LAUTERBACH A

PQIIl Debugger

PQIll Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~
0 | PP r=
@ 111 7= o TH T T T 1

L 1= (o 5

Y e Yo 11T £ o) o T 5

Brief Overview of Documents for New Users 5

Demo and Start-up Scripts 6
L= T 11 ' 7
Target Design Requirement/Recommendationsccccciiiceminiscsninssnnssmssssmssssmssnnes 8
General 8

L@ T Q3 - ' R 9

QLo 18] o == 0 T To7 £ 3V 10
SYStem.Up Errors 10

o 11
ConfIgUIration ... 12
System Overview 12
PowerPC MPC85XX/QorlQ specific Implementationsccccccemriiicniiisnnncsssinssnnncanes 13
Breakpoints 13
Software Breakpoints 13

On-chip Breakpoints 13
Breakpoints on Program Addresses 14
Breakpoints on Data Addresses 14
Breakpoints on Data Access at Program Address 15
Breakpoints on Data Value 15

Access Classes 17
Access Classes to Memory and Memory Mapped Resources 17

Access Classes to Other Addressable Core and Peripheral Resources 18

Cache 18
Memory Coherency 18
©1989-2024 Lauterbach PQIll Debugger 2

MESI States and Cache Status Flags 20
Viewing Cache Contents 20
Debugging Information 21
Multicore Debugging €500 cores 21
SMP Debugging 21
AMP Debugging 22
Synchronous stop of both e500 cores
Programming Flash on MPC85XX / QorlQ P10XX/P20XX, PSC93XX 22
On-chip Trace on MPC85XX/QorlQ 23
PowerPC MPC85XX/QorlQ specific SYStem Commandsccccccvcmmrrnnssmmnmsnssssesnnnnas 25
SYStem.BdmClock Set BDM clock frequency 25
SYStem.CONFIG.state Display target configuration 25
SYStem.CONFIG Configure debugger according to target topology 26
SYStem.CONFIG.CHKSTPIN Control pin 8 of debug connector 29
SYStem.CONFIG.DriverStrength Configure driver strength of TCK pin 30
SYStem.CONFIG.QACK Control QACK pin 30
SYStem.CPU Select the target processor 31
SYStem.LOCK Lock and tristate the debug port 31
SYStem.MemAccess Select run-time memory access method 32
SYStem.Mode Select operation mode 33
CPU specific SYStem.Option Commandscccccceiiimmrirsninssmnsmssssss s sssssssssens 34
SYStem.Option.CINTDebug Enable debugging of critical interrupts 34
SYStem.Option.CoreStandBy On-the-fly breakpoint setup 34
SYStem.Option.DCFREEZE Prevent data cache line load/flush in debug mode 34
SYStem.Option.DCREAD Read from data cache 35
SYStem.Option.DUALPORT Implicitly use run-time memory access 35
SYStem.Option.FREEZE Freeze system timers on debug events 36
SYStem.Option.HOOK Compare PC to hook address 36
SYStem.Option.ICFLUSH Invalidate instruction cache before go and step 36
SYStem.Option.ICREAD Read from instruction cache 37
SYStem.Option.IMASKASM Disable interrupts while single stepping 37
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 37
SYStem.Option.MMUSPACES Separate address spaces by space IDs 38
SYStem.Option.NoDebugStop Disable JTAG stop on debug events 38
SYStem.Option.NOTRAP Use alternative software breakpoint instruction 39
SYStem.Option.OVERLAY Enable overlay support 40
SYStem.Option.PERSTOP Stop on-chip peripherals in debug mode 40
SYStem.Option.RESetBehavior Set behavior when target reset detected 41
SYStem.Option.SLOWRESET Relaxed reset timing 41
SYStem.Option.STEPSOFT Use alternative method for ASM single step 41
CPU specific MMU COMMANGS cccccemmrriissmmrrrsssssmssssssssmmsssssssmssssssssmsssssssssnmsssssssmsssssas 43
MMU.DUMP Page wise display of MMU translation table 43
©1989-2024 Lauterbach PQIIl Debugger 3

MMU.List Compact display of MMU translation table 45

MMU.SCAN Load MMU table from CPU 47
MMU.Set Set an MMU TLB entry 49
CPU specific BenchMarkCounter Commandsccccccccrmmmminnsssssssssssmmssssssssssssssssssssnnnnes 50
BMC.FREEZE Freeze counters while core halted 50
BMC.<counter>.FREEZE Freeze counter in certain core states 50
BMC.<counter>.SIZE No function 51
CPU specific TrOnchip Commandscccccccmiiiiimmmmnnnessrnssssss s ssssssssns 52
TrOnchip.CONVert Adjust range breakpoint in on-chip resource 52
TrOnchip.DISable Disable NEXUS trace register control 52
TrOnchip.ENable Enable NEXUS trace register control 53
TrOnchip.RESet Reset on-chip trigger settings 53
TrOnchip.Set Enable special on-chip breakpoints 54
TrOnchip.VarCONVert Adjust HLL breakpoint in on-chip resource 55
TrOnchip.state View on-chip trigger setup window 56
MPC85XX/QorlQ Specific On-chip Trace Settings ... 57
Onchip.Mode.IFSel Select interface to be traced 57
0817 € R 0T T T 7= o o 58
Mechanical Description 58
JTAG Connector MPC85XX (COP) 58

©1989-2024 Lauterbach PQIll Debugger | 4

PQlll Debugger

Version 06-Jun-2024

History
20-Jul-22 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second
parameter.
Introduction

This document describes the processor specific settings and features of TRACE32-ICD for the following
CPU families:

o Freescale PowerQuicc Ill Series MPC85XX
. Freescale QorlQ P101x, P102x, P2010, P2020

o Freescale Qonverge PSC91XX, PSC92XX series
Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by

Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

If some of the described functions, options, signals or connections in this Processor Architecture Manual are
only valid for a single CPU or for specific families, the name(s) of the family(ies) is added in brackets.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACES32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

©1989-2024 Lauterbach PQIll Debugger | 5

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

J or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/powerpc/ subfolder of the system directory of TRACES32.

©1989-2024 Lauterbach PQIll Debugger | 6

Warning

Signal Level
NOTE: The debugger drives the output pins of the BDM/JTAG/COP connector with the
same level as detected on the VCCS pin. If the debug/trace I/O pins of the
processor are operating at e.g. 3.3 V, then VCCS should be connected to 3.3 V as
well.
See also System.up Errors.
ESD Protection
WARNING: To prevent debugger and target from damage it is recommended to connect or

disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o &~ e

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACES32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACE32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

PQIIl Debugger |

Target Design Requirement/Recommendations

General

. Locate the BDM/JTAG/COP connector as close as possible to the processor to minimize the
capacitive influence of the trace length and cross coupling of noise onto the JTAG signals. Don’t
put any capacitors (or RC combinations) on the JTAG lines.

J Connect TDI, TDO, TMS and TCK directly to the CPU. Buffers on the JTAG lines will add delays
and will reduce the maximum possible JTAG frequency. If you need to use buffers, select ones
with little delay. Most CPUs will support JTAG above 30 MHz, and you might want to use high
frequencies for optimized download performance.

J Ensure that JTAG HRESET is connected directly to the HRESET of the processor. This will
provide the ability for the debugger to drive and sense the status of HRESET. The target design
should only drive HRESET with open collector/open drain.

J For optimal operation, the debugger should be able to reset the target board completely
(processor external peripherals, e.g. memory controllers) with HRESET.

. In order to start debugging right from reset, the debugger must be able to control CPU HRESET
and CPU TRST independently. There are board design recommendations to tie CPU TRST to
CPU HRESET, but this recommendation is not suitable for JTAG debuggers.

Debug cable The T32 internal buffer/level shifter will be supplied via the VCCS pin.
with blue Therefore it is necessary to reduce the VCCS pull-up on the target board
ribbon cable to a value smaller 10 Q.

©1989-2024 Lauterbach PQIll Debugger | 8

Quick Start

Starting up the Debugger is done as follows:
5. Select the CPU to load the CPU specific settings. SYStem.DETECT CPU can set the appropriate
CPU automatically.

SYStem.CPU MPC85XX
SYStem.DETECT CPU

6. Specify that on-chip breakpoints should be used by the debugger, e.g. for program in FLASH.

MAP.BOnchip O0xFF800000--0xFFFFFFFF

7. Reset processor and enter debug mode

SYStem.Up

The core is now stopped at the reset address.

8. After SYStem.Up, only the boot page is visible for the CPU. Initialize MMU TLBs to configure
which memory is visible to the CPU at which address. See MMU.Set for details.

; set up TLB entry starting from address 0 for SDRAM
MMU.Set TLB1 1. 0x80000600 0x00000000 0x0000003f

9. This step prepares the target memory for program loading. To configure the CPU for the access
to all memories either run the initialization code on your target or configure the CPU by using the
Data.Set command. For complete example scripts, see ~~/demo/powerpc/hardware.

; set CCSR base address to 0xE0000000
Data.Set ANC:iobase() %LONG 0x000E0000

; local access window

Data.Set ANC:iobase()+0x0C08 %long 0x00000000
Data.Set ANC:iobase()+0x0C10 %long 0x80F0001C

10. Load the program.

Data.LOAD.ELF demo.elf (ELF specifies the format,
demo.elf is the file name)

The option of the Data.LOAD command depends on the file format generated by the compiler. A detailed
description of the Data.LOAD command is given in the “General Commands Reference”.

©1989-2024 Lauterbach PQIll Debugger | 9

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command, there can be several reasons. The
Following chapters list possible errors and explains how to fix them.

Target Power Fail

The target has no power, the debug cable is not connected or not connected properly. Check if the
JTAG VCC pin is driven by the target. The voltage of the pin must be identical to the debug voltage of
the JTAG signals. It is recommended to connect VCC directly to the pin, or via a resistor < 5 kKOhm.

Debugger Configuration Error

The debugger was not able to identify the connected processor. There are two possible reasons for this
error. In both cases, please check the AREA window for more information:

J The connected processor is not supported by the used software. Please check if the processor is
supported by the debugger. Processors that appeared later than the debugger software version
are usually not supported. Please download and install the latest software from our homepage,
or contact technical support to get a newer software. Please also check if the processor or the
software update is covered by your current licence.

J A JTAG communication error prevented correct determination of the connected processor.
Please check if the debugger is properly connected to the target.

Target Reset Fail

On SYStem.Up, the debugger will assert HReset in order to stop the CPU at the reset address. A target
reset fail means, that an unexpected reset behavior caused an error:

J The reset is asserted longer than 500ms and is not visible on the JTAG connector. Try
SYStem.Option.SLOWRESET, and check signal level of the JTAG HRESET pin.

J The target reset is permanently asserted. Check target reset circuitry and reset pull-up

. A chip external watchdog caused a reset after the debugger asserted reset. Disable the

watchdog and try again.

©1989-2024 Lauterbach PQIll Debugger | 10

Emulation Debug Port Fail

An emulation debug port fail can have a variety of reasons. Please check the AREA window for a detailed
error message. Here is a collection of frequently seen issues:

. JTAG communication error. Please check the signals on the debug connector

J Problems related with Reset can not always be detected as those. Please check Target Reset
Fail

. AREA window error message “Error reading BPTR“ This error usually occurs if the CPU is

permanently in reset or checkstop. Please check on your target:
- reset and checkstop signals

- power supply

- system clocks and PLL

- bootstrap configuration pins
In many cases it is possible to verify the bootstrap configuration even if SYStem.Up fails:

SYStem.CPU MPC85XX

SYStem.DETECT CPU

SYStem.MemAccess Enable

SYStem.Mode.Attach

PER , "Global Utilities, Power-On" /DualPort

If the above sequence fails to display the power-on reset configuration registers (displaying question marks,
bus error. This can e.g. be the case when the PLL configuration is wrong), there is an alternative method to
access the bootstrap configuration information. For instructions please contact bdmppcpg3-
support@lauterbach.com.

SYStem.Up will also fail if the processor is configured to boot from NAND, but the NAND flash contains
invalid data. The processor enables NAND error checking upon reset. If the ECC in the spare area does not
match data in main AREA, loading the NAND flash sector fails and the debugger can not connect. The
workaround is to change the bootstrap configuration to ROM_LOG=GPCM.

If the bootstrap configuration was found to be wrong or needs to be changed temporarily (e.g. for NAND
programming), it is possible to override the bootstrap configuration setting through JTAG. For instructions
again please contact support using above email address.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach PQIll Debugger | 11

https://support.lauterbach.com/kb

Configuration

System Overview

PODPC
PODPAR
PODETH

PODBUS Cable u

Debug
Interface

Basic

EPROM
Simulator .o
(optional)

[

—Debug Cable

.

)
CPU CLK

Target Connector|

—
e—RESET
o—INT

(600

EPROM only)

Target TS4 (400 only)

configuration for the BDM Interface

©1989-2024 Lauterbach

PQIIl Debugger |

12

PowerPC MPC85XX/QorlQ specific Implementations

Breakpoints

There are two types of breakpoints available: Software breakpoints and on-chip breakpoints.

Software Breakpoints

To set a software breakpoint, before resuming the CPU, the debugger replaces the instruction at the

breakpoint address with a TRAP instruction.

On-chip Breakpoints

To set breakpoints on code in read-only memory, only the on-chip instruction address breakpoints are
available. With the command MAP.BOnchip <range> it is possible to declare memory address ranges for
use with on-chip breakpoints to the debugger. The number of breakpoints is then limited by the number of

available on-chip instruction address breakpoints.

. On-chip breakpoints: Total amount of available on-chip breakpoints.

J Instruction address breakpoints: Number of on-chip breakpoints that can be used to set
Program breakpoints into ROM/FLASH/EEPROM.

J Data address breakpoints: Number of on-chip breakpoints that can be used as Read or Write

breakpoints.

J Data value breakpoint: Number of on-chip data value breakpoints that can be used to stop the
program when a specific data value is written to an address or when a specific data value is read

from an address.

Processor On-chip Instruction Data Address Data Value
Breakpoints Address Breakpoints Breakpoints

Breakpoints

MPC85XX 4 Instruction 2 single 2 single none

P10xx 2 Read/Write breakpoints breakpoints

P20xx -- Or -- -- Or --

P40xx 1 breakpoint 1 breakpoint
ranges range

You can see the currently set breakpoints with the command Break.List.

If no more on-chip breakpoints are available you will get an error message when trying to set a new on-chip

breakpoint.

©1989-2024 Lauterbach

PQIll Debugger | 13

Breakpoints on Program Addresses

The debugger sets software and on-chip breakpoints to the effective address. If a breakpoint is set on a
program address, the debugger will first try to set a software breakpoint. If writing the software breakpoint
fails (translation error or bus error), then an on-chip breakpoint will be set instead. If a memory range must
not be written by the debugger, it can be declared for on-chip breakpoint usage using MAP.BOnchip.
Alternatively, it is also possible to force a single breakpoint to on-chip using the command Break.Set with
option /Onchip:

Map.BOnchip OXFFFC0000--O0xXFFFFFFFF ;use on-chip breakpoints in FLASH

Break.Set OxXFFFFF064 ;debugger sets on-chip breakpoint
Break.Set my_ funcl ;debugger sets on-chip or sw breakp.
Break.Set my_ funcl /Onchip ;debugger sets on-chip breakpoint

Two on-chip program address breakpoints can be combined to an address range:

Break.Set 0x00000000--0x00002000 /Onchip
Break.Set IVOR0O_Handler--IVOR15_Handler /Onchip

Breakpoints can be configured to stop if the break event occurred a given number of times.

;stop on the 20th call of function foo
Break.Set foo /Onchip /COUNT 20.

Breakpoints on Data Addresses

Data address breakpoints cause a debug event when a certain address or address range is read or written
by the core. A data address breakpoint to a single address has a granularity of 1 byte.

Break.Set 0xC3F80004 /Read ;break when core reads from 0xC3F80004
Break.Set 0xC3F80004 /Write ;break when core writes to 0xC3F80004
Break.Set 0xC3F80004 /ReadWrite ;break on read or write access

Break.Set 0xC3F80000--0xC3F80023 /Write ;break address range

Var.Break.Set counter /Write ;break on variable write access

Equal to program address breakpoints, data address breakpoints can be configured to stop if the break
event occurred a given number of times:

;stop on the 8th write to arrayindex
Break.Set arrayindex /Write /COUNT 20.

Data address breakpoint limitations:

©1989-2024 Lauterbach PQIll Debugger | 14

1. The source of the data access (read and/or write) must be the core, as the data address
breakpoints are part of the core. Any other accesses from on-chip or off-chip peripherals (DMA
etc.) will not be recognized by the data address breakpoints.

2. The data being targeted must be qualified by an address in memory. It is not possible to set a
data address breakpoint to GPR, SPR etc.

Breakpoints on Data Access at Program Address

A normal data access breakpoint as described above hits on all data accesses to the memory address or
address range, independent of the program address which caused the access. It is also possible to set a
data address breakpoint which only hits if the access is performed from a specified program address. The
specified program address must be a load or store instruction.

;Break if the instruction at address 0x40001148 reads from variable count
Break.Set 0x40001148 /MemoryRead count

;Break if the instruction at address 0x40001148 writes to range
Break.Set 0x40001148 /MemoryWrite OxXFFFFF000--0xXFFFFFFFF

The program address can also be an address range or a range of debug symbols:

;Break on all accesses to count from code of the address range
Break.Set 0x40000100--0x400001ff /MemoryReadWrite count

;Break if variable nMyIntVar is written by an interrupt handler
; (debug symbols IVORxx_Handler loaded from debug symbols)
Break.Set IVOR0O_Handler--IVOR15_Handler /MemoryWrite nMyIntVar

;Break if variable nTestValue is written within function test_func
Break.Set sYmbol.RANGE (test_func) /MemoryWrite nTestValue

;Break if variable nTestValue is written outside of test_func
Break.Set sYmbol.RANGE (test_func) /EXclude /MemoryWrite nTestValue

Breakpoints on Data Value

The €500 core does not support onchip breakpoints on data values, but TRACE32 supports them by
software emulation. When a data value breakpoint is set, the debugger will use one of the data address
breakpoint s. When the core hits that breakpoint, the target application will stop and the debugger will
evaluate if the data value matches. If the value matches, the debugger will stop execution, if it does not
match, the debugger will restart the application. Using software emulated data value breakpoints will cause
the target application to slow down.

©1989-2024 Lauterbach PQIll Debugger | 15

Examples for setting data value breakpoints:

;Break when the value 0x1233 is written to the 16-bit word at 0x40000200
Break.Set 0x40000200 /Write /Data.Word 0x1233

;Break when a value not equal 0x98 is written to the 8-bit variable xval
Break.Set xval /Write /Data.Byte !0x98

;Break when decimal 32-bit value 4000 is written
;to variable count within function foo
Break.Set sYmbol.RANGE (foo) /MemoryWrite count /Data.Long 4000.

©1989-2024 Lauterbach PQlll Debugger | 16

Access Classes

Access classes are used to specify how TRACE32 PowerView accesses memory, registers of
peripheral modules, addressable core resources, coprocessor registers and the TRACE32 Virtual

Memory.

Addresses in TRACE32 PowerView consist of:

J An access class, which consists of one or more letters/numbers followed by a colon (:)

o A number that determines the actual address

Here are some examples:

Command:

Effect:

Data.List P:0x1000

Opens a List window displaying program memory

Data.dump D:0xFF800000 /LONG

Opens a DUMP window at data address OxFF800000

SPR:415. %Long 0x00003300

Write value 0x00003300 to the SPR IVOR15

PRINT Data.Long(ANC:0xFFF00100)

Print data value at physical address OxFFF00100

Access Classes to Memory and Memory Mapped Resources

The following memory access classes are available:

Access Class Description

P Program (memory as seen by core’s instruction fetch)

F Program, disassembly shows std. PowerPC instructions
\Y Program, disassembly shows VLE encoded instructions
D Data (memory as seen by core’s data access)

IC L1 Instruction Cache (or L1 Unified cache)

DC L1 Data Cache

L2 L2 Cache

NC No Cache (access with caching inhibited)

In addition to the access classes, there are access class attributes: Examples:

Command: Effect:
Data.List SP:0x1000 Opens a List window displaying supervisor program memory
ED:0x3330 Ox4F Write Ox4F to address 0x3330 using real-time memory access

©1989-2024 Lauterbach

PQIll Debugger | 17

The following access class attributes are available:

Access Class Attributes Description

E Use real-time memory access

A Given address is physical (bypass MMU)

U TS (translation space) == 1 (user memory)

S TS (translation space) == 0 (supervisor memory)

If an Access class attributes is specified without an access class, TRACE32 PowerView will automatically
add the default access class of the used command. For example, Data.List U:0x100 will be changed to
Data.List UP:0x100.

Access Classes to Other Addressable Core and Peripheral Resources

The following access classes are used to access registers which are not mapped into the processor’s
memory address space.

Access Class Description

SPR Special Purpose Register (SPR) access

PMR Performance Monitor Register (PMR) access
Cache

Memory Coherency

The following table describes which memory will be updated depending on the selected memory class:

Memory D-Cache I-Cache L2 Cache Memory (uncached)
Class

DC: updated not updated not updated not updated

IC: not updated updated not updated not updated

L2: not updated not updated updated not updated

NC: not updated not updated not updated updated

(*) Depending on the debugger configuration, the coherency of the instruction cache will not be
achieved by updating the instruction cache, but by invalidating the instruction cache. See
SYStem.Option.ICFLUSH for details.

©1989-2024 Lauterbach PQIll Debugger | 18

Memory D-Cache I-Cache L2 Cache Memory (uncached)
Class

D: updated not updated updated updated

P: not updated updated (*) updated updated

(*) Depending on the debugger configuration, the coherency of the instruction cache will not be
achieved by updating the instruction cache, but by invalidating the instruction cache. See
SYStem.Option.ICFLUSH for details.

©1989-2024 Lauterbach

PQIll Debugger | 19

MESI States and Cache Status Flags

The data cache logic of Power Architecture cores is described as states of the MESI protocol. The debugger
displays the cache state using the cache line status flags valid, dirty and shared. The debugger also displays
additional status flags (e. g. locked) which can not be mapped to any of the MESI states.

State translation table:

MESI state

Flag

M (modified)

V(alid) && D(irty)

E (exclusive)

V(alid) && NOT D(irty)

S (shared)

V(alid) && S(hared)

| (invalid)

NOT V/(alid)

Viewing Cache Contents

The cache contents can be viewed using the CACHE.DUMP command.

Cache

Command

L1 instruction cache

CACHE.DUMP IC

L1 data dache

CACHE.DUMP DC

L2 (unified cache)

CACHE.DUMP L2

The meaning of the data fields in the CACHE.DUMP window os explained in the following table:

Data field Meaning

address Physical address of the cache line. The address is composed of
cache tag and set index.

set Set and way index of the cache

way

v,d, s Status bits of the cache line v(alid), d(irty), s(hared)

MESI state

I I(ocked).

0004 08 ... Address offsets within cache line corresponding to the cached data

address (right field) Debug symbol assigned to address

©1989-2024 Lauterbach

PQIll Debugger | 20

Debugging Information

In order to properly use all debug features (breakpoints, single step etc) of the MPC85XX, the Debug
Interrupt Vector (IVPR+IVOR15) must be set to an address which is

J properly mapped in the MMU (memory management unit) and

. points to an address which contains a valid instruction (NOP is recommended).

Please note that both IVOR/IVPR and memory contents can be changed by the application any time,
especially during the boot process. When debugging is done after the boot process finished, the interrupt
vector and memory is usually properly set up by the application. There are however operating systems that
don’t use the debug interrupt and let it point to an illegal instruction.

For early CPU revisions (PVR=0x8020XXXX) it is recommended to place the instructions NOP followed by
RFCI to the debug interrupt vector. These two instructions are needed for SYStem.Option.FREEZE.

; CORE 1 setup script: ; CORE 2 setup script:

SYStem.CPU 5516 SYStem.CPU 5516

SYStem.CONFIG.CORE 1. 1. SYStem.CONFIG.CORE 2. 1.

SYStem.UP SYStem.Mode.Attach

; do board initialization here ; z0 is still in reset

Data.LOAD.E1f demo.elf Data.LOAD.El1f demo.elf /NoCODE
Break ; with this command

; z0 will stop when
; reset is released

Go ; start zl WAIT !RUN () ; walt until cpu stops
; application will start zO0
; core

Break.Set somezOfunction

Go

Multicore Debugging €500 cores

SMP Debugging

For the dual-core processors MPC8572 and the dual-core variants of P10xx and P20xx, SMP debugging is
selected by default. No further configuration is needed. As soon as the debugger is connected (SYStem.Up,
SYStem.Mode.Attach etc.), it is possible to switch to any core using the CORE <core_index> command.
The currently selected core is displayed in the status line. If the cores are running and one of the cores hits a
breakpoint, the debugger’s view will automatically switch to this core.

©1989-2024 Lauterbach PQIll Debugger | 21

AMP Debugging

For AMP debugging, a separate instance of TRACES32 has to be started for each core. It is recommended to
use TRACE32 Start to start the TRACES32 instances. Optionally the second instance can also be started by
PRACTICE script. Each TRACES2 instance has to be configured to address one of the cores. This is done
using the commands SYStem.CONFIG.CORE and CORE.NUMBER. SY Stem Options PERSTOP and
DCFREEZE have to be turned OFF to maintain cache coherency for the times when one of the cores is
running and the other stopped.

The following commands show the basic setup commands for both TRACES32 instances:

; CORE 0 setup script: ; CORE 1 setup script:
SYStem.CPU P2020 SYStem.CPU P2020
SYStem.CONFIG.CORE 1. 1. SYStem.CONFIG.CORE 2. 1.
CORE.NUMBER 1 CORE.NUMBER 1
SYStem.Option.PERSTOP OFF SYStem.Option.PERSTOP OFF
SYStem.Option.DCFREEZE OFF SYStem.Option.DCFREEZE OFF
SYStem.Up

SYStem.Mode .ATTACH

In order to synchronously run and halt both cores, use the SYNCH commands.

There is a complete demo for debugging P10xx/20xx dual-core processors on AMP mode in
demo\powerpc\hardware\qoriq_p1_p2\amp_debugging in the TRACE32 installation directory.

Synchronous stop of both €500 cores

MPC8572/P10xx/P20xx processors do not implement a break switch on silicon. If SYNCH is configured to
synchronous break in AMP mode, or always if SMP mode is selected, the core that did not hit a breakpoint
will be stopped by the debugger. The missing hardware implementation on the processor causes a delay
between both cores typically in the 1..10 millisecond range.

Programming Flash on MPC85XX / QorlQ P10XX/P20XX, PSC93XX

There are many example scripts for NOR FLASH, NAND FLASH and EEPROMs available.

©1989-2024 Lauterbach PQIll Debugger | 22

The example scripts are in the folders:

. ~~/demo/powerpc/hardware/mpc85xx/
. ~~/demo/powerpc/hardware/qgoriqg pl_p2/
. ~~/demo/powerpc/hardware/bsc913x/

For NOR FLASH on LBC/IFC CS0, there are ready-to-use flash scripts which can be used without change.

These scripts can be found in the all_boards subfolder.

Scripts for NAND, EMMC, SPI and for the 12C boot sequencer EEPROM have to be modified in respect of

the target board’s characteristics and used FLASH devices. Therefore many reference scripts usable on

evaluation boards are included in the corresponding subfolder.

There are also example script which can encode and program the data as requested by the processor when

booting from SPI or using the boot sequencer, for example:

. ~~/demo/powerpc/hardware/mpc85xx/mpc8536ds/program_spibootflash.cmm

. ~~/demo/powerpc/hardware/mpc85xx/mpc8569mds/program_bootsequencer.cmm

On-chip Trace on MPC85XX/QorlQ

Processors of the MPC85XX series have a built-in trace buffer with 256 entries. It can be used to trace
transactions that occur on the internal memory bus according to the selected major interface (local bus,

DDR SDRAM and PCI). The trace buffer holds information about transaction address, transaction type,

source, target ID and the byte count.

The interface can be selected with the command Onchip.Mode.IFSel. All other configurations can be done
directly via the menu for CPU peripherals in the section “Debug Features and Watchpoint Facility”.

Here is an example of how to set up the on-chip trace buffer to trace the data accesses of the PowerPC core.
Please note that only uncached accesses will be recorded in the trace buffer::

; select interface ECM
Onchip.Mode.IFSEL ECM

; configure onchip trace

; TBCRO address match disable

9 transaction match disable
3 source ID enable

3 method trace events

0x40000000
0x20000000
0x04000000
0x00020000

Data.Set iobase.address()+0x000E2040 %LONG 0x64020000

; TBCR1 src ID = d-fetch 0x00110000
Data.Set iobase.address()+0x000E2044 %$LONG 0x00110000

; enable automatically when CPU is started

Onchip.AutoArm ON

©1989-2024 Lauterbach

PQIIl Debugger

23

; initialize trace buffer
Onchip.Init

; start program until some_func is reached
Go some_func

; display trace buffer
Onchip.List

Regarding instruction fetch traces, please note that the trace buffer is connected outside the caches, so
instruction fetches on cached addresses will not appear in the trace. As the core will always fetch a full
instruction cache way (32 bytes) at once, the program trace can not be reconstructed using this on-chip

trace.

Also data trace is limited to uncached accesses. The data value of the load/store access is not contained in
the trace data.

For more information about general trace commands see "Trace’ in ’‘General Commands Reference Guide
T’ and ’Onchip Trace Commands’ in ’General Commands Reference Guide O'.

©1989-2024 Lauterbach PQIll Debugger | 24

PowerPC MPC85XX/QorlQ specific SYStem Commands

SYStem.BdmClock Set BDM clock frequency
Format: SYStem.BdmClock <rate>
<rate>: 5kHz ... 50MHz

Selects the frequency for the debug interface. For multicore debugging, it is recommended to set the same
JTAG frequency for all cores.

NOTE: MPC85XX / QorlQ
The recommended maximum JTAG frequency is 1/10th of the core frequency.
Multi-core processors are limited to max 30 MHz.

SYStem.CONFIG.state Display target configuration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: DebugPort | Jtag

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort Lets you configure the electrical properties of the debug connection, such
as the communication protocol or the used pinout.

©1989-2024 Lauterbach PQIll Debugger | 25

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.

SYStem.CONFIG Configure debugger according to target topology
Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)
<parameter> DRPRE
(JTAG): DRPOST
IRPRE
IRPOST

CHIPDRLENGTH <bits>

CHIPDRPATTERN [Standard | Alternate <pattern>]
CHIPDRPOST <bits>

CHIPDRPRE <bits>

CHIPIRLENGTH <bits>

CHIPIRPATTERN [Standard | Alternate <pattern>]
CHIPIRPOST <bits>

CHIPIRPRE <bits>

TAPState
TCKLevel
TriState
Slave

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one processor in the JTAG chain. The
information is required before the debugger can be activated e.g. by a SYStem.Up. See example below.

TriState has to be used if (and only if) more than one debugger are connected to the common JTAG port at
the same time. TAPState and TCKLevel define the TAP state and TCK level which is selected when the
debugger switches to tristate mode.

NOTE:

When using the TriState mode, nTRST/JCOMP must have a pull-up resistor on the
target. In TriState mode, a pull-down is recommended for TCK, but targets with pull-
up are also supported.

©1989-2024 Lauterbach

PQIIl Debugger | 26

.. DRPOST <bits>

.. DRPRE <bits>

.. IRPOST <bits>

.. IRPRE <bits>

CHIPDRLENGTH
<bits>

CHIPDRPATTERN

[Standard | Alter-
nate <pattern>]

CHIPIRLENGTH
<bits>

CHIPIRPATTERN
[Standard | Alter-
nate <pattern>]

TAPState

TCKLevel

TriState

Slave

(default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

(default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

(default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

(default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

Number of Data Register (DR) bits which needs to get a certain BYPASS
pattern.

Data Register (DR) pattern which shall be used for BYPASS instead of
the standard (1...1) pattern.

Number of Instruction Register (IR) bits which needs to get a certain
BYPASS pattern.

Instruction Register (IR) pattern which shall be used for BYPASS instead
of the standard pattern.

(default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

(default: 0) Level of TCK signal when all debuggers are tristated.

(default: OFF) If more than one debugger share the same JTAG port, this
option is required. The debugger switches to tristate mode after each
JTAG access. Then other debuggers can access the port.

(default: OFF) If more than one debugger share the same JTAG port, all
except one must have this option active. Only one debugger - the
“master” - is allowed to control the signals nTRST and nSRST (nRESET).

©1989-2024 Lauterbach

PQIll Debugger | 27

Daisy-Chain Example

IRPOST IRPRE
I 1
TAP1 TAP2 TAP3 TAP4
IR | 4 IR IR IR
DI + | 8 | S Chip %i TDO
DR/ 1 DR/ 1 DR | 1 DR | 1
L I | |
DRPOST DRPRE

IR: Instruction register length DR: Data register length Chip: The chip you want to debug

Daisy chains can be configured using a PRACTICE script (*.cmm) or the SYStem.CONFIG.state window.
[F=5 Eol 5

DAP COmponents

B Bu:S¥Stem.CONFIG state /Jtag

DebugPort Jtag MultiTap

IRPOST

IRPRE

12.

3.

TDI bk — DRPOST i3

6.
core | k- DRPRE

4 1.

¥ TDO

Example: This script explains how to obtain the individual IR and DR values for the above daisy chain.

SYStem.CONFIG.state /Jtag 5

SYStem

SYStem

SYStem

SYStem

.CONFIG IRPRE

6.

.CONFIG IRPOST 12. 5

.CONFIG DRPRE

.CONFIG DRPOST

1.

3.

optional: open the window

IRPRE: There is only one TAP.

So type just the IR bits of TAP4, i.e. 6.
IRPOST: Add up the IR bits of TAP1, TAP2
and TAP3, i.e. 4. + 3. + 5. = 12.
DRPRE: There is only one TAP which is
in BYPASS mode.

So type just the DR of TAP4, i.e. 1.
DRPOST: Add up one DR bit per TAP which
is in BYPASS mode, i.e. 1. + 1. + 1. = 3.
This completes the configuration.

©1989-2024 Lauterbach

PQIll Debugger | 28

TapStates

0 Exit2-DR
1 Exitl-DR
2 Shift-DR
3 Pause-DR
4 Select-IR-Scan
5 Update-DR
6 Capture-DR
7 Select-DR-Scan
8 Exit2-IR
9 Exitl-IR
10 Shift-IR
11 Pause-IR
12 Run-Test/Idle
13 Update-IR
14 Capture-IR
15 Test-Logic-Reset
SYStem.CONFIG.CHKSTPIN Control pin 8 of debug connector
Format: SYStem.CONFIG.CHKSTPIN LOW | HIIGH
Default: HIGH.

Controls the level of pin 8 (/CHKSTP_IN or /PRESENT) of the debug connector.

©1989-2024 Lauterbach PQIll Debugger | 29

SYStem.CONFIG.DriverStrength Configure driver strength of TCK pin

Format: SYStem.CONFIG DriverStrength <signal> <LOW | MID | HIGH>
<signal>: TCK
Default: HIGH.

Configures the driver strength of the TCK pin.

Available for debug cables with serial number C15040204231 and higher.

SYStem.CONFIG.QACK Control QACK pin

Format: SYStem.CONFIG QACK TRISTATE | QREQ | LOW | HIGH

Controls the level and function of pin 2 (/QACK) of the debug connector. Default: TRISTATE.

TRISTATE Pin is disabled (tristate).

QREQ Pin is driven to level of QREQ (pin 5).
LOwW Pin is driven to GND permanently.

HIGH Pin is driven to JTAG_VREF permanently.

©1989-2024 Lauterbach PQIll Debugger | 30

SYStem.CPU Select the target processor

Format: SYStem.CPU <cpu_name>

<cpu_name>: MPC85XX | MPC8540 | MPC8560...

Select the target processor or target core. If the target processor is not available in the CPU selection of the
SYStem window, or if the command results in an error,

. check if the licence of the debug cable includes the desired processor. You will find the
information in the VERSION window.

. check if the debugger software is sufficiently recent to support the target processor. The
debugger software version can be looked up in the VERSION window. If the processor release
occurred after the debugger software release, the processor is most likely not supported. Please
check the Lauterbach download center (www.lauterbach.com) for updates. If the debugger
software version from the download center also does not support the processor, please contact
technical support and request a software update.

If you are unsure about the processor, try SYStem.DETECT CPU for automatic detection.

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool. The command has no effect for the simulator.

©1989-2024 Lauterbach PQIll Debugger | 31

http://www.lauterbach.com/

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess <mode>

<mode>: Denied | Enable

This option declares if and how a non-intrusive memory access can take place while the CPU is executing
code. Although the CPU is not halted, run-time memory access creates an additional load on the
processor’s internal data bus. The run-time memory access has to be activated for each window by using
the access class E: (e.g. Data.dump E:0x100) or by using the format option %E (e.g. Var.View %E var1). It
is also possible to activate this non-intrusive memory access for all memory ranges displayed on the

TRACE32 screen by setting SYStem.Option.DUALPORT ON.

Denied Memory access is disabled while the CPU is executing code.
Enable The debugger performs memory accesses via a dedicated CPU
CPU (deprecated) interface. This memory access will snoop data cache and L2 cache if a

access class for data (“D:”) is used.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

©1989-2024 Lauterbach PQIll Debugger | 32

SYStem.Mode Select operation mode
Format: SYStem.Mode <mode>
SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down | NoDebug | Go | Attach | StandBy | Up

Select target reset mode.

Down

NoDebug

Go

Attach

StandBy

Up

Disables the debugger. The state of the CPU remains unchanged.

Resets the target with debug mode disabled. In this mode no debugging
is possible. The CPU state keeps in the state of NoDebug.

Resets the target with debug mode enabled and prepares the CPU for
debug mode entry. Now, the processor can be stopped with the break
command or any break condition.

Connect to the processor without resetting target/processor. Use this
command to connect to the processor without changing it's current state.

Debugging/Tracing through power cycles.
The debugger will wait until power on is detected and then stop the CPU
at the first instruction at the reset address.

Resets the target/processor and sets the CPU to debug mode. After
execution of this command the CPU is stopped and prepared for
debugging.

©1989-2024 Lauterbach

PQIll Debugger | 33

CPU specific SYStem.Option Commands

SYStem.Option.CINTDebug Enable debugging of critical interrupts

Format: SYStem.Option.CINTDebug [ON | OFF]

If the CPU enters a critical interrupt, MSR_DE will be cleared, which means that breakpoints are disabled.
Enable this option in order to set a breakpoint in a critical interrupt handler. When enabled, the debugger will
stop the CPU upon entering a critical interrupt, set MSR_DE and run the CPU again.

Please note that this option will have influence on the run-time behavior (i.e. performance loss) of the
system, as the debugger needs to stop the CPU to set MSR_DE. As alternative to this option, patch the
application to re-enable MSR_DE in the critical interrupt handlers. After MSR_DE has been restored, it is
safe to use breakpoints.

SYStem.Option.CoreStandBy On-the-fly breakpoint setup

Format: SYStem.Option.CoreStandBy [ON | OFF]

On multi-core processors, only one of the cores starts to execute code right after reset. The other cores
remain in reset or disabled state. In this state it is not possible to set breakpoints or configure the core for
tracing. This option works around this limitation and makes breakpoints and tracing available right from the
first instruction executed. This option has impact on the real-time behavior. Releasing a secondary core from
reset / disable state will be delayed for a few milliseconds.

SYStem.Option.DCFREEZE Prevent data cache line load/flush in debug
mode
Format: SYStem.Option.DCFREEZE [ON | OFF]
Default: OFF.

©1989-2024 Lauterbach PQIll Debugger | 34

If OFF, the debugger will maintain D/L2 cache coherency by performing cache snoops for memory
accesses. During the cache snoop, the processor will flush (clean and invalidate) dirty lines from data
caches before the debugger's memory access takes place. This setting allows better data throughput and is
recommended for normal application level debugging. In order to see changes to the cache state caused by
debugging in the CACHE.DUMP window, use the command CACHE.RELOAD.

If ON, the debugger will maintain cache coherency by reading or writing directly to the cache arrays. This
method guarantees that the D/L2 cache tags and status bits (valid, dirty) remain unaffected by the memory
accesses of the debugger. This setting is recommended for low-level and cache debugging.

SYStem.Option.DCREAD Read from data cache

Format: SYStem.Option.DCREAD [ON | OFF]

Default: ON. If enabled, Data.dump windows for access class D: (data) and variable windows display the
memory values from the d-cache or L2 cache, if valid. If data is not available in cache, physical memory will

be read.
SYStem.Option.DUALPORT Implicitly use run-time memory access
Format: SYStem.Option.DUALPORT [ON | OFF]

Forces all list, dump and view windows to use the access class E: (e.g. Data.dump E:0x100) or to use the
format option %E (e.g. Var.View %E var1) without being specified. Use this option if you want all windows to
be updated while the processor is executing code. This setting has no effect if
SYStem.Option.MemAccess is disabled or real-time memory access not available for used CPU.

Please note that while the CPU is running, MMU address translation can not be accesses by the debugger.
Only physical addresses accesses are possible. Use the access class modifier “A:” to declare the access
physical addressed, or declare the address translation in the debugger-based MMU manually using
TRANSIation.Create.

©1989-2024 Lauterbach PQIll Debugger | 35

SYStem.Option.FREEZE Freeze system timers on debug events

Format: SYStem.Option.FREEZE [ON | OFF]

Enabling this option will lead the debugger to set the FT bit in the DBCRO register. This bit will lead the CPU
to stop the system timers (TBU/TBL and DEC) upon all debug events, that can be defined in DBCRO.

NOTE: For the MPC85XX CPU family, the debugger needs to execute a RFCI

instruction out of memory to unfreeze the system timers on a resume (go, step).
MPC85XX In order to use SYStem.Option.FREEZE, you have to patch two instructions to
with PVR memory, a NOP followed by a RFCI, and let the IVPR/IVOR15 point to the NOP
0x8020XXXX instruction.

If SYStem.Option.Freeze is ON, the debugger will automatically check if the
IVPR/IVOR15 vector is pointing to the NOP / RFCI instructions. If this condition
does not match, the system timers will stay frozen and there will be an error
output in the AREA window.

SYStem.Option.HOOK Compare PC to hook address

Format: SYStem.Option.HOOK <address> | <address_range>

The command defines the hook address. After program break the hook address is compared against the
program counter value.

If the values are equal, it is supposed that a hook function was executed. This information is used to
determine the right break address by the debugger.

SYStem.Option.ICFLUSH Invalidate instruction cache before go and step
Format: SYStem.Option.ICFLUSH [ON | OFF]
Default: ON.

Invalidates the instruction cache before starting the target program (Step or Go). If this option is disabled, the
debugger will update Memory and instruction cache for program memory downloads, modifications and
breakpoints. Disabling this option might cause performance decrease on memory accesses.

©1989-2024 Lauterbach PQIll Debugger | 36

SYStem.Option.ICREAD Read from instruction cache

Format: SYStem.Option.ICREAD [ON | OFF]

Default: OFF:

If enabled, Data.List window and Data.dump window for access class P: (program memory) display the
memory values from the instruction cache L2 cache if valid. If the data is not available in cache, the physical
memory will be displayed.

SYStem.Option.IMASKASM Disable interrupts while single stepping
Format: SYStem.Option.IMASKASM [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Format: SYStem.Option.IMASKHLL [ON | OFF]

Default: OFF. If enabled, the interrupt mask bits of the cpu will be set during HLL single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

NOTE: Do not enable this option for code that disables MSR_EE. The debugger will
disable MSR_EE while the CPU is running and restore it after the CPU stopped. If a
part of the application is executed that disables MSE_EE, the debugger cannot
detect this change and will restore MSE_EE.

©1989-2024 Lauterbach PQIll Debugger | 37

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.
Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

SYStem.Option.NoDebugStop Disable JTAG stop on debug events
Format: SYStem.Option.NoDebugStop [ON | OFF]
Default: OFF.

©1989-2024 Lauterbach PQlll Debugger | 38

On-chip debug events that cause a debug interrupt can be configured to cause one of two actions. If a JTAG
debugger is used, the CPU is configured to stop for JTAG upon these debug events.

If this option is set to ON, the CPU will be configured to not stop for JTAG, but to enter the debug interrupt,
like it does when no JTAG debugger is used.

Enable this option if the CPU should not stop for JTAG on debug events, in order to allow a target application
to use the debug interrupt. Typical usages for this option are run-mode debugging (e.g. with
t32server/gdbserver) or setting up the system for a branch trace via LOGGER (trace data in target RAM) or

INTEGRATOR.
SYStem.Option.NOTRAP Use alternative software breakpoint instruction
Format: SYStem.Option.NOTRAP <type>
<type>: OFF | FPU | ILL
ON (deprecated, same as FPU)

Defines which instruction is used as software breakpoint instruction.

OFF Use TRAP instructions as software breakpoint (default setting). Software
breakpoint will overwrite SRRO0/1 registers.

FPU Use an FPU instruction as software breakpoint.
Gives the ability to use the program interrupt in the application without
halting for JTAG.
This setting only works if the application does not use floating point
instructions (neither hardware nor software emulated). MSR[FP] must be
set to O at all times.
Software breakpoint will overwrite SRRO/1 registers.

ILL Use an illegal instruction as software breakpoint. This setting is
recommended for MPC82XX, MPC5200, RHPPC (G2/G2_LE cores) and
MPC830X, MPC831X, MPC832X and MPC512X (e300c2/3/4). Gives the
ability to use the program interrupt in the application without halting for
JTAG.
lllegal instructions as software breakpoints will preserve SRR0/1
registers.

©1989-2024 Lauterbach PQIll Debugger | 39

SYStem.Option.OVERLAY Enable overlay support

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]
Default: OFF.
ON Activates the overlay extension and extends the address scheme of the

debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACES32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes to
the execution area. For using this option, the storage area must be readable
and writable for the debugger.

Example:

SYStem.Option.OVERLAY ON

Data.List 0x2:0x11c4 ; Data.List <overlay_ id>:<address>
SYStem.Option.PERSTOP Stop on-chip peripherals in debug mode
Format: SYStem.Option.PERSTOP [ON | OFF]

Default: ON. If enabled the debugger will halt the on-chip peripherals of the processor while in debug mode.
memory accesses and cache snoops of e.g. TSEC, USB etc will not take place and memory spaces of
some peripherals are inaccessible. If disabled, the on-chip peripherals will stay active also during debug
mode. The data buffers of TSEC etc. can overflow, because the target application does not process the data
when stopped.

NOTE: If SYStem.Option.PERSTOP is disabled, it is recommended to also disable
SYStem.Option.DCFREEZE, in order to see the memory accesses performed by
the peripherals.

©1989-2024 Lauterbach PQIll Debugger | 40

SYStem.Option.RESetBehavior Set behavior when target reset detected

Format: SYStem.Option.RESetBehavior <mode>
<mode>: Disabled
AsyncHalt

Defines the debugger’s action when a reset is detected. Default setting is Disabled. The reset can only be
detected and actions taken if it is visible to the debugger’s reset pin.

Disabled No actions to the processor take place when a reset is detected.
Information about the reset will be printed to the message AREA.

AsyncHalt Halt core as soon as possible after reset was detected. The core will halt
shortly after the reset event.

SYStem.Option.SLOWRESET Relaxed reset timing

Format: SYStem.Option.SLOWRESET [ON | OFF]

This system option defines, how the debugger will test JTAG_RESET. For some system mode changes, the
debugger will assert JTAG_RESET. By default (OFF), the debugger will release RESET and then read the
RESET signal until the RESET pin is released. Reset circuits of some target boards prevent that the current
level of RESET can be determined via JTAG_RESET. If this system option is enabled, the debugger will not
read JTAG_RESET, but instead waits up to 4 s and then assumes that the boards RESET is released.

SYStem.Option.STEPSOFT Use alternative method for ASM single step

Format: SYStem.Option.STEPSOFT [ON | OFF]

This method uses software breakpoints to perform an assembler single step instead of the processor’s built-
in single step feature. Works only for software in RAM. Do not turn ON, unless advised by Lauterbach.

©1989-2024 Lauterbach PQIll Debugger | 41

NOTE: All CPUs: servicing watchdog
If the debugger is servicing the watchdog, conditions might occur, where the

watchdog times out before the debugger is able to service it. Unintended resets
or interrupts can occur.

Further, SWT window mode is not supported by the debugger.

©1989-2024 Lauterbach PQIll Debugger | 42

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table
Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>]
MMU. <table>.dump (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

Displays the contents of the CPU specific MMU translation table.

. If called without parameters, the complete table will be displayed.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable

Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID: displays the translation
table of the specified process

. else, this command displays the table the CPU currently uses for
MMU translation.

©1989-2024 Lauterbach

PQIIl Debugger | 43

KernelPageTable

Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

©1989-2024 Lauterbach

PQIll Debugger |

44

CPU specific tables in MMU.DUMP <table>

TLBO Displays the contents of TLBO.
TLB1 Displays the contents of TLB1.

MMU.List Compact display of MMU translation table
Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]

MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

Lists the address translation of the CPU-specific MMU table.
o If called without address or range parameters, the complete table will be displayed.

. If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

. If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range> Limit the address range displayed to either an address range
<address> or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Lists the entries of an MMU translation table.

. if <range> or <address> have a space ID: list the translation table
of the specified process

. else, this command lists the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach PQIll Debugger | 45

KernelPageTable

Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

©1989-2024 Lauterbach

PQIll Debugger |

46

MMU.SCAN Load MMU table from CPU

Format: MMU.SCAN <table> [<range> <address>]
MMU. <table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]
<cpu_specific_tables>

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

J If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
J if <range> or <address> have a space ID: loads the translation table
of the specified process
. else, this command loads the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach PQIll Debugger | 47

KernelPageTable

Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the table
of the kernel and copies its address translation into the debugger-internal
static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static translation
table.

o For information about the first three parameters, see “What to know
about the Task Parameters” (general_ref_t.pdf).
J See also the appropriate OS Awareness Manual.

ALL [Clear]

Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the debugger-
internal static translation table.

See also the appropriate OS Awareness Manual.

Clear: This option allows to clear the static translations list before reading
it from all page translation tables.

CPU specific tables in MMU.SCAN <table>

TLBO

Loads the TLBO from the CPU to the debugger-internal translation table.

TLB1

Loads the TLB1 from the CPU to the debugger-internal translation table.

©1989-2024 Lauterbach

PQIll Debugger | 48

MMU.Set Set an MMU TLB entry

Formats: MMU.Set TLBO <index> <mas1> <mas2> <mas3> <mas7>
MMU.Set TLB1 <index> <mas1> <mas2> <mas3> <mas7>
MMU.<table>.SET (deprecated)

<index>: TLB entry index. From 0 to (number of TLB entries)-1 of the specified TLB table

<masi>: Values corresponding to the values that would be written to the MAS registers

<mas2>: in order to set a TLB entry. See the processor’s reference manual for details on

<mas3>: MAS registers.

<mas7>: MAS7 contains the most significant bits of the physical 36 bit address (e500v2
cores only).

Sets the specified MMU TLB table entry in the CPU. The parameter <tlb> is not available for CPUs with only
one TLB table.

©1989-2024 Lauterbach PQIll Debugger | 49

CPU specific BenchMarkCounter Commands

The BenchMarkCounter features are based on the core’s performance monitor, accessed through the
performance monitor registers (PMR). PMC access is only possible while the core is halted.

Notes:

J BMC.PROfile and BMC.SnoopSet are not supported.

J For information about architecture-independent BMC commands, refer to “BMC”
(general_ref_b.pdf).

o For information about architecture-specific BMC commands, see command descriptions below.

. Events can be assigned to BMC.<counter>.EVENT <event>. For descriptions of available events,

please check Freescale’s core reference manual.

BMC.FREEZE Freeze counters while core halted

Format: BMC.FREEZE [ON | OFF]

Enable this setting to prevent that actions of the debugger have influence on the performance counter. As
this feature software controlled (no on-chip feature), some events (especially clock cycle measurements)
may be counted inaccurate even if this setting is set ON.

BMC.<counter>.FREEZE Freeze counter in certain core states
Format: BMC.<counter>.FREEZE <state>[ON | OFF]
<state>: USER | SUPERVISOR | MASKSET | MASKCLEAR

Halts the selected performance counter if one or more of the enabled states (i.e. states set to ON) match the
current state of the core. If contradicting states are enabled (e.g. SUPERVISOR and USER), the counter will
be permanently frozen. The table below explains the meaning of the individual states.

<state> Dependency in core
USER Counter frozen if MSR[PR]==1
SUPERVISOR Counter frozen if MSR[PR]==

©1989-2024 Lauterbach PQIll Debugger | 50

MASKSET Counter frozen if MSR[PMM]==

MASKCLEAR Counter frozen if MSR[PMM]==0
BMC.<counter>.SIZE No function
Format: BMC.<counter>.SIZE <size>

Since only one counter size is possible, this command is only available for compatibility reasons.

©1989-2024 Lauterbach PQIll Debugger | 51

CPU specific TrOnchip Commands

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

Format: TrOnchip.CONVert [ON | OFF]

There are 2 data address breakpoints. These breakpoints can be used to mark two single data addresses or
one data address range.

ON (default) After a data address breakpoint is set to an address range all on-chip
breakpoints are spent. As soon as a new data address breakpoint is set
the data address breakpoint to the address range is converted to a single
data address breakpoint. Please be aware, that the breakpoint is still
listed as a range breakpoint in the Break.List window. Use the Data.View
command to verify the set data address breakpoints.

OFF An error message is displayed when the user wants to set a new data
address breakpoint after all on-chip breakpoints are spent by a data address
breakpoint to an address range.

TrOnchip.CONVert ON
Break.Set 0x6020++0x1f
Break.Set 0x7400++0x3f
Data.View 0x6020
Data.View 0x7400

TrOnchip.DISable Disable NEXUS trace register control

Format: TrOnchip.DISable

Disables NEXUS register control by the debugger. By executing this command, the debugger will not write or
modify any registers of the NEXUS block. This option can be used to manually set up the NEXUS trace
registers. The NEXUS memory access is not affected by this command. To re-enable NEXUS register
control, use command TrOnchip.ENable. Per default, NEXUS register control is enabled.

©1989-2024 Lauterbach PQIll Debugger | 52

TrOnchip.ENable Enable NEXUS trace register control

Format: TrOnchip.ENable

Enables NEXUS register control by the debugger. By default, NEXUS register control is enabled. This
command is only needed after disabling NEXUS register control using TrOnchip.DISable.

TrOnchip.RESet Reset on-chip trigger settings

Format: TrOnchip.RESet

Resets the on-chip trigger system to the default state.

©1989-2024 Lauterbach PQIll Debugger | 53

TrOnchip.Set

Enable special on-chip breakpoints

Format:

TrOnchip.Set <event>[ON | OFF]

Enables the specified on-chip trigger facility to stop the CPU on below events:

<event> Description

BRT Break on branch taken event.

IRPT Break on interrupt entry.

RET Break on return from interrupt.

CIRPT Break on critical interrupt entry.

CRET Break on return from critical interrupt.

Cl Break on critical input interrupt.

MC Break on machine check interrupt.

DS Break on data storage interrupt.

IS Break on instruction storage interrupt.

El Break on external input interrupt.

AL Break on alignment interrupt.

PR Break on program interrupt.

FP Break on fpu unavailable interrupt.

SC Break on system call.

AU Break on auxiliary processor unavailable interrupt.
DEC Break on decrementer interrupt.

FIT Break on fixed interval timer interrupt.

wD Break on watchdog interrupt.

DTLB Break on data TLB error interrupt.

ITLB Break on instruction TLB interrupt.

DBG Break on debug interrupt - do not clear if breakpoints are used.
SPEU Break on SPE APU unavailable interrupt.
SPED Break on SPE floating-point data interrupt.
SPER Break on SPE floating-point round interrupt.
PM Break on performance monitor interrupt.

©1989-2024 Lauterbach

PQIIl Debugger | 54

TrOnchip.VarCONVert Adjust HLL breakpoint in on-chip resource

Format: TrOnchip.VarCONVert [ON | OFF]

ON (default) After a data address breakpoint is set to an HLL variable all on-chip
breakpoints are spent. As soon as a new data address breakpoint is set
the data address breakpoint to the HLL variable is converted to a single
data address breakpoint. Please be aware, that the breakpoint is still
listed as a range breakpoint in the Break.List window. Use the Data.View
command to verify the set data address breakpoints.

OFF An error message is displayed when the user wants to set a new data
address breakpoint after all on-chip breakpoints are spent by a data address
breakpoint to an HLL variable.

TrOnchip.VarCONVert ON
Var .Break.Set flags
Var.Break.Set ast
Data.View flags
Data.View ast

©1989-2024 Lauterbach PQIll Debugger | 55

TrOnchip.state

View on-chip trigger setup window

Format:

TrOnchip.state

R B:TrOnchip
tronchip
[¥] convert
[¥] varconvert
Set
[CIBRT
[CIRET
[ClreT
[CICRPT
[ClcrReT

Set
B

[Cmc
[[ops
[F1s

=

AL
[Cer
[Crp
[Fsc
[Cau

Display the trigger setup dialog window.

[= ===

Set
[CIDEC
OrT
Ewo
CpTiB
[l
[V1DBG
[CIspPEU
[CIspPED
[C1sPER
[Clem

©1989-2024 Lauterbach

PQIIl Debugger

56

MPC85XX/QorlQ Specific On-chip Trace Settings

Onchip.Mode.IFSel Select interface to be traced
Format: Onchip.Mode.IFSel <interface>
<interface>: ECM (processor core interface)

SDRAM (SDRAM interface)

PCI, PCI2 (PCI controller interface)

RIO (RapidlO interface)

PCIEX, PCIEX2, PCIEX3 (PCI Express interface)

Interface selection. Specifies the interface that sources information for both comparison/buffer control and
buffer data capture. The availability of certain <interface> options depends on the target processor. Please
check the processor user's manual for which interfaces are available.

©1989-2024 Lauterbach PQIll Debugger | 57

JTAG Connector

Mechanical Description

JTAG Connector MPC85XX (COP)

Signal

TDO

TDI
(RUNSTOP-)
TCK

TMS
(SRESET-)
HRESET-
(CKSTOPOUT-)

This is a standard 16 pin double row (two rows of eight pins) connector (pin-to-pin spacing: 0.100 in.).

Pin

Signal

N/C

TRST-
JTAG-VREF
(CHKSTPIN-)
N/C

GND

N/C (KEY PIN)
GND

(Signals in brackets are not strong necessary for basic debugging, but its recommended to take in

consideration for future designs.)

©1989-2024 Lauterbach

PQIIl Debugger

58

	PQIII Debugger
	History
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Target Design Requirement/Recommendations
	General

	Quick Start
	Troubleshooting
	SYStem.Up Errors

	FAQ
	Configuration
	System Overview

	PowerPC MPC85XX/QorIQ specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	Breakpoints on Program Addresses
	Breakpoints on Data Addresses
	Breakpoints on Data Access at Program Address
	Breakpoints on Data Value

	Access Classes
	Access Classes to Memory and Memory Mapped Resources
	Access Classes to Other Addressable Core and Peripheral Resources

	Cache
	Memory Coherency
	MESI States and Cache Status Flags
	Viewing Cache Contents

	Debugging Information
	Multicore Debugging e500 cores
	SMP Debugging
	AMP Debugging
	Synchronous stop of both e500 cores

	Programming Flash on MPC85XX / QorIQ P10XX/P20XX, PSC93XX
	On-chip Trace on MPC85XX/QorIQ

	PowerPC MPC85XX/QorIQ specific SYStem Commands
	SYStem.BdmClock Set BDM clock frequency
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CONFIG.CHKSTPIN Control pin 8 of debug connector
	SYStem.CONFIG.DriverStrength Configure driver strength of TCK pin
	SYStem.CONFIG.QACK Control QACK pin
	SYStem.CPU Select the target processor
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Select operation mode

	CPU specific SYStem.Option Commands
	SYStem.Option.CINTDebug Enable debugging of critical interrupts
	SYStem.Option.CoreStandBy On-the-fly breakpoint setup
	SYStem.Option.DCFREEZE Prevent data cache line load/flush in debug mode
	SYStem.Option.DCREAD Read from data cache
	SYStem.Option.DUALPORT Implicitly use run-time memory access
	SYStem.Option.FREEZE Freeze system timers on debug events
	SYStem.Option.HOOK Compare PC to hook address
	SYStem.Option.ICFLUSH Invalidate instruction cache before go and step
	SYStem.Option.ICREAD Read from instruction cache
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.NoDebugStop Disable JTAG stop on debug events
	SYStem.Option.NOTRAP Use alternative software breakpoint instruction
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.PERSTOP Stop on-chip peripherals in debug mode
	SYStem.Option.RESetBehavior Set behavior when target reset detected
	SYStem.Option.SLOWRESET Relaxed reset timing
	SYStem.Option.STEPSOFT Use alternative method for ASM single step

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU
	MMU.Set Set an MMU TLB entry

	CPU specific BenchMarkCounter Commands
	BMC.FREEZE Freeze counters while core halted
	BMC.<counter>.FREEZE Freeze counter in certain core states
	BMC.<counter>.SIZE No function

	CPU specific TrOnchip Commands
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.DISable Disable NEXUS trace register control
	TrOnchip.ENable Enable NEXUS trace register control
	TrOnchip.RESet Reset on-chip trigger settings
	TrOnchip.Set Enable special on-chip breakpoints
	TrOnchip.VarCONVert Adjust HLL breakpoint in on-chip resource
	TrOnchip.state View on-chip trigger setup window

	MPC85XX/QorIQ Specific On-chip Trace Settings
	Onchip.Mode.IFSel Select interface to be traced

	JTAG Connector
	Mechanical Description
	JTAG Connector MPC85XX (COP)

