LAUTERBACH A

STM8 Debugger

STM8 Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~

L 11 r—

LS I 1T =00 7= 0T T =T N 1
A5 T 11 ' 4

Y e Yo 11T o) o T 5

Brief Overview of Documents for New Users 5

Demo and Start-up Script 5
ConfigUIration ... 6
System Overview 6

L@ T T Q3 - T 7

Lo 10 o L= X= 0 T Tor 1] 3T 9

O 10

STMS8 specific SYStem Settingscccccciiiiiriiinin e 11
SYStem.CPU Select the used CPU 11
SYStem.MemAccess Select run-time memory access method 11
SYStem.Mode Establish the communication with the target 12
SYStem.LOCK Lock and tristate the debug port 12
SYStem.Option.IMASKASM Disable interrupts while single stepping 13
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 13

CPU specific TrOnchip Commandscccuciimiismrinsmsiiimsmsssssssssssss s sssasssssssssssssssassnes 14
=== | o T T] 15
Software breakpoints 15

On-chip breakpoints for instructions 15

On-chip breakpoints for data 15
LT 4 o YA 03 = = T 16
Target Adaption ... 17
Connector Type and Pinout 17
©1989-2024 Lauterbach STM8 Debugger | 2

STM8 Debugger

Version 06-Jun-2024

©1989-2024 Lauterbach STM8 Debugger | 3

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the debug cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the debug cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the debug
cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the debug cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the debug cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

STM8 Debugger |

4

Introduction

This document serves as a guideline for debugging STM8 MCUs and describes all MCU-specific
TRACES2 settings and features.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

. “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Script

Lauterbach provides ready-to-run start-up scripts for known hardware that is based on STM8.

©1989-2024 Lauterbach STM8 Debugger | 5

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/stm8/ subfolder of the system directory of TRACES32.
The on-chip FLASH and the EEProm memory can be programmed via the stm8.cmm script:

CD.DO ~~/demo/stm8/flash/stm8.cmm

Please be aware that you should check the Flash and EEProm size specified for your MCU in the stm8.cmm
before executing this script.

Configuration

System Overview

Example configuration for an STM8 debugger.

PC or
Workstation

Target

[y — Debug Cable

POWER DEBUG USB INTERFACE / USB 3
LAUTERBACH.

UsB
Cable

[o —

Debug
Connector

POWER DEBUG INTERFACE / USB 3

- Wall Mount
Power Supply

©1989-2024 Lauterbach STM8 Debugger | 6

Quick Start

Starting up the debugger is done as follows:
1. Select the device prompt B (BDM debugger) and reset TRACE32.

183 3

RESet

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: : to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings.

SYStem.CPU STM8S005K6

This command selects the CPU type.

3. Inform the debugger about the cashable address range (FLASH/EEPROM)..

MAP.UpdateOnce p:0x8000--0xffff

This is important to speed up the TRACES32 PowerView GUI responsiveness. The specified address
range will be accessed only once after a break, thus avoiding unnecessary memory accesses.

4. Reset the target and enter debug mode.

SYStem.Mode Up

This command resets the CPU on the target, enables On-Chip-Debug Mode and issues a breakpoint
right after the reset interrupt routine.The CPU stops executing any instruction, and the user is able to
download and test the code. After this command is executed, it is possible to access memory and
registers.

©1989-2024 Lauterbach STM8 Debugger | 7

5. Load the program into the flash.

DO ~~/demo/stm8/flash/stm8.cmm

A typical start sequence of the STM8 is shown below. This sequence can be written to a PRACTICE script
file (*.cmm, ASCII format) and executed with the command DO <file>.

B::
RESet

MAP.UpdateOnce p:0x8000--
Oxffff

WinCLEAR
SYStem.Up

DO
~~/demo/stm8/flash/stm8.cmm

PER.view

List.Mix
Register.view /SpotLight

Frame.view /Locals /Caller

Var .Watch %$SpotLight flags ast

Break.Set 0x1000 /Program

Break.Set 0x101000 /Program

Select the ICD device prompt
Reset the TRACE32 software

Specify the address range for caching

Clear all windows
Reset the target and enter debug mode

Load the target application into
the Flash

Show clearly arranged peripherals
in window *)

Open source code window *)
Open register window *)

Open the stack frame with
local variables *)

Open watch window for variables *)

Set software breakpoint to address
1000 (address 1000 is within RAM
address range)

Set on-chip breakpoint
to address 101000 (address 101000 is
within Flash address range)

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

STM8 Debugger | 8

Troubleshooting

Error Message Event Reason
Target power fail SYStem.Mode.Up See below.
Target processor in SYStem.Down See below.

reset

Target is not connected
or the SWD Interface is
returning an error.

SYStem.Mode.Up
SYStem.Mode.Go

The debugger expects to receive a
confirmation for each command sent to
the target. An error occurs in case the
confirmation is not received.

The number of
<number> accessed
bytes in memory is not a
multiple of the access
<size> bytes.

No special event

Internal error, please consult your
Lauterbach representative.

Memory <address> is
not aligned to access
<size>.

No special event

Internal error, please consult your
Lauterbach representative.

Invalid memory access
size: <size> bytes (@
<address>)

No special event

Internal error, please consult your
Lauterbach representative.

Memory access timeout:
Reading from
<address>

No special event

Corrupted JTAG connection. Check
JTAG hardware and settings.

Typically the SYStem.Up command is the first command of a debug session where communication with the
target is required. If you receive error messages like “debug port fail” or “debug port time out” while executing
this command, this may have the reasons below. “target processor in reset” is just a follow-up error

message.

Open the AREA.view window to display all error messages.

If the target has no power or the debug cable is not connected to the target, this results in the
error message “target power fail”.

Did you select the correct core type with SYStem.CPU <cpu>?

There is an issue with the SWD interface. Maybe there is the need to set jumpers on the target to

connect the correct signals to the SWD connector.

The target is in an unrecoverable state. Re-power your target and try again.

The core is kept in reset.

There is a watchdog which needs to be deactivated.

©1989-2024 Lauterbach

STM8 Debugger | 9

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach STM8 Debugger | 10

https://support.lauterbach.com/kb

STM8 specific SYStem Settings

SYStem.CPU Select the used CPU
Format: SYStem.CPU <cpu>
<cpus: STM8S005K6 | STM8S003K3 | STM8S001J3 | ...

Default: STM8xxx.

Selects the processor type. All of the STM8 MCU cores with SWD Interface are supported.

SYStem.MemAccess Select run-time memory access method

Format:

SYStem.MemAccess Enable | Denied | StopAndGo

Default: Denied.

Enable
CPU (deprecated)

Denied

StopAndGo

This option is not available at the moment.

Memory access during program execution to target is disabled.

Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

For more information, see below.

©1989-2024 Lauterbach

STM8 Debugger | 11

SYStem.Mode

Establish the communication with the target

Format:

<mode>:

SYStem.Mode <mode>

SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

Down

Go

Up
NoDebug

Default: Down.

Down Disables the debugger. The state of the CPU remains unchanged.

Go Resets the target and starts execution.

Up Resets the target and stops the CPU at the reset vector.

NoDebug The debug adapter gets tristated.
The state of the CPU remains unchanged. Debug mode is not active.
In this mode the target behaves as if the debugger is not connected.

Attach Not available.

StandBy

SYStem.LOCK Lock and tristate the debug port
Format: SYStem.LOCK [ON | OFF]
Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

©1989-2024 Lauterbach

STM8 Debugger | 12

SYStem.Option.IMASKASM Disable interrupts while single stepping

Format: SYStem.Option.IMASKASM [ON | OFF]

Default: OFF.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during assembler single-step
operations. After the single step, the interrupt enable flag is restored to the value it had before the step. Itis
turned on to make sure that no interrupt routine is serviced between Break and Go states.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during HLL single-step
operations. After the single step, the interrupt enable flag is restored to the value it had before the step.

©1989-2024 Lauterbach STM8 Debugger | 13

CPU specific TrOnchip Commands

The TrOnchip command group is not available for the STM8 debugger.

©1989-2024 Lauterbach STM8 Debugger | 14

Breakpoints

Software breakpoints

The Microchip STM8 architecture does not support software breakpoints.

On-chip breakpoints for instructions

The STM8 MCUs support a total of two on-chip breakpoint registers which can be used as program
breakpoints to stop and debug the program which executes always in the Flash.

On-chip breakpoints for data

Data breakpoints are used to analyze the read and write accesses to global variables. The data breakpoints
can be triggered with respect to the data address or access type, i.e. read, write or both, or the data value.
The two instruction breakpoints of STM8 MCUs can be used as data breakpoints

In case of an on-chip data breakpoint, every load and store instruction is checked with respect to the
breakpoint address, access type and the value. The data breakpoints are especially useful to find out when
a global variable is written with a certain value. It is not possible to implement a similar breakpoint in software
without affecting the real-time behavior of the system. Since the load and store instructions work on RAM,
data breakpoints always point to addresses on RAM.

©1989-2024 Lauterbach STM8 Debugger | 15

Memory Classes

The following memory access classes are available:

Access Class Description
D Data
P Program

To access a memory class, write the class in front of the address. For example, use D to access the data

memory.

Data.dump D:0x00

The memory class P is used to denote the Flash memory.

Data.dump P:0x00

Since the STM8 architecture uses a Unified Memory Architecture, the following two examples return the

same results.

Data.dump D:0x100

Data.dump P:0x100

©1989-2024 Lauterbach

STM8 Debugger

16

Target Adaption

Connector Type and Pinout

Debug Cable
Pin Signal
1 VDD
2 PD1
3 GND
4 RESET[PAOQ]

©1989-2024 Lauterbach STM8 Debugger | 17

	STM8 Debugger
	Warning
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Script

	Configuration
	System Overview

	Quick Start
	Troubleshooting
	FAQ
	STM8 specific SYStem Settings
	SYStem.CPU Select the used CPU
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.LOCK Lock and tristate the debug port
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

	CPU specific TrOnchip Commands
	Breakpoints
	Software breakpoints
	On-chip breakpoints for instructions
	On-chip breakpoints for data

	Memory Classes
	Target Adaption
	Connector Type and Pinout

