
MANUAL

NIOS II Debugger and Trace

NIOS II Debugger and Trace

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 NIOS .. 

 NIOS II Debugger and Trace .. 1

 History .. 5

 Introduction ... 6

 Brief Overview of Documents for New Users 6

 Demo and Start-up Scripts 6

 Warning .. 7

 Troubleshooting .. 8

 SYStem.Up Errors 8

 Trace Errors 8

 FAQ ... 8

 Quick Start of the ICD Debugger for Nios II .. 9

 1. Prepare the Start 9

 2. Configure your FPGA with a Nios II Core (optional) 9

 3. Select the Clock for the JTAG Communication 9

 4. Configure the Debugger According to the Needs of the Application 10

 5. Tell the Debugger where it should use On-chip Breakpoints (optional) 10

 6. Enter Debug Mode 10

 7. Load the Program 11

 8. Initialize Program Counter and Stackpointer 11

 9. View the Source Code 11

 CPU specific SYStem Settings and Restrictions ... 13

 Restrictions 13

 SYStem.CONFIG Configure multi-core debugger 14

 SYStem.CONFIG.CORE Select core in FPGA 17

 SYStem.CONFIG.state Show multi-core settings 19

 SYStem.CONFIG.CPUID Tell the debugger to which CPU it should connect 20

 SYStem.CPU Select CPU type 20

 SYStem.CONFIG.JtagUartNR Specify JTAG UART component number 20
NIOS II Debugger and Trace | 2©1989-2024 Lauterbach

 SYStem.DETECT.ScanCpuIDS Scan which CPU IDs exist in FPGA design 21

 SYStem.JtagClock Select clock for JTAG communication 22

 SYStem.LOCK Lock and tristate the debug port 22

 SYStem.MemAccess Select run-time memory access method 23

 SYStem.Mode Select target reset mode 23

 SYStem.Option.BTM Enable/disable branch trace 24

 SYStem.Option.CFGCLK Set clock frequency for configuration 24

 SYStem.Option.DCFLUSH Flush data cache before “Go” 24

 SYStem.Option.DBGALL Enable/disable debug mode for all cores 25

 SYStem.Option.LocalRESet Assert a local JTAG reset at SYStem.Up 25

 SYStem.Option.DTM Select kind of data trace 26

 SYStem.Option.Endianness Select endianness of core 26

 SYStem.Option.FSS Enable/disable FS2 compatibility mode 27

 SYStem.Option.FPH Enable the disassembly of floating point instructions 27

 SYStem.Option.ICFLUSH Flush instruction cache before “Go” 27

 SYStem.Option.IMASKASM Disable interrupts while single stepping 28

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 28

 SYStem.Option.MMUSPACES Separate address spaces by space IDs 28

 SYStem.Option.PIDWidth Specify size of PID field in the TLB 29

 SYStem.Option.QUARTUS Workaround for QUARTUS II version 13.0 30

 SYStem.Option.TOFF Enable/disable tracetrigger input 30

 SYStem.Option.SYNC Specify frequency of SYNC messages 30

 Configuring your FPGA .. 31

 JTAG.LOADRBF Configure FPGA with RBF file 31

 JTAG Uart Support .. 33

 On-chip Breakpoints ... 34

 Program Breakpoints 34

 Read and Write Breakpoints 34

 Data Breakpoints 35

 Trace Control Breakpoints 35

 CPU specific MMU Commands .. 36

 MMU.DUMP Page wise display of MMU translation table 36

 MMU.List Compact display of MMU translation table 38

 MMU.SCAN Load MMU table from CPU 39

 TrOnchip Commands .. 41

 TrOnchip.state Display on-chip trigger window 41

 TrOnchip.RESet Set on-chip trigger to default state 41

 TrOnchip.CONVert Adjust range breakpoint in on-chip resource 41

 TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 42

 Memory Classes .. 43

 BDM Connector ICD-NIOS II ... 44
NIOS II Debugger and Trace | 3©1989-2024 Lauterbach

 NIOS II Trace Connector ... 45
NIOS II Debugger and Trace | 4©1989-2024 Lauterbach

NIOS II Debugger and Trace

Version 06-Jun-2024

History

20-Jul-22 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second
parameter.
NIOS II Debugger and Trace | 5©1989-2024 Lauterbach

Introduction

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known NIOS II based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/nios/ subfolder of the system directory of TRACE32.
NIOS II Debugger and Trace | 6©1989-2024 Lauterbach

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
NIOS II Debugger and Trace | 7©1989-2024 Lauterbach

Troubleshooting

SYStem.Up Errors

The SYStem.UP command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

• The target has no power.

• The FPGA which should hold a Nios II Core with debugging interface isn’t configured, or the
design doesn’t contain a Nios II Core with debugging interface.

• There is a short-circuit on at least one output line of the CPU.

• There is a problem with the electrical connection between ICDNIOS and the target - check if the
BDM connector is plugged correctly and if the target is built corresponding to the definition of the
used BDM connector.

Trace Errors

To use an off-Chip trace for a Nios II CPU we strongly recommend to follow the application note “NIOS II
Debugger and Trace” (debugger_nios.pdf).

If you don’t follow this application note, you have to enable the FSS option.

FAQ

Please refer to https://support.lauterbach.com/kb.
NIOS II Debugger and Trace | 8©1989-2024 Lauterbach

https://support.lauterbach.com/kb

Quick Start of the ICD Debugger for Nios II

This chapter should help you to prepare your Debugger for Nios II. Depending on your application not all
steps might be necessary.

For some applications additional steps might be necessary, that are not described in this Quick Start section.

1. Prepare the Start

Connect the Debug Cable to your target. Check the orientation of the connector. Pin 1 of the debug cable is
marked with a small triangle next to the nose of the target connector.

Power up your TRACE32 system (This is not necessary on PODPC).

Start the TRACE32 Debugger Software.

Power up your Target!

2. Configure your FPGA with a Nios II Core (optional)

Before you can start debugging, the FPGA has to contain a design with a Nios II Core with a debugging
interface. On some targets the FPGA will be automatically configured at PowerUp. If you want to use your
own design, you can configure the FPGA by using the commands JTAG.PROGRAM.JAM or
JTAG.PROGRAM.JBC or JTAG.LOADRBF.

3. Select the Clock for the JTAG Communication

You can select the JTAG clock frequency, which the Debugger uses to communicate with the target. This can
be either done in the JtagClock field in the SYStem Window, or by using the command line with the
command SYStem.JtagClock. The maximum clock frequency depends on the configuration of your FPGA
design. The default clock frequency is 1 MHz.

To prevent damage please take care to follow this sequence all the time
you are preparing a start.
NIOS II Debugger and Trace | 9©1989-2024 Lauterbach

4. Configure the Debugger According to the Needs of the Application

Depending on the variant of the debugged Nios II core, different cache handling strategies can be used. All
of the available settings, can be configured with the SYStem Window. Set the SYStem Options in this
window according to your FPGA configuration and application program. Generally the SYStem Options can
remain at the default values for the first start.

5. Tell the Debugger where it should use On-chip Breakpoints (optional)

By default the In Circuit Debugger for Nios II modifies the code to realize program breakpoints. This will not
work for ROM or FLASH memory locations. If the used Nios II core provides on-chip breakpoints, these
breakpoints can be used for ROM/FLASH areas instead. With the command MAP.BOnchip <range> you
can specify where the debugger has to use on-chip breakpoints.

6. Enter Debug Mode

This command asserts a reset to the Nios II core. While the reset is asserted, the machine code for a
standard monitor will be downloaded. After the reset is deasserted, the Nios II will enter debug mode and
jump to the break address of the debugged core.

MAP.BOnchip 0x1000--0x0ffff ; activates the on-chip breakpoints
; within the range from 0x1000 to
; 0xffff

SYStem.Up
NIOS II Debugger and Trace | 10©1989-2024 Lauterbach

7. Load the Program

Depending on your FPGA configuration, the Nios II core may have access to many different variants of
memory, including on-chip memory, external SDRAM or FLASH memory.

When the core is prepared the code can be downloaded. This can be done with the command
Data.Load.<file_format> <file>. The debugger knows about various file formats. If you use the GNU C
compiler provided by Altera, you will usually have an ELF file. The typical command to load such an
executable is:

8. Initialize Program Counter and Stackpointer

In a ready-to-run compiled ELF file, these settings are in the start-up code of the ELF file. In this case
nothing has to be done. You can check the contents of Program Counter and Stack Pointer in the Register
Window, which provides the contents of all CPU Registers. Use CPU Registers in the CPU menu to open
this window or use the command Register.

The Program Counter and the Stackpointer and all other registers can be set with the commands
Register.Set PC <value> and Register.Set SP <value>. Here is an example of how to use these
commands:

9. View the Source Code

Use the command Data.List to view the source code at the location of the Program Counter.

Data.Load.Elf <file>.elf /verify ; Load application file generated
; with the gcc compiler, provided by
; Altera. Verify that the application
; is written correctly to memory.

Register.Set PC 0xc000 ; Set the Program Counter to address
; 0xC000

Register.Set SP 0xbff ; Set the Stack Pointer to address
; 0xbff

Register.Set PC main ; Set the PC to a label (here:
; function main)
NIOS II Debugger and Trace | 11©1989-2024 Lauterbach

Now the quick start is done. If you were successful you can start to debug. Lauterbach recommends to
prepare a PRACTICE script file (*.cmm, ASCII format) to be able to do all the necessary actions with only
one command. Here is a typical start sequence:

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

For information about how to build a PRACTICE script file (*.cmm file), refer to “Training Basic
Debugging” (training_debugger.pdf). There you can also find some information on basic actions with the
debugger.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs. So if there are
questions related to the CPU, the Processor Architecture Manual should be your first choice.

WinCLEAR ; Clear all windows

SYStem.Reset ; Set all options in the SYStem window
; to default values

MAP.BOnchip 0x01080--0x0ffff ; Select on-chip breakpoints for the
; FLASH and ROM areas

SYStem.Up ; Reset the target and enter debug mode

Data.LOAD.Elf demo.elf ; Load the application

List.Mix ; Open disassembly window *)

Register.view /SpotLight ; Open register window *)

Frame.view /Locals /Caller ; Open the stack frame with
; local variables *)

Var.Watch %Spotlight flags ast ; Open watch window for variables *)

Break.Set 0x400 ; Set software breakpoint to address
; 0x400 (address 0x400 is outside the
; range, where on-chip breakpoints are
; used)

Break.Set 0x8024 ; Set on-chip program breakpoint to
; address 0x8024 (address 0x8024 is
; within the range, where on-chip
; breakpoints are used)
NIOS II Debugger and Trace | 12©1989-2024 Lauterbach

CPU specific SYStem Settings and Restrictions

Restrictions

On-chip Break-
points

Because the Nios II is a completely configurable soft core, not all variants
support on-chip breakpoints. The debugger will check the number of
available on-chip breakpoints, when the SYStem.Up command is
executed. If more on-chip breakpoints are used than the core supports,
the debugger will report an invalid breakpoint configuration.
NIOS II Debugger and Trace | 13©1989-2024 Lauterbach

SYStem.CONFIG Configure multi-core debugger

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
system configuration if there is more than one JTAG compatible device in the JTAG chain (e.g. Stratix FPGA
+ Cyclone FPGA). The information is required before the debugger can be activated e.g. by a SYStem.Up.

TriState has to be used if more than one debugger are connected to the common JTAG port at the same
time. TAPState and TCKLevel define the TAP state and TCK level which is selected when the debugger
switches to tristate mode. Please note: nTRST must have a pull-up resistor on the target..

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>
(JTAG):

state
CORE <core> <chip>
DRPRE <bits>
DRPOST <bits>
IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Slave [ON | OFF]
InstanceNR <value>

state Show multicore settings.

CORE <core>
<chip>

For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.
Further information can be found in SYStem.CONFIG.CORE.

DRPRE Default: 0.
<number> of data register bits in the JTAG chain between the data
register of the core and the TDO signal (usually one data register bit per
JTAG device which is in BYPASS mode).

DRPOST Default: 0.
<number> of data register bits in the JTAG chain between the TDI signal
and the data register of the core (one data register bit per JTAG device
which is in BYPASS mode).

IRPRE Default: 0.
<number> of instruction register bits of all JTAG devices in the JTAG
chain between the instruction register of the core and the TDO signal.

IRPOST (default: 0) <number> of instruction register bits of all JTAG devices in the
JTAG chain between TDI signal and the instruction register of the core.
NIOS II Debugger and Trace | 14©1989-2024 Lauterbach

Example:

TDI ---> Device A ---> Device B ---> Device C ---> Device D ---> TDO

Instruction register length of

Now to debug Device C you will need the following settings:

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If more than one debugger share the same JTAG port, this
option is required. The debugger switches to tristate mode after each
JTAG access. Then other debuggers can access the port.

Slave (default: 0) If more than one debugger share the same JTAG port, all
except one must have this option active. Only one debugger - the ’master’
- is allowed to control the optional reset signal.

InstanceNR <value> Instance number.

Device A : 3 bit

Device B : 5 bit

Device C : 5 bit

Device D : 4 bit

SYStem.CONFIG IRPRE 4 ; IR Device D

SYStem.CONFIG IRPOST 8 ; IR Device A + B

SYStem.CONFIG DRPRE 1 ; DR Device D

SYStem.CONFIG DRPOST 2 ; DR Device A + B
NIOS II Debugger and Trace | 15©1989-2024 Lauterbach

TapStates

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan

5 Update-DR

6 Capture-DR

7 Select-DR-Scan

8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle

13 Update-IR

14 Capture-IR

15 Test-Logic-Reset
NIOS II Debugger and Trace | 16©1989-2024 Lauterbach

SYStem.CONFIG.CORE Select core in FPGA

With the Nios II the more common case is that you have only one FPGA device, which has several cores in
it. The Nios II cores in one FPGA device use a multiplexing scheme, which means that they are not daisy
chained in a JTAG chain. To select which core you want to debug in one FPGA device, you use the above
command.

The core number specifies which core you want to debug in one FPGA device. The chip number is only
needed, if you have several FPGA devices on your JTAG chain, and you want to debug them in parallel. In
this case you should enumerate your FPGA devices so that each FPGA device has a unique chip number;
it is recommended to start with chip number 1.

 All cores which are in the same FPGA should get the same chip number. Which FPGA gets which chip
number can be chosen arbitrarily. Example configuration:

TDI ---> Stratix with 2 Nios II cores ---> Cyclone with 1 Nios II core ---> TDO.

In this example we will give the Stratix chip number 1 and the Cyclone chip number 2. As mentioned, it is
not importand how you enumerate your FPGAs, so it would also be possible to exchange this chip numbers
(so that the Stratix is 2 and the Cyclone is 1).

Now to debug the two cores in the Stratix you’ll need the following JTAG Multicore settings:

The debugger for the first core in the Stratix device additionally needs the following setting

And the debugger for the second core in the Stratix device needs the setting:

Format: SYStem.CONFIG.CORE <core_number> <chip_number>
SYStem.MultiCore.Core <core_number> <chip_number> (deprecated)

SYStem.CONFIG IRPRE 10 ; IR Cyclone

SYStem.CONFIG IRPOST 0 ; No device before Stratix in chain

SYStem.CONFIG DRPRE 1 ; DR Cyclone

SYStem.CONFIG DRPOST 0 ; No device before Stratix in chain

SYStem.CONFIG.Core 1 1 ; Connect to Core 1 in Stratix (Chip 1)

SYStem.CONFIG.Core 2 1 ; Connect to Core 2 in Stratix (Chip 1)
NIOS II Debugger and Trace | 17©1989-2024 Lauterbach

The debugger for the core in the Cyclone device needs the following JTAG Multicore settings:

And additionally:

SYStem.CONFIG IRPRE 0 ; No device after Cyclone in chain

SYStem.CONFIG IRPOST 10 ; IR Stratix

SYStem.CONFIG DRPRE 0 ; No device after Cyclone in chain

SYStem.CONFIG DRPOST 1 ; DR Stratix

SYStem.CONFIG.Core 1 2 ; Connect to Core 1 in Cyclone (Chip 2)
NIOS II Debugger and Trace | 18©1989-2024 Lauterbach

SYStem.CONFIG.state Show multi-core settings

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Format: SYStem.CONFIG.state [/<tab>]
SYStem.MultiCore.view (deprecated)

<tab>: DebugPort | Jtag

DebugPort n/a

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.
NIOS II Debugger and Trace | 19©1989-2024 Lauterbach

SYStem.CONFIG.CPUID Tell the debugger to which CPU it should connect

Tells the debugger to which CPU core it should connect. Refer to SYStem.DETECT.ScanCpuIDS for
more information.

SYStem.CPU Select CPU type

At the moment the only CPU type which can be selected is “Nios II”.

SYStem.CONFIG.JtagUartNR Specify JTAG UART component number

This option is only relevant, if you have an FPGA design with

• multiple “Altera JTAG UART” IP components in it

• multiple “Nios II” cores in it, but it's not clear which Nios II CPU should access the JTAG UART

Per default the PowerView software matches JTAG UART components to Nios II CPU cores, by
enumerating both kinds of components. That means the first found Nios II CPU core will be associated with
the first found JTAG UART, the second found Nios II CPU core will be associated with the second found
JTAG UART and so on.

In an FPGA with just a single Nios II core, this matching works fine; but in an FPGA design with multiple Nios
II cores or multiple JTAG UART components, the matching might not be what you need.

In these scenarios, you might specify which JTAG UART should be accessed, with the SYStem.CONFIG
JtagUartNR command. For a specific FPGA design unfortunately the Quartus II FPGA design software,
does not tell you how the JTAG UART components are enumerated. You might not know immediately what
is the first JTAG UART component, what is the second JTAG UART component and so on; some
experimentation might be necessary.

To undo the setting use SYStem.CONFIG.JtagUartNR without specifying a value.

Format: SYStem.CONFIG.CPUID <value>

Format: SYStem.CONFIG.JtagUartNR [<value>]
NIOS II Debugger and Trace | 20©1989-2024 Lauterbach

SYStem.DETECT.ScanCpuIDS Scan which CPU IDs exist in FPGA design

If you have an FPGA design, which contains multiple Nios II CPU cores, then you have to tell the debugger
which CPU core should be debugged.

One way of specifying this is to use the SYStem.CONFIG.CORE <nr> command.

However, the Nios II FPGA Design Software, does not make it obvious, which CPU core gets which number.
The Nios II CPU core has a CPUID register; the value of this register is specified by the user in the Nios II
FPGA Design Software for each CPU core. If you give each CPU core a unique CPUID register value, then
you might use the CPUID register value to unambiguously tell to which CPU core TRACE32 is connected.

If you want to do that manually, you can iterate through all existing CPU cores:

• Start with SYStem.CONFIG.CORE 0

• Execute the command SYStem.Up

• Display the CPUID register (by looking into the Register window)

• Go back into the SYStem.Down state

• Increment the number for SYStem.CONFIG.CORE <nr> until you have iterated through all CPU
cores

This way you can manually find out which CPUID register value belongs to which SYStem.CONFIG.CORE
<nr>.

TRACE32 offers some help in automating this process:

1. Make sure you are in SYStem.Down state

2. Execute SYStem.DETECT.ScanCpuIDS. This will scan, which CPUIDs exist in the FPGA
design. TRACE32 will print a list of found CPUIDs in the AREA message window.

3. Tell TRACE32 to which CPU core it should connect by using the command
SYStem.CONFIG.CPUID <value>.

4. When you now execute a SYStem.Up, TRACE32 will connect to the CPU core with the specified
CPUID register value. If no such CPUID was found an error is reported.

Please note that The command SYStem.DETECT.ScanCpuIDS is intrusive: it will iterate through all CPU
cores and stops each of them for a short period of time. This unfortunately is unavoidable, because the
Nios II hardware debug interface does not offer a way to read out the CPUID register value without
stopping the CPU core.

The command SYStem.DETECT.ScanCpuIDS only works if you are in the SYStem.Down state.

Format: SYStem.DETECT.ScanCpuIDS
NIOS II Debugger and Trace | 21©1989-2024 Lauterbach

If you want to un-set the CPUID (and instead use the normal SYStem.CONFIG.CORE <nr> mechanism to
select the CPU core), you might execute SYStem.CONFIG.CPUID and leave out the CPUID value. This will
un-set the CPUID and switch back to select the CPU core with the number specified via
SYStem.CONFIG.CORE <nr>.

SYStem.JtagClock Select clock for JTAG communication

This command selects the frequency of the JTAG clock, which is used to communicate with the Nios II core
inside the FPGA. The maximum reachable frequency is dependent on the design in the FPGA. In general
10 MHz should work properly. To be on the safe side, the default frequency, which is selected when the
debugger is started is set to 1 MHz.

SYStem.LOCK Lock and tristate the debug port

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

Format: SYStem.LOCK [ON | OFF]
NIOS II Debugger and Trace | 22©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

SYStem.Mode Select target reset mode

Format: SYStem.MemAccess StopAndGo | Denied
SYStem.ACCESS (deprecated)

Denied Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
For more information, see below.

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
Attach
Up

Down Stops communicating with the Nios II core over JTAG.

NoDebug Not implemented.

Go Not Implemented.

Attach User program remains running (no reset) and the debug interface is
initialized. After this command the user program can be stopped with the
break command or if a break condition occurs.

Up Resets ALL cores, enters debug mode, starts to execute monitor code.

StandBy Not implemented.
NIOS II Debugger and Trace | 23©1989-2024 Lauterbach

SYStem.Option.BTM Enable/disable branch trace

This option controls if the trace unit (when available) of the Nios II produces Branch Trace Messages or not.
If you disable this option, then you don’t get any program flow information from the trace. This option
configures the behavior for the on-chip and off-chip trace.

SYStem.Option.CFGCLK Set clock frequency for configuration

When you want to configure your FPGA a fixed frequency is used to send the configuration data to the
FPGA. This frequency can be set by this option.

SYStem.Option.DCFLUSH Flush data cache before “Go”

Default: ON.

If this option is enabled the data cache will be flushed (written back to memory and invalidated), before
the debugger executes a Go command. On Nios II cores, which have a data cache, this is might be
necessary, to ensure that program code, which was written to the data cache, gets transferred into the
memory.

Format: SYStem.Option.BTM [ON | OFF]

Format: SYStem.Option.CFGCLK <frequency>

<frequency>: 10MHz
5MHz
2.5MHz
1.25MHz
612kHz

Format: SYStem.Option.DCFLUSH [ON | OFF]
NIOS II Debugger and Trace | 24©1989-2024 Lauterbach

SYStem.Option.DBGALL Enable/disable debug mode for all cores

A System.Up command will reset all cores in one FPGA. With this option you can select, which cores are
also put into debug mode. If this option is enabled, then all cores in the chip will be put into debug mode. If
this option is disabled, then only cores, which are connected to a TRACE32 PowerView GUI will be put into
debug mode.

SYStem.Option.LocalRESet Assert a local JTAG reset at SYStem.Up

This option is intended for multi-core debugging of QSYS based Systems: With QSYS each Nios II CPU
gets a local JTAG reset output port. Depending on your configuration this local JTAG reset might need to be
asserted to reset the corresponding Nios II CPU. If you debug in a multi-core environment (with multiple
instances of the t32mnios executable in parallel connected to different CPUs in your FPGA), then you might
need to enable this option to reset all CPUs at the same time when executing a System.Up. If this option is
enabled for a CPU to which a t32mnios executable is connected, then the local JTAG reset output port will
be asserted when a System.Up is executed.

Format: SYStem.Option.DBGALL [ON | OFF]

Format: SYStem.Option.LocalRESet [ON | OFF]
NIOS II Debugger and Trace | 25©1989-2024 Lauterbach

SYStem.Option.DTM Select kind of data trace

This option controls the data trace if available. The Nios II supports several different modes for data tracing:

SYStem.Option.Endianness Select endianness of core

Default: AUTO.

This option tells the debugger if you use a Little- or Big-Endian Nios II core. If you select AUTO, the
endianness will be determined automatically, when you execute a System.Up.

Format: SYStem.Option.DTM <mode>

<mode>: OFF
ReadAddress
WriteAddress
ReadWriteAddress
ReadData
Read
Write
ReadWrite

OFF Don’t record any data trace information.

ReadAddress Record addresses of read accesses.

WriteAddress Record addresses of write accesses.

ReadWriteAddress Record addresses of read and write accesses.

ReadData Record data of read accesses without addresses.

Read Record data and addresses of read accesses.

Write Record data and addresses of write accesses.

ReadWrite Record data and addresses of read and write accesses.

Format: SYStem.Option.Endianness [AUTO | Little | Big]
NIOS II Debugger and Trace | 26©1989-2024 Lauterbach

SYStem.Option.FSS Enable/disable FS2 compatibility mode

If you implement an off-chip trace port on your FPGA, we highly recommend to follow the application note
about the off-chip trace. If you don’t follow the application note, than you have to enable this option to put the
trace into a compatibility mode, which works with the original behavior of the off-chip trace port.

SYStem.Option.FPH Enable the disassembly of floating point instructions

Default: OFF.

Enables/disables the mnemonics of floating point instructions in the disassembly (List window).

SYStem.Option.ICFLUSH Flush instruction cache before “Go”

Default: ON.

If enabled, the instruction cache will be flushed, before the debugger executes a Go or a Step command. On
Nios II cores, which have an instruction cache, this is necessary to ensure that software breakpoints work
correctly and to ensure that code, which is downloaded to the target, will get executed correctly.

Format: SYStem.Option.FSS [ON | OFF]

Format: SYStem.Option.FPH [ON | OFF]

Format: SYStem.Option.ICFLUSH [ON | OFF]

If you debug a Nios II processor, which includes an instruction cache, and
you turn this option OFF, software breakpoints won’t work correctly. You
have to use on-chip breakpoints in this case!
NIOS II Debugger and Trace | 27©1989-2024 Lauterbach

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.

If enabled, the debug core will disable all interrupts for the CPU, when single stepping assembler
instructions. No hardware interrupt will be executed during single-step operations. When you execute a Go
command, the hardware interrupts will be enabled again, according to the system control registers.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the debug core will disable all interrupts for the CPU, during HLL single-step operations. When
you execute a Go command, the hardware interrupts will be enabled again, according to the system control
registers. This option should be used in conjunction with IMASKASM.

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)
NIOS II Debugger and Trace | 28©1989-2024 Lauterbach

For an explanation of the TRACE32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

Examples:

SYStem.Option.PIDWidth Specify size of PID field in the TLB

Default: 10.

This setting is only needed, if:

• You use a Nios II CPU with MMU

• You use a Nios II instruction trace (onchip or offchip)

To decode a Nios II (with MMU) instruction trace, the TRACE32 software needs to know the size of the PID
(Process Identifier) field in the TLB (Translation Lookaside Buffer) of the Nios II MMU.

Use this option to specify the width of the PID bit field.

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.

2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

Format: SYStem.Option.PIDWidth <bits>
NIOS II Debugger and Trace | 29©1989-2024 Lauterbach

SYStem.Option.QUARTUS Workaround for QUARTUS II version 13.0

The Quartus II FPGA design software version 13.0 produces Nios II CPU cores, which require a workaround
for successful debugging.

Use this command to turn on the workaround for FPGA Designs, generated with this particular Quartus II
version.

SYStem.Option.TOFF Enable/disable tracetrigger input

If you use an off-chip trace port and if you don’t connect the trigger pin of the trace connector, the trigger
input of the off-chip trace floats. In this case our trace hardware will detect a lot of false triggers, which will
disturb your regular trace recording. You can turn on this system option to disable the trigger input of the off-
chip trace, to get rid of the false triggers.

SYStem.Option.SYNC Specify frequency of SYNC messages

This option is only relevant if the trace unit generates Branch Trace Messages. There are two kinds of
Branch Trace Messages: Compressed messages and SYNC messages. The compressed messages can
only be decompressed by analyzing the surrounding SYNC messages. So without SYNC messages,
compressed messages can’t be decompressed. This option controls how often the trace produces SYNC
messages. ALL means that the trace only uses SYNC messages and no compressed messages; in this
case the Branch Trace uses more trace memory. 64 means that each 64th Branch Trace Message will be a
SYNC message; in this case the Branch Trace uses less trace memory, but decompressing the trace is
harder.

Format: SYStem.Option.QUARTUS GENeric | 13_0

Format: SYStem.Option.TOFF [ON | OFF]

Format: SYStem.Option.SYNC <mode>

<mode>: ALL
4
16
64
NIOS II Debugger and Trace | 30©1989-2024 Lauterbach

Configuring your FPGA

Before you can start debugging, your FPGA has to contain a valid design. The design has to include a Nios
II core, for which JTAG debugging is enabled. For instructions how to create such a design, please refer to
the technical documentation about the SOPC Builder, provided by Altera.

You can use the debugger to configure your FPGA, if you provide a suitable JBC (Jam Byte Code) or JAM
file. Both file formats can be produced for any design with the Quartus II software from Altera. Instructions
can be found in the online help of Quartus II.
You can also use a raw binary file (RBF file), which can also be produced by Quartus II. Using a raw binary
file is currently the fastest and most flexible configuration method.

JTAG.LOADRBF Configure FPGA with RBF file

This command will use a raw binary file to configure your FPGA with the debugger.

The raw binary file must not contain a compressed bitstream. So you have to deactivate this option in
Quartus II, when you generate your raw binary file.

Not all FPGA families from Altera are supported. Currently the following devices are supported:

The used programming algorithm might also work for more recent devices, but this is not guaranteed.

Using a raw binary file currently is the fastest method to configure your FPGA. There is also another
advantage:
JAM and JBC files have to contain a complete description of the JTAG chain. So if you have several devices

You should ensure that the debugger is in SYStem.down mode, before
configuring your FPGA. Configuring the FPGA will break the
communication link between the debugger and the Nios II core, if your
debugger is in SYStem.Up mode.

Format: JTAG.LOADRBF <file>

Stratix ...
Stratix IV

All Stratix, Stratix II, Stratix III, Stratix IV devices.

Cyclone ...
Cyclone IV

All Cyclone, Cyclone II, Cyclone III, Cyclone IV devices.

Arria GX ...
Arria II GX

All Arria GX, Arria II GX devices.
NIOS II Debugger and Trace | 31©1989-2024 Lauterbach

in your JTAG chain, your JAM and JBC files have to match this configuration.
With a RBF the device, which will be configured, is selected by the MULTICORE settings in the debugger.
So the RBF file is independent of the layout of your JTAG chain.
NIOS II Debugger and Trace | 32©1989-2024 Lauterbach

JTAG Uart Support

Altera provides a JTAG Uart module with its Quartus II software, which can be used as a terminal for
applications. The TRACE32 software allows to connect a terminal window to such an UART, with the
commands:

term.method DCC ; For Nios II debuggers the “DCC” method will use
; the Jtag UART.

term. ; Open up terminal window.
NIOS II Debugger and Trace | 33©1989-2024 Lauterbach

On-chip Breakpoints

The Nios II core can be configured to support up to four on-chip program breakpoints and up to four on-chip
read/write breakpoints.

Program Breakpoints

Generally the In Circuit Debugger for Nios II uses Software Breakpoints to realize Program Breakpoints.
Software Breakpoint means that the code at the desired memory location is modified by the debugger to
make the CPU break when the program counter hits this address. After a break the original contents of the
memory location are restored.

This mechanism can not work in Read Only Memory. To provide breakpoints in ROM areas the CPU’ s on-
chip breakpoints can be used. The memory ranges, where on-chip breakpoints should be used, must be
defined with the command MAP.BOnchip.

With the command Break.List the actual breakpoint configuration can be checked.

Read and Write Breakpoints

Read and Write Breakpoints always use the CPU’ s on-chip breakpoints regardless of the ranges defined
with MAP.BOnchip.

Read and Write Breakpoints can be set with the Break window or with the command Break.Set:

It is also possible to break on an access to an addresses range. In this case two on-chip breakpoints will be
combined to realize the Breakpoint:

MAP.BOnchip 0x1080--0xffff ; In the address range 0x1080--0xffff
; on-chip breakpoints will be used.

Break.Set 0x4738 /Write ; The CPU will be stopped if there is a
; write access to address 0x4738

Break.Set 0xb223 /Read ; The CPU will be stopped if there is a
; read access to address 0xB223

Break.Set 0x1000--0x10FF /Write ; The CPU will be stopped if there is a
; write access to an address in the
; range 0x1000--0x10FF
NIOS II Debugger and Trace | 34©1989-2024 Lauterbach

Data Breakpoints

Data Breakpoints always use the CPU’ s on-chip breakpoints regardless of the ranges defined with
MAP.BOnchip. All Read/Write Breakpoints can be combined with a 32 Bit data value. If only a 16 or 8 Bit
data value is used, or if a data mask is used instead of a data value, two on-chip breakpoint resources are
necessary to realize the breakpoint.

Trace Control Breakpoints

You can use the on-chip breakpoints to turn the trace on and off and to generate a trigger on the trigger
output of the off-chip trace port. This works for the on-chip and off-chip trace. You simply have to add one of
the following options to your breakpoint definition:

Example:

Restrictions: TraceEnable breakpoints only work as expected, when the whole trace is turned off. In this
case data accesses will be only traced, when the breakpoint condition is met. If the trace is turned on (by
hitting a TraceON breakpoint), then the trace will record all data accesses, regardless of any TraceEnable
breakpoints.

Break.Set 0x100 /Write /DATA 0x12345678 ; CPU will stop, if the 32 bit
; value 0x12345678 is written
; to address 0x100

Break.Set 0x110 /Read /DATA.Byte 0x55 ; CPU will stop, if data is
; read from address 0x110 and
; the byte at address 0x110
; contains the value 0x55.

TraceON Turns the collection of trace data on, when the breakpoint is
reached.

TraceOff Turns the collection of trace data off, when the breakpoint is
reached.

TraceEnable Only for read/write breakpoints: Will generate a single Data Transfer
Message, for the access which matched the breakpoint.

TraceTrigger Send a trigger to the off-chip trace via the trigger output of the off-
chip trace port of the Nios II core (TRIGA on the mictor connector).

Break.Set 0x9C0 /Onchip /Program /TraceOn ; Will turn the trace on,
; when the program reaches
; address 0x9C0.

Break.Set 0x9D0 /Onchip /Program /TraceOff ; Will turn the trace off,
; when the program reaches
; address 0x9D0.
NIOS II Debugger and Trace | 35©1989-2024 Lauterbach

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table

Displays the contents of the CPU specific MMU translation table.

• If called without parameters, the complete table will be displayed.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
 <address> <root>]
MMU.<table>.dump (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Displays the entries of an MMU translation table.
• if <range> or <address> have a space ID: displays the translation

table of the specified process
• else, this command displays the table the CPU currently uses for

MMU translation.
NIOS II Debugger and Trace | 36©1989-2024 Lauterbach

CPU specific tables in MMU.DUMP <table>

KernelPageTable Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.

ITLB Displays the contents of the Instruction Translation Lookaside Buffer.

DTLB Displays the contents of the Data Translation Lookaside Buffer.

TLB Displays the contents of the Translation Lookaside Buffer.
NIOS II Debugger and Trace | 37©1989-2024 Lauterbach

MMU.List Compact display of MMU translation table

Lists the address translation of the CPU-specific MMU table.

• If called without address or range parameters, the complete table will be displayed.

• If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSlation.List.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Lists the entries of an MMU translation table.
• if <range> or <address> have a space ID: list the translation table

of the specified process
• else, this command lists the table the CPU currently uses for MMU

translation.

KernelPageTable Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.
NIOS II Debugger and Trace | 38©1989-2024 Lauterbach

MMU.SCAN Load MMU table from CPU

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

• If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSlation.List.

• If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSlation.ON to enable the debugger-internal MMU table.

Format: MMU.SCAN <table> [<range> <address>]
MMU.<table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]
<cpu_specific_tables>

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
• if <range> or <address> have a space ID: loads the translation table

of the specified process
• else, this command loads the table the CPU currently uses for MMU

translation.
NIOS II Debugger and Trace | 39©1989-2024 Lauterbach

KernelPageTable Loads the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the table
of the kernel and copies its address translation into the debugger-internal
static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static translation
table.
• For information about the first three parameters, see “What to know

about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manual.

ALL [Clear] Loads all known MMU address translations.
This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the debugger-
internal static translation table.
See also the appropriate OS Awareness Manual.
Clear: This option allows to clear the static translations list before reading
it from all page translation tables.
NIOS II Debugger and Trace | 40©1989-2024 Lauterbach

TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Opens the TrOnchip.state window.

TrOnchip.RESet Set on-chip trigger to default state

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

By default a read/write breakpoint to a 16- or 32-bit value in memory will be realized as an on-chip read/write
breakpoint for an address range. For example to break on a write access to the 32 Bit Word starting at
address 0x100 an on-chip breakpoint for the address range 0x100--0x103 will be used. When the
TrOnchip.CONvert option is set to ON and there are not enough on-chip breakpoint resources available to
realize all on-chip breakpoints, the debugger will try to convert these special cases to single address
Read/Write Breakpoints, to use the on-chip breakpoint resources more efficiently.

Format: TrOnchip.state

Format: TrOnchip.RESet

Format: TrOnchip.CONVert [ON | OFF]

TrOnchip.CONVert On
Break.Set 0x100--0x103 /Write
Break.Set 0x200--0x203 /Write

; Allow conversion
; This two breakpoints may be
; converted to single address
; breakpoints
NIOS II Debugger and Trace | 41©1989-2024 Lauterbach

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted
into a single address breakpoint. This is the default setting. Otherwise an error message is generated.

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead
NIOS II Debugger and Trace | 42©1989-2024 Lauterbach

Memory Classes

For Nios II cores which don’t have a data cache all three memory classes have the same behavior.

Memory Class Description

P: Program. Accesses to this memory class will bypass the data cache.

D: Data. Accesses to the memory class will use the cache (if available) to
access the memory.

NC: No Cache. Accesses to this memory class will bypass the data cache.
(This class has the same functionality as the P: class)
NIOS II Debugger and Trace | 43©1989-2024 Lauterbach

BDM Connector ICD-NIOS II

This image shows the top view to the male connector on the target board. The meaning of the Pins is as
follows:

Signal Pin Pin Signal
TCK 1 2 GND
TDO 3 4 VTREF
TMS 5 6 N/C
N/C 7 8 RST-
TDI 9 10 GND

TCK Jtag Clock. It is recommended to put a pull-DOWN to GND on this signal.

TMS Jtag TMS. It is recommended to put a pull-UP to VCC on this signal.

TDI Jtag TDI. It is recommended to put a pull-UP to VCC on this signal.

TDO Jtag TDO. (No pull-up, or pull down is needed for this signal.)

VTREF Reference voltage. This voltage should indicate the nominal HIGH level
for the JTAG pins. So for example, if your signals have a voltage swing
from 0 … 3.3 V, the VTREF pin should be connected to 3.3 V.

RST- Optional. This pin is not used at the moment and is intended for future
use:
If your board has a low active CPU reset signal, you can connect this low
active reset signal to this pin. The debugger can drive this pin to GND to
hold the CPU in the reset state. The debugger drives this pin as open-
drain, so a pull-up is mandatory.
NIOS II Debugger and Trace | 44©1989-2024 Lauterbach

NIOS II Trace Connector

The pins have the following meaning:

Signal Pin Pin Signal
N/C 1 2 N/C
N/C 3 4 N/C
N/C 5 6 CLK
N/C 7 8 TRIGB

RST- 9 10 TRIGA
TDO 11 12 VTREF
N/C 13 14 N/C
TCK 15 16 D11
TMS 17 18 D10
TDI 19 20 D09
N/C 21 22 D08
N/C 23 24 D07
N/C 25 26 D06
D17 27 28 D05
D16 29 30 D04
D15 31 32 D03
D14 33 34 D02
D13 35 36 D01
D12 37 38 D00

TCK Jtag Clock. It is recommended to put a pull-DOWN to GND on this signal.

TMS Jtag TMS. It is recommended to put a pull-UP to VCC on this signal.

TDI Jtag TDI. It is recommended to put a pull-UP to VCC on this signal.

TDO Jtag TDO. (No pull-up, or pull down is needed for this signal.)

VTREF Reference voltage. This voltage should indicate the nominal HIGH level
for the JTAG and trace pins. So for example, if your signals have a
voltage swing from 0V - 3.3V, the VTREF pin should be connected to
3.3V.

RST- Optional. This pin is not used at the moment and is intended for future
use:
If your board has a low active CPU reset signal, you can connect this low
active reset signal to this pin. The debugger can drive this pin to GND to
hold the CPU in the reset state. The debugger drives this pin as open-
drain, so a pull-up is mandatory.

CLK Trace Clock.

D00-D17 Trace Data.
NIOS II Debugger and Trace | 45©1989-2024 Lauterbach

If possible the PCB trace lengths of CLK and D00-D17 should have the same lengths, since this signals
carry high frequency data.

It is possible to use the 10-pin connector for the JTAG signals (TCK, TMS, TDI, TDO and RST-) and to use
the mictor connector for the trace signals (CLK, D00-D17, TRIGA and TRIGB) exclusively (you should leave
the JTAG signals on the mictor connector unconnected in this case). In this case you can use different
voltage levels for the trace signals and the JTAG signals. You have to provide the correct voltage levels on
the VTREF pins for both connectors in this case.

TRIGA Optional. Trace Trigger. At the moment the trace logic of the Nios II core
supports one trigger output. This output can be used to trigger actions of
the external trace (for example stopping a trace recording).

TRIGB Optional. Trace Trigger. At the moment the trace logic of the Nios II core
only supports one trigger output, so this pin is intended for future use.
You might leave it unconnected, if you have not enough pins available on
your FPGA.
NIOS II Debugger and Trace | 46©1989-2024 Lauterbach

	NIOS II Debugger and Trace
	History
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Troubleshooting
	SYStem.Up Errors
	Trace Errors

	FAQ
	Quick Start of the ICD Debugger for Nios II
	1. Prepare the Start
	2. Configure your FPGA with a Nios II Core (optional)
	3. Select the Clock for the JTAG Communication
	4. Configure the Debugger According to the Needs of the Application
	5. Tell the Debugger where it should use On-chip Breakpoints (optional)
	6. Enter Debug Mode
	7. Load the Program
	8. Initialize Program Counter and Stackpointer
	9. View the Source Code

	CPU specific SYStem Settings and Restrictions
	Restrictions
	SYStem.CONFIG Configure multi-core debugger
	SYStem.CONFIG.CORE Select core in FPGA
	SYStem.CONFIG.state Show multi-core settings
	SYStem.CONFIG.CPUID Tell the debugger to which CPU it should connect
	SYStem.CPU Select CPU type
	SYStem.CONFIG.JtagUartNR Specify JTAG UART component number
	SYStem.DETECT.ScanCpuIDS Scan which CPU IDs exist in FPGA design
	SYStem.JtagClock Select clock for JTAG communication
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Select target reset mode
	SYStem.Option.BTM Enable/disable branch trace
	SYStem.Option.CFGCLK Set clock frequency for configuration
	SYStem.Option.DCFLUSH Flush data cache before “Go”
	SYStem.Option.DBGALL Enable/disable debug mode for all cores
	SYStem.Option.LocalRESet Assert a local JTAG reset at SYStem.Up
	SYStem.Option.DTM Select kind of data trace
	SYStem.Option.Endianness Select endianness of core
	SYStem.Option.FSS Enable/disable FS2 compatibility mode
	SYStem.Option.FPH Enable the disassembly of floating point instructions
	SYStem.Option.ICFLUSH Flush instruction cache before “Go”
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.PIDWidth Specify size of PID field in the TLB
	SYStem.Option.QUARTUS Workaround for QUARTUS II version 13.0
	SYStem.Option.TOFF Enable/disable tracetrigger input
	SYStem.Option.SYNC Specify frequency of SYNC messages

	Configuring your FPGA
	JTAG.LOADRBF Configure FPGA with RBF file

	JTAG Uart Support
	On-chip Breakpoints
	Program Breakpoints
	Read and Write Breakpoints
	Data Breakpoints
	Trace Control Breakpoints

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU

	TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

	Memory Classes
	BDM Connector ICD-NIOS II
	NIOS II Trace Connector

