LAUTERBACH A

QorlQ Debugger and NEXUS
Trace

QorlQ Debugger and NEXUS Trace

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 DOCUMENTS ciceeiiiiiiiemns s inisess s snnsss s s rassss e e s s e s ee e m s e e ea s m s e b e a s mn e e R e a s annn e nnnnnn
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns

Processor Architecture Manualscciiciiimiiiieiirerrr s s e an s an s an s s ennsssennssss

QorlQ Debugger and NEXUS Traceccccccuuseerissmmssssisssssmsssssmssssmsssssssssssssssssssssnssssssssnsas

4o T 11 ez 4 oY o R
Brief Overview of Documents for New Users
Demo and Start-up Scripts

L= T 1 '

Target Design Recommendationsccccccceiiiiicniincsrnsms s
General

L LT T 7= - 1 o

QLo 101 o L= X= 0 T Tor 1] 3T .
SYStem.Up Errors

Tool CoNfIGUIAtIoN eeiiiiieii s s s e
TRACES32 Debugger
TRACES32 Debugger and Trace with Serial Preprocessor
TRACES32 Debugger and Trace with PowerTrace Serial
Aurora Traceport
PCle Traceport

PowerPC QorlQ specific Implementations ... s
Breakpoints
Software Breakpoints
On-chip Breakpoints
Breakpoints on Program Addresses
Breakpoints on Data Addresses
Breakpoints on Data Access at Program Address
Breakpoints on Data Value
Access Classes
Access Classes to Memory and Memory Mapped Resources
Access Classes to Other Addressable Core and Peripheral Resources

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace

Cache 26
Memory Coherency 26
MESI States and Cache Status Flags 27
Viewing Cache Contents 28

Debugging Information 29
Multicore Debugging 29

General Information 29
SMP Debugging 30
AMP Debugging 31
Synchronous Go of the Cores 34
Synchronous Stop of the Cores 34
Programming Flash on QorlQ Processors 38
Programming the Reset Configuration Word (RCW) 39

Trace Information 40
Supported Trace Features 41
Aurora HSTP Trace 42
Nexus PCle Trace 42
On-chip Trace 44
Trace initialization 45

Trace Sink settings and processes - depending on the system state 45
Trace Source settings and trace access - regardless of the system state 46
CPU specific SYStem Commandsccccccemmmmiiiiiiiiiisssssccsssrssesssssssssssssssssssssssessessssssnnnas 48

SYStem.BdmClock Set debug clock frequency 48

SYStem.CONFIG.state Display target configuration 49

SYStem.CONFIG Configure debugger according to target topology 50

SYStem.CONFIG.CHKSTPIN Control pin 8 of debug connector 53

SYStem.CONFIG.DriverStrength Configure driver strength of TCK pin 54

SYStem.CONFIG.QACK Control QACK pin 54

SYStem.CPU Select the CPU type 55

SYStem.LOCK Lock and tristate the debug port 55

SYStem.MemAccess Select run-time memory access method 55

SYStem.Mode Select operation mode 57

CPU specific SYStem.Option Commandscccccciiiiemiirsninnsmnsmssssss s sssssssssens 58

SYStem.Option.Address32 Define address format display 58

SYStem.Option.DCFREEZE Data cache state frozen while core halted 58

SYStem.Option.DCREAD Read from data cache 59

SYStem.Option.DUALPORT Implicitly use run-time memory access 60

SYStem.Option.FREEZE Freeze system timers on debug events 60

SYStem.Option.HOOK Compare PC to hook address 60

SYStem.Option.HRCWOVerRide Override RCW during SYStem.Up 61

SYStem.Option.ICFLUSH Invalidate instruction cache before go and step 61

SYStem.Option.ICREAD Read from instruction cache 61

SYStem.Option.IMASKASM Disable interrupts while single stepping 62

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace 3

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 62
SYStem.Option.MACHINESPACES Address extension for guest OSes 62
SYStem.Option. MMUSPACES Separate address spaces by space IDs 63
SYStem.Option.NoDebugStop Disable JTAG stop on debug events 65
SYStem.Option.OVERLAY Enable overlay support 66
SYStem.Option.RESetBehavior Set behavior when target reset detected 67
SYStem.Option.SLOWRESET Relaxed reset timing 67
SYStem.Option.STEPSOFT Use alternative method for ASM single step 68
SYStem.Option.TranslationSPACE Identify user and hypervisor modes 68
SYStem.Option.ZoneSPACES Enable symbol management for zones 69
CPU specific MMU COMMANAS cooivimmmrmmisnmsnrmsssssssmssssssss s s sssssssssssssssssssssssssssnas 73
MMU.DUMP Page wise display of MMU translation table 73
MMU.FORMAT Define MMU table structure 76
MMU.List Compact display of MMU translation table 81
MMU.SCAN Load MMU table from CPU 83
MMU.Set Setan MMU TLB entry 85
CPU specific BenchMarkCounter COmMmandsc.cccuivmmmisenminssmsssessisssssssssssssssssnssnes 86
BMC.FREEZE Freeze counters while core halted 86
BMC.Trace Trace performance monitor events 86
BMC.<counter>.FREEZE Freeze counter in certain core states 87
CPU specific TrOnchip CoOomMmandsccccceecicciiiissecccrmnrrirsisssssssssssssssssssssssssssssssssssssnnes 88
TrOnchip.CONVert Adjust range breakpoint in on-chip resource 88
TrOnchip.RESet Reset on-chip trigger settings 89
TrOnchip.Set Enable special on-chip breakpoints 89
TrOnchip.VarCONVert Adjust HLL breakpoint in on-chip resource 90
TrOnchip.state View on-chip trigger setup window 91
Nexus and Trace specific commandscccccccmmimiiiinisssissssssc s mssmes e e 92
DDRTrace.List List DDR trace contents 92
DQMTrace.List List DQM trace contents 92
NEXUS.BTM Enable program trace messaging 93
NEXUS.CoreENable Core specific trace configuration 93
NEXUS.DDRConfig.ADDRessfilter Filter Nexus DDR messages 94
NEXUS.DDRConfig.Controller Configure Nexus DDR message type 94
NEXUS.DQM Enable data acquisition messaging 95
NEXUS.LaneMapping Logical to physical lane mapping 96
NEXUS.LaneMapping.APPLY Apply logical to physical lane mapping 96
NEXUS.LaneMapping.SetLane Configure logical to physical lane mapping 96
NEXUS.OCeaNport.Mode Configure Nexus OCeaN message type 97
NEXUS.OCeaNport<index>.TraceSELect Select Nexus OCeaN trace type 98
NEXUS.OFF Switch the Nexus trace port off 98
NEXUS.ON Switch the Nexus trace port on 929
NEXUS.OTM Enable ownership trace messaging 99
©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace 4

NEXUS.PortMode Set Nexus trace port frequency 100

NEXUS.PortSize Set trace port width 100
NEXUS.POTD Disable periodic ownership trace 101
NEXUS.PTCM Enable program trace correlation messages 101
NEXUS.PTFGS Program trace mark 101
NEXUS.PTFPMM Program trace mark 102
NEXUS.PTFPR Program trace mark 102
NEXUS.PTMARK Program trace mark 103
NEXUS.RefClock Enable Aurora reference clock 103
NEXUS.Register Display NEXUS trace control registers 103
NEXUS.RESet Reset Nexus trace port settings 104
NEXUS.SerDesCFG Enable SerDes PLL control register manipulation 104
NEXUS.SerDesCFG.FRATE Select frequency of SerDes PLL VCO 104
NEXUS.SerDesCFG.REFCLK Select frequency of SerDes reference clock 105
NEXUS.Spen<messagetype> Enable message suppression 105
NEXUS.STALL Stall the program execution when FIFO level is reached 106
NEXUS.state Display Nexus port configuration window 107
NEXUS.SupprTHReshold Set fill level for message suppression 107
NEXUS.TimeStamps Append target timestamps to Nexus messages 108
NEXUS.USEPORT Define used PCle controller for PCle trace 108
NEXUS.WTM Enable watchpoint messaging 108
OCeaNTrace.List List OCeaN trace contents 109
Onchip specific COMMANAScceiiriiiiimririer s e 110
Onchip.TBARange Configure on-chip trace base address range 110
Filters and Triggers for the Nexus Traceccccccrirsmmmrmmnsssssmmnnssss s ssssnas 111
08I € R 0T T 7= o o 113
Mechanical Description 113
JTAG Connector QorlQ (COP) 113
Aurora HSTP Connectors 114
Samtec22 (Power.org) 114
Samtec46 (Power.org) 114
Samtec70 (Power.org) 115

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 5

QorlQ Debugger and NEXUS Trace

Version 06-Jun-2024

Introduction

This document describes the processor specific settings and features for TRACE32-ICD for the following
CPU families:

. QorlQ Series with e500mc cores (P204X, P30XX, P40XX)
. QorlQ Series with 5500 cores (P50XX, T10XX)

. QorlQ Series with 6500 cores (T2XXX, T4XXX, B4XXX)
Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by

Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

If some of the described functions, options, signals or connections in this Processor Architecture Manual are
only valid for a single CPU or for specific families, the name(s) of the family(ies) is added in brackets.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACEB32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 6

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known QorlQ based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS
. or choose File menu > Search for Script.
You can now search the demo folder and its subdirectories for PRACTICE start-up scripts

(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo /powerpc64bit/ subfolder of the system directory of
TRACE32.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 7

Warning

Signal Level
P204X The debugger drives the output pins of the BDM/JTAG/COP connector with the
P30XX same level as detected on the VCCS pin. If the 1O pins of the processor are 3.3 V
P40XX compatible then the VCCS should be connected to 3.3 V.
P50XX See also System.up Errors.
T10XX
T2XXX
T4XXX
B4XXX
ESD Protection
WARNING: To prevent debugger and target from damage it is recommended to connect or

disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o & e

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACES32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace |

Target

Design Recommendations

General

Locate JTAG/COP and Aurora NEXUS connectors as close as possible to the processor to
minimize the capacitive influence of the trace length and cross coupling of noise onto the JTAG
signals. Do not put any termination (e.g. R/C/RC) on the JTAG lines.

Connect TDI, TDO, TMS and TCK directly to the CPU. Buffers on the JTAG lines will add delays
and will reduce the maximum possible JTAG frequency. If you need to use buffers, select ones
with little delay. Most CPUs will support JTAG above 20 MHz, and you might want to use high
frequencies for optimized download performance.

For optimal operation, the debugger should be able to reset the target board completely
(processor external peripherals, e.g. memory controllers) with the COP connector signal
HRESET (respectively the CPU pin PORESET). For further details please see the QorlQ
documents “Integrated Processor Hardware Specifications”, part “Hardware design
considerations”.

In order to start debugging right from reset, the debugger must be able to control the COP
connector signals TRST and HRESET independent of each other.

©1989-202

4 Lauterbach QorlQ Debugger and NEXUS Trace |

9

Quick Start

Starting up the Debugger is done as follows:

1.

Select the device prompt B: for the ICD Debugger, if the device prompt is not active after the
TRACERS2 software was started.

B::

Select the CPU type to load the CPU specific settings. If your CPU is not listed, you should
request a software update that handles this CPU.

SYStem.CPU P4080

Specify that on-chip breakpoints should be used by the debugger if a program breakpoint is set
to the boot page (read-only memory):

MAP.BOnchip OxFFFFF000--0xFFFFFFFF

Enter active debug mode.

SYStem.Up

This command resets the CPU (HRESET), enters debug mode and stops all cores of the CPU at the
reset vector. See also SYStem.Up Errors if problems occur.

After SYStem.Up, only the boot page is visible for the CPU. Specify Local Access Windows
(LAWS) and initialize MMU TLBs to configure which memory is visible to the CPU at which
address. In the example, we map the P4080 internal SRAM (CoreNet platform cache) to logical
address 0x00000000. See MMU.Set.TLB and Data.Set for details.

Data.Set ANC:iobase.address()+0x0C00 %LONG %BE 0x00000000 ;Set
Data.Set ANC:iobase.address()+0x0C04 %LONG %BE 0x00000000 ;LAW O
Data.Set ANC:iobase.address ()+0x0C08 $LONG %BE 0x81000013 ;and

MMU.Set.TLB1 1. 0x80000500 0x00000002 0x00000015 0x00000000 ;TLB 1

Load the program.

Data.LOAD.ELf demo.elf ; (ELF specifies the format,
;demo.elf is the file name)

The option of the Data.LOAD command depends on the file format generated by the compiler. A detailed
description of the Data.LOAD command is given in the “General Commands Reference”.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 10

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command, there can be several reasons. The
following chapters list possible errors and explain how to fix them.

Target Power Fail

The Target has no power, the debug cable is not connected or not connected properly. Check if the
JTAG VCC pin is driven by the target. The voltage of the pin must be identical to the debug voltage of
the JTAG signals. It is recommended to connect VCC directly to the pin, or via a resistor < 5 kKOhm.

Debugger Configuration Error

The debugger was not able to determine the connected processor. There are three possible reasons for
this error. In all cases, please check the AREA window for more information:

o The connected processor is not supported by the used software. Please check if the processor is
supported by the debugger. Processors that appeared later than the debugger software version
are usually not supported. Please download and install the latest software from our website, or
contact technical support to get a newer software. Please also check if the processor or the
software update is covered by your current licence.

J A JTAG communication error prevented correct determination of the connected processor.
Please check if the debugger is properly connected to the target.

Target Reset Fail

On SYStem.Up, the debugger will assert HRESET in order to stop the CPU at the reset address. A
target reset fail means, that an unexpected reset behavior caused an error:

J The reset is asserted longer than 500ms and is not visible on the JTAG connector. Try
SYStem.Option.SLOWRESET, and check signal level of the JTAG HRESET pin.

. The target reset is permanently asserted. Check target reset circuitry and reset pull-up.

. A chip external watchdog caused a reset after the debugger asserted reset. Disable the

watchdog and try again.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 11

Emulation Debug Port Fail

An emulation debug port fail can have a variety of reasons. Please check the AREA window for a detailed
error message. Here is a collection of frequent issues:

. JTAG communication error. Please check the signals on the debug connector.
o Problems related with Reset can not always be detected as those. Please check Target Reset
Fail.
CPU Setting Error

J The detected quantity of cores does not fit to the CPUs default. Most QorlQ CPUs offer the
possibility to completely disable cores (typically via the dedicated TEST_SEL pin). If any of the
cores are disabled you have to configure the debugger to restrict the access to the active cores
using the CORE.ASSIGN command.

; e.g. P2041, TEST SEL wired to high level.
; —> Just the first two cores are active.
SYStem.CPU P2041

SYStem.Up ;Expected 4 active cores -> Error message
CORE.ASSIGN 1,2 ;Configure the active usable cores
SYStem.Up ;Debugging possible

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 12

https://support.lauterbach.com/kb

Tool Configuration

QorlQ development boards typically offer one of the following connector options:

J JTAG connector only
. JTAG connector and Aurora connector (Power.org 22-, 46- or 70-pin connector)
. Aurora connector only (Power.org 22-, 46- or 70-pin connector)

Depending on your board, you might need to adjust some board specific settings to define which connector
you want to use. Please refer to the configuration sheet of your board for further details.

If you want to start debugging right away, then simply check the two configuration options and use the
working one. For the working configuration option, TRACE32 accepts the SYStem.Up command without
displaying an error message.

TRACE32 Debugger

A QorlQ development board that allows only debugging, typically comes with a JTAG connector.

PC or
Workstation

Target

(E—— Debug Cable

POWER DEBUG USB INTERFACE / USB 3
LAUTERBACH -

use (e oo Hil
E §

Cable

Debug
Connector

POWER DEBUG INTERFACE / USB 3

- Wall Mount
Power Supply

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 13

TRACE32 Debugger and Trace with Serial Preprocessor

The TRACE32 PREPROCESSOR SERIAL for the QorlQ has a 40-pin connector. If you are using a
Power.org defined connector (22-, 46- or 70-pin) on your target you will need a fitting Aurora converter to
connect TRACE32 PREPROCESSOR SERIAL.

All Lauterbach Aurora converters provide a JTAG connector and a Samtec40 connector for the tool side and
a Power.org connector for the target side. Depending on your board design you have to use either:

J The board JTAG connector to connect the TRACE32 Debug Cable and the Lauterbach Aurora
converter to connect the TRACES32 Serial Preprocessor.

. Or you use the Aurora converter to connect both, the TRACE32 Debug Cable and the TRACE32
Serial Preprocessor.

JTAG and Aurora Connector

SWITCH PC or
Workstation

1 GBit Ethernet

Target

L voommone — powen pEBUG PRO Debug Cable

Ethernet |[©@™ .
Cable

1
wocroe]

[Ol) Epwen yw—|

Debug
Connector

I
[—

|

POWER TRACE Il
LAUTERBACH

Aurora
Connector

[remar — [romsemesar ——

POWER DEBUG PRO Preprocessor
POWER TRACE II

L o Desktop
Power Supply

Samtec40

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 14

Aurora Connector Only

SWITCH PC or

1 GBit Ethernet

Workstation

Ethernet
Cable

Debug Cable

POWER TRACE Il
LAUTERBACH

[romeemasar ——)

POWER DEBUG PRO
POWER TRACE Il

Desktop
Power Supply

-

Target

Aurora
Connector

Preprocessor

Samtec40

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace

15

TRACE32 Debugger and Trace with PowerTrace Serial

If you are interested in general information on PowerTrace Serial, please refer to “PowerTrace Serial User’s
Guide” (serialtrace_user.pdf).

Aurora Traceport

The TRACE32 POWER TRACE SERIAL for the QorlQ has a 40-pin connector. If you are using a Power.org
defined connector (22-, 46- or 70-pin) on your target you will need a fitting Aurora converter to connect
TRACES32 POWER TRACE SERIAL.

All Lauterbach Aurora converters provide a JTAG connector and a Samtec40 connector for the tool side and
a Power.org connector for the target side. Depending on your board design you have to use either:

. The board JTAG connector to connect the TRACES32 Debug Cable and the Lauterbach Aurora
converter to connect TRACE32 POWER TRACE SERIAL.

J Or you use the Aurora converter to connect both, the TRACE32 Debug Cable and TRACE32
POWER TRACE SERIAL.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 16

JTAG and Aurora Connector

SWITCH PC or
Workstation

1 GBit Ethernet

Target

Debug Cable

Ethernet
Cable

E—

LAUTERBACH.

Debug
Connector

POWER TRACE SERIAL

LAUTERBACH.

Aurora
Connector

|

[oo — e —

POWER DEBUG PRO
POWER TRACE SERIAL

- Desktop
Power Supply

Samtec40

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 17

Aurora Connector Only

SWITCH PC or
Workstation

1 GBit Ethernet

Target

Debug Cable

Ethernet
Cable

POWER TRACE SERIAL

LAUTERBACH.

Aurora
Connector

|

POWER DEBUG PRO
POWER TRACE SERIAL

- Desktop
Power Supply

Samtec40

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 18

PCle Traceport

If your board does not provide an Aurora traceport, it is also possible to convey the NEXUS core trace
information off-chip via the PCle interface.

The TRACE32 POWER TRACE SERIAL for the QorlQ needs additionally a TRACE32 License for PCI
Express in this case, and probably a Lauterbach Slot-Card-Converter.

SWITCH PC or
Workstation

1 GBit Ethernet

Target

— Debug Cable

POWER DEBUG PRO

Ethernet
Cable

L ome —

Debug
Connector

POWER TRACE SERIAL

oesuc
[——

LAUTERBACH.

[—)

|

- . PCle Slot

POWER DEBUG PRO
POWER TRACE SERIAL

- Desktop
Power Supply

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 19

PowerPC QorlQ specific Inplementations

Breakpoints

There are two types of breakpoints available: ONCHIP breakpoints and SOFTware breakpoints.
a B::Break.List EI@

(3% Dekete All[O Dsable All [@ Enable Al © Init][22 Method...||52 Store...| (52 Load... | K Set... |

address method
QONCHIP Y [& | wdemo'\SetTransmitSemaphore’3
SOFT y [& | ProcessDataExchange',28

C:FFF90A30 |[Program

type
C:FFFQOSGiﬁProgram

Software Breakpoints

To set a software breakpoint, before resuming the CPU, the debugger replaces the instruction at the
breakpoint address with a DNH instruction.

On-chip Breakpoints

To set breakpoints on code in read-only memory, only the on-chip instruction address breakpoints are
available. With the command MAP.BOnchip <range> it is possible to declare memory address ranges for
use with on-chip breakpoints to the debugger. The number of breakpoints is then limited by the number of
available on-chip instruction address breakpoints.

. On-chip breakpoints: Total amount of available on-chip breakpoints.

J Instruction address breakpoints: Number of on-chip breakpoints that can be used to set
program breakpoints into ROM/FLASH/EEPROM.

. Data address breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

Core type On-chip Instruction Address Data Address

(CPU types): Breakpoints Breakpoints Breakpoints

e500mc 2 instruction 2 single breakpoints 2 single breakpoints
(P204X, 2 read/write -- or -- -- Or --

P30XX, no counters 1 exact breakpoint 1 exact breakpoint range
P40XX), range -- Of --

2 ranges up to 4kB each
e5500 MAP.BOnchip (exact or
(P5XXX, extended range)

T10XX) -- or --

1 range up to 4kB (exact or

extended range) and 1

single breakpoint

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 20

Core type On-chip Instruction Address Data Address

(CPU types): Breakpoints Breakpoints Breakpoints

6500 8 instruction 8 single breakpoints 2 single breakpoints
(T2XXX, 2 read/write -- or -- -- or --

T4XXX, no counters 4 exact breakpoint 1 exact breakpoint range
B4XXX) ranges -- or --

2 ranges up to 4kB each
(exact or extended range)
- or‘ -

1 range up to 4kB (exact or
extended range) and 1
single breakpoint

NOTE:

“exact or extended range”: To use the increased number of data address
breakpoint ranges with up to 4kB each, either TrOnchip.CONVert must
be enabled or exact 4kB ranges must be used.

Setting on-chip breakpoints with physical (real) address (Access Class

Attribute “A.”) is possible to simplify the usage for 1:1 translations and the
peripheral handling. In any case the resulting hardware address compar-
ison is based on effective addresses, TRACES32 will not convert physical
to logical (effective) addresses!

You can see the currently set breakpoints with the command Break.List.

If no more on-chip breakpoints are available, you will get an error message when trying to set a new on-chip

breakpoint.

Breakpoints on Program Addresses

The debugger sets software and on-chip breakpoints to the effective address. If a breakpoint is set on a
program address, the debugger will first try to set a software breakpoint. If writing the software breakpoint
fails (translation error or bus error), then an on-chip breakpoint will be set instead. If a memory range must
not be written by the debugger, it can be declared for on-chip breakpoint usage using MAP.BOnchip.
Alternatively, it is also possible to force a single breakpoint to on-chip using the command Break.Set with

option /Onchip:

Map.BOnchip 0xF8000000--0xFFFFFFFF ;use on-chip breakpoints in FLASH
Break.Set OxFFFFF064 ;debugger sets on-chip breakpoint

;debugger sets on-chip or sw breakp.
;debugger sets on-chip breakpoint

Break.Set my_ funcl
Break.Set my_ funcl /Onchip

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 21

Breakpoints can be configured to stop if the break event occurred a given number of times. For all QorlQ
CPUs no on-chip counter will be used.

;stop on the 20th call of function foo
Break.Set foo /Onchip /COUNT 20.

Breakpoints on Data Addresses

Data address breakpoints cause a debug event when a certain address or address range is read or written
by the core. A data address breakpoint to a single address has a granularity of 1 byte.

Break.Set 0xC3F80004 /Read ;break when core reads from 0xC3F80004
Break.Set O0xC3F80004 /Write ;break when core writes to 0xC3F80004
Break.Set O0xC3F80004 /ReadWrite ;break on read or write access

Break.Set O0xC3F80000--0xC3F80023 /Write ;break address range

Similar to program address breakpoints, data address breakpoints can be configured to stop if the break
event occurred a given number of times:

;Sstop on the 8th write to arrayindex
Break.Set arrayindex /Write /COUNT 20.

Data address breakpoint limitations:

1. The source of the data access (read and/or write) must be the core, as the data address
breakpoints are part of the core. Any other accesses from on-chip or off-chip peripherals (DMA
etc.) will not be recognized by the data address breakpoints.

2. The data being targeted must be qualified by an address in memory. It is not possible to set a
data address breakpoint to GPR, SPR etc.

Breakpoints on Data Access at Program Address

A normal data access breakpoint as described above hits on all data accesses to the memory address or
address range, independent of the program address which caused the access. It is also possible to set a
data address breakpoint which only hits if the access is performed from a specified program address. The
specified program address must be a load or store instruction.

;Break if the instruction at address 0x40001148 reads from variable count
Break.Set 0x40001148 /MemoryRead count

;Break if the instruction at address 0x40001148 writes to range
Break.Set 0x40001148 /MemoryWrite OXFFFFF000--O0xXFFFFFFFF

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 22

The program address can also be an address range or a range of debug symbols:

;Break on all accesses to count from code of the address range
Break.Set 0x40000100--0x400001ff /MemoryReadWrite count

;Break if variable nMyIntVar is written by an interrupt handler
; (debug symbols IVORxx_Handler loaded from debug symbols)
Break.Set IVOR0O_Handler--IVOR15_Handler /MemoryWrite nMyIntVar

;Break if variable nTestValue is written within function test_ func
Break.Set sYmbol.RANGE (test_func) /MemoryWrite nTestValue

;Break if variable nTestValue is written outside of test_func
Break.Set sYmbol.RANGE (test_func) /EXclude /MemoryWrite nTestValue

Breakpoints on Data Value

The e500mc and €5500 cores do not support on-chip breakpoints on data values, but TRACE32 supports
them by software emulation. When a data value breakpoint is set, the debugger will use one of the data
address breakpoints. When the core hits that breakpoint, the target application will stop and the debugger
will evaluate if the data value matches. If the value matches, the debugger will stop execution, if it does not
match, the debugger will restart the application. Using software emulated data value breakpoints will cause
the target application to slow down.

Examples for setting data value breakpoints:

;Break when the value 0x1233 is written to the 16-bit word at 0x40000200
Break.Set 0x40000200 /Write /Data.Word 0x1233

;Break when a value not equal 0x98 is written to the 8-bit variable xval
Break.Set xval /Write /Data.Byte 10x98

;Break when decimal 32-bit value 4000 is written
;to variable count within function foo
Break.Set sYmbol.RANGE (foo) /MemoryWrite count /Data.Long 4000.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 23

Access Classes

Access classes are used to specify how TRACE32 PowerView accesses memory, registers of
peripheral modules, addressable core resources, coprocessor registers and the TRACE32 Virtual

Memory.

Addresses in TRACE32 PowerView consist of:

J An access class, which consists of one or more letters/numbers followed by a colon (:)

o A number that determines the actual address

Here are some examples:

Command:

Effect:

Data.List P:0x1000

Opens a List window displaying program memory

Data.dump D:0xFF800000 /LONG Opens a DUMP window at data address OxFF800000

Data.Set SPR:415. %Long 0x00003300 Write value 0x00003300 to the SPR IVOR15

PRINT Data.Long(ANC:0xFFF00100) Print data value at physical address OxFFF00100

Access Classes to Memory and Memory Mapped Resources

The following memory access classes are available:

Access Class Description

P Program (memory as seen by core’s instruction fetch)
D Data (memory as seen by core’s data access)

IC L1 Instruction Cache (or L1 Unified cache)

DC L1 Data Cache

L2 L2 Cache

NC No Cache (access with caching inhibited)

In addition to the access classes, there are access class attributes.

Examples:

Command:

Effect:

Data.List SP:0x1000

Opens a List window, displaying supervisor program memory

Data.Set ED:0x3330 Ox4F

Write 0x4F to address 0x3330 using real-time memory access

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 24

The following access class attributes are available:

Access Class Attribute

Description

E

Use real-time memory access

Given address is physical (bypass MMU)

TS (translation space) == 1 (user memory)

TS (translation space) == 0 (supervisor memory)

I | w»w|C|>»

Hypervisor privilege level based access.
The H access class is a generic placeholder for either the HS or the
HU access class or a combination of both.

HS

Hypervisor-supervisor access.
Access to supervisor memory with hypervisor privilege level.

HU

Hypervisor-user access.
Access to user memory with hypervisor privilege level.

Guest privilege level based access.
The G access class is a generic placeholder for either the GS or the
GU access class or a combination of both.

GS

Guest-supervisor access.
Access to supervisor memory with guest privilege level.

GU

Guest-user access.
Access to user memory with guest privilege level.

If an access class attribute is specified without an access class, TRACE32 PowerView will automatically add
the default access class of the used command. For example, Data.List U:0x100 will be expanded to

Data.List UP:0x100.

The guest and hypervisor privilege level access classes H, HS, HU, G, GS and GU are important if
SYStem.Option.ZoneSPACES is set to ON.

Access Classes to Other Addressable Core and Peripheral Resources

The following access classes are used to access registers which are not mapped into the processor’s

memory address space.

Access Class

Description

SPR Special Purpose Register (SPR) access
PMR Performance Monitor Register (PMR) access
DBG Special debug register access, e.g. Reset Configuration Word

(RCW) register access

SPR and PMR registers are addressed by specifying the register number after the access class.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 25

The access class DBG, which covers a wide variety of accesses, has a special encoding. The encoding as
listed below is valid only for the QorlQ debugger.

DBG access mask

Description

DBG:0x0100000R

Access to the 16 RCW registers to set another RCW before the
(next) SYStem.Up.

R: Nexus register ID (0x0-0xF)

For further details, please refer to Programming the Reset
Configuration Word.

Cache

Memory Coherency

The following table describes which memory will be updated depending on the selected access class:

Access Class D-Cache I-Cache L2 Cache Memory (uncached)
DC: updated not updated not updated not updated

IC: not updated updated not updated not updated

L2: not updated not updated updated not updated

NC: not updated not updated not updated updated

D: updated not updated updated updated

P: not updated updated (*) updated updated

(*) Depending on the debugger configuration, the coherency of the instruction cache will not be
achieved by updating the instruction cache, but by invalidating the instruction cache. See

SYStem.Option.ICFLUSH for details.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace

26

MESI States and Cache Status Flags

The data cache logic of Power Architecture cores is described as states of the MESI protocol. The
combinations for the MESI states are just available for DC and the unified L2 cache and thus the MESI state
is just displayed for these cache windows in the column “#”.

State translation table:

MESI state (#) Flag

M (modified) V(alid) && D(irty)

E (exclusive) V(alid) && NOT D(irty)
S (shared) V(alid) && S(hared)

| (invalid) NOT V(alid)

The debugger also displays the cache state using the following cache line status flags:
. valid (IC, DC, L2)

. locked (IC, DC, L2)

. dirty (DC, L2)

o shared (DC, L2)

J noncoherent (L2)

J cast-out (DC)

J plru (IC, DC, L2)

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 27

Viewing Cache Contents

The cache contents can be viewed using the CACHE.DUMP command.

; Command ; Cache
CACHE.DUMP IC ; L1 instruction cache
CACHE.DUMP DC ; L1 data dache
CACHE.DUMP L2 ; L2 (unified cache)
H Bucache.dump IC EI@
address | set way | v 1 u
A:0:0003C000 | 0000 | OO |V - O B01D00AS 7C002214 901D00AS 7C2004AC 93DDO0BC 4BFFFF6C 60000000 & .
\A:0:0000C000 | OOOO | 01|V - O 7C002378 7C0O04920 40AZFFF4 300B0004 5400017E 7CO0019C 30010034 B
A:0:00037000 | 0000 | 02|V -0 4BFFFFAQ 409E000C 2B8803FF 419DFFAC 3BEQ0000 39000400 4BFFFFAD 3
\A:0:00048000 | 0000 | O3 |V - O 4803D7E1 B07F0O008 4BFF4D59 2F830000 419E0024 B01F000C 5409016F 4 ~
a4 nm 3
H Bu:cache.dump DC EI@
address | set way #wv I ds cu | 00 04 08 0C 10 14 13
A:0:030713C0O| O0OF | O3 | EV - - - - 4 FFFFFF1C FFFFFF1E 01000100 CO8AG440 00000040 00000000 C3 .
\A:0:006DE3CO | OOOF | 04 | I -
A:0:006963C0 | OOOF [OS5 | EV - - - - 4 0Qooo000 00000000 00000000 Q0000000 00000000 00000000 OO0
W:0:005CA3CO | OOOF (DB | EV - - - - 4 69006E65 00656E00 61740073 6500726F 00697300 S5F700063 63
A:0:0055A3C0 | OOOF | OF | EV - - - C 4 63AA0132 04546162 73085466 E3DOCEZ8 FFC90454 BADAFS10 54 ~
a4 nm 3
1 Bucache.dump 12 =0 E=H =
address set way [# v | ds nu 00 04 08 0C 10 14 18
4 :0:0003C080 0Z|EV---NOQ JC002A14 7CC93214 901F017C 2F9C0000 90DFO184 409E0014 83
\4:0:2B860080 03| MV-D--10 0000000A 0000000B 0000000C FFFFFFFF Q0000001 00000000 EB
A4 :0: 00608080 4| 5V--5-10 EFDOZ000 EFCFCOO0 EFD24000 EFDLECQOO EFD13000 EFD12000 EF
\4:0:2BCOB080 05| MV -D--10 00000036 00000036 0000001E COOO0001 Q0000000 EBBCEODD EB
A :0:00058080 06g EV - - -NIDOQ 3D60COGE 5463103A 396B835C 7CA42B78 7COBLl8ZE 7FD234B78 7C ~
v

|
I[E]

A MESI state, cache line status bits

B Cache line data

The meaning of the data fields in the CACHE.DUMP windows is explained in the following table:

Data field Meaning

address Physical address of the cache line. The address is composed of
cache tag and set index.

set Set and way index of the cache

way

#,v,l,d,s,n,c,u Status bits of the cache line: # (MESI state), v(alid), I(ocked), d(irty),
s(hared), n(oncoherent), c(ast-out), (pseudo least recently) u(sed)

00 04 08.. Address offsets within cache line corresponding to the cached data

address (right field) Debug symbol assigned to address

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 28

Debugging Information

Multicore Debugging

General Information

All QorlQ processors contain multiple cores that can be debugged as an SMP or an AMP system
configuration. After the CPU has been selected, all physical cores / physical threads are assigned to this
TRACE32 instance per default. The user can then choose which logical core is displayed by TRACE32.
The resulting relationship between physical and logical cores is shown below:

o Processors with physical e500mc and €5500 cores, e.g. P4080:

TRACE32
Physical Core Index

Logical Core Index

o]

etc.

Ir - cpu _; TRACE32
| | Phys. Core | Physical Thread Index Logical Thread Index
I CORE 1 | Index
| —[1] [o]
° I
| N
I I
I CORE 2 I
| | <—>
o—— 2
| RNy
I I
I etc. | etc. etc.
-
To choose a physical core or physical thread, you have the following options:
o Open the TargetSystem.state window, and double-click the logical core.
o Open the CORE.SHOWACTIVE window, and click the logical core.
. Right-click the status line core number box to display the list of logical cores, and click the logical

core you want.

. Use the CORE.select <logical_core_index> command.

TRACE32 handles cores and threads with a unigue TRACE32 instance related logical number.

©1989-2024 Lauterbach

QorlQ Debugger and

NEXUS Trace | 29

Example for the T2080 processor with €6500 cores including two physical threads for each physical
core:

JA B:TargetSystem.state IEREERIE
arget system core type core state |

CE1: SMP Sub Sy |PowerPC

0: Core PowerPC stopped
1: Core PowerPC stopped
2: Core PowerPC stopped
3: Core PowerPC stopped
4: Core PowerPC stopped
5: Core PowerPC stopped >

P B:CORESHOWACTIVE [o= || = |[=]
Ll 2 5 s

1
’E CORE.ASSIGN 1. 2. 3. 6. 7. 8.|
as = = 0 =

Cores
31

[ok] <core . j_ E

H5P:00000000FFFFFFFC L

e T e o

2
3
4

A Physical core index 1, both threads (see CORE.ASSIGN 1. 2.)
B Physical core index 2, only thread 1 (see CORE.ASSIGN 3.)
C Physical core index 3, only thread 2 (see CORE.ASSIGN 6.)
D Physical core index 4, both threads (see CORE.ASSIGN 7. 8.)

SMP Debugging

For all QorlQ processors SMP (symmetric multiprocessing) debugging is selected by default. No further
configuration is needed if you want to debug all of the cores. If you want to specify which physical cores and
threads you want to debug, use the commands CORE.NUMber or CORE.ASSIGN.

As soon as the debugger is connected (SYStem.Up, SYStem.Attach etc.), it is possible to switch to any
assigned core using the CORE.select <logical_core_index> command. The currently selected core is
displayed in the status line. If the cores are running and one of the cores hits a breakpoint, the debugger’s
view will automatically switch to this core. Further, all other assigned cores will be stopped nearly
simultaneously. When resuming program execution (Go, HLL Step), all assigned cores will start
simultaneously. If you step in assembler mode, just the selected core will execute the code.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 30

A Trace32 PowerPC [Power Debug I @ped-mbu]
File Edit View Var Break Run CPU Misc Trace Probe Perf Cov Window Help

(M4 ee|rnZ e o N dcs @ L P
=] [B:Data.List] F=-|F=][] | M B:Register = (==
Pl Step || M Over || 4 Naxt « Return)| @ Up II Break %| Mode | Find: E‘I EEE%E?;E gg (AL 43 gif cooooagg» 8 ‘D EEE;E;A; =
addr /Tine lcode "ﬂﬂ"D"‘t 1| |r2 FFF1B390 R0 FFO00040 3FFFFEFF 1720 +08 FFO00040
SP:FFF10024 - | [r FFOOOD40 R11 FFFFFFFF 03FE5000 0 +0C 419EFFBS
SP:FFF10028 _SetTran..:lis ri1,-0x1 R4 0 R12 2 15 o 10 00000A2B
5P:FFF1002C Ti ril,-0xl RS R13 FFFO82E4 7FF3BEGS o 00000000
SP:FFF10030 msync R6 6 Rl [CO72A000 o 00000001
B Twarx riz,ro,r3 R7 0 Ri5 0 0 1 +1C 00000000
SP:FFF10038 cmp. 11,rd = >0 FEFOFF78
SP:FFF1003C beq OxFFF10048 TEL 0 XER 0 CR 40000000 LR FFF10874 +24 FFF10A3C
SP:FFF10040 cmpw rii,ri2 TBU o CTR o 1P FFF10034 00001720
SP:FFF10044 bne OxFFF1005C 2C CO72A000
SP:FFF10048 _sem_stw: stwex rd,ro,r3 o T 0 EPR © +30 O000DA2E
SP:FFF1004C bne OxFFF1005C o 0 ESR o 00000000
SP:FFF10050 |7¢ msync 2 o o 0 +33 00000000
i B o o 0 +3C 00000000
0 0 0 +40 FFFOFF98
e o o o FFF10CD8
£ :Analyzer List (=] = 2 o o o 00000000
o o o C 00000000
(&=tw... | Goto...|[#3 Find..]L&IML!LWE] ups |[e T tes] 0 0 0 +30 C0732604
record run jaddress ti.back i o 2 I SRty
0 | stw TI0. fertT P
ol REbet E) 1~ 0 0 EPR 0 +5C 00000003
327 |0 1f (mCor"eID l nOwnCoreID) =] 8 8 Eil; 8 60 EEE%EE@
o -
o o o 00000000
328 |0 ret = _SetTransmitSemaphore(nCoreSemaphore,nOwnCorelD); b EC 00015D85
6 | Twz 3,0x8(r1) 0 IVPR 0 EPR 0 +70 FFFOFFBS
5 || e oxt 0 DEAR 0 ESR 0 00000008
5 || = r4,r30 0 SRRO 0 PIR o 00000000
0 | bl 0xFFFL0028 K ET & 5 Saosanns
0 - 1is ri1,-ox1 w D
o | 14 r11,-0x1 | User: SPRGO o FFFFFOg94 ~
0 | msync = 1 b
< i] »
erer e T L@][= | | & Buanalyzer =
E HH Cbnﬁg Goto]‘j Flnd 4r In N MM Full state used ACCESS TDely
. 65.000ms -160.000ms -155.000ms © DISable 0. i 10
u!’_\ﬂB \IIHIHHI\H AEETHETE IIIHIIII\II\IIIIHIIHIIHHHHHI IIIIIIIIIHHHHI\HHHI HII [T T T T ¢ OFF 9151224, 0% - @
sieve: uy A i LT o O T AR N N T A TRV T U T .
passrhegug{ B - - 1 Ll W © Am SIZE CLOCK [®s
_sem_fai - I i
Func17 = ORI NI 1] LG il T T - trigger 201326592
FuncL 8z ORI TGOy 1 1 OO0 IO O O n—) break
funcio “HH\ WHRECEn e IIIII\\IHHHI\HIIIH\IHHIIIHIHHH 1 H\IIIIHHIHII AUUIER T o n vy II‘§|
ng‘t BEim 1 PO e | UL LA TN TT) Lt | | Mode Mode ¥ adw
acsOBL | NIITL T L |||| i | it It ®
sum:0Rg| 1111 1] T A T T R 0 A T e A I A R} commands 9 Fifo » [T TERD
(therz RH . B . __RESEt © stack) ClockTrace
_start 1k - ,
_GetCoreID: 15 ©) Leash @ FlowTrace
Amit_corel:lp @ snapshot] | |) STREAM
g;tgﬂresgygmﬂpcnre i PIPE Prastore
_SetCoreRdySemaphore: 1k
main_core_n P I ¥| AutoArm RTS SLAVE
GetRequest
GetTransferData IILTIT [AutoTnic
ProcessDataExchange [C] selfArm
GetResponseRequired =
Jem v« [»
B::
[_emuiate | [trimger][gaviess J[traca |[Data [wvar][st][PERF][SvStem Step Go Break sYmbol Frame Register | [FPU | [other | [previows |
SP:FFF10058 \\demo\Global_sem_stw-+0x10 0 stopped MIX UP

AMP Debugging

There is a complete demo for debugging QorlQ processors on AMP mode in
~~/demo/powerpc/hardware/qorig_p204x/all_boards/demo_amp_4cores_sram.
For AMP (asymmetric multiprocessing) debugging, a separate instance of PowerView has to be started
for each core or each core compound. It is recommended to use T32Start to start the PowerView instances.

Optionally, all other instances can also be started by PRACTICE script (see the demo mentioned above).

Each PowerView instance has to be configured to address at least one of the cores or rather the right core
compound. This is done using the commands SYStem.CONFIG.CORE and either CORE.ASSIGN or

CORE.NUMber.

SYStem.Option.DCFREEZE has to be turned OFF to maintain cache coherency for the times when one of
the cores is running and the others stopped.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace |

31

The following commands show the basic setup commands for two PowerView instances using all cores of
the P4080. Using the command CORE.ASSIGN any of the cores can be assigned to a specific PowerView

instance:

; CORE 0,1,5 and 6 setup ; CORE 2,3,4 and 7 setup script:

script:

SYStem.CPU P4080 SYStem.CPU P4080

SYStem.CONFIG.CORE 1. 1. SYStem.CONFIG.CORE 2. 1.
CORE.ASSIGN 1,2,7,6 CORE.ASSIGN 3,4,5,8
SYStem.Up

SYStem.Mode.ATTACH

If you just want to assign sequential cores to PowerView, you can also use the CORE.NUMber command,
as in the example below.

J In this case, the SYStem.CONFIG.CORE command specifies the number of the start core, e.g. start
at core 5.
J The CORE.NUMber command then specifies the number of cores in the sequence, e.g. 4 cores

starting at core 5 inclusive.

CORE 0-3 setup script: ; CORE 4-7 setup script:

7

SYStem.CPU P4080 SYStem.CPU P4080

SYStem.CONFIG.CORE 1. 1. SYStem.CONFIG.CORE 5. 1.
CORE.NUMBER 4. CORE.NUMBER 4.
SYStem.Up

SYStem.Mode.ATTACH

In order to synchronously run and halt the cores of the two PowerView instances, use the SYnch
commands.

The cores of one core compound (or rather one PowerView instance with multiple cores) behave like
described in section “SMP Debugging”.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 32

B Bl =)

A TRACE32 - Core0
File Edit View Var Break Run CPU Misc Trace Probe Perf Cov Window Help

[mm|+ e e

[B:Data.List] E5] B:Datalmage nGen... [= || = |[52 | [E5] B:Datalmage playingfield 3. = | = |[&2 |
M Step][over || 4 Next || Retum|[@ up | P Go][1N Break |[[Mode | Find: - -
addr/Tine [source - 4
444 1 Core_n_Ready, nsemaphore == COREMASK, / -]
445 <2 CnCur rentGeneration) [1 el “ ‘
446 DisplayGeneration(); /* display current generation before the nex il ¥ .:. p
4474 . | :
443 nCurrentGeneration++; p
449 DisplayGeneration(); = display current generation (demonstration[] iTracelist Mrack [= | =][] i ‘
450 Core_n_Ready. nSemaphore = 1 * reset coremask - other cores will - p
451 if ((nCurrentGeneration»=MAXGENERATION) || generation_checker()) {\ - [%Lﬂﬁﬂ] EZ | F‘"‘i {,ﬂ . - ‘
K =] D cord [run address - [cycle :
o 149 T - 4
= Eeme——— b 0xFFFs0340 (5] ¥
ILILHMIR Geto...[£ nd.. l[olnl[um][nu Rl i oo - :
| -18.500ms -18.000ms ., - : -
address | L : | ¥
Cotherd sl . R . . [[:
sl Eiatonh ! 139 iF ¢ Flags[i :
o . . = = —_— i 14 12,-0x10
’ e —— addi 122,061 5 42
ot sroPPE?éol EE oL i Tbzx riz,riz,r31 - SIS TSI IS A
o update_playingfie e—— Al el % « ’
amlr < [l » 4 el b
B::
[emstate | [tsigger][deviees |[tmee |[Data J[war J[st |[PERF |[svstem | sStep |[Go |[Bresk |[symbol |[Freme |[Register | [other |[previow |
stopped | HL [P

| SP:FFF51398 \\demo\demo\main_AMP1+0x68

E=N E=g =5

A TRACE32 - Cores1-3
File Edit View Var Bresk Run CPU Misc Trace Probe Pef Cov Window Help

([+eefrujglew ol gunscs @z

[B:Data.List] [FolfE] == &I B:iTrace.Chart.s¥imbol /Track [= ==
M Step | Dver][¢ Next [& Return][eup | koo] 10 Break [21 B anig n.som - #3Fnd... |40 In [40 [|o| Full
addr/Tine |sor =5 000ms -18.500ms -18.000ms |
473 vD'Iatﬂe uns1gned Tnt nOwnCorelD = n(nr-em i L =
474 unsigned int nLoopCount = 0; e
* wait until all cores started up |
477 while (Core_n_Ready.nSemaphore = (DREMASK).
while (1) L
481 Funclo(); 418
482 if (1 (Core_n_Ready.nSemaphore & (l<<nCorelID)))
483 check_playingfield(nCoreID); '
nLoopCount+; I
486
487 |}
void mainQ) (I [emsiglcke]
490) _SetCorek: o
int nCoreIDNoLuck; - -
NEN il v] ¥
B::f
[emulate | [trigar |[devices][trace][Data |[war][st |[PerF][s¥stem][step][6o][Bresk |[symbol | [Freme][Register | [other | [previouws |
[0 [stopped]| TR

| P:FFF50230 \\demo'\demo'\Init_semaphores

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 33

Synchronous Go of the Cores

In SMP mode all cores assigned to the PowerView instance will be started simultaneously.
Also in AMP mode all cores can be started simultaneously, depending on the SYnch settings.

Synchronous Stop of the Cores

All QorlQ processors implement a break switch on silicon. If SYnch is configured to synchronous break in
AMP mode (or always if SMP mode is selected), the core(s) that did not hit a breakpoint will be stopped by
the processor hardware. This implementation causes a delay between all cores typically in the range of 5-50
instruction cycles.

Nevertheless, the hardware based synchronous break mechanism may be limited if more than one
instance of PowerView handles multiple cores. Depending on the SYNCH.MasterBreak and
SYNCH.SlaveBreak settings not all cores can be stopped synchronously by the hardware in all cases. The
AMP synchronous break across instances of PowerView will always be handled by the hardware. The
synchronous break of an SMP core compound inside of an AMP system may be handled by TRACE32,
which typically leads to an increased break delay of the cores up to several milliseconds.

Please see the following two examples 1 and 2 in addition to the table below to get further information.
AMP-3

|
| | i
AMPA1 AMP2 AMP3
1 1 1

AN IV NANNNOYO O OO NN
N 5 N
1 2 3 3 4 SN N 6 71|8 &
:\ N V N
Y N\ N WY
SMP-3 ~ SMP-2 o N SMP-3 N
AN Y NN NN YOO Q23N NNANN
E MasterBreak I:l MasterBreak I:l MasterBreak
I:l SlaveBreak & SlaveBreak I:l SlaveBreak

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 34

|
| | |
AMPA1 AMP2 AMP3
| | |

E B BN EEEEEEEHN E B B EEEEHR NNV NN BTN

|| L N .
OlEIG | [l | [z)

|| [N \
[| [| [| [| LN N
[| [| [| [| N N
= SMP-3 = - SMP-2 N SMP-3 N
E EEEEEEEEEER EEEEEEER VN3N ANNNNNNNY

g MasterBreak MasterBreak MasterBreak
EmENE ‘ mEm
& SlaveBreak SlaveBreak SlaveBreak

3rd PowerView Inst.

(S Hardware based SMP synchronous halt. If one of these cores stops, all of them will

stop simultaneously.

J mn' Hardware based AMP synchronous halt. If any of the MasterBreak related cores stops,
all of the SlaveBreak related cores will stop simultaneously.

YONNN
° N N

S.sas TRACES2 based SMP synchronous halt. If one of these cores stops, all others will be
stopped by TRACES32 with increased delay.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 35

PowerView instance 1 PowerView instance 2 PowerView instance 3
Core SYnch HW Core SYnch HW Core SYnch HW
- synch. - synch. . synch.
count settings count settings count settings
stop stop stop
1 any YES 1 any YES 1 any YES
n any YES 1 any YES 1 any YES
Off Off NO
n MB YES n MB SMP 1 any YES
SB SB
Off
n MB YES n MB & & SB| YES 1 any YES
SB
n MB && SB| YES n any YES 1 any YES
Off Off Off
@ n MB YES n MB SNI\/?P n MB SNMOP
SB SB SB
Off Off NO
n MB YES n MB SMP n MB & & SB| YES
SB SB
Off Off NO
n MB YES n MB & &% SB| YES n MB SMP
SB SB
Off
n MB YES n MB & & SB| YES n MB & & SB| YES
SB
Off Off NO
@ n | MB&&SB| YES n MB YES n MB s
SB SB
Off
n MB && SB| YES n MB YES n MB & & SB| YES
SB
Off
n MB & & SB| YES n MB & & SB| YES n MB YES
SB
n MB && SB| YES n MB && SB| YES n MB && SB| YES

o n>=2

o MB = SYNCH.MasterBreak activated

SB = SYNCH.SlaveBreak activated

The table above is also valid for more than three PowerView instances.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 36

It explains that in any case the first PowerView instance with
J multiple cores assigned

J and turned off SYNCH.MasterBreak and / or SYNCH.SlaveBreak
will use the Hardware break switch for its SMP core compound.

All other PowerView instances (with the same requirements) will break its SMP related cores using a
debugger based break mechanism.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 37

Programming Flash on QorlQ Processors

Demo scripts for NOR FLASH and NAND FLASH are available in the following folders:

J ~~/demo/powerpc/hardware/qoriq_p204x/
J ~~/demo/powerpc/hardware/qoriq_p3/

o ~~/demo/powerpc/hardware/qoriq_p4/

. ~~/demo/powerpc64bit/hardware/qoriq_p5/
. ~~/demo/powerpc64bit/hardware/qoriq_t1/
o ~~/demo/powerpc64bit/hardware/qoriq_t2/
. ~~/demo/powerpc64bit/hardware/qoriq_t4/
. ~~/demo/powerpc64bit/hardware/qoriq_b4/

For NOR FLASH on eLBC or IFC, there are ready-to-use flash scripts, i.e. you do not need to modify them.
These scripts can be found in the all_boards subfolders.

Some boards with faulty NOR FLASH FPGAs require a special handling with a slower flash algorithm.
These scripts can be found in the subfolders of the respective board (e.g. t4240qds).

Scripts for NAND flash programming have to be modified with regard to the target board’s characteristics
and used FLASH devices. Therefore reference scripts usable on evaluation boards are included in the
corresponding subfolder.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 38

Programming the Reset Configuration Word (RCW)

The RCW data is 512 bits long and is used by the pre-boot loader (PBL) to check consistency of the RCW
data and load it into the RCW status registers. These 16 registers are for example responsible for the initial
settings of the PLL configurations, SerDes lane assignments and settings, DDR configuration, and the boot

location. If the RCW is unprogrammed or inconsistent, no program code will be executed. The RCW is

typically part of the flash image, but it can also be generated using the debugger, e.g. if the SerDes lane

settings have to be changed to enable Aurora HSTP trace (e.g. P2041):

;Enter prepare mode for restricted target access to read the current RCW
;for further adaptions

SYStem.Mode.Prepare

;Enable manipulation of the RCW
SYStem.Option.HRCWOVerRide ON

;Set user-defined RCW: SRDS_PRTCL for tracing purposes
Data.Set DBG:0x01000004 0x509f40C0

;Reset CPU with the user-defined RCW

SYStem.Up

;Disable manipulation of the RCW again
SYStem.Option.HRCWOVerRide OFF

;Reset CPU with the RCW from the target
SYStem.Up

Scripts for programming the RCW are available in the demo folder, e.g.
~~/demo/powerpc/hardware/qoriq_p204x/p2041rdb/demo_set_rcw.cmm

NOTE: o The RCW is adapted only when SYStem.Option.HRCWOVerRide is
enabled before a SYStem.Up. When this system option is disabled again,
all user-defined values will be lost and the original RCW will be used
again for the following SYStem.Up.

. The PBL data structure consists of the RCW data, a preamble, pre-boot
initialization commands and an end command including a CRC. If the
user wants to flash a new RCW, this complete structure needs to be
flashed including an appropriate CRC. Default values for Freescale
evaluation boards are given in the above mentioned RCW demo scripts.

. Comparing the board initialization from a flash based RCW with the
board initialization from a debugger set RCW might show PLL related
differences. This issue is a typical behavior for the QorlQ devices and
necessary to get the board into a working state again in every case.
Therefore, setting the RCW using a debugger should be considered to be
more like a help in need than a frequently-used method.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 39

Trace Information

The QorlQ processors offer two trace destination possibilities. You can instruct TRACES32 to prepare the
processor to send trace data to (1) the external Aurora HSTP port or (2) any other on-chip memory. The
following list compares the two trace sinks:

1. External Aurora HSTP port

The Lauterbach Power Trace Il module offers up to 4GByte, the POWER TRACE 11l module
offers up to 8 GByte, the POWER TRACE SERIAL offers 4GByte of trace memory.

The maximum QorlQ lane speed is supported (6.25 GBaud/s). Some of the QorlQ processors
are restricted to a maximum of 5 or 6 GBaud/s.

Timestamps are added automatically by the Lauterbach Power Trace module. If an accuracy
higher than ~4ns is required, you need to manually enable the QorlQ target timestamps in the
NEXUS.state window. This leads to a higher bandwidth consumption of about 30 percent.

ETH GBit or USB3 connection for fast trace data transfer.

2. External NEXUS PCle port

Available only for the POWER TRACE SERIAL, which is connected to the Lauterbach PCle
Slot-Card-Converter (see PCle Traceport).

Same advantages as using the external Aurora HSTP port, but uses a standard PCle slot that
is available on most QorlQ target boards.

Depending on the RCW setting and lane routing even more bandwidth than with the external
Aurora HSTP port.

3. On-chip memory

Dedicated trace memory on the target is needed. Typically a part of the DDR-SDRAM is used
for tracing; max. 512Mb can be used due to QorlQ e500mc and e5500 processor restrictions
(e6500 processors offers more, dependent on the available memory).

After halting and re-starting the core by the debugger, the onchip trace buffer will be reset.

If timestamps are required, you need to manually enable the target timestamps in the
NEXUS.state window. This leads to a higher bandwidth consumption of about 30 percent.

Slow readout of the On-chip trace memory through JTAG.

Most of the target-specific demo scripts include examples of how to use the two trace sinks. The demo
scripts reside in the following folders:

J ~~/demo/powerpc/hardware/qoriq_pxxxx

. ~~/demo/powerpc64bit/hardware/qoriq_xxxxx

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 40

Per default, the external Aurora HSTP will be set if a PowerTrace module is detected, otherwise a small
onchip trace memory will be used in these demonstration scripts.

NOTE: ¢

The Trace.state window gives access to specific options of the trace

method.

The NEXUS.state window gives access to advanced options for both trace

modes.

The Trace.List window gives access to the recorded program trace data.

For more information about general trace commands see:

"Trace’ in 'General Commands Reference Guide T’

’Analyzer’ in ’General Commands Reference Guide A’

’Onchip Trace Commands’ in ‘General Commands Reference Guide O’

“Training Nexus Tracing” (training_nexus.pdf)

Supported Trace Features

Core
Feature

e500mc

e5500

6500

Program Trace

Branch History

Branch History

Branch History

Data Trace

Address and Value
(up to two 4kB
ranges), write only

Address and Value
(up to two 4kB
ranges), write only

Address and Value
(up to two 4kB
ranges), write only

Data acquisition
Trace

8bit Tag and 32bit
Value

8bit Tag and 32bit
Value

8bit Tag and 32bit
Value

(DEVENT/DDAM (DEVENT/DDAM (DEVENT/DDAM
registers) registers) registers)
Watchpoint Message | Yes Yes Yes

Ownership Message

8bit PID / 32bit NPIDR

8bit PID / 32bit NPIDR

14bit PID / 32bit
NPIDR

Filters

POTD, PTMARK

POTD, PTMARK

POTD, PTFPMM,
PTFPR, PTFGS

All options are available in the NEXUS.state window and described in the Trace Source settings section.

The various PowerPC based QorlQ platforms also support In-Circuit Trace Messages, which are
independent of the cores. These messages are used by TRACES2 to analyze the following trace sources:

DDR Trace: Includes memory controller ID, Read/Write address, ...**

OCeaN Trace: PCle/sRapidlO. includes address, port, transmitted data, ...**

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 41

**Both In-Circuit traces include much more information which is very dependent on the configured
Verbose/Terse modes in the NEXUS.state window and the used SoC. TRACE32 will analyze and display all
available DDR and OCeaN trace message data. Please check your SoC specific manuals to get more
information about the included trace data and the partly specific meaning.

NOTE: The data trace is configured using the triggers of breakpoints. The breakpoint
has to be set up with “TraceData” as action and “Write” as type. More details are
explained in Filters and Triggers for the Nexus Trace.

Aurora HSTP Trace

Processors of the QorlQ series offer the possibility to select the external Aurora HSTP port as a trace
message destination. If a Power Trace module is connected, the processor will be automatically initialized
and configured to record the program trace via this port, using our highest recommended lane speed for the
set CPU.

Some QorlQ processors do not offer dedicated debug lanes (e.g. P2041). These lanes are configured by the
Reset Configuration Word of the processor. The user needs to adapt the SRDS_PRTCL field of the RCW if
no lane is configured for debug purposes. Please see Programming the Reset Configuration Word for
further details.

The Aurora HSTP trace can be configured and accessed via the Analyzer.state window; alternatively, via
the Trace.state window if the trace method is set to Analyzer. Then, click the List button in the window you
have opened:

W B:Trace.state EI@

METHOD

CAnalyzer Onchip ART LOGGER () SNOOPer FDX LA
I Probe IProbe

Nexus PCle Trace

Not all boards offer the previously described Aurora port to give users the possibility to take advantage of
external PowerTrace modules. But most boards offer a standard PCle slot that can also be used for the
connection of external tracing tools (see PCle Traceport). The software configuration for this scenario is
more complex but can be done by scripts or even the OS that is running on the target board. These steps
should be followed in any case:

o Check the board schematics to know which SerDes lanes are routed to which PCle slot.

. Check the processor reference manual, table “SerDes Lanes Assignments and Multiplexing” if
your current Reset Configuration Word already supports PCle on lanes that are routed to a PCle
slot. If this is not the case you can temporarily override the current RCW to set up the right lane
assignment to the PCle slot of your choice.

. Especially on evaluation boards from Freescale / NXP also check the gixis CPLD settings to
ensure the lanes are really multiplexed the right way and the board is running in the right mode (if
there is e.g. a “standalone mode” available).

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 42

You now should know which PCle controller (PCle#) is connected to the PCle slot of your choice to use it in
the following configuration of TRACE32:

;Ensure the Lauterbach PCIe Slot-Card-Converter is inserted in the right
PCIe slot and the board powered afterwards. The values in this example
are valid for the T2080RDB board from Freescale / NXP with usage of PCIe
slot J20.

SYStem.CPU T2080

;Uses the same trace method as Aurora HSTP

Trace.METHOD Analyzer

;Configure the traceport to use PCIe as target connection.
SYStem.CONFIG.TRACEPORT.Type PCIE

;Set the used PCIe controller on the target (PCIel ... PCIed)
NEXUS.USEPORT PCIE1

;Now connect to the target. If you need to override the RCW this is the
line to insert the commands as described in the chapter

Programming the Reset Configuration Word

SYStem.Mode UP

;Ensure the T2080RDB is running in standalone mode (gixis)

DO

~~/demo/powerpcbdbit/hardware/qgorig t2/t2080rdb/gixis_config_pciestandal
onemode . cmm

Trace.Arm

;Check the AREA window for error messages and warnings. At this point the
PCIe configuration on the target will be missing and TRACE32 will inform
you with a warning. It might not be missing if you attached to a running
target with an OS that already initialized the PCIe controller before.
In case of software configuration during bootup let the target run until
the task is done and afterwards re-arm the trace.

;In case of manual configuration some example scripts for evaluation
boards are provided (see below)

Go

Break

;1list the recorded trace

Trace.List

Examples for manual PCle configuration (please also see the comments inside the scripts) of some
evaluation boards are provided in the board specific subdirectories of the demo folder, e.g.

J ~~/demo/powerpc/hardware/qoriq_p204x/p2041rdb/demo_pcie_trace.cmm

. ~~/demo/powerpc64bit/hardware/qoriq_t2/t2080rdb/demo_pcie_trace.cmm

The Nexus PCle trace can be configured and accessed via the Analyzer.state window; alternatively, via the
Trace.state window if the trace method is set to Analyzer. Then, click the List button in the window you
have opened:

P BiTracestate =0 ESH =
METHOD
Chnzhzer) Onchip © ART (O LOGGER) SNOOPer (D FDX (LA
Integrator Probe IProbe

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 43

On-chip Trace

Processors of the QorlQ series offer the possibility to select the memory bus as an on-chip trace message
destination. Therefore, the size of the trace buffer is not fixed but limited, dependent on the SoC, the
available memory size and Onchip.TBARange settings. Typically a part of the DDR-SDRAM is used for
tracing:

SYStem.CPU P2041

;Initialize memory controller, LAWs, MMU
DO ~~/demo/powerpc/hardware/qgorig p204x/p2041lrdb/init.cmm

;load application, e.g.
Data.LOAD ~~/demo/powerpc/compiler/diab/diabcc.x

;Set onchip trace base address range to the initialized DDR-SDRAM
Onchip.TBARange 0x100000--0x4100000 ;e.g. 64MB

;let the CPU run to function sieve, automatically record trace
Go sieve

;1list the recorded trace
Onchip.List

The on-chip trace can be configured and accessed via the Onchip.state window; alternatively via the
Trace.state window if the trace method is set to Onchip. Then, click the List button in the window you have
opened:

W B:Trace.state EI@

METHOD

O Analyzer sz © onchip |0 ART © LOGGER O ooRr OVFDX O LA

Probe IProbe

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 44

Trace initialization

Trace initialization is a two-step process:
1. Initialization of the receiver / message destination, called the Trace Sink

This step covers all target and debugger modules which are involved after a NEXUS message has
been produced. E.g. Aurora specific or Onchip specific settings, ...

2. Initialization of the transmitter(s), called the Trace Source(s)

This step covers all target modules which are necessary to produce a NEXUS Trace message. E.g.
Core Trace (Program Trace, ...), DDR Trace, ...

Trace Sink settings and processes - depending on the system state

1. After starting TRACE32 and selecting a QorlQ CPU: Debugger is in SYStem.Down state

- If a Lauterbach PowerTrace module is connected to the debugger, TRACE32 automatically
selects the trace method Analyzer.

- If no external trace module is connected, the trace method Onchip is selected as soon as a QorlQ
CPU is set in the SYStem.state window or after the CPU is set by the command:

SYStem.CPU P2041 ;Set the QorIQ CPU P2041

;Set a QorIQ CPU always leads to an automatic selection of on-chip or
;Aurora HSTP trace, depending on the debug hardware configuration.

- Trace method Onchip: While the debugger is in SYStem.Down, there is no target access, and
consequently the onchip trace is disabled (Onchip.DISable).

- Trace method Analyzer: In the Trace.state window, you have access to the sink settings of the
Lauterbach PowerTrace module, regardless of the system state. In the NEXUS.state window, you
can set the port size, but only while the debugger is in SYStem.Down state.

Set NEXUS.PortSize to the lane
S— I == B mber used on the target side.
neéi; |7;E:Slze | Cores m 0OCeaN
ne e
@ ON PortMode selection suppression option NEXUS.PortMode and
esoros)| || oM SpenDQM POTD NEXUS.SerDesCFG can be
TimeStamps)- USEPORT WTM SpenWTM PTFPMM . .
e Do e _changed in any system _state gnd will
~Reset | |- serdescra — SpenDTH o influence the target settings directly
& Trace | | [7] seescrG OFF - spenoTM | | [oFF - in the state SYStem.Up or during the
2 L REFCLK PTCM SupprTHReshold PTFGS next SYStem.Up process_
oefaue =) | Bavm s <] [oF <] | NEXUS.USEPORT (available for
(DEFaut_~] — POWER TRACE SERIAL only) is
LaneMapping available in case of PCle-Trace to
define the used PCle modulet.
0 [#{ustogm | [Q, Find DoM |
= NEXUS.LaneMapping (available for
: POWER TRACE SERIAL only)
APPLY changes the logical to physical lane
mapping, needed rarely.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 45

2. During a SYStem.Mode.Attach or SYStem.Up process

- If the trace method Analyzer is selected, the target CPU will be configured to bring the Aurora
HSTP channel up and to send trace data as configured in the NEXUS.state window (also
described in Trace Source settings).

- The process will fail if the NEXUS.state settings described before don’t match the target
settings (e.g. wrong SRDS_PRTCL field settings of the RCW). Please observe the AREA.view
window in case of problems and follow the instructions or contact our support.

3. Active system: Debugger is in SYStem.Up state

- Ifthe trace method Analyzer is selected, any change in the NEXUS.state window will lead to the
same initializing procedure again as during the SYStem.Up process.

- The trace method Onchip will be disabled until an appropriate Onchip.TBARange is set.
TRACES2 will access and check if this range is really available and configure the target to use
this memory area as trace message destination. These range addresses are physical
addresses in any case. Onchip.DISable automatically switches to Onchip.OFF if the range is
accepted.

Trace Source settings and trace access - regardless of the system state

Unlike the trace sink settings, the trace source settings can be adapted regardless of the system state. The
configuration will be modified directly in the SYStem.Up state or during the next SYStem.Mode.Attach or
SYStem.Up process.

The main trace sources are available on the tabs in the NEXUS.state window:
1. Cores

- NEXUS.BTM (branch history trace messages)

- NEXUS.DQM (data acquisition trace messages)

2 B:NEXUS state =n| Wl <
TETE Partsize [ook ocea] . NEXUS.BTM controls the
OFF Jlane - program trace
@ ON PortMode selection SIon option
6250Mbps v V1BTM™ SpenDQM POTD
TimeStamps - USEPORT WTM SpenWTM PTFEMM
PCIEL DQM — ' NEXUS.DQM controls the
RESet serdescfg 0TM SpenDTM PTFER data acquisition trace
@Tmce | SerDesCFG OFF - SpenOTM OFF ~
[y Eu REFCLK PTCM SupprTHReshald PTFGS
DEFautt_~] BLHM | ([] o +]
FRATE STALL
DEFault ~ OFF -

LaneMapping

0 [y st ogm | Q. Find DQM |

DQMTrace.FindAll displays the consolidated DQM trace messages
without gaps*)

= |[w [ra [

DQMTrace.List displays the recorded DQM trace.

Trace.List, Analyzer.List, Onchip.List display the recorded program trace.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 46

2.

DDR (DDR controller debug trace)

&% B:NEXUS state
nexus
*) OFF
@ on

PortSize

PortMode
6250Mbps =

Cores OCeal

NEXUS.DDRConfig.Controller1

filter
ADDRessfitterl

mode
Controllerl

[Timesta mps

USEPORT
PCIE1
serdescfg
SerDesCFG
REFCLK

OFF M

Controller2 ADDRessfiter2

ADDRessfilter:

controls the DDR trace for the DDR
controller 1.

NEXUS.DDRConfig.ADDRessfilt

Controller3
OFF v

DEFault -

FRATE

[DEFault ~|

List DDR | [, G, Find DOR |

LaneMapping

er3 restricts the addresses /
ranges which produce DDR trace
messages for DDR controller 3.

DDRTrace.FindAll displays the corsolidated DDR trace messages

without gaps*)

DDRTrace.List displays the recorded D

DR trace.

NOTE:

The number of DDR memory controllers varies depending on the QorlQ CPU.
The look of this window and the available commands regarding the memory
controller number vary consequently.

3.

OCeaN (On Chip Network debug trace)

&% B:NEXUS state

nexus PortSize

) OFF

@ ON PortMode

[C] TimeStamps |- USEPORT
PCIE1

serdescfg

[& Trace | | [¥]5erDesCFG

REFCLK

FRATE

DEFault -

Cores m

(=[O sl

OCGENV
Mode

' Verbose

trace message

@ Terse

__.NEXUS.OCeaNport1.Mode controls the OCeaN

format for port 1

TraceSELeCt mum— NEXUS.OCeaNporti.TraceSELect configures an

=

[oFe

OCeaMport2
Maode

@ Terse
TraceSELect

' Verbose

LaneMapping

0
1

=

[oFe

List OCeall| [C3 Find OCeal|

OCeaN trace source of port 1 to produce OCeaN
trace messages.

OCeaNTrace.FindAll displays the consolidated OCeaN trace messages

without gaps*)

OCeaNTrace.List displays the recorded OCeaN trace.

*) A consolidated trace listing can be useful if different trace sources are combined. Finding all relevant
trace messages matching the search criteria is more time consuming than displaying the default listing
of the whole trace contents.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace |

47

CPU specific SYStem Commands

SYStem.BdmClock Set debug clock frequency
Format: SYStem.BdmClock <rate>
<rate>: 100000. ... 50000000.
100kHz ... 50MHz

Selects the frequency for the debug interface. For multicore debugging, it is recommended to set the same
JTAG frequency for all cores.

NOTE: The recommended maximum JTAG frequency is 1/10th of the core frequency.

The maximum JTAG frequency for multicore debugging of QorlQ processors is
typically about 20 to 25MHz.

The maximum JTAG frequency for single core debugging of QorlQ processors
is typically about 50MHz.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 48

SYStem.CONFIG.state Display target configuration

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort Informs the debugger about the debug connector type and the
communication protocol it shall use.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 49

SYStem.CONFIG

Configure debugger according to target topology

Format:

<parameter>
(JTAG):

SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

DRPRE
DRPOST
IRPRE
IRPOST

CHIPDRLENGTH <bits>

CHIPDRPATTERN [Standard | Alternate <pattern>]
CHIPDRPOST <bits>

CHIPDRPRE <bits>

CHIPIRLENGTH <bits>

CHIPIRPATTERN [Standard | Alternate <pattern>]
CHIPIRPOST <bits>

CHIPIRPRE <bits>

TAPState
TCKLevel
TriState
Slave

The four parameters IR

PRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the

TAP controller position in the JTAG chain, if there is more than one processor in the JTAG chain. The
information is required before the debugger can be activated e.g. by a SYStem.Up. See example below.

TriState has to be used

if (and only if) more than one debugger is connected to the common JTAG port at the

same time. TAPState and TCKLevel define the TAP state and TCK level which is selected when the
debugger switches to tristate mode.

NOTE:

When using the TriState mode, nTRST must have a pull-up resistor on the target. In
TriState mode, a pull-down is recommended for TCK, but targets with pull-up are
also supported.

... DRPOST <bits>

... DRPRE <bits>

(default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

(default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 50

... IRPOST <bits>

... IRPRE <bits>

CHIPDRLENGTH
<bits>

CHIPDRPATTERN

[Standard | Alter-
nate <pattern>]

CHIPIRLENGTH
<bits>

CHIPIRPATTERN
[Standard | Alter-
nate <pattern>]

TAPState

TCKLevel

TriState

Slave

(default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

(default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

Number of Data Register (DR) bits which needs to get a certain BYPASS
pattern.

Data Register (DR) pattern which shall be used for BYPASS instead of
the standard (1...1) pattern.

Number of Instruction Register (IR) bits which needs to get a certain
BYPASS pattern.

Instruction Register (IR) pattern which shall be used for BYPASS instead
of the standard pattern.

(default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

(default: 0) Level of TCK signal when all debuggers are tristated.

(default: OFF) If two or more debuggers share the same JTAG port, this
option is required. The debugger switches to tristate mode after each
JTAG access. Then other debuggers can access the port.

(default: OFF) If two or more debuggers share the same JTAG port, all
except one must have this option active. Only one debugger - the
“master” - is allowed to control the signals nTRST and nSRST (nRESET).

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 51

Daisy-Chain Example

IRPOST IRPRE
I 1
TAP1 TAP2 TAP3 TAP4
IR | 4 IR IR IR
DI + | 8 | S Chip %i TDO
DR/ 1 DR/ 1 DR | 1 DR | 1
L I | |
DRPOST DRPRE

IR: Instruction register length DR: Data register length Chip: The chip you want to debug

Daisy chains can be configured using a PRACTICE script (*.cmm) or the SYStem.CONFIG.state window.

&2 B::SYStem.CONFIG state /Jtag =n| Wl <
DebugPort Jtag MultiTap DAP | COmponents
IRPOST IRPRE
12, 6.
TDI kk — DRPOST M| core | M- DRPRE ke TDO
3. P] [S 1.

Example: This script explains how to obtain the individual IR and DR values for the above daisy chain.

SYStem.CONFIG.state /Jtag 5

SYStem

SYStem

SYStem

SYStem

.CONFIG IRPRE

6.

.CONFIG IRPOST 12. 5

.CONFIG DRPRE

.CONFIG DRPOST

1.

3.

optional: open the window

IRPRE: There is only one TAP.

So type just the IR bits of TAP4, i.e. 6.
IRPOST: Add up the IR bits of TAP1, TAP2
and TAP3, i.e. 4. + 3. + 5. = 12.
DRPRE: There is only one TAP which is
in BYPASS mode.

So type just the DR of TAP4, i.e. 1.
DRPOST: Add up one DR bit per TAP which
is in BYPASS mode, i.e. 1. + 1. + 1. = 3.
This completes the configuration.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 52

TapStates

10

11

12

13

14

15

Exit2-DR

Exitl-DR

Shift-DR

Pause-DR

Select-IR-Scan

Update-DR

Capture-DR

Select-DR-Scan

Exit2-IR

Exitl-IR

Shift-IR

Pause-IR

Run-Test/Idle

Update-IR

Capture-IR

Test-Logic-Reset

SYStem.CONFIG.CHKSTPIN

Control pin 8 of debug connector

Format:

SYStem.CONFIG.CHKSTPIN LOW | HIIGH

Default: HIGH.

Controls the level of pin 8 (/CHKSTP_IN or /PRESENT) of the debug connector.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace

53

SYStem.CONFIG.DriverStrength Configure driver strength of TCK pin

Format: SYStem.CONFIG DriverStrength <signal> <LOW | MID | HIGH>
<signal>: TCK
Default: HIGH.

Configures the driver strength of the TCK pin.

Available for debug cables with serial number C15040204231 and higher.

SYStem.CONFIG.QACK Control QACK pin

Format: SYStem.CONFIG QACK TRISTATE | QREQ | LOW | HIGH

Controls the level and function of pin 2 (/QACK) of the debug connector. Default: TRISTATE.

TRISTATE Pin is disabled (tristate).

QREQ Pin is driven to level of QREQ (pin 5).
LOwW Pin is driven to GND permanently.

HIGH Pin is driven to JTAG_VREF permanently.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 54

SYStem.CPU Select the CPU type

Format: SYStem.CPU <cpu>

<cpu>: P2040 | P2041 | P3041 | P4040 | ...

Selects the CPU type. If the needed CPU type is not available in the CPU selection of the SYStem.CPU
window, or if the command results in an error, consider the following points:

. Check if the licence of the debug cable includes the desired CPU type. You will find the
information in the VERSION.view window.

J Check the VERSION.view window to see which version is installed. CPUs that appeared later
than the software release are usually not supported. Please check
http://www.lauterbach.com/download_trace32.html for updates. If the needed CPU appeared
after the release date of the debugger software, please contact technical support and request a
software update.

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

SYStem.MemAccess Select run-time memory access method
Format: SYStem.MemAccess <mode>
<mode>: Denied | SAP | StopAndGo

This option declares if and how a non-intrusive memory access can take place while the CPU is executing
code. Although the CPU is not halted, run-time memory access creates an additional load on the
processor’s internal data bus.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 55

http://www.lauterbach.com/download_trace32.html

The run-time memory access has to be activated for each window by using the access class E: (e.g.
Data.dump E:0x100) or by using the format option %E (e.g. Var.View %E var1).

It is also possible to activate this non-intrusive memory access for all memory ranges displayed on the
TRACE32 screen by using the setting SYStem.Option.DUALPORT ON.

Denied Memory access is disabled while the CPU is executing code.

SAP The debugger performs memory accesses via the dedicated System
Access Port. This memory access will snoop data cache and L2 cache if
a access class for data (“D:”) is used.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 56

SYStem.Mode Select operation mode
Format: SYStem.Mode <mode>
SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down | NoDebug | Prepare | Go | Attach | Up

Select target reset mode.

Down

NoDebug

Prepare

Go

Attach

Up

StandBy

Disables the debugger. The state of the CPU remains unchanged.

Resets the target with debug mode disabled. In this mode no debugging
is possible. The CPU state keeps in the state of NoDebug.

Nearly disabled debugger. The state of the CPU remains unchanged, but
dedicated access to the debug logic is possible. This state is needed to
set a temporary new RCW when the current configuration is invalid. For
further details please refer to Programming the Reset Configuration
Word.

Resets the target with debug mode enabled and prepares the CPU for
debug mode entry. Now, the processor can be stopped with the Break
command or any break condition.

Connect to the processor without resetting target/processor. Use this
command to connect to the processor without changing its current state.

Resets the target/processor and sets the CPU to debug mode. After
execution of this command the CPU is stopped and prepared for
debugging.

Not available.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 57

CPU specific SYStem.Option Commands

SYStem.Option.Address32 Define address format display

Format: SYStem.Option.Address32 [ON | OFF | AUTO | NARROW]

Default: AUTO.

Selects the number of displayed address digits in various windows, e.g. List.auto or Data.dump.

ON Display all addresses as 32-bit values. 64-bit addresses are truncated.
OFF Display all addresses as 64-bit values.
AUTO Number of displayed digits depends on address size.
NARROW 32-bit display with extendible address field.
SYStem.Option.DCFREEZE Data cache state frozen while core halted
Format: SYStem.Option.DCFREEZE [ON | OFF]
Default: OFF.

If OFF, the debugger will maintain D/L2 cache coherency by performing cache snoops for memory
accesses. During the cache snoop, the processor will flush (clean and invalidate) dirty lines from data
caches before the debugger's memory access takes place. This setting allows better data throughput and is
recommended for normal application level debugging. In order to see changes to the cache state caused by
debugging in the CACHE.DUMP window, use the command CACHE.RELOAD.

If ON, the debugger will maintain cache coherency by reading or writing directly to the cache. This method
guarantees that the D/L2 cache tags and status bits (valid, dirty) remain unaffected by the memory accesses
of the debugger. This setting is recommended for low-level and cache debugging.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 58

SYStem.Option.DCREAD Read from data cache

Format: SYStem.Option.DCREAD [ON | OFF]

Default: ON.

If enabled, Data.dump windows for access class D: (data) and variable windows display the memory values
from the d-cache or L2 cache, if valid. If data is not available in cache, physical memory will be read.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 59

SYStem.Option.DUALPORT Implicitly use run-time memory access

Format: SYStem.Option.DUALPORT [ON | OFF]

Default: OFF.

Forces all list, dump and view windows to use the access class E: (e.g. Data.dump E:0x100) or to use the
format option %E (e.g. Var.View %E var1) without being specified. Use this option if you want all windows to
be updated while the processor is executing code. This setting has no effect if
SYStem.Option.MemAccess is disabled.

Please note that while the CPU is running, MMU address translation cannot be accessed by the debugger.
Only physical address accesses are possible. Use the access class modifier “A:” to declare that the physical
address is accessed. Alternatively, declare the address translation in the debugger-based MMU manually
using TRANSIation.Create.

SYStem.Option.FREEZE Freeze system timers on debug events
Format: SYStem.Option.FREEZE [ON | OFF]
Default: OFF.

Enabling this option will instruct the debugger to set the FT bit in the DBCRO register. This bit will cause the
CPU to stop the system timers (TBU/TBL and DEC) upon all debug events that can be defined in DBCRO.
The system timers will not be frozen on events like EVTI or the breakpoint instruction. Die timers/clocks or
watchdogs of the on-chip peripherals are not affected by this option.

SYStem.Option.HOOK Compare PC to hook address

Format: SYStem.Option.HOOK <address> | <address_range>

The command defines the hook address. After program break the hook address is compared against the
program counter value.

If the values are equal, it is supposed that a hook function was executed. This information is used to
determine the right break address by the debugger.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 60

SYStem.Option.HRCWOVerRide Override RCW during SYStem.Up

Format: SYStem.Option.HRCWOVerRide [ON | OFF]

Default: OFF.

Override the hard Reset Configuration Word on SYStem.Up via JTAG.

ON Every time this option is enabled, the current RCW configuration is read and
set to the corresponding RCWSR registers. You can now change the entire
RCW or just any of the 16 words. For further details please refer to
Programming the Reset Configuration Word.
The user-set values will be set every time a SYStem.Up is performed.

OFF No more overriding of the RCW when a SYStem.Up is performed.
SYStem.Option.ICFLUSH Invalidate instruction cache before go and step
Format: SYStem.Option.CFLUSH [ON | OFF]
Default: ON.

Invalidates the instruction cache before starting the target program (Step or Go). If this option is disabled, the
debugger will update memory and instruction cache for program memory downloads, modifications and
breakpoints. Disabling this option might cause performance decrease on memory accesses.

SYStem.Option.ICREAD Read from instruction cache
Format: SYStem.Option.ICREAD [ON | OFF]
Default: OFF:

If enabled, Data.List window and Data.dump window for access class P: (program memory) display the
memory values from the instruction/unified cache or L2 cache if valid. If the data is not available in cache, the
physical memory will be displayed.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 61

SYStem.Option.IMASKASM Disable interrupts while single stepping

Format: SYStem.Option.IMASKASM [ON | OFF]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step, the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

SYStem.Option.MACHINESPACES Address extension for guest OSes
Format: SYStem.Option.MACHINESPACES [ON | OFF]
Default: OFF

Enables the TRACES32 support for debugging virtualized systems. Virtualized systems are systems running
under the control of a hypervisor.

After loading a Hypervisor Awareness, TRACE32 is able to access the context of each guest machine. Both
currently active and currently inactive guest machines can be debugged.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 62

If SYStem.Option.MACHINESPACES is set to ON:

J Addresses are extended with an identifier called machine ID. The machine ID clearly specifies to
which host or guest machine the address belongs.

The host machine always uses machine ID 0. Guests have a machine ID larger than 0.
TRACE32 currently supports machine IDs up to 30.

J The debugger address translation (MMU and TRANSIation command groups) can be individually
configured for each virtual machine.

. Individual symbol sets can be loaded for each virtual machine.
SYStem.Option.MMUSPACES Separate address spaces by space IDs
Format: SYStem.Option.MMUSPACES [ON | OFF]

SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.
Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 63

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:

Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with

;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

NOTE: The option can only be enabled when there are no symbols loaded.

Address dependent windows (e.g. Data.List) need to be closed and opened again
after this setting is changed.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 64

SYStem.Option.NoDebugStop Disable JTAG stop on debug events

Format: SYStem.Option.NoDebugStop [ON | OFF]

Default: OFF.

This setting affects the handling of on-chip debug events.

ON The CPU will be configured to not stop for JTAG, but to enter the debug
interrupt, like it does when no JTAG debugger is used.

OFF If a JTAG debugger is used, the CPU is configured to stop for JTAG upon
debug events.

Enable this option if the CPU should not stop for JTAG on debug events, in order to allow a target application
to use the debug interrupt. Typical usages for this option are run-mode debugging (e.g. with
t32server/gdbserver) or setting up the system for a branch trace via LOGGER (trace data in target RAM).

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 65

SYStem.Option.OVERLAY Enable overlay support

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]
Default: OFF.
ON Activates the overlay extension and extends the address scheme of the

debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACES32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes to
the execution area. For using this option, the storage area must be readable
and writable for the debugger.

Example:

SYStem.Option.OVERLAY ON
Data.List 0x2:0x11c4 ; Data.List <overlay_ id>:<address>

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 66

SYStem.Option.RESetBehavior Set behavior when target reset detected

Format: SYStem.Option.RESetBehavior <mode>
<mode>: Disabled
AsyncHalt

Defines the debugger’s action when a reset is detected. Default setting is Disabled. The reset can only be
detected and actions taken if it is visible to the debugger’s reset pin.

Disabled No actions to the processor take place when a reset is detected.
Information about the reset will be printed to the message AREA.

AsyncHalt Halt core as soon as possible after reset was detected. The core will halt
shortly after the reset event.

SYStem.Option.SLOWRESET Relaxed reset timing
Format: SYStem.Option.SLOWRESET [ON | OFF]
Default: OFF.

This system option defines how the debugger will test JTAG_HRESET. For some system mode changes,
the debugger will assert JTAG_HRESET.

ON If this system option is enabled, the debugger will not read JTAG_HRESET,
but instead waits 4 s and then assumes that the boards HRESET is
released.

OFF Per default (OFF), the debugger will release RESET and then read the

HRESET signal until the HRESET pin is released. Reset circuits of some
target boards prevent that the current level of HRESET can be determined
via JTAG_HRESET.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 67

SYStem.Option.STEPSOFT Use alternative method for ASM single step

Format: SYStem.Option.STEPSOFT [ON | OFF]

Default: OFF.

This method uses software breakpoints to perform an assembler single step instead of the processor’s built-
in single step feature. Works only for software in RAM. Do not turn ON, unless advised by Lauterbach.

SYStem.Option.TranslationSPACE Identify user and hypervisor modes
Format: SYStem.Option.TranslationSPACE [ON | OFF]
Default: ON.

This system option configures the debugger how to distinguish between user and supervisor modes.

In bare-metal applications or uncomplex operating systems typically the MSR[IS] bit is used to isolate user
from supervisor address space. There is no way to get the information about this bit within the trace
information, the program trace will be decoded using the current context of the cores.

In complex or hypervisor systems, typically the MSR[PR] bit is used to handle user and supervisor modes.
This bit will also be included in ownership trace messages. TRACES32 will therefore be able to decode the
program trace depending on this privilege information, which doesn’t have to be compliant to the current
context of cores.

a) SYStem.Option.TranslationSPACE ON (default)

Mode MSR.GS bit MSR.IS bit
Hypervisor-supervisor mode 0 0
Hypervisor-user 0 1
Guest-supervisor 1 0
Guest-user 1 1

b) SYStem.Option.TranslationSPACE OFF

Mode MSR.GS bit MSR.PR bit

Hypervisor-supervisor mode 0 0

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 68

Mode MSR.GS bit MSR.PR bit
Hypervisor-user 0 1
Guest-supervisor 1 0
Guest-user 1 1
SYStem.Option.ZoneSPACES Enable symbol management for zones
[Example]
Format: SYStem.Option.ZoneSPACES [ON | OFF]
Default: OFF.

The SYStem.Option.ZoneSPACES command must be set to ON if separate symbol sets and MMU
translation tables are used for the CPU operation modes:

. Hypervisor-supervisor mode
. Hypervisor-user mode

. Guest-supervisor mode

. Guest-user mode

Within TRACE32, these CPU operation modes are referred to as zones. For information about the status
bits controlling these modes, see SYStem.Option.TranslationSPACE.

NOTE: For an explanation of the TRACE32 concept of address spaces (zone spaces,
MMU spaces, and machine spaces), see “TRACE32 Concepts”
(trace32_concepts.pdf).

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 69

In each CPU operation mode (zone), the CPU’s TLB may contain separate translations, and a kernel or
hypervisor may uses separate MMU translation tables for memory accesses and separate register sets.
Consequently, in each zone, different code and data can be visible on the same logical address.

OFF TRACE32 does not separate symbols by access class. Loading two or
more symbol sets with overlapping address ranges will result in
unpredictable behavior. Loaded symbols are independent of the CPU

mode.

ON Separate symbol sets can be loaded for each zone, even with
overlapping address ranges. Loaded symbols are specific to one of the
CPU zones.

SYStem.Option.ZoneSPACES ON in Detail

SYStem.Option.ZoneSPACES is usually set to ON if you need to debug virtualized systems with guest and
hypervisor. For both guest and hypervisor, TRACE32 also separates between supervisor mode and user
mode. Typical scenarios use separate symbol sets for the hypervisor-supervisor mode, the guest-supervisor
and the guest-user mode. The hypervisor-user mode is rarely used. The symbol sets are loaded to the
access classes HS: (hypervisor-supervisor mode, GS: (guest-supervisor mode) and GU: (guest-user
mode).

If SYStem.Option.ZoneSPACES is ON, TRACE32 enforces any memory address specified in a TRACE32
command to have an access class which clearly indicates to which of the four zones the memory address
belongs.

If an address specified in a command uses an anonymous access class such as D:, P: or C:, the access
class of the current PC context is used to complete the access class of the addresses. Also, if an incomplete
access class where either the guest/hypervisor information is missing (such as SP: or UP:) or the
supervisor/user information is missing (such as GP: or HP:), the missing information will automatically be
expanded from the access class of the current PC context.

Example: If the CPU is currently in user mode, a memory access with the access class GP: will be
expanded by TRACES2 to become GUP:

If a symbol is referenced by name, the associated access class of its zone will be used automatically, so that
the memory access is done within the correct CPU mode context. As a result, the symbol’s effective address
will be translated to the physical address with the correct MMU translation table.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 70

Example 1

In this script, SYStem.Option.ZoneSPACES is used for a simple host and guest debugging.

SYStem.Option.ZoneSPACES ON

; 1. Load the Xen hypervisor symbols to the hypervisor-supervisor
; access class HS:
Data.LOAD.ELF xen-syms HS:0x0 /NoCODE

; 2. Load the vmlinux kernel symbols to the guest-supervisor access class
; GS:
Data.LOAD.ELF vmlinux GS:0x0 /NoCODE

; 3. Load the guest application symbols (the ‘sieve’ application in this
; example) to the guest-user access class GU:
Data.LOAD.ELF sieve GU:0x0 /NoCODE

Effect on the TRANSIation command group: SYStem.Option.ZoneSPACES ON enforces separate
address spaces for the four zones HS:, HU:, GS: and GU:. Commands affecting the address translation,
such as TRANSIation.Create, TRANSIation.COMMON, TRANSIation.Protect or MMU.FORMAT, must
be executed individually for each of the four zones.

It is, however, possible to use the generic access classes G: and H: as “joker”. This simplifies the scripts if
identical translations for GS: and GU: are needed or identical translations for HS: and HU: are needed.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 71

Example 2

SYStem.Option.ZoneSPACES ON

; show the list of

static translations created by the commands

; TRANSlation.Create and TRANSlation.COMMON

TRANSlation.List

;1. the command

TRANSlation.Create
; 1s equivalent to
TRANSlation.Create
TRANSlation.Create

;2. the command

TRANSlation.Create
; 1s equivalent to
TRANSlation.Create
TRANSlation.Create

;3. the command

TRANSlation.COMMON
; 1s equivalent to
TRANSlation.COMMON
TRANSlation.COMMON

G:0x80000000--0x8FFFFFFF 0x0
the commands

GS:0x80000000--0x8FFFFFFF 0x0
GU:0x80000000--0x8FFFFFFF 0x0

H:0xA0000000--0xAFFFFFFF 0x0
the commands
HS:0xA0000000--0xAFFFFFFF 0x0
HU:0xA0000000--0xXAFFFFFFF 0x0

G:0xC00000000--0xXFFFFFFFF
the commands

GS:0xC00000000--0xFFFFFFFF
GU:0xC00000000--0xFFFFFFFF

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace

72

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table
Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>] [[<option>]
MMU.<table>.dump (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>
<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>

Displays the contents of the CPU specific MMU translation table.

o If called without parameters, the complete table will be displayed.

. If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display
a page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process or a specific
machine if a space ID and/or a machine ID is given.

PageTable

Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID and/or machine ID: dis-
plays the translation table of the specified process and/or machine
. else, this command displays the table the CPU currently uses for

MMU translation.

KernelPageTable

Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 73

TaskPageTable Displays the MMU translation table entries of the given process. Specify
<task_magic> | one of the TaskPageTable arguments to choose the process you want.
<task_id> | In MMU-based operating systems, each process uses its own MMU
<task_name> | translation table. This command reads the table of the specified process,
<space_id>:0x0 and displays its table entries.
. For information about the first three parameters, see “What to
know about the Task Parameters™ (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.
MACHINE This option is only available if SYStem.Option.MACHINESPACES is set
<machine_magic> | to ON.
<machine_id> | Dumps a page table of a virtual machine. The MACHINE option applies
<machine_name> to PageTable and KernelPageTable and some <cpu_specific_tables>.
The parameters <machine_magic>, <machine_id> and
<machine_name> are displayed in the TASK.List. MACHINES window.

CPU specific Tables in MMU.DUMP <table>

TLBO Displays the contents of TLBO.

TLB1 Displays the contents of TLB1.

TLB1PT Displays the indirect page table which is associated with the TLB1 entry
<tlb1_index> <tib1_index>.

Additionally, if both SYStem.Option.ZoneSPACES and SYStem.Option.MACHINESPACES are set to ON,
then these CPU specific tables are available:

SupervisorPT Displays the supervisor mode page table of the machine specified with
option MACHINE.

UserPT Displays the user mode page table of the machine specified with the option
MACHINE.

Additionally, if only SYStem.Option.ZoneSPACES is set to ON, then these CPU specific tables are

available:
HSPageTable Displays the page table which is defined for the hypervisor supervisor mode.
HUPageTable Displays the page table which is defined for the hypervisor user mode.
GSPageTable Displays the page table which is defined for the guest supervisor mode.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 74

GUPageTable Displays the page table which is defined for the guest user mode.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 75

MMU.FORMAT Define MMU table structure

[Examples]

Format: MMU.FORMAT <format> [<base_address> [<logical_kernel_address_range>
<physical_kernel_address>]] [/<option>]

<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>
Hypervisormode | Guestmode | Supervisormode | Usermode

Default <format>: STD.

Defines the information needed for the page table walks, which are performed by TRACES32 for debugger
address translation, page table dumps, or page table scans.

<format>

<format> is to be replaced with a CPU architecture specific keyword which defines the structure of the MMU
page tables used by the kernel. By default, TRACES32 assumes that the MMU format is STD, unless you
specify the MMU.FORMAT <format> explicitly.

<format> Description

DEOS DEOS OS (32 bit) specific MMU format

DEOS64 DEOS OS (64 bit) specific MMU format
EXTENSION Table walk performed by a TRACE32 extension that

a) was developed by the customer and
b) defines table walk callback functions.

LINUX Standard format used by Linux

LINUX26 Linux format with physical table pointers

LINUX64_E6 Use LINUX64_EG6 for e6500 core devices

LINUXES5 Linux with 64-bit PTEs, €500 core

LINUXEXT Linux with 64-bit PTEs, no 500 core

LYNXOS LynxOS format, virtual table pointers

LYNXOSPHYS LynxOS format, physical table pointers

OSE OSE format for load modules

PIKEOS.E500 PIKEOS specific format for PowerPC e500 core (formerly named

PIKEOSES5).Works for PikeOS 4.1 and older. For €500 cores with PikeOS
4.2 and newer use E500MC format.*/

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 76

<format> Description

PIKEOS.E500MC PIKEOS specific format for PowerPC e500mc core (PPC64 only).Can also
be used with PikeOS 4.2 and newer on PPC32 €500 cores.*/

PIKEOS.E500MC4G PIKEOS specific format for PowerPC e500mc core addressing 4GB of
memory.Has no common address range.*/

PIKEOS.E5500 PIKEOS specific format for PowerPC 5500 core

PIKEOS.OEA PIKEOS specific format for PowerPC core (formerly named PIKEOS) */
QNX QNX standard format

QNXBIG QNX format with 64-bit table entries

STD Standard format defined by the CPU

VX653 MMU format for VXWORKS 653

VXWORKS.E500 VxWorks specific format for PowerPC 500 core

VXWORKS.E500MC VxWorks specific format for PowerPC e500mc core with 36 bit physical
addresses (PPC64 only)

VXWORKS.E500_64 VxWorks specific format for PowerPC €500 core (PPC64 only)

VXWORKS.E6500 VxWorks specific format for PowerPC €6500 core

<base_address>

<base_address> defines the start address of the default page table which is usually the kernel page table.
The kernel page table contains translations for mapped address ranges owned by the kernel.

The debugger address translation uses the default page table if no process specific page table (task
page table) is available to translate an address.

<base_address> can be left empty by typing a comma or set to zero if there is no default page table
available in the system.

<logical_kernel_address_range> and <physical_kernel_address> for the Default Translation

The arguments <logical_kernel_address_range> and <physical_kernel_address> define a linear logical-to-
physical address translation for the kernel addresses, called kernel translation or default translation. This
translation should cover all statically mapped logical address ranges of kernel code or kernel data.

For the <physical_kernel_address> you just need to specify the start address.

NOTE: If no kernel translation is specified for a given memory access, TRACE32 tries to
use static address translations defined by the command TRANSIation.Create. The
kernel translation is shown in the TRANSIation.List window.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 77

<options>

Supervisormode

If SYStem.Option.MACHINESPACES is set to OFF:

Specifies the format, default page table, and default translation for one or
both supervisor zones (access class HS: or GS:). Can be combined with
the Hypervisormode or Guestmode option.

If SYStem.Option.MACHINESPACES is set to ON:

Specifies the format, default page table, and default translation for the
supervisor mode zone of the machine selected with the MACHINE
option.

For an example, see below.

Usermode

If SYStem.Option.MACHINESPACES is set to OFF:

Specifies the format, default page table, and default translation for one or
both user mode zones (access class HU: or GU:). Can be combined with
the Hypervisormode or Guestmode option.

If SYStem.Option.MACHINESPACES is set to ON:

Specifies the format, default page table, and default translation for the
user mode zone of the machine which is selected with the MACHINE
option.

Hypervisormode

Specifies the format, default page table, and default translation for one or
both hypervisor zones (access class HS: or HU:). Can be combined with
the Supervisormode or Usermode option.

For an example, see below.

Guestmode Specifies the format, default page table, and default translation for one or
both guest zones (access class GS: or GU:). Can be combined with the
Supervisormode or Usermode option.

MACHINE For a description of the MACHINE option, see MMU.DUMP.

If both SYStem.Option.ZoneSPACES and SYStem.Option.MACHINESPACES are set to ON, then these

options are available:

. MACHINE
J Supervisormode
J Usermode

If only SYStem.Option.ZoneSPACES is set to ON, then these options are available:

J Hypervisormode
. Guestmode

. Supervisormode
. Usermode

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 78

If only SYStem.Option.MACHINESPACES is set to ON, then these option is available:
. MACHINE

Examples for Page Tables in Virtualized Systems

[Back to MMU.FORMAT]

NOTE: . The MMU format and default page table base address of each zone can be
viewed with the command TRANSIation.state.
o The default translation of each zone can be viewed with the command

TRANSIation.List

Example 1: This script shows how to define separate default page tables and separate default
translations for various zones (without Hypervisor Awareness and without machine IDs).
The backslash \ is used as a line continuation character. No white space permitted after the backslash.

; enable symbol management for zones
SYStem.Option.ZoneSPACES ON

; define the format for the hypervisor-supervisor zone (access class HS:)
MMU . FORMAT STD HS:0xC8000000 HS:0x80000000++0x0FFFFFFF \
A:0x00000000 /Hypervisormode /Supervisormode

; define the format for the hypervisor-user zone (access class HU:)
MMU . FORMAT STD HU:0x34000000 HU:0x30000000++0x0FFFFFFF \
A:0x00800000 /Hypervisormode /Usermode

; define the format for guest-supervisor zone (access class GS:)
MMU . FORMAT VX653 GS:0xA4000000 GS:0xA0000000++0x0FFFFFFF \
A:0x10000000 /Guestmode /Supervisormode

; define the format for guest-user zone (access class GU:)
MMU . FORMAT VX653 GU:0x22000000 GU:0x20000000++0x1FFFFFFF \
A:0x18000000 /Guestmode /Usermode

; show the result of the format definition
TRANSlation.state
TRANSlation.List

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 79

Example 2: This script shows how to define separate default page tables and separate default
translations for various zones (with Hypervisor Awareness and with machine IDs).
The backslash \ is used as a line continuation character. No white space permitted after the backslash.

; enable symbol management for zones
SYStem.Option.ZoneSPACES ON

; enable address extension for guest OSes
SYStem.Option.MACHINESPACES ON

define the format for the supervisor zone of machine 0

(access class HS:)

MMU.FORMAT STD HS:0:::0xC8000000 HS:0:::0x80000000++0x0FFFFFFF \
A:0x00000000 /MACHINE 0 /Supervisormode

.
I
.
I’

define the format for the supervisor zone of machine 1

(access class GS:)

MMU.FORMAT STD GS:1:::0xA4000000 GS:1:::0xA0000000++0x0FFFFFFF \
A:0x10000000 /MACHINE 1 /Supervisormode

.
I’
.
I’

define the format for the guest-user zone of machine 1

(access class GU:)

MMU.FORMAT VX653 GU:1:::0x22000000 GU:1:::0x20000000++0x1FFFFFFF \
A:0x18000000 /MACHINE 1 /Usermode

.
r
.
7

define the format for both the guest-supervisor zone and the guest-user
zone of machine 2 concurrently (access class G:)

MMU . FORMAT VX653 G:0xB8000000 G:0xB0000000++0x1FFFFFFF \
A:0x40000000 /MACHINE 2

.
I’
.
I

; show the result of the format definition
TRANSlation.state
TRANSlation.List

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 80

MMU.List

Compact display of MMU translation table

Format:

<table>:

<option>:

MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
[/<option>]
MMU.<table>.List (deprecated)

PageTable

KernelPageTable

TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

MACHINE <machine_magic> | <machine_id>| <machine_name>

Lists the address translation of the CPU-specific MMU table.

. If called without address or range parameters, the complete table will be displayed.

. If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

. If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display
a page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process or a specific
machine if a space ID and/or a machine ID is given.

PageTable

Lists the entries of an MMU translation table.

. if <range> or <address> have a space ID and/or machine ID: list
the translation table of the specified process and/or machine

. else, this command lists the table the CPU currently uses for MMU
translation.

KernelPageTable

Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 81

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.

o For information about the first three parameters, see “What to
know about the Task Parameters™ (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

MACHINE

For a description of the MACHINE option, see MMU.DUMP.

CPU specific Tables in MMU.List <table>

TLB1PT
<tlb1_index>

Displays the indirect page table which is associated with the TLB1 entry
<tlb1_index>.

Additionally, if both SYStem.Option.ZoneSPACES and SYStem.Option.MACHINESPACES are set to ON,
then these CPU specific tables are available:

SupervisorPT

Displays the supervisor mode page table of the machine specified with
option MACHINE.

UserPT

Displays the user mode page table of the machine specified with the option
MACHINE.

Additionally, if only SYStem.Option.ZoneSPACES is set to ON, then these CPU specific tables are

available:
HSPageTable Displays the page table which is defined for the hypervisor supervisor mode.
HUPageTable Displays the page table which is defined for the hypervisor user mode.
GSPageTable Displays the page table which is defined for the guest supervisor mode.
GUPageTable Displays the page table which is defined for the guest user mode.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 82

MMU.SCAN Load MMU table from CPU

Format: MMU.SCAN <table> [<range> <address>] [[<option>]
MMU. <table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

. If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable Loads the entries of an MMU translation table and copies the address

translation into the debugger-internal static translation table.

. if <range> or <address> have a space ID and/or machine ID: loads
the translation table of the specified process and/or machine

o else, this command loads the table the CPU currently uses for
MMU translation.

KernelPageTable Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the
table of the kernel and copies its address translation into the debugger-
internal static translation table.

TaskPageTable Loads the MMU address translation of the given process. Specify one of
<task_magic> | the TaskPageTable arguments to choose the process you want.
<task_id> | In MMU-based operating systems, each process uses its own MMU
<task_name> | translation table. This command reads the table of the specified process
<space_id>:0x0 and copies its address translation into the debugger-internal static

translation table.

. For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manual.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 83

ALL

Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the
debugger-internal static translation table.

See also the appropriate OS Awareness Manual.

MACHINE

For a description of the MACHINE option, see MMU.DUMP.

CPU specific Tables in MMU.SCAN <table>

TLBO

Loads the TLBO from the CPU to the debugger-internal translation table.

TLB1

Loads the TLB1 from the CPU to the debugger-internal translation table.

Additionally, if both SYStem.Option.ZoneSPACES and SYStem.Option.MACHINESPACES are set to ON,
then these CPU specific tables are available:

SupervisorPT

Displays the supervisor mode page table of the machine specified with
option MACHINE.

UserPT

Displays the user mode page table of the machine specified with the option
MACHINE.

Additonally, if only SYStem.Option.ZoneSPACES is set to ON, then these CPU specific tables are

available:
HSPageTable Displays the page table which is defined for the hypervisor supervisor mode.
HUPageTable Displays the page table which is defined for the hypervisor user mode.
GSPageTable Displays the page table which is defined for the guest supervisor mode.
GUPageTable Displays the page table which is defined for the guest user mode.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 84

MMU.Set

Set an MMU TLB entry

Formats:

MMU.Set TLBO <index> <mas1> <mas2> <mas3> <mas7> <mas8>
MMU.Set TLB1 <index> <mas1> <mas2> <mas3> <mas7> <mas8>
MMU.<table>.SET (deprecated)

Sets the specified MMU TLB table entry in the CPU. The parameter <tlb> is not available for CPUs with only

one TLB table.

<index>

<masi>
<masz2>
<mas3>
<mas7’>
<mas8>

TLB entry index. From 0 to (number of TLB entries)-1 of the specified
TLB table

Values corresponding to the values that would be written to the MAS
registers in order to set a TLB entry. See the processor’s reference
manual for details on MAS registers.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 85

CPU specific BenchMarkCounter Commands

The BenchMarkCounter features are based on the core’s performance monitor, accessed through the
performance monitor registers (PMR).

NOTE: . Chips with eé6500 cores provide PMR access while the core is running.

Otherwise, PMR access is only possible while the core is halted.

. For information about architecture-independent BMC commands, refer to
“BMC” (general_ref_b.pdf).

o For information about architecture-specific BMC commands, see command
descriptions below.

. For a description of events that can be assigned to BMC.<counter>.EVENT
<event>, please check Freescale’s core reference manual.

BMC.FREEZE Freeze counters while core halted

Format: BMC.FREEZE [ON | OFF]

Default: ON.

Enable this setting to prevent that actions of the debugger have influence on the performance counter. As
this feature software controlled (no on-chip feature), some events (especially clock cycle measurements)
may be counted inaccurate even if this setting is set ON.

BMC.Trace Trace performance monitor events
Format: BMC.Trace [ON | OFF] <periodicity>
<periodicity>: 270 | 271 | 274 | 278 | 2714 | 2420 | 2731

This feature configured the processor to generate watchpoint hit messages upon performance monitor
events. The frequency of the watchpoint messages can be controlled with the <periodicity> parameter.
If <periodicity> is e.g. set to 278, the processor will generate a watchpoint hit message every 256
events.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 86

BMC.<counter>.FREEZE Freeze counter in certain core states

Format:

<sState>:

BMC.<counter>.FREEZE <state> [ON | OFF]

USER | SUPERVISOR | MASKSET | MASKCLEAR | GUEST | HYPERVISOR

Halts the selected performance counter if one or more of the enabled states (i.e. states set to ON) match the
current state of the core. If contradicting states are enabled (e.g. SUPERVISOR and USER), the counter will
be permanently frozen. The table below explains the meaning of the individual states.

<state>

USER

SUPERVISOR

MASKSET

MASKCLEAR

GUEST

HYPERVISOR

Dependency in core

Counter frozen if MSR[PR]==1

Counter frozen if MSR[PR]==0

Counter frozen if MSR[PMM]==

Counter frozen if MSR[PMM]==0

Freeze counters in guest state

0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[GS] = 1.

Freeze counters in hypervisor state

0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[GS] = 0.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 87

CPU specific TrOnchip Commands

TrOnchip.CONVert

Adjust range breakpoint in on-chip resource

Format:

TrOnchip.CONVert [ON | OFF]

Default: ON.

This command influences the behavior when there are no more on-chip resources for exact data address
range breakpoints available. The QorlQ processors offer the possibility to set one exact data address
range breakpoint or up to two data address range breakpoints with a maximum of up to 4kB each. These
ranges are not exact in all cases, depending on the maskable start and end address. Using this command
the user can allow or prohibit a conversion to ranges which exceed the exact one in cases it is necessary. In
all other cases the exact range setting will be preferred.

ON

Data address range breakpoints which do not exceed 4kB can be
converted to ranges which exceed the exact range. This offers the
possibility to use up to two data address range breakpoints with
maximum 4kB each instead of just one exact data address range
breakpoint. It is also possible to use one data address breakpoint in
combination with one (non-exact) max. 4kB large data address range
breakpoint.

Please be aware, that the range breakpoint is still listed as the original,
exact range breakpoint in the Break.List window.

Use the Data.View command to verify the extended data address range
breakpoints.

OFF

When there is already a data address breakpoint set, an error message is

displayed when the user wants to set a new data address range breakpoint.

When there is already a data address range breakpoint set, an error
message is displayed when the user wants to set a new data address
breakpoint or data address range breakpoint.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace |

88

Example:

TrOnchip.CONVert ON ;Enable conversion of data ranges
Break.Set 0x6020++0x1f /Write ;First range, <4kB

Break.Set 0x7024++0x1f /Write ; Second range, <4kB

Data.View 0x6020 ;First range, exact conversion
Data.View 0x7000 ; Second range extended to

Break.RESet

;0x7000--0x707F because of address
masking.

;Start example without CONVert

TrOnchip.CONVert OFF ;No conversion allowed
Break.Set 0x6020++0x1f /Write ;First range, exact range set
Break.Set 0x7024++0x1f /Write ;Second rang won’'t be set, an error

TrOnchip.RESet

message is displayed.

Reset on-chip trigger settings

Format:

TrOnchip.RESet

Resets the on-chip trigger system to the default state.

TrOnchip.Set

Enable special on-chip breakpoints

Format:

<event>.

TrOnchip.Set <event>[ON | OFF]

BRT
IRPT
RET
CIRPT
CRET

Default: All events OFF.

Enables the specified on-chip trigger facility to stop the CPU on the following break events:

BRT

Break on branch taken event.

IRPT

Break on interrupt entry.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 89

RET Break on return from interrupt.

CIRPT Break on critical interrupt entry.
CRET Break on return from critical interrupt.
TrOnchip.VarCONVert Adjust HLL breakpoint in on-chip resource
Format: TrOnchip.VarCONVert [ON | OFF]
Default: ON.
ON After a data address breakpoint is set to an HLL variable all on-chip

breakpoints are spent to cover all the bytes of the variable as a range. As
soon as a new data address breakpoint is set the data address
breakpoint to the HLL variable is converted to a single data address
breakpoint.

OFF An error message is displayed when the user wants to set a new data
address breakpoint after all on-chip breakpoints are spent by a data address
breakpoint to an HLL variable.

Example:

TrOnchip.VarCONVert ON

Var .Break.Set static_intl

TrOnchip.VarCONVert OFF

Var .Break.Set static_int2

Break.List ;byte address for static_intl
;address range for static_int2

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 90

TrOnchip.state View on-chip trigger setup window

Format: TrOnchip.state

Display the trigger setup dialog window.
L =% [Eol 5

tronchip
CONVert
VarCONVert

Set
[C1BrRT
CIwreT
[CIRET
[ClcreT
[CIcrRET

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 91

Nexus and Trace specific commands

DDRTrace.List List DDR trace contents
Format: DDRTrace.List [<items>...]
<items>: [DEFault | DDR | DDRSYNC | DDRMID | DDRSIZE | ...]

Opens a window showing the recorded DDR trace data.

<items> The <items> define the columns to be displayed in the DDR trace listing. You
can combine any of the available <items>.
The availability of <items> is dependent on the CPU and even its revision.

DEFault By default, just the basic information is displayed, which includes the
address and read / write information.

DDR Displays all details included in the DDR trace message.
All other <items> display only a subset of the DDR trace message.

For information about how to access other trace listings, see chapter Trace Sources.

DQMTrace.List List DQM trace contents
Format: DQMTrace.List [<items>...]
<items>: [DEFault | Address | CYcle | Data | ...]

Opens a window showing the recorded DQM (data acquisition message) trace data.

<items> The <items> define the columns to be displayed in the DQM trace listing.
You can combine any of the available <items>.

DEFault By default, all DQM trace message included information is displayed, which
includes the DEVENT register value in the Address column and the DDAM
register value in the Data column.

For information about how to access other trace listings, see chapter Trace Sources.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 92

NEXUS.BTM Enable program trace messaging

Format: NEXUS.BTM [ON | OFF]

Default: ON.

Global control for Nexus program trace messaging.

ON Program trace messaging enabled.

OFF Program trace messaging disabled.

For core specific trace control, please see the NEXUS.CoreENable command.

NEXUS.CoreENable Core specific trace configuration

Format: NEXUS.CoreENable [<core_numbers>]

Access to core specific trace configuration.

Default: All cores of the CPU are enabled and the program trace is just managed by the global setting of
NEXUS.BTM. For e.g. a CPU with eight cores the default <core numbers> setting is <0,1,2,3,4,5,6,7>.

To disable the generation of trace messages for specific cores exclude them from the <core numbers> list.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 93

NEXUS.DDRConfig.ADDRessfilter Filter Nexus DDR messages

Format: NEXUS.DDRConfig.ADDRessfilter<index> [<address> | <range> |

<bitmask>]

Default: inactive.

Activates filters to restrict the generation of DDR trace messages.

<index> 1,2

There are two filters available, valid for all DDR memory controllers.
<address> Restrict the DDR trace message generation to the specified physical
<range> address, range or bitmask.
<bitmask>

without the optional

Apply this command without an address, range or bitmask to all filters to

arguments: enable Nexus DDR messages for every address (if a mode is selected by
<address>, <range>, NEXUS.DDRConfig.Controller).
<bitmask>
NEXUS.DDRConfig.Controller Configure Nexus DDR message type
Format: NEXUS.DDRConfig.Controller<index> [Terse | Verbose | OFF]
Default: OFF.

Enables Nexus DDR trace and configures the type of Nexus DDR trace messages.

<index> 1,2,3
The index specifies the DDR memory controller.
The number of DDR memory controllers varies depending on the QorlQ
CPU.
OFF DDR trace deactivated for this memory controller.
Terse Terse trace messages need less bandwidth but do not offer as detailed
Verbose information as the verbose trace messages. Please refer to the appropriate
reference manual of the CPU for further details.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 94

NEXUS.DQM Enable data acquisition messaging

Format: NEXUS.DQM [ON | OFF]

Default: OFF.

Set to ON to enable data acquisition messaging.

NOTE: When instrumented software uses the DEVENT and DDAM registers, the
corresponding IDTAG and DQDATA values are transmitted within a data acquisition
message.

This message is produced at the time a core writes to the DDAM register using a
mtspr instruction.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 95

NEXUS.LaneMapping Logical to physical lane mapping

POWER TRACE SERIAL only

Using the NEXUS.LaneMapping command group, you can configure the mapping of logical to physical
Aurora trace lanes.

NOTE: This configuration is typically needed if the routing of the target lanes to the trace
port is disordered (which is rarely the case).

NEXUS.LaneMapping.APPLY Apply logical to physical lane mapping
POWER TRACE SERIAL only
Format: NEXUS.LaneMapping.APPLY

Apply the current mapping of logical to physical Aurora trace lanes, defined by
NEXUS.LaneMapping.SetLane.

NEXUS.LaneMapping.SetLane Configure logical to physical lane mapping

POWER TRACE SERIAL only

Format: NEXUS.LaneMapping.SetLane <logical_id> <physical_id>

Default: 1:1 configuration.

Maps the logical Aurora trace lanes to the physical ones. This command takes effect only if
NEXUS.LaneMapping APPLY is used afterwards.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 96

NEXUS.OCeaNport.Mode Configure Nexus OCeaN message type

Format: NEXUS.OCeaNport<index>.Mode [Terse | Verbose]

Default: Terse.

Configure the type of Nexus OCeaN messages.

<index> 1,2
The index specifies the OCeaN port.

Terse Terse trace messages offer less detailed address information than the
Verbose verbose trace messages, but information about the source. Please refer to
the appropriate reference manual of the CPU for further details.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 97

NEXUS.OCeaNport<index>.TraceSELect Select Nexus OCeaN trace type

Format:

<source>:

NEXUS.OCeaNport1.TraceSELect <source>

OFF

POOUT-CHB
P10OUT-PCIE1
P10OUT
P20UT-PCIE2SRIO1
P20UT
P3OUT-PCIE3
P30OUT
P40OUT-SRIO2
P4OUT

Default: OFF.

Format:

<source>:

NEXUS.OCeaNport2.TraceSELect <source>

OFF

POIN-CHB
P1IN-PCIE1

P1IN
P2IN-PCIE2SRIO1
P2IN

P3IN-PCIE3

P3IN

P4IN-SRIO2

P4IN

Default: OFF.

Select the sources which produce Nexus OCeaN messages.

NEXUS.OFF

Switch the Nexus trace port off

Format:

NEXUS.OFF

Default: ON.

Turn off if you neither want to use the Onchip nor the HSTP trace.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 98

NEXUS.ON

Switch the Nexus trace port on

Format:

NEXUS.ON

The Nexus trace port is switched on. All trace registers are configured by the debugger.

NEXUS.OTM Enable ownership trace messaging
Format: NEXUS.OTM [ON | PIDO | NPIDR | OFF]
Default: OFF.

Controls ownership trace messaging.

OFF Ownership trace messaging is disabled.

ON Enable ownership trace messaging. An OTM is generated if the

PIDO application writes to the PIDO register.

NPIDR Enable ownership trace messaging. An OTM is generated if the
application writes to the NPIDR register.

NOTE: Enable ownership trace messaging in order to get trace information about task

switches. Some operating systems use a set of OTMs to transfer task switch
information to the trace tool. In this case periodic ownership trace must be
disabled using NEXUS.POTD ON.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 99

NEXUS.PortMode Set Nexus trace port frequency
Format: NEXUS.PortMode <mode>
<mode>: 625MBPS | 750MBPS | 850MBPS | 1000MBPS | 1250MBPS | 1500MBPS |

1700MBPS | 2000MBPS | 2500MBPS | 3000MBPS | 3125MBPS |
3400MBPS | 4000MBPS | 4250MBPS | 5000MBPS | 6000MBPS | 6250MBPS

Sets the Nexus trace port frequency. For Aurora Nexus, the setting is a fixed bit rate which is independent of

the system frequency.

NOTES:

Depending on the processor, bit rates may be unsupported. Set the bit rate
according to the processor’s data sheet. You will get a warning if a set bit rate is
not supported by your processor.

QorlQ processors usually do not need an external reference clock for Aurora
operation. Nevertheless if needed, the Aurora preprocessor can provide that
clock signal. It is enabled using NEXUS.RefClock ON.

NEXUS.PortSize

Set trace port width

Format:

<port_size>:

NEXUS.PortSize <port_size>

1Lane | 2Lane

Default: Varied, depending on the processor.

Sets the Nexus port width to the number of used Aurora lanes. The setting can only be changed if no debug
session is active (SYStem.Down).

NOTE:

Depending on the processor there are no dedicated debug lanes available. In
this case you need to set an appropriate RCW (SRDS_PRTCL field) to
configure one or more lanes for debugging purposes. Please refer to
Programming the Reset Configuration Word for further details.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 100

NEXUS.POTD Disable periodic ownership trace

Format: NEXUS.POTD [ON | OFF]

Default: OFF.

When enabled, the core is configured to suppress periodic ownership trace messages. A periodic ownership
trace message is an OTM, which is generated without a write access to the PID register once every 256
messages. Enable this option, when the OTM is used to generate trace information about task switches.

NEXUS.PTCM Enable program trace correlation messages
Format: NEXUS.PTCM.<event> [ON | OFF]
<event>: BL_HTM
Default: OFF.

Enables a program trace correlation message (PTCM) for the specified event. These program trace
correlation messages are not needed to reconstruct the program flow, but give additional information which
can increase the precision of statistic measurements.

BL_HTM Core generates PTCM on Branch and Link occurrence (EVCODE 0xA).
Enable this PTCM to improve function profiling.

NEXUS.PTFGS Program trace mark

Format: NEXUS.PTFGS [OFF | GSO0 | GS1]

Default: OFF.

Controls the influence of MSR[GS] in program trace messaging. Only available for e6500.

OFF Ignore MSR[GS] for masking program trace messages.
GSO0 Generate program trace messages only when MSR[GS] = 0
GS1 Generate program trace messages only when MSR[GS] = 1
QorlQ Debugger and NEXUS Trace | 101

©1989-2024 Lauterbach

NEXUS.PTFPMM Program trace mark

Format: NEXUS.PTFPMM [OFF | PMMO | PMM1]

Default: OFF.

Controls the influence of MSR[PMM] in program trace messaging. Only available for eé6500.

OFF Ignore MSR[PMM] for masking program trace messages.
PMMO Generate program trace messages only when MSR[PMM] = 0
PMM1 Generate program trace messages only when MSR[PMM] = 1
NEXUS.PTFPR Program trace mark
Format: NEXUS.PTFPR [OFF | PRO | PR1]
Default: OFF.

Controls the influence of MSR[PR] in program trace messaging. Only available for e6500.

OFF Ignore MSR[PR] for masking program trace messages.
PRO Generate program trace messages only when MSR[PR] = 0
PR1 Generate program trace messages only when MSR[PR] = 1

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 102

NEXUS.PTMARK Program trace mark

Format: NEXUS.PTMARK [ON | OFF]

Default: OFF.

Controls the influence of MSR[PMM] in program trace messaging.

OFF Ignore MSR[PMM] for masking program trace messages.

ON Mask (disable) program trace messages when MSR[PMM] = 0, unmask
(enable) program trace messages when MSR[PMM] = 1

NEXUS.RefClock Enable Aurora reference clock

Format: NEXUS.RefClock [ON | OFF]

Default: OFF.
Typically this settings should not be changed for QorlQ processors.
When set to ON, the preprocessor provides the reference clock for the Aurora Nexus block on the processor.

Only enable when the processor requires this reference clock and when no module provides the Aurora
clock source for the processor.

NEXUS.Register Display NEXUS trace control registers

Format: NEXUS.Register

This command opens a window which shows the NEXUS configuration and status registers.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 103

NEXUS.RESet Reset Nexus trace port settings

Format: NEXUS.RESet

Resets Nexus trace port settings to default settings.

NEXUS.SerDesCFG Enable SerDes PLL control register manipulation
Format: NEXUS.SerDesCFG [ON | OFF]
Default: ON.

Enables the SerDes PLL control register manipulation.

ON The SerDes PLL control register will be modified according to the
NEXUS.SerDesCFG.REFCLK and NEXUS.SerDesCFG.FRATE settings.

OFF The SerDes PLL control register is not touched.
NEXUS.SerDesCFG.FRATE Select frequency of SerDes PLL VCO

Format: NEXUS.SerDesCFG.FRATE <mode>

<mode>: DEFault | 3GHz | 3.125GHz | 4GHz | 5GHz | 6GHz | 6.25GHz

Default: DEFault.

Sets the FRATE field of the SerDes PLL control register. This value sets the frequency of PLL VCO as
described in the reference manual of the CPU.

<mode> Sets the appropriate FRATE field value of the SerDes PLL control register
according to the CPU reference manual.
The available <mode> values are dependent on the CPU.

DEFault This setting uses values compatible with the corresponding Freescale
evaluation boards.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 104

NOTE: The value of the NEXUS.SerDesCFG.FRATE (or the corresponding bit field in
the SerDes PLL control register) must be divisible by the NEXUS.PortMode
setting, otherwise the Aurora channel won’t come up because of different lane
frequencies of the transmitter and the receiver. In this case a warning will be
displayed in the message line and the AREA.view window.

NEXUS.SerDesCFG.REFCLK Select frequency of SerDes reference clock

Format: NEXUS.SerDesCFG.REFCLK <mode>

<mode>: DEFault | 100MHz | 125MHz | 150MHz | 156.25MHz | 161.13MHz

Sets the RFCLK field of the SerDes PLL control register. This value selects the SerDes reference clock
frequency as described in the CPU reference manual.

DEFault This setting uses values compatible with the corresponding Freescale
evaluation boards.

<mode> Sets the appropriate RFCLK field value of the SerDes PLL control register
according to the CPU reference manual.
The available <mode> values are dependent on the CPU.

NOTE: The value of the NEXUS.SerDesCFG.REFCLK (or the corresponding bit field
in the SerDes PLL control register) must be adjusted to your board settings,
otherwise the Aurora channel won’t come up because the PLL won’t lock. In this
case a warning will be displayed in the message line and the AREA.view

window.
NEXUS.Spen<messagetype> Enable message suppression
Format: NEXUS.SpenDQM [ON | OFF]

NEXUS.SpenWTM [ON | OFF]
NEXUS.SpenPTM [ON | OFF]
NEXUS.SpenDTM [ON | OFF]
NEXUS.SpenOTM [ON | OFF]

Default: OFF.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 105

Configures the core to suppress one or more message types (DQM, WTM, PTM, DTM and OTM) when the
on-chip Nexus message FIFO reaches a certain fill level. Enabling one of these options will in most cases
cause problems in trace analysis, because the trace message stream contains no information about if and
when messages have been suppressed. The fill level at which message suppression occurs can be
configured via the command NEXUS.SupprTHReshold.

NEXUS.STALL Stall the program execution when FIFO level is reached
Format: NEXUS.STALL [OFF | 1/4 1 1/2 | 3/4]
Default: OFF.

Stall the program execution whenever the configured on-chip Nexus-FIFO (internal buffer) fill level is
reached. If this option is enabled, the Nexus port controller (NPC) will stop the core’s execution pipeline if the
set fill level of the buffer is reached, e.g. fill level 1/2.

In the meantime, the NPC sends the messages of the buffer to the defined trace sink. The NPC will start the
core’s execution pipeline again if the next lower fill level of the buffer is reached, e.g. fill level 1/4.

Enabling this command will affect (delay) the instruction execution timing of the CPU. This system option,
which is a representation of a feature of the processor, will remarkably reduce the amount FIFO
OVERFLOW errors, but can not avoid them completely.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 106

NEXUS.state Display Nexus port configuration window

Format: NEXUS.state [/<tab>]

<tab>: Cores | DDR | OCeaN

Displays the Nexus trace port configuration window.

2 BiNEXUS state =n| Wl <
nexus PortSize
Cores | DDR|| OCeal
OFF 2lane w7
@ ON PortMode selection suppression option
6250Mbps - JIBTM SpenDQM POTD
TimeStamps |~ USEPORT WTM SpenWTM PTFPMM
PCIE1 Daom SpenPTM QFF ~
RESet serdescfg oM SpenDTM PTFPR
@Tmce | SerDesCFG OFF A SpenOTM OFF w7
L REFCLK PTCM SupprTHReshold PTFGS
DEFautt_~] BLHM | ([] o +]
FRATE STALL
DEFault - QFF A

LaneMapping

0 [#{ustogm | [Q, Find DoM |

=]
=]
—(w fra |

<tab> Opens the NEXUS.state window on the specified tab.
NEXUS.SupprTHReshold Set fill level for message suppression
Format: NEXUS.SupprTHReshold [1/4 | 1/2 | 3/4]

Sets the Nexus message FIFO fill level, at which messages will be suppressed by the core. The message
types which will be suppressed are configured via the NEXUS.Suppr<message> command.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 107

NEXUS.TimeStamps Append target timestamps to Nexus messages

Format: NEXUS.TimeStamps [ON | OFF]
Default: OFF.

ON All Nexus messages will be extended with a target counter timestamp.
Use this option to increase the timestamp accuracy.

OFF No timestamp will be appended to the Nexus messages. Use this option
to save bandwidth.

NOTE: If you uses the external Aurora HSTP, all messages will get a timestamp from the

serial preprocessor, independent of this option.
NEXUS.USEPORT Define used PCle controller for PCle trace
Format:

NEXUS.USEPORT [PCIE1 | PCIE2 | PCIE3 | PCIE4]

Default: PCIE1.

Defines the PCle controller that will be used for PCle tracing (see Nexus PCle Trace).

NEXUS.WTM Enable watchpoint messaging
Format: NEXUS.WTM [ON | OFF]
Default: OFF.
ON Nexus outputs watchpoint messages.
OFF No watchpoint messages are output by Nexus.
NOTE: When a watchpoint is set via a Break.Set command, the NEXUS.WTM setting will
be internally overridden to ON.

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace | 108

OCeaNTrace.List List OCeaN trace contents

Format: OCeaNTrace.List [<items>...]

<items>: [DEFault | OCeaN | OCeaNSYNC | OCeaNMID | ...]

Opens a window showing the recorded OCeaN trace data.

<items> The <items> define the columns to be displayed in the OCeaN trace listing.
You can combine any of the available <items>.

DEFault By default, just the basic information is displayed, which includes the
address, the transmitted data and the message type including the source
port.

OCeaN Displays all details included in the OCeaN trace message.

All other <items> display only a subset of the OCeaN trace message.

For information about how to access other trace listings, see chapter Trace Sources.

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 109

Onchip specific Commands

Onchip.TBARange Configure on-chip trace base address range

Format: Onchip.TBARange <address_range>
Onchip.TBAddress <address_range> (deprecated)

Define the address range for the onchip trace buffer. The address range is always based on physical
addresses and thus is not dependent on the MMU, but on the LAW settings. The user-defined address
range will always be adapted to correct aligned 64byte block size.

NOTE: Setting a TBARange includes a fast read-write validation of this memory. A
warning will be displayed and the TBARange is reset if this memory access
fails.

The maximum onchip trace size for QorlQ processors is restricted to 512MB
(exact (2/29)-1 byte).

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace |

110

Filters and Triggers for the Nexus Trace

This section describes filters and triggers provided by the processor.

The internal watchpoints of the QorlQ processors can be used to control the output of the trace data. The
following actions for the Nexus trace are provided through the Break.Set command:

Actions for the Trace (provided by the CPU)

TraceEnable Configure the trace source to only generate a trace message if the
specified event occurs. Complete program flow or data trace is disabled.
If more than one TraceEnable action is set, all TraceEnable actions will
generate a trace message.

TraceData Use this action to configure data access trace messaging to an address
range or single address.
The QorlQ processors offer just the possibility to trace write accesses. In
order to use the TraceData action it has to be combined with /Write.
Please also note the data trace restrictions in Supported Trace Features.
There is no need to enable NEXUS.BTM to use the data trace.

TraceON If the specified event occurs, program and data trace messaging is

TraceOFF started (TraceON) or ends (TraceOFF). In order to perform event based
trace start/end to program trace and data trace separately, use Alpha-
Echo actions.

WATCH Set a watchpoint on the event. The CPU will trigger the EVTO pin if the
event occurs and generate a watchpoint hit message if the trace port is
enabled.

Examples for exclusive selective tracing. TraceEnable enables tracing exclusively for the selected events.
All other program and data trace messaging is disabled.

;Only generate a trace message when the instruction
;at address 0x00008230 is executed.
Break.Set 0x00008230 /Program /TraceEnable

;Only generate a trace message when the core writes to variable flags[3].
Var.Break.Set flags[3] /Write /TraceEnable

Examples for data trace messaging (TraceData):

;Enable data trace for write accesses for one specific address
Break.Set 0x10000000 /Write /TraceData

;Enable data trace for the maximum address range (8kB, consisting of

2x4kB ranges. Possible only if no other onchip DAC resources are used.)
Break.Set 0x10000000--0x10001FFF /Write /TraceData

;Enable data trace for write accesses to the array flags
Var.Break.Set flags /Write /TraceData

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 111

Examples to turn on/off trace recording based on debug/trace events. TraceON/TraceOFF control program
and data trace depending on NEXUS.BTM/DTM setting:

;Enable program/data trace when func2 is entered

;Disable program/data trace when last instruction of func2 is executed.
Break.Set sYmbol.BEGIN (func?2) /Program /TraceON
Break.Set sYmbol.END (func?2)&0xXxFFFFFFFC /Program /TraceOFF

;Enable program/data trace when variable flags[3] is written
Var .Break.Set flags[3] /Write /TraceON

;Disable program/data trace data when 16-bit value 0x1122 is
;written to address 0x40000230

Break.Set 0x40000230 /Write /Data.Word 0x1122

;Enable program/data trace only when a specific task is active
;NOTE: RTOS support must be set up correctly
&magic=0x40001280 ;set &magic to the task of interest
Break.Set task.config(magic) /Write /Data &magic /TraceON
Break.Set task.config(magic) /Write /Data !&magic /TraceOFF

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace | 112

JTAG Connector

Mechanical Description

JTAG Connector QorlQ (COP)

Signal

TDO

TDI
(RUNSTOP-)
TCK

TMS
(SRESET-)
PORESET-
(CKSTOPOUT-)

This is a standard 16 pin double row (two rows of eight pins) connector (pin-to-pin spacing: 0.100 in.).

Pin Pin Signal

1 2 N/C

3 4 TRST-

5 6 JTAG-VREF

7 8 (CHKSTPIN-)
9 10 N/C

11 12 GND

13 14 N/C (KEY PIN)
15 16 GND

(Signals in brackets are not necessary for basic debugging, but it is recommended to take them into

consideration for future designs.)

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace

113

Aurora HSTP Connectors

Samtec22 (Power.org)

Signal Pin Pin Signal
TXPO 1 2 JTAG-VREF
TXNO 3 4 TCK
GND 5 6 TMS
TXP1 7 8 TDI
TXN1 9 10 TDO
GND 11 12 TRST-
TXP2 13 14 (VENDOR-IO0)
TXN2 15 16 (VENDOR-IO1)
GND 17 18 (VENDOR-IO2)
TXP3 19 20 (VENDOR-IO3)
TXN3 21 22 PORESET-
Samtec46 (Power.org)
Signal Pin Pin Signal
TXPO 1 2 JTAG-VREF
TXNO 3 4 TCK
GND 5 6 TMS
TXP1 7 8 TDI
TXN1 9 10 TDO
GND 11 12 TRST-
TXP2 13 14 (VENDOR-IO0)
TXN2 15 16 (VENDOR-IO1)
GND 17 18 (VENDOR-IO2)
TXP3 19 20 (VENDOR-IOS3)
TXN3 21 22 PORESET-
GND 23 24 GND
(TXP4) 25 26 (CLKP)
(TXN4) 27 28 (CLKN)
GND 29 30 GND
(TXP5) 31 32 (VENDOR-IO4)
(TXN5) 33 34 (VENDOR-IO5)
GND 35 36 GND
(TXP6) 37 38 N/C
(TXNS) 39 40 N/C
GND 41 42 GND
(TXP7) 43 44 N/C
(TXN7) 45 46 N/C

©1989-2024 Lauterbach QorlQ Debugger and NEXUS Trace

Samtec70 (Power.org)

Signal
TXPO
TXNO
GND
TXP1
TXN1
GND
(RXPO0)
(RXNO)
GND
(RXP1)
(RXN1)
GND
TXP2
TXN2
GND
TXP3
TXN3
GND
(RXP2)
(RXN2)
GND
(RXP3)
(RXNS3)
GND
(TXP4)
(TXN4)
GND
(TXP5)
(TXN5)
GND
(TXP6)
(TXN®B)
GND
(TXP7)
(TXN7)

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
41 42
43 44
45 46
47 48
49 50
51 52
53 54
55 56
57 58
59 60
61 62
63 64
65 66
67 68
69 70

Signal
JTAG-VREF
TCK

TMS

TDI

TDO

TRST-
(VENDOR-I00)
(VENDOR-IO1)
(VENDOR-102)
(VENDOR-103)
PORESET-
GND

(CLKP)
(CLKN)

GND
(VENDOR-104)
(VENDOR-I05)
GND

N/C

N/C

GND

N/C

N/C

GND

N/C

N/C

GND

N/C

N/C

GND

N/C

N/C

GND

N/C

N/C

©1989-2024 Lauterbach

QorlQ Debugger and NEXUS Trace

115

	QorIQ Debugger and NEXUS Trace
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Target Design Recommendations
	General

	Quick Start
	Troubleshooting
	SYStem.Up Errors

	FAQ
	Tool Configuration
	TRACE32 Debugger
	TRACE32 Debugger and Trace with Serial Preprocessor
	TRACE32 Debugger and Trace with PowerTrace Serial
	Aurora Traceport
	PCIe Traceport

	PowerPC QorIQ specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	Breakpoints on Program Addresses
	Breakpoints on Data Addresses
	Breakpoints on Data Access at Program Address
	Breakpoints on Data Value

	Access Classes
	Access Classes to Memory and Memory Mapped Resources
	Access Classes to Other Addressable Core and Peripheral Resources

	Cache
	Memory Coherency
	MESI States and Cache Status Flags
	Viewing Cache Contents

	Debugging Information
	Multicore Debugging
	General Information
	SMP Debugging
	AMP Debugging
	Synchronous Stop of the Cores

	Programming Flash on QorIQ Processors
	Programming the Reset Configuration Word (RCW)

	Trace Information
	Supported Trace Features
	Aurora HSTP Trace
	Nexus PCIe Trace
	On-chip Trace
	Trace initialization
	Trace Sink settings and processes - depending on the system state
	Trace Source settings and trace access - regardless of the system state

	CPU specific SYStem Commands
	SYStem.BdmClock Set debug clock frequency
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CONFIG.CHKSTPIN Control pin 8 of debug connector
	SYStem.CONFIG.DriverStrength Configure driver strength of TCK pin
	SYStem.CONFIG.QACK Control QACK pin
	SYStem.CPU Select the CPU type
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Select operation mode

	CPU specific SYStem.Option Commands
	SYStem.Option.Address32 Define address format display
	SYStem.Option.DCFREEZE Data cache state frozen while core halted
	SYStem.Option.DCREAD Read from data cache
	SYStem.Option.DUALPORT Implicitly use run-time memory access
	SYStem.Option.FREEZE Freeze system timers on debug events
	SYStem.Option.HOOK Compare PC to hook address
	SYStem.Option.HRCWOVerRide Override RCW during SYStem.Up
	SYStem.Option.ICFLUSH Invalidate instruction cache before go and step
	SYStem.Option.ICREAD Read from instruction cache
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MACHINESPACES Address extension for guest OSes
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.NoDebugStop Disable JTAG stop on debug events
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.RESetBehavior Set behavior when target reset detected
	SYStem.Option.SLOWRESET Relaxed reset timing
	SYStem.Option.STEPSOFT Use alternative method for ASM single step
	SYStem.Option.TranslationSPACE Identify user and hypervisor modes
	SYStem.Option.ZoneSPACES Enable symbol management for zones

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.FORMAT Define MMU table structure
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU
	MMU.Set Set an MMU TLB entry

	CPU specific BenchMarkCounter Commands
	BMC.FREEZE Freeze counters while core halted
	BMC.Trace Trace performance monitor events
	BMC.<counter>.FREEZE Freeze counter in certain core states

	CPU specific TrOnchip Commands
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.RESet Reset on-chip trigger settings
	TrOnchip.Set Enable special on-chip breakpoints
	TrOnchip.VarCONVert Adjust HLL breakpoint in on-chip resource
	TrOnchip.state View on-chip trigger setup window

	Nexus and Trace specific commands
	DDRTrace.List List DDR trace contents
	DQMTrace.List List DQM trace contents
	NEXUS.BTM Enable program trace messaging
	NEXUS.CoreENable Core specific trace configuration
	NEXUS.DDRConfig.ADDRessfilter Filter Nexus DDR messages
	NEXUS.DDRConfig.Controller Configure Nexus DDR message type
	NEXUS.DQM Enable data acquisition messaging
	NEXUS.LaneMapping Logical to physical lane mapping
	NEXUS.LaneMapping.APPLY Apply logical to physical lane mapping
	NEXUS.LaneMapping.SetLane Configure logical to physical lane mapping
	NEXUS.OCeaNport.Mode Configure Nexus OCeaN message type
	NEXUS.OCeaNport<index>.TraceSELect Select Nexus OCeaN trace type
	NEXUS.OFF Switch the Nexus trace port off
	NEXUS.ON Switch the Nexus trace port on
	NEXUS.OTM Enable ownership trace messaging
	NEXUS.PortMode Set Nexus trace port frequency
	NEXUS.PortSize Set trace port width
	NEXUS.POTD Disable periodic ownership trace
	NEXUS.PTCM Enable program trace correlation messages
	NEXUS.PTFGS Program trace mark
	NEXUS.PTFPMM Program trace mark
	NEXUS.PTFPR Program trace mark
	NEXUS.PTMARK Program trace mark
	NEXUS.RefClock Enable Aurora reference clock
	NEXUS.Register Display NEXUS trace control registers
	NEXUS.RESet Reset Nexus trace port settings
	NEXUS.SerDesCFG Enable SerDes PLL control register manipulation
	NEXUS.SerDesCFG.FRATE Select frequency of SerDes PLL VCO
	NEXUS.SerDesCFG.REFCLK Select frequency of SerDes reference clock
	NEXUS.Spen<messagetype> Enable message suppression
	NEXUS.STALL Stall the program execution when FIFO level is reached
	NEXUS.state Display Nexus port configuration window
	NEXUS.SupprTHReshold Set fill level for message suppression
	NEXUS.TimeStamps Append target timestamps to Nexus messages
	NEXUS.USEPORT Define used PCIe controller for PCIe trace
	NEXUS.WTM Enable watchpoint messaging
	OCeaNTrace.List List OCeaN trace contents

	Onchip specific Commands
	Onchip.TBARange Configure on-chip trace base address range

	Filters and Triggers for the Nexus Trace
	JTAG Connector
	Mechanical Description
	JTAG Connector QorIQ (COP)
	Aurora HSTP Connectors
	Samtec22 (Power.org)
	Samtec46 (Power.org)
	Samtec70 (Power.org)

