
MANUAL

SDMA Debugger

SDMA Debugger

 TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 SDMA .. 

 SDMA Debugger ... 1

 Warning .. 5

 Introduction ... 6

 Brief Overview of Documents for New Users 6

 Demo and Start-up Scripts 7

 Configuration ... 9

 System Overview 9

 Quick Start of the Debugger ... 10

 Troubleshooting .. 13

 Communication between Debugger and Processor can not be established 13

 FAQ ... 14

 SDMA specific Implementations .. 15

 Memory Classes 15

 Breakpoints 15

 Software Breakpoints 15

 On-chip Breakpoints 16

 On-chip Trace 16

 Special Hints, Restrictions, and Known Problems 16

 Special Hints 16

 Restrictions 16

 Known Problems 16

 SDMA specific SYStem Commands .. 17

 SYStem.CONFIG.state Display target configuration 17

 SYStem.CONFIG Configure debugger according to target topology 18

 <parameters> describing the “DebugPort” 20

 <parameters> describing the “JTAG” scan chain and signal behavior 22

 <parameters> describing a system level TAP “MultiTap” 25

 <parameters> configuring a CoreSight Debug Access Port “DAP” 26
SDMA Debugger | 2©1989-2024 Lauterbach

 <parameters> describing debug and trace “Components” 29

 SYStem.CPU Select the used CPU 29

 SYStem.JtagClock Define the frequency of the debug port 30

 SYStem.LOCK Lock and tristate the debug port 30

 SYStem.MemAccess Select run-time memory access method 31

 SYStem.Mode Establish the communication with the target 32

 SYStem.Option Special setup 34

 SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP 35

 SYStem.Option.DAPNOIRCHECK No DAP instruction register check 35

 SYStem.Option.DAPREMAP Rearrange DAP memory map 36

 SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP 36

 SYStem.Option.DEBUGPORTOptions Options for debug port handling 37

 SYStem.Option.DUALPORT Implicitly use run-time memory access 38

 SYStem.Option.IMASKASM Disable interrupts while single stepping 38

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 38

 CPU specific TrOnchip Commands ... 39

 Target Adaption ... 40

 Probe Cables 40

 Connector Type and Pinout 40

 Debug Cable 40

 CombiProbe 40
SDMA Debugger | 3©1989-2024 Lauterbach

SDMA Debugger

Version 06-Jun-2024

19-Mar-20 Draft of new manual.
SDMA Debugger | 4©1989-2024 Lauterbach

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
SDMA Debugger | 5©1989-2024 Lauterbach

Introduction

This manual serves as a guideline for debugging SDMA cores and describes all processor-specific
TRACE32 settings and features.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Currently SDMA cores are only implemented in several i.MX Chips. Before debugging SDMA cores, the
chip's main core must ensure that the clock signal is available to the SDMA(OnCE) core.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

To get started with the most important manuals, use the Welcome to TRACE32! dialog (WELCOME.view):
SDMA Debugger | 6©1989-2024 Lauterbach

Demo and Start-up Scripts

Lauterbach provides ready-to-run PRACTICE start-up scripts for public known architecture hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.
SDMA Debugger | 7©1989-2024 Lauterbach

You can also manually navigate in the ~~/demo/sdma/ subfolder of the system directory of TRACE32.
SDMA Debugger | 8©1989-2024 Lauterbach

Configuration

System Overview

Example configuration for a single core debugger.

Please consider the tips given in the chapter “Connector Type and Pinout”, page 34.

��������	

POWER DEBUG USB INTERFACE / USB 3

POWER DEBUG INTERFACE / USB 3

PC or
Workstation

USB
Cable

Target

D
eb

ug
C

on
ne

ct
or

Debug Cable
SDMA Debugger | 9©1989-2024 Lauterbach

Quick Start of the Debugger

This chapter helps you to prepare your Debugger for SDMA. Depending on your application not all steps
might be necessary. It is assumed that you are using an i.MX 6SoloX on an NXP SABRE Board.

For some applications additional steps might be necessary that are not described here. See Demo and
Start-up Scripts for more details.

1. Prepare the Start.

Connect the Debug Cable to your target. Check the orientation of the connector. Pin 1 of the Debug
Cable is marked with a small triangle or the number 1.

Start a PowerView instance for the host-core (Cortex-A9 in this example) and for SDMA:

- Start the TRACE32 Debugger Software for Cortex-A9. Make sure the configuration file for the
ARM instance (e.g. config_cortex.t32) contains the line CORE=1.

- Start the TRACE32 Debugger Software for SDMA. Make sure the configuration file for the
SDMA Debugger | 10©1989-2024 Lauterbach

SDMA instance (e.g. config_sdma.t32) contains the line CORE=2.

Power up your target.

2. Configure the master core ICD for Debugging

Refer to "ARMv7-A/-R Debugger" (debugger_arm.pdf) for information on how to do this.

Since SDMA needs to be initialized by the master core, execute your application so that SDMA code
and data is loaded into SDMA memory. This is often done by executing the function sdma_init or
similar.

Remember that these steps have to be performed on the master core instance.

3. Select the CPU Type to load the CPU specific Settings.

It is strongly recommended to select the specific CPU instead of SDMA which is only dedicated for
hardware configurations not known by TRACE32. In such cases the user has to create a target-
specific SYStem.CONFIG.MULTITAP.JtagSEQuence to add the SDMA core to the JTAG chain.

4. Establish the communication to the device.

Enter debug mode. After this command is executed, it is possible to access memory and registers.

ICD SDMA requires an ICD ARM which properly configures the system's clock signals. Access to the
SDMA core will fail otherwise.

5. Load symbols for your Application Program. (optional)

If available, a file containing symbol information can be loaded now. Since the SDMA code is normally
written to the RAM by the main core, only the symbols have to be loaded.

The options of the Data.LOAD command depend on the file format generated by the compiler. A
detailed description of the Data.LOAD command is given in “General Commands Reference”.

6. Write a Start-up script.

Now the quick start is done. If you were successful you can start to debug. It is recommended to
prepare a PRACTICE script file (*.cmm, ASCII format) to be able to do all the necessary actions with
only one command.

Here is a typical start sequence:

SYStem.CPU IMX6SOLOX-SDMA

SYStem.Attach

Data.LOAD.auto <filename> /NoCODE /NOREG

B:: ; select the ICD device prompt

System.CPU IMX6SOLOX-SDMA ; select CPU

SYStem.Attach ; Establish communication to device
SDMA Debugger | 11©1989-2024 Lauterbach

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

For information about how to create a PRACTICE script file (*.cmm file), refer to “Training Basic
Debugging” (training_debugger.pdf). There you can also find some information on basic actions with the
debugger.

Data.LOAD.auto script.elf
/NoCODE /NOREG

; Load the symbol information

WinCLEAR ; Clear all windows

List.Mix ; Open source window *)

Register.view ; Open register window *)
SDMA Debugger | 12©1989-2024 Lauterbach

Troubleshooting

Communication between Debugger and Processor can not be established

Typically the SYStem.Up command is the first command of a debug session where communication with the
target is required. If you receive error messages like “debug port fail” or “debug port time out” hile executing
this command, this may have the reasons described below. “target processor in reset” is just a follow-up
error message.

Error Message Event Reason

Target power fail SYStem.Mode.Up See below.

No clock signal
detected.

SYStem.Mode.Up See below.

Target processor in
reset

SYStem.Down See below.

The number of
<number> accessed
bytes in memory is not a
multiple of the access
size <size> bytes.

No special event Internal error, please consult your
Lauterbach representative.

Memory address
<address> is not aligned
to access size <size>.

No special event Internal error, please consult your
Lauterbach representative.

Invalid memory access
size: <size> bytes (@
address <address>)

No special event Internal error, please consult your
Lauterbach representative.

Memory access timeout:
Reading from address
<address>

No special event Corrupted debug connection. Check
debug hardware and settings.

Emulation running Break The master core has set the SDMA to
Sleep mode (no clock) so the SDMA
core seems to be continuously running.
SDMA Debugger | 13©1989-2024 Lauterbach

Open the AREA window to view all error messages.

• The target has no power or the debug cable is not connected to the target. This results in the
error message “target power fail”.

• You did not select the correct core type via SYStem.CPU.

• The target to Debug Cable connection is not valid for the selected CPU. See SYStem.CPU.

• There is an issue with the JTAG interface. See “Arm JTAG Interface Specifications”
(app_arm_jtag.pdf) and the manuals or schematic of your target to check the physical and
electrical interface. Maybe there is the need to set jumpers on the target to connect the correct
signals to the JTAG connector.

• The target core is not part of the JTAG chain. If CPU type SDMA is selected, the user has to
create a target-specific SYStem.CONFIG.MULTITAP.JtagSEQuence which adds the SDMA core
to the JTAG chain.

• There is the need to enable (jumper) the debug features on the target. It will e.g. not work if
nTRST signal is directly connected to ground on target side.

• The target is in an unrecoverable state. Re-power your target and try again.

• The target can not communicate with the debugger while in reset. Try SYStem.Mode Attach
followed by “Break” instead of SYStem.Up.

• The default frequency of the JTAG/SWD/cJTAG debug port is too high, especially if you emulate
your core or if you use an FPGA-based target. In this case try SYStem.JtagClock 50kHz and
optimize the speed when you got it working.

• Your core needs adaptive clocking. Use the RTCK mode: SYStem.JtagClock RTCK.

• The core is used in a multicore system and the appropriate multicore settings for the debugger
are missing. See for example SYStem.CONFIG IRPRE. This is the case if you get a value
IR_Width > 5 when you enter “DIAG 3400” and “AREA”. If you get IR_Width = 4 (ARM7, ARM9,
Cortex) or IR_Width = 5 (ARM11), then you have just your core and you do not need to set these
options. If the value can not be detected, then you might have a JTAG interface issue.

• The core has no clock.

• The core is kept in reset.

• There is a watchdog which needs to be deactivated.

Your target needs special debugger settings. Check the directory ~~\demo\arm\hardware if there is an
suitable script file *.cmm for your target.

FAQ

Please refer to https://support.lauterbach.com/kb.
SDMA Debugger | 14©1989-2024 Lauterbach

https://support.lauterbach.com/kb

SDMA specific Implementations

Memory Classes

Though the SDMA architecture uses the same address space for data, program and peripheral memory, the
addressing and access for both types is different. Therefore, following memory access classes are available:

To access a memory class, write the class in front of the address. For example, use D to access the data
memory:

The following examples return different results, since the dsPIC architecture uses different addressing
modes.

Breakpoints

TRACE32 uses two techniques to implement breakpoints: Software breakpoints and on-chip breakpoints.

Software Breakpoints

Software breakpoints are only available for program breakpoints. If a program breakpoint is set to an
instruction, the original instruction at the breakpoint location is patched by a break code. This patching is the
reason why software breakpoints are usually only used in RAM areas.

Access Class Description

D Data

P Program

PER Peripheral devices

Data.dump D:0x00

Data.dump D:0x100

Data.dump P:0x100

NOTE: To access the peripheral memory space (data addresses > 0x1000), the
respective peripheral devices must be provided with the system clock by the
master core. Otherwise the System will be reset.
SDMA Debugger | 15©1989-2024 Lauterbach

On-chip Breakpoints

On-chip breakpoints are only available for data breakpoints. They are used to analyze the read and write
accesses to global variables. The data breakpoints can be triggered with respect to the data address or
access type, i.e. read, write or both, or the data value. The data breakpoints are especially useful to find out
when a global variable is written with a certain value. It is not possible to implement a similar breakpoint in
software without affecting the real-time behavior of the system. Since the load and store instructions work on
RAM, data breakpoints always use the Data memory class. Up to two on-chip breakpoints are available on
SDMA cores.

On-chip Trace

The SDMA core devices are equipped with an on-chip trace buffer. This allows to analyze the most recent
program branches since the last halt. On-chip tracing requires no extra Lauterbach hardware, it can be
configured and read out with a regular Debugger.

The program flow trace has no influence on the performance of program execution and is always active
when the core is running.

Special Hints, Restrictions, and Known Problems

Special Hints

• Peripheral memory locations are only accessible if the respective peripheral is activated by the
master core.

Restrictions

• Assembler loops containing only 1 instruction are executed completely when stepping through
the code.

• The SDMA core can only be reset by the master core.

Known Problems

NOTE: All problems will be fixed in one of the next SW versions without notice!
SDMA Debugger | 16©1989-2024 Lauterbach

SDMA specific SYStem Commands

SYStem.CONFIG.state Display target configuration

 Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | JTAG | MultiTap

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort The DebugPort tab informs the debugger about the debug connector
type and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see
DebugPort.

Jtag
(default)

The Jtag tab informs the debugger about the position of the Test Access
Ports (TAP) in the JTAG chain which the debugger needs to talk to in
order to access the debug and trace facilities on the chip.

For descriptions of the commands on the Jtag tab, see Jtag.

MultiTap Informs the debugger about the existence and type of a System/Chip
Level Test Access Port. The debugger might need to control it in order to
reconfigure the JTAG chain or to control power, clock, reset, and security
of different chip components.

For descriptions of the commands on the MultiTap tab, see MultiTap.
SDMA Debugger | 17©1989-2024 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter>

<parameter>:
(DebugPort)

CORE <core> <chip>
DEBUGPORT [DebugCable0 | DebugCableA | DebugCableB]
DEBUGPORTTYPE [JTAG | SWD]
Slave [ON | OFF]
SWDPIdleHigh [ON | OFF]
SWDPTargetSel <value>
TriState [ON | OFF]

<parameter>:
(JTAG)

DRPOST <bits>
DRPRE <bits>
IRPOST <bits>
IRPRE <bits>

<parameter>:
(JTAG cont.)

DAPDRPOST <bits>
DAPDRPRE <bits>
DAPIRPOST <bits>
DAPIRPRE <bits>

<parameter>:
(JTAG cont.)

Slave [ON | OFF]
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
SDMA Debugger | 18©1989-2024 Lauterbach

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

Ideally you can select with SYStem.CPU the chip you are using which causes all setup you need and you do
not need any further SYStem.CONFIG command.

The SYStem.CONFIG command information shall be provided after the SYStem.CPU command, which
might be a precondition to enter certain SYStem.CONFIG commands, and before you start up the debug
session e.g. by SYStem.Up.

<parameter>:
(Multitap)

MULTITAP [NONE | JtagSEQuence <sub_cmd>]

<parameter>:
(AccessPorts)

AHBAPn.HPROT [<value> | <name>]
AHBAPn.Port <port>
AHBAPn.RESet
AHBAPn.view

APBAPn.Port <port>
APBAPn.RESet
APBAPn.view

AXIAPn.ACEEnable [ON | OFF]
AXIAPn.CacheFlags <value>
AXIAPn.HPROT [<value> | <name>]
AXIAPn.Port <port>
AXIAPn.RESet
AXIAPn.view

<parameter>:
(COmponents
cont.)

COREDEBUG.Base <address>
COREDEBUG.RESet
COREDEBUG.view
SDMA Debugger | 19©1989-2024 Lauterbach

<parameters> describing the “DebugPort”

CORE <core> <chip> The command helps to identify debug and trace resources which
are commonly used by different cores. The command might be
required in a multicore environment if you use multiple debugger
instances (multiple TRACE32 PowerView GUIs) to simultaneously
debug different cores on the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2
...

each debugger instance assumes that all notified debug and trace
resources can exclusively be used.

But some target systems have shared resources for different
cores, for example a common trace port. The default setting
causes that each debugger instance controls the same trace port.
Sometimes it does not hurt if such a module is controlled twice.
But sometimes it is a must to tell the debugger that these cores
share resources on the same <chip>. Whereby the “chip” does not
need to be identical with the device on your target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1

For cores on the same <chip>, the debugger assumes that the
cores share the same resource if the control registers of the
resource have the same address.

Default:
<core> depends on CPU selection, usually 1.
<chip> derived from CORE= parameter in the configuration file
(config.t32), usually 1. If you start multiple debugger instances with
the help of t32start.exe, you will get ascending values (1, 2, 3,...).

DEBUGPORT
[DebugCable0 | DebugCa-
bleA | DebugCableB]

It specifies which probe cable shall be used e.g. “DebugCableA” or
“DebugCableB”. At the moment only the CombiProbe allows to
connect more than one probe cable.

Default: depends on detection.

DEBUGPORTTYPE
[JTAG | SWD]

It specifies the used debug port type “JTAG” or “SWD”. It assuems
the selected type is supported by the target.

Default: JTAG
SDMA Debugger | 20©1989-2024 Lauterbach

Slave [ON | OFF] If several debuggers share the same debug port, all except one
must have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the
signals nTRST and nSRST (nRESET). The other debuggers need
to have the setting Slave ON.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

SWDPIdleHigh [ON | OFF] Keep SWDIO line high when idle. Only for Serialwire Debug mode.
Usually the debugger will pull the SWDIO data line low, when no
operation is in progress, so while the clock on the SWCLK line is
stopped (kept low).

You can configure the debugger to pull the SWDIO data line high,
when no operation is in progress by using
SYStem.CONFIG SWDPIdleHigh ON
Default: OFF.

SWDPTargetSel <value> Device address in case of a multidrop serial wire debug port.

Default: none set (any address accepted).

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a
common JTAG port. TAPState and TCKLevel define the TAP state
and TCK level which is selected when the debugger switches to
tristate mode.
Please note:
• nTRST must have a pull-up resistor on the target.
• TCK can have a pull-up or pull-down resistor.
• Other trigger inputs need to be kept in inactive state.

Default: OFF.
SDMA Debugger | 21©1989-2024 Lauterbach

<parameters> describing the “JTAG” scan chain and signal behavior

With the JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

• nTRST (reset)

• TCK (clock)

• TMS (state machine control)

• TDI (data input)

• TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to. The TAP position can be defined
with the first four commands in the table below.

… DRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

… DRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

… IRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing. See possible TAP types and example below.

Default: 0.

… IRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal. See possible TAP types and example
below.

Default: 0.

NOTE: If you are not sure about your settings concerning IRPRE, IRPOST, DRPRE,
and DRPOST, you can try to detect the settings automatically with the
SYStem.DETECT.DaisyChain command.
SDMA Debugger | 22©1989-2024 Lauterbach

Slave [ON | OFF] If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

TAPState <state> This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

0 Exit2-DR
1 Exit1-DR
2 Shift-DR
3 Pause-DR
4 Select-IR-Scan
5 Update-DR
6 Capture-DR
7 Select-DR-Scan
8 Exit2-IR
9 Exit1-IR
10 Shift-IR
11 Pause-IR
12 Run-Test/Idle
13 Update-IR
14 Capture-IR
15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

TCKLevel <level> Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.

Default: 0.

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.
Please note:
• nTRST must have a pull-up resistor on the target.
• TCK can have a pull-up or pull-down resistor.
• Other trigger inputs need to be kept in inactive state.

Default: OFF.
SDMA Debugger | 23©1989-2024 Lauterbach

TAP types:

Core TAP providing access to the debug register of the core you intend to debug.
-> DRPOST, DRPRE, IRPOST, IRPRE.

DAP (Debug Access Port) TAP providing access to the debug register of the core you intend to debug. It
might be needed additionally to a Core TAP if the DAP is only used to access memory and not to access the
core debug register.
-> DAPDRPOST, DAPDRPRE, DAPIRPOST, DAPIRPRE.
SDMA Debugger | 24©1989-2024 Lauterbach

<parameters> describing a system level TAP “MultiTap”

A “Multitap” is a system level or chip level test access port (TAP) in a JTAG scan chain. It can for example
provide functions to re-configure the JTAG chain or view and control power, clock, reset and security of
different chip components.

Example:

MULTITAP
[NONE |
JtagSEQuence <sub_cmd>]

Selects the type and version of the MULTITAP.

For a description of the JtagSEQuence subcommands, see
SYStem.CONFIG.MULTITAP JtagSEQuence.

 TDO

 TMS

 TCK

 nTRST

SDMA
TAP

DAP1
TAP

DAP2
TAP

Multitap
“SJC”

JTAG

 TDI
SDMA Debugger | 25©1989-2024 Lauterbach

<parameters> configuring a CoreSight Debug Access Port “DAP”

In some Controllers with SDMA cores, a Debug Access Port (DAP) is used instead of a JTAG scan chain to
communicate with the different cores. A DAP is a CoreSight module from ARM which e.g. provides access
via its debug link (JTAG, SWD) to different memory buses (AHB, APB, AXI). This is especially important if
the on-chip debug register needs to be accessed this way. You can access the memory busses by using
certain access classes with the debugger commands: “AHB:”, “APB:”, “AXI:”, “E:”. The interface to these
buses is called Memory Access Port (MEM-AP).

 Example:

To connect TRACE32 to this system, following commands are necessary:

The type of the debug port (JTAG, cJTAG or SWD) can be configured via
SYStem.CONFIG.DEBUGPORTTYPE.

SYStem.CONFIG AHBAP.Port 0.
SYStem.CONFIG APBAP.Port 1.
SYStem.CONFIG COREDEBUG.Base NAHB:0x302C0000

Memory
Access Port
(MEM-AP)

Debug
Port
(DP)

Memory
Access Port
(MEM-AP)

CoreSight
Component

ROM table

SDMA
Debug

Registers

DAP

AHB

APB

0x302C0000

0.

1.

SoC-400
SDMA Debugger | 26©1989-2024 Lauterbach

The below offered selection options are all non-bufferable. Alternatively you can enter a <value>, where
value[5:4] determines the Domain bits and value[3:0] the Cache bits.

AHBAP.HPROT [<value> |
<name>]

Default: 0.
Selects the value used for the HPROT bits in the Control Status
Word (CSW) of a CoreSight AHB Access Port, when using the AHB:
memory class.

AXIAP.HPROT [<value> |
<name>]

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight AXI Access Port, when using
the AXI: memory class.

AXIAP.ACEEnable [ON |
OFF]

Default: OFF.
Enables ACE transactions on the AXI-AP, including barriers. This
does only work if the debug logic of the target CPU implements
coherent accesses. Otherwise this option will be without effect.

AXIAP.CacheFlags <value> Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).
This option configures the value used for the Cache and Domain
bits in the Control Status Word (CSW[27:24]->Cache, CSW[14:13]-
>Domain) of an Access Port, when using the AXI: memory class.

<name> Description

DeviceSYStem =0x30: Domain=0x3, Cache=0x0

NonCacheableSYStem =0x32: Domain=0x3, Cache=0x2

ReadAllocateNonShareable =0x06: Domain=0x0, Cache=0x6

ReadAllocateInnerShareable =0x16: Domain=0x1, Cache=0x6

ReadAllocateOuterShareable =0x26: Domain=0x2, Cache=0x6

WriteAllocateNonShareable =0x0A: Domain=0x0, Cache=0xA

WriteAllocateInnerShareable =0x1A: Domain=0x1, Cache=0xA

WriteAllocateOuterShareable =0x2A: Domain=0x2, Cache=0xA
SDMA Debugger | 27©1989-2024 Lauterbach

SoC-400 Specific Commands

ReadWriteAllocateNonShareable =0x0E: Domain=0x0, Cache=0xE

ReadWriteAllocateInnerShareable =0x1E: Domain=0x1, Cache=0xE

ReadWriteAllocateOuterShareable =0x2E: Domain=0x2, Cache=0xE

... .RESet Undo the configuration for this access port. This does not cause
a physical reset for the access port on the chip.

... .view Opens a window showing the current configuration of the access
port.

AHBAP.Port <port> Access Port Number (0-255) of a SoC-400 system which shall be
used for “AHBn:” access class. Default: <port>=0.

APBAP.Port <port> Access Port Number (0-255) of a SoC-400 system which shall be
used for “APBn:” access class. Default: <port>=1.

AXIAP.Port <port> Access Port Number (0-255) of a SoC-400 system which shall be
used for “AXIn:” access class. Default: port not available.
SDMA Debugger | 28©1989-2024 Lauterbach

<parameters> describing debug and trace “Components”

SYStem.CPU Select the used CPU

Default: SDMA

Selects the processor type and corresponding instruction set for disassembler and in-line assembler. In
addition, the command selects the JTAG configurations and configures the JTAG sequence for adding the
SDMA core to the chain.

… .BASE <address> This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETMBASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components BMC, COREBEBUG, CTI, ETB, ETF,
ETM, ETR a list of base addresses to specify one component per
core.

Example assuming four cores: SYStem.CONFIG
COREDEBUG.Base 0x80001000 0x80003000 0x80005000
0x80007000

… .RESet Undo the configuration for this component. This does not cause a
physical reset for the component on the chip.

… .view Opens a window showing the current configuration of the
component.

Format: SYStem.CPU <cpu>

<cpu>: SDMA | IMX6ULL-SDMA | IMX6ULTRALITE-SDMA | ...
SDMA Debugger | 29©1989-2024 Lauterbach

SYStem.JtagClock Define the frequency of the debug port

Default frequency: 1.0 MHz.

Selects the frequency (TCK/SWCLK) used by the debugger to communicate with the processor in JTAG
mode. The frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if
there are buffers, additional loads or high capacities on the debug port signals or if VTREF is very low. A very
high frequency will not work on all systems and will result in an erroneous data transfer. Therefore we
recommend to use the default setting if possible.

SYStem.LOCK Lock and tristate the debug port

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool. The command has no effect for the simulator.

Format: SYStem.JtagClock <frequency>

<frequency>: 4 kHz…100 MHz

<frequency> • The debugger cannot select all frequencies accurately. It chooses
the next possible frequency and displays the real value in the
SYStem.state window.

• Besides a decimal number like “100000.” short forms like “10kHz”
or “15MHz” can also be used. The short forms imply a decimal
value, although no “.” is used.

Format: SYStem.LOCK [ON | OFF]
SDMA Debugger | 30©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

Default: Denied.

If SYStem.MemAccess StopAndGo is set, it is possible to read from memory, to write to memory and to
set software breakpoints while the CPU is executing the program. To make this possible, the program
execution is shortly stopped by the debugger. Each stop takes some time depending on the currently active
debug port clock speed and the operations that should be performed. A white S against a red background in
the TRACE32 state line warns you that the program is no longer running in real-time:

To update specific windows that display memory or variables while the program is running, select the
memory class E: or the format option %E.

Format: SYStem.MemAccess <mode>

<mode>: Denied
StopAndGo

Denied No memory access is possible while the CPU is executing the program.

StopAndGo Temporarily halts the core to perform the memory access. Each stop
takes some time depending on the speed of the debug port and the
operations that should be performed.
For more information, see below.

Data.dump E:0x100

Var.View %E first

No real-time
SDMA Debugger | 31©1989-2024 Lauterbach

SYStem.Mode Establish the communication with the target

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Go
Attach
StandBy
Up

Down Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

NoDebug Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is not tristated.

Go Resets the target via the reset line, initializes the debug port and starts
the program execution. For a reset, the reset line has to be connected to
the debug connector.
Program execution can, for example, be stopped by the Break command.

Attach No reset happens, the mode of the core (running or halted) does not
change. The debug port will be initialized. After this command has been
executed, the user program can, for example, be stopped by the Break
command.
SDMA Debugger | 32©1989-2024 Lauterbach

StandBy Keeps the target in reset via the reset line and waits until power is
detected. For a reset, the reset line has to be connected to the debug
connector.

Once power has been detected, the debugger restores as many debug
registers as possible (e.g. on-chip breakpoints) and releases the CPU
from reset to start the program execution.

When a CPU power-down is detected, the debugger switches
automatically back to the StandBy mode. This allows debugging of a
power cycle because debug registers will be restored on power-up.

NOTE: usually only on-chip breakpoints and vector catch events can be
set while the CPU is running. To set a software breakpoint, the CPU has
to be stopped.

Up Resets the target via the reset line, initializes the debug port, stops the
CPU, and enters debug mode.
For a reset, the reset line has to be connected to the debug connector.
The current state of all registers is read from the CPU.
SDMA Debugger | 33©1989-2024 Lauterbach

SYStem.Option Special setup
[SYStem.state window > Option]

The SYStem.Option commands are used to control special features of the debugger or to configure the
target. It is recommended to execute the SYStem.Option commands before the emulation is activated by a
SYStem.Up or SYStem.Mode command.
SDMA Debugger | 34©1989-2024 Lauterbach

SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP

Default: ON.

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start because debug power is mandatory for debugger operation.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAPDBGPWRUPREQ is set to
AlwaysON.

SYStem.Option.DAPNOIRCHECK No DAP instruction register check

Default: OFF.

Bug fix for derivatives which do not return the correct pattern on a DAP (Arm CoreSight Debug Access Port)
instruction register (IR) scan. When activated, the returned pattern will not be checked by the debugger.

Format: SYStem.Option.DAPDBGPWRUPREQ [ON | AlwaysON | OFF]

ON Debug power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The debug power is not released at the end of the debug session, and
the control bit is set to 0.

OFF Only for test purposes: Debug power is not requested and not checked
by the debugger. The control bit is set to 0.

Format: SYStem.Option.DAPNOIRCHECK [ON | OFF]
SDMA Debugger | 35©1989-2024 Lauterbach

SYStem.Option.DAPREMAP Rearrange DAP memory map

The Debug Access Port (DAP) can be used for memory access during runtime. If the mapping on the DAP is
different than the processor view, then this re-mapping command can be used

SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP

Default: ON.

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
during and after the debug session

Format: SYStem.Option.DAPREMAP {<address_range> <address>}

NOTE: Up to 16 <address_range>/<address> pairs are possible. Each pair has to
contain an address range followed by a single address.

Format: SYStem.Option.DAPSYSPWRUPREQ [AlwaysON | ON | OFF]

AlwaysON System power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The system power is not released at the end of the debug session, and
the control bit remains at 1.

ON System power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.

OFF System power is not requested by the debugger on a debug session
start, and the control bit is set to 0.
SDMA Debugger | 36©1989-2024 Lauterbach

SYStem.Option.DEBUGPORTOptions Options for debug port handling

Default: SWITCHTOSWD.TryAll, SWDTRSTKEEP.DEFault.

See Arm CoreSight manuals to understand the used terms and abbreviations and what is going on here.

SWITCHTOSWD tells the debugger what to do in order to switch the debug port to serial wire mode:

SWDTRSTKEEP tells the debugger what to do with the nTRST signal on the debug connector during serial
wire operation. This signal is not required for the serial wire mode but might have effect on some target
boards, so that it needs to have a certain signal level.

Format: SYStem.Option.DEBUGPORTOptions <option>

<option>: SWITCHTOSWD.[TryAll | None | JtagToSwd | LuminaryJtagToSwd | Dor-
mantToSwd | JtagToDormantToSwd]
SWDTRSTKEEP.[DEFault | LOW | HIGH]

TryAll Try all switching methods in the order they are listed below. This is
the default. Normally it does not hurt to try improper switching
sequences. Therefore this succeeds in most cases.

None There is no switching sequence required. The SW-DP is ready
after power-up. The debug port of this device can only be used as
SW-DP.

JtagToSwd Switching procedure as it is required on SWJ-DP without a
dormant state. The device is in JTAG mode after power-up.

LuminaryJtagToSwd Switching procedure as it is required on devices from
LuminaryMicro. The device is in JTAG mode after power-up.

DormantToSwd Switching procedure which is required if the device starts up in
dormant state. The device has a dormant state but does not
support JTAG.

JtagToDormantToSwd Switching procedure as it is required on SWJ-DP with a dormant
state. The device is in JTAG mode after power-up.

DEFault Use nTRST the same way as in JTAG mode which is typically a low-pulse
on debugger start-up followed by keeping it high.

LOW Keep nTRST low during serial wire operation.

HIGH Keep nTRST high during serial wire operation
SDMA Debugger | 37©1989-2024 Lauterbach

SYStem.Option.DUALPORT Implicitly use run-time memory access

All TRACE32 windows that display memory are updated while the processor is executing code (e.g.
Data.dump, Data.List, PER.view, Var.View). This setting has no effect if SYStem.MemAccess is disabled.

If only selected memory windows should update their content during runtime, leave
SYStem.Option.DUALPORT OFF and use the access class prefix E or the format option %E for the
specific windows.

SYStem.Option.IMASKASM Disable interrupts while single stepping
[SYStem.state window > IMASKASM]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After a single step, the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
[SYStem.state window > IMASKHLL]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After a single step, the interrupt mask bits are restored
to the value before the step.

Format: SYStem.Option.DUALPORT [ON | OFF]

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]
SDMA Debugger | 38©1989-2024 Lauterbach

CPU specific TrOnchip Commands

The TrOnchip command group is not available for the SDMA debugger.
SDMA Debugger | 39©1989-2024 Lauterbach

Target Adaption

Probe Cables

For debugging two kind of probe cables can be used to connect the debugger to the target:
“Debug Cable” and “CombiProbe”.

Though the probe cables support several standards and the host core additionally supports cJTAG and
SWD, the debugport type JTAG is mandatory if the SDMA core should be debugged.

Connector Type and Pinout

Debug Cable

Adaption for ARM Debug Cable: See http://www.lauterbach.com/adarmdbg.html.

For details on logical functionality, physical connector, alternative connectors, electrical characteristics,
timing behavior and printing circuit design hints refer to “Arm Debug and Trace Interface Specification”
(app_arm_target_interface.pdf).

CombiProbe

Adaption for ARM CombiProbe: See http://www.lauterbach.com/adarmcombi.html.

If you use more than one CombiProbe cable (twin cable is no standard delivery) you need to specify which
one you want to use by SYStem.CONFIG DEBUGPORT [DebugCableA | DebugCableB]. The
CombiProbe can detect the location of the cable if only one is connected.
SDMA Debugger | 40©1989-2024 Lauterbach

http://www.lauterbach.com/adarmdbg.html
http://www.lauterbach.com/adarmcombi.html

	SDMA Debugger
	Warning
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Configuration
	System Overview

	Quick Start of the Debugger
	Troubleshooting
	Communication between Debugger and Processor can not be established

	FAQ
	SDMA specific Implementations
	Memory Classes
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints

	On-chip Trace
	Special Hints, Restrictions, and Known Problems
	Special Hints
	Restrictions
	Known Problems

	SDMA specific SYStem Commands
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior
	<parameters> describing a system level TAP “MultiTap”
	<parameters> configuring a CoreSight Debug Access Port “DAP”
	<parameters> describing debug and trace “Components”

	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define the frequency of the debug port
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option Special setup
	SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP
	SYStem.Option.DAPNOIRCHECK No DAP instruction register check
	SYStem.Option.DAPREMAP Rearrange DAP memory map
	SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
	SYStem.Option.DEBUGPORTOptions Options for debug port handling
	SYStem.Option.DUALPORT Implicitly use run-time memory access
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

	CPU specific TrOnchip Commands
	Target Adaption
	Probe Cables
	Connector Type and Pinout
	Debug Cable
	CombiProbe

