in the sYmbol.Browse.Function window,
provided the symbol program name is identical to the machine name.

LOCAL &machinename
&machinename=TASK.MACHINE.NAME (1)
sYmbol .Browse.Function \\&machinename\ **

Example 2: Based on the specified address, the ADDRESS.MACHINEID() function extracts the machine
ID. The machine ID is then passed to the TASK.MACHINE.NAME() function, which returns the machine
name belonging to the machine ID.

PRINT TASK.MACHINE.NAME (ADDRESS.MACHINEID (P:0x1:::0x3000))

TASK.MACHINE.VTTB() VTTB of machine

[
Syntax: TASK.MACHINE.VTTB(<machine_id> | <machine_magic>)

Returns the virtualization translation table base address of the given machine if the machine exists.
Returns -1 if the machine does not exist.

Parameter and Description:

<machine_id> Parameter Type: Decimal or hex or binary value.

For information about the parameter, see machine ID.

<machine_magic> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.MAGIC() Task magic number

[Go to figure]

Syntax: TASK.MAGIC("<task_name>")

Returns the task magic number of the specified task name.
Parameter Type: String.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 358

TASK.MAGICADDRESS() "magic address"

[build 123903]

Syntax: TASK.MAGICADDRESS([<core>[,<machine_id>]])

Returns the address of the memory location holding the running task of the specified core and machine (aka
"magic_address").

Parameter and Description:

<core> Parameter Type: Hex value.

<machine_id> Parameter Type: Hex value.

NONE If no parameter is given the function returns the address holding the running
task of the core and machine currently in use.

Return Value Type: Address.

TASK.MAGICRANGE() Range of "magic address”

[build 123903]

Syntax: TASK.MAGICRANGE([<core>[,<machine_id>]])

Returns the range of the memory location holding the running task of the specified core and machine (aka
"magic_address").

Parameter and Description:

<core> Parameter Type: Hex value.

<machine_id> Parameter Type: Hex value.

NONE If no parameter is given the function returns the range of the memory
location holding the running task of the core and machine currently in use.

Return Value Type: Address.

TASK.MAGICSIZE() Size of "magic address"

[build 123903]

Syntax: TASK.MAGICSIZE([<core>[,<machine_id>]])

Returns the size of the memory location holding the running task of the specified core and machine (aka
"magic_address").

©1989-2024 Lauterbach General Function Reference | 359

Parameter and Description:

<core> Parameter Type: Hex value.

<machine_id> Parameter Type: Hex value.

NONE If no parameter is given the function returns the size of the memory location
holding the running task of the core and machine currently in use.

Return Value Type: Address.

TASK.NAME() Name of task

[Go to figure]

Syntax: TASK.NAME(<task_magic>)

Returns a task name based on the specified task magic number.
Parameter Type: Hex value.

Return Value Type: String.

Example:

PRINT TASK.NAME (0xEBF2F9CO0)

TASK.NEXT() Next task in list

[build 123903]

Syntax: TASK.NEXT(<task_magic>)

Returns the task magic number of the task following the specified task in the task list.
Parameter Type: Hex value.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 360

TASK.ORTIFILE() Path of loaded ORTI file

[build 143513 - DVD 02/2022]

Syntax: TASK.ORTIFILE([<machine_id>])

Returns the file (with path) used to load an ORTI file with TASK.ORTI/EXT.ORTI.LOAD. The optional
parameter <machine_id> can be used in hypervisor and iAMP setups to specify the machine ID the ORTI
file was loaded to.

Parameter and Description:

<machine_id> Optional: Machine ID the ORTI file was loaded to. Useful for
hypervisor/iAMP setups.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.
Example:

; Single 0OS case

CD C:\Projects\osl

TASK.ORTI deploy/os.orti

PRINT TASK.ORTIFILE()

; Result: "C:\Projects\osl\deploy\os.orti"

; Hypervisor/iAMP scenario

CD C:\Projects

EXT.ORTI.LOAD osl/deploy/os.orti /MACHINE 1.
EXT.ORTI.LOAD os2/deploy/os.orti /MACHINE 2.
PRINT TASK.ORTIFILE(2.)

; Result: "C:\Projects\os2\deploy\os.orti"
PRINT TASK.ORTIFILE(1l.)

; Result: "C:\Projects\osl\deploy\os.orti"
PRINT TASK.ORTIFILE(3.)

; Result: ""
TASK.SPACE.COUNT() Number of spaces
[build 123903]
Syntax: TASK.SPACE.COUNTY()

Returns the number of address spaces in the list of spaces.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 361

TASK.SPACEID() Space ID of task

[Go to figure]

Syntax: TASK.SPACEID(" <task_name>")

Returns the space ID of the specified task name.
Parameter Type: String.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 362

TERM Functions (Terminal Window)

In This Section

See also
W TERM 0 TERM.LINE() 0 TERM.NEWHANDLE() O TERM.READBUSY()
0 TERM.RETURNCODE() 0 TERM.TRIGGERED()
TERM.LINE() Get line from terminal window
Syntax: TERM.LINE(<channel>,<line_number>)
TERM.LINE(<address>,<line_number>) (deprecated)
<channel>: #<number>

Returns the content of the specified line from the active terminal window.

Parameter and Description:

<channel> Parameter Type: String. Handle to refer to a terminal. A new handle can be
created with TERM.METHOD.

<address> Parameter Type: Address. <address> is the communication port of the virtual
terminal.

<line_number> Parameter Type: Decimal value.

Return Value Type: String.

TERM.NEWHANDLE() Get next free terminal handle

[build 168780 - DVD 09/2024]

Syntax: TERM.NEWHANDLE()

Returns the next free handle for terminal operations.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 363

Example:

PRIVATE &th
&th=TERM.NEWHANDLE ()
TERM.METHOD #&th COM COM1
TERM.view #&th

TERM.READBUSY() TRUE as long as TERM.READ is in progress

[build 143560 - DVD 02/2022]

Syntax: TERM.READBUSY()

Returns TRUE as long as a TERM.READ command is in progress.

Return Value Type: Boolean.

Example:
TERM.READ #1 <file_ name> ; start upload
SCREEN.ALWAYS ; to make upload as fast as possible

; PRACTICE will loop through this while loop until the read is done
WHILE TERM.READBUSY (#1)

(
//Some PRACTICE commands

)

SCREEN. ON
TERM.RETURNCODE() Get returncode from terminal routine
[build 58677 - DVD 02/2015]
Syntax: TERM.RETURNCODE(<channel>)
TERM.RETURNCODE(<address>) (deprecated)
<channel>: #<number>

Returns the return value of the semihosting function from the active terminal window.

Parameter and Description:

<channel> Parameter Type: String. Handle to refer to a terminal. A new handle can be
created with TERM.METHOD.

<address> Parameter Type: Address. <address> is the communication port of the virtual
terminal.

©1989-2024 Lauterbach General Function Reference | 364

Return Value Type: Decimal value.

TERM.TRIGGERED() Get trigger state of terminal window

[build 95013 - DVD 09/2018]

Syntax: TERM.TRIGGERED(<channel>)
TERM.TRIGGERED(<address_out>) (deprecated)

<channel>: #<number>

Returns TRUE once the message string to be searched for in the active terminal window has been printed to
the active terminal window. Use the TERM.TRIGGER command to specify the message string you want.

Parameter and Description:

<channel> Parameter Type: String. Handle to refer to a terminal. A new handle can be
created with TERM.METHOD.

<address_out> Parameter Type: Address.

The address parameter is only required for memory-based data exchange
(SingleE, BufferE, SingleS, BufferS). Pass an arbitrary address for all non-
memory-based methods e.g. Serial Console/COM.

Return Value Type: Boolean.
Example 1:

TERM.TRIGGER #3 "Hit any key"
SCREEN.WAIT TERM.TRIGGERED (#3)

Example 2: Refer to the TERM.TRIGGER command.

©1989-2024 Lauterbach General Function Reference | 365

TPIU Functions

This figure provides an overview of the return values of the functions. For descriptions of the illustrated
functions, see below.

TPIU.PortSize()
¢ B:TPIU state ==
tpiu PortSze |— SyncPeriod
OFF SWvV w7
ON PortMode
Wz | e TPIU.PortMode()
commands SW\Prescaler
—= || g —_— TPIU.SWVPrescaler()
@ CLEAR
™ Register

@ Trace

In This Section

See also
H TPIU 1 TPIU.PortMode() 1 TPIU.PortSize() 1 TPIU.SWVPrescaler()
TPIU.PortMode() Port mode setting
[build 65602 - DVD 09/2015] [Go to figure]
Syntax: TPIU.PortMode()

Returns current PortMode setting of the TPIU made with the command TPIU.PortMode. For example,
Bypass, Wrapper, Continuous, NRZ.

Return Value Type: String.

TPIU.PortSize() Port size setting

[build 65602 - DVD 09/2015] [Go to figure]

Syntax: TPIU.PortSize()

Returns the current PortSize setting of the TPIU made with the command TPIU.PortSize.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 366

Return Value and Description:

1,2,3,4, .. Port size setting for parallel trace.

1Lane, 2Lane, 3Lane, | Port size setting for serial trace.

4Lane
sSwv Port size setting for SerialWireViewer.
TPIU.SWVPrescaler() SWVPrescaler value
[build 65602 - DVD 09/2015] [Go to figure]
Syntax: TPIU.SWVPrescaler()

Returns the current SWVPrescaler value set with the command TPIU.SWVPrescaler.

Return Value Type: Decimal value.

TPUBASE Function

TPUBASE.ADDRESS() Address of TPU

Syntax: TPUBASE.ADDRESS()

Returns the address where the TPU is located.

Return Value Type: Address.

©1989-2024 Lauterbach General Function Reference | 367

Trace Functions

This figure provides an overview of the return values of some of the Trace functions. For descriptions of the
illustrated functions and the functions not shown here, see below.

Trace.STATE()
Trace.RECORDS()
Y BuTracestate EI@
SEEEE - Trace.METHOD()
@ Analyzer) Cinahz=] © Onchip © ART ©) LOGGER (©) SNOOPer (2) FDX. OLA] TI'aCGMETHODANALYZER()
TR e e Trace. METHOD.ART()

state usfd ACCESS TDelay Trace.METHOD....()
() DIsable | auto - 0.
@ OFF 222656. 0% « || [& |
) Arm SIZE CLOCK ETM Trace.MAXSIZE()
() trigger 10?3?41824] THreshold STM
© break 1.02 0.9 ~ Trace.SIZE()

spy Mode Mode @ vee

@ Fifo [V] SLAVE © cLock

commands © stack LA LOCEHING
) Leash @ autofocus
© STREAM
© pIPE TERMination

] List RTS
[¥] AutoArm [TestFocus | | | [advanced|
[C] AutoInit XX AutoFocus
[C] selfarm

In This Section

See also
B Trace 1 Trace.FIRST() 1 Trace.FLOW() 1 Trace.FLOW.ERRORS()
1 Trace.FLOW.FIFOFULLY() [Trace.MAXSIZE() 1 Trace.METHOD() 1 Trace.METHOD.Analyzer()
1 Trace.METHOD.ART() 1 Trace. METHOD.CAnalyzer() Q Trace.METHOD.FDX() 1 Trace. METHOD.HAnalyzer()
1 Trace.METHOD.Integrator() A Trace.METHOD.|Probe() (d Trace.METHOD.LA() 1 Trace. METHOD.LOGGER)
1 Trace. METHOD.ONCHIP() [Trace.METHOD.Probe() 1 Trace. METHOD.SNOOPer() 1 Trace.RECORD.ADDRESS()
1 Trace.RECORD.DATA() 1 Trace. RECORD.OFFSET() 1 Trace.RECORD.TIME() 1 Trace.RECORDS()
[Trace.SIZE() 1 Trace.STATE() [Trace.STATistic. COUNT() 1 Trace.STATistic.EXIST()
(1 Trace.STATistic.FIRST() 1 Trace.STATistic.IMAX() (1 Trace.STATistic.IMIN() 1 Trace.STATistic.Internal()
1 Trace.STATistic.LAST() 1 Trace.STATistic. MAX() [Trace.STATistic.MIN() 1 Trace.STATistic.Total()
1 Trace.TraceCONNECT()
Trace.FIRST() Get record number of first trace record
[build 71062 - DVD 09/2016]
Syntax: Trace.FIRST()

Returns the record number of the first record. The first record is the record with the lowest record number.

©1989-2024 Lauterbach General Function Reference | 368

Return Value Type: Decimal value.

Trace.FLOW() TRUE if trace method is flow trace

[build 70748 - DVD 09/2016]

Syntax: Trace.FLOW()

Returns TRUE if the selected trace method is a flow trace.

Return Value Type: Boolean.

Trace.FLOW.ERRORS() Get number of flow errors / hard errors

Syntax: Trace.FLOW.ERRORS()

Returns the number of flow errors and hard errors found while processing the trace recording.
Return Value Type: Decimal value.

Please be aware that the return value of this function is the accumulated count of events that were
encountered while processing the trace recording. All opened windows showing trace data contribute to this
value. The value is reset when a new trace recording is made, or when the Trace.FLOWSTART or
Trace.FLOWPROCESS command is executed.

The use of this function is only recommended if you want to find out if a specified part of a trace recording is
error free. The part to be analyzed can be defined using Trace.STATistic.FIRST and
Trace.STATistic.LAST. If the defined part is error free (and thus this function returns zero), the analysis
results are reliable as well.

Example 1: This script shows how to return only the number of flow errors and hard errors in the trace that
is currently visible within the Trace.List window. If you now start scrolling up or down in the race.List

window or increase the window size, more trace data will be decoded, and thus the number of errors
returned by the function may increase.

Trace.List
PRINT Trace.FLOW.ERRORS ()
; scroll up or down in the window

PRINT Trace.FLOW.ERRORS ()

©1989-2024 Lauterbach General Function Reference | 369

Example 2: This script shows how to obtain the exact number of flow errors in the whole trace recording.

Trace.Find FLOWERROR /ALL
PRINT FOUND.COUNT ()

Trace.FLOW.FIFOFULL() Get number of FIFO overflows

Syntax: Trace.FLOW.FIFOFULL()

Returns the number of FIFO overflows found while processing the trace recording.

Return Value Type: Decimal value.

Please be aware that the return value of this function is the accumulated count of events that were
encountered while processing the trace recording. All opened windows showing trace data contribute to this
value. The value is reset when a new trace recording is made, or when the Trace.FLOWSTART or
Trace.FLOWPROCESS command is executed.

The use of this function is only recommended if you want to find out if a specified part of a trace recording is
error free. The part to be analyzed can be defined using Trace.STATistic.FIRST and
Trace.STATistic.LAST. If the defined part is error free (and thus this function returns zero), the analysis
results are reliable as well.

The example below shows how to obtain the exact number of flow errors in the whole trace recording.

Trace.Find FIFOFULL /ALL
PRINT FOUND.COUNT ()

Trace.MAXSIZE() Get max. size of trace buffer in records
[build 38323 - DVD 08/2012] [Go to figure]

Syntax: Trace.MAXSIZE()

Returns the maximum possible number of records.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 370

Trace.METHOD() Currently configured trace method

[build 60615 - DVD 02/2015] [Go to figure]

Syntax: Trace.METHOD()

Returns the long form of the currently configured trace method.

Return Value Type: String.

Trace.METHOD.Analyzer() TRUE if the trace method is Analyzer

[Go to figure]

Syntax: Trace.METHOD.Analyzer()

Returns TRUE if the trace method is Analyzer.
The trace method is set with the command Trace.METHOD.Analyzer.

Return Value Type: Boolean.

Trace.METHOD.ART() TRUE if the trace method is ART

[Go to figure]

Syntax: Trace.METHOD.ART()

Returns TRUE if the trace method is ART.
The trace method is set with the command Trace.METHOD.ART.

Return Value Type: Boolean.

Trace.METHOD.CAnalyzer() TRUE if the trace method is CAnalyzer

[Go to figure]

Syntax: Trace.METHOD.CAnalyzer()

Returns TRUE if the trace method is CAnalyzer (CombiProbe).
The trace method is set with the command Trace.METHOD.CAnalyzer.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 371

Trace.METHOD.FDX() TRUE if the trace method is FDX

[Go to figure]
Syntax: Trace.METHOD.FDX()
Returns TRUE if the trace method is FDX.
The trace method is set with the command Trace.METHOD.FDX.
Return Value Type: Boolean.
Trace.METHOD.HAnalyzer() TRUE if the trace method is HAnalyzer

Syntax: Trace.METHOD.HAnalyzer()

Returns TRUE if the trace method is HAnalyzer (Trace-over-USB).
The trace method is set with the command Trace.METHOD.HAnalyzer.

Return Value Type: Boolean.

Trace.METHOD.Integrator() TRUE if the trace method uses the Integrator

[Go to figure]
Syntax: Trace.METHOD.Integrator()
Returns TRUE if the trace method uses the Integrator hardware analyzer.
The trace method is set with the command Trace.METHOD.Integrator.
Return Value Type: Boolean.
Trace.METHOD.IProbe() TRUE if the trace method uses the IProbe

[build 60615 - DVD 02/2015] [Go to figure]

Syntax: Trace.METHOD.IProbe()

Returns TRUE if the trace method uses the IProbe of PowerTrace Il / PowerTrace Il hardware analyzer.
The trace method is set with the command Trace.METHOD.IProbe.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 372

Trace.METHOD.LA() TRUE if the trace method is LA

[Go to figure]
Syntax: Trace.METHOD.LA()
Returns TRUE if the trace method is LA.
The trace method is set with the command Trace.METHOD.LA.
Return Value Type: Boolean.
Trace.METHOD.LOGGER() TRUE if the trace method is LOGGER
[Go to figure]
Syntax: Trace.METHOD.LOGGER()
Returns TRUE if the trace method is LOGGER.
The trace method is set with the command Trace.METHOD.LOGGER.
Return Value Type: Boolean.
Trace.METHOD.ONCHIP() TRUE if the trace method is ONCHIP
[Go to figure]
Syntax: Trace.METHOD.ONCHIP()
Returns TRUE if the trace method is ONCHIP.
The trace method is set with the command Trace.METHOD.Onchip.
Return Value Type: Boolean.
Trace.METHOD.Probe() TRUE if trace method uses the PowerProbe
[Go to figure]

Syntax: Trace.METHOD.Probe()

Returns TRUE if the trace method uses the PowerProbe hardware analyzer.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 373

Trace.METHOD.SNOOPer() TRUE if the trace method is SNOOPer

[Go to figure]
Syntax: Trace.METHOD.SNOOPer()
Returns TRUE if the trace method is SNOOPer.
The trace method is set with the command Trace.METHOD.SNOOPer.
Return Value Type: Boolean.
Trace.RECORD.ADDRESS() Get address recorded in trace record
[build 38764]
Syntax: Trace.RECORD.ADDRESS(<record_number>)
Returns the sampled address (access class and offset) from the specified record.
Parameter Type: Decimal value.
Return Value Type: Address.
Trace.RECORD.DATA() Get data recorded in trace record
[build 38764]

Syntax: Trace.RECORD.DATA(<record_number>)

Returns the sampled data of the specified record.
Parameter Type: Decimal value.

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 374

Trace.RECORD.OFFSET() Get address in trace record as number

[build 38764]
Syntax: Trace.RECORD.OFFSET(<record_number>)
Returns the address-offset of the sampled address from the specified record.
Parameter Type: Decimal value.
Return Value Type: Hex value.
Example:
PRINT Trace.RECORD.OFFSET (-000009.)
Trace.RECORD.TIME() Get timestamp of trace record
[build 38764]
Syntax: Trace.RECORD.TIME(<record_number>)
Returns the timestamp of the specified record. For an example, see Analyzer.RECORD.TIME().
Parameter Type: Decimal value.
Return Value Type: Time value.
Trace.RECORDS() Get number of used trace records

[build 38323 - DVD 08/2012] [Go to figure]

Syntax: Trace.RECORDS()

Returns the number of records currently recorded in the trace buffer.

If the state is OFF and the current mode is STREAM, this function will block until all buffered data has been
received.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 375

Trace.SIZE() Get current trace buffer size in records
[build 38323 - DVD 08/2012] [Go to figure]

Syntax: Trace.SIZE()

Returns the currently defined size of the trace buffer to be used for recording in records.

Return Value Type: Decimal value.

Trace.STATE() Get state of PowerTrace hardware

[build 54721 - DVD 09/2014] [Go to figure]

Syntax: Trace.STATE()

Returns the state of the PowerTrace hardware.

If the state is OFF and the current mode is STREAM, this function will block until all buffered data has been
received.

Return Value Type: Hex value.

Return Value and Description:

0 OFF state

1 Arm state

break state

trigger state

DISable state

SPY state

© | 0|~ WOW|DdN

OFF state, but data is still being processed (PIPE and RTS modes only)

©1989-2024 Lauterbach General Function Reference | 376

Trace.STATistic. COUNT() Number of occurences of selected function
[build 121928 - DVD 09/2020]

Syntax: Trace.STATistic. COUNT(<address>)

Returns the number of occurences of the selected function in the trace statistic results.

Return Value Type: Decimal value.

Trace.STATistic.EXIST() TRUE if function exists in trace statistics

[build 121928 - DVD 09/2020]

Syntax: Trace.STATistic.EXIST(<address>)

Returns TRUE if the selected function exists in the trace statistic results.

Return Value Type: Boolean.

Trace.STATistic.FIRST() Record number of start point for statistic analysis
[build 169552 - DVD 09/2024]

Syntax: Trace.STATistic.FIRST()

Returns the number of the record set by Trace.STATistic.FIRST command. If this is not the case, it returns
the first record number in the trace.

Return Value Type: Decimal value.

Trace.STATistic.IMAX() Longest time between function entry and exit
[build 121928 - DVD 09/2020]

Syntax: Trace.STATistic.IMAX(<address>)

Returns the longest time between function entry and exit without called sub-functions.

Return Value Type: Time value.

©1989-2024 Lauterbach General Function Reference | 377

Trace.STATistic.IMIN() Shortest time between function entry and exit
[build 121928 - DVD 09/2020]

Syntax: Trace.STATistic.IMIN(<address>)

Returns the shortest time between function entry and exit without called sub-functions.

Return Value Type: Time value.

Trace.STATistic.Internal() Time spent within the selected function
[build 121928 - DVD 09/2020]

Syntax: Trace.STATistic.Internal(<address>)

Returns the time spent within the selected function in the trace statistic results.

Return Value Type: Time value.

Trace.STATistic.LAST() Record number of end point for statistic analysis
[build 169552 - DVD 09/2024]

Syntax: Trace.STATistic.LAST()

Returns the number of the record set by Trace.STATistic.LAST command. If this is not the case, it returns
the last record number in the trace.

Return Value Type: Decimal value.

Trace.STATistic.MAX() Maximum time of selected function
[build 121928 - DVD 09/2020]

Syntax: Trace.STATistic.MAX(<address>)

Returns the longest measured time it took to execute the function.

Return Value Type: Time value.

©1989-2024 Lauterbach General Function Reference | 378

Trace.STATistic.MIN() Minimum time of selected function
[build 121928 - DVD 09/2020]

Syntax: Trace.STATistic.MIN(<address>)

Returns the shortest measured time it took to execute the function.

Return Value Type: Time value.

Trace.STATistic.Total() Total time of selected function
[build 121928 - DVD 09/2020]

Syntax: Trace.STATistic.Total(<address>)

Returns the total time within the selected function in the trace statistic results.

Return Value Type: Time value.

©1989-2024 Lauterbach General Function Reference | 379

Trace.TraceCONNECT() Name of trace sink of the SoC

[build 80222 - DVD Feb/2017]

Syntax: Trace.TraceCONNECT()

Returns the name of the currently selected trace sink of the SoC. In case no trace-sink is selected/available,
the function returns NONE. The trace sink is selected with the <trace>.TraceCONNECT command.

Return Value Type: String.

Example: See Onchip.TraceCONNECTY().

©1989-2024 Lauterbach General Function Reference | 380

TRACEPORT Function

In This Section

See also
B TRACEPORT 0 TRACEPORT.LaneCount()
TRACEPORT.LaneCount() Number of serial lanes
[build 104159 - DVD 02/2019]
Syntax: TRACEPORT.LaneCount(<index>)
<index>: 1.... <n>

Returns the number of serial lanes for the specified traceport <index>.
Parameter Type: Decimal value.

Return Value Type: Decimal value.

Example 1:
TRACEPORT.state ;optional step: open window for
;traceport 1. (= <index>)
ECHO TRACEPORT.LaneCount (1.) ;returns 3., see screenshot below
¢ B:TRACEPORT state =n| Wl <
commands configuration state
[Rreset || |- Lanecount Type: AURORA
&Tmce | |3Lane -/ Source: TPIU
Lanespeed Destination: Analyzer
(AUTO (1500Mbps) ~|
¥ advanced
% pin mapping
Example 2:
TRACEPORT2.state ;optional step: open window for
; traceport 2. (= <index>)

ECHO TRACEPORT.LaneCount (2.)

©1989-2024 Lauterbach General Function Reference | 381

TRACK Functions

In This Section

See also
1 TRACK.ADDRESS() 1 TRACK.COLUMN() 1 TRACK.LINE() 1 TRACK.RECORD()
0 TRACK.STRing() 0 TRACK.TIME()
TRACK.ADDRESS() Get tracking address
Syntax: TRACK.ADDRESS()

Returns the tracking address e.g. after search or memory test commands, such as Data.Find or Data.Test.
Return Value Type: Address.
Example:

Data.Find flags++0xFF 0x01

IF FOUND () ==TRUE ()

(

Data.Set TRACK.ADDRESS () O0xAA
Data.Print TRACK.ADDRESS ()

TRACK.COLUMN() Number of column where the found item starts

Syntax: TRACK.COLUMN()

After a successful search operation, this function returns the column number.

Return Value Type: Decimal value.

TRACK.LINE() Number of line containing the found item

Syntax: TRACK.LINE()

After a successful search operation, this function returns the line number.

©1989-2024 Lauterbach General Function Reference | 382

Return Value Type: Decimal value.

Example: The function TRACK.LINE() is used to automatically scroll to the required line number in the
TYPE window, where the search string was found.

LOCAL &file &line

&file="~~/demo/arm/compiler/gnu/src/sieve.c"

FIND &file , "main(" ;search for the string "main(" in whole file
&1ine=TRACK.LINE () ;return the line number of the first occurrence
IF FOUND () ==TRUE () ;1f found, open file in TYPE window and

(;scroll to the &line where the string was found
TYPE &file &line /LineNumbers

See also: FIND and ComPare.

©1989-2024 Lauterbach General Function Reference | 383

TRACK.RECORD() Number of record containing the found item

Syntax: TRACK.RECORD()

After a successful search operation, this function returns the record number. For an example, see
Analyzer.TRACK.RECORD().

Return Value Type: Decimal value.

TRACK.STRing() Current selection in a TRACE32 window

Syntax: TRACK.STRing()
SELECTION.STRing() (deprecated)

Returns a singe-line or multi-line selection made by a user in a TRACE32 window. For information about
how to return values and selections from user-defined dialogs, see DIALOG Functions.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 384

TRACK.TIME()

Timestamp of current tracking record

Syntax: TRACK.TIME()

Returns the timestamp of the current tracking record in relation to the zero-time reference point.

Record Zero-time reference point Tracking record
TRACK.TIME
< 0 g ;
| | records
e.g. -14000. e.g. -12000. e.g. -10000.

Return Value Type: Time value.
Example:

;set the zero-time reference point to record no
ZERO.offset Trace.RECORD.TIME (-12000.)

;set the tracking record to the record -10000.
Trace.TRACK -10000.
result: "

PRINT "TRACK.TIME()

;display the result in the trace listing with the ti.zero

;first column followed by all DEFault columns

%$COLOR .MAROON TRACK.TIME()

. —-12000.

Trace.List %TimeFixed TIme.Zero DEFault /Track
= | BuAREAview [E=5EoR 5
TRACK.TIME(Q) result: 0.0002222005 i
A= an alternative: Trace.RECORD.TIME{TRACK.RECORD())-Trace.RECORD. TIME(-12000.) 0.000222200s -
4 | i | b
£ BuTracelist %TimeFixed TImeZero DEFault /Track EI@
[& saup... (A Goto... || F3Find... || M/Chart |[B Profie || BIMPS || % More |[X Less |
record [ti.zero |run |address lcycle |data symbol 1
-010001 0.000222100s l R:00002238 Tetch DADODOOG armleharm's1evet+Ox10 L
ble 0x2258 =
1=l
L b 0x2240 i
-009939 0.000222300s | R:00002240 fetch E3A04001 “Marmleharm'sievetOxls
4 [| +

;see [A] below

column as the

©1989-2024 Lauterbach

General Function Reference

385

TRANS Functions (Debugger Address Translation)

In This Section

See also

B TRANSIation 1 TRANS.ENABLE()

1 TRANS.INTERMEDIATE() 1 TRANS.INTERMEDIATE.VALID()
1 TRANS.INTERMEDIATEEX() 1 TRANS.INTERMEDIATEEX.VALID()
1 TRANS.LINEAR() 1d TRANS.LINEAR.VALID()

1 TRANS.LINEAREX() 1 TRANS.LINEAREX.VALID()

1 TRANS.LIST.LOGRANGE() 1 TRANS.LIST.NUMBER()

1 TRANS.LIST.PHYSADDR() 1 TRANS.LIST.TYPE()

1 TRANS.LOGICAL() 1 TRANS.LOGICAL.VALID()

1 TRANS.PHYSICAL() 1 TRANS.PHYSICAL.VALID()

1 TRANS.PHYSICALEX() 1 TRANS.PHYSICALEX.VALID()

1 TRANS.TABLEWALK()

TRANS.LIST.NUMBER() Number of TRANS.List entries
Syntax 1: TRANS.LIST.NUMBER()
Syntax 2: TRANS.LIST.NUMBER.ZONE(<address>)
<address>: <access_class>:[<machine_id>:::]0x0

Both functions return the number of entries in the TRANSIation.List window.

Syntax 1: The queried entry is located in the currently active zone of the core.
Syntax 2: The queried entry is located in the zone that is selected with <address>.

Return Value Type: Decimal value.

The type of entries in the TRANSIation.List window which can be queried are

. static translations created with command TRANSIation.Create or MMU.Scan

. protected address ranges created with command TRANSIation.Protect

. transparent entries created with command TRANSIation.TRANSparent

. common ranges created with command TRANSIation.COMMON or
TRANSIation.COMMON.ADD

Note that default translations created with command MMU.FORMAT and displayed in the first lines of the
TRANSIation.List window can not be queried with this set of functions. Use function
MMU.DEFAULTTRANS.<range> to query default translations.

©1989-2024 Lauterbach General Function Reference | 386

Parameter and Description:

<access_class> Mandatory if SYStem.Option.ZoneSPACES is ON.
See access class in the glossary.pdf.
<machine_id> Mandatory if SYStem.Option.MACHINESPACES is ON.
See machine ID in the glossary.pdf.
0x0 Fixed <address> suffix.
TRANS.LIST.LOGRANGE() Query TRANS List entry
Syntax 1: TRANS.LIST.LOGRANGE(<entry_index>)
Syntax 2: TRANS.LIST.LOGRANGE.ZONE(<entry_index>, <address>)
<address>: <access_class>:[<machine_id>:::]0x0

Both functions return the logical address range of entry <entry_index> in the in the TRANSIation.List
window.

Syntax 1: The queried entry is located in the currently active zone of the core.
Syntax 2: The queried entry is located in the zone that is selected with <address>.

Return Value Type: Address.range

Note: an address offset of OXFFFFFFFF (for 32-bit architectures) or OxFFFFFFFFFFFFFFFF (for 64-bit
architectures) is returned if <entry_index> does not select any existing entry.

Parameter and Description:

<entry_index> the index of the queried entry.

Positive numbers query the entries in the TRANSIation.List window, starting
with O for the first entry in the window. Negative numbers query entries in a
reverse sequence, starting with the last entry.

<access_class> Mandatory if SYStem.Option.ZoneSPACES is ON.
See access class in the glossary.pdf.

<machine_id> Mandatory if SYStem.Option.MACHINESPACES is ON.
See machine ID in the glossary.pdf.

0x0 Fixed <address> suffix.

©1989-2024 Lauterbach General Function Reference | 387

Example - Syntax 2:

;optional step: list all translation entries
TRANSlation.list

; display the logical address range of the first entry in the
TRANSlation.List window
PRINT TRANS.LIST.LOGRANGE (0)

; display the logical address range of the second entry in the
TRANSlation.List window for machine ‘2:::’ in the nonsecure zone 'N’
PRINT TRANS.LIST.LOGRANGE.ZONE(1l, N:2:::0)

; display the logical address range of the last entry in the
TRANSlation.List window
PRINT TRANS.LIST.LOGRANGE (-1)

; display the logical address range of the second last entry in the
TRANSlation.List window
PRINT TRANS.LIST.LOGRANGE (-2)

TRANS.LIST.PHYSADDR() Query TRANS.List entry
Syntax 1: TRANS.LIST.PHYSADDR(<entry_index>)
Syntax 2: TRANS.LIST.PHYSADDR.ZONE(<entry_index>, <address>)
<address>: <access_class>:[<machine_id>:::]0x0

Both functions return the physical base address of entry <entry_index> in the in the TRANSIation.List
window.

Syntax 1: The queried entry is located in the currently active zone of the core.
Syntax 2: The queried entry is located in the zone that is selected with <address>.

Return Value Type: Address.

Note: an address offset of OxXFFFFFFFF (for 32-bit architectures) or OxFFFFFFFFFFFFFFFF (for 64-bit
architectures) is returned if <entry_index> does not select any existing entry.

©1989-2024 Lauterbach General Function Reference |

388

Parameter and Description:

<entry_index> the index of the queried entry.

Positive numbers query the entries in the TRANSIation.List window, starting
with O for the first entry in the window. Negative numbers query entries in a
reverse sequence, starting with the last entry.

<access_class> Mandatory if SYStem.Option.ZoneSPACES is ON.
See access class in the glossary.pdf.
<machine_id> Mandatory if SYStem.Option.MACHINESPACES is ON.
See machine ID in the glossary.pdf.
0x0 Fixed <address> suffix.
TRANS.LIST.TYPE() Query TRANS.List entry
Syntax 1: TRANS.LIST.TYPE(<entry_index>)
Syntax 2: TRANS.LIST.TYPE.ZONE(<entry_index>, <address>)
<address>: <access_class>:[<machine_id>:::]0x0

Both functions return one of the follow strings, indicating the type of entry <entry_index> in the in the
TRANSIation.List window:

TRANSLATION the queried entry is a translation entry created with command
TRANSIation.Create or MMU.Scan

TRANSPARENT the queried entry is a transparent entry created with command
TRANSIation.TRANSparent

PROTECTED the queried entry is a protected entry created with command

TRANSIation.Protect

COMMON the queried entry is a common address range created with command
TRANSIation.COMMON or TRANSIation.COMMON.ADD

empty string <entry_index> does not select a valid entry

Syntax 1: The queried entry is located in the currently active zone of the core.
Syntax 2: The queried entry is located in the zone that is selected with <address>.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 389

Parameter and Description:

<entry_index> the index of the queried entry.

Positive numbers query the entries in the TRANSIation.List window, starting
with O for the first entry in the window. Negative numbers query entries in a
reverse sequence, starting with the last entry.

<access_class> Mandatory if SYStem.Option.ZoneSPACES is ON.
See access class in the glossary.pdf.
<machine_id> Mandatory if SYStem.Option.MACHINESPACES is ON.
See machine ID in the glossary.pdf.
0x0 Fixed <address> suffix.
TRANS.ENABLE() TRUE if address translation is enabled
Syntax: TRANS.ENABLE()

Returns TRUE if the address translation of the debugger is enabled with the command
TRANSIation.ON.

Return Value Type: Boolean.

TRANS.INTERMEDIATE() Convert a guest logical address

ARM and Intel®

Syntax 1: TRANS.INTERMEDIATE(<address>)
MMU.INTERMEDIATE(<address>) (alias)

Syntax 2: TRANS.INTERMEDIATEEX(<address>)
MMU.INTERMEDIATEEX(<address>) (alias)

Converts a guest logical address to an intermediate address if the stage 2 address translation (for ARM
targets) or Extended Physical Translation (for Intel® targets) is enabled.

TRANS.INTERMEDIATE() behaves like TRANS.PHYSICAL() and converts <address> to a physical

address if:

. <address> is not a guest logical address

. or the stage 2 translation / Extended Physical Translation in the target MMU is not available or
disabled.

©1989-2024 Lauterbach General Function Reference | 390

Syntax 1: No access class expansion of <address> is done prior to the translation. Tries to translate

<address> as it is. Use this syntax to do a translation only. The result is independent of the current CPU
mode.

Syntax 2: The access class of <address> is expanded prior to the translation, missing information is added
from the current PC’s access class. Use this syntax to get the same translation result as a standard access
to the target. The translation result may depend on the current CPU mode.

Parameter Type: Address.

Return Value Type: Address.

TRANS.INTERMEDIATE.VALID() TRUE if address translation is valid

ARM and Intel®

Syntax 1: TRANS.INTERMEDIATE.VALID(<address>)
MMU.INTERMEDIATE.VALID(<address>) (alias)

Syntax 2: TRANS.INTERMEDIATEEX.VALID(<address>)
MMU.INTERMEDIATEEX.VALID(<address>) (alias)

Checks whether a valid guest logical-to-intermediate address translation exists for the specified address.

Syntax 1: No access class expansion of <address> is done prior to the translation.

Syntax 2: The access class of <address> is expanded prior to the translation, missing information is
added from the current PC’s access class.

Parameter Type: Address.

Return Value Type: Boolean.

TRANS.LINEAR() Convert logical to linear address

Intel®

Syntax 1: TRANS.LINEAR(<address>)
MMU.LINEAR(<address>) (alias)

Syntax 2: TRANS.LINEAREX(<address>)
MMU.LINEAREX(<address>) (alias)

Converts a logical address to a linear address.

Syntax 1: No access class expansion of <address> is done prior to the translation. Tries to translate

<address> as it is. Use this syntax to do a translation only. The result is independent of the current CPU
mode.

©1989-2024 Lauterbach General Function Reference | 391

Syntax 2: The access class of <address> is expanded prior to the translation, missing information is
added from the current PC’s access class. Use this syntax to get the same translation result as a
standard access to the target. The translation result may depend on the current CPU mode.
Parameter Type: Address.

Return Value Type: Address.

TRANS.LINEAR.VALID() TRUE if address translation is valid

Intel®

Syntax 1: TRANS.LINEAR.VALID(<address>)
MMU.LINEAR.VALID(<address>) (alias)

Syntax 2: TRANS.LINEAREX.VALID(<address>)
MMU.LINEAREX.VALID(<address>) (alias)

Checks whether a valid logical-to-linear address translation exists for the specified address.

Syntax 1: No access class expansion of <address> is done prior to the translation.

Syntax 2: The access class of <address> is expanded prior to the translation, missing information is
added from the current PC’s access class.

Parameter Type: Address.

Return Value Type: Boolean.

TRANS.LOGICAL() Convert physical to logical address

Syntax: TRANS.LOGICAL(<physical_address>)
MMU.LOGICAL(<physical_address>) (alias)

Converts a physical address to a logical address using the TRACES32 static translation table. No access
class expansion is done prior to the translation. This function tries to translate <address> as it is. The result
is independent of the current CPU mode.

©1989-2024 Lauterbach General Function Reference | 392

Use the command TRANSIation.List to view the static translation table.
If the static translation table contains more than one valid entry matching the specified <physical_address>,
then the first entry will be used for the address conversion.

NOTE:] TRANS.LOGICAL(<physical_address>) does not search in page tables.

. If you want to search through the entries of a page table, you must first
use the command MMU.SCAN to read the contents of the page table into
the static translation table.

. If you want to search through the entries of a page table, you can also
use the command MMU.INFO <physical_address> to search the system
page tables for entries that yield <physical_address>.

Parameter Type: Address.

Return Value Type: Address.

TRANS.LOGICAL.VALID() TRUE if address translation is valid

Syntax: TRANS.LOGICAL.VALID(<physical_address>)
MMU.LOGICAL.VALID(<physical_address>) (alias)

Checks whether a valid physical-to-logical address translation exists for the specified physical address. Only
the static translation table will be searched, no page tables. No access class expansion of <address> is
done prior to the translation.

Parameter Type: Address.

Return Value Type: Boolean.

TRANS.PHYSICAL() Convert logical to physical address

Syntax 1: TRANS.PHYSICAL(<address>)
MMU.PHYSICAL(<address>) (alias)

Syntax 2: TRANS.PHYSICALEX(<address>)
MMU.PHYSICALEX(<address>) (alias)

Converts a logical address to a physical address.

Syntax 1: No access class expansion of <address> is done prior to the translation. Tries to translate
<address> as it is. Use this syntax to do a translation only. The result is independent of the current CPU
mode.

©1989-2024 Lauterbach General Function Reference | 393

Syntax 2: The access class of <address> is expanded prior to the translation, missing information is
added from the current PC’s access class. Use this syntax to get the same translation result as a
standard access to the target. The translation result may depend on the current CPU mode.

Parameter Type: Address.
Return Value Type: Address.

Use ADDRESS.PHYSICAL() to check whether the translation was successful and the result is really a
physical address.

If the translation failed, ADDRESS.PHYSICAL(TRANS.PHYSICAL(<address>)) will return FALSE.

©1989-2024 Lauterbach General Function Reference | 394

Example:

; This 1s an example for the ARM simulator
; It demonstrates the difference between functions
; TRANS.PHYSICAL () and TRANS.PHYSICALEX ()

; Select a CPU with trust zone (nonsecure/secure mode)
SYStem.CPU CORTEXAS
AREA .View

; Let’s make the static address translation zone specific so that it is
; easlier to demonstrate the difference between TRANS.PHYSICAL()

; and TRANS.PHYSICALEX ()

SYStem.Option.ZoneSPACES ON

SYStem.UP
Register.Set M 0x13 ; set CPU to supervisor mode
Register.Set NS 1 ; set CPU to nonsecure mode

; Now the PC’s access class 1s NSD:

; Define a static translation for a nonsecure address range
TRANSlation.Create N:0xA0000000--0xAFFFFFFFF A:0x30000000

TRANSlation.List ; show the static translation list
TRANSlation.ON ; enable the debugger address translation

; 1. Try to translate an address with unspecific access class
PRINT TRANS.PHYSICAL (D:0xA0005000)

9 the result is D:0xA0005000 because there is no translation
g for D:0xA0005000 with SYStem.Option.ZoneSPACES ON

8 There is a translation for nonsecure addresses only.

; 2. Try to translate an address with unspecific access class,

g now with access class expansion using the PC’s access class
PRINT TRANS.PHYSICALEX (D:0xA0005000)

8 the result is ANSD:0x0:0x30005000 because D:0xA0005000 becomes
8 NSD:0xA0005000 after the access class is expanded

; 3. Now do the same like TRANS.PHYSICALEX (), but in two distinct steps
PRINT TRANS.PHYSICAL (ADDRESS.EXPANDACCESS (D:0xA0005000))
g the result is A:0x30005000 again, the same as in 2.

©1989-2024 Lauterbach General Function Reference | 395

TRANS.PHYSICAL.VALID() TRUE if address translation is valid

Syntax 1: TRANS.PHYSICAL.VALID(<address>)
MMU.PHYSICAL.VALID() (alias)

Syntax 2: TRANS.PHYSICALEX.VALID(<address>)
MMU.PHYSICALEX.VALID() (alias)

Checks whether a valid logical-to-physical address translation exists for the specified address.

Syntax 1: No access class expansion of <address> is done prior to the translation.

Syntax 2: The access class of <address> is expanded prior to the translation, missing information is
added from the current PC’s access class.

Parameter Type: Address.

Return Value Type: Boolean.

TRANS.TABLEWALK() TRUE if address translation table walk is ON

Syntax: TRANS.TABLEWALK()

Returns TRUE if the table walk for address translation is enabled in the debugger with the command
TRANSIation.TableWalk ON.

Return Value Type: Boolean.

©1989-2024 Lauterbach General Function Reference | 396

TSS Function

TSS() TSS base address

Syntax: TSS()

Returns the TSS base address of the last loaded object file (only 80386).

Return Value Type: Hex value.

©1989-2024 Lauterbach General Function Reference | 397

Var Functions

In This Section

See also
W Var 0 VarADDRESS)() 0 Var.BITPOS() O Var.BITSIZE()
0 Var.END() O Var.EXIST() O Var.FVALUE() O VarISBIT()
1 Var.RANGE() 1 Var.SIZEOF() 1 Var.STRing() 1 Var.TYPEOF()
O Var.VALUE()
Var.ADDRESS() Address of HLL expression
Syntax: Var.ADDRESS(<hll_expression>)

Returns the address of the HLL expression.
Parameter Type: String.

Return Value Type: Address.

Example:

Data.Print Var.ADDRESS (flags)
Data.Print Var.ADDRESS(flags[3]1)

Var.BITPOS() Bit position inside a C bit field

Syntax: Var.BITPOS(<hll_expression>)

Returns the start bit position of an element inside a bit field.
Parameter Type: String.

Return Value Type: Hex value.

Example:

PRINT Var.BITPOS (vbfield.d)

©1989-2024 Lauterbach General Function Reference | 398

Var.BITSIZE() Size of bit field element

Syntax: Var.BITSIZE(<hll_expression>)
Returns the size in bits of a bit field element.
Parameter Type: String.
Return Value Type: Hex value.
Example:

PRINT %Decimal Var.BITSIZE (vbfield.f)

Var.END() Last address of HLL expression

Syntax: Var.END(<hll_expression>)

Returns the last address occupied by the HLL expression.
Parameter Type: String.

Return Value Type: Address.

Example:

Data.Print Var.END(vbfield)

©1989-2024 Lauterbach General Function Reference | 399

Var.EXIST() TRUE if HLL expression exists

[build 94851 - DVD 09/2018]

Syntax: Var.EXIST(<hll_expression>)

Returns TRUE if an HLL expression is syntactically valid or if an HLL variable exists.
Parameter Type: String.

Return Value Type: Boolean.

Example 1:

;your code
Data.LOAD.El1f "armle.axf" /StripPATH /LowerPATH

;your code

PRINT Var.EXIST (sieve) ;returns TRUE
PRINT Var.EXIST(flags) ;returns TRUE

Example 2: Remember that inline comments for Var.* commands must start with / /.

PRINT Var.EXIST (\vall) ;returns FALSE

Var .NEWLOCAL int \vall //let’s now create the TRACE32-internal
;variable \vall

PRINT Var.EXIST(\vall) ;returns TRUE because now it exists

Var.set \vall=0x42 //initialize the TRACE32-internal variable

PRINT Var.EXIST (\vall==0x5) ;returns TRUE because syntactically

;\vall==0x5 is a valid HLL expression

©1989-2024 Lauterbach General Function Reference | 400

Var.FVALUE() Contents of HLL expression

Syntax: Var.FVALUE(<h/l_expression>)

Returns the contents of the HLL expression.
Parameter Type: String.

Return Value Type: Float.

Example:

PRINT Var.FVALUE (ast.float)
PRINT Var.FVALUE (1)
PRINT Var.FVALUE (ast.left->x)

Var.ISBIT() TRUE if HLL expression is a bit field element

Syntax: Var.ISBIT(<hll_expression>)

Returns whether the HLL expression is a bit field element or not.
Parameter Type: String.

Return Value Type: Boolean.

Example:

PRINT Var.ISBIT (vbfield.f)
PRINT Var.ISBIT (vbfield)

©1989-2024 Lauterbach General Function Reference | 401

Var.RANGE() Address range of HLL expression

Syntax: Var.RANGE(<hll_expression>)

Returns the address range occupied by the HLL expression in memory.
Parameter Type: String.

Return Value Type: Address range.

Example:

PRINT Var.RANGE (flags) ;returns the address range D:0x6EA4--0x6EB6

Data.Print Var.RANGE (flags)

Data.Find Var.RANGE (flags) 0x00

IF FOUND ()

(
Data.Set TRACK.ADDRESS () 0xBB
Data.Print TRACK.ADDRESS ()

)

ENDDO

Var.SIZEOF() Size of HLL expression

Syntax: Var.SIZEOF(<hll_expression>)

Returns the size occupied by the HLL expression in memory.
Parameter Type: String.

Return Value Type: Hex value.

Example:

Data.Print flags++Var.SIZEOF (flags)

Data.Find flags++Var.SIZEOF (flags) 0x00
IF FOUND ()
(
Data.Set TRACK.ADDRESS () 0xDD
Data.Print TRACK.ADDRESS ()
)
ENDDO

©1989-2024 Lauterbach General Function Reference | 402

Var.STRing() Zero-terminated string or variable contents

Syntax: Var.STRing(<hll_expression>)

Returns a zero-terminated string, if <hll_expression> is a pointer to character or an array of characters.
Returns a string that represents the variable contents otherwise.

Parameter Type: String.
Return Value Type: String.

Example:

&enumvalue=Var.STRing (ptr->member)
PRINT "&enumvalue"

Var.TYPEOF() Type of HLL expression

[build 28656 - DVD 06/2011] [Example]

Syntax: Var.TYPEOF(<hll_expression>)

Returns the type of the HLL expression. The expressions can also be TRACES32-internal variables, which
are created with the commands Var.NEWLOCAL and Var.NEWGLOBAL.

Parameter Type: String.
Return Value Type: String.

Example:

;Create some TRACE32-internal variables, integer \vall and
;character array \myStr, on the local PRACTICE stack frame

;Use the backslash for TRACE32-internal variables: '\vall', '\myStr'
Var .NEWLOCAL int \vall

Var .NEWLOCAL char([6][20] \myStr

//see Var .NEWLOCAL command for information about the local PRACTICE
//stack frame and on how to initialize TRACE32-internal variables

;Returns the type of the TRACE32-internal variables as a string
PRINT Var.TYPEOF (\vall) ;Returns in this case: "int"
PRINT Var.TYPEOF (\myStr) ;Returns in this case: "char [6][20]"

;Returns the type of the HLL expression as a string
;Omit the backslash for HLL expressions, here for 'flags'
PRINT Var.TYPEOF (flags) ;Returns in this case: "unsigned char [19]"

©1989-2024 Lauterbach General Function Reference | 403

Var.VALUE() Value of HLL expression

Syntax: Var.VALUE(<hll_expression>)

Returns the contents of the HLL expression.
Parameter Type: String.
Return Value Type: Hex value.

Example:

PRINT Var.VALUE (ast.fieldl)

PRINT Var.VALUE (i)

PRINT Var.VALUE (ast.left->count)

PRINT %Decimal Var.VALUE (func5(7,8,9))

©1989-2024 Lauterbach General Function Reference | 404

VCO Function

VCO() Frequency of VCO generator

Syntax: VCO()

Returns the set frequency of the VCO generator.

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 405

VERSION Functions

This figure provides an overview of the return values of some of the VERSION functions. For descriptions of
the illustrated functions and the functions not shown here, see below.

[A B:VERSION.ENVironment =n| Wl <

5: Windows 7 -
ID: henT32_1000001 T
5YS: T32

:\Users'hen'\AppData‘Local'Temp
:YWUsers'hen'\Documents 5
:4\T32%pdf

:YWUsers'hen'\Documents
:\Users'hen'\AppData‘Local'\Temp'henT32_1000001.t32

A T32\bin'windows64'\t32marm. exe -

VERSION.ENVironment(<name>)

RKING:
HELP:
HOME :
ONFIG:
EXE:

alalalalalalal

VERSION.BUILD.BASE() |
for the 1
lower build number !

* VERSION.BUILDY()

1 for the
Release Branch | | upper build number
1
1

——

! Development Branch time
1 1

Build numbers: —~ 26464. 28724.

For more information, see also:
. “Appendix - About the TRACE32 Software Version Numbers” (ide_user.pdf)
. “LICENSE Functions” (ide_func.pdf)

In This Section

See also

B VERSION 1 VERSION.BUILD()

1 VERSION.BUILD.BASE() 1 VERSION.CABLE()

1 VERSION.DATE() d VERSION.ENVironment()

1 VERSION.FirmWare.DEBUG() 1 VERSION.SERIAL()

1 VERSION.SERIAL.CABLE() 1 VERSION.SERIAL.DEBUG()

1 VERSION.SERIAL.Integrator() 1 VERSION.SERIAL.NEXUSadapter()
1 VERSION.SERIAL.POWERPROBE() 1 VERSION.SERIAL.POWERTRACEAUXPORT()
1 VERSION.SERIAL.PREPROcessor() 1 VERSION.SERIAL.SERialPort1()

1 VERSION.SERIAL.TRACE() 1 VERSION.SERIAL.WHISKER()

1 VERSION.SOFTWARE() 1 VERSION.SOFTWARE.TYPE()

©1989-2024 Lauterbach General Function Reference | 406

VERSION.BUILD() Upper build number

[Go to figure]

Syntax: VERSION.BUILD()

Returns the upper build number of TRACE32, e.g. 28724. Alias for SOFTWARE.BUILD().
The same version information is displayed in the VERSION.SOFTWARE window.

The VERSION.BUILD() number is greater than the VERSION.BUILD.BASE() number if the TRACE32
executable is a build from a branch with some changes (e.g. in the case of a release branch after a feature
freeze with included bug-fixes).

The VERSION.BUILD() number equals the VERSION.BUILD.BASE() number if the TRACE32 executable
is a snapshot build from the development branch. A snapshot build is also referred to as an interim build.

Return Value Type: Decimal value.

VERSION.BUILD.BASE() Lower build number
[build 15283 - DVD 10/2008] [Go to figure]
Syntax: VERSION.BUILD.BASE()
Returns the lower build number of TRACE32, e.g. Alias for SOFTWARE.BUILD.BASE().

Return Value Type: Decimal value.

©1989-2024 Lauterbach General Function Reference | 407

VERSION.CABLE() Hardware version of debug cable

Syntax: VERSION.CABLE()

Returns the hardware version of the debug cable.

Return Value Type: Decimal value.

VERSION.DATE() Version date YYYY/MM

[build 32168 - DVD 02/2012]

Syntax: VERSION.DATE()

Returns the date of the main software in the form YYYY/MM. e.g. "2016/07"

Return Value Type: String.

VERSION.ENVironment() TRACES32 environment setting

[build 38327 - DVD 08/2012] [Go to figure]

Syntax: VERSION.ENVironment(<name>)

Returns a single TRACES32 environment setting as shown in the VERSION.ENVironment window.

Parameter and Description:

<name> Parameter Type: String. Specify the environment setting by name.

Return Value Type: String.
Example:

;returns the path of the used TRACE32 config file
PRINT VERSION.ENVironment (CONFIG)

;returns the version number of the used QT-Library
PRINT VERSION.ENVironment (QT)

©1989-2024 Lauterbach General Function Reference | 408

VERSION.FirmWare.DEBUG() Version number of firmware

[build 34337 - DVD 02/2012]

Syntax: VERSION.FirmWare.DEBUG()

Returns the version number of the firmware of a PowerDebug or PowerTrace module - if the module is the
first Podbus device. Otherwise it returns zero.

b T325tart [F=5 Eol 5
4 -] Configuration Tree
7] Settings Slall
--f3] Example Configuration Add.
7] ARM_USE
a == 1 Podbus Device Chain Delete
~ 4fED 1: Power Debug USE I First device in PodBus device chain
@] ConnectionType: USE
-1 USE Seftings
-4l 1: Core

Return Value Type: Float.

VERSION.SERIAL() Serial number

Syntax: VERSION.SERIAL()

Returns the serial number of the system.

Return Value Type: String.

VERSION.SERIAL.CABLE() First serial number of debug cable

[build 21341 - DVD 04/2010]

Syntax: VERSION.SERIAL.CABLE()

Returns the first serial number of the plugged debug cable. It is the same value that is also shown in the
VERSION.HARDWARE window. To return all serial numbers, use LICENSE.SERIAL().

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 409

VERSION.SERIAL.DEBUG() Serial number of debug module

[build 11815 - DVD 10/2008]

Syntax: VERSION.SERIAL.DEBUG()

Returns the serial number of the debug module. It is the same value that is also shown in the
VERSION.HARDWARE window.

Return Value Type: String.

VERSION.SERIAL.Integrator() Serial number of Powerlntegrator

[build 59902 - DVD 02/2015]

Syntax: VERSION.SERIAL.Integrator()

Returns the serial number of the PowerIntegrator or PowerIntegrator-Il. It is the same value that is also
shown in the VERSION.HARDWARE window.

Return Value Type: String.

VERSION.SERIAL.NEXUSadapter() Serial number of nexus adapter

[build 59902 - DVD 02/2015]

Syntax: VERSION.SERIAL.NEXUSadapter()

Returns the serial number of the nexus adapter or preprocessor. It is the same value that is also shown in
the VERSION.HARDWARE window.

Return Value Type: String.

VERSION.SERIAL.PREPROcessor() Serial number of preprocessor

[build 11815 - DVD 10/2008]

Syntax: VERSION.SERIAL.PREPROcessor()

Returns the serial number of the preprocessor. It is the same value that is also shown in the
VERSION.HARDWARE window.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 410

VERSION.SERIAL.POWERPROBE() Serial number of PowerProbe

[build 59902 - DVD 02/2015]

Syntax: VERSION.SERIAL.POWERPROBE()

Returns the serial number of the PowerProbe. It is the same value that is also shown in the
VERSION.HARDWARE window.

Return Value Type: String.

VERSION.SERIAL.POWERTRACEAUXPORT() S/N of device at PT aux port

[build 133662 - DVD 02/2021]

Syntax: VERSION.SERIAL.POWERTRACEAUXPORT()

Returns the serial number of the Lauterbach device plugged to the AUX PORT of a PowerTrace. It is the
same value that is also shown in the VERSION.HARDWARE window.

Return Value Type: String.

VERSION.SERIAL.SERialPort1() = S/N of device at Serial Port 1 of PT Serial

[build 156822 - DVD 02/2023]

Syntax: VERSION.SERIAL.SERialPort1()

Returns the serial number of the Lauterbach device (adapter or preprocessor) plugged to the Serial Port 1 of
a PowerTrace Serial.

Return Value Type: String.

VERSION.SERIAL.WHISKER() S/N of whiskers at CombiProbe or pTrace

[build 133662 - DVD 02/2021]

Syntax: VERSION.SERIAL.WHISKER(<int>)

Returns the serial number of the whisker cable connected to the connector specified by <int> plugged to a
CombiProbe, pTrace (MicroTrace), or QuadProbe or.

It is the same value that is also shown in the VERSION.HARDWARE window.

For the meaning of the <int> Parameter see command ID.WHISKER().

Note, that only some whisker actually contain a serial number. For all the others, the function returns an

empty string.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 411

VERSION.SERIAL.TRACE() Serial number of trace module

[build 11815 - DVD 10/2008]

Syntax: VERSION.SERIAL.TRACE()

Returns the serial number of the trace module. It is the same value that is also shown in the
VERSION.HARDWARE window.

Return Value Type: String.

©1989-2024 Lauterbach General Function Reference | 412

VERSION.SOFTWARE() Release build or nightly build, etc.

[build 24375 - DVD 11/2010]

Syntax: VERSION.SOFTWARE()

Returns the version of the main software. Alias for SOFTWARE.VERSION().
Return Value Type: String.

Return Value Format: <type>.<year>.<month>.<build_number> where the building block <type> can be
one of the following:

. R: release build

J P: pre-release build

. N: nightly build

. S: interim build (“snapshot”)

o F: feature build

For more information about the <type> building blocks, see “Appendix - About the TRACE32 Software
Version Numbers” in PowerView User's Guide, page 129 (ide_user.pdf).

Examples:
PRINT VERSION.SOFTWARE () ;print the software version
;check whether the TRACE32 software being used matches a certain release

IF VERSION.SOFTWARE() !="R.2010.07.000024615"
PRINT "wrong TRACE32 SW started"

©1989-2024 Lauterbach General Function Reference | 413

VERSION.SOFTWARE.TYPE() Software build type

[build 160045 - DVD 09/2023]

Syntax: VERSION.SOFTWARE.TYPE()

Returns the version type of the main software.
Return Value Type: String.

Return Value Format: <type>:

. R: release build

J P: pre-release build

. N: nightly build

. S: interim build (“snapshot”)

o F: feature build

For more information about the <type> building blocks, see “Appendix - About the TRACE32 Software
Version Numbers” in PowerView User's Guide, page 129 (ide_user.pdf).

Examples:
PRINT VERSION.SOFTWARE.TYPE () ;print the software version type
;check whether the TRACE32 software being used is not a release version

IF VERSION.SOFTWARE.TYPE() !="R"
PRINT "wrong TRACE32 SW started"

©1989-2024 Lauterbach General Function Reference | 414

VPU Functions

In This Section

See also
B VPU a VPU() Q VPUCR()
VPU() Value of VPU register
Syntax: VPU(<register_name>.W0 .. .W3)

Returns the content of the selected VPU register.
Parameter Type: String.

Return Value Type: Hex value.

Example:
PRINT VPU (VR2.W3) ;returns word 3 of register VR2
VPUCR() Value of VRSAVE or VSCR register
Syntax: VPUCR(<register>)
<register>: VRSAVE | VSCR

Returns the content of the registers VRSAVE or VSCR.
Parameter Type: String.

Return Value Type: Hex value.

Example:

PRINT VPUCR (VRSAVE) ;returns the content of register VRSAVE

©1989-2024 Lauterbach General Function Reference | 415

	General Function Reference
	History
	In This Document
	How This Document is Organized
	Difference between Functions and Commands in TRACE32
	Purpose of Functions
	Example 1: Return Status of the Target
	Example 2: Return Status of a TRACE32 Tool
	Example 3: Return the Version Number
	Example 4: Convert a String

	How to Use Functions
	Example 1: In PRACTICE Scripts
	Example 2: As Parameters in Commands
	Example 3: Together with the Output Commands PRINT and Data.Print
	Example 4: Address Function and Their Access Class Specifiers

	Which Return Values of Functions can be Printed?
	Related Documents

	ACCESS Functions
	In This Section
	ACCESS.isGUEST() TRUE if access class belongs to guest
	ACCESS.isHYPERVISOR() TRUE if access class belongs to hypervisor

	ADDRESS Functions
	In This Section
	ADDRESS.ACCESS() Access class as ordinal number
	ADDRESS.ACCESS.CMP() Compare access classes
	ADDRESS.ACCESS.CMPSTRICT() Compare access classes, strict
	ADDRESS.EXPANDACCESS() Fully qualified access class
	ADDRESS.INSTR.LEN() Length of instruction
	ADDRESS.isDATA() Check if memory class refers to data
	ADDRESS.isGUEST() TRUE if address is guest address
	ADDRESS.isHYPERVISOR() TRUE if address is hypervisor address
	ADDRESS.isINTERMEDIATE() Check if intermediate address
	ADDRESS.isNONSECURE() TRUE if non-secure (TrustZone) access
	ADDRESS.isNONSECUREEX() TRUE if non-secure access
	ADDRESS.MACHINEID() Extract machine ID
	ADDRESS.MAU() Minimal addressable unit size (MAU)
	ADDRESS.OFFSET() Address without class
	ADDRESS.isONCHIP() TRUE if on-chip address area
	ADDRESS.isPHYSICAL() TRUE if physical address
	ADDRESS.isPROGRAM() TRUE if program address
	ADDRESS.isSECURE() TRUE if secure (TrustZone) access
	ADDRESS.isSECUREEX() TRUE if secure access
	ADDRESS.RANGE.BEGIN() Lowest address value of address range
	ADDRESS.RANGE.END() Highest address value of address range
	ADDRESS.RANGE.SIZE() Size of address range
	ADDRESS.SEGMENT() Segment of an address
	ADDRESS.STRACCESS() Access class of an address

	Analyzer Functions
	In This Section
	Analyzer() Check if Analyzer command group is available
	Analyzer.CONFIG.<powertrace>() Check if specified PowerTrace connected
	Analyzer.COUNTER.EVENT() Get value of trigger program event counter
	Analyzer.COUNTER.TIME() Get value of trigger program time counter
	Analyzer.DSEL() For internal usage only
	Analyzer.FIRST() Get record number of first trace record
	Analyzer.FLOW.ERRORS() Get number of flow errors / hard errors
	Analyzer.FLOW.FIFOFULL() Get number of FIFO overflows
	Analyzer.FOCUS.EYE() Check quality of data eye
	Analyzer.ISCHANNELUP() Check if serial link is established
	Analyzer.MAXSIZE() Get max. size of trace buffer in records
	Analyzer.MODE() Get Analyzer recording mode
	Analyzer.MODE.FLOW() Check if Analyzer operates as flowtrace
	Analyzer.PCIE.CONFIG() Value of register field from PCIe configuration
	Analyzer.PCIE.ISCONFIGURED() TRUE if prerequisites are fulfilled
	Analyzer.PCIE.Register() Value of 32-bit register from PCIe configuration
	Analyzer.PROBEREVISION() Get revision of StarCore NEXUS probe
	Analyzer.RECORDS() Get number of used trace records
	Analyzer.RECORD.ADDRESS() Get address recorded in trace record
	Analyzer.RECORD.DATA() Get data recorded in trace record
	Analyzer.RECORD.OFFSET() Get address in trace record as number
	Analyzer.RECORD.TIME() Get timestamp of trace record
	Analyzer.REF() Get record number of reference record
	Analyzer.SIZE() Get current trace buffer size in records
	Analyzer.STATE() Get state of Analyzer
	Analyzer.THRESHOLD() Get threshold voltage of parallel preprocessor
	Analyzer.TraceCONNECT() Name of trace sink of the SoC
	Analyzer.TRACK.RECORD() Get record number matching search
	Analyzer.TRIGGER.TIME() Time of trigger point in trace

	ARM Function
	ARMARCHVERSION() ARM architecture version of CPU

	Advanced Register Trace (ART) Functions
	In This Section
	ART.FIRST() Get record number of first trace record
	ART.MAXSIZE() Get max. size of trace buffer in records
	ART.MODE() Get ART recording mode
	ART.RECORD.ADDRESS() Get address recorded in trace record
	ART.RECORD.OFFSET() Get address in trace record as number
	ART.RECORD.TIME() Get timestamp of trace record
	ART.RECORDS() Get number of used trace records
	ART.REF() Get record number of reference record
	ART.SIZE() Get current trace buffer size in records
	ART.STATE() Get state of ART trace
	ART.TRACK.RECORD() Get record number matching search

	AUTOFOCUS Functions
	In This Section
	AUTOFOCUS() TRUE if AutoFocus preprocessor attached
	AUTOFOCUS.OK() TRUE if command execution successful
	AUTOFOCUS.FREQUENCY() Frequency of trace-port clock

	AVX Functions
	In This Section
	AVX() Content of AVX register
	AVX512() Content of AVX512 register

	Break Functions
	In This Section
	Break.Alpha.EXIST() TRUE if Alpha breakpoint exists
	Break.Beta.EXIST() TRUE if Beta breakpoint exist
	Break.Charly.EXIST() TRUE if Charly breakpoint exists
	Break.Program.EXIST() TRUE if enabled program breakpoint exists
	Break.ReadWrite.EXIST() TRUE if enabled data address breakpoint exists

	BMC Functions (Benchmark Counter)
	In This Section
	BMC.CLOCK() Frequency of core clock
	BMC.COUNTER() Value of a benchmark counter
	BMC.COUNTER.BYNAME() Value of a benchmark counter
	BMC.COUNTER.CORE() Value of a benchmark counter
	BMC.COUNTER.BYNAME.CORE() Value of a benchmark counter
	BMC.OVERFLOW() TRUE if benchmark counter overflow
	BMC.OVERFLOW.BYNAME() TRUE if benchmark counter overflow
	BMC.OVERFLOW.CORE() TRUE if benchmark counter overflow
	BMC.OVERFLOW.BYNAME.CORE() TRUE if benchmark counter overflow

	Boundary Scan Description Language (BSDL) Functions
	In This Section
	BSDL.CHECK.BYPASS() Chain bypass test
	BSDL.CHECK.FLASHCONF() Flash configuration test
	BSDL.CHECK.IDCODE() Chain IDCODE test
	BSDL.GetDRBit() Data register bit
	BSDL.GetPortLevel() Port level value

	CABLE Functions
	In This Section
	CABLE.GalvanicISOlation() Cable has galvanic isolation
	CABLE.GalvanicISOlation.FIRMWARE() Adapter firmware version
	CABLE.GalvanicISOlation.SERIAL() Serial number of adapter
	CABLE.NAME() Name of debug cable
	CABLE.SERIAL() Serial number of debug cable
	CABLE.TWOWIRE() TRUE if two-wire debugging supported

	CACHE Functions
	In This Section
	CACHE.DC.DIRTY() Dirty-flag of L1 Data Cache Line
	CACHE.DC.DIRTYMASK() Dirty-flag mask of L1 Data Cache Line
	CACHE.DC.LRU() LRU information of L1 Data Cache Line
	CACHE.DC.TAG() Address Tag of L1 Data Cache Line
	CACHE.DC.VALID() Valid-flag of L1 Data Cache Line
	CACHE.DC.VALIDMASK() Valid-flag mask of L1 Data Cache Line
	CACHE.IC.DIRTY() Dirty-flag of L1 Unified Cache Line
	CACHE.IC.DIRTYMASK() Dirty-flag mask of L1 Unified Cache Line
	CACHE.IC.LRU() LRU information of L1 Instruction Cache Line
	CACHE.IC.TAG() Address Tag of L1 Instruction Cache Line
	CACHE.IC.VALID() Valid-flag of L1 Instruction Cache Line
	CACHE.IC.VALIDMASK() Valid-flag mask of L1 Instruction Cache Line
	CACHE.L2.DIRTY() Dirty-flag of L2 Cache Line
	CACHE.L2.DIRTYMASK() Dirty-flag mask of L2 Cache Line
	CACHE.L2.LRU() LRU information of L2 Cache Line
	CACHE.L2.SHARED() Shared-flag of L2 Cache Line
	CACHE.L2.SHAREDMASK() Shared-flag mask of L2 Cache Line
	CACHE.L2.TAG() Address Tag of L2 Cache Line
	CACHE.L2.VALID() Valid-flag of L2 Cache Line
	CACHE.L2.VALIDMASK() Valid-flag mask of L2 Cache Line
	CACHE.L3.DIRTY() Dirty-flag of L3 Cache Line
	CACHE.L3.DIRTYMASK() Dirty-flag of L3 Cache Line
	CACHE.L3.LRU() LRU information of L3 Cache Line
	CACHE.L3.TAG() Address Tag of L3 Cache Line
	CACHE.L3.VALID() Valid-flag of L3 Cache Line
	CACHE.L3.VALIDMASK() Valid-flag mask of L3 Cache Line

	CAnalyzer Functions
	In This Section
	CAnalyzer() Check if CAnalyzer command group is available
	CAnalyzer.BOTHCables() TRUE if both debug cables are plugged
	CAnalyzer.CableTYPE() Type of adapter
	CAnalyzer.DebugCable() CombiProbe whisker cable is A or B
	CAnalyzer.FEATURE() Query features of CAnalyzer hardware
	CAnalyzer.FIRST() Get record number of first trace record
	CAnalyzer.MAXSIZE() Get max. size of trace buffer in records
	CAnalyzer.PIN() Status of trace pins
	CAnalyzer.RECORD.ADDRESS() Get address recorded in trace record
	CAnalyzer.RECORD.DATA() Get data recorded in trace record
	CAnalyzer.RECORD.OFFSET() Get address in trace record as number
	CAnalyzer.RECORD.TIME() Get timestamp of trace record
	CAnalyzer.RECORDS() Get number of used trace records
	CAnalyzer.REF() Get record number of reference record
	CAnalyzer.SIZE() Get current trace buffer size in records
	CAnalyzer.STATE() Get state of Compact Analyzer
	CAnalyzer.TraceCLOCK() Get trace port frequency
	CAnalyzer.TraceCONNECT() Name of trace sink of the SoC
	CAnalyzer.TracePort() CombiProbe whisker cable is A or B
	CAnalyzer.TRACK.RECORD() Get record number matching search

	CERBEURS Functions
	CERBERUS.IOINFO() IOINFO of Cerberus module
	CERBERUS.IOINFO.IFLCK() TRUE if IF_LCK bit in Cerberus INONFO set

	CHIP Functions
	CHIP.EmulationDevice() TRUE if emulation device
	CHIP.STEPping() Major silicon step of an TriCore AURIX device

	CIProbe Functions (Analog Probe for CombiProbe or µTrace)
	In This Section
	CIProbe() TRUE if Compact Analyzer hardware
	CIProbe.ADC.ENABLE() TRUE if channel is enabled
	CIProbe.ADC.SHUNT() Get shunt-resistor value
	CIProbe.MAXSIZE() Get max. size of trace buffer in records
	CIProbe.RECORDS() Get number of used trace records
	CIProbe.SIZE() Get current trace buffer size in records
	CIProbe.STATE() Get state of Compact Analyzer for CIProbe
	CIProbe.TRACK.RECORD() Get record number matching search

	CMI Function
	CMIBASE() Base addresses of CMI modules

	COMPonent Functions
	In This Section
	COMPonent.AVAILABLE() TRUE if debug/trace peripherals available on CPU
	COMPonent.BASE() Base address of debug/trace peripherals
	COMPonent.NAME() User-defined name of debug/trace peripherals
	COMPonent.TYPE() Type of debug/trace peripherals
	COMPonentNAME() Name of debug/trace peripheral
	COMPonentNUMBER() Number of valid debug/trace peripherals

	CORE Functions
	In This Section
	CONFIGNUMBER() Number of cores configured in TRACE32
	CORE() Get the selected core
	CORE.ISACTIVE() TRUE if this core is active
	CORE.ISASSIGNED() TRUE if physical core is assigned to debug session
	CORE.LOGICALTOPHYSICAL() This is the physical core number
	CORE.NAMES() Physical core names assigned to TRACE32
	CORENAME() Name of core within selected chip
	CORE.NUMBER() Number of logical cores
	CORE.PHYSICALTOLOGICAL() Logical core number of physical core

	Count Functions
	In This Section
	Count.Frequency() Frequency of last measurement
	Count.LEVEL() Level of frequency counter input
	Count.Time() Time of last measurement
	Count.VALUE() Samples of the Count.GO command

	COVerage Functions
	In This Section
	COVerage.BDONE() Byte count of all executed instructions
	COVerage.IDLE() TRUE if all trace data for code coverage are processed
	COVerage.LOAD.KEY() Key from last ACD file
	COVerage.Percentage() Percentage of code coverage
	COVerage.SCOPE() Degree of code coverage
	COVerage.SourceMetric() Active code coverage criterion
	COVerage.TreeWalk() Walk symbol tree

	CPU Functions
	In This Section
	CPU.ADDRESS() Start address of memory section
	CPU.ADDRESS.PhysicalINDEX() Section start address of given core
	CPU.FEATURE() TRUE if CPU feature exists
	CPU.PINCOUNT() For internal usage only
	CPUBONDOUT() Name of boundout processor
	CPUCOREVERSION() Core or architecture version of CPU
	CPUDERIVATE() Main part of processor name
	CPUFAMILY() Family name of processor
	CPUHELP() For internal usage only
	CPUIS() TRUE if search string matches processor name
	CPUIS64BIT() TRUE if 64-bit architecture

	DAP Functions
	In This Section
	DAP.Available() TRUE if debugging via DAP is supported
	DAP.USER<x>() Status of the DAP user pin

	Data Functions
	In This Section
	Data.<value_width>() Memory contents in default endianness
	Data.<value_width>.<endianness>() Mem. contents in specified byte order
	Data.<value_width>.<access_width>() Mem. contents in specified width
	Data.AL.ERRORS() Get number of errors detected by Data.AllocList
	Data.Float() Get floating point number
	Data.STRing() Get zero-terminated string
	Data.STRingN() Get zero-terminated string with a maximum length
	Data.SUM() Get checksum
	Data.SWAP.<value_width>.<swap_width>() Swap byte groups in word
	Data.WSTRING() Get zero-terminated wide string
	Data.WSTRING.BigEndian() Get big-endian wide string
	Data.WSTRING.LittleEndian() Get little-endian wide string

	DEBUGGER Function
	DEBUGGER.FEATURE() Check debugger feature

	DEBUGMODE Function
	DEBUGMODE() Current debug mode

	DISASSEMBLE Function
	DISASSEMBLE.ADDRESS() Disassembled instruction at address

	DONGLEID Function
	DONGLEID() Serial number of USB WibuKey

	ELA Function (ARM Coresight Embedded Logic Analyzer)
	ELABASE() ELA base address

	DPP Function (C166/ST10 only)
	DPP() Content of DPP register

	EPOC Functions
	In This Section
	EPOC.DATAADDRESS() Start address of data area (EPOC debugger)
	EPOC.ENTRYPOINT() Entry address of debug task
	EPOC.TEXTADDRESS() Start address of code area (EPOC debugger)

	ERROR Functions (target-dependent)
	ERROR.ADDRESS() Address of last occurred memory access error

	ETM Functions
	In This Section
	ETM() TRUE if ETM trace is available
	ETM.ADDRCOMP() For internal usage only
	ETM.ADDRCOMPTOTAL() Number of ETM address comparator pair
	ETM.COUNTERS() Number of ETM counters
	ETM.DATACOMP() Number of ETM data comparators
	ETM.EXTIN() Number of internal ETM inputs
	ETM.EXTOUT() Number of external ETM outputs
	ETM.FIFOFULL() ETM fifofull logic
	ETM.MAP() Number of ETM memory map decoders
	ETM.PROTOCOL() Version of ETM protocol
	ETM.SEQUENCER() Number of ETM sequencers
	ETM.TraceCore() TRUE if the core is traced

	EXTENDED Function (Z80 only)
	EXTENDED() TRUE if register CBAR > 0

	FDX Function
	FDX.INSTRING() Content at FDX memory address
	FDX.TargetSTALLS() Monitor FDX communication stalls on the target

	FLAG Functions
	In This Section
	FLAG() TRUE if hardware flag system available
	FLAG.READ() FLAG memory bytes with read access bit
	FLAG.WRITE() FLAG memory bytes with write access bit

	FLASH Functions
	In This Section
	FLASH.CFI.SIZE() Size of FLASH devices
	FLASH.CFI.WIDTH() Data bus width of FLASH devices
	FLASH.CLocK.Frequency() FLASH clock value
	FLASH.ID() FLASH manufacturer and device ID
	FLASH.List.STATE.PENDING() Number of pending sectors
	FLASH.List.TYPE() FLASH family code of FLASH list entry
	FLASH.ProgramMODE() FLASH programming modes
	FLASH.ProgramMODE.OPTION() FLASH programming options
	FLASH.SECTOR.BEGIN() Start address
	FLASH.SECTOR.END() End address
	FLASH.SECTOR.EXIST() TRUE if sector exists
	FLASH.SECTOR.EXTRAvalue() Extra value of FLASH.Create
	FLASH.SECTOR.NEXT() Address of next sector
	FLASH.SECTOR.OTP() TRUE if OTP sector
	FLASH.SECTOR.OPTION() Options of a FLASH sector
	FLASH.SECTOR.RANGE() Address range of a FLASH sector
	FLASH.SECTOR.SIZE() Size in bytes
	FLASH.SECTOR.STATE() FLASH programming state
	FLASH.SECTOR.TYPE() FLASH family code of sector
	FLASH.SECTOR.WIDTH() Width of FLASH sector
	FLASH.TARGET.BUILD() Build number of FLASH algorithm file
	FLASH.TARGET.CODERANGE() Code range of FLASH algorithm
	FLASH.TARGET.DATARANGE() Data range of FLASH algorithm
	FLASH.TARGET.FILE() Name of FLASH algorithm file
	FLASH.UNIT() Unit number of FLASH sector
	FLASH.UNIT.BEGIN() Unit start address
	FLASH.UNIT.END() Unit end address
	FLASH.UNIT.EXIST() TRUE if unit exists
	FLASH.UNIT.NEXT() Number of next unit

	FLASHFILE Functions
	In This Section
	FLASHFILE.GETBADBLOCK.COUNT() Number of bad blocks
	FLASHFILE.GETBADBLOCK.NEXT() Address of bad block
	FLASHFILE.SPAREADDRESS() Address of spare area

	FPU Functions (Floating Point Unit)
	In This Section
	FPU() FPU register contents
	FPUCR() FPU control register contents
	FPU.RAW() FPU register raw contents

	FXU Function
	FXU() Content of FXU register

	GROUP Function
	GROUP.EXIST() TRUE if group exists

	Hardware Functions
	In This Section
	hardware.COMBIPROBE() TRUE if CombiProbe
	hardware.ESI() TRUE if EPROM Simulator
	hardware.ICD() TRUE if TRACE32 debug hardware
	hardware.POWERDEBUG() TRUE if TRACE32 PowerDebug hardware
	hardware.POWERINTEGRATOR() TRUE if a PowerIntergrator
	hardware.POWERINTEGRATOR2() TRUE if a PowerIntegrator II
	hardware.POWERNEXUS() TRUE is a NEXUS Adapter
	hardware.POWERPROBE() TRUE is a PowerProbe
	hardware.POWERTRACE() TRUE if a PowerTrace Module
	hardware.POWERTRACE2() TRUE if a PowerTrace II
	hardware.POWERTRACE2LITE() TRUE if a PowerTrace II LITE
	hardware.POWERTRACE3() TRUE if a PowerTrace III
	hardware.POWERTRACEPX() TRUE if a PowerTrace PX
	hardware.POWERTRACESERIAL() TRUE if a PowerTrace Serial
	hardware.POWERTRACESERIAL2() TRUE if a PowerTrace Serial II
	hardware.QUADPROBE() TRUE if QuadProbe
	hardware.UTRACE() TRUE if µTrace

	HVX Function
	HVX() Content of HVX register

	I2C Functions
	In This Section
	I2C.DATA() Data read by I2C.TRANSFER
	I2C.PIN() Pin status

	ID Functions
	In This Section
	ID.CABLE() Hardware ID of debug cable
	ID.POWERTRACEAUXPORT() Hardware ID of device at PT aux port
	ID.PREPROcessor() Hardware ID of preprocessor
	ID.SERialPort1() Type-ID of Adapter or Preprocessor at PowerTrace Serial
	ID.WHISKER() ID of whisker cable
	IDCODE() ID code of TAP in JTAG chain
	IDCODENUMBER() Number of detected TAPs

	Integrator Functions
	In This Section
	Integrator() TRUE if PowerIntegrator
	Integrator.FIRST() Get record number of first trace record
	Integrator.ADC.ENABLE() Bitmask of enabled analog channels
	Integrator.ADC.SHUNT() Shunt-resistor value
	Integrator.ANALOG()
	Integrator.COUNTER.EVENT() Get value of trigger program event counter
	Integrator.COUNTER.EXTERN() Value of trigger program external counter
	Integrator.COUNTER.TIME() Get value of trigger program time counter
	Integrator.DIALOGDSEL() For internal usage only
	Integrator.DIALOGDSELGET() For internal usage only
	Integrator.DSEL() For internal usage only
	Integrator.FIND.PI_CHANNEL() For internal usage only
	Integrator.FIND.PI_WORD() TRUE if signal word is defined
	Integrator.FLAG() Check state of trigger program FLAG
	Integrator.GET() Value of channel
	Integrator.MAXSIZE() Get max. size of trace buffer in records
	Integrator.PROBE() For internal usage only
	Integrator.PROGRAMFILENAME() File name of trigger program
	Integrator.RECORD.DATA() Get data recorded in trace record
	Integrator.RECORD.TIME() Get timestamp of trace record
	Integrator.RECORDS() Get number of used trace records
	Integrator.REF() Get record number of reference record
	Integrator.SIZE() Get current trace buffer size in records
	Integrator.STATE() Get state of the Integrator
	Integrator.TRACK.RECORD() Get record number matching search
	Integrator.USB() For internal usage only

	INTERFACE Functions
	In This Section
	INTERFACE.CADI() TRUE if connection to target is via CADI interface
	INTERFACE.GDB() TRUE if connection to target is via GDB interface
	INTERFACE.GDI() TRUE if connection to target via GDI interface
	INTERFACE.HOST() TRUE if application is debugged on host
	interface.HOSTMCI() TRUE if TRACE32 debug driver runs on host
	INTERFACE.IRIS() TRUE if connection to target is via IRIS interface
	INTERFACE.MCD() TRUE if connection to target via MCD interface
	INTERFACE.NAME() Name of debugger
	INTERFACE.QNX() TRUE if PBI=QNX
	INTERFACE.SIM() TRUE if simulator

	IOBASE Functions
	In This Section
	IOBASE() Base address of internal I/O’s
	IOBASE.ADDRESS() Base address of internal I/O’s with access class
	IOBASE2() Second base address of internal I/O’s

	IProbe Functions
	In This Section
	IProbe() TRUE if IPROBE
	IProbe.ADC.ENABLE() TRUE if channel is enabled
	IProbe.ADC.SHUNT() Shunt resistor value of channel
	IProbe.ANALOG() TRUE if Analog Probe is plugged
	IProbe.FIRST() Get record number of first trace record
	IProbe.GET() Value of channel
	IProbe.MAXSIZE() Get max. size of trace buffer in records
	IProbe.PROBE()
	IProbe.RECORD.DATA() Get data recorded in trace record
	IProbe.RECORD.TIME() Get timestamp of trace record
	IProbe.RECORDS() Get number of used trace records
	IProbe.REF() Get record number of reference record
	IProbe.SIZE() Get current trace buffer size in records
	IProbe.STATE() Get state of IProbe
	IProbe.TRACK.RECORD() Get record number matching search

	JTAG Functions
	In This Section
	JTAG.MIPI34() Query special MIPI34 pins
	JTAG.PIN() Level of JTAG signal
	JTAG.SEQuence.RESULT() Get result of JTAG sequence
	JTAG.SEQuence.EXIST() Check if a JTAG sequence exists
	JTAG.SEQuence.LOCKED() Check if a JTAG sequence is locked
	JTAG.SHIFT() TDO output of JTAG shift
	JTAG.X7EFUSE.RESULT() Result of JTAG.X7EFUSE command
	JTAG.X7EFUSE.CNTL() CNTL flags read by JTAG.X7EFUSE command
	JTAG.X7EFUSE.DNA() DNA value read by JTAG.X7EFUSE command
	JTAG.X7EFUSE.KEY() AES key read by JTAG.X7EFUSE command
	JTAG.X7EFUSE.USER() User code read by JTAG.X7EFUSE command
	JTAG.XUSEFUSE.RESULT() Result of JTAG.XUSEFUSE command
	JTAG.XUSEFUSE.CNTL() CNTL value read by JTAG.XUSEFUSE command
	JTAG.XUSEFUSE.DNA() DNA value read by JTAG.XUSEFUSE command
	JTAG.XUSEFUSE.KEY() AES key read by JTAG.XUSEFUSE command
	JTAG.XUSEFUSE.RSA() RSA hash read by JTAG.XUSEFUSE command
	JTAG.XUSEFUSE.SEC() SEC value read by JTAG.XUSEFUSE command
	JTAG.XUSEFUSE.USER() User code read by JTAG.XUSEFUSE command
	JTAG.XUSEFUSE.USER128() 128 bit User code read by JTAG.XUSEFUSE

	LOGGER Functions
	In This Section
	LOGGER.FIRST() Get record number of first trace record
	LOGGER.RECORD.ADDRESS() Get address recorded in trace record
	LOGGER.RECORD.DATA() Get data recorded in trace record
	LOGGER.RECORD.OFFSET() Get address in trace record as number
	LOGGER.RECORD.TIME() Get timestamp of trace record
	LOGGER.RECORDS() Get number of used trace records
	LOGGER.REF() Get record number of reference record
	LOGGER.SIZE() Get current trace buffer size in records
	LOGGER.STATE() Get state of Logger trace

	MachO Format Function (Apple)
	MACHO.LASTUUID() Universally unique identifier of MachO file

	MAP Functions
	In This Section
	MAP.ROMSIZE() Size of the defined ROM

	MCDS Functions
	In This Section
	MCDS.MODULE.NAME() Name of MCDS module
	MCDS.MODULE.NUMBER() Number-part of MCDS module ID
	MCDS.MODULE.REVision() Revision-part of MCDS module ID
	MCDS.MODULE.TYPE() Type-part of MCDS module ID
	MCDS.STATE() MCDS module is switched on/off
	MCDS.TraceBuffer.LowerGAP() Trace buffer lower gap
	MCDS.TraceBuffer.SIZE() Trace buffer size
	MCDS.TraceBuffer.UpperGAP() Trace buffer upper gap

	MMU Functions (Memory Management Unit)
	In This Section
	MMU() Value of MMU register
	MMU.DEFAULTPT() Base address of default page table
	MMU.DEFAULTTRANS.<range>() Query MMU setup
	MMU.FORMAT() Currently selected MMU format
	MMU.FORMAT.DETECTED() Auto-detection of page table format
	MMU.FORMAT.DETECTED.ZONE() Auto-detection of page table format

	MMX Function (MultiMedia eXtension)
	MMX() Value of MMX register

	MONITOR Function
	MONITOR() TRUE if debugger is running as monitor

	NEXUS Functions
	In This Section
	NEXUS() TRUE if Nexus trace is supported
	NEXUS.RTTBUILD() RTT build register
	NEXUS.PortMode() Current PortMode setting
	NEXUS.PortSize() Current PortSize setting

	Onchip Functions
	In This Section
	Onchip() TRUE if the onchip trace is available
	Onchip.FIRST() Get record number of first trace record
	Onchip.FLOW.ERRORS() Get number of flow errors / hard errors
	Onchip.FLOW.FIFOFULL() Get number of FIFO overflows
	Onchip.MAXSIZE() Get max. size of trace buffer in records
	Onchip.RECORD.ADDRESS() Get address recorded in trace record
	Onchip.RECORD.DATA() Get data recorded in trace record
	Onchip.RECORD.OFFSET() Get address in trace record as number
	Onchip.RECORD.TIME() Get timestamp of trace record
	Onchip.RECORDS() Get number of used trace records
	Onchip.REF() Get record number of reference record
	Onchip.SIZE() Get current trace buffer size in records
	Onchip.STATE() Get state of Onchip trace
	Onchip.TraceCONNECT() Name of trace sink of the SoC
	Onchip.TRACK.RECORD() Get record number matching search

	PBI Function
	PBI() Name of used debug back-end

	PCI Functions
	In This Section
	PCI.Read.B() Byte from PCI register
	PCI.Read.L() Long from PCI register
	PCI.Read.W() Word from PCI register

	PER Functions
	In This Section
	PER.<width>() Memory contents in default endianness
	PER.<width>.<endianness>() Memory contents in specified endianness
	PER.ADDRESS() Address of register(field)
	PER.ADDRESS.<sub_cmd>() Check access security in PER file
	PER.ARG() Argument of PER.view command
	PER.ARG.ADDRESS() Address argument of PER.view command
	PER.BASE() Last BASE address
	PER.Buffer.<width>() Value from buffer
	PER.EVAL() Value of expression in PER file
	PER.FILENAME() PER file name
	PER.SAVEINDEX() Value from indexed register
	PER.VALUE() Value of register(field)
	PER.VALUE.STRING() Value of BITFLD as string

	PERF Functions (Performance)
	In This Section
	PERF.MEMORY.HITS() Number of memory samples
	PERF.MEMORY.SnoopAddress() Snoop memory address
	PERF.MEMORY.SnoopSize() Snoop size
	PERF.METHOD() Recording method
	PERF.MODE() Get Performance Analyzer recording mode
	PERF.PC.HITS() Number of PC samples
	PERF.RATE() Number of snoops per second
	PERF.RunTime() Retained time for program run
	PERF.SNOOPFAILS() Number of snoop fails
	PERF.STATE() Get state of Performance Analyzer
	PERF.TASK.HITS() Number of task samples

	Port Analyzer Functions
	In This Section
	PORT.GET() Value of channel
	PORT.MAXSIZE() Get max. size of trace buffer in records
	PORT.RECORDS() Get number of used trace records
	PORT.REF() Get record number of reference record
	PORT.SIZE() Get current trace buffer size in records
	PORT.STATE() Get state of Port Analyzer
	PORT.TRACK.RECORD() Get record number matching search
	PORTANALYZER()

	PORTSHARING Function
	PORTSHARING() Current setting of PortSHaRing

	POWER Functions
	In This Section

	PowerProbe Functions
	In This Section
	PROBE.COUNTER.EVENT() Get value of trigger program event counter
	PROBE.COUNTER.EXTERN() Get value of trigger program external counter
	PROBE.COUNTER.TIME() Get value of trigger program time counter
	Probe.FIRST() Get record number of first trace record
	PROBE.FLAG() Check state of trigger program FLAG
	PROBE.GET() Value of channel
	PROBE.MAXSIZE() Get max. size of trace buffer in records
	PROBE.RECORD.DATA() Get data recorded in trace record
	PROBE.RECORD.TIME() Get timestamp of trace record
	PROBE.RECORDS() Get number of used trace records
	PROBE.REF() Get record number of reference record
	PROBE.SIZE() Get current trace buffer size in records
	PROBE.STATE() Get state of PowerProbe
	PROBE.TRACK.RECORD() Get record number matching search

	Program Pointer Function
	PP() Address of program pointer (access class, space ID, program counter)

	Register Functions
	Register() Content of register
	Register.LIST() First / next register name
	Register.Valid() Valid register value

	RTS Functions
	In This Section
	RTS.ERROR() Check for flowerrors during RTS processing
	RTS.NOCODE() Check for RTS NOCODE error
	RTS.FIFOFULL() Check for FIFO full error in RTS
	RTS.RECORD() Find record causing an error in RTS
	RTS.RECORDS() Get number of trace records transferred to RTS
	RTS.BUSY() Check if RTS is busy

	RunTime Functions
	In This Section
	RunTime.ACCURACY() Accuracy of run-time counter
	RunTime.ACTUAL()
	RunTime.LAST()
	RunTime.LASTRUN()
	RunTime.REFA()
	RunTime.REFB()

	SMMU Functions
	SMMU.BaseADDRESS() Base address of SMMU
	SMMU.StreamID2SMRG() Find match for stream ID

	SNOOPer Functions
	In This Section
	SNOOPer.FIRST() Get record number of first trace record
	SNOOPer.MAXSIZE() Get max. size of trace buffer in records
	SNOOPer.RECORD.ADDRESS() Get address recorded in trace record
	SNOOPer.RECORD.DATA() Get data recorded in trace record
	SNOOPer.RECORD.OFFSET() Get address in trace record as number
	SNOOPer.RECORD.TIME() Get timestamp of trace record
	SNOOPer.RECORDS() Get number of used trace records
	SNOOPer.REF() Get record number of reference record
	SNOOPer.SIZE() Get current trace buffer size in records
	SNOOPer.STATE() Get state of SNOOPer trace

	STATE Functions (Target State)
	In This Section
	STATE.HALT()
	STATE.OSLK()
	STATE.POWER()
	STATE.PROCESSOR()
	STATE.RESET()
	STATE.RUN()
	STATE.TARGET() State of target displayed in TRACE32 state line

	SPE Function
	SPE() Content from SPE register

	SSE Function
	SSE() Segment from SSE register

	Stimuli Generator Function
	hardware.STG() TRUE if Stimuli Generator hardware

	sYmbol Functions
	In This Section
	sYmbol.AutoLOAD.CHECK() Update option for the symbol autoloader
	sYmbol.AutoLOAD.CHECKCMD() Load command for symbol autoloader
	sYmbol.AutoLOAD.CONFIG() Used sub-command
	sYmbol.BEGIN() First address of symbol
	sYmbol.COUNT() Number of symbols
	sYmbol.ECA.BINary.GAPNUMBER() Number of observability gaps
	sYmbol.END() Last address of symbol
	sYmbol.EPILOG() Address of return point
	sYmbol.EXIST() TRUE if symbol exists
	sYmbol.EXIT() Exit address of function
	sYmbol.FUNCTION() Function name
	sYmbol.IMPORT() Import file names
	sYmbol.ISFUNCTION() TRUE if symbol is function
	sYmbol.ISVARIABLE() TRUE if symbol is variable
	sYmbol.LANGUAGE() Selected high-level language
	sYmbol.List.MAP.<x>() Information about address ranges on the target
	sYmbol.LIST.PROGRAM() Path and file name of binary files
	sYmbol.List.PROGRAM.<x>() Information about loaded programs
	sYmbol.List.SECtion.<x>() Information about section ranges
	sYmbol.LIST.SOURCE() File location of source file
	sYmbol.MATCHES() Number of occurrences
	sYmbol.NAME() Symbol path and name based on address
	sYmbol.NAME.AT() Resolve ambiguous symbols based on address
	sYmbol.NEXT.BEGIN() Start address of next symbol
	sYmbol.RANGE() Address range of symbol
	sYmbol.SEARCHFILE() Absolute path of source file
	sYmbol.SECADDRESS() Start address of section
	sYmbol.SECEND() End address of section
	sYmbol.SECEXIST() Check for existence of a section
	sYmbol.SECNAME() Section name
	sYmbol.SECPRANGE() Physical address range of section
	sYmbol.SECRANGE() Logical address range of section
	sYmbol.SIZEOF() Size of debug symbol
	sYmbol.SOURCEFILE() Name of source file
	sYmbol.SOURCELINE() HLL-line number of address
	sYmbol.SOURCEPATH() TRUE if path is search path
	sYmbol.STATE() Value from sYmbol.state window
	sYmbol.TRANSPOSE() Transpose program and module names
	sYmbol.TYPE() Type of symbol
	sYmbol.VARNAME() Name of variable or structure element

	SYStem Functions
	In This Section
	SYStem.ACCESS.DENIED() TRUE if memory access is denied
	SYStem.AMBA() TRUE if AMBA bus mode is selected
	SYStem.BigEndian() TRUE if target core runs in big endian mode
	SYStem.CADIconfig.RemoteServer()
	SYStem.CADIconfig.Traceconfig()
	SYStem.CONFIG.<tap_position>()
	SYStem.CONFIG.DEBUGPORT()
	SYStem.CONFIG.DEBUGPORTTYPE()
	SYStem.CONFIG.JTAGTAP() Return the JTAG PRE and POST settings
	SYStem.CONFIG.ListCORE()
	SYStem.CONFIG.ListSIM()
	SYStem.CONFIG.Slave()
	SYStem.CONFIG.TAPState()
	SYStem.CPU() Name of processor
	SYStem.GTL.CALLCOUNTER() Amount of calls to GTL library
	SYStem.GTL.CONNECTED() Connection status
	SYStem.GTL.CYCLECOUNTER() load GTL interface for bit banging protocol
	SYStem.GTL.LIBname() Name of GTL library
	SYStem.GTL.ModelINFO() Info string from GTL API
	SYStem.GTL.ModelNAME() Model Name
	SYStem.GTL.PLUGINVERSION() Version number
	SYStem.GTL.TransactorNAME() Transactor name
	SYStem.GTL.TransactorTYPE() Transactor type
	SYStem.GTL.VENDORID() Vendor ID
	SYStem.GTL.VERSION() Version number
	SYStem.HOOK()
	SYStem.IMASKASM()
	SYStem.IMASKHLL()
	SYStem.INSTANCE() Index of TRACE32 PowerView instance
	SYStem.INSTANCECOUNT() Count of GUIs connected to a PowerDebug
	SYStem.IRISconfig.RemoteServer()
	SYStem.JtagClock()
	SYStem.LittleEndian()
	SYStem.MCDCommand.ResultString()
	SYStem.MCDconfig.LIBrary()
	SYStem.Mode()
	SYStem.NOTRAP() 1 if the option NOTRAP is active
	SYStem.Option.DUALPORT() State of like-named command
	SYStem.Option.MACHINESPACES() State of like-named command
	SYStem.Option.MMUSPACES() State of like-named command
	SYStem.Option.EnReset() State of like-named command
	SYStem.Option.ResBreak() State of like-named command
	SYStem.Option.SPILLLOCation() State of like-named command
	SYStem.Option.ZoneSPACES() State of like-named command
	SYStem.RESetBehavior() Current setting of RESetBehavior
	SYStem.Up() TRUE if debugger has access to debug resources
	SYStem.USECORE()
	SYStem.USEMASK()

	TASK Functions
	In This Section
	TASK() Name of current task
	TASK.ACCESS() Access class
	TASK.ACCESS.ZONE() Access class zone
	TASK.BACK() Background task number
	TASK.CONFIG() OS Awareness configuration information
	TASK.CONFIGFILE() Path of loaded OS Awareness
	TASK.COUNT() Number of tasks
	TASK.CURRENT.MACHINEID() ID of current machine
	TASK.CURRENT.SPACEID() ID of current MMU space
	TASK.CURRENT.TASK() Magic value of current task
	TASK.CURRENT.TASKNAME() Name of current task
	TASK.FIRST() First task in list
	TASK.FORE() Foreground task number
	TASK.ID() ID of task
	TASK.MACHINE.ACCESS() Default access class
	TASK.MACHINE.ID() ID of machine
	TASK.MACHINE.NAME() Name of machine
	TASK.MACHINE.VTTB() VTTB of machine
	TASK.MAGIC() Task magic number
	TASK.MAGICADDRESS() "magic address"
	TASK.MAGICRANGE() Range of "magic address"
	TASK.MAGICSIZE() Size of "magic address"
	TASK.NAME() Name of task
	TASK.NEXT() Next task in list
	TASK.ORTIFILE() Path of loaded ORTI file
	TASK.SPACE.COUNT() Number of spaces
	TASK.SPACEID() Space ID of task

	TERM Functions (Terminal Window)
	In This Section
	TERM.LINE() Get line from terminal window
	TERM.NEWHANDLE() Get next free terminal handle
	TERM.READBUSY() TRUE as long as TERM.READ is in progress
	TERM.RETURNCODE() Get returncode from terminal routine
	TERM.TRIGGERED() Get trigger state of terminal window

	TPIU Functions
	In This Section
	TPIU.PortMode() Port mode setting
	TPIU.PortSize() Port size setting
	TPIU.SWVPrescaler() SWVPrescaler value

	TPUBASE Function
	TPUBASE.ADDRESS() Address of TPU

	Trace Functions
	In This Section
	Trace.FIRST() Get record number of first trace record
	Trace.FLOW() TRUE if trace method is flow trace
	Trace.FLOW.ERRORS() Get number of flow errors / hard errors
	Trace.FLOW.FIFOFULL() Get number of FIFO overflows
	Trace.MAXSIZE() Get max. size of trace buffer in records
	Trace.METHOD() Currently configured trace method
	Trace.METHOD.Analyzer() TRUE if the trace method is Analyzer
	Trace.METHOD.ART() TRUE if the trace method is ART
	Trace.METHOD.CAnalyzer() TRUE if the trace method is CAnalyzer
	Trace.METHOD.FDX() TRUE if the trace method is FDX
	Trace.METHOD.HAnalyzer() TRUE if the trace method is HAnalyzer
	Trace.METHOD.Integrator() TRUE if the trace method uses the Integrator
	Trace.METHOD.IProbe() TRUE if the trace method uses the IProbe
	Trace.METHOD.LA() TRUE if the trace method is LA
	Trace.METHOD.LOGGER() TRUE if the trace method is LOGGER
	Trace.METHOD.ONCHIP() TRUE if the trace method is ONCHIP
	Trace.METHOD.Probe() TRUE if trace method uses the PowerProbe
	Trace.METHOD.SNOOPer() TRUE if the trace method is SNOOPer
	Trace.RECORD.ADDRESS() Get address recorded in trace record
	Trace.RECORD.DATA() Get data recorded in trace record
	Trace.RECORD.OFFSET() Get address in trace record as number
	Trace.RECORD.TIME() Get timestamp of trace record
	Trace.RECORDS() Get number of used trace records
	Trace.SIZE() Get current trace buffer size in records
	Trace.STATE() Get state of PowerTrace hardware
	Trace.STATistic.COUNT() Number of occurences of selected function
	Trace.STATistic.EXIST() TRUE if function exists in trace statistics
	Trace.STATistic.FIRST() Record number of start point for statistic analysis
	Trace.STATistic.IMAX() Longest time between function entry and exit
	Trace.STATistic.IMIN() Shortest time between function entry and exit
	Trace.STATistic.Internal() Time spent within the selected function
	Trace.STATistic.LAST() Record number of end point for statistic analysis
	Trace.STATistic.MAX() Maximum time of selected function
	Trace.STATistic.MIN() Minimum time of selected function
	Trace.STATistic.Total() Total time of selected function
	Trace.TraceCONNECT() Name of trace sink of the SoC

	TRACEPORT Function
	In This Section
	TRACEPORT.LaneCount() Number of serial lanes

	TRACK Functions
	In This Section
	TRACK.ADDRESS() Get tracking address
	TRACK.COLUMN() Number of column where the found item starts
	TRACK.LINE() Number of line containing the found item
	TRACK.RECORD() Number of record containing the found item
	TRACK.STRing() Current selection in a TRACE32 window
	TRACK.TIME() Timestamp of current tracking record

	TRANS Functions (Debugger Address Translation)
	In This Section
	TRANS.LIST.NUMBER() Number of TRANS.List entries
	TRANS.LIST.LOGRANGE() Query TRANS.List entry
	TRANS.LIST.PHYSADDR() Query TRANS.List entry
	TRANS.LIST.TYPE() Query TRANS.List entry
	TRANS.ENABLE() TRUE if address translation is enabled
	TRANS.INTERMEDIATE() Convert a guest logical address
	TRANS.INTERMEDIATE.VALID() TRUE if address translation is valid
	TRANS.LINEAR() Convert logical to linear address
	TRANS.LINEAR.VALID() TRUE if address translation is valid
	TRANS.LOGICAL() Convert physical to logical address
	TRANS.LOGICAL.VALID() TRUE if address translation is valid
	TRANS.PHYSICAL() Convert logical to physical address
	TRANS.PHYSICAL.VALID() TRUE if address translation is valid
	TRANS.TABLEWALK() TRUE if address translation table walk is ON

	TSS Function
	TSS() TSS base address

	Var Functions
	In This Section
	Var.ADDRESS() Address of HLL expression
	Var.BITPOS() Bit position inside a C bit field
	Var.BITSIZE() Size of bit field element
	Var.END() Last address of HLL expression
	Var.EXIST() TRUE if HLL expression exists
	Var.FVALUE() Contents of HLL expression
	Var.ISBIT() TRUE if HLL expression is a bit field element
	Var.RANGE() Address range of HLL expression
	Var.SIZEOF() Size of HLL expression
	Var.STRing() Zero-terminated string or variable contents
	Var.TYPEOF() Type of HLL expression
	Var.VALUE() Value of HLL expression

	VCO Function
	VCO() Frequency of VCO generator

	VERSION Functions
	In This Section
	VERSION.BUILD() Upper build number
	VERSION.BUILD.BASE() Lower build number
	VERSION.CABLE() Hardware version of debug cable
	VERSION.DATE() Version date YYYY/MM
	VERSION.ENVironment() TRACE32 environment setting
	VERSION.FirmWare.DEBUG() Version number of firmware
	VERSION.SERIAL() Serial number
	VERSION.SERIAL.CABLE() First serial number of debug cable
	VERSION.SERIAL.DEBUG() Serial number of debug module
	VERSION.SERIAL.Integrator() Serial number of PowerIntegrator
	VERSION.SERIAL.NEXUSadapter() Serial number of nexus adapter
	VERSION.SERIAL.PREPROcessor() Serial number of preprocessor
	VERSION.SERIAL.POWERPROBE() Serial number of PowerProbe
	VERSION.SERIAL.POWERTRACEAUXPORT() S/N of device at PT aux port
	VERSION.SERIAL.SERialPort1() S/N of device at Serial Port 1 of PT Serial
	VERSION.SERIAL.WHISKER() S/N of whiskers at CombiProbe or µTrace
	VERSION.SERIAL.TRACE() Serial number of trace module
	VERSION.SOFTWARE() Release build or nightly build, etc.
	VERSION.SOFTWARE.TYPE() Software build type

	VPU Functions
	In This Section
	VPU() Value of VPU register
	VPUCR() Value of VRSAVE or VSCR register

