LAUTERBACH A

RH850 Debugger and Trace

RH850 Debugger and Trace

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~
] 1 PP r=
RHB850 Debugger and TracCecccccciiiiiiiiiiiiisnsmmmennr s sssssss s ssmmsmns s s s e snnnnas 1

L 1= (o 7

Y e Yo 11T £ o) o T 8
Available Tools 8
Debugger 8
Software-only Debugger for XCP 8

SFT Trace 9

On-chip Trace 9
High-Speed Serial Off-chip Trace (Aurora NEXUS) 9

Parallel Off-chip Trace (parallel NEXUS) 9
Co-Processor Debugging (GTM) 10
Multicore Debugging 10
Software Installation 10
Related Documents 10

Demo and Start-up Scripts 11

Brief Overview of Documents for New Users 11

R = 1 41 ' 12

L LT =] I o S 13
Application Starts Running at SYStem.Up 13
Greenhills Compiler 14

Stop Timers and Peripherals during application-break 14
Location of Debug Connector 14

Reset Line 14
Debugging the STOP and DeepSTOP Mode 15

{070 o1 {To 117 = 11 Lo o X 16
System Overview 16
Single Core Debugging - QUIick Start ..o 17
Debug from Reset 17
©1989-2024 Lauterbach RH850 Debugger and Trace | 2

Connect to Running Program (Hot Plug-In) 19
TroubleShOOtING ...cccccciiiiicr s s 20
SYStem.Up Errors 20
O 20
[11 o ¥ o 1 1T R 21
RHB850 Debug Interface Modes 21
JTAG Mode 21
LPD4 Mode 21
LPD1 Mode 22
UART Mode 22
Breakpoints 24
Software Breakpoints 24
Onchip Breakpoints 24
Breakpoint in ROM 25
Example for Breakpoints 25
Access Classes 26
Access Classes to Memory and Memory Mapped Resources 26
Access Classes to Other Addressable Core and Peripheral Resources 27
Support for Peripheral Modules 29
Runtime Measurement 29
Multicore Debugging 30
SMP Debugging 30
AMP Debugging 32
FLASH Programming SUPPOITcccceiiiirmmmrmmiinssssinnsssss s mssssssss s ssssssss s sssssssssssssssssssssssssasas 34
I T 1 36
SFT Trace via LPD4 36
NEXUS On-chip Trace 36
External Trace Ports (Parallel NEXUS/Aurora NEXUS) 36
Tracing the Program Flow 37
Tracing of Data (read/write) Transactions 38
Example: Data Trace with Address Range 38
Trace Filtering and Triggering with Debug Events 39
Event Breakpoints 39
Overview 39
Example: Selective Program Tracing 40
Example: Event Controlled Program/Data Trace Start and End 41
Example: Event Controlled Trace Recording 42
Example: Event Controlled Trigger Signals 42
Example: Event Counter 43
Tracing Peripheral Modules / Bus Masters 43
SFT SOftWAre TracCecccccccceeririmrississsssssmmmmsnnsssnsssssssssssssmsssssssssessssssssssssnmmsesssnsssnssnssssssannnns 44
©1989-2024 Lauterbach RH850 Debugger and Trace 3

SFT Software Trace to On-chip Trace 44
SFT Software Trace via LPD4 debug port 45
CPU specific SYStem Commandsccccevreemmrrrnssmerressssmeersssssmsssesssmmssssssssmssssssssmesseas 46
SYStem.BAUDRATE Baudrate setting 46
SYStem.CONFIG.state Display target configuration 46
SYStem.CONFIG Configure debugger according to target topology 47
Daisy-Chain Example 49
TapStates 50
SYStem.CONFIG.CORE Assign core to TRACES2 instance 51
SYStem.CONFIG.DEBUGPORT Select target interface 52
SYStem.CONFIG.DEBUGPORTTYPE Select debug port type 52
SYStem.CONFIG.EXTWDTDIS Disable external watchdog 53
SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool 54
SYStem.CORECLOCK Core clock frequency 54
SYStem.CPU CPU type selection 55
SYStem.JtagClock JTAG clock selection 55
SYStem.LOCK Lock and tristate the debug port 55
SYStem.MemAccess Select run-time memory access method 56
SYStem.Mode System mode selection 57
SYStem.OSCCLOCK Oscillator clock frequency 58
SYStem.RESetOut Reset target without reset of debug port 58
CPU specific SYStem.Option Commandsccccciivrrcemmmmmmmnnsisnssssssssssssssssssesssssssssssssnas 59
SYStem.Option.CFU CalibrationFunctionUnit support 59
SYStem.Option.DOWNMODE Behavior of SYStem.Mode Down 59
SYStem.Option.DUALPORT Implicitly use run-time memory access 60
SYStem.Option.FLMDO FLMDO pin default level 60
SYStem.Option.HoldReset Set reset hold time 60
SYStem.Option.ICUS ICU-S enable 62
SYStem.Option.IDSET Program KeyCodes to CPU option bytes 63
SYStem.Option.IMASKASM Interrupt disable 63
SYStem.Option.IMASKHLL Interrupt disable 63
SYStem.Option.KEYCODE Keycode (G3Kx cores only) 64
SYStem.Option.MACHINESPACES Address extension for guest OSes 64
SYStem.Option.OCDID OnChipDebuglID setting 65
SYStem.Option.CFID CodeFlashID setting 65
SYStem.Option.DFID DataFlashID setting 65
SYStem.Option.OPtionByTe Option-byte setting 66
SYStem.Option.OPtionByTe8 Option-byte setting 66
SYStem.Option.CIDA Customer-ID A setting 66
SYStem.Option.CIDB Customer-ID B setting 67
SYStem.Option.CIDC Customer-ID C setting 67
SYStem.Option.PERSTOP Disable CPU peripherals if stopped 68
SYStem.Option.RESetBehavior Set behavior when target reset detected 69
©1989-2024 Lauterbach RH850 Debugger and Trace 4

SYStem.Option.ResetDetection Configure reset detection method 70
SYStem.Option.RDYLINE RDY pin available 70
SYStem.Option.SLOWRESET Timeout for ResetRiseTime 71
SYStem.Option.WaitReset Set reset wait time 71
SYStem.Option (Exception Lines ENable)cccccciiiiimiiiesinismnss s s s s e 72
SYStem.Option.CPINT CPINT line enable 72
SYStem.Option.REQest Request line enable 72
SYStem.Option.RESET Reset line enable 72
SYStem.Option.STOP Stop line enable 73
SYStem.Option.WAIT Wait line enable 73
CPU specific BenchMarkCounter COmMmandsc.cccvivmmmmnmsminssmsssssissssssssssssssssnsanes 74
BMC.<counter>.ATOB Enable event triggered counter start and stop 75
BMC.<counter>.EVENT Configure the performance monitor 76
BMC.<counter>.TRIGMODE BMC trigger mode 77
BMC.<counter>.TRIGVAL BMC trigger value 77
CPU specific TrOnchip Commandsccccccemmmiiiiemmmmmnnsssrrnsssssssss s ssssssssns 78
TrOnchip.CONVert Allow extension of address range of breakpoint 78
TrOnchip.EVTEN Enable ‘EVTO-’ trigger input (Aurora trace only) 79
TrOnchip.RESet Set on-chip trigger to default state 79
TrOnchip.SIZE Trigger on byte, word, long memory accesses 80
TrOnchip.state Display on-chip trigger window 80
TrOnchip.VarCONVert Convert breakpoints on scalar variables 81
Command Reference: NEXUS ... ssssssssssssssssmssssssssssssssssssmmsssnnas 83
NEXUS.BTM Program trace messaging enable 83
NEXUS.CoreENable Core specific trace configuration 83
NEXUS.CLIENT<x>.MODE Set data trace mode of nexus client 83
NEXUS.CLIENT<x>.SELECT Select a nexus client for data tracing 84
NEXUS.DTM Data trace messaging enable 84
NEXUS.OFF Disable NEXUS register access 85
NEXUS.ON Switch the NEXUS trace port on 85
NEXUS.PortMode Set NEXUS trace port frequency 85
NEXUS.PortSize Set trace port width 86
NEXUS.RESet Reset NEXUS trace port settings 86
NEXUS.SFT Software trace messaging enable 86
NEXUS.SUSpend Stall the program execution when FIFO full 86
NEXUS.SYNC Address-sync trace messaging enable 87
NEXUS.SyncPeriod Set period of timestamp sync messages 87
NEXUS.state Display NEXUS port configuration window 87
NEXUS.TimeStamps On-chip timestamp generation enable 88
Nexus specific TrOnchip Commandsccccuiimmiiismmmninmies s s 89
TrOnchip.Alpha Set special breakpoint function 89
TrOnchip.Beta Set special breakpoint function 90
©1989-2024 Lauterbach RH850 Debugger and Trace 5

TrOnchip.Charly Set special breakpoint function 90
TrOnchip.Delta Set special breakpoint function 91
TrOnchip.Echo Set special breakpoint function 91
CPU specific FUNCLIONS coiiiiiieiiiiiienr s s s e e ssmmn e 92
CPU.BASEFAMILY() CPU family 92
CPU.DEVICEID() Value of the device-id 92
CPU.SUBFAMILY() CPU subfamily 92
SYStem.BAUDRATE() Value of baudrate 93
SYStem.CORECLOCK() Core clock frequency 93
SYStem.OSCCLOCK() Oscillator clock frequency 93
SYStem.CFID() Values of CodeFlashID 93
SYStem.DFID() Values of DataFlashID 94
SYStem.OCDID() Values of OnChipDebugID 94
SYStem.OPBT() Values of Option-bytes 94
SYStem.OPBT8() Values of Option-bytes 95
SYStem.RESETDETECTION() Reset detection method 95

[1= W T T 0T o o1 0 1= o3 o T 96
Debug Connector 14 pin 100mil 96
Debug Connector 26 97
Trace Connectors and Adapterscccccccmrrmimsrmees s 98
Adapter for RH850 (LA-3561) 98
Parallel NEXUS Connector (Debug and Trace) 100
Aurora NEXUS SAMTEC 34-pin (Debug and Trace) 101
Aurora NEXUS SAMTEC 40-pin (Trace only) 102
Aurora NEXUS SAMTEC 46-pin (Debug and Trace) 103
©1989-2024 Lauterbach RH850 Debugger and Trace | 6

RH850 Debugger and Trace

History

Version 06-Jun-2024

03-Mar-2024
03-May-2023
23-May-2022

20-May-2022

20-May-2022

19-May-2022

New commands: SYStem.Option.CIDA, SYStem.Option.CIDB, and SYStem.Option.CIDC.
New command SYStem.Option.DUALPORT.
New functions: CPU.BASEFAMILY(), and CPU.SUBFAMILY().

New functions: SYStem.BAUDRATE(), SYStem.CORECLOCK(), and
SYStem.OSCCLOCK().

New functions: SYStem.OPBT(), SYStem.OPBT8(), and SYStem.RESETDETECTION().

New functions: CPU.DEVICEID(), SYStem.Option.CFID(), SYStem.Option.DFID(), and
SYStem.Option.OCDID().

©1989-2024 Lauterbach RH850 Debugger and Trace | 7

Introduction

This document describes the processor specific settings and features for RENESAS RH850.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

If some of the described functions, options, signals or connections in this Processor Architecture Manual are

only valid for a single CPU or for specific family lines, the name(s) of the family/families is/are added in
brackets.

Available Tools

This chapter gives an overview over available Lauterbach tools for the RH850 processors.

Debugger

Debugging RH850 requires a Lauterbach Debug Cable
together with a Lauterbach PowerDebug Module.

To connect to the target the following Debug Cable can be
used:

. JTAG Debugger for RH850 - LA-3719 N

The Debug Cable supports all debug interface modes of the
RH850 (JTAG, LPD4, LPD1) plus SerialFlashProgramming. %

The Debug Cable comes with a license for debugging.

Furthermore it is required to use a Debug Module from the POWER series, e.g.
. POWER DEBUG INTERFACE / USB 3

. POWER DEBUG INTERFACE / USB 2

. POWER DEBUG PRO

The DEBUG INTERFACE (LA-7701) does not support this processor series.

Software-only Debugger for XCP

TRACES32 supports debugging over a 3rd-party tool using the XCP protocol. For details see “XCP Debug
Back-End” (backend_xcp.pdf).

©1989-2024 Lauterbach RH850 Debugger and Trace | 8

SFT Trace

SFT trace (software trace) requires no extra Lauterbach hardware. Trace data can be saved to the On-chip
trace or it can be streamed to the debug box in real time (LPD4 mode only). In streaming mode up to
32MRec of trace data can be recorded.

SFT-trace requires code instrumentation which typically is provided by the compiler tool. TRACE32 reads all
SFT-trace symbol information from the loaded ELF file (currently only supported for Greenhills compiler).

Beside the display of SFT string messages, the display of function charts and calculation of runtime-
statistics is supported.

On-chip Trace

On-chip tracing requires no extra Lauterbach hardware, it can be configured and read out with the regular
debug hardware. On-chip tracing requires a trace license (LA-3734X).

High-Speed Serial Off-chip Trace (Aurora NEXUS)

Lauterbach offers off-chip trace solutions for the Aurora
NEXUS trace port. Aurora is a high-speed serial interface
defined by Xilinx.

Tracing can either be done with PowerTrace Serial \ . N
4 GigaByte RH850 (LA-3560) which supports up to 8 lanes, '
N\

each at 12.5Gbps.

Or with Preprocessor RH850 HSTP HF-Flex and a
PowerTrace Il / PowerTrace Il module. This configuration
supports up to 4 lanes at a lower speed.

mm" “'/- e

Parallel Off-chip Trace (parallel NEXUS)

Lauterbach offers an off-chip trace solution for processors
with parallel NEXUS trace port.

Tracing requires the parallel preprocessor and a POWER TRACE Il / POWER TRACE Il module.
J Preprocessor Focus Il RH850 (LA-3918)
J Preprocessor RH850 (LA-3843)

©1989-2024 Lauterbach RH850 Debugger and Trace | 9

Co-Processor Debugging (GTM)

Debugging the RH850 coprocessors GTM is included free of charge, i.e. there is no additional license
required.

For details about coprocessor debugging, see the specific Processor Architecture Manuals:

“GTM Debugger and Trace” (debugger_gtm.pdf)

Multicore Debugging

Lauterbach offers multicore debugging and tracing solutions, which can be done in two different setups:
Symmetric Multiprocessing (SMP) and Asymmetric Multiprocessing (AMP). For details see chapter
Multicore Debugging.

Multicore debugging of multiple RH850 cores requires the License for Multicore Debugging (MULTICORE).

Software Installation

Please follow chapter “Software Installation” (icd_quick_installation.pdf) on how to install the TRACE32
software:

An installer is available for a complete TRACE32 installation under Windows.
See “MS Windows” in TRACE32 Installation Guide, page 21 (installation.pdf).

For a complete installation of TRACES32 under Linux, see “PC_LINUX” in TRACES32 Installation
Guide, page 23 (installation.pdf).

Related Documents

“GTM Debugger and Trace” (debugger_gtm.pdf): Debugging and tracing the Generic Timer
Module (GTM).

“Training Nexus Tracing” (training_nexus.pdf): Training for the NEXUS trace

“Onchip/NOR FLASH Programming User’s Guide” (norflash.pdf): Onchip FLASH and off-chip
NOR FLASH programming.

“Training Basic SMP Debugging” (training_debugger_smp.pdf): SMP debugging.
“Application Note Benchmark Counter RH850” (app_rh850_bmc.pdf).

“XCP Debug Back-End” (backend_xcp.pdf): Debugging over a 3rd-party tool using the XCP
protocol.

©1989-2024 Lauterbach RH850 Debugger and Trace | 10

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known hardware that is based on RH850.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.
You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/rh850/ subfolder of the system directory of TRACES32.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.
J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

J “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

J “XCP Debug Back-End” (backend_xcp.pdf): This manual describes how to debug a target over a
3rd-party tool using the XCP protocol.

©1989-2024 Lauterbach RH850 Debugger and Trace | 11

Warning

Signal Level

The debugger output voltage follows the target voltage level. It supports a voltage range of 0.4 ... 5.2 V.

ESD Protection

1.

N o oo A W

—

P 0D

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACE32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACES32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACE32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

RH850 Debugger and Trace | 12

Useful Tips

Application Starts Running at SYStem.Up

Before TRACE32 can get control of the RH850, the cpu already has started the application startup code.
This is a restriction of the RH850 core!

It depends on the executed startup code which peripherals are initialized and if this can cause trouble for the
debugging session. E.g.

. enable watchdog
J enter power saving mode

o ECC errors ...

To prevent unexpected side effects of unwanted code execution at SYStem.Up, an idle-loop should
be placed to the reset exception handler.

What to do:
. Add some “NOP” instructions to the beginning of your “reset exception handler”
J One of the “NOP” instruction addresses should get a label

The “NOP” instructions are just place holders and can stay in your application code.

. For debugging a “jump-to-itself” instruction has to be patched to the “NOP-label” address
Patching example:

FLASH.ReProgram ALL
Data.LOAD.E1f <file> /<options> ; load application code
Data.Assemble NOP-lable JR $-0 ; patch jump-to-itself
FLASH.Reprogram OFF

©1989-2024 Lauterbach RH850 Debugger and Trace | 13

Greenhills Compiler

J Add the option “-dual_debug” to your compiler/linker settings to generate HLL debug
information.

. Add the option “-No_lgnore_Debug_References” to your compiler/linker settings in case of
missing HLL-Line information in the ELF file.

. Load the code with option /JGHS example:

Data.Load.Elf example.abs /GHS

. The compiler can generates HLL line information which points to odd addresses. For TRACE32
the HLL line information and its address has priority, so it can happen the disassembly of certain
code lines is terminated. In this case “/////////" is displayed. As workaround TRACES32 can ignore
such HLL line information. Use command: sYmbol.CLEANUP.MidInstLines

. The compiler can generate bitfields in inverted order. Unfortunately the ELF files does not
contain any information about the bit order in use. In case of wrong bit-variable display please
use the option /ALTBITFIELDS when loading the code.

Data.Load.Elf example.abs /GHS /ALTBITFIELDS

Stop Timers and Peripherals during application-break

Add following command to your script: SYStem.Option.PERSTOP ON

Location of Debug Connector

Locate the debug connector as close as possible to the processor to minimize the capacitive influence of the
trace length and cross coupling of noise onto the debug signals.

Reset Line

Ensure that the debugger signal RESET is connected directly to the RESET of the processor. This will
provide the ability for the debugger to drive and sense the status of RESET.

©1989-2024 Lauterbach RH850 Debugger and Trace | 14

Debugging the STOP and DeepSTOP Mode

Ensure the application sets the register WUFMSKO0[31] to “0” to enable the TDI debug line as a wake-up
factor. This becomes important if the debugger should attach to an already running application which has
entered the STOP- or DeepSTOP mode.

TRACE32 displays the message “running (stopmode)” in the state line if the RH850 device enters the
STOP- or DeepSTOP-mode. The message will switch to “running (stop occurred)” as soon as there is a
wake-up event.

Typically the wake-up is done by the application. Additionally there are several wake-up conditions which are
caused by the debugger:

. Break (Break.direct)

. Real-time memory access, e.g.:
- A memory dump in a Data.dump E:<address> window
- Arefresh of a Var.Watch window

J If breakpoints are changed (Break.Set or Break.Delete)

. When onchip trace is in ARM mode (<trace>.Arm or <trace>.Arm)

To prevent unintended wake-ups from the debugger side:
o Set the trace mode to <trace>.OFF or <trace>.DISable

. Disable real-time memory access with the command SYStem.MemAccess Denied

©1989-2024 Lauterbach RH850 Debugger and Trace | 15

Configuration

System Overview

This figure shows an example of how to connect the TRACES32 hardware to your PC and your target board.

PC or
Workstation

Target
I —1
[E— — POWER DEBUG USB INTERFACE / USB 3 = Debug Cable
LAUTERBACH -
yss o IZZ. (i _
able K H { od
- Bl g] £t
- L g 8
| I 1 «

POWER DEBUG INTERFACE / USB 3

Wall Mount
O
Power Supply

©1989-2024 Lauterbach RH850 Debugger and Trace | 16

Single Core Debugging - Quick Start

In this section:
. Debug from Reset

. Connect to Running Program (Hot Plug-In)

Debug from Reset

Starting up the Debugger is done as follows:

1. Select the device prompt B: for the ICD Debugger, if the device prompt is not active after the
TRACES2 software was started.

B:
2. Select the CPU type to load the CPU specific settings.

SYStem.CPU R7F701035

3. If the TRACE32-ICD hardware is installed properly, the following CPU is the default setting:

JTAG Debugger for RH850 R7F701035

4. Tell the debugger where’s FLASH/ROM on the target.

MAP.BOnchip 0x00000000++0x7FFFF

This command is necessary for the use of on-chip breakpoints.

5. Enter debug mode

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access the registers. Set the chip selects to get access to the target memory.

Data.Set..

6. Load the program.

Data.LOAD.ubrof sieve.d85 ; (ubrof specifies the format,
; sieve.d85 is the file name)

©1989-2024 Lauterbach RH850 Debugger and Trace | 17

The option of the Data.LOAD command depends on the file format generated by the compiler. A
detailed description of the Data.LOAD command is given in the “General Commands Reference”.

The start-up can be automated using the programming language PRACTICE. A typical start sequence is
shown below. This sequence can be written to a PRACTICE script file (*.cmm, ASCII format) and executed

with the command DO <file>.

IBENE

WinCLEAR

MAP.BOnchip 0x000000++0x07ffff
SYStem.CPU R7F701035

SYStem.Up

Data.Load.ubrof sieve.d85
Register.Set PC main
Data.List

Register.view /SpotLight

Frame.view /Locals /Caller

Var.Watch %Spotlight flags ast

PER.view

Break.Set sieve

Break.Set 0x1000 /Program

Break.Set OxXFEDF8000 /Program

Select the ICD device prompt
Delete all windows

Specify where’s FLASH/ROM
Select the processor type

Reset the target and enter debug
mode

Load the application

Set the PC to function main

Open disassembly window @)
Open register window 2

Open the stack frame with
local variables *)

Open watch window for variables *)

Open window with peripheral
register *)

Set breakpoint to function sieve

Set on-chip breakpoint to address
1000 (address 1000 is in FLASH)
(Refer to the restrictions in
On-chip Breakpoints.)

Set software breakpoint to address
O0xXFEDF8000 (address OxXFEDF8000 is in
RAM)

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

RH850 Debugger and Trace | 18

Connect to Running Program (Hot Plug-In)

Hot plug-in is only supported for JTAG and LPD4 debug mode. Follow these steps to attach the debugger to
a running system:

1. Select the right debug-interface mode, set the Debug Cable to tri-state mode and connect it to
the target.

SYStem.CONFIG.DEBUGPORTTYPE LPD4
SYStem.Mode .NoDebug

2. Select the target processor.

SYStem.CPU R7F701035

3. Load debug symbols.

Data.LOAD.ELF project.x /NoCODE

4. Start debug session without resetting core.
SYStem.Mode.Attach
5. Observe variables or memory.

Var.View %E my_var your_var
Data.Dump E:0x40000100

6. Set breakpoints or halt core.

Break.Set my_func /Onchip

Break

7. Display ASM/HLL core at current instruction pointer

List

For information about SMP and AMP debugging, see “Multicore Debugging”, page 30.

©1989-2024 Lauterbach RH850 Debugger and Trace | 19

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

All The target has no power.

All The target is in reset:
The debugger controls the processor reset and use the RESET line to reset the
CPU on every SYStem.Up.

All There are additional loads or capacities on the debug lines.

All DEBUGPORTTYPE selection does not match the Debug-Interface-Mode setting
of the OptionBytes.

All Wrong OSCCLOCK, CORECLOCK or BAUDRATE setting (LPD4, U, CSI mode)

All JTAG clock (JTAG mode) too high.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach RH850 Debugger and Trace | 20

https://support.lauterbach.com/kb

Debugging

RH850 Debug Interface Modes

The RH850 offers three Debug Interface Modes (JTAG, LPD1, LPD4) plus the SerialFlashProgramming
mode by use of the same debug connection.

J The Debuglnterface modes are selected by the setting of the CPU OptionBytes.

. The SerialFlashProgramming mode is activated by the voltage level at pin FLMDO.
TRACES2 supports all debug interface modes and SerialFlashProgramming mode.

If TRACE32 can not connect to the CPU it might be necessary to modify the Option-Byte settings or
the TRACE32 “DebugPortType” setting. Option Byte programming can be done in
SerialFlashProgramming mode only (see below).

NOTE: . Option-Bytes programming is only supported in SerialFlashProgramming
mode (UART)!

. UserBootMat FlashProgramming is only supported in SerialFlashPro-
gramming mode (UART)!

JTAG Mode

J Full debug/trace support

. Scripts can be found in the ~~/demo/rh850/flash, ~~/demo/rh850/compiler and
~~/demo/rh850/hardware folders

. CPU-limitation: No flashprogramming of the UserBootMat, no OptionByte programming

. TRACES32 command: SYStem.CONFIG DEBUGPORTTYPE JTAG (default)

LPD4 Mode

o Same functions/limitations as in JTAG mode
. TRACE32 command: SYStem.CONFIG DEBUGPORTTYPE LPD4
o Interface baud rate has to be defined with command SYStem.BAUDRATE <value>

©1989-2024 Lauterbach RH850 Debugger and Trace | 21

LPD1 Mode

. Same functions/limitations as in JTAG mode
. TRACES32 command: SYStem.CONFIG DEBUGPORTTYPE LPD1
. Interface baud rate is detected/configured automatically

J There are RH850 CPU versions which do not support LPD1 mode!

UART Mode
. For serial flash programming and OptionByte programming (no debugging!)
J All CPU internal flashes can be programmed

TRACES2 is configured with the commands:

. SYStem.CONFIG DEBUGPORTTYPE UART/UART1

J SYStem.Mode Prepare

. Special FLASH.List table (differs in programming method)

Setup script: use pull down RH850->AutoSetup->AutosSetup for SerialFlashProgramming

The script opens a dialog window which asks for some target-specific parameters
. OSC clock (target-crystal)

J CPU clock (cpu-system-clock)

. UART baud rate

In the scripts you can find some example setting which were working well with the Renesas evaluation
boards.

Before flash and/or Option-Byte programming, please verify serial communication works well.
Check communication

After command SYStem.Mode Prepare

. Use pull-down-menu “view\message-area”.

. Check the messages of the AREA window.

. The SIGNATURE line shows the detected CPU type (e.g. “R7F701Z00”).

. If the SIGNATURE is wrong --> check clock and baud rate settings and try again.

©1989-2024 Lauterbach RH850 Debugger and Trace | 22

OptionByte Programming

The Option-Bytes are described in the CPU User Manual. For programming use command:
SYStem.Option.OPBT <opbt0>....<opbt7>

RH850/F1x --> OPBTO, bit30 and bit29 (JTAG=y11, LPD1=y10, LPD4=y01)
RH850/E1x --> OPBT2, bit30 and bit29 (JTAG=y11, LPD1=y10, LPD4=y01)

The Option-Bytes are programmed immediately, they become effective at the next RESET (SYStem.Up).

NOTE: SerialFlash-Programming mode is only needed if the Option-Bytes or
UserBootFlash has to be modified. All other debugging stuff and flash programming
can be done in JTAG, LPD1 or LPD4 mode.

RH850/F1x WS1.0 and RH850/E1x FCC (R7F701Z00) do not support Flash-
READ in SerialFlash-Programming mode!

©1989-2024 Lauterbach RH850 Debugger and Trace | 23

Breakpoints

There are two types of breakpoints available: Software breakpoints (SW-BP) and on-chip breakpoints (HW-

BP).

Software Breakpoints

Software breakpoints are the default breakpoints. A special breakcode is patched to memory so it only can
be used in RAM or FLASH areas.There is no restriction in the number of software breakpoints.

Onchip Breakpoints

Each core of a RH850 device is equipped with 12 Onchip breakpoints. These breakpoints only can be set if
the RH850 has stopped program execution.

The following list gives an overview of the usage of the on-chip breakpoints by TRACE32:

(core)

Processor-Element

range as bitmask

- include/exclude

range as bitmask
break before make
- include/exclude

- read/write
- size ANY/8/16/32

Number of ProgramBreaks Read/Write Breaks DataValue Breaks
Onchip-Breaks
12 for each 12 4 4 (G3-cores, break

before make)
8 (G4-cores, break
after make)

range as bitmask

©1989-2024 Lauterbach

RH850 Debugger and Trace | 24

Breakpoint in ROM

With the command MAP.BOnchip <range> it is possible to inform the debugger about ROM
(FLASH,EPROM) address ranges in target. If a breakpoint is set within the specified address range the
debugger automatically uses the available on-chip breakpoints.

Example for Breakpoints

The following breakpoint combinations are possible.

Software breakpoints:

Break.Set 0x100000 /Program ; Software breakpoint 1

Break.Set 0x101000 /Program ; Software breakpoint 2

On-chip breakpoints:

Break.Set 0x100 /Program ; On-chip breakpoint 1

Break.Set 0x0ff00 /Program ; On-chip breakpoint 2

©1989-2024 Lauterbach RH850 Debugger and Trace | 25

Access Classes

Access classes are used to specify how TRACE32 PowerView accesses memory, registers of
peripheral modules, addressable core resources, coprocessor registers and the TRACE32 Virtual
Memory.

Addresses in TRACE32 PowerView consist of:
. An access class, which consists of one or more letters/numbers followed by a colon (:)

o A number that determines the actual address

Here are some examples:

Command: Effect:

Data.List P:0x1000 Opens a List window displaying program memory
Data.dump D:0xFEBF8000 /LONG Opens a DUMP window at data address OxFEBF8000
Data.Set SR:0. %Long 0x00003300 Write value 0x00003300 to system register 0

PRINT Data.Long(D:0xFEBF8000) Print data value at physical address OxFEBF8000

Access Classes to Memory and Memory Mapped Resources

The following memory access classes are available:

Access Class Description
P Program (memory as seen by core’s instruction fetch)
D Data (memory as seen by core’s data access)

In addition to the access classes, there are access class attributes.

The following access class attributes are available:

Access Class Attributes Description

E Use real-time memory access.
This attribute has no effect if SYStem.MemAccess is set to Denied).

Examples of usage:

Command: Effect:

Data.dump ED:OXxFEEEO000 | Opens dump window at address OxFEEEO000O using real-time
memory access

©1989-2024 Lauterbach RH850 Debugger and Trace | 26

If an access class attribute is specified without an access class, TRACE32 PowerView will automatically add
the default access class of the used command. For example, Data.List E:0x100 is complemented to

Data.List EP:0x100.

Access Classes to Other Addressable Core and Peripheral Resources

The following access class is used to access system registers which are not mapped into the processor’s

memory address space.

Access Class

Description

SR

System Register (SR) access

The RH850 supports 256 System Registers which are divided into 8 groups (sellD) with 32 registers (reglID)

each.

Example: The ISPR register has a regID==10 and sellD==2

Using the SR: access class the System Register address is defined by:

J Addressbit(4..0) = regID
J Addressbit(7..5) = sellD

So the ISPR register can be accessed by commands:

Data.dump SR:0x4A++0 /Long

PRINT Data.Long (SR:0x4A)

;dump window showing the ISPR
;register value

;print ISPR register value to
;status line

Data.Set SR:0x4A $Long 0x11223344 ;set ISPR register with value

;0x11223344

The following access class is used to access chip internal debug registers. Use this only if requested by
Lauterbach! Accessing debug registers (read or write) without the background knowledge of their
functionality may have bad influence for debugging up to TRACES2 crash.

Access Class Description
DBG: Debug-Register access
EDBG: use real-time Debug-Register access

©1989-2024 Lauterbach

RH850 Debugger and Trace |

27

Each RH850 core (also called ProcessorElemet PEXx) has it's own set of debug registers. Each set can have
up to 8 banks with 256 registers each.

. Address bits(7..0) = IR register number
. Address bit(11..8) = Bank number
. Address bit(12) = select JCU register-set

(

(
J Address bit(26..13) = select PE(14..1) register-set
. Address bit(27) = select broadcast access to all assigned cores (for write access only)
(

J Address bit(31..28) = DBG Sub-Access-Class (set to Ox1 always)

Data.Set DBG:0x100024AB %Long 0x12 ;write 0x12 to debug-register:
;— ProcessorElement PE1l
;- Bank=0x4
;- IR=0xAB

PRINT Data.Long (EDBG:0x100024AB) ;- print debug-register value to

; status line
;- uses real-time access to read
; the value

©1989-2024 Lauterbach RH850 Debugger and Trace | 28

Support for Peripheral Modules

TRACE32 supports access to the memory mapped registers of all peripheral modules. The peripheral
register description files (*.per, so-called PER-files) for the on-chip peripherals are included in TRACES32.
PER files for recent processors are usually not included in updates, but are available upon request.

For external peripherals and/or custom peripherals, it is possible to create additional PER files with custom
content. See “Peripheral Files Programming” (per_prog.pdf) for details.

Runtime Measurement

If the device is equipped with an Onchip- or Offchip-Trace then typically the trace recordings are used for
function-run-time and function-nesting analysis.

For devices without any trace, the Onchip BenchMarkCounters can be used for core-clock accurate
measurements of the min-, max- and average- runtimes. It is also possible to stop the program execution if
the runtime exceeds a predefined min- or max- value.

Beside that, the debuggers RunTime.state window gives detailed information about the complete runtime
of the application code and the runtime since the last Go, Step, Step.Over command. Runtime
measurement is done with a resolution of about 5 ps.

©1989-2024 Lauterbach RH850 Debugger and Trace | 29

Multicore Debugging

One or more cores (RENESAS terminology: “ProcessorElement” or “PEX”) can be assigned to a TRACE32
PowerView instance. The cores are referred to by it's “ProcessorElement” index PE1 to PE6

TRACE32 supports either controlling each core with a separate PowerView instance (AMP debugging) or
controlling multiple cores with a single PowerView instance (SMP debugging). SMP debugging is only
possible for cores of the same architecture.

TRACES2 also supports mixed AMP/SMP operation. E.g. RH850/P1x-C devices can be controlled with two
PowerView instances, one for PE5_core (ICU-M) and one controlling PE1_core and PE2_core in SMP
mode.

SMP Debugging

In TRACES32 terminology, SMP debugging means to control more than one core in a single PowerView
instance. Use this method for cores which run the same kernel / instance of the operating system. Cores
controlled in a single PowerView instance share the following resources:

. Debug symbols

J OS Awareness
J Run control (Go, Step, Break) and breakpoints
. Debug and trace settings

If it is desired to have control over any of the above resources separately for each core, AMP debugging
must be used.

Follow these steps to set up the debugger for SMP debugging:

1. Select the target processor, or use automatic CPU detection.

SYStem.DETECT CPU

2. Assign cores to this PowerView instance

; CORE.ASSIGN <logical_core_0> <logical_core_1> [...]
; assign PEl to logical_core_0
; assign PE3 to logical_core_1

CORE.ASSIGN 1 3

3. Start debug session and continue as usual.
SYStem.Up ; connect to core PEl
SYStem.Mode.Attach ; connect to core PE2

©1989-2024 Lauterbach RH850 Debugger and Trace | 30

All core context dependent windows (Register, List, Dump, etc.) show the data as seen from the currently
selected core. Select a core using the command CORE.select <logical core_index>.

Register
CORE 0 ;Register window shows registers of PEl
CORE 1 ;Register window shows registers of PE3

If any of the cores hits a breakpoint, PowerView automatically selects the core that hit the breakpoint. The
currently selected core displayed in the status bar and can be changed by right-clicking on the core field.

It is also possible to show more than one core context at the same time, using the option
/Core <logical_core_index>. All windows with core-dependent information support this option.

Register /CORE 0
Register /CORE 1

List /CORE 0
List /CORE 1

Example scripts for SMP debugging can be found in the demo folder.

o ~~/demo/rh850/hardware/

Further demo scripts available for download and upon request.

©1989-2024 Lauterbach RH850 Debugger and Trace | 31

AMP Debugging

In AMP debugging mode, a separate PowerView instance is started for each core. The individual instances
are completely independent of each other, but it is possible to synchronize run-control and system mode
changes (see command SYnch).

An easy way to start multiple PowerView instances is to use T32Start. It is also possible to start further
instances from a PRACTICE script.

The following steps demonstrate the setup for AMP debugging, assuming that the application is already

programmed to FLASH:

1. Select the target processor, or use automatic CPU detection.
;core_0 (PEl) script: ; core_1 (PE3) script:
SYStem.CPU R7F701Z07 SYStem.CPU R7F701Z07

2. Assign target cores to the individual instances. Use either “SYStem.CONFIG.CORE
<core_index> <chip_index>" or “CORE.ASSIGN <core_index>". The parameter <chip_index>
must be the same for all cores on the same chip.

; core_0 (PEl) script: ; core_1 (PE3) script:

SYStem.CONFIG.CORE 1. 1. SYStem.CONFIG.CORE 3. 1.

3. SYStem.CONFIG.Slave must be OFF for the core that starts running right form reset. Set to ON
for all other cores (that are released later by the first core).

SYStem.CONFIG.Slave OFF SYStem.CONFIG.SLAVE ON
4. Load debug symbols on both instances.
Data.LOAD appl.x /NoCODE Data.LOAD appl.x /NoCODE

5. Start debug session: SYStem.Up for the core that runs right from reset. SYStem.Mode.Attach for
all cores that are started later.

SYStem.Up SYStem.Mode.Attach

6. Core_0 is halted at the reset address and core_1 remains in reset, In order to halt core_1 as
soon as it is released from reset, issue the Break command.

Break

©1989-2024 Lauterbach RH850 Debugger and Trace | 32

7. Start core_0. Core_1 will halt at its reset address after being released by core_0.

Go WAIT !RUN() ; wait until cpu stops

Example scripts for AMP debugging can be found in the demo folder.

o ~~/demo/rh850/hardware/

©1989-2024 Lauterbach RH850 Debugger and Trace | 33

FLASH Programming Support

Before Flash programming can work TRACES32 has to be informed about the CPU's flash memory mapping.
This is done with the demo scripts in the ~~/demo/rh850/flash directory or by use of the TRACE32
AutoSetup.

AutoSetup offers a convenient way to connect to RH850 single-core devices and to configure TRACE32
for flash programming.

J Please click the pull-down menu RH850->AutoSetup
. Select AutoSetup for Debugging or AutoSetup for SerialFlashProgramming -> press OK.

J Finally you will be asked if flash-programming should be done

The found configuration can be saved with command: STOre <file>.cmm SYStem FLASH

The TRACE32 message area (command AREA) presents all information which was read out of the CPU
and all executed TRACES32 configuration commands. In case the setup fails, please have a look to the
AREA window to clarify why it did not work.

RH850 multi-core devices often require chip/application specific startup sequences. detection typically
fails. Please have a look to the board specific scripts which can be found in the directory
~~/demo/rh850/hardware/

For flash programming use following command sequence:

FLASH.ReProgram ALL ; enable flash programming

Data.Load.Elf output/example.abs /GHS ; load application (here
; Greenhills compiler)

Data.Load...... /NoClear ; load more code (optional)

Data.Set... ; patch your code (optional)

FLASH.ReProgram OFF ; start flash-erase/program
; sequence

With FLASH.ReProgram ALL all code is loaded to a virtual memory first. This means you generate a
“flash-image” in virtual memory which can be modified with additional code downloads or code-patches. At
the same time the data is compared against the current flash content.

In the FLASH.List window all modified flash-segments are marked as “pending”. Only this flash-segments
will be erased/programmed.

©1989-2024 Lauterbach RH850 Debugger and Trace | 34

If the “flash-image” is complete use command FLASH.ReProgram OFF. Then all “pending” segments are
erased and reprogrammed. The big advantage of this method is that only modified flash-segments are
erased/programmed. Programming is quicker and programming-stress for the FLASH is reduced.

NOTE:

SerialFlashProgramming of “RH850-F1x WS1.0” and “RH850/E1x FCC (R7F701200)”

This devices do not support memory-read in UART mode. As result an UART-Error message is displayed in
the AREA window. This is just for information and has no effect on flash programming. The Data.dump
window is grayed out as long as no data is loaded to virtual-memory.

FlashProgramming and switching of the debug interface mode

The flash declaration of SerialFlashProgramming mode (UART) is different to the debug modes (JTAG,

LPD4, LPD1)! When switching between the modes it is necessary to do a new flash declaration setup (use
RH850->AutoSetup)!

©1989-2024 Lauterbach RH850 Debugger and Trace | 35

Tracing

Processors of RH850 series implement a variety of trace modules. Depending on the module, the trace
information is either stored on the processor or sent out through an external trace port. This section lists all
available trace modules, their configuration options and examples.

SFT Trace via LPD4

In LPD4 debug interface mode the RH850 can transfer SFT-trace messages (software trace) to the debug
box. No extra trace hardware or license is needed.

NEXUS On-chip Trace

Many processors of the RH850 family implement a feature to store the NEXUS messages of cores and
peripheral trace clients into an on-chip trace memory.

Using the on-chip trace with just a debug cable (LA-3719) requires the on-chip trace license LA-3734X.

The on-chip trace license is not required if your tool in use contains one of the following parts:
J PowerTrace Serial 4 GigaByte RH850 (LA-3560)

J Serial Preprocessor RH850 (LA-3843)

J Preprocessor Focus Il RH850 (LA-3918)

J Preprocessor RH850 (LA-3843)

The configuration of trace methods and clients is done through the NEXUS and TrOnchip command
groups.

External Trace Ports (Parallel NEXUS/Aurora NEXUS)

NEXUS trace messages from cores and peripheral trace clients are conveyed off-chip via an external trace
port. External trace ports are only provided by RH850 emulation devices.

Depending on the processor, the messages are sent through a high-speed serial connection (XILINX Aurora
protocol) or through the parallel NEXUS AUX interface (MDO, MSEO, MCKO). Lauterbach offers the various
trace tools to record and store the trace information

Trace tools for the high-speed serial connection:

J PowerTrace Serial 4 GigaByte RH850 (LA-3560)

J Serial Preprocessor RH850 (LA-3843) in conjunction with PowerTrace Il / PowerTrace llI

©1989-2024 Lauterbach RH850 Debugger and Trace | 36

The TRACES2 online help provides a “PowerTrace Serial User’s Guide” (serialtrace_user.pdf), please
refer to this manual if you are interested in details about PowerTrace Serial.

Trace tools for the parallel NEXUS AUX interface:
J Preprocessor Focus Il RH850 (LA-3918) in conjunction with PowerTrace Il / PowerTrace |l

J Preprocessor RH850 (LA-3843) in conjunction with PowerTrace Il / PowerTrace llI

The TRACE32 online help provides a “AutoFocus User’s Guide” (autofocus_user.pdf), please refer to this
manual if you are interested in details about Preprocessor Focus Il .

The complete trace port configuration is done by TRACE32 automatically. No special settings are required.

Tracing the Program Flow

Tracing of the program flow is enabled by default.

Branch Trace Messaging (BTM)

This is the default method set in TRACE32. The processor is configured to send a trace message for indirect
branches only. Information about direct branches and amount of executed instructions is sent in occasional
resource full messages.

Setup of branch trace messaging:

NEXUS.BTM ON
NEXUS.SYNC OFF

Synchronization Trace Messaging (SYNC)

By default the NEXUS protocol uses an address compression algorithm to reduce the number of bytes per
NEXUS message. From time to time a synchronization message is sent which holds the complete (non
compressed) address of the program flow. For TRACES32 this message is the start for program flow
reconstruction.

All recordings before the synchronization message are ignored because it is not possible to calculate the
program flow. There are debug scenarios where you like to get a valid trace listing also for this “ignored”
records. In this case the NEXUS.SYNC option can help.

If ON, each NEXUS message holds the complete address, the address compression is disabled.
Setup of branch sync tracing:

NEXUS.BTM ON
NEXUS.SYNC ON

©1989-2024 Lauterbach RH850 Debugger and Trace | 37

Note for OnchipTrace (optional bugfix):

There are RH850 devices with a bug in the NEXUS coding for Onchip-Trace. In case of flow-errors in the
trace listing please set NEXUS.SYNC ON and try again.

Tracing of Data (read/write) Transactions

General data tracing is enabled using the command NEXUS.DTM. This command enables the data trace for
the full address space. The amount of generated trace messages is usually too high to be sent through the
trace port and the on-chip message FIFO will overflow.

The amount of generated trace messages can be reduced by defining address ranges for which data trace
is generated. Up to four address ranges are possible.

Example: Data Trace with Address Range

Use TraceData to limit the data trace to an address range. Up to 8 address ranges per core are possible.
TraceData has no impact on program trace messaging setting.

;Enable data trace for read/write accesses to all peripherals
Break.Set 0xC0000000--0xFFFFFFFF /ReadWrite /TraceData

;In addition to full program trace, enable data trace for read accesses
;to the array flags

NEXUS.BTM ON

Var .Break.Set flags /Read /TraceData

Another method of reducing trace data is event-triggered trace filtering.

©1989-2024 Lauterbach RH850 Debugger and Trace | 38

Trace Filtering and Triggering with Debug Events

Event Breakpoints

Each core of a RH850 chip is equipped with 16 Event breakpoints. TRACE32 uses them for:

o Trace-recording control: TraceOn, TraceOff, TraceEnable, TraceData, WatchPoints

. Trigger control: TraceTrigger, BusTrigger, BusCount

The following list gives an overview of the usage of the Event breakpoints by TRACE32:

(core)

Number of Event- ProgramBreaks Read/Write Breaks DataValue Breaks
Breaks

16 for each 8 8 8
Processor-Element or 4 ranges or 4 ranges range as bitmask

Event breakpoints are also supported for other Trace-Clients like GlobalRam, LocalRam, PeripheralBus.

Number of Event-
Breaks

ProgramBreaks

Read/Write Breaks

DataValue Breaks

4 for each client

4
or 2 ranges

4
range as bitmask

Overview

Any Event Breakpoint can be configured to either trigger a watchpoint hit message, or to act as input event

for selective tracing. TRACE32 offers a variety of features based on watchpoints.

Event Breakpoints are set using the command Break.Set, similar to breakpoints that halt the core, but
additionally include an option to define the desired behavior:

I Break.Set <address>|<range> /<action>

Define trace filter or trigger

©1989-2024 Lauterbach

RH850 Debugger and Trace | 39

The list below shows all available trace filtering and trigger actions:

<action> Behavior

TraceEnable Configure the trace source to only generate a trace message if the specified
event occurs. Complete program flow or data trace is disabled. If more than one
TraceEnable action is set, all TraceEnable actions will generate a trace

message.
TraceON If the specified event occurs, program and data trace messaging is started
TraceOFF (TraceON) or ends (TraceOFF). In order to perform event based trace start/end

to program trace and data trace separately, use Alpha-Echo actions.

TraceTrigger Stop the sampling to the trace on the specified event. A trigger delay can be
configured optionally using Analyzer.TDelay.

BusTrigger If the specified event occurs, a trigger pulse is generated on the podbus trigger
line. This trigger signal can be used to control other podbus devices (e.qg.
PowerProbe) or to control external devices using the trigger connector of the
PowerDebug/PowerTrace module (see TrBus).

BusCount The specified event is used as input for the counter of the
PowerDebug/PowerTrace module. See Count for more information.

WATCH Set a watchpoint on the event. The CPU will trigger the EVTO pin if the event
occurs and generate a watchpoint hit message if the trace port is enabled.

Alpha - Echo Declares a special trace control / trigger event. The actual event is configured
through the TrOnchip window. Two classes of events are supported:

. Configure event based trace start/end for program and data separately

J Configure Trace/Trigger events for additional nexus trace clients

See TrOnchip.Alpha for more information.

Example: Selective Program Tracing

TraceEnable enables tracing exclusively for the selected events. All other program and data trace
messaging is disabled.

;Only generate a trace message when the instruction
;at address 0x00008230 is executed.
Break.Set 0x00008230 /Program /TraceEnable

TraceEnable can also be applied on data trace:

;Only generate a trace message when the core writes to variable flags[3].
Var.Break.Set flags[3] /Write /TraceEnable

©1989-2024 Lauterbach RH850 Debugger and Trace | 40

TraceEnable can be used for high precision time-distance measurements:

;Get start and end address of function to be measured
&al=sYmbol .BEGIN (func_to_measure)
&a2=sYmbol .EXIT (func_to_measure)

;Only generate trace messages on the addresses used for measurement
Break.Set &al /Program /TraceEnable
Break.Set &a2 /Program /TraceEnable

;run application
Trace.Init
Go
WAIT 5.s
Break

;Statistic analysis
Trace.STATistic.AddressDURation &al &a2

;plot time distance over time (can take some time for analysis)
Trace.PROFILECHART.DURATION /FILTERA ADDRess &al /FILTERB ADDRess &a?2

NOTE: The analysis commands can also be used without TraceEnable breakpoints, but
the measurement will be less precise.

Example: Event Controlled Program/Data Trace Start and End

Program and data trace can be enabled and disabled based on debug events. TraceON and TraceOFF
control both program and data trace depending on NEXUS.BTM / NEXUS.DTM setting. TraceON and
TraceOFF control the message source, i.e. the core’s NEXUS module:

;Enable program/data trace when func2 is entered

;Disable program/data trace when last instruction of func2 is executed.
Break.Set sYmbol.BEGIN(func2) /Program /TraceON
Break.Set sYmbol.EXIT (func2) /Program /TraceOFF

;Enable program/data trace when variable flags[3] is written
Var.Break.Set flags([3] /Write /TraceON

;Disable program/data trace data when 16-bit value 0x1122 is
;written to address 0x40000230
Break.Set 0x40000230 /Write /Data.Word 0x1122 /TraceOFF

©1989-2024 Lauterbach RH850 Debugger and Trace |

41

;Enable program/data trace only when a specific task is active
;NOTE: RTOS support must be set up correctly
&magic=0x40001280 ;set &magic to the task of interest
Break.Set task.config(magic) /Write /Data &magic /TraceON
Break.Set task.config(magic) /Write /Data !&magic /TraceOFF

It is also possible to enable/disable program and data trace messaging separately:

;Enable/disable only program trace based on events,
;full data trace messaging
NEXUS.DTM ReadWrite
Break.Set func2 /Program /Onchip /Alpha
TrOnchip.Alpha ProgramTraceON
Var.Break.Set flags[8] /Read /Onchip /Beta
TrOnchip.Beta ProgramTraceOFF

;In addition to full program trace, enable/disable data trace messaging

;only for func2
NEXUS.BTM ON
Break.Set sYmbol.BEGIN(func2) /Program /Onchip /Alpha
TrOnchip.Alpha DataTraceON
Break.Set sYmbol.EXIT (func?2) /Program /Onchip /Beta
TrOnchip.Beta DataTraceOFF

Example: Event Controlled Trace Recording

Debug/trace events can also be used to trigger and stop the trace recording (i.e. message sink):

;Generate a trigger for the trace recording module when
;the specified event occurs. Trace recording stops delayed after
;another 10% of the trace buffer size was recorded.

Break.Set sieve /Program /TraceTrigger

Trace.TDelay 10%

Example: Event Controlled Trigger Signals

TRACES2 can generate a trigger signal based on debug/trace events. The trigger signal can be used to
control PowerProbe or Powerlntegrator, as well as with external tools (using the trigger connector)

;Generate PODBUS trigger signal on data write event with data value
Var.Break.Set flags[9] /Write /Data.Byte 0x01 /BusTrigger

; forward signal to trigger connector
TrBus.Connect Out
TrBus.Mode High

©1989-2024 Lauterbach RH850 Debugger and Trace |

42

Example: Event Counter

There is also a built-in event counter which can be used to count debug/trace events or to measure the event

frequency:

;Measure the execution frequency of function sieve

Break.
Count.
Count.

Go

Count.

PRINT

Count.

Set sieve /Program /BusCount
Mode Frequency

Gate 1.s ;measure for 1 second
;run application
Go ;start measurement
"sieve freqg = "+FORMAT.DECIMAL (1.,Count.VALUE()/1000.)+"Hz"
state ;open event counter window

Tracing Peripheral Modules / Bus Masters

Many processors support tracing of peripheral bus master trace clients, e.g. DMA or GlobalRam controllers.
The clients are controlled with the NEXUS.CLIENT<x> commands.

As for the core’s data trace, the amount of generated trace messages is usually too high to be sent through
the trace port and the on-chip message FIFO will overflow.

©1989-2024 Lauterbach RH850 Debugger and Trace | 43

SFT Software Trace

The use of SFT software trace requires code instrumentation done by users or OS vendors. Dedicated
assembler instructions (DBCP, DBTAG, DBPUSH) are added to the code. When executed by the CPU,
program counter values, immediate data or general purpose register values are output. These messages
can be stored to the On-chip trace buffer or can be transferred in real time to the debug box by use of the
LPD4 debug port interface.

When using a GREENHILLS compiler, TRACE32 can extract all SFT-symbol information from the loaded
ELF file. The symbol information can be displayed with command sYmbol.List.PATCH.

3 BusYmbol.List.PATCH o -E =]

address [type enable |
P:00000A46 [ENTRY RHES Thhana =

P:00000AS2 (EXIT
P:00000A96 ([ENTRY

=L

P :00000ABE (PRINTF TAG = O55YSTEMCOUNTER..

P :00000ADD |EXIT

P :00000ADE (ENTRY

P :00000AFE EXIT

P:00000B02 |ENTRY W
4 1 2

L

The “enable” row shows the status of the SFT code instrumentation. If there is a checkmark the
instrumentation code is active, if there is none the original instrumentation code is patched by NOP
instructions and no SFT message is generated. A simple mouse-click to the checkmark enables/disables
the instrumentation code.

SFT Software Trace to On-chip Trace

SFT recording is enabled by command: NEXUS.SFT ON

All other message types like branch-trace (BTM) or data-trace (DTM) should be set to OFF.
All windows related to the SFT recordings are opened with the command prefix “SFTT".
e.g.

SFTT.List

SFTT.Chart

Demo scripts can be found in the TRACE32 installation subdirectory ~~/demo/rh850/etc/sft_trace/

Use: demo_sfttrace.cmm

©1989-2024 Lauterbach RH850 Debugger and Trace | 44

SFT Software Trace via LPD4 debug port

When using SFT Software Trace the LPD4 debug interface has two different operating modes.
. Debug mode as long as application code has stopped

. SFT trace mode as long as application code is executed

As a consequence real-time memory access is not supported during code execution. Breakpoint hits are
detected by TRACES32 and the LPD4 debug interface is automatically switched back to debug mode.

Setup:
J SFT recording is enabled by command: SNOOPer.Mode.SFT
J Onchip-Trace has to be disabled by command: Onchip.DISable

. Select the highest possible LPD4 baud rate to get good trace performance.

All windows related to the SFT recordings are opened with the command prefix “SNOOP”.
e.g.

SNOORP.List

SNOOP.Chart

Demo scripts can be found in the TRACES2 installation subdirectory ~~/demo/rh850/etc/sft_trace/

Use: demo_sftsnoop.cmm

©1989-2024 Lauterbach RH850 Debugger and Trace | 45

CPU specific SYStem Commands

SYStem.BAUDRATE Baudrate setting

Format: SYStem.BAUDRATE [<baudrate>]

Default baudrate: 9600bps.

Baudrate setting for SerialFlashProgramming mode and LPD4 debug mode:
. Maximum baudrate SerialFlashProgramming: 5000Kbps

J Maximum baudrate LPD4: 32000Kbps

SYStem.CONFIG.state Display target configuration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: DebugPort | Jtag | XCP

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort Informs the debugger about the debug connector type and the
communication protocol it shall use.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.

©1989-2024 Lauterbach RH850 Debugger and Trace | 46

XCP Lets you configure the XCP connection to your target.

For descriptions of the commands on the XCP tab, see “XCP Debug
Back-End” (backend_xcp.pdf).

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE <core>
<parameter>: DRPRE <bits>
(JTAG): DRPOST <bits>

IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel </evel>
TriState [ON | OFF]
Slave [ON | OFF]

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain
Example.

For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

©1989-2024 Lauterbach RH850 Debugger and Trace | 47

CORE

DRPRE

DRPOST

IRPRE

IRPOST

TAPState

TCKLevel

TriState

Slave

For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.

Further information can be found in SYStem.CONFIG.CORE.

(default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

(default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

(default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

(default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

(default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

(default: 0) Level of TCK signal when all debuggers are tristated.

(default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

(default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
NTRST and nSRST (nRESET).

©1989-2024 Lauterbach

RH850 Debugger and Trace | 48

Daisy-Chain Example

TDl——-® Core A —Core B p Core C—» Core D +—» TDO

Chip 0 Chip 1

Below, configuration for core C.

Instruction register length of
. Core A: 3 bit
. Core B: 5 bit
. Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B
SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C i1s Core 0 in Chip 1

©1989-2024 Lauterbach RH850 Debugger and Trace | 49

TapStates

0 Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR

© 00 N o 0o~ W N =

—_ - e e —d
a A~ WO N = O

Test-Logic-Reset

©1989-2024 Lauterbach RH850 Debugger and Trace | 50

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1.0

<core_index>: 1...k

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips
Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

©1989-2024 Lauterbach RH850 Debugger and Trace | 51

SYStem.CONFIG.DEBUGPORT Select target interface

Format: SYStem.CONFIG.DEBUGPORT <port>

<port>: DebugCable0 | XCPO | GTLO ... GTL4 | Unknown

Default: depends on detection.

Selects the interface to the target. The available options depend on whether TRACES32 uses a hardware
debugger or runs in HostMCI mode (without TRACE32 hardware).

With TRACE32 hardware

DebugCable0 Uses the debug cable directly connected to a PowerDebug hardware
module.

HostMCI mode

XCPO Selects the XCP backend as interface. For a detailed description and
examples, see “XCP Debug Back-End” (backend_xcp.pdf).

Unknown No backend is selected. Debugging is not possible.

GTL1, GTL2, GTLS, Debug ports of the GTL back-end.
GTL4 For information about the GTL back-end, refer to “GTL Debug Back-End”
(backend_gtl.pdf).

SYStem.CONFIG.DEBUGPORTTYPE Select debug port type
Format: SYStem.CONFIG.DEBUGPORTTYPE <port_type>
<port_type>: JTAG | LDP1 | LDP4 | UART | UART1 | CSI

Default: JTAG.

It specifies the used debug port type. It assumes the selected type is supported by the target.

©1989-2024 Lauterbach RH850 Debugger and Trace | 52

<port_type>

For a description of the <port_types>, see “RH850 Debug Interface
Modes”.

SYStem.CONFIG.EXTWDTDIS

Disable external watchdog

Format:

<option>:

SYStem.CONFIG.EXTWDTDIS <option>

OFF

High

Low
HighwhenStopped
LowwhenStopped
SLAVE

Default for Automotive/Automotive PRO Debug Cable: High.
Default for XCP: SLAVE.

Controls the WDTDIS pin of the debug port. This configuration is only available for tools with an Automotive
Connector (e.g., Automotive Debug Cable, Automotive PRO Debug Cable) and XCP.

OFF
High
Low
HighwhenStopped
LowwhenStopped

SLAVE

The WDTDIS pin is not driven. (XCP only)
The WDTDIS pin is permanently driven high.

The WDTDIS pin is permanently driven low.

The WDTDIS pin is driven high when program is stopped (not XCP).

The WDTDIS pin is driven low when program is stopped (not XCP).

The WDTDIS state of the XCP slave is not changed. (XCP only)

©1989-2024 Lauterbach

RH850 Debugger and Trace

53

SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool

Format:

<downmode>:

<number>:

SYStem.CONFIG.PortSHaRing [ON | OFF | DownState <downmode> |
CPUAccEvt <number>]

RESET | TRISTATE

0..8

Configures if the debug port is shared with another tool, e.g., an ETAS ETK or ETKX. This option is only
available if an motive Debug Cable is connected to the PowerDebug module..

ON Request for access to the debug port and wait until the access is granted
before communicating with the target.

OFF Communicate with the target without sending requests.

DownMode Select the mode of the reset signal when TRACE32 is in SYStem.Down
mode.

CPUACccEvt Defines the maximum number of TriggerEventBreakpoints reserved for

TRACE32 usage.
Default = 8. Only relevant for data-access breakpoints.

Reduce the number if the chip internal TriggerEventUnit has to be shared
with other tools.

The current setting can be obtained by the PORTSHARING() function, immediate detection can be
performed using SYStem.DETECT.PortSHaRing.

SYStem.CORECLOCK Core clock frequency

Format:

SYStem.CORECLOCK [<frequency>]

Default core clock: 80MHz.

This setting informs TRACES32 about the core clock frequency. During Serial-Flash-Programming mode this
value is sent to the CPU to configure the CPU internal PLL.

©1989-2024 Lauterbach

RH850 Debugger and Trace | 54

SYStem.CPU CPU type selection

Format: SYStem.CPU <cpu>

<cpus: R7F701035 | ...

Default selection: R7F701035. Selects the CPU type.

SYStem.JtagClock JTAG clock selection

Format: SYStem.JtagClock [<frequency>]

Default frequency: 1 MHz.

Selects the JTAG port frequency (TCK). Any frequency up to 25 MHz can be entered, it will be generated by
the debuggers internal PLL.

For CPUs which come up with very low clock speeds it might be necessary to slow down the JTAG
frequency. After initialization of the CPUs PLL the JTAG clock can be increased.

If there are buffers, additional loads or high capacities on the JTAG lines, reduce
the debug speed.

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give

debug access to another tool.

©1989-2024 Lauterbach RH850 Debugger and Trace | 55

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess <mode>
<mode>: CPU

StopAndGo

Denied

Selects the method for memory access while the core is running.

All debugger windows which are opened with the option /E will use the selected type of memory access.

CPU Enables memory access while core is running (non intrusive).

StopAndGo Enables memory access while core is running (intrusive). Has to be used if
the specified memory location is not accessible with non-intrusive mode.

Denied Disables any memory access while core is running.

©1989-2024 Lauterbach RH850 Debugger and Trace | 56

SYStem.Mode System mode selection

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)

SYStem.Down (alias for SYStem.Mode Down)

SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down

NoDebug

Prepare

Go

Attach

Up

Down Disables the Debugger.The behavior can be configured with
SYStem.Option.DOWNMODE.

NoDebug Disables the Debugger. The debug interface is forced to high impedance
mode.

Prepare Resets the target and sets the CPU to SerialFlashProgramming mode.
This setting only can be done if SYStem.CONFIG.DEBUGPORTYPE is
configured for UART or CSI mode. SerialFlashProgramming allows
programming of all CPU flash areas and OptionBytes. This mode can not
be used for debugging. See also: RH850 Debug Interface Modes.

Go Resets the target with debug mode enabled and prepares the CPU for
debug mode entry. After this command the CPU is in the SYStem.Up
mode and running. Now, the processor can be stopped with the break
command or until any break condition occurs.

Attach Connect to the processor without resetting target/processor. Use this
command to connect to the processor without changing it's current state.
Only supported for JTAG and LPD4 debug interface modes.

StandBy Debugging/Tracing through power cycles.

The debugger will wait until power-on is detected, then bring the CPU
into debug mode, set all debug and trace registers and start the CPU.
See also SYStem.Option.RESetBehavior.

Up Resets the target and sets the CPU to debug mode. After execution of
this command the CPU is stopped and prepared for debugging. All
register are set to the default value.

©1989-2024 Lauterbach

RH850 Debugger and Trace | 57

SYStem.OSCCLOCK Oscillator clock frequency

Format: SYStem.OSCCLOCK [<frequency>]

Default oscillator clock: 8MHz.

This setting informs TRACES32 about the target oscillator frequency. During Serial-Flash-Programming mode
this value is sent to the CPU to configure the CPU internal PLL.

SYStem.RESetOut Reset target without reset of debug port

Format: SYStem.RESetOut

If possible (NnRESET is open collector), this command asserts the nRESET line on the debug connector.
This will reset the target including the CPU but not the debug port. The function only works when the system
is in SYStem.Mode.Up.

©1989-2024 Lauterbach RH850 Debugger and Trace | 58

CPU specific SYStem.Option Commands

SYStem.Option.CFU CalibrationFunctionUnit support

Format: SYStem.Option.CFU [ON | OFF]

Enables TRACE32 specific support for the RH850 CalibrationFunctionUnits (G4-core variants only!).

The CalibrationFunctionUnits are only available in RH850 emulation devices. Typically the
CalibrationFunctionUnits are used by other tool vendors to replace FLASH areas by Calibration-RAM.

During debugging it can be useful to get access to the original flash content and/or to modify the contents of
the calibration-RAM.

If SYStem.Option.CFU is set to ON:

. TRACER32 analyzes the address mapping configured in the CalibrationFunctionUnits. Users do not
need to know in which address-ranges original-flash and/or Calibration-RAM is accessible, the
remapping is done by TRACE32 automatically.

. The original flash content can be read by use of memory class “EAD:<flash_address>".

. Calibration-RAM contents can be written to by use of memory class “ED:<flash_address>"

If SYStem.Option.CFU is set to OFF:

J Memory class “EAD:<flash_address>" reads the memory content as it is seen by the CPU.
. Write-Access to memory class “ED:<flash_address>" have not effect.
SYStem.Option.DOWNMODE Behavior of SYStem.Mode Down
Format: SYStem.Option.DOWNMODE TriState | ReSeT

Configures the behavior of SYStem.Mode Down:

TriState (default) All drivers of the debug port are switched off.

ReSeT The CPU is held in reset.

©1989-2024 Lauterbach RH850 Debugger and Trace | 59

SYStem.Option.DUALPORT Implicitly use run-time memory access

Format: SYStem.Option.DUALPORT [ON | OFF]

Default: OFF.

Forces all list, dump and view windows to use the access class E: (e.g. Data.dump E:0x100) or to use the
format option %E (e.g. Var.View %E var1) without being specified. Use this option if you want all windows to
be updated while the processor is executing code. This setting has no effect if
SYStem.Option.MemAccess is disabled.

SYStem.Option.FLMDO FLMDO pin default level

Format: SYStem.Option.FLMDO [ON | OFF]

Sets the default level of FLMDO pin to Low or High.

TRACES32 handles the FLMDO pin in three different ways:
1. Force to Low during SYStem.Up to enter debug mode
2. Force to High during flash programming

3. Else: force to the default level (SYStem.Option.FLMDO ON/OFF)

SYStem.Option.HoldReset Set reset hold time
Format: SYStem.Option.HoldReset [<time>]
<time>: 1us ... 10s

Sets the time that the debugger will drive the reset pin LOW, e.g. at SYStem.Up. If called without parameter,
the default reset hold time of 10ms is used.

- hold time > < wait time .

RESET pin |

CPU State | RESET RESET/BIST DEBUG_HALT

©1989-2024 Lauterbach RH850 Debugger and Trace | 60

See also SYStem.Option.WaitReset and SYStem.Option.SLOWRESET.

©1989-2024 Lauterbach RH850 Debugger and Trace | 61

SYStem.Option.ICUS ICU-S enable

Format: SYStem.Option.ICUS [ON | OFF]

Enables/disables the ICU-S unit of the device.
The command is only relevant for devices which are equipped with an ICU-S unit.

To enable the ICU-S:
1. Enter SerialFlashProgramming mode (UART mode).
2. Program the ICU-S data-flash to prevent ECC errors.

FLASH.Erase 0xff200000++0xffff

FLASH.Auto ALL

Data.Set 0xff200000++0xffff 0x0 ; or any other value
FLASH.Auto OFF

3. Enable ICU-S.

SYStem.Option.ICUS ON

The setting becomes active with the next reset.
To disable the ICU-S:

Disabling of the ICU-S is not supported by all devices, please check the CPU manuals. The ICU-S only can
be disabled if code- and data-flash is erased before.

1. Enter SerialFlashProgramming mode (UART mode).

2. Erase code- and data-flash.

; erase code flash
FLASH.Erase 1.

; erase application data-flash
FLASH.Erase 0xff200000-- (0xff207fff-IcuSize)

3. Disable ICU-S.

SYStem.Option.ICUS OFF ; erases icus-data-flash + disable ICU-
S

The setting becomes active with the next reset.

©1989-2024 Lauterbach RH850 Debugger and Trace | 62

SYStem.Option.IDSET Program KeyCodes to CPU option bytes

Format: SYStem.Option.IDSET [ON | OFF]

Programs all three KeyCodes to the CPU option bytes at once.

The command is only relevant for RH850/E1x devices which support KeyCodes for OCDID, CFID and DFID

authentication.
NOTES: . The KeyCode values have to be configured before:
- SYStem.Option.OCDID
- SYStem.Option.CFID
- SYStem.Option.DFID
. The command only has an effect in UART mode (not in debugging
modes).
o SYStem.Option.IDSET OFF has no effect.
SYStem.Option.IMASKASM Interrupt disable
Format: SYStem.Option.IMASKASM [ON | OFF]

Masks interrupts during assembler single steps. Useful to prevent interrupt disturbance during assembler

single stepping.
SYStem.Option.IMASKHLL Interrupt disable
Format: SYStem.Option.IMASKHLL [ON | OFF]

Masks interrupts during HLL single steps. Useful to prevent interrupt disturbance during HLL single
stepping.

©1989-2024 Lauterbach RH850 Debugger and Trace | 63

SYStem.Option.KEYCODE Keycode (G3Kx cores only)

Format: SYStem.Option.KEYCODE [<76x_8bit_values>]

The KEYCODE is sent to the CPU during system up to unlock the ID-Code-Protection unit. A matching
KEYCODE is a must to get debug control. More details on ID-Code-Protection can be found in the CPU-
Users-Manual.

<16x_8bit_values> Have to be the same value as present in CPUs ID-code input registers
ID_INJ[O0..3].

The command is only relevant for devices equipped with a G3Kx-core. For all other devices use command
SYStem.Option.OCDID.

Note: The Renesas Flash Programmer uses a different byte order for the KEYCODE programming. So it is
necessary to swap the bytes.

Renesas: 0x00112233 44556677 8899AABB CCDDEEFF

TRACE32: SYStem.Option.KEYCODE 0x33 0x22 0x11 0x00 0x77 0x66 0x55 0x44 OxBB OxAA

SYStem.Option.MACHINESPACES Address extension for guest OSes
Format: SYStem.Option.MACHINESPACES [ON | OFF]
Default: OFF

Enables the TRACES32 support for debugging virtualized systems. Virtualized systems are systems running
under the control of a hypervisor.

After loading a Hypervisor Awareness, TRACE32 is able to access the context of each guest machine. Both
currently active and currently inactive guest machines can be debugged.
If SYStem.Option.MACHINESPACES is set to ON:

. Addresses are extended with an identifier called machine ID. The machine ID clearly specifies to
which host or guest machine the address belongs.

The host machine always uses machine ID 0. Guests have a machine ID larger than 0.
TRACES2 currently supports machine IDs up to 30.

J The debugger address translation (MMU and TRANSIation command groups) can be individually
configured for each virtual machine.

. Individual symbol sets can be loaded for each virtual machine.

©1989-2024 Lauterbach RH850 Debugger and Trace | 64

SYStem.Option.OCDID OnChipDebugID setting

Format: SYStem.Option.OCDID [<8x_32bit_values>]

The OCDID values are sent to the CPU during SYStem.Up to unlock the debug access. Matching values
are a must to get debug control.

<8x_32bit_values> Have to be the same values as present in CPUs OCDIDI[0..7] registers.

See also: SYStem.Option.KEYCODE

Note: The Renesas Flash Programmer uses a different byte order for the OCDID programming. So it is
necessary to swap the bytes.

Renesas: 0x.......... 88776655 76543210

TRACES32: SYStem.Option.OCDID 0x.. Ox.. 0x55667788 0x10325476

SYStem.Option.CFID CodeFlashlID setting

Format: SYStem.Option.CFID [<8x_32bit values>]

The CFID values are sent to the CPU during SYStem.Up to unlock the code flash access. Matching values
are a must to get debug control.

<8x_32bit_values> Have to be the same values as present in CPUs CFID[0..7] registers.
SYStem.Option.DFID DataFlashID setting
Format: SYStem.Option.DFID [<8x_32bit_values>]

The DFID values are sent to the CPU during SYStem.Up to unlock the data flash access. Matching values
are a must to get debug control.

<8x_32bit_values> Have to be the same values as present in CPUs DFID[0..7] registers.

©1989-2024 Lauterbach RH850 Debugger and Trace | 65

SYStem.Option.OPtionByTe Option-byte setting

Format: SYStem.Option.OPtionByTe [<8x_32bit_values>]

Display and reprogram of CPU OptionBytes(0 to 7). OptionByte programming is only supported in
SerialFlashProgramming mode.

The functionality of OptionBytes is described in the CPU user manual. OptionByte manipulation might be
necessary to activate a different debug interface mode (JTAG, LPD4 or LPD1).

SYStem.Option.OPtionByTe8 Option-byte setting

Format: SYStem.Option.OPtionByTe8 [<8x_32bit_values>]

Display and reprogram of CPU OptionBytes(8 to 15). OptionByte programming is only supported in
SerialFlashProgramming mode.

SYStem.Option.CIDA Customer-ID A setting

[build 157830 - DVD 09/2023]

Format: SYStem.Option.CIDA [<8x_32bit_values>]

The customer-ID A keycode is sent to the CPU firmware to unlock the programming of certain flash areas

that are protected by this ID-code.
For details of the flash areas protected by this customer ID, refer to the CPU reference manual.

The command is only relevant for devices that support this type of protection.

©1989-2024 Lauterbach RH850 Debugger and Trace | 66

The SYStem.Option.CIDA command shall be executed after the SYStem.Mode Prepare command, which
is the precondition to enter Serial Flash Programming mode, and before FLASH programming.

<8x_32bit_values> Have to be the same values as present in CPUs CIDA[0..7] registers.

SYStem.Option.CIDB Customer-ID B setting

[build 157830 - DVD 09/2023]

Format: SYStem.Option.CIDB [<8x_32bit _values>]

The customer-ID B keycode is sent to the CPU firmware to unlock the programming of certain flash areas
that are protected by this ID-code.

For details of the flash areas protected by this customer ID, refer to the CPU reference manual.
The command is only relevant for devices that support this type of protection.

The SYStem.Option.CIDB command shall be executed after the SYStem.Mode Prepare command, which
is the precondition to enter Serial Flash Programming mode, and before FLASH programming.

<8x_32bit_values> Have to be the same values as present in CPUs CIDBI0..7] registers.

SYStem.Option.CIDC Customer-ID C setting

[build 157830 - DVD 09/2023]

Format: SYStem.Option.CIDC [<8x_32bit_values>]

The customer-ID C keycode is sent to the CPU firmware to unlock the programming of certain flash areas
that are protected by this ID-code.

For details of the flash areas protected by this customer ID, refer to the CPU reference manual.
The command is only relevant for devices that support this type of protection.

The SYStem.Option.CIDC command shall be executed after the SYStem.Mode Prepare command, which
is the precondition to enter Serial Flash Programming mode, and before FLASH programming.

<8x_32bit_values> Have to be the same values as present in CPUs CIDC[0..7] registers.

©1989-2024 Lauterbach RH850 Debugger and Trace | 67

SYStem.Option.PERSTOP Disable CPU peripherals if stopped

Format: SYStem.Option.PERSTOP [ON | OFF]

Stop CPU peripherals if program is stopped. Useful to prevent timer exceptions.

©1989-2024 Lauterbach RH850 Debugger and Trace | 68

SYStem.Option.RESetBehavior Set behavior when target reset detected

Format:

<mode>:

SYStem.Option.RESetBehavior <mode>

Disabled
AsyncHalt
AsyncStart
ResetHalt
ResetStart
RESYNC

Defines the debugger’s action when a reset is detected.

Default setting is ResetHalt. This option is only supported for RH850 devices with G4-core. If and how a
reset can be detected is set using SYStem.Option.ResetDetection.

Disabled

No actions to the processor take place when a reset is detected.
Information about the reset will be printed to the message AREA.

AsyncHalt

Halt core as soon as possible after reset was detected. The core will halt
shortly after the reset event.
BIST run enabled.

AsyncStart

Halt core as soon as possible after reset was detected. The debugger
sets debug and trace configuration registers and afterwards starts the
core(s) again.

BIST run enabled.

ResetHalt

When a reset is detected, the debugger keeps reset asserted and then
halts the core at the reset address.
BIST run disabled.

ResetStart

When a reset is detected, the debugger keeps reset asserted and then
halts the core at the reset address. The debugger sets debug and trace
configuration registers and afterwards starts the core(s) again.

BIST run disabled.

RESYNC

When a reset is detected, the debugger waits until reset is released.
Once the core is out of reset, the debugger sets debug and trace
configuration registers on-the-fly.

©1989-2024 Lauterbach

RH850 Debugger and Trace | 69

SYStem.Option.ResetDetection Configure reset detection method

Format: SYStem.Option.ResetDetection <method>

<method>: OFF | RESETPIN | RSTINOUT

Default: RESETPIN. This option configures if the debugger’s reset detection is enabled and if enabled,
which signals are used to detect reset.

<method> Function

OFF Reset detection is disabled.

RESETPIN Debugger observes only RSTIN for reset detection.

RSTINOUT Bebuggljer observes RSTIN and RSTOUT for reset detection.
se only:

. if Processor has RSTOUT pin
. if RSTOUT pin is configured to signal core resets
. if RSTOUT pin is connected to debug/trace connector
. with following debug modules:
LA-2709, LA-3739 (Automotive Debug cables)

SYStem.Option.RDYLINE RDY pin available
Format: SYStem.Option.RDYLINE [ON | OFF]
Default: ON.

Set to OFF if cpu RDY- pin is not available or not connected to the debug connector.

The setting is only relevant if debug communication is done in JTAG mode (DEBUGPORTTYPE == JTAG).

©1989-2024 Lauterbach RH850 Debugger and Trace | 70

SYStem.Option.SLOWRESET Timeout for ResetRiseTime

Format: SYStem.Option.SLOWRESET [ON | OFF] (deprecated)

Terminate reset processing if target reset does not rise to high level within a certain period after debug-reset

release.
OFF (default) 4 seconds
ON 20 seconds

See also: SYStem.Option.HoldReset and SYStem.Option.WaitReset.

SYStem.Option.WaitReset Set reset wait time
Format: SYStem.Option.WaitReset [<time> [<reference>]]
<time>: 1us...10s
<reference>: OFF
RESET
RSTOUT

Sets the time that the debugger will wait after releasing the reset pin, e.g. at SYStem.Up. If called without
parameter, the default reset wait time is used (500us).

If the reference is set to OFF, the wait time starts when the debugger releases reset. If the reference is set to
RESET or RSTOUT, the wait time starts when the debugger detects that reset is released on the
corresponding pin.

Use this command when SYStem.Up fails, and the message AREA shows the message “Target reset
detected during system.up sequence”. A wait time of several ms should be sufficient. If a wait time > 10ms is
required, the target might require a stronger RESET pull-up resistor.

- hold time > < wait time -

RESET pin \

CPU State | RESET RESET/BIST DEBUG_HALT

For related commands, see also SYStem.Option.HoldReset and SYStem.Option.SLOWRESET.

©1989-2024 Lauterbach RH850 Debugger and Trace | 71

SYStem.Option (Exception Lines Enable)

The RH850 supports disabling of several CPU core inputs. This can be useful to lock watchdog- or target

resets.
SYStem.Option.CPINT CPINT line enable
Format: SYStem.Option.CPINT [ON | OFF] (deprecated)

No function anymore.

SYStem.Option.REQest Request line enable
Format: SYStem.Option.REQ [ON | OFF]
Default: ON.

Enables/disables the request line.

SYStem.Option.RESET Reset line enable
Format: SYStem.Option.RESET [ON | OFF]
Default: ON.

Enables/disables the reset line.

©1989-2024 Lauterbach RH850 Debugger and Trace | 72

SYStem.Option.STOP Stop line enable

Format: SYStem.Option.STOP [ON | OFF]

Default: ON.

Enables/disables the stop line.

SYStem.Option.WAIT Wait line enable
Format: SYStem.Option.WAIT [ON | OFF]
Default: ON.

Enables/disables the wait line.

©1989-2024 Lauterbach RH850 Debugger and Trace | 73

CPU specific BenchMarkCounter Commands

Benchmark counters are on-chip counters that count specific hardware events, e.g., the number of executed
instructions. This allows to calculate typical performance metrics like clocks per instruction (CPI).The
benchmark counters can be read at run-time if real-time memory access is enabled (use the command
SYStem.MemAccess CPU).

Performance counters and event counters of RH850 CPUs can be started or stopped using on-chip
breakpoints. This A-to-B mode allows to determine performance metrics for a single code block.

RH850 CPUs support two different types of benchmark counters:

Performance-counters (BCNTO0..4) can be used for runtime measurement and/or various event
counting. Runtime measurement is based on the core-clock frequency, the results are very
accurate.

Time-counters (TCNTO0..4) can be used for runtime measurement only. Clocking of the Time-
counters is based on the selected DebugPortType. The count-clock is typically slower than the
core-clock. For correct runtime measurement the minimum function-runtime should be more than
5 count-clocks.

JTAG --> JTAG-clock (NOTE: TRACES32 does not support a continuous JTAG-clock --> the
measurements are wrong. Counter TCNTO..4 can not be used in JTAG mode!)

LPD4 --> BaudRate frequency (set the SYStem.BAUDRATE as high as possible)
LPD1 --> Oscillator frequency

For information about architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).

For information about architecture-specific BMC commands, see command descriptions below.

©1989-2024 Lauterbach RH850 Debugger and Trace | 74

BMC.<counter>.ATOB

Enable event triggered counter start and stop

Format: BMC.<counter>.ATOB [ON | OFF]

Enables event triggered counter start/stop. The events are defined using ALPHA and BETA breakpoints set
with Break.Set. Every time the Alpha breakpoint condition triggers, the counter is started. The counter stops

when the Beta breakpoint condition is triggered.
Max-number of supported Alpha breakpoint: 1

Max-number of supported Beta breakpoins: 7

Example: This script measures the min-, max-, total- and average-runtime of the function sieve. This

measurement includes all interrupts, sub-function calls, etc.

;Measure runtime of function sieve (uses performance-counters)
BMC.CLOCK 120MHz ; core clock frequency, e.g. 120MHz

BMC.Init ON

BMC .BCNTO . EVENT . CLOCKS ; AtoB TotalTime

BMC .BCNTO .ATOB. TOTAL
BMC .BCNTO .RATIO.runtime (X/CLOCK)

BMC .BCNT1.EVENT.CLOCKS ; AtoB MinTime

BMC .BCNT1.ATOB.MIN
BMC .BCNT1.RATIO.runtime (X/CLOCK)

BMC .BCNT?2 . EVENT .CLOCKS ; AtoB MaxTime

BMC .BCNT?2 .ATOB . MAX
BMC .BCNT2 .RATIO.runtime (X/CLOCK)

BMC.BCNT3 .EVENT.ATOB ; AtoB Events

BMC.BCNT3 .ATOB.TOTAL
BMC.BCNT3.RATIO.OFF
BMC.RESet
Break.Delete

;set up counter start / stop events

Break.Set sYmbol.BEGIN(sieve) /Onchip /Alpha
Break.Set sYmbol.EXIT(sieve) /Onchip /Beta

;run measurement (for 10 seconds)
BMC.Init
Go
Wait 10s
Break

©1989-2024 Lauterbach

RH850 Debugger and Trace

75

BMC.<counter>.EVENT

Configure the performance monitor

Format: BMC.<counter>.EVENT <event>
<counter>: TCNT

BCNT
<event>: OFF

CLOCKS

ATOB

INST

BRA

Ell

FEI

ASEXP

SEXP

STALL

NINT

DISINT

IFUIF

IFUIFNWR

FLASHIF

VCIIF

FLASHDF

FLASHDFNWR
OFF Disable counter.
CLOCKS Counts Core-Clock for BCNT, counts Debug-Clocks for TCNT.
ATOB Counts A-to-B events.
INST Counts instructions.
BRA Counts branch instructions.
Ell Counts El-interrupt acknowledges.
FEI Counts FE-interrupt acknowledges.
ASEXP Counts asynchronous exception acknowledges.
SEXP Counts synchronous exception acknowledges.
STALL Counts Stall cycles.

©1989-2024 Lauterbach

RH850 Debugger and Trace | 76

NINT Count No-Interrupt cycles.

DISINT Count Disabled-Interrupt cycles.

IFUIF Counts IFU-Instruction fetches.

IFUIFNWR Counts IFU-Instruction fetches with NoWaitResponse.

FLASHIF Counts Flash-Instruction fetches.

VCIIF Counts VClI-Instruction fetches.

FLASHDF Counts Flash-Data fetches.

FLASHDFNWR Counts Flash-Data fetches with NoWaitResponse.
BMC.<counter>.TRIGMODE BMC trigger mode

Format: BMC.<counter>.TRIGMODE [OFF | BREAK]

Enables/disables the BenchMarkCounter trigger.

The program execution stops if the counter-value exceeds the predefined trigger-value, see
BMC.<counter>.TRIGVAL.

Default:

. Trigger if counter-value > trigger-value

If AtoB measurement is enabled:

. AtoB-MIN --> Trigger if counter-value-min < trigger-value
. AtoB-MAX --> Trigger if counter-value-max > trigger-value
. AtoB-TOTAL --> Trigger if counter-value-total > trigger-value
BMC.<counter>.TRIGVAL BMC trigger value
Format: BMC.<counter>.TRIGVAL [<value>]

Defines the BenchMarkCounter trigger value.

©1989-2024 Lauterbach RH850 Debugger and Trace | 77

CPU specific TrOnchip Commands

TrOnchip.CONVert Allow extension of address range of breakpoint

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

Controls for all on-chip read/write breakpoints whether the debugger is allowed to change the user-defined
address range of a breakpoint (see Break.Set <address_range> in the figure below).

e unmodified range >

Range fits
Break.Set <addr_range> to debug
logic?
Program
debug logic
o modified range >
TrOnchip.
CONVert
Error
The debug logic of a processor may be implemented in one of the following three ways:
1. The debug logic does not allow to set range breakpoints, but only single address breakpoints.

Consequently the debugger cannot set range breakpoints and returns an error message.

2. The debugger can set any user-defined range breakpoint because the debug logic accepts this
range breakpoint.

3. The debug logic accepts only certain range breakpoints. The debugger calculates the range that
comes closest to the user-defined breakpoint range (see “modified range” in the figure above).

©1989-2024 Lauterbach RH850 Debugger and Trace | 78

The TrOnchip.CONVert command covers case 3. For case 3) the user may decide whether the debugger is
allowed to change the user-defined address range of a breakpoint or not by setting TrOnchip.CONVert to
ON or OFF.

ON If TrOnchip.Convert is set to ON and a breakpoint is set to a range which
(default) cannot be exactly implemented, this range is automatically extended to
the next possible range. In most cases, the breakpoint now marks a wider
address range (see “modified range” in the figure above).

OFF If TrOnchip.Convert is set to OFF, the debugger will only accept
breakpoints which exactly fit to the debug logic (see “unmodified range”
in the figure above).

If the user enters an address range that does not fit to the debug logic, an
error will be returned by the debugger.

In the Break.List window, you can view the requested address range for all breakpoints, whereas in the
Break.List /Onchip window you can view the actual address range used for the on-chip breakpoints.

TrOnchip.EVTEN Enable ‘EVTO-’ trigger input (Aurora trace only)
Format: TrOnchip.EVTEN [ON | OFF]
Default: ON.

TRACE32 uses the CPU signal ‘EVTO-’ to force a trigger for Aurora trace recording (see command:
Break.Set ... /[TraceTrigger).

The CPU signal ‘EVTO-’ can also be used by other tools at the same time, which can cause functional
conflicts with the Aurora trace trigger input. In this case TrOnchip.EVTEN should be set to OFF.

ON Enables the Aurora trace trigger input.
OFF Disables the Aurora trace trigger input.

TrOnchip.RESet Set on-chip trigger to default state
Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

©1989-2024 Lauterbach RH850 Debugger and Trace | 79

TrOnchip.SIZE Trigger on byte, word, long memory accesses

Format: TrOnchip.SIZE [ON | OFF]

Default: OFF.

If ON, breakpoints on single-byte, two-byte or four-byte address ranges only hit if the CPU accesses this
ranges with a byte, word or long bus cycle.

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

©1989-2024 Lauterbach RH850 Debugger and Trace | 80

TrOnchip.VarCONVert Convert breakpoints on scalar variables

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

Controls for all scalar variables whether the debugger sets an HLL breakpoint with Var.Break.Set only on
the start address of the scalar variable or on the entire address range covered by this scalar variable.

o single address >

TrOnchip.
Var.Break.Set <scalar> > VarCONVert

Program

debug logic
< unmodified range > it

addr range
©)
')

Range fits
to debug
logic?

o modified range >

TrOnchip.
CONVert

Error

©1989-2024 Lauterbach RH850 Debugger and Trace | 81

ON

If TrOnchip.VarCONVert is set to ON and a breakpoint is set to a scalar
variable (int, float, double), then the breakpoint is set only to the start
address of the scalar variable.

] Allocates only one single on-chip breakpoint resource.

] Program will not stop on accesses to the variable’s address space.

OFF
(default)

If TrOnchip.VarCONVert is set to OFF and a breakpoint is set to a scalar
variable (int, float, double), then the breakpoint is set to the entire address
range that stores the scalar variable value.

. The program execution stops also on any unintentional accesses
to the variable’s address space.
. Allocates up to two on-chip breakpoint resources for a single

range breakpoint.
NOTE: The address range of the scalar variable may not fit to the debug
logic and has to be converted by the debugger, see TrOnchip.CONVert.

In the Break.List window, you can view the requested address range for all breakpoints, whereas in the
Break.List /Onchip window you can view the actual address range used for the on-chip breakpoints.

©1989-2024 Lauterbach

RH850 Debugger and Trace | 82

Command Reference: NEXUS

NEXUS.BTM Program trace messaging enable

Format: NEXUS.BTM [ON | OFF]

Control for NEXUS program trace messaging.

ON (default) Program trace messaging enabled.
OFF Program trace messaging disabled.

NEXUS.CoreENable Core specific trace configuration
Format: NEXUS.CoreENable [<core_numbers>]

Access to core specific trace configuration.

Default: All cores of the CPU are enabled and the program trace is just managed by the global setting of
NEXUS.BTM. For e.g. a CPU with eight cores the default <core_numbers> setting is 0,1,2,3,4,5,6,7

To disable the generation of trace messages for specific cores, exclude them from the <core_numbers> list.

NEXUS.CLIENT<x>.MODE Set data trace mode of nexus client

Format: NEXUS.CLIENT1.MODE [Read | Write | ReadWrite | DTM | OFF]
NEXUS.CLIENT2.MODE [Read | Write | ReadWrite | DTM | OFF]
NEXUS.CLIENT3.MODE [Read | Write | ReadWrite | DTM | OFF]

Sets the data trace mode of the selected trace client. Select the trace client using
NEXUS.CLIENT<x>.SELECT before setting the trace mode.

When using “DTM” the client trace mode follows the setting of NEXUS.DTM.

©1989-2024 Lauterbach RH850 Debugger and Trace | 83

NEXUS.CLIENT<x>.SELECT Select a nexus client for data tracing

Format: NEXUS.CLIENT1.SELECT <client>
NEXUS.CLIENT2.SELECT <client>
NEXUS.CLIENT3.SELECT <client>

Selects the trace client for data tracing.

<client> Dedicated trace clients (e.g. EXT, LRAM, GRAM)
NEXUS.DTM Data trace messaging enable
Format: NEXUS.DTM <mode>
<mode>: OFF | Read | Write | ReadWrite
ReadLimited | WriteLimited | ReadWriteLimited

Controls the Data Trace Messaging method.

OFF Data trace messaging disabled (default)

Read Data trace messages for read accesses (load instructions)

Write Data trace messages for write accesses (store instructions)

ReadWrite Data trace messages for read and write accesses (load and store
instructions)

ReadLimited Same as above, but exclude stack operations (sp,r3)

WriteLimited

ReadWrite-Limited

©1989-2024 Lauterbach RH850 Debugger and Trace | 84

NEXUS.OFF Disable NEXUS register access

Format: NEXUS.OFF

The debugger does not access any of the CPUs trigger- and trace-configuration registers.

The setting is needed if a different tool likes to use the CPUs trigger- and trace-unit exclusively. The setting
has to be done before the first Go or Step command to prevent any register configurations from the
TRACES32 side.

NOTE: Existing register configurations are not reset when switching to OFF, the settings
will stay active.

NEXUS.ON Switch the NEXUS trace port on

Format: NEXUS.ON

The NEXUS trace port is switched on. All trace registers are configured by the debugger.

NEXUS.PortMode Set NEXUS trace port frequency
Format: NEXUS.PortMode <mode>
<mode>: Aurora NEXUS:

625MBPS | 750MBPS | 850MBPS | 1000MBPS | 1250MBPS |
1500MBPS | 17700MBPS | 2000MBPS | 2500MBPS | 3000MBPS | 3125MBPS

Sets the NEXUS trace port frequency. For parallel NEXUS, the setting is the system clock divider. For Aurora
NEXUS, the setting is a fixed bit clock which is independent of the system frequency.

NOTES: Aurora NEXUS: Set the bit clock according to the processor’s data sheet.

©1989-2024 Lauterbach RH850 Debugger and Trace | 85

NEXUS.PortSize Set trace port width

Format: NEXUS.PortSize <port_size>

<port_size>: Aurora NEXUS:
1Lane | 2Lane | 4Lane

Sets the nexus port width to the number of used MDO pins or Aurora lanes. The setting can only be
changed if no debug session is active (SYStem.Down).

NEXUS.RESet Reset NEXUS trace port settings

Format: NEXUS.RESet

Resets NEXUS trace port settings to default settings.

NEXUS.SFT Software trace messaging enable

Format: NEXUS.SFT [ON | OFF]

Control for NEXUS software trace messaging.

SFT messages are stored in On-chip trace memory or the external NEXUS trace hardware.

NEXUS.SUSpend Stall the program execution when FIFO full

Format: NEXUS.SUSpend [ON | OFF]

Stalls the program execution whenever the on-chip NEXUS-FIFO threatens to overflow. If this option is
enabled, the NEXUS port controller will stop the core’s execution pipeline until all messaged in the on-chip
NEXUS FIFO are sent. Enabling this command will affect (delay) the instruction execution timing of the CPU.
This system option, which is a representation of a feature of the processor, will remarkably reduce the
amount FIFO OVERFLOW errors, but can not avoid them completely.

©1989-2024 Lauterbach RH850 Debugger and Trace | 86

NEXUS.SYNC Address-sync trace messaging enable

Format: NEXUS.SYNC [ON | OFF]

Forces NEXUS address-sync trace messaging on all branch instructions.

Note for OnchipTrace (optional bugfix):

There are RH850 devices with a bug in the NEXUS coding for Onchip-Trace. If there are flow-errors in the
trace listing please set “NEXUS.SYNC ON” and try again.

NEXUS.SyncPeriod Set period of timestamp sync messages

Format: NEXUS.SyncPeriod <clocks>

Forces periodical NEXUS timestamp-sync messages in the trace stream.

NOTE: Only relevant for on-chip trace if NEXUS.TimeStamps are enabled.

A correct timing-display of the program flow requires that the first timestamp-sync message appears in the
trace stream as early as possible. However, sometimes the first message appears at the very end of the
trace recording. As result, all the records before the very first timestamp-sync message are not displayed in
the Trace.List window. In this case the NEXUS.SyncPeriod value should be reduced (e.g. to 4096.) to
increase the appearance of timestamp-sync messages, then try again.

NEXUS.state Display NEXUS port configuration window

Format: NEXUS.state

Opens the NEXUS trace configuration window.

©1989-2024 Lauterbach RH850 Debugger and Trace | 87

NEXUS.TimeStamps On-chip timestamp generation enable

Format: NEXUS.TimeStamps [ON | OFF]

When enabled, the processor is configured to add timestamps to the NEXUS messages. If the chip-external
trace is used (tracing to PowerTrace unit), on-chip timestamps are usually not needed, because the

PowerTrace unit will add it's own timestamp. When using the on-chip trace, enable NEXUS.TimeStamps for
run-time measurements.

NOTE: Timestamps will consume ~20% of the trace bandwidth/trace memory.

©1989-2024 Lauterbach RH850 Debugger and Trace | 88

Nexus specific TrOnchip Commands

TrOnchip.Alpha Set special breakpoint function

Format: TrOnchip.Alpha <function>

<function>: OFF
ProgramBREAK

ProgramTraceON
ProgramTraceOFF
DataTraceON
DataTraceOFF

TraceEnableClient<x>
TraceDataClient<x>
TraceONClient<x>
TraceOFFClient<x>
TraceTriggerClient<x>
BusTriggerClient<x>
BusCountClient<x>
WATCHClient<x>

<x>: [112]

Configures the functionality of the Alpha breakpoint. This breakpoint can be used to configure the on-chip
NEXUS trace for special core features and for the trace clients configured via NEXUS.CLIENT<x>SELECT.
For a description of the functionality, see Trace Filtering and Triggering with Debug Events.

Example 1: This script enables the core data trace at the entry of my_func and stop the data trace when the
core writes to address 0x40001230. (In contrast to TraceON/TraceOFF, here program trace is enabled

permanently):

;Enable data trace messaging
NEXUS.DTM ReadWrite

;declare events Alpha/Beta used for trace source control
Break.Set my_func /Program /Onchip /Alpha
Break.Set 0x40001234 /Write /Onchip /Beta

;Set function of Alpha/Beta events
TrOnchip.Alpha DataTraceON
TrOnchip.Beta DataTraceOFF

©1989-2024 Lauterbach RH850 Debugger and Trace | 89

Example 2: This script enables the trace of the DMA controller for write accesses to a specified address

range:

;select DMA trace client
NEXUS.CLIENT1.SELECT DMA_O0

;set Alpha event on address range and write access
Break.Set D:0x40001000--0x400017FF /Write /Onchip /Alpha

;Assign Alpha event to CLIENT1, function TRACEDATA
TrOnchip.Alpha TraceDataClientl

Example 3: This script configures the trace of the DMA controller, so that DMA trace starts when the DMA
controller writes to 0x1000 and stops when DMA controller wrote 0x1040.

;select DMA trace client
NEXUS.CLIENT1.SELECT DMA_O0

; define events for DMA data trace on/off
Break.Set D:0x40001000 /WRITE /Onchip /Alpha
Break.Set D:0x40001040 /WRITE /Onchip /Beta

; assign events to data trace on/off for client 1

TrOnchip.Alpha TraceONClientl
TrOnchip.Beta TraceOFFClientl

TrOnchip.Beta Set special breakpoint function

Format: TrOnchip.Beta <function>

See TrOnchip.Alpha.

TrOnchip.Charly Set special breakpoint function

Format: TrOnchip.Charly <function>

See TrOnchip.Alpha.

©1989-2024 Lauterbach RH850 Debugger and Trace | 90

TrOnchip.Delta Set special breakpoint function

Format: TrOnchip.Delta <function>

See TrOnchip.Alpha.

TrOnchip.Echo Set special breakpoint function

Format: TrOnchip.Echo <function>

See TrOnchip.Alpha.

©1989-2024 Lauterbach RH850 Debugger and Trace | 91

CPU specific Functions

CPU.BASEFAMILY() CPU family

[build 70426 - DVD 02/2016]

Syntax: CPU.BASEFAMILY()

Returns the CPU family name “RH850".

Return Value Type: String.

CPU.DEVICEID() Value of the device-id

[build 86237 - DVD 09/2017]

Syntax: CPU.DEVICEID()

Returns the value of the device-id.
The device-id is read from the CPU during the SYStem.Up or SYStem.Mode.Prepare processing.

Return Value Type: Hex value.

CPU.SUBFAMILY() CPU subfamily

[build 68566- DVD 02/2016]

Syntax: CPU.SUBFAMILY()

Returns the CPU subfamily name, e.g. RH850/E2x or RH850/F1L.

Return Value Type: String.

©1989-2024 Lauterbach RH850 Debugger and Trace | 92

SYStem.BAUDRATE() Value of baudrate

[build 67103 - DVD 02/2016]

Syntax: SYStem.BAUDRATE()

Returns the current value of the baudrate in the SYStem.BAUDRATE window. This function is only used by
the TRACES32 autosetup script.

Return Value Type: String.

SYStem.CORECLOCK() Core clock frequency

[build 68445 - DVD 02/2016]

Syntax: SYStem.CORECLOCK()

Returns the current value of the core clock frequency in the SYStem.CORECLOCK window. This function is
only used by the TRACES32 autosetup script.

Return Value Type: Decimal value.

SYStem.OSCCLOCK() Oscillator clock frequency

[build 68445 - DVD 02/2016]

Syntax: SYStem.0SCCLOCK()

Returns the current value of the target oscillator frequency in the SYStem.OSCCLOCK window. This
function is only used by the TRACES32 autosetup script.

Return Value Type: Decimal value.

SYStem.CFID() Values of CodeFlashiD

[build 93608 - DVD 09/2018]

Syntax: SYStem.CFID(<8x_32bit_values>)

Returns the values defined with SYStem.Option.CFID command.

Parameter and Description:

<8x_32bit_values> Parameter Type: Decimal value.
Have to be the same values as present in CPUs CFID[0..7] registers.

©1989-2024 Lauterbach RH850 Debugger and Trace | 93

Return Value Type: Hex value.

SYStem.DFID() Values of DataFlashID

[build 93608 - DVD 09/2018]

Syntax: SYStem.DFID(<8x_32bit_values>)

Returns the values defined with SYStem.Option.DFID command.

Parameter and Description:

<8x_32bit_values> Parameter Type: Decimal value.
Have to be the same values as present in CPUs CFID[0..7] registers.

Return Value Type: Hex value.

SYStem.OCDID() Values of OnChipDebuglID

[build 93608 - DVD 09/2018]

Syntax: SYStem.OCDID(<8x_32bit_values>)

Returns the values defined with SYStem.Option.OCDID command.

Parameter and Description:

<8x_32bit_values> Parameter Type: Decimal value.
Have to be the same values as present in CPUs CFID[0..7] registers.

Return Value Type: Hex value.

SYStem.OPBT() Values of Option-bytes

[build 44741 - DVD 09/2013]

Syntax: SYStem.OPBT(<8x_32bit_values>)

Returns the values of CPU OptionBytes(0 to 7).

The option-byte values are read from the CPU during SYStem.Mode.Prepare.

©1989-2024 Lauterbach RH850 Debugger and Trace | 94

Parameter and Description:

<8x_32bit_values> Parameter Type: Decimal value.
Have to be the same values as present in CPUs CFID[0..7] registers.

Return Value Type: Hex value.

SYStem.OPBTS() Values of Option-bytes

[build 50281 - DVD 02/2014]

Syntax: SYStem.OPBT8(<8x_32bit_values>)

Returns the values of CPU OptionBytes(8 to 15).
The option-byte values are read from the CPU during SYStem.Mode.Prepare.

Parameter and Description:

<8x_32bit_values> Parameter Type: Decimal value.
Have to be the same values as present in CPUs CFID[0..7] registers.

Return Value Type: Hex value.

SYStem.RESETDETECTION() Reset detection method

[build 134000 - DVD 09/2021]

Syntax: SYStem.RESETDETECTION()

Returns the option-string entered by the command SYStem.Option.ResetDetection.

Return Value Type: String.

©1989-2024 Lauterbach RH850 Debugger and Trace | 95

Debug Connector

Debug Connector 14 pin 100mil

Signal Pin Pin Signal
TCK 1 2 GND
TRST- 3 4 FLMDO
TDO 5 6 (FLMD1)
TDI 7 8 VCC
TMS 9 10 (FLMD2)
RDY- 11 12 GND
RESET- 13 14 GND
Debug Signal Description CPU CPU CPU
Connector Signal Signal Signal
JTAG LPD4 LPD1
TCK JTAG-TCK, output of debugger TCK LPDCLK -
TRST JTAG-TRST, output of debugger TRST - -
TDO JTAG-TDO, input for debugger TDO LPDO --
TDI JTAG-TDI, input/output of TDI LPDI LPDIO
debugger
TMS JTAG-TMS, output of debugger TMS - -
RDYZ READY- input of debugger RDYZ LPDCLKO -
RESET RESET RESET RESET RESET
. Force target Reset, output
of debugger
o Sense target Reset, input
for debugger
FLMDO FLASH Mode0 signal, output of FLMDO FLMDO FLMDO
debugger
. Enable flash programming
FLMD1 Mode configuration pin (optional) PullDown PullDown PullDown
FLMD2 Mode configuration pin (optional, -- -- --
not used yet)

©1989-2024 Lauterbach

RH850 Debugger and Trace |

96

VvCC Target voltage sense, input for VCC VCC VCC
debugger
GND GND GND GND GND
Debug Connector 26
Signal Pin Pin Signal
VTREF 1 2 TMS
GND 3 4 TCK
GND 5 6 TDO
KEY(GND) - 8 TDI
GND(PRESENCE) 9 10 RESET-
GND 11 12 RESETOUT-
GND 13 14 WDTDIS
GND 15 16 TRST
GND 17 18 FLMDO
GND 19 20 RDY-
GND 21 22 BREQ-
GND 23 24 BGRNT-
GND 25 26 EXTIO

©1989-2024 Lauterbach

RH850 Debugger and Trace

97

Trace Connectors and Adapters

Adapter for RH850 (LA-3561)

Connector Function

A AUTO26 debug connector

B JTAG14 debug connector

Cc Target connector

D PowerTrace Serial connector for Serial Port 1

Jumper Function

X130 Set: Connects pin 16 (EVTI) of the target connector to TRIGOUT of

PowerTrace Serial

Open: EVTI not connected

X131 Set: Connects pin 18 (EVTO) of the target connector to TRIGIN of
PowerTrace Serial

Open: EVTO not connected

©1989-2024 Lauterbach RH850 Debugger and Trace | 98

Jumper Function

X132 DO NOT SET!
Pin 1: Connected to pin 34 of the target connector (RESOUT)
Pin 2: GND

X113 DO NOT SET!
Pin 1: Connected to pin 25 of the target connector
Pin 2: GND

Pin27 Set: Connects pin 27 of the target connector to pin 14 (WD) of AUTO26
Open: pin 14 of Auto26 is open

Pin31 Set: Connects pin 31 of the target connector to pin 22 (BREQ) of AUTO26
Open: pin 22 of Auto26 is open

Pin33 Set: Connects pin 27 of the target connector to pin 24 (BGNT) of AUTO26
Open: pin 24 of Auto26 is open

Both debug connectors AUTO26 [A] or the JTAG14 [B] hold the same debug
signals coming from the target connector [C]. Only one debug connector must
be used at the time.

©1989-2024 Lauterbach

RH850 Debugger and Trace |

99

Parallel NEXUS Connector (Debug and Trace)

MICTOR 38-pin for debug and trace

Signal
MDO12
MDO14
MDO09

N/C
(DBG-RESET)
(DBG-TDO)
MDO10
(DBG-TCK)
(DBG-TMS)
(DBG-TDI)
(DBG-TRST)
MDO11

N/C

N/C
(FLMD2)
N/C
(FLMD1)
N/C
(FLMDO)

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38

Signal
MDO13
MDO15
N/C
MDOO08
EVTI-
VTREF
(DBG-RDY)
MDOO07
MDOO06
MDOO05
MDOO04
MDOO03
MDOO02
MDOO1
MDOO00
EVTO-
MCKO
MSEO1-
MSEOO-

Signals in brackets are optional. These could be used if no additional 14pin debug connector is available on
the target. Please use an adaptor (LA-3885) to split the target signals for debug and trace.

©1989-2024 Lauterbach

RH850 Debugger and Trace

100

Aurora NEXUS SAMTEC 34-pin (Debug and Trace)

Signal

TXO0+

TXO-

GND

TX1+

TX1-

GND

TX2+

TX2-

GND

TX3+

TX3-

GND

N/C
(WDTDIS)
GND
(ETK-BREQ)
(ETK-BGNT)

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34

Signal
VCC
TCK
TMS

TDI

TDO
TRST-
FLMDO
(EVTI-)
EVTO-
(FLMD1)
RESET-
GND
CLK+
CLK-
GND
RDY-
RESETOUT-

This target pin-assignment requires adaptors to connect to the TRACES2 tools.

LA-xxxx: Convert SAMTEC 34pin -> SAMTEC 40pin (Trace only)

LA-xxxx: Split-adapter SAMTEC 34pin -> SAMTEC 40pin, RH850-14pin, RH850-motive

We recommend to place the even numbered pins at the PCB border side (flex cable won't be twisted).

©1989-2024 Lauterbach

RH850 Debugger and Trace

101

Aurora NEXUS SAMTEC 40-pin (Trace only)

SAMTEC 40-pin (Trace only)

Signal
N/C
N/C

GND
N/C
N/C

GND

TXO0+

TXO-

GND
N/C
N/C

GND

TX1+

TX1-

GND
N/C
N/C

GND

CREF+
CREF-

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40

Signal
VCC
N/C
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
EVTI-
EVTO-
N/C

We recommend to place the even numbered pins at the PCB border side (flex cable won't be twisted).

©1989-2024 Lauterbach

RH850 Debugger and Trace

102

Aurora NEXUS SAMTEC 46-pin (Debug and Trace)

Signal
TXO0+
TXO-
GND
TX1+
TX1-
GND
TX2+
TX2-
GND
TX3+
TX3-
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
41 42
43 44
45 46

Signal
VCC

TCK
FLMD1
(AURORES-)
(VSTBY)
TRST-
FLMDO
(EVTI-)
EVTO-
(MSYN-)
RESET-
GND
CLK+
CLK-
GND
(WDTDIS)
RESETOUT-
GND

TMS

TDI

GND

TDO

RDY-

This target pin-assignment requires adaptors to connect to the TRACES2 tools.

LA-3899: Converter for RH850-Samtec34 pin assignment to a target with Samtec46 debug/trace connector

We recommend to place the even numbered pins at the PCB border side (flex cable won't be twisted).

©1989-2024 Lauterbach

RH850 Debugger and Trace

103

	RH850 Debugger and Trace
	History
	Introduction
	Available Tools
	Debugger
	Software-only Debugger for XCP
	SFT Trace
	On-chip Trace
	High-Speed Serial Off-chip Trace (Aurora NEXUS)
	Parallel Off-chip Trace (parallel NEXUS)
	Co-Processor Debugging (GTM)
	Multicore Debugging

	Software Installation
	Related Documents
	Demo and Start-up Scripts
	Brief Overview of Documents for New Users

	Warning
	Useful Tips
	Application Starts Running at SYStem.Up
	Greenhills Compiler
	Stop Timers and Peripherals during application-break
	Location of Debug Connector
	Reset Line
	Debugging the STOP and DeepSTOP Mode

	Configuration
	System Overview

	Single Core Debugging - Quick Start
	Debug from Reset
	Connect to Running Program (Hot Plug-In)

	Troubleshooting
	SYStem.Up Errors

	FAQ
	Debugging
	RH850 Debug Interface Modes
	JTAG Mode
	LPD4 Mode
	LPD1 Mode
	UART Mode

	Breakpoints
	Software Breakpoints
	Onchip Breakpoints
	Breakpoint in ROM
	Example for Breakpoints

	Access Classes
	Access Classes to Memory and Memory Mapped Resources
	Access Classes to Other Addressable Core and Peripheral Resources

	Support for Peripheral Modules
	Runtime Measurement
	Multicore Debugging
	SMP Debugging
	AMP Debugging

	FLASH Programming Support
	Tracing
	SFT Trace via LPD4
	NEXUS On-chip Trace
	External Trace Ports (Parallel NEXUS/Aurora NEXUS)
	Tracing the Program Flow
	Tracing of Data (read/write) Transactions
	Example: Data Trace with Address Range

	Trace Filtering and Triggering with Debug Events
	Event Breakpoints
	Overview
	Example: Selective Program Tracing
	Example: Event Controlled Program/Data Trace Start and End
	Example: Event Controlled Trace Recording
	Example: Event Controlled Trigger Signals
	Example: Event Counter

	Tracing Peripheral Modules / Bus Masters

	SFT Software Trace
	SFT Software Trace to On-chip Trace
	SFT Software Trace via LPD4 debug port

	CPU specific SYStem Commands
	SYStem.BAUDRATE Baudrate setting
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CONFIG.DEBUGPORT Select target interface
	SYStem.CONFIG.DEBUGPORTTYPE Select debug port type
	SYStem.CONFIG.EXTWDTDIS Disable external watchdog
	SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool
	SYStem.CORECLOCK Core clock frequency
	SYStem.CPU CPU type selection
	SYStem.JtagClock JTAG clock selection
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode System mode selection
	SYStem.OSCCLOCK Oscillator clock frequency
	SYStem.RESetOut Reset target without reset of debug port

	CPU specific SYStem.Option Commands
	SYStem.Option.CFU CalibrationFunctionUnit support
	SYStem.Option.DOWNMODE Behavior of SYStem.Mode Down
	SYStem.Option.DUALPORT Implicitly use run-time memory access
	SYStem.Option.FLMD0 FLMD0 pin default level
	SYStem.Option.HoldReset Set reset hold time
	SYStem.Option.ICUS ICU-S enable
	SYStem.Option.IDSET Program KeyCodes to CPU option bytes
	SYStem.Option.IMASKASM Interrupt disable
	SYStem.Option.IMASKHLL Interrupt disable
	SYStem.Option.KEYCODE Keycode (G3Kx cores only)
	SYStem.Option.MACHINESPACES Address extension for guest OSes
	SYStem.Option.OCDID OnChipDebugID setting
	SYStem.Option.CFID CodeFlashID setting
	SYStem.Option.DFID DataFlashID setting
	SYStem.Option.OPtionByTe Option-byte setting
	SYStem.Option.OPtionByTe8 Option-byte setting
	SYStem.Option.CIDA Customer-ID A setting
	SYStem.Option.CIDB Customer-ID B setting
	SYStem.Option.CIDC Customer-ID C setting
	SYStem.Option.PERSTOP Disable CPU peripherals if stopped
	SYStem.Option.RESetBehavior Set behavior when target reset detected
	SYStem.Option.ResetDetection Configure reset detection method
	SYStem.Option.RDYLINE RDY pin available
	SYStem.Option.SLOWRESET Timeout for ResetRiseTime
	SYStem.Option.WaitReset Set reset wait time

	SYStem.Option (Exception Lines Enable)
	SYStem.Option.CPINT CPINT line enable
	SYStem.Option.REQest Request line enable
	SYStem.Option.RESET Reset line enable
	SYStem.Option.STOP Stop line enable
	SYStem.Option.WAIT Wait line enable

	CPU specific BenchMarkCounter Commands
	BMC.<counter>.ATOB Enable event triggered counter start and stop
	BMC.<counter>.EVENT Configure the performance monitor
	BMC.<counter>.TRIGMODE BMC trigger mode
	BMC.<counter>.TRIGVAL BMC trigger value

	CPU specific TrOnchip Commands
	TrOnchip.CONVert Allow extension of address range of breakpoint
	TrOnchip.EVTEN Enable ‘EVTO-’ trigger input (Aurora trace only)
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.SIZE Trigger on byte, word, long memory accesses
	TrOnchip.state Display on-chip trigger window
	TrOnchip.VarCONVert Convert breakpoints on scalar variables

	Command Reference: NEXUS
	NEXUS.BTM Program trace messaging enable
	NEXUS.CoreENable Core specific trace configuration
	NEXUS.CLIENT<x>.MODE Set data trace mode of nexus client
	NEXUS.CLIENT<x>.SELECT Select a nexus client for data tracing
	NEXUS.DTM Data trace messaging enable
	NEXUS.OFF Disable NEXUS register access
	NEXUS.ON Switch the NEXUS trace port on
	NEXUS.PortMode Set NEXUS trace port frequency
	NEXUS.PortSize Set trace port width
	NEXUS.RESet Reset NEXUS trace port settings
	NEXUS.SFT Software trace messaging enable
	NEXUS.SUSpend Stall the program execution when FIFO full
	NEXUS.SYNC Address-sync trace messaging enable
	NEXUS.SyncPeriod Set period of timestamp sync messages
	NEXUS.state Display NEXUS port configuration window
	NEXUS.TimeStamps On-chip timestamp generation enable

	Nexus specific TrOnchip Commands
	TrOnchip.Alpha Set special breakpoint function
	TrOnchip.Beta Set special breakpoint function
	TrOnchip.Charly Set special breakpoint function
	TrOnchip.Delta Set special breakpoint function
	TrOnchip.Echo Set special breakpoint function

	CPU specific Functions
	CPU.BASEFAMILY() CPU family
	CPU.DEVICEID() Value of the device-id
	CPU.SUBFAMILY() CPU subfamily
	SYStem.BAUDRATE() Value of baudrate
	SYStem.CORECLOCK() Core clock frequency
	SYStem.OSCCLOCK() Oscillator clock frequency
	SYStem.CFID() Values of CodeFlashID
	SYStem.DFID() Values of DataFlashID
	SYStem.OCDID() Values of OnChipDebugID
	SYStem.OPBT() Values of Option-bytes
	SYStem.OPBT8() Values of Option-bytes
	SYStem.RESETDETECTION() Reset detection method

	Debug Connector
	Debug Connector 14 pin 100mil
	Debug Connector 26

	Trace Connectors and Adapters
	Adapter for RH850 (LA-3561)
	Parallel NEXUS Connector (Debug and Trace)
	Aurora NEXUS SAMTEC 34-pin (Debug and Trace)
	Aurora NEXUS SAMTEC 40-pin (Trace only)
	Aurora NEXUS SAMTEC 46-pin (Debug and Trace)

