LAUTERBACH A

NIOS Il Debugger and Trace

NIOS I

Debugger and Trace

TRACE32 Online Help

TRACE32D

irectory

TRACES32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~
V] 0 PP r=
NIOS Il Debugger and TraCecccccceriiissemrrisssssesrssssmssssssssmsssssssmssssssssnmssssssssmmsssssssnmssnnas 1

L 1= (o 5

Y £ Yo 11T £ o) o T 6

Brief Overview of Documents for New Users 6

Demo and Start-up Scripts 6
L= T 11 ' 7

Lo 18] o == 0 T To £ 3V 8
SYStem.Up Errors 8

Trace Errors 8

- N 8
Quick Start of the ICD Debugger for Nios Ilcccocmiiimmnnnmnss s saanes 9

1. Prepare the Start 9

2. Configure your FPGA with a Nios Il Core (optional) 9

3. Select the Clock for the JTAG Communication 9

4. Configure the Debugger According to the Needs of the Application 10

5. Tell the Debugger where it should use On-chip Breakpoints (optional) 10

6. Enter Debug Mode 10

7. Load the Program 11

8. Initialize Program Counter and Stackpointer 11

9. View the Source Code 11

CPU specific SYStem Settings and Restrictionsccccccciiiiiccmnnnnicnnnnnsssnsnceennns 13
Restrictions 13
SYStem.CONFIG Configure multi-core debugger 14
SYStem.CONFIG.CORE Select core in FPGA 17
SYStem.CONFIG.state Show multi-core settings 19
SYStem.CONFIG.CPUID Tell the debugger to which CPU it should connect 20
SYStem.CPU Select CPU type 20
SYStem.CONFIG.JtagUartNR Specify JTAG UART component number 20
©1989-2024 Lauterbach NIOS Il Debugger and Trace 2

SYStem.DETECT.ScanCpulDS Scan which CPU IDs exist in FPGA design 21
SYStem.JtagClock Select clock for JTAG communication 22
SYStem.LOCK Lock and tristate the debug port 22
SYStem.MemAccess Select run-time memory access method 23
SYStem.Mode Select target reset mode 23
SYStem.Option.BTM Enable/disable branch trace 24
SYStem.Option.CFGCLK Set clock frequency for configuration 24
SYStem.Option.DCFLUSH Flush data cache before “Go” 24
SYStem.Option.DBGALL Enable/disable debug mode for all cores 25
SYStem.Option.LocalRESet Assert a local JTAG reset at SYStem.Up 25
SYStem.Option.DTM Select kind of data trace 26
SYStem.Option.Endianness Select endianness of core 26
SYStem.Option.FSS Enable/disable FS2 compatibility mode 27
SYStem.Option.FPH Enable the disassembly of floating point instructions 27
SYStem.Option.ICFLUSH Flush instruction cache before “Go” 27
SYStem.Option.IMASKASM Disable interrupts while single stepping 28
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 28
SYStem.Option. MMUSPACES Separate address spaces by space IDs 28
SYStem.Option.PIDWidth Specify size of PID field in the TLB 29
SYStem.Option.QUARTUS Workaround for QUARTUS Il version 13.0 30
SYStem.Option. TOFF Enable/disable tracetrigger input 30
SYStem.Option.SYNC Specify frequency of SYNC messages 30
Configuring YoUr FPGA ...t s s sss s s ssms s e ssm s e ssammnn s 31
JTAG.LOADRBF Configure FPGA with RBF file 31
BN 7Y€ U - T ST T o o T o 33
On-chip Breakpointsccccciiiiimmmmmiismsrmnsssrnsss s s e sss s e ssmssn s 34
Program Breakpoints 34
Read and Write Breakpoints 34
Data Breakpoints 35
Trace Control Breakpoints 35
CPU specific MMU COMMANAS cccceeccmmmmmmiriiiisissssssssscsmmsssssessssssssssssssmssssssssssesssssssssnnnnas 36
MMU.DUMP Page wise display of MMU translation table 36
MMU.List Compact display of MMU translation table 38
MMU.SCAN Load MMU table from CPU 39
TrOnchip COMMANASccccciiiiiimrr i n e n e s ammnn e 41
TrOnchip.state Display on-chip trigger window 41
TrOnchip.RESet Set on-chip trigger to default state 41
TrOnchip.CONVert Adjust range breakpoint in on-chip resource 41
TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 42

1 1= 5 g o] A 03 T L= 43
BDM Connector ICD-NIOS Ilccociiiiiiiininiesnisssssses s ss s s sss s sss s s s ssms s sns e nsmnnas 44
©1989-2024 Lauterbach NIOS Il Debugger and Trace 3

NIOS Il Trace CONNECIONciiiiieeeeriiiiireneassiirirannsssseirsanssssssrrasnnssssssnennsssssssesnnnssssssnssnnnnnnn 45

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 4

NIOS Il Debugger and Trace

History

Version 06-Jun-2024

20-Jul-22 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second
parameter.
[BiList.auto] = =R
M Step | B Over | \AsDiverge « Return|| ¢ Up » Go || Il Break || 1% Mode |6z ¢ Find:
addr/1ine |code label mnemonic comment |
int main (void) ~
P:00000158 [DEFFFE04 main: addi r27,r27,-0x8
P:0000015C (DFCOOL1S stw r31,0x4(r27)
volatile unsigned int 1;
71 setCt13 (0x3); * Enable IRQ O+1
P: 00000160 (010000C4 mov1 r4,0x3
P:00000164 (00001E40 call Ox1B4
72 setCt10 (0x1); * Enable Interrupts
P: 00000168 (01000044 movi r4,0x1
P :0000016C |00001A40 Ox1A4
73 JTAGUART_REGISTE Ox1; * Enable Read Interrupt
P:00000170 |(00C0O0044 r3,0x
P:00000174 (00ADODS4 r2,0x8000
P:00000178 (10541004 rz,r2,0x1074
P:0000017C (10CO0015 stw 3,0x0(r2)
74 TIMER_REGISTER (1) 0x7; = ITO=1, CONT=1, START=1 *
P: 00000180 (00CO0LCS mov1 r3,0ox7
P:00000184 (LOEFECO4 addi rz,r2,-0x50
P: 00000188 (10CO00LS stw 3,0x0(r2)
75 i=0
P:0000018C (DE0O000LS r0,0x0(r27)
P: 00000190 (00CO0044 r3,oxl
* Jtag Uart is read via exception
while (1)
L.
i+
P:00000194 (DEE0O0OOLT Tdw r2,0x0(r27)
P:00000198 [1OCSEE3A add r2,r2,r3
] D&E00015 stw r2,0x0{r27) 5.F2,0(r27)
P :000001AD (O0SFFCOG or Ox194
P:000001A4 [2001703A setCt10: wrct ctlo,r4 hd

©1989-2024 Lauterbach

NIOS Il Debugger and Trace | 5

Introduction

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known NIOS Il based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/nios/ subfolder of the system directory of TRACES32.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 6

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

NIOS Il Debugger and Trace |

7

Troubleshooting

SYStem.Up Errors

The SYStem.UP command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

. The target has no power.

. The FPGA which should hold a Nios Il Core with debugging interface isn’t configured, or the
design doesn’t contain a Nios |l Core with debugging interface.

o There is a short-circuit on at least one output line of the CPU.

. There is a problem with the electrical connection between ICDNIOS and the target - check if the
BDM connector is plugged correctly and if the target is built corresponding to the definition of the
used BDM connector.

Trace Errors

To use an off-Chip trace for a Nios Il CPU we strongly recommend to follow the application note “NIOS II
Debugger and Trace” (debugger_nios.pdf).

If you don't follow this application note, you have to enable the FSS option.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 8

https://support.lauterbach.com/kb

Quick Start of the ICD Debugger for Nios I

This chapter should help you to prepare your Debugger for Nios |l. Depending on your application not all
steps might be necessary.

For some applications additional steps might be necessary, that are not described in this Quick Start section.

1. Prepare the Start

Connect the Debug Cable to your target. Check the orientation of the connector. Pin 1 of the debug cable is
marked with a small triangle next to the nose of the target connector.

Power up your TRACES32 system (This is not necessary on PODPC).
Start the TRACE32 Debugger Software.

Power up your Target!

To prevent damage please take care to follow this sequence all the time
” you are preparing a start.

2. Configure your FPGA with a Nios Il Core (optional)

Before you can start debugging, the FPGA has to contain a design with a Nios Il Core with a debugging
interface. On some targets the FPGA will be automatically configured at PowerUp. If you want to use your
own design, you can configure the FPGA by using the commands JTAG.PROGRAM.JAM or
JTAG.PROGRAM.JBC or JTAG.LOADRBF.

3. Select the Clock for the JTAG Communication

You can select the JTAG clock frequency, which the Debugger uses to communicate with the target. This can
be either done in the JtagClock field in the SYStem Window, or by using the command line with the
command SYStem.JtagClock. The maximum clock frequency depends on the configuration of your FPGA
design. The default clock frequency is 1 MHz.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 9

4. Configure the Debugger According to the Needs of the Application

Depending on the variant of the debugged Nios Il core, different cache handling strategies can be used. All
of the available settings, can be configured with the SYStem Window. Set the SYStem Options in this
window according to your FPGA configuration and application program. Generally the SYStem Options can

remain at the default values for the first start.

5. Tell the Debugger where it should use On-chip Breakpoints (optional)

By default the In Circuit Debugger for Nios Il modifies the code to realize program breakpoints. This will not
work for ROM or FLASH memory locations. If the used Nios Il core provides on-chip breakpoints, these
breakpoints can be used for ROM/FLASH areas instead. With the command MAP.BOnchip <range> you

can specify where the debugger has to use on-chip breakpoints.

MAP.BOnchip 0x1000--0x0ffff ; activates the on-chip breakpoints
; within the range from 0x1000 to
; Oxffff

6. Enter Debug Mode

SYStem.Up

This command asserts a reset to the Nios Il core. While the reset is asserted, the machine code for a
standard monitor will be downloaded. After the reset is deasserted, the Nios Il will enter debug mode and

jump to the break address of the debugged core.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 10

7. Load the Program

Depending on your FPGA configuration, the Nios Il core may have access to many different variants of
memory, including on-chip memory, external SDRAM or FLASH memory.

When the core is prepared the code can be downloaded. This can be done with the command
Data.Load.<file_format> <file>. The debugger knows about various file formats. If you use the GNU C
compiler provided by Altera, you will usually have an ELF file. The typical command to load such an
executable is:

Data.lLoad.Elf <file>.elf /verify ; Load application file generated
; with the gcc compiler, provided by
; Altera. Verify that the application
; 1s written correctly to memory.

8. Initialize Program Counter and Stackpointer

In a ready-to-run compiled ELF file, these settings are in the start-up code of the ELF file. In this case
nothing has to be done. You can check the contents of Program Counter and Stack Pointer in the Register
Window, which provides the contents of all CPU Registers. Use CPU Registers in the CPU menu to open
this window or use the command Register.

The Program Counter and the Stackpointer and all other registers can be set with the commands
Register.Set PC <value> and Register.Set SP <value>. Here is an example of how to use these

commands:
Register.Set PC 0xc000 ; Set the Program Counter to address
; 0xC000
Register.Set SP Oxbff ; Set the Stack Pointer to address
; Oxbff
Register.Set PC main ; Set the PC to a label (here:

; function main)

9. View the Source Code

Use the command Data.List to view the source code at the location of the Program Counter.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 11

Now the quick start is done. If you were successful you can start to debug. Lauterbach recommends to
prepare a PRACTICE script file (*.cmm, ASCII format) to be able to do all the necessary actions with only

one command. Here is a typical start sequence:

WinCLEAR

SYStem.Reset

MAP.BOnchip 0x01080--0x0ffff

SYStem.Up

Data.LOAD.E1f demo.elf
List.Mix

Register.view /SpotLight

Frame.view /Locals /Caller

Var.Watch %$Spotlight flags ast

Break.Set 0x400

Break.Set 0x8024

Clear all windows

Set all options in the SYStem window
to default wvalues

Select on-chip breakpoints for the
FLASH and ROM areas

Reset the target and enter debug mode
Load the application

Open disassembly window *)
Open register window *)

Open the stack frame with
local variables *)

Open watch window for wvariables *)

Set software breakpoint to address
0x400 (address 0x400 is outside the
range, where on-chip breakpoints are
used)

Set on-chip program breakpoint to
address 0x8024 (address 0x8024 is
within the range, where on-chip
breakpoints are used)

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

For information about how to build a PRACTICE script file (*.cmm file), refer to “Training Basic
Debugging” (training_debugger.pdf). There you can also find some information on basic actions with the

debugger.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs. So if there are
questions related to the CPU, the Processor Architecture Manual should be your first choice.

©1989-2024 Lauterbach

NIOS Il Debugger and Trace | 12

CPU specific SYStem Settings and Restrictions

Restrictions

On-chip Break-
points

Because the Nios Il is a completely configurable soft core, not all variants
support on-chip breakpoints. The debugger will check the number of
available on-chip breakpoints, when the SYStem.Up command is
executed. If more on-chip breakpoints are used than the core supports,
the debugger will report an invalid breakpoint configuration.

©1989-2024 Lauterbach

NIOS Il Debugger and Trace |

13

SYStem.CONFIG Configure multi-core debugger

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter> state

(JTAG): CORE <core> <chip>
DRPRE <bits>
DRPOST <bits>
IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Slave [ON | OFF]
InstanceNR <value>

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
system configuration if there is more than one JTAG compatible device in the JTAG chain (e.g. Stratix FPGA
+ Cyclone FPGA). The information is required before the debugger can be activated e.g. by a SYStem.Up.

TriState has to be used if more than one debugger are connected to the common JTAG port at the same
time. TAPState and TCKLevel define the TAP state and TCK level which is selected when the debugger
switches to tristate mode. Please note: nTRST must have a pull-up resistor on the target..

state Show multicore settings.
CORE <core> For multicore debugging one TRACE32 PowerView GUI has to be started
<chip> per core. To bundle several cores in one processor as required by the

system this command has to be used to define core and processor
coordinates within the system topology.
Further information can be found in SYStem.CONFIG.CORE.

DRPRE Default: 0.
<number> of data register bits in the JTAG chain between the data
register of the core and the TDO signal (usually one data register bit per
JTAG device which is in BYPASS mode).

DRPOST Default: 0.
<number> of data register bits in the JTAG chain between the TDI signal
and the data register of the core (one data register bit per JTAG device
which is in BYPASS mode).

IRPRE Default: 0.
<number> of instruction register bits of all JTAG devices in the JTAG
chain between the instruction register of the core and the TDO signal.

IRPOST (default: 0) <number> of instruction register bits of all JTAG devices in the
JTAG chain between TDI signal and the instruction register of the core.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 14

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If more than one debugger share the same JTAG port, this
option is required. The debugger switches to tristate mode after each
JTAG access. Then other debuggers can access the port.

Slave (default: 0) If more than one debugger share the same JTAG port, all
except one must have this option active. Only one debugger - the 'master’
- is allowed to control the optional reset signal.

InstanceNR <value> Instance number.
Example:
TDI --> Device A ---> Device B ---> Device C ---> Device D ---> TDO
Instruction register length of

Device A : 3 bit
Device B : 5 bit
Device C : 5 bit

Device D : 4 bit

Now to debug Device C you will need the following settings:

SYStem.CONFIG IRPRE 4 ; IR Device D
SYStem.CONFIG IRPOST 8 ; IR Device A + B
SYStem.CONFIG DRPRE 1 ; DR Device D
SYStem.CONFIG DRPOST 2 ; DR Device A + B

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 15

TapStates

0 Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR

© 00 N o o0~ W N =

—_ - e e e
a A WO N =+ O

Test-Logic-Reset

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 16

SYStem.CONFIG.CORE Select core in FPGA

Format: SYStem.CONFIG.CORE <core_number> <chip_number>
SYStem.MultiCore.Core <core_number> <chip_number> (deprecated)

With the Nios Il the more common case is that you have only one FPGA device, which has several cores in
it. The Nios Il cores in one FPGA device use a multiplexing scheme, which means that they are not daisy
chained in a JTAG chain. To select which core you want to debug in one FPGA device, you use the above
command.

The core number specifies which core you want to debug in one FPGA device. The chip number is only
needed, if you have several FPGA devices on your JTAG chain, and you want to debug them in parallel. In
this case you should enumerate your FPGA devices so that each FPGA device has a unique chip number;
it is recommended to start with chip number 1.

All cores which are in the same FPGA should get the same chip number. Which FPGA gets which chip
number can be chosen arbitrarily. Example configuration:

TDI ---> Stratix with 2 Nios Il cores ---> Cyclone with 1 Nios Il core ---> TDO.

In this example we will give the Stratix chip number 1 and the Cyclone chip number 2. As mentioned, it is
not importand how you enumerate your FPGAs, so it would also be possible to exchange this chip numbers
(so that the Stratix is 2 and the Cyclone is 1).

Now to debug the two cores in the Stratix you'll need the following JTAG Multicore settings:

SYStem.CONFIG IRPRE 10 ; IR Cyclone
SYStem.CONFIG IRPOST 0 ; No device before Stratix in chain
SYStem.CONFIG DRPRE 1 ; DR Cyclone
SYStem.CONFIG DRPOST 0 ; No device before Stratix in chain

The debugger for the first core in the Stratix device additionally needs the following setting

SYStem.CONFIG.Core 1 1 ; Connect to Core 1 in Stratix (Chip 1)

And the debugger for the second core in the Stratix device needs the setting:

SYStem.CONFIG.Core 2 1 ; Connect to Core 2 in Stratix (Chip 1)

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 17

The debugger for the core in the Cyclone device needs the following JTAG Multicore settings:

SYStem.CONFIG
SYStem.CONFIG
SYStem.CONFIG

SYStem.CONFIG

And additionally:

SYStem.CONFIG

IRPRE O

IRPOST 10

DRPRE 0

DRPOST 1

.Core 1 2

No

IR

No

DR

Connect to Core 1 in Cyclone

device after Cyclone in chain

Stratix

device after Cyclone in chain

Stratix

(Chip 2)

©1989-2024 Lauterbach

NIOS Il Debugger and Trace

18

SYStem.CONFIG.state Show multi-core settings

Format: SYStem.CONFIG.state [/<tab>]
SYStem.MultiCore.view (deprecated)

<tab>: DebugPort | Jtag

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

-ioix
Debugport JTAG
IRPOST IRFRE
TDl pb —DRPOST ——— »b| core | bk -~ DRPRE ¥ TDO
I~ Tristate TAPState —— — TCKLevel —
s ’7|? [SelectDR-Scan) | ’7|0
ave

DebugPort n/a

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 19

SYStem.CONFIG.CPUID Tell the debugger to which CPU it should connect

Format: SYStem.CONFIG.CPUID <value>

Tells the debugger to which CPU core it should connect. Refer to SYStem.DETECT.ScanCpulDS for
more information.

SYStem.CPU Select CPU type

At the moment the only CPU type which can be selected is “Nios II”.

SYStem.CONFIG.JtagUartNR Specify JTAG UART component number

Format: SYStem.CONFIG.JtagUartNR [<value>]

This option is only relevant, if you have an FPGA design with
. multiple “Altera JTAG UART” IP components in it

J multiple “Nios II” cores in it, but it's not clear which Nios Il CPU should access the JTAG UART

Per default the PowerView software matches JTAG UART components to Nios Il CPU cores, by
enumerating both kinds of components. That means the first found Nios Il CPU core will be associated with
the first found JTAG UART, the second found Nios || CPU core will be associated with the second found
JTAG UART and so on.

In an FPGA with just a single Nios Il core, this matching works fine; but in an FPGA design with multiple Nios
Il cores or multiple JTAG UART components, the matching might not be what you need.

In these scenarios, you might specify which JTAG UART should be accessed, with the SYStem.CONFIG
JtagUartNR command. For a specific FPGA design unfortunately the Quartus Il FPGA design software,
does not tell you how the JTAG UART components are enumerated. You might not know immediately what
is the first JTAG UART component, what is the second JTAG UART component and so on; some
experimentation might be necessary.

To undo the setting use SYStem.CONFIG.JtagUartNR without specifying a value.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 20

SYStem.DETECT.ScanCpulDS Scan which CPU IDs exist in FPGA design

Format: SYStem.DETECT.ScanCpulDS

If you have an FPGA design, which contains multiple Nios Il CPU cores, then you have to tell the debugger
which CPU core should be debugged.

One way of specifying this is to use the SYStem.CONFIG.CORE <nr> command.

However, the Nios Il FPGA Design Software, does not make it obvious, which CPU core gets which number.
The Nios Il CPU core has a CPUID register; the value of this register is specified by the user in the Nios Il
FPGA Design Software for each CPU core. If you give each CPU core a unique CPUID register value, then
you might use the CPUID register value to unambiguously tell to which CPU core TRACE32 is connected.

If you want to do that manually, you can iterate through all existing CPU cores:
. Start with SYStem.CONFIG.CORE 0
J Execute the command SYStem.Up

. Display the CPUID register (by looking into the Register window)

J Go back into the SYStem.Down state
. Increment the number for SYStem.CONFIG.CORE <nr> until you have iterated through all CPU
cores

This way you can manually find out which CPUID register value belongs to which SYStem.CONFIG.CORE
<nr>.

TRACE32 offers some help in automating this process:

1. Make sure you are in SYStem.Down state

2. Execute SYStem.DETECT.ScanCpulDS. This will scan, which CPUIDs exist in the FPGA
design. TRACE32 will print a list of found CPUIDs in the AREA message window.

3. Tell TRACES32 to which CPU core it should connect by using the command
SYStem.CONFIG.CPUID <value>.

4. When you now execute a SYStem.Up, TRACE32 will connect to the CPU core with the specified
CPUID register value. If no such CPUID was found an error is reported.

Please note that The command SYStem.DETECT.ScanCpulDS is intrusive: it will iterate through all CPU
cores and stops each of them for a short period of time. This unfortunately is unavoidable, because the
Nios Il hardware debug interface does not offer a way to read out the CPUID register value without
stopping the CPU core.

The command SYStem.DETECT.ScanCpulDS only works if you are in the SYStem.Down state.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 21

If you want to un-set the CPUID (and instead use the normal SYStem.CONFIG.CORE <nr> mechanism to
select the CPU core), you might execute SYStem.CONFIG.CPUID and leave out the CPUID value. This will
un-set the CPUID and switch back to select the CPU core with the number specified via
SYStem.CONFIG.CORE <nr>.

SYStem.JtagClock Select clock for JTAG communication

This command selects the frequency of the JTAG clock, which is used to communicate with the Nios Il core
inside the FPGA. The maximum reachable frequency is dependent on the design in the FPGA. In general
10 MHz should work properly. To be on the safe side, the default frequency, which is selected when the
debugger is started is setto 1 MHz.

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 22

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess StopAndGo | Denied

SYStem.ACCESS (deprecated)

Denied Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

For more information, see below.
SYStem.Mode Select target reset mode

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)

SYStem.Down (alias for SYStem.Mode Down)

SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down

Attach

Up

Down Stops communicating with the Nios Il core over JTAG.

NoDebug Not implemented.

Go Not Implemented.

Attach User program remains running (no reset) and the debug interface is
initialized. After this command the user program can be stopped with the
break command or if a break condition occurs.

Up Resets ALL cores, enters debug mode, starts to execute monitor code.

StandBy Not implemented.

©1989-2024 Lauterbach

NIOS Il Debugger and Trace | 23

SYStem.Option.BTM Enable/disable branch trace

Format: SYStem.Option.BTM [ON | OFF]

This option controls if the trace unit (when available) of the Nios Il produces Branch Trace Messages or not.
If you disable this option, then you don’t get any program flow information from the trace. This option
configures the behavior for the on-chip and off-chip trace.

SYStem.Option.CFGCLK Set clock frequency for configuration

Format: SYStem.Option.CFGCLK <frequency>

<frequency>: 10MHz
5MHz
2.5MHz
1.25MHz
612kHz

When you want to configure your FPGA a fixed frequency is used to send the configuration data to the
FPGA. This frequency can be set by this option.

SYStem.Option.DCFLUSH Flush data cache before “Go”
Format: SYStem.Option.DCFLUSH [ON | OFF]
Default: ON.

If this option is enabled the data cache will be flushed (written back to memory and invalidated), before
the debugger executes a Go command. On Nios Il cores, which have a data cache, this is might be
necessary, to ensure that program code, which was written to the data cache, gets transferred into the
memory.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 24

SYStem.Option.DBGALL Enable/disable debug mode for all cores

Format: SYStem.Option.DBGALL [ON | OFF]

A System.Up command will reset all cores in one FPGA. With this option you can select, which cores are
also put into debug mode. If this option is enabled, then all cores in the chip will be put into debug mode. If
this option is disabled, then only cores, which are connected to a TRACE32 PowerView GUI will be put into

debug mode.
SYStem.Option.LocalRESet Assert a local JTAG reset at SYStem.Up
Format: SYStem.Option.LocalRESet [ON | OFF]

This option is intended for multi-core debugging of QSYS based Systems: With QSYS each Nios Il CPU
gets a local JTAG reset output port. Depending on your configuration this local JTAG reset might need to be
asserted to reset the corresponding Nios II CPU. If you debug in a multi-core environment (with multiple
instances of the t32mnios executable in parallel connected to different CPUs in your FPGA), then you might
need to enable this option to reset all CPUs at the same time when executing a System.Up. If this option is
enabled for a CPU to which a t32mnios executable is connected, then the local JTAG reset output port will
be asserted when a System.Up is executed.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 25

SYStem.Option.DTM Select kind of data trace

Format: SYStem.Option.DTM <mode>

<mode>: OFF
ReadAddress
WriteAddress
ReadWriteAddress
ReadData
Read
Write
ReadWrite

This option controls the data trace if available. The Nios Il supports several different modes for data tracing:

OFF Don’t record any data trace information.

ReadAddress Record addresses of read accesses.

WriteAddress Record addresses of write accesses.

ReadWriteAddress Record addresses of read and write accesses.

ReadData Record data of read accesses without addresses.

Read Record data and addresses of read accesses.

Write Record data and addresses of write accesses.

ReadWrite Record data and addresses of read and write accesses.
SYStem.Option.Endianness Select endianness of core

Format: SYStem.Option.Endianness [AUTO | Little | Big]

Default: AUTO.

This option tells the debugger if you use a Little- or Big-Endian Nios Il core. If you select AUTO, the
endianness will be determined automatically, when you execute a System.Up.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 26

SYStem.Option.FSS Enable/disable FS2 compatibility mode

Format: SYStem.Option.FSS [ON | OFF]

If you implement an off-chip trace port on your FPGA, we highly recommend to follow the application note
about the off-chip trace. If you don’t follow the application note, than you have to enable this option to put the
trace into a compatibility mode, which works with the original behavior of the off-chip trace port.

SYStem.Option.FPH Enable the disassembly of floating point instructions
Format: SYStem.Option.FPH [ON | OFF]
Default: OFF.

Enables/disables the mnemonics of floating point instructions in the disassembly (List window).

SYStem.Option.ICFLUSH Flush instruction cache before “Go”
Format: SYStem.Option.ICFLUSH [ON | OFF]
Default: ON.

If enabled, the instruction cache will be flushed, before the debugger executes a Go or a Step command. On
Nios Il cores, which have an instruction cache, this is necessary to ensure that software breakpoints work
correctly and to ensure that code, which is downloaded to the target, will get executed correctly.

If you debug a Nios Il processor, which includes an instruction cache, and
you turn this option OFF, software breakpoints won’t work correctly. You
have to use on-chip breakpoints in this case!

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 27

SYStem.Option.IMASKASM Disable interrupts while single stepping

Format: SYStem.Option.IMASKASM [ON | OFF]

Default: OFF.

If enabled, the debug core will disable all interrupts for the CPU, when single stepping assembler
instructions. No hardware interrupt will be executed during single-step operations. When you execute a Go
command, the hardware interrupts will be enabled again, according to the system control registers.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

If enabled, the debug core will disable all interrupts for the CPU, during HLL single-step operations. When
you execute a Go command, the hardware interrupts will be enabled again, according to the system control
registers. This option should be used in conjunction with IMASKASM.

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 28

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC002082A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

SYStem.Option.PIDWidth Specify size of PID field in the TLB
Format: SYStem.Option.PIDWidth <bits>
Default: 10.

This setting is only needed, if:
. You use a Nios Il CPU with MMU

. You use a Nios Il instruction trace (onchip or offchip)

To decode a Nios Il (with MMU) instruction trace, the TRACE32 software needs to know the size of the PID
(Process Identifier) field in the TLB (Translation Lookaside Buffer) of the Nios [MMU.

Use this option to specify the width of the PID bit field.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 29

SYStem.Option.QUARTUS Workaround for QUARTUS Il version 13.0

Format: SYStem.Option.QUARTUS GENeric | 13_0

The Quartus Il FPGA design software version 13.0 produces Nios Il CPU cores, which require a workaround
for successful debugging.

Use this command to turn on the workaround for FPGA Designs, generated with this particular Quartus I|

version.
SYStem.Option. TOFF Enable/disable tracetrigger input
Format: SYStem.Option.TOFF [ON | OFF]

If you use an off-chip trace port and if you don’t connect the trigger pin of the trace connector, the trigger
input of the off-chip trace floats. In this case our trace hardware will detect a lot of false triggers, which will
disturb your regular trace recording. You can turn on this system option to disable the trigger input of the off-
chip trace, to get rid of the false triggers.

SYStem.Option.SYNC Specify frequency of SYNC messages
Format: SYStem.Option.SYNC <mode>
<mode>: ALL
4
16
64

This option is only relevant if the trace unit generates Branch Trace Messages. There are two kinds of
Branch Trace Messages: Compressed messages and SYNC messages. The compressed messages can
only be decompressed by analyzing the surrounding SYNC messages. So without SYNC messages,
compressed messages can’t be decompressed. This option controls how often the trace produces SYNC
messages. ALL means that the trace only uses SYNC messages and no compressed messages; in this
case the Branch Trace uses more trace memory. 64 means that each 64th Branch Trace Message will be a
SYNC message; in this case the Branch Trace uses less trace memory, but decompressing the trace is
harder.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 30

Configuring your FPGA

Before you can start debugging, your FPGA has to contain a valid design. The design has to include a Nios
Il core, for which JTAG debugging is enabled. For instructions how to create such a design, please refer to
the technical documentation about the SOPC Builder, provided by Altera.

You can use the debugger to configure your FPGA, if you provide a suitable JBC (Jam Byte Code) or JAM
file. Both file formats can be produced for any design with the Quartus Il software from Altera. Instructions
can be found in the online help of Quartus II.

You can also use a raw binary file (RBF file), which can also be produced by Quartus II. Using a raw binary
file is currently the fastest and most flexible configuration method.

You should ensure that the debugger is in SYStem.down mode, before
configuring your FPGA. Configuring the FPGA will break the
communication link between the debugger and the Nios Il core, if your
debugger is in SYStem.Up mode.

JTAG.LOADRBF Configure FPGA with RBF file

Format: JTAG.LOADRBEF <file>

This command will use a raw binary file to configure your FPGA with the debugger.

The raw binary file must not contain a compressed bitstream. So you have to deactivate this option in
Quartus I, when you generate your raw binary file.

Not all FPGA families from Altera are supported. Currently the following devices are supported:

Stratix ... All Stratix, Stratix I, Stratix Ill, Stratix IV devices.
Stratix IV

Cyclone ... All Cyclone, Cyclone II, Cyclone Ill, Cyclone IV devices.
Cyclone IV

Arria GX ... All Arria GX, Arria [l GX devices.

Arria Il GX

The used programming algorithm might also work for more recent devices, but this is not guaranteed.

Using a raw binary file currently is the fastest method to configure your FPGA. There is also another
advantage:
JAM and JBC files have to contain a complete description of the JTAG chain. So if you have several devices

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 31

in your JTAG chain, your JAM and JBC files have to match this configuration.
With a RBF the device, which will be configured, is selected by the MULTICORE settings in the debugger.
So the RBF file is independent of the layout of your JTAG chain.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 32

JTAG Uart Support

Altera provides a JTAG Uart module with its Quartus Il software, which can be used as a terminal for
applications. The TRACE32 software allows to connect a terminal window to such an UART, with the

commands:
term.method DCC ; For Nios II debuggers the “DCC” method will use
; the Jtag UART.
term. ; Open up terminal window.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 33

On-chip Breakpoints

The Nios Il core can be configured to support up to four on-chip program breakpoints and up to four on-chip
read/write breakpoints.

Program Breakpoints

Generally the In Circuit Debugger for Nios Il uses Software Breakpoints to realize Program Breakpoints.
Software Breakpoint means that the code at the desired memory location is modified by the debugger to
make the CPU break when the program counter hits this address. After a break the original contents of the
memory location are restored.

This mechanism can not work in Read Only Memory. To provide breakpoints in ROM areas the CPU’ s on-
chip breakpoints can be used. The memory ranges, where on-chip breakpoints should be used, must be
defined with the command MAP.BOnchip.

MAP.BOnchip 0x1080--0xffff ; In the address range 0x1080--0Oxffff
; on-chip breakpoints will be used.

With the command Break.List the actual breakpoint configuration can be checked.

Read and Write Breakpoints

Read and Write Breakpoints always use the CPU’ s on-chip breakpoints regardless of the ranges defined
with MAP.BOnchip.

Read and Write Breakpoints can be set with the Break window or with the command Break.Set:

Break.Set 0x4738 /Write ; The CPU will be stopped if there is a
; write access to address 0x4738

Break.Set 0xb223 /Read ; The CPU will be stopped if there is a
; read access to address 0xB223

It is also possible to break on an access to an addresses range. In this case two on-chip breakpoints will be
combined to realize the Breakpoint:

Break.Set 0x1000--0x10FF /Write ; The CPU will be stopped if there is a
; write access to an address in the
; range 0x1000--0x10FF

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 34

Data Breakpoints

Data Breakpoints always use the CPU’ s on-chip breakpoints regardless of the ranges defined with
MAP.BOnchip. All Read/Write Breakpoints can be combined with a 32 Bit data value. If only a 16 or 8 Bit
data value is used, or if a data mask is used instead of a data value, two on-chip breakpoint resources are
necessary to realize the breakpoint.

Break.Set 0x100 /Write /DATA 0x12345678 ; CPU will stop, if the 32 bit
; value 0x12345678 is written
; to address 0x100

Break.Set 0x110 /Read /DATA.Byte 0x55 ; CPU will stop, if data is
; read from address 0x110 and
; the byte at address 0x110
; contains the value 0x55.

Trace Control Breakpoints

You can use the on-chip breakpoints to turn the trace on and off and to generate a trigger on the trigger
output of the off-chip trace port. This works for the on-chip and off-chip trace. You simply have to add one of
the following options to your breakpoint definition:

TraceON Turns the collection of trace data on, when the breakpoint is
reached.

TraceOff Turns the collection of trace data off, when the breakpoint is
reached.

TraceEnable Only for read/write breakpoints: Will generate a single Data Transfer

Message, for the access which matched the breakpoint.

TraceTrigger Send a trigger to the off-chip trace via the trigger output of the off-
chip trace port of the Nios Il core (TRIGA on the mictor connector).

Example:
Break.Set 0x9CO0 /Onchip /Program /TraceOn ; Will turn the trace on,
; when the program reaches
; address 0x9CO.
Break.Set 0x9D0 /Onchip /Program /TraceOff ; Will turn the trace off,

; when the program reaches
; address 0x9DO0.

Restrictions: TraceEnable breakpoints only work as expected, when the whole trace is turned off. In this
case data accesses will be only traced, when the breakpoint condition is met. If the trace is turned on (by
hitting a TraceON breakpoint), then the trace will record all data accesses, regardless of any TraceEnable
breakpoints.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 35

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table
Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>]
MMU. <table>.dump (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

Displays the contents of the CPU specific MMU translation table.

. If called without parameters, the complete table will be displayed.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable

Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID: displays the translation
table of the specified process

. else, this command displays the table the CPU currently uses for
MMU translation.

©1989-2024 Lauterbach

NIOS Il Debugger and Trace | 36

KernelPageTable Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable Displays the MMU translation table entries of the given process. Specify
<task_magic> | one of the TaskPageTable arguments to choose the process you want.
<task_id> | In MMU-based operating systems, each process uses its own MMU
<task_name> | translation table. This command reads the table of the specified process,
<space_id>:0x0 and displays its table entries.

. For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

CPU specific tables in MMU.DUMP <table>

ITLB Displays the contents of the Instruction Translation Lookaside Buffer.
DTLB Displays the contents of the Data Translation Lookaside Buffer.
TLB Displays the contents of the Translation Lookaside Buffer.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 37

MMU.List Compact display of MMU translation table
Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
MMU.<table>.List (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

Lists the address translation of the CPU-specific MMU table.

J If called without address or range parameters, the complete table will be displayed.

J If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range> Limit the address range displayed to either an address range

<address> or to addresses larger or equal to <address>.
For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Lists the entries of an MMU translation table.

. if <range> or <address> have a space ID: list the translation table
of the specified process

o else, this command lists the table the CPU currently uses for MMU
translation.

KernelPageTable

Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

©1989-2024 Lauterbach

NIOS Il Debugger and Trace | 38

MMU.SCAN Load MMU table from CPU

Format: MMU.SCAN <table> [<range> <address>]
MMU. <table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]
<cpu_specific_tables>

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

J If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
J if <range> or <address> have a space ID: loads the translation table
of the specified process
. else, this command loads the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 39

KernelPageTable

Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the table
of the kernel and copies its address translation into the debugger-internal
static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static translation
table.

o For information about the first three parameters, see “What to know
about the Task Parameters” (general_ref_t.pdf).
J See also the appropriate OS Awareness Manual.

ALL [Clear]

Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the debugger-
internal static translation table.

See also the appropriate OS Awareness Manual.

Clear: This option allows to clear the static translations list before reading
it from all page translation tables.

©1989-2024 Lauterbach

NIOS Il Debugger and Trace | 40

TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

Format: TrOnchip.CONVert [ON | OFF]

By default a read/write breakpoint to a 16- or 32-bit value in memory will be realized as an on-chip read/write
breakpoint for an address range. For example to break on a write access to the 32 Bit Word starting at
address 0x100 an on-chip breakpoint for the address range 0x100--0x103 will be used. When the
TrOnchip.CONvert option is set to ON and there are not enough on-chip breakpoint resources available to
realize all on-chip breakpoints, the debugger will try to convert these special cases to single address
Read/Write Breakpoints, to use the on-chip breakpoint resources more efficiently.

TrOnchip.CONVert On ; Allow conversion

Break.Set 0x100--0x103 /Write ; This two breakpoints may be

Break.Set 0x200--0x203 /Write ; converted to single address
; breakpoints

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 41

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted
into a single address breakpoint. This is the default setting. Otherwise an error message is generated.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 42

Memory Classes

Memory Class Description
P: Program. Accesses to this memory class will bypass the data cache.
D: Data. Accesses to the memory class will use the cache (if available) to

access the memory.

NC: No Cache. Accesses to this memory class will bypass the data cache.
(This class has the same functionality as the P: class)

For Nios Il cores which don’t have a data cache all three memory classes have the same behavior.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 43

BDM Connector ICD-NIOS I

Signal Pin Pin Signal
TCK 1 2 GND
TDO 3 4 VTREF
TMS 5 6 N/C

N/C 7 8 RST-
TDI 9 10 GND

This image shows the top view to the male connector on the target board. The meaning of the Pins is as

follows:

TCK

T™MS

TDI

TDO

VTREF

RST-

Jtag Clock. It is recommended to put a pull-DOWN to GND on this signal.
Jtag TMS. It is recommended to put a pull-UP to VCC on this signal.
Jtag TDI. It is recommended to put a pull-UP to VCC on this signal.

Jtag TDO. (No pull-up, or pull down is needed for this signal.)

Reference voltage. This voltage should indicate the nominal HIGH level
for the JTAG pins. So for example, if your signals have a voltage swing
from 0 ... 3.3 V, the VTREF pin should be connected to 3.3 V.

Optional. This pin is not used at the moment and is intended for future
use:

If your board has a low active CPU reset signal, you can connect this low
active reset signal to this pin. The debugger can drive this pin to GND to
hold the CPU in the reset state. The debugger drives this pin as open-
drain, so a pull-up is mandatory.

©1989-2024 Lauterbach

NIOS Il Debugger and Trace | 44

NIOS Il Trace Connector

Signal Pin Pin Signal
N/C 1 2 N/C
N/C 3 4 N/C
N/C 5 6 CLK
N/C 7 8 TRIGB
RST- 9 10 TRIGA
TDO 11 12 VTREF
N/C 13 14 N/C
TCK 15 16 D11
TMS 17 18 D10
TDI 19 20 D09
N/C 21 22 D08
N/C 23 24 D07
N/C 25 26 D06
D17 27 28 D05
D16 29 30 D04
D15 31 32 D03
D14 33 34 D02
D13 35 36 DO1
D12 37 38 D00
The pins have the following meaning:
TCK Jtag Clock. It is recommended to put a pull-DOWN to GND on this signal.
TMS Jtag TMS. It is recommended to put a pull-UP to VCC on this signal.
TDI Jtag TDI. It is recommended to put a pull-UP to VCC on this signal.
TDO Jtag TDO. (No pull-up, or pull down is needed for this signal.)
VTREF Reference voltage. This voltage should indicate the nominal HIGH level

for the JTAG and trace pins. So for example, if your signals have a
voltage swing from OV - 3.3V, the VTREF pin should be connected to
3.3V.

RST- Optional. This pin is not used at the moment and is intended for future
use:
If your board has a low active CPU reset signal, you can connect this low
active reset signal to this pin. The debugger can drive this pin to GND to
hold the CPU in the reset state. The debugger drives this pin as open-
drain, so a pull-up is mandatory.

CLK Trace Clock.

D00-D17 Trace Data.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 45

TRIGA Optional. Trace Trigger. At the moment the trace logic of the Nios Il core
supports one trigger output. This output can be used to trigger actions of
the external trace (for example stopping a trace recording).

TRIGB Optional. Trace Trigger. At the moment the trace logic of the Nios Il core
only supports one trigger output, so this pin is intended for future use.
You might leave it unconnected, if you have not enough pins available on
your FPGA.

If possible the PCB trace lengths of CLK and D00-D17 should have the same lengths, since this signals
carry high frequency data.

It is possible to use the 10-pin connector for the JTAG signals (TCK, TMS, TDI, TDO and RST-) and to use
the mictor connector for the trace signals (CLK, D00-D17, TRIGA and TRIGB) exclusively (you should leave
the JTAG signals on the mictor connector unconnected in this case). In this case you can use different
voltage levels for the trace signals and the JTAG signals. You have to provide the correct voltage levels on
the VTREF pins for both connectors in this case.

©1989-2024 Lauterbach NIOS Il Debugger and Trace | 46

	NIOS II Debugger and Trace
	History
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Troubleshooting
	SYStem.Up Errors
	Trace Errors

	FAQ
	Quick Start of the ICD Debugger for Nios II
	1. Prepare the Start
	2. Configure your FPGA with a Nios II Core (optional)
	3. Select the Clock for the JTAG Communication
	4. Configure the Debugger According to the Needs of the Application
	5. Tell the Debugger where it should use On-chip Breakpoints (optional)
	6. Enter Debug Mode
	7. Load the Program
	8. Initialize Program Counter and Stackpointer
	9. View the Source Code

	CPU specific SYStem Settings and Restrictions
	Restrictions
	SYStem.CONFIG Configure multi-core debugger
	SYStem.CONFIG.CORE Select core in FPGA
	SYStem.CONFIG.state Show multi-core settings
	SYStem.CONFIG.CPUID Tell the debugger to which CPU it should connect
	SYStem.CPU Select CPU type
	SYStem.CONFIG.JtagUartNR Specify JTAG UART component number
	SYStem.DETECT.ScanCpuIDS Scan which CPU IDs exist in FPGA design
	SYStem.JtagClock Select clock for JTAG communication
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Select target reset mode
	SYStem.Option.BTM Enable/disable branch trace
	SYStem.Option.CFGCLK Set clock frequency for configuration
	SYStem.Option.DCFLUSH Flush data cache before “Go”
	SYStem.Option.DBGALL Enable/disable debug mode for all cores
	SYStem.Option.LocalRESet Assert a local JTAG reset at SYStem.Up
	SYStem.Option.DTM Select kind of data trace
	SYStem.Option.Endianness Select endianness of core
	SYStem.Option.FSS Enable/disable FS2 compatibility mode
	SYStem.Option.FPH Enable the disassembly of floating point instructions
	SYStem.Option.ICFLUSH Flush instruction cache before “Go”
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.PIDWidth Specify size of PID field in the TLB
	SYStem.Option.QUARTUS Workaround for QUARTUS II version 13.0
	SYStem.Option.TOFF Enable/disable tracetrigger input
	SYStem.Option.SYNC Specify frequency of SYNC messages

	Configuring your FPGA
	JTAG.LOADRBF Configure FPGA with RBF file

	JTAG Uart Support
	On-chip Breakpoints
	Program Breakpoints
	Read and Write Breakpoints
	Data Breakpoints
	Trace Control Breakpoints

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU

	TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

	Memory Classes
	BDM Connector ICD-NIOS II
	NIOS II Trace Connector

