LAUTERBACH A

XC800 Debugger

XC800 Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
050 r—
D05 10T 0 7= o LWL T [T N 1

L £ e T LU T o o 4

Brief Overview of Documents for New Users 4
A5 0 11 ' . 5

L@ T T 1R .o 6

LI 1810 (== o T 1T T 8
SYStem.Up Errors 8

O 8
ConfiguIration ... e 9
XC800 Specific Implementationscccciiiiicmiiiiii s ————— 10
Breakpoints 10
Software Breakpoints 10
On-chip Breakpoints 10

CPU specific SYStem Settings and Restrictionscccccociiiicmniecincccninsccsnncn e 11
SYStem.state Open system window 11
SYStem.CONFIG Configure debugger according to target topology 11
Daisy-Chain Example 14
TapStates 15
SYStem.CONFIG.CORE Assign core to TRACE32 instance 16
SYStem.CONFIG.state Display target configuration 17
SYStem.CPU Select CPU 17
SYStem.MemAccess Select run-time memory access method 18
SYStem.Mode Establish communication with the target 19
SYStem.LOCK Tristate the JTAG port 19

£ 3T =3 =T 0 0 T o o T 21
SYStem.Option.IMASKASM Disable interrupts while single stepping 21
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 21
©1989-2024 Lauterbach XC800 Debugger 2

SYStem.Option.LittleEndian Treat memory as little endian 21
SYStem.Option. TRAPEN Change the TRAP_EN bit 22
SYStem.JtagClock Define JTAG clock 23
QIO T e o 1T 0T 0T 1 11 F- T4 o E= 24
TrOnchip.CONVert Adjust range breakpoint in on-chip resource 24
TrOnchip.RESet Set on-chip trigger to default state 24
TrOnchip.state Display on-chip trigger window 24
TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 25
L0101 S 070 4T3 =T o o 26
=T 0 oT YA 03 = = T 28
©1989-2024 Lauterbach XC800 Debugger | 3

XC800 Debugger

Version 06-Jun-2024

Introduction

This document describes the processor specific settings and features for TRACE32-ICD for the
Infineon XC800 CPU family.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.
J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

J “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach XC800 Debugger | 4

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

XC800 Debugger |

5

Quick Start

Starting up the debugger is done as follows:
Select the device prompt for the ICD Debugger and reset the system.

B33

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the case,
enter B: : to set the correct device prompt. The RESet command is only necessary if you do not start
directly after booting the TRACES32 development tool.

5. Specify the CPU specific settings.

SYStem.CPU <cpu_type>

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

6. Set up data for electrical interface.

SYStem.JtagClock <frequency>

Use the subcommands of MAP to define inaccessible memory areas. Bus errors can be removed by
executing SYStem.Up. Make sure that there isn’t any TRACE32 window open which accesses to a
inaccessible memory that is not masked out, otherwise the bus error can occur again.

7. Enter debug mode.

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

8. Load your application program.

Data.LOAD.OMF myprogram /Verify ; OMF specifies the format,
; myprogram is the file name)

The format of the Data.LOAD command depends on the file format generated by the compiler. This
test discovers a problem with the electrical connection, wrong chip configurations or linker command
file settings.

A detailed description of the Data.LOAD command and all available options is given in the “General
Commands Reference”.

©1989-2024 Lauterbach XC800 Debugger | 6

The start-up can be automated using the programming language PRACTICE. A typical start sequence for

the XC888-8FF is shown below:

193 3

WinCLEAR
SYStem.CPU XC888
SYStem.Up

Data.LOAD.OMF MYPROG /VERFY

Go main
Data.List
Register.view /SpotLight

Var .Local

’

Select the ICD device prompt
Clear all windows

Select CPU

Reset the target and enter debug mode

Load the application, verify the
process

Run and break at main()
Open source window
Open register window

Open window with local wvariables

©1989-2024 Lauterbach

XC800 Debugger

7

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

FAQ

The JTAG lines are not connected correctly.
The target has no power.
The pull-up resistor between the JTAG[VCCS] pin and the target VCC is too large.

The target is in reset:

The debugger controls the processor reset and use the RESET line to reset the CPU on every
SYStem.Up. Therefore no external R-C combination or external reset controller is allowed.

There is logic added to the JTAG state machine:

By default the debugger supports only one processor in one JTAG chain. If the processor is only
one member of a JTAG chain the debugger has to be informed about the target JTAG chain
configuration. Use the SYStem.CONFIG command to specify the position of the device in the
JTAG-chain.

There are additional loads or capacities on the JTAG lines.

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach XC800 Debugger | 8

https://support.lauterbach.com/kb

Configuration

PC or
Workstation

Target

— Debug Cable
\— PO Se J PPOWER DEBUG USB INTERFACE / USB 3 =
LAUTERBACH -

UsB
Cable

i

Debug
Connector

POWER DEBUG INTERFACE / USB 3

Wall Mount
0
Power Supply

The processor type must be selected by the SYStem.CPU command before issuing any other target related
commands.

©1989-2024 Lauterbach XC800 Debugger | 9

XC800 Specific Implementations

Breakpoints

There are two types of breakpoints available: Software breakpoints and on-chip breakpoints.

Software Breakpoints

Software breakpoints are the default breakpoints for program breakpoints. A software breakpoint is
implemented by patching a break code into the memory.

There is no restriction in the number of software breakpoints.

On-chip Breakpoints

The resources for the on-chip breakpoints are provided by the CPU.

The following list gives an overview of the on-chip breakpoints for the XC800:

o On-chip breakpoints: Total amount of available on-chip breakpoints.

. Instruction breakpoints: Number of on-chip breakpoints that can be used to set Program
breakpoints into ROM/FLASH/EEPROM.

J Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

J Data breakpoint: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an
address.

On-chip Instruction Read/Write Data
Breakpoints Breakpoints Breakpoints Breakpoint

XC800 4

up to 4
up to 1 range
(2 single needed)

up to 1 single
address read or
address range
up to 1 single
address write or
address range

©1989-2024 Lauterbach

XC800 Debugger | 10

CPU specific SYStem Settings and Restrictions

SYStem.state Open system window

Format: SYStem.state

Opens a window with settings of CPU specific system commands. Settings can also be changed here.

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE <core>
<parameter>: DRPRE <bits>
(JTAG): DRPOST <bits>

IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Slave [ON | OFF]

The SYStem.CONFIG commands have no effect in Simulator. These commands describe the physical
configuration at the JTAG port and the trace port of a multi-core hardware target. Since the simulator
normally just simulates the instruction set, these commands will be ignored. Refer to the relevant Processor
Architecture Manual in case you want to know the effect of these commands on a debugger.

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain
Example.

For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

©1989-2024 Lauterbach XC800 Debugger | 11

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

CORE

DRPRE

DRPOST

IRPRE

IRPOST

TAPState

TCKLevel

For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.

Further information can be found in SYStem.CONFIG.CORE.

(default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

(default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

(default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

(default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

(default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

(default: 0) Level of TCK signal when all debuggers are tristated.

©1989-2024 Lauterbach

XC800 Debugger | 12

TriState (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
NnTRST and nSRST (nRESET).

©1989-2024 Lauterbach XC800 Debugger | 13

Daisy-Chain Example

TDl——-® Core A —Core B p Core C—» Core D +—» TDO

Chip 0 Chip 1

Below, configuration for core C.

Instruction register length of
. Core A: 3 bit
. Core B: 5 bit
. Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B
SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C i1s Core 0 in Chip 1

©1989-2024 Lauterbach XC800 Debugger | 14

TapStates

0 Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR

© 00 N o 0o~ W N =

—_ - e e —d
o A~ WO N =+ O

Test-Logic-Reset

©1989-2024 Lauterbach XC800 Debugger | 15

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1.1

<core_index>: 1...k

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips
Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

©1989-2024 Lauterbach XC800 Debugger | 16

SYStem.CONFIG.state Display target configuration

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab:
DebugPort, JTAG.

DebugPort Lets you configure the electrical properties of the debug connection, such
as the communication protocol or the used pinout.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.

SYStem.CPU Select CPU
Format: SYStem.CPU <cpu>
<cpu>: XC866 | XC866L | XC886 | XC888 | XC886C | XC888C | XC886CM |
XC888CM | XC886LM | XC888LM | XC886CLM | XC888CLM | XC878 |
XC878M | XC878CM | XC878L | XC878C | TC2X_SCR | TLE9832 | TLE9834

Selects the processor type.

©1989-2024 Lauterbach XC800 Debugger | 17

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess <mode>
<mode>: Enable

Denied

StopAndGo

Default: Denied.

Enable A run-time memory access is made without CPU intervention while the
CPU (deprecated) program is running. This is only possible on the instruction set simulator.
StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop

takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

©1989-2024 Lauterbach XC800 Debugger | 18

SYStem.Mode

Establish communication with the target

Format: SYStem.Mode <mode>
SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down
NoDebug
Go
Attach
Up

Down The CPU is held in reset, debug mode is not active.
Default state and state after fatal errors.

NoDebug Disables the debugger. The state of the CPU remains unchanged.
The JTAG port is tri-stated.

Go Resets the target and enables the debugger and start the program
execution.

Program execution can be stopped by the break command or if any break
condition occurs.

Attach User program remains running (no reset) and the debug mode is
activated.

After this command the user program can be stopped with the break
command or if any break condition occurs.

Up Resets the target, sets the CPU to debug mode and stops the CPU.
After the execution of this command the CPU is stopped and all register
are set to defaults.

StandBy Not supported.

SYStem.LOCK Tristate the JTAG port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

©1989-2024 Lauterbach

XC800 Debugger | 19

If the system is locked, no access to the JTAG port will be performed by the debugger. While locked the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool.

©1989-2024 Lauterbach XC800 Debugger | 20

System Options

SYStem.Option.IMASKASM Disable interrupts while single stepping
Format: SYStem.Option.IMASKASM [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to

SYStem.Option.LittleEndian Treat memory as little endian
Format: SYStem.Option.LittleEndian [ON | OFF]
Default: OFF.

©1989-2024 Lauterbach XC800 Debugger | 21

SYStem.Option.TRAPEN Change the TRAP_EN bit

Format: SYStem.Option.TRAPEN [ON | OFF]

When the SYStem.Option.TRAPEN check box is checked, the debugger sets the TRAP_EN flag in the
Extended Operation (EO) register before executing the next GO command.

J The XC800 extends the 8051 instruction set with the special command
MOVC @ (DPTR++) ,A

to write data (e.g. from a 12C LPC memory IC) into program RAM. As the 8051 instruction set is
only 8 bit wide, and there were no unused opcodes available, the TRAP opcode 0A5h is re-used
for this instruction.

. The functionality of the 0A5h opcode is determined by the bit TRAP_EN in the Extended
Operations (EO) register (usually EO.4).

- When TRAP_EN=1 (set), 0A5h means “TRAP”.
- When TRAP_EN=0 (reset), 0A5h means “MOVC @ (DPTR++),A.

J This conflicts with the operation of software breakpoints. Software breakpoints are set by
replacing an instruction with a “TRAP* instruction. When the processor stops in debug mode, the
original instruction is restored. The next STEP or GO command then executes the instruction.

J Therefore a software breakpoint may be illegally interpreted as an MOVC operation if you
- disable the TRAP_EN check box.
- Manually reset the TRAP_EN bit (EO.4)

©1989-2024 Lauterbach XC800 Debugger | 22

SYStem.JtagClock Define JTAG clock

Format: SYStem.JtagClock [<frequency> | RTCK | ARTCK <frequency> |
CTCK <frequency>| CRTCK <frequency>]
SYStem.BdmClock [<frequency> ...] (deprecated)

<frequency>: 6 kHz ... 80 MHz
1250000. | 2500000. | 5000000. | 10000000.

Default frequency: 10 MHz.

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines. A very high frequency will not work on all
systems and will result in an erroneous data transfer. Therefore we recommend to use the default setting if
possible.

<frequency> . The debugger cannot select all frequencies accurately. It chooses
the next possible frequency and displays the real value in the
SYStem.state window.
. Besides a decimal number like “100000.” short forms like “10kHz”
or “15MHz” can also be used. The short forms imply a decimal

value, although no “” is used.

When the debugger is not working correctly (e.g. memory is flickering), decrease the JtagClock.

©1989-2024 Lauterbach XC800 Debugger | 23

TrOnchip Commands

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the
breakpoint, it will automatically be converted into a single address breakpoint when this option is active. This
is the default. Otherwise an error message is generated.

TrOnchip.CONVert ON

Break.Set 0x1000--0x17ff /Write ; sets breakpoint at range

Break.Set 0x1001--0x17ff /Write ; 1000--17ff sets single breakpoint
; at address 1001

TrOnchip.CONVert OFF ; sets breakpoint at range

Break.Set 0x1000--0x17ff /Write ; 1000--17ff

Break.Set 0x1001--0x17ff /Write ; gives an error message
TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

©1989-2024 Lauterbach XC800 Debugger | 24

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted
into a single address breakpoint. This is the default setting. Otherwise an error message is generated.

©1989-2024 Lauterbach XC800 Debugger | 25

OCDS1 Connector

Signal Pin Pin Signal
TMS 1 2 VCCS
TDO 3 4 GND
N/C 5 6 GND
TDI 7 8 RESET-
TRST- 9 10 BRKOUT-
TCLK 11 12 GND
BRKIN- 13 14 N/C
RESERVED 15 16 N/C

A standard 2 x 8 pin header (pin-to-pin spacing: 0.1 inch = 2.54mm) is required on the target.
. Do not connect the “reserved” pin.
. Do connect all GND pins and all N/C pins for shielding purpose, though they are connected on

the debugger.

VCCS is the processor power supply voltage. It is used to detect if target power is on and its voltage level
determines the output buffer level of the debugger. That means the output voltage of the debugger signals
(TMS, TDI, TCLK, TRST-, BRKIN-) depends directly on VCCS. VCCS can be 2.25 ... 5.5 V. The output
buffer takes about 2 mA.

. RESET- is controlled by an open drain driver. An external watchdog must be switched off if the In-
Circuit Debugger is used.

J BRKIN and BRKOUT- must be configured in MCBS (Multi Core Break Switch) for before they can
be used.

J VIHmin = 2.0 V, VILmax = 0.8 V for the input pins TDO, BRKOUT-.

For an example design please see the Infineon Evaluation Board schematics.

©1989-2024 Lauterbach XC800 Debugger | 26

Pins Connection Description Recommendations
1 T™S Test Mode None.
Select

2 VCCs VCC Sense Connect to Chip I/O voltage VCC.

3 TDO Test Data Out If there are multiple devices on the JTAG chain,
connect TDO to the TDI signal of the next
device in the chain.

4,6,12 GND System Connect to digital ground.

Ground Plan

7 TDI Test Data In No other devices in the JTAG chain are allowed
between the Debug Cable and the XC800.

8 RESET Reset Connect to /PORST and connect /PORST to
VCC via a 10 K pull-up resistor.

Do not connect to /TRST.

9 TRST Test Reset Connect to /TRST if available.
Do not connect to /PORST.

10 BRKOUT Break out None.

11 TCLK Test clock None.

13 BRKIN Break input None.

5, 14, NC Not Connect to Ground.

15, 16 Connected

©1989-2024 Lauterbach

XC800 Debugger | 27

Memory Classes

The following memory classes are available:

Memory Class

Description

P Code space (program)

X External data space including XRAM

I Internal RAM (Indirect Address)

D Special Function Registers (non-mapped) + Internal RAM (Direct

Address)

The low 128 bytes of the internal data memory can be accessed with the memory classes | and D. The
upper 128 bytes in the memory class D represent the Special Function Registers SFR (standard). The
Special Function Registers (standard, mapped and paged) can be accessed in the peripherie window.

XRAM can be read/written as program memory or external memory.

©1989-2024 Lauterbach

XC800 Debugger |

28

	XC800 Debugger
	Introduction
	Brief Overview of Documents for New Users

	Warning
	Quick Start
	Troubleshooting
	SYStem.Up Errors

	FAQ
	Configuration
	XC800 Specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints

	CPU specific SYStem Settings and Restrictions
	SYStem.state Open system window
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CONFIG.state Display target configuration
	SYStem.CPU Select CPU
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish communication with the target
	SYStem.LOCK Tristate the JTAG port

	System Options
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.LittleEndian Treat memory as little endian
	SYStem.Option.TRAPEN Change the TRAP_EN bit
	SYStem.JtagClock Define JTAG clock

	TrOnchip Commands
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.state Display on-chip trigger window
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

	OCDS1 Connector
	Memory Classes

