LAUTERBACH A

Qorivva MPC5xxx/SPC5xx
Debugger and NEXUS Trace

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
QOriVVA MPCSXXX/SPC XX ceevririirsssssssssnmmmssnsssmssssssssssssanmssssssssssssssssssssnmsssssssssssssssssssnnnmnnsnssnns r=
Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Tracecccvemmismsmmnssmssssssnsasnnns 1

L 1= (o 8

Y e Yo 11T £ o) o T 9
Available Tools 9
JTAG/OnCE Debugger 9
On-chip Trace 10
High-Speed Serial Off-chip Trace (Aurora NEXUS) 10
Parallel Off-chip Trace (parallel NEXUS) 11
Co-Processor Debugging (eTPU/GTM/SPT) 11
Multicore Debugging 11
Software-only Debugging (HostMCl) via XCP 12
Software Installation 12
Hardware Installation 13
JTAG Debugger 13
Parallel Nexus Debugger and Trace 14
Aurora Nexus Debugger and Trace 15

ESD Protection Considerations 16
Demo and Start-up Scripts 16
Debug Cable / Nexus Adapter Versions and Detection 17

Brief Overview of Documents for New Users 18
Target Design Requirement/Recommendationscccociiicminiseninsesnsnsmsssssssnsmsennes 20
General (ICD Debugger) 20

L@ T 1T R - 1 o 21
Run Program from On-chip SRAM 21

Run Program from FLASH 23
Connect to Running Program (hot plug-in) 24

O 25

19 1= o1 T e 71 4T R 26

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 2

Breakpoints 26

Software Breakpoints 26
On-chip Breakpoints 26
Breakpoints on Program Addresses 27
Breakpoints on Data Addresses 28
Breakpoints on Data Access at Program Address 29
Breakpoints on Data Value 29
Counting Debug Events with Core Performance Monitor 30
Memory Access 31
Access Classes 31
Access Classes to Memory and Memory Mapped Resources 31
Access Classes to Other Addressable Core and Peripheral Resources 32
Cache Debugging Support 34
Memory Coherency 34
Memory Coherency During run-time Memory Access 34
Viewing Cache Contents 35
MESI States and Cache Status Flags 36
Using Cache Lines as SRAM Extension 36
Support for Peripheral Modules 37
Displaying Peripheral Module Registers 37
Peripheral Registers Modified by TRACE32 38
Debugging and Tracing Through Reset 39
Multicore Debugging 41
SMP Debugging 42
AMP Debugging 43
Watchdog Timer Support 44
€200 Core Watchdog (TCR/TSR) 44
On-chip Watchdog (SWT) 44
Chip External Watchdog 45
Censorship Unlock 46
Censorship unlock on MPC56XX and SPC56X processors 46
Censorship unlock on MPC57XX, SPC57X/SPC58X and S32R processors 46
Recovering a censored processor (MPC57XX, SPC57X/SPC58X and S32R) 48
Non-secure boot (S32R294) 50
Non-secure boot by script 50
Non-secure boot if fuses blown 50
Troubleshooting Debug 51
I T 1 52
€200 PCFIFO On-chip Trace 52
MPC57XX/SPC57X/SPC58X NEXUS On-chip Trace (trace-to-memory) 53
External Trace Ports (Parallel NEXUS/Aurora NEXUS) 54
Basic Setup for Parallel Nexus 54
Basic Setup for Aurora Nexus 55

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 3

Tracing the Program Flow 55
Tracing of Data (read/write) Transactions 56
Example: Data Trace with Address Range 56
Tracing of Context Switches 57
Trace Context Switches using Data Trace Messaging (DTM) 57
Trace Context Switch using Ownership Trace Messaging (OTM) 57
Trace Based Run-time Measurement / Timestamping 58
Trace Based Run-time Measurement for off-chip Parallel NEXUS 58
Trace Based Run-time Measurement for off-chip Aurora NEXUS 58
Trace Based Run-time Measurement for on-chip Trace / Trace-to-memory 59
Correlation of the Trace Timestamp with Other Tool Timestamps 59
Implications of Using the Processor Generated Timestamps 59
Processors with on-chip timestamp support 60
Trace Filtering and Triggering with Debug Events 60
Overview 60
Example: Selective Program Tracing 62
Example: Event Controlled Program/Data Trace Start and End 63
Example: Event Controlled Trace Recording 64
Example: Event Controlled Trigger Signals 64
Example: Event Counter 65
Tracing Peripheral Modules / Bus Masters 65
Example: Filter by Address Range 65
Example: Event Controlled Trace Start and End 65
Trace Filtering and Triggering Features Provided by TRACE32 66
Troubleshooting Trace 66
Tracing VLE or Mixed FLE/VLE Applications 66
FLASH Programming SUPPOItccciiiemiiimmninnissssssss s ssssmsssssssssssmsssssass sasssssas 68
FLASH Programming Scripts 68
Requirements due to FLASH ECC Protection 70
Programming the RCHW or Boot Header 71
Programming the Shadow Row 71
Programming Serial Boot Password and Censorship Word 73
TEST/UTEST / OTP FLASH Programming 74
Programming an OTP Sector 74
Programming an UTEST Sector which is not set to OTP 75
Brownout Depletion Recovery 76
Troubleshooting FLASH 76
Command Reference: SYStem Commandsccccciiiirecmninisssnninssssiessssssanes 78
SYStem.BdmClock Set BDM clock frequency 78
SYStem.CONFIG.state Display target configuration 79
SYStem.CONFIG Configure debugger according to target topology 80
SYStem.CONFIG.DEBUGPORTTYPE Set debug cable interface mode 85
Hardware Requirements for cJTAG Operation 85
©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace 4

SYStem.CONFIG.EXTWDTDIS Disable external watchdog 86
SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool 87
SYStem.CPU Select the target processor 87
SYStem.LOCK Lock and tristate the debug port 88
SYStem.MemAccess Select run-time memory access method 88
SYStem.Mode Select operation mode 920
Command Reference: SYStem.Option Commandscccevciiricecmmnisnninsnnssssssesnnnens 91
SYStem.Option.BISTRUN Debug with BIST enabled 91
SYStem.Option.CoreStandBy On-the-fly breakpoint and trace setup 91
SYStem.Option.DCFREEZE Data cache state frozen while core halted 91
SYStem.Option.DCREAD Read from data cache 92
SYStem.Option.DISableResetEscalation Control reset escalation disabling 92
SYStem.Option.DISableShortSequence Short reset sequence handling 93
SYStem.Option.DisMode Disassembler operation mode 93
SYStem.Option.DUALPORT Implicitly use run-time memory access 94
SYStem.Option.FASTACCESS Special operation mode for fast run control 95
SYStem.Option.FREEZE Freeze system timers on debug events 95
SYStem.Option.HoldReset Set reset hold time 96
SYStem.Option.ICFLUSH Invalidate instruction cache before go and step 96
SYStem.Option.ICREAD Read from instruction cache 96
SYStem.Option.IMASKASM Disable interrupts while single stepping 97
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 97
SYStem.Option.KEYCODE Inhibit censorship protection 97
SYStem.Option.LPMDebug Enable low power mode debug handshake 99
SYStem.Option.LockStepDebug Enable lock-step core register access 100
SYStem.Option.MMUSPACES Separate address spaces by space IDs 100
SYStem.Option.NexusMemoryCoherency Coherent NEXUS mem-access 101
SYStem.Option.NoDebugStop Disable JTAG stop on debug events 102
SYStem.Option.NoJtagRdy Do not evaluate JTAG_RDY signal 102
SYStem.Option.NOTRAP Use brkpt instruction for software breakpoints 103
SYStem.Option.OVERLAY Enable overlay support 104
SYStem.Option.PC Set fetch address debug actions 104
SYStem.Option.RESetBehavior Set behavior when target reset detected 105
SYStem.Option.ResBreak Halt the core while reset asserted 105
SYStem.Option.ResetDetection Configure reset detection method 106
SYStem.Option.ResetMode Select reset mode for SYStem.Up 107
SYStem.Option.SLOWRESET Relaxed reset timing 107
SYStem.Option.STEPSOFT Use alternative method for ASM single step 108
SYStem.Option. TDOSELect Select TDO source of lock step core pair 108
SYStem.Option.VECTORS Specify interrupt vector table address 108
SYStem.Option.WaitBoomRom Wait for BootROM completion 109
SYStem.Option.WaitReset Set reset waittime 109
SYStem.Option. WATCHDOG Debug with software watchdog timer 111
©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 5

Command Reference: MMU Commandscccccooemimmiiiniinisssssmssemss s s sssmmmmnsens 113
MMU.DUMP Page wise display of MMU translation table 113
MMU.List Compact display of MMU translation table 115
MMU.SCAN Load MMU table from CPU 117
MMU.Set Setan MMU TLB entry 119

Command Reference: BenchMarkCounterccccvcirrrmmmmmminisnisssssssssssmssssssnssssssssssssses 120
BMC.<counter>.ATOB Enable event triggered counter start and stop 120
BMC.<counter>.FREEZE Freeze counter in certain core states 123
BMC.FREEZE Freeze counters while core halted 124
BMC.Trace Trace performance monitor events 124

Command Reference: TrONCHIP ..ccccciiiiimiiiiiissr s isss s s s s sas s s s snanns 125
TrOnchip.CONVert Adjust range breakpoint in on-chip resource 125
TrOnchip.EDBRACO Assign debug events to target software 126
TrOnchip.EVTEN Enable EVTl and EVTO pins 127
TrOnchip.RESet Reset on-chip trigger settings 128
TrOnchip.Set Enable special on-chip breakpoints 128
TrOnchip.VarCONVert Set single address breakpoint for scalar 129
TrOnchip.state View on-chip trigger setup window 130

Command Reference: ONCRIPccccocceiemiiiiicccc s e e s mssmm s s e s e e s s 131
Onchip.TBARange Set on-chip trace buffer address range 131

Command Reference: NEXUS ... s s s ssssssssssssmss s sssssmmsssnnas 132
NEXUS.BTM Enable program trace messaging 132
NEXUS.CLIENT<x>.BUSSEL Set NXMC target RAM 132
NEXUS.CLIENT<x>.MODE Set data trace mode of nexus client 132
NEXUS.CLIENT<x>.SELECT Select a nexus client for data tracing 133
NEXUS.CLIENT3.SPTACQMASTER Trace individual SPT masters 133
NEXUS.CoreENable Enable core tracing for dedicated cores in SMP 133
NEXUS.DDR Enable NEXUS double data rate mode 134
NEXUS.DMADTM Enable DMA data trace messaging 134
NEXUS.DTM Enable data trace messaging 135
NEXUS.DTMARK Data trace mark 135
NEXUS.DTMWhileHalted Data trace messaging while core halted 136
NEXUS.DQM Enable data acquisition messaging 136
NEXUS.FRAYDTM Enable FlexRay data trace messaging 136
NEXUS.HTM Enable branch history messaging 137
NEXUS.OFF Switch the NEXUS trace port off 137
NEXUS.ON Switch the NEXUS trace porton 138
NEXUS.OTM Enable ownership trace messaging 139
NEXUS.PCRCONFIG Configure NEXUS PCR for tracing 139
NEXUS.PINCR Define DCI PINCR register value 140
NEXUS.PortMode Set NEXUS trace port frequency 140
NEXUS.PortSize Set trace port width 141

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 6

NEXUS.POTD Periodic ownership trace disable 141
NEXUS.PTCM Enable program trace correlation messages 142
NEXUS.PTMARK Program trace mark 142
NEXUS.RefClock Enable Aurora reference clock 143
NEXUS.Register Display NEXUS trace control registers 143
NEXUS.RESet Reset NEXUS trace port settings 143
NEXUS.RFMHISTBUGFIX Double RFM workaround 143
NEXUS.SmartTrace Enable smart trace analysis 144
NEXUS.Spen<messagetype> Enable message suppression 144
NEXUS.STALL Stall the program execution when FIFO full 144
NEXUS.state Display NEXUS port configuration window 145
NEXUS.SupprTHReshold Set fill level for message suppression 145
NEXUS.TimeStamps Enable on-chip timestamp generation 145
NEXUS.WTM Enable watchpoint messaging 146
Nexus specific TrOnchip COMMAaNASccceiiiirimmriinisrrr s 147
TrOnchip.Alpha Set special breakpoint function 147
TrOnchip.Beta Set special breakpoint function 147
TrOnchip.Charly Set special breakpoint function 148
TrOnchip.Delta Set special breakpoint function 148
TrOnchip.DISable Disable NEXUS trace register control 148
TrOnchip.Echo Set special breakpoint function 148
TrOnchip.ENable Enable NEXUS trace register control 149
TrOnchip.EVTI Allow the EVTI signal to stop the program execution 149
TrOnchip.EVTO Use EVTO signal for runtime measurement 149
TrOnchip.EXTernal Enable trace trigger input of NEXUS adapter 150
TrOnchip.Out0 Select OUTO pin signal source 150
TrOnchip.Out1 Select OUT1 pin signal source 151
TrOnchip.TOOLIO2 Select TOOLIOZ2 pin signal source 152
TrOnchip.TRaceControl Trace control with special debug events 153
Debug and Trace CONNECIOISccccecrrriiiismrriiiismnsesssssss s ssssssss s sssssssss s sssssss s s snssssnsssnnssns 154
14-pin JTAG/OnCE Connector (JTAG) 154
AUTO26 Connector (JTAG) 154
10-pin ECU14 Connector (with converter LA-3843) 155
38-pin Mictor Connector (NEXUS parallel) 155
50-pin SAMTEC ERF8 Connector (NEXUS parallel) 156
51-pin GlenAir / ROBUST Connector (NEXUS parallel) 157
34-pin SAMTEC ERF8 Connector (Aurora NEXUS) 158
Mechanical DIMENSIONSccocciiiirimmiri s smsmmm s e s s e s e e s s s s smmmmmnnn s anns 159
Technical Datacccccriiiimmniiierr s m s e m s s e samm e n e mmnnn s 168
Operation Voltage 168
Operation Frequency 168
©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 7

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

Version 06-Jun-2024

History

10-Oct-22 New command SYStem.Mode.Prepare.

20-Jul-22 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second
parameter.

24-Jun-22 New command SY Stem.Option.WaitBoomRom.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 8

Introduction

This document describes the processor specific settings and features for TRACE32-ICD for the following

CPU families:

o NXP/Freescale Qorivva MPC55XX, MPC56XX, MPC57XX and S32R (PowerPC series)

o STMicroelectronics SPC56X, SPC57X and SPC58X series

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your

first choice.

NOTE:

The processor specific information in this document is collected thoroughly from
processor reference manuals, data sheets and other sources. Lauterbach can
however not guarantee that the processor specific information provided in this
document is correct. Please refer to the processor reference manual and/or
manufacturer.

Processor specific information includes but is not limited to:

- existence of a processor

- number and types of cores

- availability of certain debug features on a processor or core

- existence and sizes of memory

- availability of on-chip and off-chip trace features

Available Tools

This chapter gives an overview over available Lauterbach TRACES32 tools for MPC5XXX/SPC5XX

processors.

JTAG/OnCE Debugger

Debugging MPC5XXX/SPC5XX requires a Lauterbach
Debug Cable together with a Lauterbach PowerDebug > o \
Module. The following debug cables are available:

. LA-3206: Debugger for MPC5xxx AUTO26 (PACK) “

. LA-2708: Debugger for MPC5xxx Automotive PRO ! N /
. LA-3736: Debugger for MPC5xxx Automotive s

L N
. LA-7753: JTAG Debugger MPC5xxx/SPC5xx &

S'___\\ :

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 9

The following debug modules are supported:

. LA-3500: POWER DEBUG INTERFACE / USB 3

. LA-3503 POWER DEBUG E40

. LA-3505: POWER DEBUG PRO

. LA-7699: POWER DEBUG Il Ethernet

. LA-7708: POWER DEBUG INTERFACE / USB 2

. LA-7707/LA-7690: POWER TRACE / ETHERNET 256 / 512MB
. LA-7705: POWER DEBUG Ethernet

LA-7753 is additionally supported by:
J LA-7702: POWER DEBUG INTERFACE
. LA-7704: POWER DEBUG INTERFACE / USB

The DEBUG INTERFACE (LA-7701) does not support this processor series.

For a comparison of the Debug Cables see:
https://www.lauterbach.com/differences_between_standard_and_automotive_debug_cables.pdf

On-chip Trace

On-chip tracing requires no extra Lauterbach hardware, it can be configured and read out with a regular
JTAG/OnCE Debugger. Depending on the on-chip trace module implemented in the processor, a trace
license might or might not ne required. See €200 PCFIFO on-chip trace and MPC57XX/SPC57X NEXUS
on-chip trace for details.

High-Speed Serial Off-chip Trace (Aurora NEXUS)

Lauterbach offers an off-chip trace solution for processors
with Aurora NEXUS trace port. Aurora is a high-speed serial
interface defined by Xilinx.

Tracing requires the Aurora NEXUS Preprocessor for “ay '/ - S
Qorivva MPC57xx/SPC5XX (LA-3911) and a POWER : - e
TRACE Il / POWER TRACE Il module. A POWERTRACE / E-u-...|I=

ETHERNET module can be used with reduced speed and
limited functionality.

See Basic Setup for Aurora Nexus for more information.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 10

https://www.lauterbach.com/differences_between_standard_and_automotive_debug_cables.pdf

Parallel Off-chip Trace (parallel NEXUS)

The parallel NEXUS trace port can be used with a PowerTrace/Ethernet or PowerTrace Il / PowerTrace llI
module and one of the following NEXUS adapters:

J LA-7630 NEXUS AutoFocus adapter:

up to 16 MDOs, 1/O Voltage 1.0-5.2V, Trace clock up to 200 MHz SDR (up to 100 MHz in DDR)
Debug port sharing support, ext. Watchdog control, cJTAG support

J LA-7610 NEXUS Adapter MPC55XX (obsolete):

up to 12 MDOs, I/O Voltage 2.6-3.6V, Trace clock up to 120 MHz SDR.
Debug port sharing support, ext. Watchdog control
Not supported with PowerTrace Il or newer

J LA-7612 NEXUS Adapter MPC551X (obsolete):

up to 8 MDOs, I/0O Voltage 3V or 5V, Trace clock up to 110 MHz SDR.
Not supported with PowerTrace Ill or newer

See Basic Setup for Parallel Nexus for more information.

Co-Processor Debugging (eTPU/GTM/SPT)

Debugging the MPC5XXX coprocessors eTPU/eTPU2, GTM and SPT is included free of charge, i.e. there
is no additional license required.

For details about coprocessor debugging, see the specific Processor Architecture Manuals:
J “eTPU Debugger and Trace” (debugger_etpu.pdf)
. “GTM Debugger and Trace” (debugger_gtm.pdf)

Multicore Debugging

Lauterbach offers multicore debugging and tracing solutions, which can be done in two different setups:
Symmetric Multiprocessing (SMP) and Asymmetric Multiprocessing (AMP). For details see chapter
Multicore Debugging.

Concurrent debugging of multiple €200 cores requires a License for Multicore Debugging (MULTICORE).

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 11

Software-only Debugging (HostMCI) via XCP

TRACE32 PowerView also supports debugging and tracing without using TRACE32 PowerTools hardware.
The debug accesses are done via a 3rd party XCP slave. The following licenses are required to unlock this
feature:

. LA-8892L: 1 User Floating License PPC Front-End

. LA-9012L: 1 User Floating License XCP MPC5xxx Debug Back-End

. LA-8902L: 1 User Floating License Multicore Debugging (optional)

J LA-9013L: 1 User Floating License XCP MPC5xxx Trace License (optional)

For more information see below documents:
J “XCP Debug Back-End” (backend_xcp.pdf)
. “Software-only Debugging (Host MCI)” (app_t32start.pdf)

Software Installation

Please follow chapter “Software Installation” in TRACE32 Installation Guide, page 20 (installation.pdf) on
how to install the TRACES32 software:

. An installer is available for a complete TRACE32 installation under Windows.
See “MS Windows” in TRACE32 Installation Guide, page 21 (installation.pdf).

J For a complete installation of TRACES32 under Linux, see “PC_LINUX” in TRACES32 Installation
Guide, page 23 (installation.pdf).

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 12

Hardware Installation

JTAG Debugger

PC or
Workstation

Target

Debug Cable
L roomsonc— poweR DEBUG USBINTERFACE /UsB 3 —
LAUTERBACH -

usB
Cable

i

Debug
Connector

POWER DEBUG INTERFACE / USB 3

Wall Mount
0
Power Supply

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 13

Parallel Nexus Debugger and Trace

SWITCH

1 GBit Ethernet

PC or
Workstation

I —

|

Ethernet |©™
Cable

POWER DEBUG PRO

[e —

POWER TRACE Il
LAUTERBACH

POWER DEBUG PRO
POWER TRACE Il

o Desktop

Power Supply

Target

Nexus
Connector

NEXUS Adapter

When the NEXUS Adapter (for parallel NEXUS trace) is used, both debug and trace signals are connected
through the NEXUS adapter and NEXUS connector on the target. Do not connect a debug cable in parallel
to the NEXUS adapter.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

14

Aurora Nexus Debugger and Trace

SWITCH PC or
Workstation

1 GBit Ethernet

|
Target
————
e _ Debug Cable
Ethernet (|97 | .
Cable [2 sauecr g_ 5
- I 2E2
8 g€
(o
[
POWER TRACE I
LAUTERBACH
(O
o Adapter
[-RV]
SE
22
Extension
Cable <
“““““ Samtec 34 3
S
Preprocessor 5
POWER DEBUG PRO
POWER TRACE Il

o Desktop
Power Supply

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 15

ESD Protection Considerations

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o &~

Power down:

—

P 0D

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACE32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACE32 software.

Power OFF the TRACES32 hardware.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known hardware that is based on MPC5xxx.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

. Type at the command line: WELCOME.SCRIPTS

J or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo /powerpc/ subfolder of the system directory of TRACE32.
The demo scripts can be started through the menu MPC5XXX > Tools > Start Demo.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 16

Debug Cable / Nexus Adapter Versions and Detection

The following table shows how to detect which JTAG debug cable or NEXUS adapter is connected:

Debug cable and/or Condition in PRACTICE script language

Nexus adapter version

LA-3206 PRINT ((ID.CABLE()&0xFFFE)==0x4150) || \
LA-2708 (ID.CABLE()==0%x4178)

(Automotive debug cable

PRO)

LA-3736 PRINT ID.CABLE()==0x4155

(Automotive debug cable)

LA-7753 rev. 1 PRINT (ID.CABLE()&0xXEFFF)==0x604F
(OnCE debug cable,
JTAG only,

no reset detection)

LA-7753 rev. 2 PRINT ID.CABLE()==0x3535
(OnCE debug cable,
JTAG and cJTAG,
supports reset detection)

LA-7630 PRINT POWERNEXUS () && (ID.CABLE ()==0x0002)
(Nexus Adapter,

max 16 MDO / 2 MSEO,
1-5V, SDR and DDR)

LA-7610 PRINT POWERNEXUS ()&& (ID.CABLE()==0x0100)
(Nexus Adapter,
max 12 MDO / 2 MSEO
3.3V, SDR only)

LA-7612 PRINT POWERNEXUS ()&& (ID.CABLE()==0x0101)
(Nexus Adapter,

max 8 MDO / 1 MSEOQ,

5V, SDR only)

LA-3911 PRINT POWERTRACE () && ! POWERNEXUS ()

(High speed serial prepro-
cessor for Aurora NEXUS)

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

Required Debugger Software Versions

The table below shows the minimum required software version to work with certain debug hardware:

Debug Hardware

Minimum required software version

LA-3206

LA-2708

(Automotive debug cable
PRO)

TRACERS32 Release 2018.02

LA-3736
(Automotive debug cable)

TRACER32 Release 2012.08

LA-7753 rev. 2

(OnCE debug cable,
JTAG and cJTAG,
supports reset detection)

TRACE32 Release 2009.08

Brief Overview of Documents for New Users

Architecture-independent information:

Architecture-specific information:

“Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a

TRACE32 debugger.

“T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

“General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

“Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

“OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the

OS-aware debugging.

“XCP Debug Back-End” (backend_xcp.pdf): This manual describes how to debug a target over a
3rd-party tool using the XCP protocol.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

18

Further information:

“Training Nexus Tracing” (training_nexus.pdf): Training for the NEXUS trace

“Onchip/NOR FLASH Programming User’s Guide” (norflash.pdf): Onchip FLASH and off-chip
NOR FLASH programming.

“Training Basic SMP Debugging” (training_debugger_smp.pdf): SMP debugging.
“eTPU Debugger and Trace” (debugger_etpu.pdf): Debugging and tracing the eTPU/eTPU2.

“GTM Debugger and Trace” (debugger_gtm.pdf): Debugging and tracing the Generic Timer
Module (GTM).

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace |

19

Target Design Requirement/Recommendations

General (ICD Debugger)

Locate the JTAG/ONCE or Trace connector as close as possible to the processor to minimize
the capacitive influence of the trace length and cross coupling of noise onto the JTAG signals.
Don’t put any capacitors (or RC combinations) on the JTAG lines.

Connect TDI, TDO, TMS and TCK directly to the CPU. Buffers on the JTAG lines will add delays
and will reduce the maximum possible JTAG frequency. If you need to use buffers, select ones
with little delay. Most CPUs will support JTAG above 30 MHz, and you might want to use high
frequencies for optimized download performance.

Ensure that JTAG RESET is connected directly to the RESET of the processor. This will provide
the ability for the debugger to drive and sense the status of RESET. The target design should
only drive RESET with open collector/open drain.

For optimal operation, the debugger should be able to reset the target board completely
(processor external peripherals, e.g. memory controllers) with RESET.

In order to start debugging right from reset, the debugger must be able to control CPU RESET
and CPU TRST (JCOMP) independently. There are board design recommendations to tie CPU
TRST (JCOMP) to CPU RESET, but this recommendation is not suitable for JTAG debuggers.

Debug cable The T32 internal buffer/level shifter will be supplied via the VCCS pin.
with blue Therefore it is necessary to reduce the VCCS pull-up on the target board
ribbon cable to a value smaller 10 Q.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 20

Quick Start

Run Program from On-chip SRAM

Follow these steps to run a program from the on-chip SRAM:

1. Select the target processor, or use automatic CPU detection.
SYStem.CPU MPC5554
;. Or
SYStem.DETECT CPU

2. Multi-core processors: Select the core that starts running directly form reset

;MPC55XX/56XX: select core_0
SYStem.CONFIG.CORE 1. 1.

;MPC5746M: select core_2
SYStem.CONFIG.CORE 3. 1.

3. Start debug session. Debugger resets processor and halts the core at the reset address.

SYStem.Up

4. Cores with MMU: After SYStem.Up, the core’s MMU holds only a single TLB that maps the reset
address. In order to run an application from SRAM, set up the required TLBs manually.

;initialize MPC55XX MMU (same as BAM)

MMU.Set TLB1 0. 0x00000000 0x00000000 0x00000000
MMU.Set TLB1 1. 0xC0000500 OxFFFOOOOA OxFFFO0003F
MMU.Set TLB1 2. 0xC0000700 0x20000000 0x2000003F
MMU.Set TLB1 3. 0xC0000400 0x40000000 0x4000003F
MMU.Set TLB1 4. 0xC0000500 0xC3F00008 OxC3FO0003F
MMU.Set TLB1 5. 0xC0000700 0x00000000 0x0000003F
5. Cores with MMU: In order to run an application from SRAM, set up the required TLBs manually.

For run-time memory access, the debugger requires a static translation table. As the core is

halted and MMU set up, we can take the translation form the TLBs:

;copy core TLBs to debugger translation table

MMU.SCAN TLB1

;enable debugger based address translation
TRANSlation.ON

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

6. MPC5XXX on-chip SRAM must be initialized (ECC) before usage.

Data.Set EA:0x40000000--0x4000FFFF%Quad 0x1122334455667788

7. Load the program.

Data.LOAD.El1f demo.elf ; ELF specifies the format,
; demo.elf is the file name

8. Run program, e.g. until function main.
Go main

9. Display ASM/HLL core at current instruction pointer
List

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 22

Run Program from FLASH

Follow these steps to program an application to flash and run it:

1. Prepare FLASH programming. mpc5xxx.cmm detects the target processor and calls the
appropriate flash script

DO ~~/demo/powerpc/flash/mpcSxxx.cmm PREPAREONLY

2. Program application to FLASH. The command FLASH.ReProgram only erases and programs
when required. The option /NoClear of the second Data.LOAD command keeps already loaded
debug symbols.

;activate flash programming (unused sectors are erased)
FLASH.ReProgram ALL /Erase

;load file(s)
Data.LOAD.El1f project.x
Data.LOAD.S3 data.s3 /NoClear

;commit data to flash
FLASH.ReProgram off

3. The FLASH memory is now up-to-date. Reset the processor, so that the processor can load the
RCHW form FLASH.

SYStem.Up

4. Cores with MMU: For run-time memory access, the debugger requires a static translation table.
As the core’s MMU is not set up right now, copying the translation from the core is not possible.
As projects usually use 1:1 translation, a manual declaration can be performed.

;set up 1:1 address translation and enable
TRANSlation.Create 0x00000000--0xFFFFFFFF 0x00000000
TRANSlation.ON

5. Run program, e.g. until function main.
Go main

6. Display ASM/HLL core at current instruction pointer
List

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 23

Connect to Running Program (hot plug-in)

Follow these steps to attach the debugger to a running system:
1. Select the target processor, or use automatic CPU detection.
SYStem.CPU MPC5554

; or
SYStem.DETECT CPU

2. Load debug symbols.

Data.LOAD.ELF project.x /NoCODE

3. Start debug session without resetting core.
SYStem.Mode.Attach
4. Cores with MMU: For run-time memory access, the debugger requires a static translation table.

As the core’s MMU is not accessible while the core is running, copying the translation from the
core is not possible. As projects usually use 1:1 translation, a manual declaration can be
performed.

;set up 1:1 address translation and enable
TRANSlation.Create 0x00000000--0xFFFFFFFF 0x00000000
TRANSlation.ON

5. Observe variables or memory.

Var.View %E my_var your_var
Data.Dump E:0x40000100

6. Set breakpoints or halt core.

Break.Set my_func /Onchip

Break

7. Display ASM/HLL core at current instruction pointer

List

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 24

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 25

https://support.lauterbach.com/kb

Debugging

Breakpoints

There are two types of breakpoints available: Software breakpoints and on-chip breakpoints.

Software Breakpoints

To set a software breakpoint, before resuming the CPU, the debugger replaces the instruction at the

breakpoint address with a TRAP instruction.

On-chip Breakpoints

To set breakpoints on code in read-only memory, only the on-chip instruction address breakpoints are

available. With the command MAP.BOnchip <range> it is possible to declare memory address ranges for
use with on-chip breakpoints to the debugger. The number of breakpoints is then limited by the number of
available on-chip instruction address breakpoints.

. On-chip breakpoints: Total amount of available on-chip breakpoints.

J Instruction address breakpoints: Number of on-chip breakpoints that can be used to set
Program breakpoints into ROM/FLASH/EEPROM.

J Data address breakpoints: Number of on-chip breakpoints that can be used as Read or Write

breakpoints.

J Data value breakpoint: Number of on-chip data value breakpoints that can be used to stop the
program when a specific data value is written to an address or when a specific data value is read

from an address

Core type: On-chip Instruction Data Address Data Value
Breakpoints Address Breakpoints Breakpoints
Breakpoints
€200z0 4 instruction 4 single 2 single none
€200z0h 2 read/write breakpoints breakpoints
no counters -- or -- -- or --
2 breakpoint 1 breakpoint
ranges range
€200z0HN3 4 instruction 4 single 2 single 2 single
2 read/write breakpoints breakpoints breakpoints
2 data value -- or -- -- or -- (associated
no counters 2 breakpoint 1 breakpoint with data
ranges range address BPs)

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 26

Core type: On-chip Instruction Data Address Data Value
Breakpoints Address Breakpoints Breakpoints
Breakpoints
e200z1 4 instruction 4 single 2 single none
€200z3 2 read/write breakpoints breakpoints
e200z6 2 counters -- or -- -- of --
€200z650 2 breakpoint 1 breakpoint
e200z750 ranges range
€200z335 4 instruction 4 single 2 single 2 single
2 read/write breakpoints breakpoints breakpoints
2 data value -- or -- -- Or -- (associated
2 counters 2 breakpoint 1 breakpoint with data
ranges range address BPs)
€200z446 8 instruction 8 single 2 single 2 single
e200z4d 2 read/write breakpoints breakpoints breakpoints
e200z760 2 data value -- Or -- -- Or -- (associated
2 counters 2 breakpoint 1 breakpoint with data
ranges and range address BPs)
4 single
breakpoints
e200z210 8 instruction 8 single 4 single 2 single
e200z215 4 read/write breakpoints breakpoints breakpoints
e200z225 2 data value -- Or -- -- or -- (associated
e200z420 no counters 4 breakpoint 2 breakpoint with data
€200z425 ranges ranges address BPs)
€200z720
€200z4201
€200z4203
€200z4204
€200z4251
€200z7260

You can see the currently set breakpoints with the command Break.List.

If no more on-chip breakpoints are available you will get an error message when trying to set a new on-chip
breakpoint.

Breakpoints on Program Addresses

The debugger sets software and on-chip breakpoints to the effective address. If a breakpoint is set on a
program address, the debugger will first try to set a software breakpoint. If writing the software breakpoint
fails (translation error or bus error), then an on-chip breakpoint will be set instead. If a memory range must

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 27

not be written by the debugger, it can be declared for on-chip breakpoint usage using MAP.BOnchip.
Alternatively, it is also possible to force a single breakpoint to on-chip using the command Break.Set with
option /Onchip:

Map .BOnchip OxXFFFC0000--0xFFFFFFFF ;use on-chip breakpoints in FLASH

Break.Set OxXFFFFF064 ;debugger sets on-chip breakpoint
Break.Set my funcl ;debugger sets on-chip or sw breakp.
Break.Set my_ funcl /Onchip ;debugger sets on-chip breakpoint

Two on-chip program address breakpoints can be combined to an address range:

Break.Set 0x00000000--0x00002000 /Onchip
Break.Set IVORO_Handler--IVOR15_Handler /Onchip

Breakpoints can be configured to stop if the break event occurred a given number of times. If the core
implements DBCNT (see On-chip breakpoint table), and on-chip breakpoint implementation is selected,
the on-chip counter will be used.

;stop on the 20th call of function foo
Break.Set foo /Onchip /COUNT 20.

Breakpoints on Data Addresses

Data address breakpoints cause a debug event when a certain address or address range is read or written
by the core. A data address breakpoint to a single address has a granularity of 1 byte.

Break.Set 0xC3F80004 /Read ;break when core reads from 0xC3F80004
Break.Set O0xC3F80004 /Write ;break when core writes to 0xC3F80004
Break.Set O0xC3F80004 /ReadWrite ;break on read or write access

Break.Set O0xC3F80000--0xC3F80023 /Write ;break address range

Var .Break.Set counter /Write ;break on variable write access

Equal to program address breakpoints, data address breakpoints can be configured to stop if the break
event occurred a given number of times:

;stop on the 8th write to arrayindex
Break.Set arrayindex /Write /COUNT 20.

Data address breakpoint limitations:

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 28

1. The source of the data access (read and/or write) must be the core, as the data address
breakpoints are part of the core. Any other accesses from on-chip or off-chip peripherals (DMA
etc.) will not be recognized by the data address breakpoints.

2. The data being targeted must be qualified by an address in memory. It is not possible to set a
data address breakpoint to GPR, SPR etc.

Breakpoints on Data Access at Program Address

A normal data access breakpoint as described above hits on all data accesses to the memory address or
address range, independent of the program address which caused the access. It is also possible to set a
data address breakpoint which only hits if the access is performed from a specified program address. The

specified program address must be a load or store instruction.

;Break if the instruction at address 0x40001148 reads from variable count
Break.Set 0x40001148 /MemoryRead count

;Break if the instruction at address 0x40001148 writes to range
Break.Set 0x40001148 /MemoryWrite OxXFFFFF000--0xXFFFFFFFF

The program address can also be an address range or a range of debug symbols:

;Break on all accesses to count from code of the address range
Break.Set 0x40000100--0x400001ff /MemoryReadWrite count

;Break if variable nMyIntVar is written by an interrupt handler
; (debug symbols IVORxx_Handler loaded from debug symbols)
Break.Set IVOR0O_Handler--IVOR15_Handler /MemoryWrite nMyIntVar

;Break if variable nTestValue is written within function test_func
Break.Set sYmbol.RANGE (test_func) /MemoryWrite nTestValue

;Break if variable nTestValue is written outside of test_func
Break.Set sYmbol.RANGE (test_func) /EXclude /MemoryWrite nTestValue

Breakpoints on Data Value

Most e200 cores (see On-chip breakpoint table) implement two on-chip breakpoints on data value

For e200 cores without on-chip data value breakpoints, TRACE32 supports them by software emulation.
When a data value breakpoint is set, the debugger will use one of the data address breakpoints. When the
core hits that breakpoint, the target application will stop and the debugger will evaluate if the data value
matches. If the value matches, the debugger will stop execution, if it does not match, the debugger will
restart the application. Using software emulated data value breakpoints will cause the target application to
slow down.

In case of the NEXUS debugger and trace, breakpoints on data value can be realized using the complex
trigger unit. See “Complex Trigger Unit for Nexus MPC5xxx” (app_ctu_mpc5xxx.pdf).

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 29

Examples for setting data value breakpoints:

;Break when the value 0x1233 is written to the 16-bit word at 0x40000200
Break.Set 0x40000200 /Write /Data.Word 0x1233

;Break when a value not equal 0x98 is written to the 8-bit variable xval
Break.Set xval /Write /Data.Byte 10x98

;Break when decimal 32-bit value 4000 is written

;to variable count within function foo
Break.Set sYmbol.RANGE (foo) /MemoryWrite count /Data.Long 4000.

Counting Debug Events with Core Performance Monitor

The same debug events that are used for the above breakpoint examples can also be used as watchpoints,
which can be used as input event to the core performance monitor. For more information about the core
performance monitor, see BMC.

The example below shows how to count the number of times, a certain function has been called:

;Set Alpha..Echo breakpoints to functions of interest
Break.Set my_ func /Program /Onchip /Alpha
Break.Set othr_func /Program /Onchip /Beta

;Configure BMC (only CNT2 and CNT3 can count debug events)
BMC.state
BMC.CNT2.EVENT ALPHA
BMC.CNT3.EVENT BETA

Counting data accesses is similar. The following example calculates the percentage of variable writes with a
certain value (compared to all writes to this variable):

;Set up debug events
Var.Break.Set xval /Write /Onchip /Alpha
Var.Break.Set xval /Write /Onchip /Data 0x98 /Beta

;Configure BMC (only CNT2 and CNT3 can count debug events)
BMC.state
BMC.CNT2.EVENT ALPHA
BMC.CNT3.EVENT BETA

; Show ratio
BMC.CNT3.RATIO X/CNT2

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 30

Memory Access

Access Classes

Access classes are used to specify how TRACE32 PowerView accesses memory, registers of
peripheral modules, addressable core resources, coprocessor registers and the TRACE32 Virtual
Memory.

Addresses in TRACE32 PowerView consist of:
. An access class, which consists of one or more letters/numbers followed by a colon (:)

. A number that determines the actual address

Here are some examples:

Command: Effect:
List P:0x1000 Opens a List window displaying program memory
Data.dump D:0xFF800000 /LONG Opens a DUMP window at data address OxFF800000

Data.Set SPR:415. %Long 0x00003300 Write value 0x00003300 to the SPR IVOR15

PRINT Data.Long(ANC:0xFFF00100) Print data value at physical address OxFFF00100

Access Classes to Memory and Memory Mapped Resources

The following memory access classes are available:

Access Class Description

P Program (memory as seen by core’s instruction fetch)

F Program, disassembly shows std. PowerPC instructions

\Y Program, disassembly shows VLE encoded instructions

D Data (memory as seen by core’s data access)

IC L1 Instruction Cache (or L1 Unified cache)

DC L1 Data Cache

L2 L2 Cache

NC No Cache (access with caching inhibited)

EEC Emulation memory in MPC57XX/SPC57X emulation devices

In addition to the access classes, there are access class attributes.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 31

The following access class attributes are available:

Access Class Attributes

Description

E Use real-time memory access.
This attribute has no effect if SYStem.MemAccess is set to Disabled).
A Given address is physical (bypass MMU)

TS (translation space) == 1 (user memory)

TS (translation space) == 0 (supervisor memory)

Examples of usage:

Command:

Effect:

Data.List SP:0x1000

Opens a List window displaying supervisor program memory

Data.Set ED:0x3330 Ox4F

Write 0x4F to address 0x3330 using real-time memory access

Data.dump
EEEC:0x0C000000

Opens dump window on emulation memory using real-time memory
access

If an access class attribute is specified without an access class, TRACE32 PowerView will automatically add
the default access class of the used command. For example, Data.List U:0x100 is complemented to

Data.List UP:0x100.

Access Classes to Other Addressable Core and Peripheral Resources

The following access classes are used to access registers which are not mapped into the processor’s

memory address space.

Access Class Description

SPR Special Purpose Register (SPR) access

PMR Performance Monitor Register (PMR) access

DCR Device Control Register (DCR) access

TLB Access to the core’s TLB entries

DBG NEXUS register and special debug register access

SPR, PMR and DCR registers are addressed by specifying the register number after the access class.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 32

The access class TLB gives access to the TLB entries of the €200 core. The TLB contents are provided in
the way they are represented in the MAS registers. The most significant byte is used to address the TLB

table:

TLB access mask

Description

TLB:0x8100iiiM

legacy access:
TLB:0x00001iiiM

Access to TLB1 table (MMU).

iii: TLB index

M: Byte offset to TLB content as represented in MAS registers
(0..3=MAS1, 4..7=MAS2, 8..11=MAS3, 12..15=unused)

TLB:0x82001iiM

Access to TLB2 table (MPU).

iii: TLB index

M: Byte offset to TLB content as represented in MAS registers
(0..3=MASQ, 4..7=MAS1, 8..11=MAS2, 12..15=MAS3)

The TLB access class is supplementary and allows reading TLBs as well as bit field modification of TLB
entries. For general MMU/MPU setup, it is recommended to use the command MMU.Set.

The access class DBG, which covers a wide variety of accesses, has a special encoding. The encoding as
listed below is only valid for the MPC5XXX debugger.

DBG access mask

Description

DBG: 0x01ttNORR

Access to NEXUS registers of non-core NEXUS clients, e.g. NPC,
NAR, NXDM, NXFR, NXSS, NXMC, SPU and GTMDI

tt: TAP access command (ACCESS_AUX_...)
N: NEXUS_ENABLE command (usually zero)
RR: NEXUS register ID

DBG: 0x03ttNORR

Same as above, but for NEXUS clients on the Buddy Device

DBG: 0x02ttO0CRR

Access to eTPU NEXUS registers

tt: TAP access command (ACCESS_AUX_...))
c: eTPU client selection
RR: eTPU register ID

DBG:0x04tttttt

Access to DWPU tag RAM (32-bit wise)
tttttt: Tag RAM address
(one tag RAM accesss increment = 256-byte PD memory block)

DBG:0x00000004

DBG:0x0000007E

€200 core NEXUS register access (address = register index * 2)

DBG:0x400 (CDACNTL)
DBG:0x401 (CDADATA)

€200 core cache debug register access

NOTE: The registers mapped through the DBG access class are automatically configured by the debugger.
Manual changes are likely to disturb debugger/trace functionality and in most cases will be overwritten by the
debugger. Use the NEXUS commands to configure tracing instead of directly writing to the NEXUS

registers.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 33

Cache Debugging Support

Memory Coherency

If a core is halted in debug mode, the debugger maintains cache coherency when the default access classes
are used. The default access classes are written in bold letters in the table below. The other access classes
allow the intentional modification certain memory without maintaining coherency.

The following table describes which memory will be accessed depending on the used access class..

Access Class

Unified Cache

Memory (uncached)

D: read(1)/updated read(4)/updated

P:/F:/V: read(2)/updated read(4)/updated

DC: read/updated read(4)/not updated

IC: read/updated read(4)/not updated

NC: no access read/updated

Access Class D-Cache I-Cache Memory (uncached)
D: read(1)/updated not updated read(4)/updated
P:/F:/V: not updated read(2)/updated(3) read(4)/updated
DC: updated no access read(4)/not updated
IC: no access updated read(4)/not updated
NC: no access no access updated

(1
(2
(3
(4

~— — ~— ~—

. if SYStem.Option.DCREAD is ON (default: ON)

. if SYStem.Option.ICREAD is ON (default: OFF)

: only if SYStem.Option.ICFLUSH is OFF (default: OFF)
: reading from memory only if not found in cache

Memory Coherency During run-time Memory Access

Some €200 cores only support run-time access to uncached memory. The affected cores are €200 cores
which implement data or unified cache and which support operating the cache in copy-back mode (e200z6,
€200z650, 2002750, €200z760). For cores without data cache and cores that only support write-through
(like most MPC57XX/SPC57X/SPC58X), there are no restrictions to run-time memory access.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 34

If one of the affected cores is in use, one of the following changes to the core configuration can be made to
get either read-only of both read/write access.

J To gain read-only access to all memory, configure the cache mode to write-through. This is done
via the WM or DCWM field of the L1CSR register.

J To gain read-only access to certain memory spaces, configure or create a TLB entry for this
address range and set the W (write-through) bit.

J To gain read/write access to all memory, the data/unified cache has to be disabled. This is done
via the L1CSR register (cache enable bit).

. To gain read/write access to certain memory spaces, configure or create a TLB entry for this
address range and set the | (caching inhibited) bit.

Please note that these changes will impact the processor performance. Global configuration settings (like
done via L1CSR) have more impact than settings for small address ranges. Therefore it is recommended to
control the access via TLB settings and keep the page sizes for read and/or write accesses as small as
possible. For example, keep the stack memory range caching enabled, as the stack does usually not need to
be accessed via run-time memory access.

Viewing Cache Contents

The cache contents can be viewed using the CACHE.DUMP command.

Cache

Command

L1 instruction cache
L1 unified cache

CACHE.DUMP IC

L1 data cache

CACHE.DUMP DC

The meaning of the data fields in the CACHE.DUMP window is explained in the table below. Please note
that an uninitialized cache will contain random data, therefore the data fields of the CACHE.DUMP window

will show random values as well.

Data field Meaning

address Physical address of the cache line. The address is composed of
cache tag and set index.

set, way Set and way index of the cache

v, d Status bits of the cache line v(alid), d(irty)

MESI state

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 35

lorll

Way locked.

MPC55XX with unified cache:

--: not locked

I-: locked for instructions globally through L1CSR[WID]
-D: locked for instructions globally through L1CSR[WID]
ID: locked by lock bit in cache line

MPC5XXX with I/D-Cache (harvard):

-: not locked

L: locked

sa ua

Supervisor (sa)/user (ua) access protection:
rw: read-write

ro: read-only

na: no access

MPC57XX/SPC57X/58X only.

Lockout state.
Cache lines with tag errors or data errors will have this lockout
indicator set. MPC57XX/SPC57X/58X only.

LRU information. Shows which cache way will be replaced next.
MPC57XX/SPC57X/58X only.

000408 ...

Address offsets within cache line corresponding to the cached data

address (right field)

Debug symbol assigned to address

MESI States and Cache Status Flags

The data cache logic of Power Architecture cores is described as states of the MESI protocol. The debugger
displays the cache state using the cache line status flags valid, dirty and shared. The debugger also displays
additional status flags (e. g. locked) which can not be mapped to any of the MESI states.

State translation table:

MESI state

Flag

M (modified)

V(alid) && D(irty)

E (exclusive)

V(alid) && NOT D(irty)

S (shared)

V(alid) && S(hared)

| (invalid)

NOT V/(alid)

Using Cache Lines as SRAM Extension

Some e200 cores (€200z6, €200z650, €200z750, €200z760) allow using locked cache lines as additional
SRAM. The cache lines are enabled and locked to an unused address. In this case the debugger might fail
to display the contents in cache (bus error) if the debugger is not configured / used as described below.

If the cache lines are used as data memory, ensure that SYStem.Option.DCREAD is set to ON (default).

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 36

If the cache lines are used as program memory (only possible for e200z6, €200z650), set

SYStem.Option.ICREAD to on. Program code in a locked cache line can only be modified using access
class IC.

Support for Peripheral Modules

TRACE32 supports access to the memory mapped registers of all peripheral modules. The peripheral
register description files (*.per, so-called PER-files) for the on-chip peripherals are included in TRACE32.
PER files for recent processors are usually not included in updates, but are available upon request.

For external peripherals and/or custom peripherals, it is possible to create additional PER files with custom
content. See “Peripheral Files Programming” (per_prog.pdf) for details.

Displaying Peripheral Module Registers

Open the peripheral registers view either using the command PER.view, or open the window by menu: CPU

-> Peripherals. In order to show a certain module directly, open it by menu using MPC5XXX -> On-chip
peripherals.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 37

If a configuration register is selected in the PER.view window, the following information is displayed in the

Cursor field of the TRACES32 status bar:

J Access class - here A for physical address and NC for no cache.
. Address - here 0xfff48000.

. Bit position (TRACE32 bit index) - here 5.

J Bit position (Power Architecture bit numbering) - here 26.

. Full name - here Vector Table Entry Size.

File Edi View Var Break Run CPU Misc Trace
R S -

Perf Cov MPC5XXX Window Help

Hulm aee @i 2

«# B:PER, "Interrupt Controller”

B Interrupt Controller ~
MCR 00000020 vTES ﬂ HVEN 0
CPR 00000000 PRI O
TACKR OO0 DATA. IN
EOIR 00000000 =3
SSCIRO_3 00000000 SETO O CLRO O SETL O CLRL O SET2 O CLR2Z O SET3 0 CLR3 0 |5
SSCIR4_7 00000000 SET4 O CLR4 0 SETS O CLRS O SET6 0 CLR6E O SET/ O CLR7 O

Interrupt Priority Registers

@ Freguency Modulated Phase Locked Loop (FMPLL) -
‘B: :
emulate trigger [devices] [trace] [Data] [Var] [List] [PERF] [other] [previous

ANC:FFF48000 55 (26--26) Vector Table Entry Size system ready MIX |UP

Cursor field

Peripheral Registers Modified by TRACE32

Some memory mapped registers of the on-chip peripherals have to be modified to allow proper debug

control of the processor:

Register Feature / Action Dependencies

for FLASH programming.

SWT[CR] Watchdog. Must be disabled e.g. SYStem.Option.WATCHDOG

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

38

RGM[FRET] Reset escalation. If the application SYStem.Option.DISableResetEscalation
RGM[DRET] causes processor resets, reset
escalation will cause that the
processor disables itself after some
resets until the next power cycle.

RGM[FESS] Short reset sequence. If the SYStem.Option.DISableShortSequence
processor is configured to perform
the short sequence, peripherals
and cores are not reset, which can
cause a variety of debugging
issues. E.g. FLASH programming

can fail.
SIU.PCR]] Modify PCR registers so that their NEXUS.PCRCONFIG
SIUL.PCRJ] pin function is set to NEXUS

signals (MDO, MSEO, MCKO)

Debugging and Tracing Through Reset

Overview

In order to debug of trace through a reset, the debug and trace register configuration must be preserved
when a reset occurs.

Depending on the used processor or processor version, both debug and trace registers will be preserved
natively, or debug and/or trace registers will be loaded with reset values when the reset occurs.

If the core(s) on the target reset debug and/or trace register values when a reset occurs, TRACES32 offers a
workaround to re-configure debug and trace registers. The workaround is enabled with the command
SYStem.Option.ResetDetection. The available reset detection mechanisms depend on the used debug
cable or nexus adapter. See SYStem.Option.ResetDetection for details.

The debugger supports a number of different actions when a reset is detected, see
SYStem.Option.RESetBehavior for details.

On some processors, the I/0s used for the NEXUS port are set to GPIO functionality be default. To enable
trace-through-reset functionality, these processors also require SYStem.Option.ResetDetection, together
with NEXUS.PCRCONFIG.

MPC563X, MPC564X, MPC567X, SPC563X, SPC564X and MPC57XX, SPC57XX

Most processors of the MPC56XX/SPC56XX and MPC57XX/SPC57XX series natively support debugging
through reset, because the debug and trace registers are not cleared upon reset. Breakpoints and trace
settings are not affected and are still in effect after a reset.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 39

If the debugger is operated together with another tool using the same JTAG port (e.g. calibration tool), the
other tool might disable the trace port when a reset occurs. Using SYStem.Option.ResetDetection here
will work around this behavior and re-enable trace-through-reset functionality.

MPC555x, MPC553x, MPC556x, MPC560x, SPC560x

The cores of this processors will reset all on-chip debug and trace registers upon reset, so
SYStem.Option.ResetDetection is required to debug / trace through resets.

When reset is detected, the debugger will then reconfigure all on-chip breakpoints, debug and trace
registers before the CPU starts executing code from the reset address. Reconfiguring takes some time, so
there will be a delay from releasing reset until commands are executed.

On-chip breakpoints can be used to stop the core after reset, e.g. at the start of the user program. If set to
the reset address, the CPU can also be halted immediately after reset. Example:

SYStem.Option.RD RSTINOUT ; listen for reset on RSTOUT
Break.Set OxXFFFFFFFC /Onchip ; set on-chip breakpoint to reset
; address

Impact of SYStem.Option.ResetDetection on Reset Flags

If SYStem.Option.ResetDetection is used and the debugger detects a reset, the debugger willimmediately
assert reset in order to re-connect to the processor.

This the external reset will override or at least change one or more the reset flags.

The exact behavior also depends on the target. If the debugger's reset is connected to PORST (power-on
reset/destructive reset pin), all original reset flags are cleared, while with ESRO (or similar pin that only
causes a functional reset), the bit for external reset is set in addition to original reset flags.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 40

Multicore Debugging

One or more cores can be assigned to a TRACE32 PowerView instance. The cores are referred to by a
core-index which is hard coded in the debugger software.

core-index MPC55xx MPC5510 MPC5676R MPC5747C MPC5744B
MPC563xM MPC5643L MPC574xR MPC5748C MPC5745B
MPC564xA MPC5668G MPC5777C MPC5746G MCP5746B
MPC5674F MPC567xK MPC5747G MPC5744C
SPC563M SPC56EL MPC5748G MPC5745C
SPC564A SPC56HL MPC5746C
SPC56AP
core_0 1 1 1 1(z4_a) 1 (z4)
core_1 - 2 2 2 (z4_b) 2 (z2)
core_2 - - - 3(z2) -
HSM - - - 4 3
eTPU A/B/C 2/3/4 - 3/4/5 - -
GTM - - - - -
SPT - - - - -
core-index MPC5746M MPC574xK MPC577xK
MPC5777M | SPC574K S32R264
SPC57xM S32R274
SPC58xG S32R294
SPC58xE S32R372
SPC58xN
SPC58xH
core_0 1 1 3 (z4)
core_1 2 - 1(z7_a)
core_2 3 (I0P) 3 (I0P) 2 (z7_b)
HSM 4 4 -
eTPU A/B/C - - -
GTM 5 5 -
SPT - - 4

TRACE32 supports either controlling each core with a separate PowerView instance (AMP debugging) or
controlling multiple cores with a single PowerView instance (SMP debugging). SMP debugging is only
possible for cores of the same architecture (e.g. €200 core_0 and €200 core_1).

TRACES2 also supports mixed AMP/SMP operation. E.g. MPC5746M can be controlled with two
PowerView instances, one for core_2 (IOP) and one controlling core_0 and core_1 in SMP mode.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 41

SMP Debugging

In TRACES2 terminology, SMP debugging means to control more than one core in a single PowerView
instance. Use this method for cores which run the same kernel / instance of the operating system. Cores
controlled in a single PowerView instance share the following resources:

. Debug symbols

. OS Awareness
J Run control (Go, Step, Break) and breakpoints
. Debug and trace settings

If it is desired to have control over any of the above resources separately for each core, AMP debugging
must be used.

Follow these steps to set up the debugger for SMP debugging:

1. Select the target processor, or use automatic CPU detection.

SYStem.DETECT CPU

2. Assign cores to this PowerView instance. Look up the core-index of each core in above list. The
order of the cores must match to the core order used by the kernel.

;Kernel: logical_core_0 = core_0, logical_core_1l = core_1

;CORE.ASSIGN <logical_core_0> <logical_core_1> [...]
CORE.ASSIGN 1 2

3. Start debug session and continue as usual.

SYStem.Up | SYStem.Mode.Attach

All core context dependent windows (Register.view, List, Data.dump, etc.) show the data as seen
from the currently selected core. Select a core using the command CORE.select
<logical_core_index>.

Register
CORE 0 ;Register window shows registers of core_0
CORE 1 ;Register window shows registers of core_1

If any of the cores hits a breakpoint, PowerView automatically selects the core that hit the breakpoint.
The currently selected core displayed in the status bar and can be changed by right-clicking on the
core field.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 42

It is also possible to show more than one core context at the same time, using the option /Core
<logical_core_index>. All windows with core-dependent information support this option.

Register /CORE O
Register /CORE 1

List /CORE 0
List /CORE 1

Example scripts for SMP debugging can be found in the demo folder, e.g.

J ~~/demo/powerpc/hardware/mpc56xx/mpc5643l-dualcore/smp_demo.cmm
. ~~/demo/powerpc/hardware/mpc56xx/mpc5676r-dualcore/smp_demo.cmm
. ~~/demo/powerpc/hardware/spc56xx/spc56ap/smp_demo.cmm

Further demo scripts available for download and upon request.

AMP Debugging

In AMP debugging mode, a separate PowerView instance is started for each core. The individual instances
are completely independent of each other, but it is possible to synchronize run-control and system mode
changes (see command SYnch).

An easy way to start multiple PowerView instances is to use T32Start. It is also possible to start further
instances from a PRACTICE script.

The following steps demonstrate the setup for AMP debugging, assuming that the application is already
programmed to FLASH:

1. Select the target processor, or use automatic CPU detection.
;core_0 setup script: ;core_1 setup script:
SYStem.CPU MPC5517 SYStem.CPU MPC5517
2. Assign target cores to the individual instances. Look up the core-index of each core in above list.

Use either SYStem.CONFIG.CORE <core_index> <chip_index> or CORE.ASSIGN
<core_index>. The parameter <chip_index> must be the same for all cores on the same chip.

SYStem.CONFIG.CORE 1. 1. SYStem.CONFIG.CORE 2. 1.

3. SYStem.CONFIG.SLAVE must be OFF for the core that starts running right form reset. Set to
ON for all other cores (that are released later by the first core).

SYStem.CONFIG.SLAVE OFF SYStem.CONFIG.SLAVE ON

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 43

4. Load debug symbols on both instances.

Data.LOAD appl.x /NoCODE Data.LOAD appl.x /NoCODE

5. Start debug session: SYStem.Up for the core that runs right from reset. SYStem.Mode.Attach for
all cores that are started later.

SYStem.Up SYStem.Mode.Attach

6. Core_0 is halted at the reset address and core_1 remains in reset, In order to halt core_1 as
soon as it is released from reset, issue the Break command.

Break
7. Start core_0. Core_1 will halt at its reset address after being released by core_0.
Go WAIT !RUN() ; wait until cpu stops

Example scripts for AMP debugging can be found in the demo folder, e.g.
J ~~/demo/powerpc/hardware/mpc56xx/mpc564xc-dualcore/

J ~~/demo/powerpc/hardware/spc56xx/spc56el-dualcore/

Further demo scripts are available for download and upon request.

Watchdog Timer Support

€200 Core Watchdog (TCR/TSR)

The €200 core watchdog is configured and controlled through the TCR and TSR special purpose registers.
There is no dedicated command to control this watchdog, but it is indirectly controlled with
SYStem.Option.FREEZE, which halts the time base (TBU/TBL/DEC) while the core is halted in debug
mode.

On-chip Watchdog (SWT)

The on-chip SWT modules can be controlled via SYStem.Option.WATCHDOG. By default setting,
TRACE32 will disable the SWT every time the core halts in debug mode. Each TRACE32 PowerView
instance will control only the SWT module(s) that is/are assigned to the core(s) it controls.

If it is intended to debug with SWT enabled, please ensure that the application sets the SWT_CR[FRZ] bit
when it sets up the SWT. The FRZ bit configures the SWT to automatically halt when the core halts for the
debugger.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 44

On MPC57XX, SPC57X and SPC58X multicore processors, the SOC implementation’s behavior is to that
SWT_CR[FRZ] function only works if all cores under debug start and halt at the same time. We recommend
to either keep the SWT permanently disabled. If this is not possible, set SETUP.StepAliCores to ON to
ensure that the SWT can be halted under any circumstances. This behavior is not specific to the SWT, but
affects all on-chip peripheral modules that implement such a Freeze function (e.g. PIT, STM).

Chip External Watchdog

TRACERS2 also includes features to control on-board/chip external watchdog timers. There are several
possibilities.

1. If the watchdog can be disabled by e.g. GPIO or serial communication, the debugger can write the
required sequences automatically at the begin of a debug session using Data.STARTUP or
Data.STANDBY.

2. If the watchdog must be serviced, by toggling a GPIO, Data.TIMER can be used to perform the required
accesses while the core is halted.

3. Some debug cables and NEXUS adapters support controlling a chip external watchdog with a dedicated
pin. This pin is controlled using SYStem.CONFIG.EXTWDTDIS. the pin can be configured to either deliver a
static level or a dynamic level that changes together with the core state. The table below shows which debug
hardware supports this watchdog disable pin. Please note that this pin is only driven if the target is powered
and the debug session is active.

Debug Cable / NEXUS Pin

Adapter

LA-7753 Not available

Debug Cable JTAG/OnCE

LA-2708 Pin 14 on 26-pin connector (AUTO26)

LA-3736 Pin 27 on Mictor-38 connector (with converter LA-3874)
Debug Cable Automotive Pin 28 on 50-pin Samtec connector (with converter LA-3875)
LA-7610 Pin 27 on Mictor-38 connector

NEXUS Adapter MDO12 Pin 50 on GlenAir51 connector (with LA-7611)
(only supported by serial number C05030057285 and higher)

LA-7612 Not available

NEXUS Adapter MDOS8

LA-7630 Pin 27 on Mictor-38 connector (with LA-7631)
NEXUS Adapter Pin 28 on 50-pin Samtec connector (with LA-7636)
AutoFocus Pin 50 on GlenAir51 connector (with LA-7632)

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 45

4. Some watchdog timers can only be disabled is a pin is driven high before the target is powered. The table
below lists which tools can support this scenario.

Debug Cable JTAG/OnCE
LA-7610

NEXUS Adapter MDO12
LA-7612

NEXUS Adapter MDO8

Debug Cable / NEXUS Pin
Adapter
LA-7753 Not available

Debug Cable Automotive

LA-7630 Pin “Ox0”, located on the header connector of the converters
NEXUS Adapter LA-7631 and LA-7636. This pin will driver permanently HIGH using
AutoFocus these commands:

TrOnchip.OUTO WDTC

TrOnchip. TOOLIO2 OFF/HIGH
LA-2708 Support for this feature on request. Please contact technical support.
LA-3736

Censorship Unlock

TRACE32 supports censorship unlock via JTAG commands, if the processor supports those commands.
The unlock is supported by all processors but MPC55XX.

In order to unlock the processor when starting the debug session, provide the censorship password to the
debugger using the command SYStem.Option.KEYCODE. Size and format of the password depends on

the processor in use.

Censorship unlock on MPC56XX and SPC56X processors

MPC56XX/SPC56X processors only support unlocking during SYStem.Up. Attaching to a censored
processor without resetting it is not possible.

Censorship unlock on MPC57XX, SPC57X/SPC58X and S32R processors

On MPC57XX, SPC57X, SPC58X and S32R processors, the censorship unlock is possible without
asserting reset and also if functional reset is asserted. For the unlock during SYStem.Up, the ability to
successfully unlock the processor depends on which reset pin is connected to the debugger’s reset output.

If the debugger’s reset output is connected to ESR0, SYStem.Up will perform a functional reset and the
unlock will succeed. If the debugger’s reset output is connected to PORST, the processor will perform a
destructive reset and the unlock during SYStem.Up will fail.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 46

On MPC5777C, RESET_B is the processor’s only reset input and has the effect of a destructive reset. In the
context of this chapter, assume RESET_B==PORST. MPC5777C can only use method 2 and, if the
processor's RSTOUT is connected to the debugger's RSTOUT, method 4.

In the case the debugger’s reset output is connected to PORST, several workarounds are available to gain
access to the processor:

1. If the processor includes the Debug and Calibration Interface (DCI), perform SYStem.Up using a
functional reset via JTAG instead of asserting the reset output. This method can not be used together with
SYStem.Mode.StandBy. It is not possible to halt the core immediately after a power-on reset.

SYStem.CPU <cpu>

CORE.ASSIGN <cores>
SYStem.Option.KEYCODE <password>
SYStem.Option.ResetMode FUNCtional
SYStem.Up

2. Use workaround to unlock and halt the core after reset release with fixed delay. The delay time set with
SYStem.Option.WaitReset is critical. If the time is too short, the debugger sends the debug request before
the processor is unlocked and SYStem.Up will fail. If the time is too long, the processor will execute many
instructions before the debug request is sent. With a little fine-tuning it is usually possible to halt the core
within <100 instructions, i.e. before it leaves the BAF code. This method supports debugging/tracing through
power cycles.

SYStem.CPU <cpu>

CORE.ASSIGN <cores>
SYStem.Option.KEYCODE <password>
SYStem.Option.ResBreak OFF
SYStem.Option.WaitReset <delay> default
SYStem.Option.ResetMode PIN

SYStem.Up

3. Use workaround to unlock and halt the core after reset is released. It is required that the reset is visible to
the debugger on the debug/trace connector's RESET pin (bidirectional reset signal). If the processor has
separate RESET in and out pins, use method 4. Usually it is possible to halt the core within a few 100
instructions, i.e. before it leaves the BAF code. This method supports debugging/tracing through power
cycles.

SYStem.CPU <cpu>

CORE.ASSIGN <cores>
SYStem.Option.KEYCODE <password>
SYStem.Option.ResBreak OFF
SYStem.Option.WaitReset Os RESET
SYStem.Option.ResetMode PIN
SYStem.Up

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 47

4. Use workaround to unlock and halt the core after reset is released (using ESRO/RSTOUT feedback). It is
required to connect the processor's ESRO to the debug cable’s RSTOUT input. Only supported for the
Automotive Debug Cable and the Parallel Nexus Adapters. Usually it is possible to halt the core within a
few 100 instructions, i.e. before it leaves the BAF code. This method supports debugging/tracing through

power cycles.

SYStem.CPU <cpu>

CORE.ASSIGN <cores>
SYStem.Option.KEYCODE <password>
SYStem.Option.ResBreak OFF
SYStem.Option.WaitReset 0Os RSTOUT
SYStem.Option.ResetMode PIN
SYStem.Up

Methods 2..4 can not halt the core at the reset address. If debugging should start directly from the reset
address, it is possible to perform a functional reset following the first reset. Please note that this may have
side effects, because some code has already been executed. Also there is no real advantage, as the BAF

code is usually not of interest.

;destructive reset with delay and unlock
SYStem.CPU <cpu>

CORE.ASSIGN <cores>
SYStem.Option.KEYCODE <password>
SYStem.Option.ResBreak OFF
SYStem.Option.WaitReset <parameters>
SYStem.Option.ResetMode PIN

SYStem.Up

;follow-up functional reset
SYStem.Option.ResBreak ON
SYStem.Option.ResetMode FUNCtional
SYStem.Up

Recovering a censored processor (MPC57XX, SPC57X/SPC58X and S32R)

If a bad application image is flashed to the processor, the processor can lock up or go through reset
escalation. In either case it can be required to perform a power cycle to connect and recover the processor.

The effects of a bad application image may not become effective directly after programming the application
image to flash. In some cases the problem will appear only after a target power cycle or reset without
debugger. Reasons for this include the debugger initializing SRAM (via flash script execution or other setup
script). the debugger disabling the watchdog (see SYStem.Option.WATCHDOG) and/or disabling the reset
escalation (see SYStem.Option.DISableResetEscalation).

In order to recover a censored processor, first set up the debugger using either method 2, 3 or 4 from above
chapter. If the setup is complete, halt the core at power-on reset.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 48

The core can be halted at power-on reset either through menu or by calling a script:

Method Action

Menu Click on MPC5XXX (or SPC5XX), select Tools - Halt core at power-on
reset

Script DO ~~/demo/powerpc/etc/standby/haltatpoweronreset.cmm

Using either method, a dialog will appear to guide you through the target power cycle. Here’s a full example
using the method 2 from above chapter:

SYStem.CPU <cpu>

CORE.ASSIGN <cores>
SYStem.Option.KEYCODE <password>
SYStem.Option.ResBreak OFF
SYStem.Option.WaitReset <delay> default
SYStem.Option.ResetMode PIN

DO ~~/demo/powerpc/etc/standby/haltatpoweronreset.cmm

In order to successfully recover a censored processor, it is particularly essential to find a good value for
<delay>. If the time is too short, the debugger sends the debug request before the unlock took place.
However is the time is too long, the processor may execute the problematic code before the debug request
can halt the core. It is recommended to find a suitable timing using a good target before trying recovery. The
<delay> parameter of SYStem.Option.WaitReset accepts time values in ps resolution.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 49

Non-secure boot (S32R294)

The processor must be in non-secure boot mode in order to load and run an image from QSPI flash.

New processors are configured to secure boot mode from factory. It can be put into non-secure boot mode
either by script or by blowing fuses.

Non-secure boot by script

Program the application image to QSPI flash. Afterwards run the script
~~/demo/powerpc/hardware/s32/s32r294/non_secure_boot.cmm

The processor will halt at the first instruction of the user application in Instruction RAM. Example:

;Set up QSPI flash programming

DO ~~/demo/powerpc/flash/s32r294-gspi.cmm PREPAREONLY
FLASH.ReProgram ALL /Erase

Data.LOAD.Binary <application image>.bin 0x20000000
FLASH.ReProgram off

;Perform non-secure boot by script:
DO ~~/demo/powerpc/hardware/s32/s32r294/non_secure_boot .cmm

;Core is now halted at first instruction of user application

Non-secure boot if fuses blown

If the fuses for non-secure boot are blown, it is important to halt the processor not before BootROM
execution has completed. This can be achieved using SYStem.Option.ResBreak OFF. Doing so will halt
the processor usually at the first instruction of the user application. If the BootROM execution should finish
very early after reset, a few instructions of the user application may already be executed. Example:

SYStem.CPU S32R294

CORE.ASSIGN 1 2 3

SYStem.Option.ResBreak OFF

SYStem.Up

;Core 1s now halted at first instruction of user application

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 50

Troubleshooting Debug

The table below lists typical problems that occur during debugging.

Error Message

Reason

target power fail

Target has no power or debug cable is not connected. Check if the
JTAG VCC pin is driven by the target.

emulation pod
configuration error

The installed debugger software version is too old and
therefore does not recognize and support the connected
processor.

A JTAG communication error prevented a correct CPU
detection. See the message AREA for more information.

target reset fail

The core is permanently in reset. Try
SYStem.Option.SLOWRESET and check signal level of the
JTAG RESET pin.

If the processor is multicore, make sure that the core is
released from reset either by SOC or by first active core
after reset. Make sure you select a core released from reset
using SYStem.CONFIG.CORE. E.g. on many MPC57XX,
the first core to run is core_2 (IOP).

emulation debug port fail

If the error occurs after a Break command, it usually means
that the target application crashed. The core is unable to
complete the next instruction fetch, which causes that it
does not respond to the debugger’s halt requests. Start a
new debug session (SYStem.Up), set a breakpoint to the
machine check interrupt handler and try to locate the
problem. If a NEXUS trace is available, the problem can
usually be found quickly using by analyzing the trace
recording after the problem occurred.

If the error occurs during a memory access, the used
address or address range possibly pointed to an
unimplemented memory location or to a peripheral module
that is disabled or otherwise not properly set up (e.g.
clocks). In this case the message AREA shows the address
that caused the problem.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 51

Tracing

Processors of the MPC5XXX/SPC5XX series implement a variety of trace modules. Depending on the
module, the trace information is either stored on the processor or sent out through an external trace port.
This section lists all available trace modules, their configuration options and examples.

€200 PCFIFO On-chip Trace

The PCFIFO is a FIFO which stores the last eight branch target addresses. It is implemented in €200 cores
of the MPC55XX, MPC56XX and SPC56X processors, excluding e200z0 and e200z1 cores.

TRACE32 supports the PCFIFO for all processors and regardless of the used debug solution (JTAG and
NEXUS). Using the PCFIFO does not require a trace license. It is also possible to use PCFIFO and NEXUS
trace in parallel.

The PCFIFO has no configurable options. It is always enabled. None of the trace related command groups
(SYStem, NEXUS, TrOnchip, Onchip) has an effect on the PCFIFO operation.

Usage: This command opens a window that shows the program flow. The program flow is reconstructed
based on the PCFIFO data.

Onchip.List

Statistic analysis, RTOS tracing and run-time measurements are not possible with the PCFIFO.

Availability per Core

€200z3 PCFIFO available
€200z4d
2002446
e200z6
€200z650
2002750
2002760

e200z0* PCFIFO not available
e200z1
e200z2*
e200z42*
e200z72*

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 52

Availability per Chip

MPC55xx

MPC563xM / SPC563M
MPC564xA / SPC564A

MPC564xL / SPC56EL

MPC567xK / SPC56HK

PCFIFO available

MPC5676R
MPC5674F
MPC5777C

MPC564xB/C
SPC56EB/C

PCFIFO available in core_0

MPC57xx (**)
SPC57x
SPC58x
S32Rxxx

PCFIFO available in core_0

(**): Excluding MPC5777C

MPC57XX/SPC57X/SPC58X NEXUS On-chip Trace (trace-to-memory)

Many processors of the MPC57XX/SPC57X series implement a feature to store the nexus messages of
cores and peripheral trace clients into an on-chip trace memory, the so-called trace-to-memory feature.

Using the on-chip trace with a debug cable requires the on-chip trace license LA-7968X. The on-chip trace
license is not required if a NEXUS adapter (LA-7630, LA-7610, LA-7612) is in use. The on-chip trace license
is also not required when the Aurora NEXUS preprocessor (LA-3911) is connected.

In order to use trace-to-memory, address space and address range of the on-chip trace memory has to be
set using Onchip.TBARange. The usable address ranges depend on processor and device type:

Production Device

Buffer size Onchip.TBARange

MPC5726L
SPC572L

8 kByte A:0x0D000000--0x0D001FFF

MPC5746M
MPC574xK
MPC5777M
MPC574xR
SPC574K7x
SPC57EMS80
SPC57HM90

16 KByte A:0x0D000000--0x0DOO3FFF

SPC58xE
SPC58xG

16 KByte A:0x0D004000--0x0DO07FFF

SPC58xN

32 KByte A:0x0D000000--0x0D007FFF

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 53

In order to trace to emulation memory, use access class EEC:

Emulation Device Buffer size TBARange

MPC5746M (cut 1) 1 MByte EEC:0x0C000000--0XCOFFFFF
MPC574xK
MPC574xR
SPC574K7x
SPC57EM80
SPC58xE
SPC58xG

MPC5746M (cut 2) 2 MByte EEC:0x0C000000--0xC1FFFFF
MPC5777M
SPC57HMQ0
SPC58xN

Processors not listed in the above tables do not support trace-to-memory.

The address range assignment can be performed through the MPC5XXX menu as well: “Onchip Trace - Set
Onchip Trace Buffer”. The configuration can also be scripted depending on connected processor and debug
tool. See Onchip.TBARange for an example.

The configuration of trace methods and clients is done through the NEXUS and TrOnchip command
groups.

External Trace Ports (Parallel NEXUS/Aurora NEXUS)

External trace ports collect the NEXUS trace messages from cores and peripheral trace clients and send
those messages to an external trace module. Depending on the processor, the messages are sent through
the parallel NEXUS AUX interface (MDO, MSEO, MCKO) or through a high-speed serial connection (XILINX
Aurora protocol). The Nexus adapter or the Aurora NEXUS preprocessor received the trace messages and
stores them in the memory of the PowerTrace module.

Basic Setup for Parallel Nexus

The trace port settings must be done before start of the debug session. Most processors support two trace
port widths, full port mode and reduced port mode. In some cases, full port mode is only supported in
certain packages. Some small packages do not provide a trace port at all. Some processors only provide a
trace port in special development packages. Set the desired port mode using NEXUS.PortSize.

The trace port frequency divider must be selected, so that the resulting trace port frequency does not
exceed the maximum specified frequency in the processor’s data sheet. Many processors support trace port
frequencies up to 88 MHz, but for some processors the limit is significantly lower. The MCKO divider is
configured using NEXUS.PortMode.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 54

Example for MPC5676R: System frequency max. 180 MHz. MCKO frequency according to data sheet max.
82 MHz. Therefore the MCKO divider must be set to 1/3. The resulting trace port frequency is 60MHz.

SYStem.CPU MPC5676R

NEXUS.PortSize MDO1l6
NEXUS.PortMode 1/3

SYStem.Up

Basic Setup for Aurora Nexus

The processors of the MPC5XXX/SPC5XX series require an external clock source for the Aurora NEXUS
block. The Aurora NEXUS preprocessor can provide this clock for frequencies up to 3125 MHz. It is enabled
using the command NEXUS.RefClock.

The number of lanes is set using NEXUS.PortSize, the bit rate per lane is set using NEXUS.PortMode. The
default settings of the debugger are usually valid for the selected processor and do not need to be changed.

Example for MPC5777M

SYStem.CPU MPC5777M
NEXUS.PortSize 4Lane
NEXUS.PortMode 1250Mbps
NEXUS.RefClock ON
SYStem.Up

All trace port settings must not be changed during an active debug session. Usually the processor must be
reset (e.g. SYStem.Up) to bring up the trace port with new settings.

Tracing the Program Flow

Tracing of the program flow is enabled by default. The €200 cores support several kinds of program tracing:
branch trace messaging and history trace messaging.

Branch Trace Messaging (BTM)

This is the default method set in TRACES2. The processor is configured to send a trace message for every
executed branch instruction. As the debugger stores a timestamp with every received message, this method
has the highest accuracy for timing measurements. The drawback is the high trace port bandwidth and trace
memory consumption (i.e. short recording time). The high amount of messages can cause overflows of the
on-chip message FIFQ, i.e. loss of trace data.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 55

Setup of for branch trace messaging:

NEXUS.BTM oN
NEXUS.HTM OFF

History Trace Messaging (HTM)

In history tracing mode, the €200 core only sends trace messages for indirect branches. Information about
direct branches and amount of executed instructions is sent in occasional resource full messages. This
method significantly reduces the amount of generated trace messages. Message FIFO overflows can be
prevented and the recording time is increased. The program flow information is complete in HTM, so even in
this mode, TRACES32 can reconstruct the full program flow without loss. The drawback of this mode is the
reduced runtime measurement accuracy.

Setup of branch history tracing:

NEXUS.BTM oN
NEXUS.HTM oN

In order to remedy the loss of runtime measurement accuracy, many newer processors can additionally
generate messages for function calls. With this method, the accuracy of function-level runtime
measurements is identical to classical branch trace.

Setup of branch history tracing + function call tracing:

NEXUS.BTM onN
NEXUS.HTM on
NEXUS.PTCM.BL_HTM on

Tracing of Data (read/write) Transactions

General data tracing is enabled using the command NEXUS.DTM. This command enables the data trace for
the full address space. The amount of generated trace messages is usually too high to be sent through the
trace port and the on-chip message FIFO will overflow.

The amount of generated trace messages can be reduced by defining address ranges for which data trace
is generated. Up to four address ranges are possible.

Example: Data Trace with Address Range

Use TraceData to limit the data trace to an address range. Depending on the core, 2 or 4 address ranges are
possible. TraceData has no impact on program trace messaging setting.

;Enable data trace for read/write accesses to all peripherals
Break.Set 0xC0000000--0xFFFFFFFF /ReadWrite /TraceData

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 56

;In addition to full program trace, enable data trace for read accesses
;to the array flags

NEXUS.BTM ON

Var .Break.Set flags /Read /TraceData

Another method of reducing trace data is event-triggered trace filtering.

Tracing of Context Switches

NEXUS supports two methods of tracing context (= process, task, thread etc) changes. One method is using
the data trace, the other method uses Ownership Trace Messaging (OTM).

In order to have the debugger process and display task information properly, it is required to set up OS
Awareness. If the operating system in use implements the OSEK Runtime Interface (ORTI), which is often
true for this processor series, see “Configuration” (rtos_orti.pdf) for instructions. For other operating
systems, please check the instructions in the appropriate OS Awareness Manual.

Trace Context Switches using Data Trace Messaging (DTM)

If the core implements NEXUS Class 3, the preferred method to trace context switches is to enable data
trace for the memory location that holds the ID of the currently active process. If the OS Awareness is set up,
the address of the memory location can be retrieved using the function TASK.CONFIG().

Example for tracing context switches using DTM, for an operating system using the OSEK Runtime Interface
(ORTI):

;set up TROS awareness
TASK.ORTI my_rtos.orti

;enable Data trace to current context information
Break.Set TASK.CONFIG (magic) /Write /TraceData

Trace Context Switch using Ownership Trace Messaging (OTM)

Data trace messaging is supported by cores implementing NEXUS Class 3 or higher. If the core implements
NEXUS Class 2, then context switches can only be traced using Ownership Trace Messaging (OTM).

The processor sends an ownership trace message when the core writes to a certain SPR (special purpose
register). Depending on the core in use, one or two registers can be used to issue an OTM message, the
PIDO register and NPIDR. The active register is selected by the command NEXUS.OTM.

This method requires cooperation of the operating system. Some operating systems will support this feature
by default or by configuration, while other operating systems may require code instrumentation or
implementing predefined hooks.

Look for instructions in the appropriate OS Awareness Manual for further information.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 57

Example for tracing context switches using OTM, for an operating system using the OSEK Runtime Interface
(ORTI):

;set up TROS awareness
TASK.ORTI my_rtos.orti

;enable ownership trace messaging via register PIDO
NEXUS.OTM PIDO

Trace Based Run-time Measurement / Timestamping

In order to enable trace based time measurements, the debugger needs a timestamp for every trace
message. Depending on the target processor and trace solution in use, there are up to two kinds timestamp
available:

. Tool generated timestamps. These timestamps are only available for off-chip tracing. For this
processor series, tool generated timestamps are available for all PowerTrace modules. One
timestamp is stored for each trace record.

. Processor generated timestamps. If the processor/core supports generation of timestamps, then
these timestamps can be used for on-chip and off-chip tracing. One timestamp is generated for
each NEXUS trace message.

This chapter shows how the timestamps work under several scenarios, implications of using on-chip
timestamps and which processors support on-chip timestamps.

On-chip timestamps are controlled with the command NEXUS.TimeStamps.

Trace Based Run-time Measurement for off-chip Parallel NEXUS

For parallel NEXUS trace ports, the NEXUS adapter stores one NEXUS trace message per trace record.
Additionally there is only little and rather constant delay between event and message output, therefore the
tool generated timestamps will yield in very exact results. The resolution of the timestamps mostly
depends on the time the trace port needs to send out a single message, i.e. the trace port width (number of
MDOs). As a rough estimate, the resolution will be 2~3 MCKO clock cycles for trace ports with >=12 MDOs,
and 8~16 MCKO clock cycles for trace ports with 2 or 4 MDOs.

If a better resolution is required, processor generated timestamps can be used for parallel NEXUS trace
ports, if supported by the processor. The resolution of the processor generated timestamp is 1/<core
frequency>. Please be aware that processor generated timestamps add 25~35% to the required trace port
bandwidth, which may cause message loss due to on-chip message FIFO overflows.

Trace Based Run-time Measurement for off-chip Aurora NEXUS

Due to the nature of NEXUS via high-speed serial trace port, up to three messages can be stored in one
trace record. Due to this, run-time measurements with tool generated timestamps will result in less
precision on sub-function level or when trace filtering is performed. Run-time measurements on function-
level, as well as average measurements usually do not lose precision. It is recommended to not use trace
filtering if a run-time measurement is performed.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 58

If a better resolution is required, processor generated timestamps can be used for Aurora NEXUS trace
ports, if supported by the processor. The resolution of the processor generated timestamp is 1/<core
frequency>. Please be aware that processor generated timestamps add 25~35% to the required trace port
bandwidth, which may cause message loss due to on-chip message FIFO overflows.

Trace Based Run-time Measurement for on-chip Trace / Trace-to-memory

In this configuration, the generated trace data is directly stored on the processor, either in the small on-chip
trace buffer or the bigger emulation memory (if emulation device available). The debugger transfers the
recorded trace data through JTAG to the PC after the recording took place. Therefore tool generated
timestamps are not available.

Run-time measurements using the on-chip trace buffer are only possible if the processor supports
processor generated timestamps. Processor generated timestamps increase the amount of generated
trace data by 25~35%. Unlike the off-chip trace solutions, the trace bandwidth to the on-chip trace buffer is
usually sufficient enough to transfer the timestamp information without message loss. Due to the limited
amount of buffer size (up to 2MBytes on emulation devices), recording the timestamp information will
noticeably reduce the amount of trace events stored in the on-chip trace buffer.

Correlation of the Trace Timestamp with Other Tool Timestamps

If the tool generated timestamp is used, then this timestamp is automatically correlated to all other
hardware and software timestamps of TRACES32 tools. The trace recording can be immediately correlated to
recordings of PowerProbe, Integrator and to the Logic Analyzer Probe integrated into the PowerTrace
modules and to software features like the SNOOPer. It is even possible to correlate trace recordings made
by multiple PowerTrace modules that are synchronized via the PodBus interface.

If processor generated timestamps are used, this absolute correlation of all debug tool timestamps is not
possible. If a common event is known, then the recordings can be correlated manually (see Trace.ZERO).
As the clock sources of tool generated and processor generated timestamps are not synchronized, the time
offset can increase with higher distance of the measurement from the common event.

Implications of Using the Processor Generated Timestamps

As already mentioned above, processor generated timestamps increase the amount of generated trace data
by 25~35%, which will reduce the absolute run-time that fits into the (on/off-chip) trace buffer and can also
cause overflows of the on-chip message FIFOs.

Processor generated timestamps can be used to make run-time measurements in a filtered trace recording
even if an Aurora NEXUS trace port is used.

As this processor series does not generate timestamp overflow messages, trace events must be frequent
enough so that not more than one timestamp overflow can occur between two events. Assuming a 300MHz
core frequency, the 30-bit timestamp will overflow every 3.58 seconds.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 59

Processors with on-chip timestamp support

The table below shows which processors support generation of timestamps.

Processor

Processor generated timestamp support

MPC55XX
MPC56XX
MPC574xP
MPC5777C
SPC57xK
SPC58XB
SPC58xC
SPC58xE
SPC58xG
SPC58xH

Not supported

MPC5746M, rev2
MPC574xC
MPC574xD
MPC574xG
MPC577xK
S32R274
S32R294
S32R372
SPC57EM, rev2
SPC58NN

Supported for all cores

MPC5777M, rev. 2
SPC57HM, rev. 2

Supported for core_2 (IOP)

Trace Filtering and Triggering with Debug Events

Overview

Any debug event available on €200 cores can be either used to halt the core, or act as watchpoint. A
watchpoint hit event again can be configured to either trigger a watchpoint hit message, or to act as input
event for selective tracing. TRACES2 offers a variety of features based on watchpoints.

Watchpoints are set using the command Break.Set, similar to breakpoints that halt the core, but additionally
include an option to define the desired behavior:

I Break.Set <address>|<range> /<action> Define trace filter or trigger

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 60

The list below shows all available trace filtering and trigger actions:

<action>

Behavior

TraceEnable

Configure the trace source to only generate a trace message if the
specified event occurs. Complete program flow or data trace is disabled. If
more than one TraceEnable action is set, all TraceEnable actions will
generate a trace message. See Example.

TraceON
TraceOFF

If the specified event occurs, program and data trace messaging is started
(TraceON) or ends (TraceOFF). In order to perform event based trace
start/end to program trace and data trace separately, use Alpha-Echo
actions.

Functionality of TraceOFF is only given when used on combination with
TraceON. Using TraceOFF stand-alone is not supported by the processor.

TraceTrigger

Stop the sampling to the trace on the specified event. A trigger delay can
be configured optionally using Analyzer.TDelay.

BusTrigger

If the specified event occurs, a trigger pulse is generated on the podbus
trigger line. This trigger signal can be used to control other podbus devices
(e.g. PowerProbe) or to control external devices using the trigger
connector of the PowerDebug/PowerTrace module (see TrBus).

BusCount

The specified event is used as input for the counter of the
PowerDebug/PowerTrace module. See Count for more information.

WATCH

Set a watchpoint on the event. The CPU will trigger the EVTO pin if the
event occurs and generate a watchpoint hit message if the trace port is
enabled.

Alpha - Echo

Declares an event for several special control / trigger actions:

. Configure event triggered trace start/end for program and data
separately. See TrOnchip.Alpha for details.

. Configure Trace/Trigger events for additional nexus trace clients.
See TrOnchip.Alpha for details.

. Configure event triggered performance counter start/stop. See
BMC.<counter>.ATOB for details.

. Configure trigger events for the complex trigger unit. See “Complex
Trigger Unit for Nexus MPC5xxx” (app_ctu_mpc5xxx.pdf) for
details.

NOTES:

TraceEnable action on data address uses the data address selectors
of the NEXUS module, no watchpoints are used in this case.

Actions on data address (excluding TraceEnable) can not differentiate
between read and write access. Only /ReadWrite is allowed.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 61

Example: Selective Program Tracing

TraceEnable enables tracing exclusively for the selected events. All other program and data trace messaging
is disabled.

;Only generate a trace message when the instruction
;at address 0x00008230 is executed.
Break.Set 0x00008230 /Program /TraceEnable

TraceEnable can also be applied on data trace. In this case, filtering is performed using the data trace
selectors of the NEXUS module, which supports differentiation between read and write accesses:

;Only generate a trace message when the core writes to variable flags[3].
Var.Break.Set flags([3] /Write /TraceEnable

TraceEnable can be used for high precision time-distance measurements:

;Get start and end address of function to be measured
&al=sYmbol .BEGIN (func_to_measure)
&a2=sYmbol .EXIT (func_to_measure)

;Only generate trace messages on the addresses used for measurement
Break.Set &al /Program /TraceEnable
Break.Set &a2 /Program /TraceEnable

;run application
Trace.Init
Go
WAIT 5.s
Break

;Statistic analysis
Trace.STATistic.AddressDURation &al &a2

;plot time distance over time (can take some time for analysis)
Trace.PROFILECHART.DURATION /FILTERA ADDRess &al /FILTERB ADDRess &a?2

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 62

NOTES: . TraceEnable on program events needs only very low bandwidth and
enables very long recording times, but disables all but the enabled
trace events.

. The time measurement commands from above example also work
with a normal trace recording without TraceEnable, but with a shorter
recording time.

. For parallel NEXUS, using TraceEnable increases the precision of the
timing measurement.

o For Aurora NEXUS, TraceEnable can be used for time measurements
only if the processor generates trace messages with timestamps. See
NEXUS.TimeStamps for details. If the processor does not support
timestamp generation, do not use TraceEnable for time
measurements.

Example: Event Controlled Program/Data Trace Start and End

Program and data trace can be enabled and disabled based on debug events. TraceON and TraceOFF
control both program and data trace depending on NEXUS.BTM/DTM setting. TraceON and TraceOFF
control the message source, i.e. the core’s NEXUS module:

;Enable program/data trace when func2 is entered

;Disable program/data trace when last instruction of func2 is executed.
Break.Set sYmbol.BEGIN(func2) /Program /TraceON
Break.Set sYmbol.EXIT (func2) /Program /TraceOFF

;Enable program/data trace when variable flags[3] is accessed
Var.Break.Set flags([3] /ReadWrite /TraceON

;Disable program/data trace data address 0x40000230 is read or written
with 16-bit value 0x1122
Break.Set 0x40000230 /ReadWrite /Data.Word 0x1122 /TraceOFF

;Enable program/data trace only when a specific task is active

;NOTE: RTOS support must be set up correctly
&magic=TASK.MAGIC ("my_task") ;get magic value for the task of interest
Break.Set task.config(magic) /ReadWrite /Data &magic /TraceON
Break.Set task.config(magic) /ReadWrite /Data !&magic /TraceOFF

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 63

It is also possible to enable/disable program and data trace messaging separately:

;Enable/disable only program trace based on events,
;full data trace messaging
NEXUS.DTM ReadWrite
Break.Set func2 /Program /Onchip /Alpha
TrOnchip.Alpha ProgramTraceON
Var.Break.Set flags[8] /ReadWrite /Onchip /Beta
TrOnchip.Beta ProgramTraceOFF

;In addition to full program trace, enable/disable data trace messaging
;only for func2

NEXUS.BTM ON

Break.Set sYmbol.BEGIN(func2) /Program /Onchip /Alpha

TrOnchip.Alpha DataTraceON

Break.Set sYmbol.EXIT (func?2) /Program /Onchip /Beta

TrOnchip.Beta DataTraceOFF

Example: Event Controlled Trace Recording

Debug/trace events can also be used to trigger and stop the trace recording (i.e. message sink):

;Generate a trigger for the trace recording module when
;the specified event occurs. Trace recording stops delayed after
;another 10% of the trace buffer size was recorded.

Break.Set sieve /Program /TraceTrigger

Trace.TDelay 10%

Example: Event Controlled Trigger Signals

TRACES2 can generate a trigger signal based on debug/trace events. The trigger signal can be used to
control PowerProbe or Powerlntegrator, as well as with external tools (using the trigger connector)

;Generate PODBUS trigger signal on data access event with data wvalue
Var.Break.Set flags[9] /ReadWrite /Data.Byte 0x01 /BusTrigger

; forward signal to trigger connector
TrBus.Connect Out
TrBus.Mode High

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 64

Example: Event Counter

There is also a built-in event counter which can be used to count debug/trace events or to measure the event

frequency:

;Measure the execution frequency of function sieve

Break.
Count.
Count.

Go

Count.

PRINT

Count.

Set sieve /Program /BusCount
Mode Frequency

Gate 1.s ;measure for 1 second
;run application
Go ;start measurement
"sieve freqg = "+FORMAT.DECIMAL (1.,Count.VALUE()/1000.)+"Hz"
state ;open event counter window

Tracing Peripheral Modules / Bus Masters

Many processors support tracing of peripheral bus master trace clients, e.g. DMA or FlexRay controllers.
The clients are controlled with the NEXUS.CLIENT<x> commands.

As for the core’s data trace, the amount of generated trace messages is usually too high to be sent through
the trace port and the on-chip message FIFO will overflow. Therefore it is necessary to set filters to reduce
the amount of trace messages. The MPC5xxx processor series’ peripheral bus master trace clients support
two filtering methods, explained in below examples.

Example: Filter by Address Range

The MPC5xxx peripheral bus master trace clients support two freely configurable address ranges. The client
will only generate trace messages, if the read or write address is inside one of those address ranges. The
range only applies to the selected clients. Other clients and the cores can be configured independently.

This example shows how to enable DMA trace only for a given address range:

;select
NEXUS

DMA trace client

.CLIENT1.SELECT DMA_O

;set Alpha event on address range and write access
Break.Set D:0x40001000--0x400017FF /Write /Onchip /Alpha

;Assign Alpha event to CLIENT1, function TRACEDATA
TrOnchip.Alpha TraceDataClientl

Example: Event Controlled Trace Start and End

The MPC5xxx peripheral bus master trace clients support two freely configurable address ranges. The client
will only generate trace messages, if the read or write address is inside one of those address ranges.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 65

Configure the trace of the DMA controller, so that DMA trace starts when the DMA controller writes to
0x1000 and stops when DMA controller wrote 0x1040.

;select DMA trace client
NEXUS.CLIENT1.SELECT DMA_O0

; define events for DMA data trace on/off
Break.Set D:0x40001000 /Write /Onchip /Alpha
Break.Set D:0x40001040 /Write /Onchip /Beta

; assign events to data trace on/off for client 1
TrOnchip.Alpha TraceONClientl
TrOnchip.Beta TraceOFFClientl

Trace Filtering and Triggering Features Provided by TRACE32

For processors with parallel Nexus trace port, TRACES32 implements the Complex Trigger Unit (CTU). The
CTU is a state machine which uses Nexus trace messages and other signals as input, and can be used to
perform a filtered trace recording, generate output signals or to halt the program execution. It's main usage
on MPC55XX is to provide break-on-data-value functionality, which is not supported by the e200z6 debug

logic.

See “Complex Trigger Unit for Nexus MPC5xxx” (app_ctu_mpc5xxx.pdf) for features and programming
examples of the CTU.

Troubleshooting Trace

Tracing VLE or Mixed FLE/VLE Applications

On processors with support for both VLE (variable length encoding) and FLE (std PowerPC instruction
encoding), the debug symbols must provide information about which address ranges are compiled for which
encoding. The debugger will show wrong information in the List window, and there will be flow errors in the
Trace analysis, if one of below situations occur:

. If debug symbols have not been loaded, the disassembler is probably not configured to display
the currently used instruction set. Use SYStem.Option.DisMode <VLE | FLE> to configure
manually, or use SYStem.Option.DisMode AUTO (default) to display the instruction set
according to the current state of the CPU. If is always possible to use
SYStem.Option.DisMode <VLE | FLE> to manually force a specific decoding.

. If debug symbols have been loaded, the debugger will use the information from the debug
symbols if SYStem.Option.DisMode AUTO is selected.

J If the debug symbols are loaded, but the disassembly is still wrong, the information about the
used instruction set may be wrong. The command sYmbol.List. ATTRibute opens a window that
displays all address ranges of the debug symbols and if the instructions are FLE or VLE. The

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 66

information from MMU.DUMP.TLB1 can help to compare the current VLE setup in the MMU with
the information from the debug symbols. If the information in sYmbol.List. ATTRibute is wrong,
please check your linker configuration.

. If the debugger lists VLE/FLE instructions as expected for the address ranges shown in
sYmbol.List.ATTRibute but there are still sporadic errors in the disassembly, then the used linker
is not properly configured to link VLE code. In this case it was observed that all debug symbols
were aligned to 4 byte boundaries, while the actual code was aligned at 2 byte boundaries.
Check linker version and linker configuration.

. Early complier versions supporting VLE often had buggy VLE debug symbols. Check if a
compiler update is available.

As a workaround, it is also possible to override the information loaded from the debug symbols using
sYmbol.NEW.ATTRibute.

; Syntax:
; sYmbol.NEW.ATTRibute <FLE|VLE> <start-address>
; sYmbol.NEW.ATTRibute <FLE|VLE> <range>

; Example: override

Data.LOAD auto project.elf

sYmbol .NEW.ATTRibute FLE 0x00000000--0x0003ffff
sYmbol .NEW.ATTRibute VLE 0x00040000--0x00ffffff

;add new attribute FLE for BAM, which is not covered by debug symbols
sYmbol .NEW.ATTRibute FLE OxXFFFFF000

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 67

FLASH Programming Support

FLASH Programming Scripts

Reference scripts for the programming of the on-chip FLASH of MPC5XXX/SPC5XXX devices can be found
in the TRACER32 installation folder under ~~/demo/powerpc/flash/*.cmm. The FLASH programming binaries
included with TRACES32 are generated from FLASH libraries provided by Freescale and/or ST. The script
names follow the following convention:

Manufacturer

Filename

Freescale

~~/demo/powerpc/flash/mpc5*.cmm

STMicroelectronics

~~/demo/powerpc/flash/spc5*.cmm

Freescale/STM JDP
Joint Development Program

~~/demo/powerpc/flash/jpc5*.cmm

For automatic selection of the right flash script, use the included selector script: mpc5xxx.cmm.

All scripts can be used without change in any project. For flexibility, the flash scripts support some
parameters. All parameters are optional:

Parameter

Behavior

(no parameter)

Set up processor and debugger for flash programming, then open a
file select dialog. The file selected by the user will be programmed
to flash.

This function is also available through the menu:

MPC5XXX -> Tools -> Program FLASH

PREPAREONLY Only set up processor and debugger for flash programming. No
user interaction occurs.
SKIPCONFIG Set up processor and debugger for flash programming, but skip

basic debugger / target setup for advanced configuration. No user
interaction occurs.

PORTSHARING=ON

Enable debug port sharing with other tools, e.g. ETAS ETK. If this
parameter is passed to the flash script, the flash script calls
SYStem.CONFIG PortSHaring ON

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 68

This example shows how to call a flash script from your own script. It is important to reset the processor
(SYStem.Up) after flash programming, because the processor setup for flash programming can differ from

the one needed for the application to run (e.g. VLE vs. FLE):

;prepare flash programming
DO ~~/demo/powerpc/flash/mpcbSxxx.cmm PREPAREONLY

;activate flash programming (erasing unused sectors)
FLASH.ReProgram ALL /Erase

;load file(s)
Data.LOAD.E1f project.x
Data.LOAD.S3 data.s3

;commit data to flash
FLASH.ReProgram off

;after flash programming: reset processor
SYStem.Up

To improve the flash programming speed, set up PLL and JTAG clock after calling the flash script. The PLL
setting and possible maximum JTAG frequency strongly depends on the target design and processor. Use
carefully, because overclocking can damage the processor.

;prepare flash programming
DO ~~/demo/powerpc/flash/mpc5676r.cmm PREPAREONLY

Data.Set ANC:0xC3F80000 SLONG 0x06000000 ;PLL for fast programming
SYStem.BdmClock 20.MHz ;for faster download

;program FLASH
FLASH.ReProgram ALL /Erase
Data.LOAD.El1f project.x
FLASH.ReProgram off

;after flash programming: reset processor
SYStem.Up

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 69

This example shows how to perform advanced debugger/target configuration. The bold lines show some
possible advanced settings (use only when appropriate!):

SYStem.RESet
SYStem.CPU MPC5676R
SYStem.Option.WATCHDOG OFF

SYStem.CONFIG.PortSHaring ON ;calibtration tool connected
SYStem.CONFIG.EXTWDTDIS HIGH ;disable external watchdog
SYStem.Up

;prepare flash programming
DO ~~/demo/powerpc/flash/mpc5676r.cmm PREPAREONLY SKIPCONFIG

;activate flash programming (erasing unused sectors)
FLASH.ReProgram ALL /Erase

Requirements due to FLASH ECC Protection

The on-chip FLASH of MPC55XX/56XX implements an ECC error detection/protection. Therefore, the
minimum program size is two consecutive 32-bit words, aligned on a 0-modulo-8 byte address. The resulting
64-bit units must not be programmed more than once after each erase cycle. If such a unit is
programmed more than once, the unit can become inaccessible due to ECC detection.

Multiple programming of 64-bit units can occur, if

. a file is programmed (e.g. ELF, SRECORD), which contains memory blocks which are not
aligned to 0-modulo-8 byte addresses,

. several files are programmed with overlapping address ranges.

It is recommended to use FLASH.ReProgram instead of FLASH.Program to program flash.
FLASH.ReProgram will merge all data loaded by Data.LOAD or Data.Set before programming the device.
This way TRACES32 will ensure that no 64-bit unit will be programmed more than once. The provided flash
example scripts also use FLASH.ReProgram.

If the FLASH already contains ECC errors, please make sure to call FLASH.Erase once before calling
FLASH.ReProgram. Starting with Build 20739, FLASH.ReProgram supports programming FLASH with
ECC errors without prior call of FLASH.Erase.

The FLASH can contain ECC errors, if
. the FLASH memory is damaged (in this case FLASH.Erase might fail too)

U 64-bit units were programmed more than once
J problems during programming (e.g. power fail, software issues)
J it is a new device, which was never programmed/erased after factory tests

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 70

Programming the RCHW or Boot Header

The RCHW or boot header holds information about the start address for the core(s) amongst other
configuration settings. Depending on the target processor, the RCHW/boot header is either read by the BAM
or BAF code, or directly evaluated by the processor’s reset logic. If a SYStem.Up is performed, the
processor sets the PC to the BAM/BAF start address in the BAM/BAF case, while in the reset logic case, the
PC will be directly set to the start address in the RCHW or boot header.

The RCHW or boot header typically is (and should be) part of the flash image, but it can also be generated
using the debugger, e.qg. if the start address can be determined using debug symbols. The following example
shows how to manually program the RCHW on a MPC55XX processor. Addresses and contents vary

depending on the target processor in use.

FLASH.ReProgram ALL /ERASE

Data.LOAD.ELF * E:0x00--(&flashsize-1)

Data.Set 0x00 %Long 0x005A0000 ;boot identifier
Data.Set 0x04 %Long Var.ADDRESS("_start") ;start address
FLASH.ReProgram off

NOTE: Programming the boot identifier without (or with an invalid) start address can
render the processor unusable and the debugger will fail to connect to the
processor. In order to regain access, pull the FAB pin of the processor HIGH.
This will configure the processor to boot from internal ROM instead of trying to
fetch the illegal boot address from flash. Once the FAB pin is high, the debugger
can connect and reprogram the FLASH.

Programming the Shadow Row

The flash programming example scripts included with TRACE32 declare the shadow row sector, but the
sector is set to flash algorithm NOP instead of TARGET. This way the sector is protected against accidental
erase or programming.

In order to enable programming or erasing the shadow row, the flash declaration has to be changed to
algorithm TARGET. Example:

;prepare flash programming
DO ~~/demo/powerpc/flash/mpchxxx.cmm PREPAREONLY

;enable shadow row programming (change type NOP to TARGET)
FLASH.CHANGETYPE <shadow_row_ base>++0x3FF TARGET

;program FLASH
FLASH.ReProgram ALL

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 71

Once the shadow row sector is set to type TARGET, it can be erased and programmed. The censorship
word is however still protected. Every time the shadow row is erased, the debugger will force restore the
default censorship word.

The next chapter describes how to override this extra protection and change the censorship word in flash.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 72

Programming Serial Boot Password and Censorship Word

After enabling shadow row programming as described above, the serial boot password can be programmed.

The censorship word has an extra protection. By default, the debugger will force that the censorship word
gets programmed to 0x55AA55AAFFFFFFFF (for C90LC-Flash: 0xX55AA55AA55AA55AA). In order to
program the censorship word, use the following sequence:

;prepare flash programming and enable shadow row
DO ~~/demo/powerpc/flash/mpcSxxx.cmm PREPAREONLY
FLASH.CHANGETYPE <shadow_row_base>++<size> TARGET

;programming sequence to enable censored mode
FLASH.AUTO <shadow_row_base>++<size> /CENSORSHIP
Data.Set <censorship_address> %QUAD O0x55AA1234FFFFFFFF ; for C90FL/H7F
Data.Set <censorship_address> %QUAD 0x55AA123455AA1234 ; for C90LC
Data.Set <password_address> $QUAD OxFEEDFACECAFEBEEF ;set password
FLASH.AUTO off

The next sequence shows how to disable censorship:

;prepare flash programming and enable shadow row
DO ~~/demo/powerpc/flash/mpc5xxx.cmm PREPAREONLY
FLASH.CHANGETYPE <shadow_row_base>++<size> TARGET

;programming sequence to uncensor device
FLASH.AUTO <shadow_row_base>++<size> /CENSORSHIP
Data.Set <censorship_ address> %$QUAD 0x55AA55AAFFFFFFFF ; for C90FL/H7F
Data.Set <censorship_ address> %$QUAD 0x55AA55AA55AA55AA ; for C90LC
Data.Set <password_address> $QUAD OxXxFEEDFACECAFEBEEF ;default password
FLASH.AUTO off

NOTE: The censorship word must have at least one bit set to 0 and one setto 1, in
each half word (16 bit block).
A valid password must have at least one bit set to 0 and one set to 1, in each
half word (16 bit block). The password restriction only applies to 64-bit
passwords. Processors with 256-bit passwords do not have that restriction.

Newer processors (MPC56XX, SPC56X and later) have a feature to inhibit censorship via JTAG (using the
serial password). See SYStem.Option.KEYCODE for details.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 73

TEST /UTEST / OTP FLASH Programming

Many processors implement one or more test sectors. Those sectors can contain factory data and
configuration (DCF) records, but can also hold user-specific data, like e.g. serial numbers. The
TEST/UTEST sectors are usually OTP, either by factory default or by user configuration.

In order to protect these sectors from accidental programming/overwriting, they are marked with option /OTP
in the flash scripts. Example for MPC5746M/SPC57EM (excerpt from jpc574xm.cmm):

FLASH.RESet

FLASH.Create 4. 0x01300000--0x0133FFFF TARGET Quad 0x030c

FLASH.Create 4. 0x01340000--0x0137FFFF TARGET Quad 0x030d

; UTEST address space

FLASH.Create 6. 0x00400000--0x00403FFF TARGET Quad 0x0500 /OTP /INFO "UTEST"

Programming an OTP Sector

FLASH sectors declared with option /OTP remain disabled (all writes are ignored) during normal FLASH
programming, to prevent accidental programming. Any FLASH command that makes use of the erase
feature (i.e. FLASH.Erase, FLASH.AUTO, FLASH.ReProgram) will omit sectors declared as OTP.

OTP sectors must be programmed using FLASH.Program with option /OTP. It is highly recommended to
program normal sectors and OTP separately:

;Step 0: Prepare flash programming
DO ~~/demo/powerpc/flash/mpc5xxx.cmm PREPAREONLY

;Step 1: Program normal sectors (OTP sectors are ignored)
FLASH.ReProgram ALL /Erase
Data.LOAD.E1f project.x
Data.LOAD.S3 data.s3
FLASH.ReProgram off

;Step 2: Program OTP
FLASH.Program 0x00400000--0x00403FFF /OTP
Data.LOAD.Binary <file> <start_address>
;and/or alternatively:
Data.Set %Quad <address> %Quad <dcf_recordl> [<dcf_record2> ...]
FLASH.Program off

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 74

On some processors of the SPC58X series, the UTEST sector has a 128 bit ECC granularity. Because of
this, an even number of DCF records (quad words) must be programmed. If the number of DCF records is
not a multiple of 2, a data alignment error will occur and FLASH will not be programmed. A dummy DCF
record can be added in order to get an even number of DCF records. Example:

;Step 0 and 1 as above.

;Step 2: Program OTP (128 bit ECC granularity)
FLASH.Program 0x00400000--0x00403FFF /OTP
Data.Set %Quad <address> %$Quad <dcf-recordl> <dcf-record2>
;and/or alternatively:
Data.Set %Quad <address> %Quad <dcf-record> <dummy-dcf-record>
FLASH.Program off

A dummy DCF record usually can be one of the following. Please make sure to check with the processor
reference manual and/or processor manufacturer for the appropriate method.

J The same DCF record as written to the first 64 bits of the 128 bit block (i.e. the same DCF record
is written twice).

. A DCF record with an invalid chips select (refer to the processor reference manual for
invalid/unused DCF chip selects).

As an additional measure of safety, the programming script could be extended to only program the OTP if it
is still unprogrammed. Doing so can help to assure that no illegal combinations of DCF records will be
programmed. Example:

Data.Set 0x00400000--0x00403FFF %Quad OxXFFFFFFFFFFFFFFFF /DIFF
IF FOUND ()
(
PRINT "OTP already programmed, aborting."
)
ELSE
(
FLASH.Program 0x00400000--0x00403FFF /OTP
Data.LOAD.Binary otpodata.bin
FLASH.Program off

Programming an UTEST Sector which is not set to OTP

The UTEST sector can be either OTP or erasable, depending on factory configuration or custom
configuration. Please check the processor reference manual for details.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 75

If the UTEST sector if not configured to OTP, erasing the sector can be enabled by re-declaring UTEST
without option /OTP, e.g.

;prepare flash programming
DO ~~/demo/powerpc/flash/mpcSxxx.cmm PREPAREONLY

;delete original UTEST declaration
FLASH.Delete 0x00400000--0x00403FFF

;re-declare as normal sector (copy parameters from flash script)
FLASH.Create 6. 0x00400000--0x00403FFF TARGET Quad 0x0500

NOTE: If an OTP sector is declared without option /OTP in the flash script, TRACE32
can not provide any protection against accidental programming or overwriting of
OTP sector contents. In the worst case, accidental overwriting (of e.g. DCF
records or factory configuration data) can permanently damage the processor.

Brownout Depletion Recovery

If a brownout occurs during an erase operation on the C90FL flash, the flash blocks being erased can be left
in an indeterminate state (invalid ECC values). A brownout is defined as an accidental power loss or supply
voltage drop or unexpected reset. For more information see Freescale AN4521. Brownout depletion
recovery is implemented for all affected devices. The recovery is performed automatically on-demand during
flash operations (ReProgram, Erase or AUTO). No additional command or user action is required.

Troubleshooting FLASH

File Contains Addresses Outside the FLASH Sectors

A frequently occurring problem is that the file to be programmed to FLASH contains address ranges outside
the addresses of the FLASH sectors (e.g. SRAM or unimplemented memory space). This can interrupt the
flash algorithm or cause the processor to reset. In order to investigate such problems, use the following

commands to find out which address ranges are contained in the loaded file.

; find out which addresses are contained in loaded file
Data.LOAD.auto * /VM
sYmbol .List.Map

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 76

If the sYmbol.List.Map window shows an address range outside of FLASH, the problem is usually a bug in
the linker script and should be fixed there. In the case there is data linked to SRAM, there is often a chance
that the application does not run reliably because of missing data initialization. If section linked to SRAM is
not assumed to be an error, an alternative solution is to give the Data.LOAD command an address range.

; load only a part of the contained addresses (because we know it’s ok)

FLASH.ReProgram ALL
Data.LOAD.auto * 0--0xOFFFFFFF

FLASH.ReProgram off

ECC Errors in FLASH

The FLASH programming commands FLASH.ReProgram and FLASH.AUTO will read from FLASH
sectors that are going to be modified. Although the debugger tries to recover automatically from ECC errors,
sometimes it is required to use FLASH.Erase to recover from ECC errors. In order to maintain high flash
programming/update speeds and to not unnecessarily increase programming cycles, it is recommended to
use FLASH.Erase only as fallback instead of adding it to the start of every new Flash.ReProgram cycle.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 77

Command Reference: SYStem Commands

SYStem.BdmClock Set BDM clock frequency

Format:

<rate>:

SYStem.BdmClock <rate>

1kHz ... 50MHz

Selects the frequency for the debug interface. For multicore debugging, it is recommended to set the same
JTAG frequency for all cores.

NOTE:

The recommended maximum JTAG frequency is 1/4th of the core frequency
with default PLL configuration after reset. The JTAG frequency can be
increased after configuring the PLL.

Please make sure to decrease the JTAG frequency to 1/4th of the reset core
frequency before a target reset (e.g. SYStem.Up).

See processor data sheet for additional restrictions of the max. JTAG frequency.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 78

SYStem.CONFIG.state Display target configuration

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag | XCP

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort Lets you configure the electrical properties of the debug connection, such
as the communication protocol or the used pinout.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.

XCP Lets you configure the XCP connection to your target.

For descriptions of the commands on the XCP tab, see “XCP Debug
Back-End” (backend_xcp.pdf).

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 79

SYStem.CONFIG

Configure debugger according to target topology

Format:

<parameter>
(DebugPort):

<parameter>
(JTAG):

SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

CORE <core_index> <chip_index>
DEBUGPORT DebugCable0 | Analyzer0 | XCPO
Slave ON | OFF

TriState ON | OFF

DRPRE <bitcount>
DRPOST <bitcount>
IRPRE <bitcount>
IRPOST <bitcount>

TAPState 7 [12
TCKLevel 0 | 1

CJTAGFLAGS <flags>
CJTAGTCA <tca>

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one processor in the JTAG chain. The
information is required before the debugger can be activated e.g. by a SYStem.Up. See example below.

TriState has to be used if (and only if) more than one debugger are connected to the common JTAG port at
the same time. TAPState and TCKLevel define the TAP state and TCK level which is selected when the
debugger switches to tristate mode.

NOTE:

When using the TriState mode, nTRST/JCOMP must have a pull-up resistor on the
target. In TriState mode, a pull-down is recommended for TCK, but targets with pull-

up are also supported.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 80

Debug port parameters:

CORE

DEBUGPORT

Slave

TriState

The parameter <core_index> defines which core the PowerView instance
controls. Counting starts with 1, i.e. 1: core_0, 2: core_1, 3: core_2...
The parameter <chip_index> is important for multi-chip targets. All
PowerView instances which control cores on the same physical chip must
use the same <chip_index> value. Although any value > 0 is allowed, it is
recommended to use 1 for single-chip targets. See Multicore Debugging
for details and examples.

Use this command to select the debug port to use for JTAG
communication. On TRACES32 PowerTools hardware, the debug port can
be either DebugCable0 or Analyzer0, if a Nexus adapter is connected. If
TRACE32 is operated on software-only mode, DebugPort XCPO allows
debugging via a 3rd party XCP slave.

(default: OFF) If more than one PowerView instance is using the same
JTAG port, all except one must have this option active. Only one
debugger - the “master” - is allowed to control the signals nTRST/JCOMP
and (nRESET).

(default: OFF) If more than one debugger share the same JTAG port, this
option is required. The debugger switches to tristate mode after each
JTAG access. Then other debuggers can access the port.

JTAG parameters (see daisy chain example below):

DRPRE

DRPOST

IRPRE

IRPOST

(default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

(default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

(default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

(default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 81

TAPState

TCKLevel

(default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

(default: 0) Level of TCK signal when all debuggers are tristated.

c¢JTAG parameters (do not change debugger default settings):

CJTAGFLAGS
<flags>

CJTAGTCA <value>

Activates bug fixes for “cJTAG” implementations.
Bit 0: Disable scanning of cJTAG ID.

Bit 1: Target has no “keeper”.

Bit 2: Inverted meaning of SREDGE register.

Bit 3: Old command opcodes.

Bit 4: Unlock cJTAG via APFC register.

Default: 0
Selects the TCA (TAP Controller Address) to address a device in a

¢JTAG Star-2 configuration. The Star-2 configuration requires a unique
TCA for each device on the debug port.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 82

Daisy-Chain Example

IRPOST IRPRE
I 1
TAP1 TAP2 TAP3 TAP4
IR | 4 IR IR IR
DI + | 8 | S Chip %i TDO
DR/ 1 DR/ 1 DR | 1 DR | 1
L I | |
DRPOST DRPRE

IR: Instruction register length DR: Data register length Chip: The chip you want to debug

Daisy chains can be configured using a PRACTICE script (*.cmm) or the SYStem.CONFIG.state window.

&2 B::SYStem.CONFIG state /Jtag =n| Wl <
DebugPort Jtag MultiTap DAP | COmponents
IRPOST IRPRE
12, 6.
TDI kk — DRPOST M| core | M- DRPRE ke TDO
3. P] [S 1.

Example: This script explains how to obtain the individual IR and DR values for the above daisy chain.

SYStem.CONFIG.state /Jtag 5

SYStem

SYStem

SYStem

SYStem

.CONFIG IRPRE

6.

.CONFIG IRPOST 12. 5

.CONFIG DRPRE

.CONFIG DRPOST

1.

3.

optional: open the window

IRPRE: There is only one TAP.

So type just the IR bits of TAP4, i.e. 6.
IRPOST: Add up the IR bits of TAP1, TAP2
and TAP3, i.e. 4. + 3. + 5. = 12.
DRPRE: There is only one TAP which is
in BYPASS mode.

So type just the DR of TAP4, i.e. 1.
DRPOST: Add up one DR bit per TAP which
is in BYPASS mode, i.e. 1. + 1. + 1. = 3.
This completes the configuration.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace |

83

TapStates

10

11

12

13

14

15

Exit2-DR

Exitl-DR

Shift-DR

Pause-DR

Select-IR-Scan

Update-DR

Capture-DR

Select-DR-Scan

Exit2-IR

Exitl-IR

Shift-IR

Pause-IR

Run-Test/Idle

Update-IR

Capture-IR

Test-Logic-Reset

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

84

SYStem.CONFIG.DEBUGPORTTYPE

Set debug cable interface mode

Format: SYStem.CONFIG.DEBUGPORTTYPE [JTAG | CJTAG]

Default: JTAG.

This command is used to configure the debug port type used by the debugger.

Hardware Requirements for cJTAG Operation

Debug modules: These debug modules do not support cJTAG operation:

LA-7702: PowerDebug module (without USB or Ethernet connection)
LA-7704: PowerDebug USB1 module

If the debug cable or Nexus adapter supports cJTAG operation depends on the production date. The
production date is encoded in the serial number (CYYMMxxxxxxx, YY=year, MM=month).

LA-7753 (14-pin JTAG/OnCE header): Must be from 09/2009 or later
LA-2708, LA-3736 (AUTO26 header): supported by all versions
LA-7630 (Nexus AutoFocus adapter):

- 01/2018 and newer: full support

- 06/2009...12/2012: restricted support (TDI and TDO signal of Nexus adapter must be
disconnected from any target signal when using cJTAG)

- 05/2009 and older: not supported
LA-7610 (Nexus adapter 3.3V): not supported
LA-7612 (Nexus adapter 5V): not supported

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

85

SYStem.CONFIG.EXTWDTDIS

Disable external watchdog

<option>: OFF
High
Low
HighwhenStopped
LowwhenStopped
Trigger
SLAVE

Format: SYStem.CONFIG EXTWDTDIS <option>

Default for Automotive/Automotive PRO Debug Cable: High.
Default for XCP and NEXUS AutoFocus Adapter: OFF.

Controls the WDTDIS pin of the debug port. This configuration is only available for tools with an Automotive

Connector (e.g., Automotive Debug Cable, Automotive PRO Debug Cable), XCP and Nexus AutoFocus

adapters.

OFF

High
Low

HighwhenStopped

LowwhenStopped

Trigger

SLAVE

The WDTDIS pin is not driven.
(only XCP and parallel NEXUS Adapter)

The WDTDIS pin is permanently driven high.
The WDTDIS pin is permanently driven low.

The WDTDIS pin is driven high when program is stopped.
(not XCP)

The WDTDIS pin is driven low when program is stopped.
(not XCP)

The WDTDIS pin is driven by the Complex Trigger Unit.
(only parallel NEXUS Adapter)

The WDTDIS state of the XCP slave is not changed. (XCP only)

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

86

SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool

Format:

<mode>:

SYStem.CONFIG.PortSHaRing [ON | OFF | Mode <mode>]
SYStem.Option.ETK [ON | OFF] (deprecated)
SYStem.Option.GSI [1 | 2 | OFF] (deprecated)

ETK | GSI1 | GSI2

Configures if the debug port is shared with another tool, e.g., an ETAS ETK.

ON

OFF

Mode

Request for access to the debug port and wait until the access is granted
before communicating with the target.

Communicate with the target without sending requests.
Select protocol mode. Default: ETK (also supports XETK).

Modes GSI1 and GSI2 used for DSPACE GSI with either one or two data
address breakpoints reserved for other tool.

The current setting can be obtained by the PORTSHARING() function, immediate detection can be
performed using SYStem.DETECT.PortSHaRing.

NOTE:

Supported by:

LA-2708, LA-3736 (JTAG Debugger for MPC5xxx Automotive)
LA-7630 (NEXUS Debug/Trace for MPC5xxx/SPC5xxx)
LA-7610 (NEXUS Debugger and Trace for MPC5500)

Not supported by:

LA-7753 (JTAG Debugger MPC5xxx/SPC5xxx)

LA-7612 (NEXUS Debugger and Trace for MPC551x)

SYStem.CPU

Select the target processor

Format:

<cpu_name>:

SYStem.CPU <cpu_name>

MPC55XX | MPC5554 | ... | <cpu_name_with_wildcards>

Selects the target processor or target core.

If you are unsure about the processor, try SYStem.DETECT CPU for automatic detection.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 87

In the case the processor is not listed and not detected by SYStem.DETECT CPU, check if an updated
version of TRACES32 is available (http://www.lauterbach.com/3232) or contact technical support.

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

SYStem.MemAccess Select run-time memory access method
Format: SYStem.MemAccess <mode>
<mode>: Denied | Enable | StopAndGo | NEXUS | XCP

This option declares if and how a non-intrusive memory access can take place while the CPU is executing
code. Although the CPU is not halted, run-time memory access creates an additional load on the
processor’s internal data bus. The run-time memory access has to be activated for each window by using
the access class E: (e.g. Data.dump E:0x100) or by using the format option %E (e.g. Var.View %E var1). It
is also possible to activate this non-intrusive memory access for all memory ranges displayed on the
TRACE32 screen by setting SYStem.Option.DUALPORT ON.

Denied Memory access is disabled while the CPU is executing code.

Enable Memory access is enabled while the CPU is executing code. Available for
Instruction set simulators and virtual targets (MCD).

NEXUS Memory access is done via the on-chip NEXUS block. This option is
available for both the NEXUS and JTAG-only debugger solution. Memory
accesses via the NEXUS block can not snoop caches.

MPC55XX/56XX, SPC56X: While the core is running, data in cache can
not be modified with this access. If the cache operates in copy-back
mode, reading cached data is also not possible.
MPC57XX/SPC57X/SPC58X: Data cache is write-through, so reading
cached data is always possible, updating cached contents also is
supported on most of these processors.

MPC5777C: See SYStem.Option.NexusMemoryCoherency

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 88

http://www.lauterbach.com/

StopAndGo

XCP

Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

Only available for software-only debugging (HostMCI).

Memory access is done via a built-in memory access feature of the 3rd
party XCP slave. This memory access method is faster than performing
the memory access by sending JTAG commands to the XCP slave, but
the behavior (e.g. in terms of cache coherency) my differ depending on
the XCP slave hardware, firmware or configuration.

NOTE:

These processors do not support run-time memory access via NEXUS:
MPC5601D, MPC5602D, MPC5601P, MPC5602P

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 89

SYStem.Mode Select operation mode
Format: SYStem.Mode <mode>
SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down | NoDebug | Prepare | Go | Attach | StandBy | Up

Selects how the debugger connects to the processor and performs the selected connection.

Down

NoDebug

Prepare

Go

Attach

StandBy

Up

Disables the debugger. The state of the processor remains unchanged.

Resets the target with debug mode disabled. In this mode no debugging
is possible. The processor state keeps in the state of NoDebug.

Connect to processor while core is unpowered. Available only for
emulation devices. PREPARE mode is used to initialize, read or write
emulation memory on the buddy die, before the production die is
powered.

Resets the target with debug mode enabled and prepares the processor
for debug mode entry. Now, the processor can be stopped with the break
command or any break condition.

Connect to the processor without resetting target/processor. Use this
command to connect to the processor without changing it's current state.

Debugging/Tracing through power cycles.

The debugger will wait until power-on is detected, then bring the
processor into debug mode, set all debug and trace registers and start
the processor. In order to halt the processor at the first instruction, place a
temporary on-chip breakpoint range (Break 0--OxFFFFFFFC /Onchip)

Resets the target/processor and sets the processor to debug mode. After
execution of this command the processor is stopped and prepared for
debugging.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 90

Command Reference: SYStem.Option Commands

SYStem.Option.BISTRUN Debug with BIST enabled

Format: SYStem.Option.BISTRUN [ON | OFF]

MPC5777C only. By default (OFF), the processor will disable BIST if it detects that a debugger is connected
while reset is asserted.

If set to ON, the debugger will connect to the processor only after reset is released. This mode impacts the
debugger’s ability to debug and trace the processor from reset and through power cycles.

SYStem.Option.CoreStandBy On-the-fly breakpoint and trace setup

Format: SYStem.Option.CoreStandBy [ON | OFF]

On multi-core processors, only one of the cores starts to execute code right after reset. The other cores
remain in reset or disabled state. In this state it is not possible to set breakpoints or configure the core for
tracing. This option works around this limitation and makes breakpoints and tracing available on these cores.

NOTE: This option is not required for MPC5676R when operated in SMP mode or when
SYnch.MasterSystemMode and SYnch.SlaveSystemMode are set to ON in
AMP debugging mode.

SYStem.Option.DCFREEZE Data cache state frozen while core halted

Format: SYStem.Option.DCFREEZE [ON | OFF]

Default: ON. This command configures how the debugger will maintain cache coherence for the debugger’s
memory accesses while the core is halted in debug mode. The setting has no impact on the run-time
memory access.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 91

If ON, the debugger will maintain cache coherency by reading or writing directly to the cache arrays and
memory. This method guarantees that the cache tags and status bits (valid, dirty) of remain unaffected by
the memory accesses of the debugger. The debugger will also maintain cache coherency if the memory
access is done through the NEXUS block (access class “E:”, or SYStem.Option.DUALPORT ON) is used
while the core is halted. This is the recommended setting.

If OFF, the debugger will maintain cache coherency by allowing the data/unified cache to be updated while
reading or writing memory through debug commands. Cache coherency is not maintained if memory is
accessed through the NEXUS block (access class “E:”, or SYStem.Option.DUALPORT ON).

Setting DCFREEZE to OFF is reserved for a specific use case which requires an optimal data throughput
while maintaining cache coherency (while core is halted). Do not to set DCFREEZE to OFF unless advised
by Lauterbach.

SYStem.Option.DCREAD Read from data cache
Format: SYStem.Option.DCREAD [ON | OFF]
Default: ON.

If enabled, Data.dump windows for access class D: (data) and variable windows display the memory values
from the d-cache, if valid. If data is not available in cache, physical memory will be read.

SYStem.Option.DISableResetEscalation Control reset escalation disabling

Format: SYStem.Option.DISableResetEscalation [ON | OFF]

Default: ON.

A processor that implements the reset escalation feature disable itself after a certain number of resets. Once
a processor is fully escalated, a power cycle is required to regain debug access to the cores. The debugger
disables the reset escalation by default, to facilitate the debug and development process. In order to test the
behavior of the reset escalation in the application, set this option to OFF.

Please note that debugger-generated resets (e.g. SYStem.Up) also contribute to the number of resets that
trigger the reset escalation.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 92

SYStem.Option.DISableShortSequence Short reset sequence handling

Format: SYStem.Option.DISableShortSequence [ON | OFF]

Some processors support a feature called short reset sequence, which is enabled through the RGM_FESS
register. When the short reset sequence is enabled, a part of the reset phases (e.g. the BIST) are skipped at
reset (including reset asserted by the debugger, e.g. for SYStem.Up).

Having an incomplete reset can cause problems to the debugger, for example, flash programming can fail.
Therefore, by default setting (ON), the debugger disable the short reset sequence for external and JTAG
resets.

Some boot loaders can not cope with the debugger’s behavior, because they blindly assume that the short
sequence is enabled without checking the actual setting of the RGM_FESS register. This can cause the
application to crash (e.g. by accessing uninitialized SRAM).

The ideal solution is to modify the boot loader so that it evaluates RGM_FESS when deciding if the short
sequence is enabled or not.

Set this option to OFF for boot loaders which have problems when the debugger disables the short
sequence. The target will require a power cycle in order to recover from the debugger’s intervention.

Another use case of this option is to debug the reset scenario with short sequence enabled.

NOTE: . The debugger will print a warning to the message area / status line when
SYStem.Up is performed when this option is set to OFF and short
sequence is enabled.

. If you should experience debugging / flash programming problems while
this option is set to OFF, you have to turn it ON again and perform
another SYStem.Up.

SYStem.Option.DisMode Disassembler operation mode
Format: SYStem.Option.DisMode <mode>
<mode>: ACCESS
AUTO
FLE
VLE

MPC5XXX/SPC5XX with VLE instruction set support only.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 93

This command sets the operation mode for the disassembler.

AUTO (default) The information provided by the compiler output file is used for the
disassembler selection. If no information is available, it has the same
behavior as the option ACCESS.

ACCESS The operation mode for the disassembler is based on the current mode of
the CPU.
FLE Use standard PowerPC instruction set disassembler mode (fixed length

encoding) only.

VLE Use VLE disassembler mode (variable length encoding) only.
SYStem.Option.DUALPORT Implicitly use run-time memory access
Format: SYStem.Option.DUALPORT [ON | OFF]

Forces all list, dump and view windows to use the access class E: (e.g. Data.dump E:0x100) or to use the
format option %E (e.g. Var.View %E var1) without being specified. Use this option if you want all windows to
be updated while the processor is executing code. This setting has no effect if
SYStem.Option.MemAccess is disabled or real-time memory access not available for used CPU.

Please note that while the CPU is running, MMU address translation can not be accesses by the debugger.
Only physical addresses accesses are possible. Use the access class modifier “A:” to declare the access
physical addressed, or declare the address translation in the debugger-based MMU manually using
TRANSIation.Create.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 94

SYStem.Option.FASTACCESS Special operation mode for fast run control

Format: SYStem.Option.FASTACCESS [ON | OFF]

FASTACCESS is a special operation mode that allows fast run control and response times, but with very
limited features. The allowed debug actions are limited to below list:

. Go

. Break

J Set/Clear breakpoints and watchpoints (Break.Set / Break.Delete)
. Write to memory using physical addresses (access class "A:")

. Write debug registers DBCR*, DBCNT, IAC*, DAC*, DVC*, DEVENT, DDAM via SPR:

o Read and Write access class DBG:

This feature is not available for all processors.

SYStem.Option.FREEZE Freeze system timers on debug events

Format: SYStem.Option.FREEZE [ON | OFF]

Enabling this option will lead the debugger to set the FT bit in the DBCRO register. This bit will lead the CPU
to stop the system timers (TBU/TBL and DEC) upon all debug events, that can be defined in DBCRO. The
system timers will not be frozen on events like EVTI or the brkpt instruction. The timers/clocks or watchdogs
of the on-chip peripherals are not affected by this option, but often can be configured to stop in debug mode
by a FREEZE bit. For details please see the processor reference manual.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 95

SYStem.Option.HoldReset Set reset hold time

Format: SYStem.Option.HoldReset [<time>]

<time>: 1us ... 10s

Set the time that the debugger will drive the reset pin LOW, e.g. at SYStem.Up. The time must be longer
than the BIST takes to complete. If called without parameter, the default reset hold time is used. The default
reset hold time is 100ms for processors that require a BIST delay, else 100us.

- hold time > < wait time -

RESET pin |

CPU State | RESET/BIST RESET DEBUG_HALT

See also SYStem.Option.WaitReset and SYStem.Option.SLOWRESET.

SYStem.Option.ICFLUSH Invalidate instruction cache before go and step

Format: SYStem.Option.ICFLUSH [ON | OFF]

Only for cores with dedicated instruction cache (not for unified cache of €200z6 cores).
Default: ON.
Invalidates the instruction cache before starting the target program (Step or Go). If this option is disabled, the

debugger will update Memory and instruction cache for program memory downloads, modifications and
breakpoints. Disabling this option might cause performance decrease on memory accesses.

SYStem.Option.ICREAD Read from instruction cache
Format: SYStem.Option.ICREAD [ON | OFF]
Default: OFF:

If enabled, Data.List window and Data.dump window for access class P: (program memory) display the
memory values from the instruction/unified cache if valid. If the data is not available in cache, the physical
memory will be displayed.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 96

SYStem.Option.IMASKASM Disable interrupts while single stepping

Format: SYStem.Option.IMASKASM [ON | OFF]

Default: OFF.
If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The

interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Format: SYStem.Option.IMASKHLL [ON | OFF]

Default: OFF. If enabled, the interrupt mask bits of the cpu will be set during HLL single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

NOTE: Do not enable this option for code that disables MSR_EE. The debugger will
disable MSR_EE while the CPU is running and restore it after the CPU stopped. If a
part of the application is executed that disables MSE_EE, the debugger cannot
detect this change and will restore MSE_EE.

SYStem.Option.KEYCODE Inhibit censorship protection
Format: SYStem.Option.KEYCODE [<password>]
<password>: <64_bit_serial_password> | <p0> <p1> <p2> <p3> <p4> <p5> <pb> <p7>

Use this command to inhibit the censorship protection. The processor will then be unlocked during the next
start of the debug session (SYStem.Up, SYStem.Mode.Attach, SYStem.Mode.StandBy etc.).

(no password) Calling SYStem.Option.KEYCODE without parameters disables the
censorship inhibit feature.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 97

<64_bit_serial For 64-bit password.

password>

<p0> ... <p7> MPC57XX/SPC57X/SPC58X: 8x32bit for 256-bit password.
If the processor implements a 256-bit password, the password has to be
provided in 8x 32-bit chunks. The first chunk is the most significant, i.e. it
is the first chunk to be shifted into the inhibit register. The order of the 32-
bit values matched the address order in FLASH.

NOTE: . MPC55XX processors do not support censorship inhibit via JTAG.

. MPC57XX, SPC57X/SPC58X processors do not support the censorship
unlock while reset is asserted. This affects power-on reset and, depend-
ing on the life cycle, also functional reset. See Censorship Unlock for
available workarounds.

. Devices with C90LC Flash require the upper and lower DWORD
exchanged when specified as parameter of SYStem.Option.KEYCODE.

. MPC577xK (RaceRunner) only:
If no password is set, the debugger automatically unlocks the processor
using the public password (OxXDEADDEEDFADEBADE)

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 98

SYStem.Option.LPMDebug Enable low power mode debug handshake

Format:

<method>:

SYStem.Option.LPMDebug <method>

OFF | HANDSHAKE | PASSIVE | ACTIVE

OFF

Low power mode debugging not supported.

At LPM entry the error message “emulation debug port fail” is generated
and the communication between the debugger and the processor is lost.

PASSIVE

TRACE32 tries to detect low power mode entries and exits without using
the LPM handshake provided by the processor.

At LPM entry the communication between the debugger and the
processor is lost. The state of the debugger changes to
“running(lpm-stop/lpm-sleep)”. At LPM exit the communication between
the debugger and the processor is re-established (attach). The
breakpoints and the NEXUS settings are lost.

ACTIVE

TRACEB32 tries to detect low power mode entries and exits without using
the LPM handshake provided by the processor.

At LPM entry the communication between the debugger and the
processor is lost. The state of the debugger changes to
“running(Ilpm-stop/Ilpm-sleep)”. At LPM exit the communication between
the debugger and the processor is re-established (attach) and the
program execution is stopped. The breakpoints and the NEXUS settings
are re-established.

HANDSHAKE

TRACE32 uses LPM handshake for low power mode debugging. The
processor signals LPM entries and exits to the debugger.
At LPM exit breakpoints and NEXUS settings are re-established.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 99

NOTE:] Enabile this option if the target application makes use of low power modes
and a debug port fail occurs when LPM is entered.

] If a handshaked LPM occurs, the debugger will display this state by print-
ing “running (Ipm-stop/lpm-sleep)” to the status line. If the debugger
prints “running (sleep/stop/wait)”, the LPM handshake was not performed
(either because not enabled or not initiated by processor).

. The LPM debug handshake is a request - acknowledge system - it has
impact on the real-time behavior.
] Please check the processor’s reference manual about how the LPM

debug handshake works for your specific device.

. If the processor tristates TDO during LPM, TDO must be pulled HIGH on
the target. Recommended: 10k pull-up on TDO. (MPC5510: Use pull-
down instead of pull-up)

. During a handshaked low-power mode, it is not possible to break (no
JTAG communication possible during LPM)
] In some cases it is not possible to attach to a processor in LPM. The

debugger has to assert reset in order to connect. In this case, the debug-
ger will print a message to the message AREA window.

. Please check the processor’s device errata if there are any issues with
LPM. On some devices, debug and trace settings are lost after LPM exit.
On some devices, the LPM debug handshake only works if the NEXUS
port is enabled. Some devices can hang at reset when LPM debug hand-
shake is enabled.

. MPC5748G, MPC5746C (Calypso): PASS_LCSTAT[CNS] must be zero
in order to use the LPM handshake.

SYStem.Option.LockStepDebug Enable lock-step core register access

Format: SYStem.Option.LockStepDebug [ON | OFF]

Enables read and write access to the core registers of the lock-step core. Only available for MPC564xL,
SPC56EL, MPC567xK and SPC56HK. This feature is not available for processors that implement delayed
lock-step (MPC57XX/SPC57X/SPC58X).

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 100

Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

SYStem.Option.NexusMemoryCoherency = Coherent NEXUS mem-access
MPC5676R and MPC5777C only

Format: SYStem.Option.NexusMemoryCoherency [ON | OFF]

If this option is set to ON, the debugger configures the NEXUS run-time memory access to assert the signal
p_d_gbl for each access. This signal will cause the Cache Coherency Unit to perform a cache snoop for the
run-time memory access, which allows the debugger to update SRAM while maintaining cache coherency.

It is essential to set this option to ON only if the data cache is configured to write-through mode
(L1CSRO[DCWM]==1). If the cache is operated in copy-back mode, setting this option to ON can cause
undefined behavior.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 101

SYStem.Option.NoDebugStop Disable JTAG stop on debug events

Format: SYStem.Option.NoDebugStop [ON | OFF]

Default: OFF.

On-chip debug events that cause a debug interrupt can be configured to cause one of two actions. If a JTAG
debugger is used, the CPU is configured to stop for JTAG upon these debug events.

If this option is set to ON, the CPU will be configured to not stop for JTAG, but to enter the debug interrupt,
like it does when no JTAG debugger is used.

Enable this option if the CPU should not stop for JTAG on debug events, in order to allow a target application
to use the debug interrupt. Typical usages for this option are run-mode debugging (e.g. with
t32server/gdbserver) or setting up the system for a branch trace via LOGGER (trace data in target RAM) or

INTEGRATOR.
SYStem.Option.NoJtagRdy Do not evaluate JTAG_RDY signal
Format: SYStem.Option.NoJtagRdy [ON | OFF]

The JTAG_RDY pin is an output of the CPU to signal the debugger when memory accesses, done via the
NEXUS block, are finished. Memory accesses via the NEXUS block are possible with the NEXUS debugger
and trace, but also with the JTAG-only debugger. The existence of the JTAG_RDY signal depends on
processor type and package size.

If this option is OFF (default), the debugger will use the JTAG_RDY signal for memory accesses via the
NEXUS block. If the option is ON, the debugger will ignore JTAG_RDY signal.

If the used processor type does not provide JTAG_RDY in any package size (e.g. MPX551X), the debugger
will automatically set this option. If availability of the signal depends on the package size, or if the signal is
available but not connected, use this option to configure the debugger manually.

In Software since October 2007, the debugger will automatically probe the JTAG_RDY pin. On targets
without JTAG_RDY signal, the JTAG_RDY pin of the debug connected should be connected to GND. If the
JTAG_RDY pin is left unconnected, use SYStem.Option.NoJtagRdy ON to prevent problems with probing
this signal.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 102

SYStem.Option.NOTRAP Use brkpt instruction for software breakpoints

Format: SYStem.Option.NOTRAP [ON | OFF]

This system option configures if the TRAP instruction is used for external (JTAG/NEXUS) debug events. By
default (OFF) TRAP is enabled as debug event in the (E)DBCRO register.

e200z0 If ON, the BRKPT instruction is used instead of TRAP. In this case, the freeze

€200z0H timer option is ineffective.

€200z0HN2P

e200z1

e200z3

2002335

2002336

e200z6

€200z750

all other cores If ON, TRAP instruction is not treated as debug event.
The Debugger always uses the DNH instruction for software breakpoints
regardless of this setting.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 103

SYStem.Option.OVERLAY Enable overlay support

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]
Default: OFF.
ON Activates the overlay extension and extends the address scheme of the

debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACES32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes to
the execution area. For using this option, the storage area must be readable
and writable for the debugger.

Example:

SYStem.Option.OVERLAY ON

Data.List 0x2:0x11c4 ; Data.List <overlay_ id>:<address>
SYStem.Option.PC Set fetch address debug actions
Format: SYStem.Option.PC <address> | AUTO

The debugger has to set a fetch address while accessing core resources. Per default (parameter AUTO), the
debugger places the fetch address into the BAM space. If the BAM is disabled or access protected by the
SOC-MPU (core MMU and MPU have no effect), use this command to define an address which the core is
allowed to fetch.

When setting a fetch address, make sure that the address does not cause an instruction storage exception,
e.g. because of unimplemented memory or ECC errors (e.g. in FLASH or uninitialized SRAM).

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 104

SYStem.Option.RESetBehavior Set behavior when target reset detected

Format:

<mode>:

SYStem.Option.RESetBehavior <mode>

Disabled
AsyncHalt
AsyncStart
ResetHalt
ResetStart
RESYNC

Defines the debugger’s action when a reset is detected. Default setting is ResetHalt. If and how a reset can
be detected is set using SYStem.Option.ResetDetection. This option is usually used for MPC55XX and
some 56XX to restore breakpoints after a reset. Usually not required for MPC57XX/SPC57X and SPC58X.

Disabled No actions to the processor take place when a reset is detected.
Information about the reset will be printed to the message AREA.

AsyncHalt Halt core as soon as possible after reset was detected. The core will halt
shortly after the reset event.

AsyncStart Halt core as soon as possible after reset was detected. The debugger
sets debug and trace configuration registers and afterwards starts the
core(s) again.

ResetHalt When a reset is detected, the debugger keeps reset asserted and then
halts the core at the reset address.

ResetStart When a reset is detected, the debugger keeps reset asserted and then
halts the core at the reset address. The debugger sets debug and trace
configuration registers and afterwards starts the core(s) again.

RESYNC When a reset is detected, the debugger waits until reset is released.
Once the core is out of reset, the debugger sets debug and trace
configuration registers on-the-fly.

SYStem.Option.ResBreak Halt the core while reset asserted

Format: SYStem.Option.ResBreak [ON | OFF]

Default: ON.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 105

If SYStem.Up is called using the default setting SYStem.Option.ResBreak ON, the debugger will assert
reset and send a halt command to the core while reset is asserted. If the processor is censored and a
password is supplied, the debugger will also unlock the processor while reset is asserted. This method
ensures that the debugger can halt the core directly at the reset address.

Some processors of the MPC57XX/SPC57X/SPC58X series have a bug causing the censorship unlock to
fail if it is done while reset is asserted. This bug collides with the debugger’s default SYStem.Up sequence.
Processors known to have this bug are: MPC574xB/C/D/G (Calypso), MPC5777C (Cobra55), MPC5777M
(Matterhorn), SPC58NE (Eiger).

In order to connect to above censored processors, set SYStem.Option.ResBreak to OFF. With this setting,
the debugger will assert and release RESET. After a delay defined using SYStem.Option.WaitReset, the
debugger will unlock the processor and halt the core. The longer the defined WaitReset time, the more
program code is executed until the core can be halted. If the WaitReset time is too short, SYStem.Up will fail.

SYStem.Option.ResetDetection Configure reset detection method

Format: SYStem.Option.ResetDetection <method>
SYStem.Option.RSTOUT [ON | OFF] (deprecated)

<method>: OFF | RESETPIN | RSTINOUT

Default: OFF. This option configures if the debugger’s reset detection is enabled and if enabled, which
signals are used to detect reset.

If reset detection is enabled and a reset is detected, the debugger will perform the action selected with
SYStem.Option.RESetBehavior.

This feature is important for processors of the MPC55XX/MPC560X/SPC560X series, which clear debug
and trace registers upon reset. For newer processors, which don’t clear debug and trace register upon reset,

this option can be set to off, unless any other tool connected to the target asserts JCOMP when it detects a
target reset. See chapter Debugging and Tracing Through Reset for details.

Processors which require the PCRs to be configured by the debugger for tracing, reset detection has to be
enabled in order to enable tracing through reset.

<method> Function

OFF Reset detection is disabled.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 106

RESETPIN Debugger observes only RSTIN for reset detection.

RSTINOUT Debugger observes RSTIN and RSTOUT for reset detection.

Use only:

. if Processor has RSTOUT pin

. if RSTOUT pin is configured to signal core resets

. if RSTOUT pin is connected to debug/trace connector

. with following debug/trace modules:
LA-2708, LA-3736 (JTAG Debugger for MPC5xxx Automotive)
LA-7630 (NEXUS Debug/Trace for Qorivva MPC5xxx/SPC5xxx)
LA-7610 (NEXUS Debugger and Trace for MPC5500)

SYStem.Option.ResetMode Select reset mode for SYStem.Up
Format: SYStem.Option.ResetMode <mode>
<mode>: PIN | DESTructive | FUNCtional

Default: PIN. Selects the method the debugger uses to reset the processor. Only available for
MPC57XX/SPC57X processors with Debug and Calibration Interface (DCI)..

<mode> Effect at SYStem.Up

PIN The reset pin is asserted to reset the processor. This can result in either
a functional or destructive reset, depending on which reset pin of the
processor is connected to the debug / trace connector.

This is the only method available for processors without DCI module.

DESTructive The debugger performs a destructive processor reset using the DCI
module. The reset pin of the debug/trace connector is asserted as well.

FUNCtional The debugger performs a functional reset using the DCI module. The
reset pin of the debug/trace connector is not asserted.

SYStem.Option.SLOWRESET Relaxed reset timing

Format: SYStem.Option.SLOWRESET [ON | OFF] (deprecated)

Default: OFF. Set to ON to use a relaxed reset timing for processors with BIST enabled, or when debugger is
used with processor emulation systems. Deprecated, use SYStem.Option.HoldReset and
SYStem.Option.WaitReset instead.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 107

SYStem.Option.STEPSOFT Use alternative method for ASM single step

Format: SYStem.Option.STEPSOFT [ON | OFF]

This method uses software breakpoints to perform an assembler single step instead of the processor’s built-
in single step feature. Works only for software in RAM. Do not turn ON unless advised by Lauterbach.

SYStem.Option.TDOSELect Select TDO source of lock step core pair

Format: SYStem.Option.TDOSELect [A | B]

If the processor consists of a lock-step core pair, this option defines, which core’s TDO signal is routed to the
TDO pin of the processor. Can be useful for debugging lock-step related application issues. Not available for
cores in delayed lock-step. This setting should only be changed before starting the debug session, or at least
while the core is running.

SYStem.Option.VECTORS Specify interrupt vector table address

Format: SYStem.Option.VECTORS <range> [| <range> ...]

Only required for MPC5553 and MPC5554. Not required for other processors.

On MPC5553/4, indirect branch messages do not indicate if the reason was an indirect branch or an
interrupt. If the address range of the interrupt vectors are specified by this command, the TRACE32 NEXUS
debugger marks all indirect branches to these addresses / the address range as interrupt. This information is
needed for correct trace display and run-time statistic analysis.

Valid parameters for this command are addresses, address ranges, debug symbols and also ranges of
debug symbols. Examples:

single addresses SYStem.Option.VECTORS 0x40002000 0x40002100
address range SYStem.Option.VECTORS 0x40002000--0x40002FFF
(2 methods) SYStem.Option.VECTORS 0x40002000++0x00002FFF

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 108

use IVPR/IVOR &startaddr=R (IVPR)

registers &range=DATA .LONG (SPR:415.)
SYStem.Option.VECTORS &startaddr++&range
; IVPR/IVOR must already be initialized
;&range = MAX (IVORO..IVOR34)

use debug symbols SYStem.Option.VECTORS IVORO_func IVOR1_func ..
use debug symbol SYStem.Option.VECTORS IVORO_fnc-- (IVOR15_fnc+3)
range
SYStem.Option.WaitBoomRom Wait for BootROM completion
[build 144848 - DVD 09/2022]
Format: command.subcommand [ON | OFF]
Default: ON.

If the debug session starts (e.g. SYStem.Up), by default, the debugger waits until the BootROM execution
has completed.

If the option is set to OFF, the debugger will not wait for the BootROM completion. Set this option to off in
order to recover a password protected processor with a bad FLASH image. After the processor has been
recovered, set this option to ON again. While OFF, the BootROM will not boot from the flash image.

SYStem.Option.WaitReset Set reset wait time
Format: SYStem.Option.WaitReset [<time> [<reference>]]
<time>: 1us...10s
<reference>: default
RESET
RSTOUT

Set the time that the debugger will wait after releasing the reset pin, e.g. at SYStem.Up. If called without
parameter, the default reset wait time is used (10us).

If the reference is set to default, the wait time starts when the debugger releases reset. If the reference is set
to RESET or RSTOUT, the wait time starts when the debugger detects that reset is released on the
corresponding pin.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 109

Use this command when SYStem.Up fails, and the message AREA shows the message “Target reset
detected during system.up sequence”. A wait time of several ms should be sufficient. If a wait time > 10ms is
required, the target might require a stronger RESET pull-up resistor.

- hold time > g wait time .

RESET pin \

CPU State | RESET/BIST RESET DEBUG_HALT

For related commands, see also SYStem.Option.HoldReset and SYStem.Option.SLOWRESET. See
chapter Censorship Unlock for typical use cases of this command.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 110

SYStem.Option.WATCHDOG

Debug with software watchdog timer

Format:

<method>:

SYStem.Option.WATCHDOG <method>

[ON | OFF | PASSIVE]

Defined how the debugger is handling the on-chip software watchdog timer. Default: OFF.

OFF

ON

PASSIVE

Default setting. The watchdog timer of the processor will be disabled during
SYStem.Up and SYStem.Mode.StandBy. For MPC551x, the debugger will
also set the SWCTR_RO (read_only) bit in order to prevent that the
watchdog timer is enabled later by the application. For MPC563X and
SPC563, the debugger will only clear WEN.

If the debugger is connected using SYStem.Mode.Go or
SYStem.Mode.Attach, the debugger will try to disable and the watchdog
timer as soon as the processor is stopped. If the watchdog is enabled and
SWCTR_RO bit is set after SYStem.Mode.Go or SYStem.Mode.Attach,
SYStem.Option.WATCHDOG OFF cannot be used.

The state of the SWT (enabled or disabled) is not changed by the
debugger. If possible the debugger will try to configure the SWT so that it
does not time out while the processor is halted. See tables below for
details.

The debugger does not access (read or write) the SWT registers. The
target application must ensure that the SWT does not time out while the
core is halted for debugging.

The table below describes how the debugger is configuring the SWT when SYStem.Option.WATCHDOG
ON is used. The configuration takes place any time the CPU stops for the debugger according to the tables

below:

MPC56XX, SPC56X, MPC57XX, SPC57X:

CR[WEN] CR[FRZ] CR[HLK] Debugger Action
CRI[SLK]
off don’t care don’t care none
on on don’t care none
on off SLK on set FRZ
HLK off
on off HLK on service watchdog (see note)

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 111

MPC551X:

SWE SWRWH RO Debugger Action

off don’t care don’t care none

on off don’t care none

on on off disable SWRWH

on on on service watchdog (see note)
NOTE: All CPUs: servicing watchdog

If the debugger is servicing the watchdog, conditions might occur, where the
watchdog times out before the debugger is able to service it. Unintended resets
or interrupts can occur.

Further, SWT window mode is not supported by the debugger.

MPC5516, revision 0

If the system option is ON, the debugger will configure the watchdog to the
longest timeout period on SYStem.Up and SYStem.Mode.StandBy. During
debugging, the watchdog timer will be serviced if SWE is on.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 112

Command Reference: MMU Commands

MMU.DUMP Page wise display of MMU translation table
Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>]
MMU. <table>.dump (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

Displays the contents of the CPU specific MMU translation table.

. If called without parameters, the complete table will be displayed.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable

Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID: displays the translation
table of the specified process

. else, this command displays the table the CPU currently uses for
MMU translation.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 113

KernelPageTable Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable Displays the MMU translation table entries of the given process. Specify
<task_magic> | one of the TaskPageTable arguments to choose the process you want.
<task_id> | In MMU-based operating systems, each process uses its own MMU
<task_name> | translation table. This command reads the table of the specified process,
<space_id>:0x0 and displays its table entries.

. For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 114

CPU specific tables in MMU.DUMP <table>

TLB1 Displays the contents of TLB1.
TLB2 Displays the contents of TLB2 (MPU).

MMU.List Compact display of MMU translation table
Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]

MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

Lists the address translation of the CPU-specific MMU table.
o If called without address or range parameters, the complete table will be displayed.

. If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

. If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range> Limit the address range displayed to either an address range
<address> or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Lists the entries of an MMU translation table.

. if <range> or <address> have a space ID: list the translation table
of the specified process

. else, this command lists the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 115

KernelPageTable Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable Lists the MMU translation of the given process. Specify one of the
<task_magic> | TaskPageTable arguments to choose the process you want.
<task_id> | In MMU-based operating systems, each process uses its own MMU
<task_name> | translation table. This command reads the table of the specified process,
<space_id>:0x0 and lists its address translation.

. For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 116

MMU.SCAN Load MMU table from CPU

Format: MMU.SCAN <table> [<range> <address>]
MMU. <table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]
<cpu_specific_tables>

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

J If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
J if <range> or <address> have a space ID: loads the translation table
of the specified process
. else, this command loads the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 117

KernelPageTable

Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the table
of the kernel and copies its address translation into the debugger-internal
static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static translation
table.

o For information about the first three parameters, see “What to know
about the Task Parameters” (general_ref_t.pdf).
J See also the appropriate OS Awareness Manual.

ALL [Clear]

Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the debugger-
internal static translation table.

See also the appropriate OS Awareness Manual.

Clear: This option allows to clear the static translations list before reading
it from all page translation tables.

CPU specific tables in MMU.SCAN <table>

TLB1

Loads the TLB1 from the CPU to the debugger-internal translation table.

TLB2

Loads the TLB2 (MPU) from the CPU to the debugger-internal translation
table. Usually not necessary.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the TLBs. This is required for the real-time memory
access (See also SYStem.MemAccess and SYStem.Option.DUALPORT). Use the command
TRANSIation.ON to enable the debugger-internal MMU table.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 118

MMU.Set

Set an MMU TLB entry

Formats:

MMU.Set TLB1 <index> <mas1> <mas2> <mas3>
MMU.Set TLB2 <index> <mas0> <mas1> <mas2>
MMU.<table>.SET (deprecated)

Sets the specified MMU TLB table entry in the CPU. The parameter <tlb> is not available for CPUs with only

one TLB table.

<index>

<mas0>
<masi>
<mas2>
<mas3>

TLB entry index. From 0 to (number of TLB entries)-1 of the specified
TLB table

Values corresponding to the values that would be written to the MAS
registers in order to set a TLB (or MPU) entry. See the processor’s
reference manual for details on MAS registers.

For processors with a core MPU (MPC57XX/SPC57X series), use TLB2
to generate an MPU entry).

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 119

Command Reference: BenchiMarkCounter

The BenchMarkCounter features are based on the core’s performance monitor, accessed through the
performance monitor registers (PMR).

TRACE32 displays the benchmark counter results in the BMC.state window:

& BiBMCistate =0 E=R
control profile snoop SElLect
RESet V| Freeze PROfle | | | [snooper| [Eust || |[cuTo ~| [=]TReE |
€ Init Autolnit Attach SnoopSet [l PROfieChart] | | [Il sYmbol | [=[sYmbol |
counter name |event size value ratio ratio ovfl
PROC-CYC (Processor cycles (C0)) 32BIT [33033706 X/CNTL [136.297%

INST-CMP (Instructions completed (CO0-1))
DC-LFILL (Dcache 1linefills (C2-3))
IC-LFILL (Icache 1linefills (C2-3))

32BIT
32BIT
32BIT

24236412
1323313
48531

OFF
OFF
OFF

CNTO
CNTL
CNT2
CNT3

NOTE:] These cores do not implement PMRs:
€200z0, e200z1, e200z3
€200z4d (MPC5643L, SPC56EL, MPC5645S, MPC564xC, SPC56xC)
€200z448 (MPC5644A, SPC564A)
€200z6 and e200z750.

. These cores only provide PMR access while the core is halted:
2002759, e2002760.

. For a list and description of events that can be assigned to
BMC.<counter>.EVENT <event>, please see the Freescale €200z core
reference manuals.

. In addition to the core defined events, TRACES32 provides events
ALPHA...ECHO to count watchpoints set with Break.Set.

For information about architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).

For information about architecture-specific BMC commands, see command descriptions below.

BMC.<counter>.ATOB Enable event triggered counter start and stop

Format: BMC.<counter>.ATOB [ON | OFF]

Enables event triggered counter start/stop. The events are defines using ALPHA and BETA breakpoints set
with Break.Set. Every time the Alpha breakpoint condition triggers, the counter is started. The counter stops
when the Beta breakpoint condition is triggered.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 120

Example 1: Measure average processor cycles it takes from function sieve entry to exit. This measurement
includes all interrupts, sub-function calls etc.

;Measure average cycles to execute unction sieve
BMC.RESet
Break.Delete

;set up counter start / stop events
Break.Set sYmbol.BEGIN(sieve) /Program /Onchip /Alpha
Break.Set sYmbol.EXIT(sieve) /Program /Onchip /Beta

;set up CNTO to count processor cycles (using start/stop event)
BMC.CNTO.EVENT PROC-CYC
BMC.CNTO.ATOB ON

;set up CNT2 to count function entries
BMC.CNT2.EVENT ALPHA

;run measurement (for 10 seconds)
BMC.Init
Go
Wait 10s
Break

PRINT FORMAT.DECIMAL(1l.,BMC.COUNTER(O)/BMC.COUNTER(2))+" cycles"

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 121

Example 2: Measure average processor cycles the core is inside function sieve. This method excludes
interrupts and sub-function calls from the measurement:

;Measure net processor cycles to execute function sieve
BMC.RESet
Break.Delete

;set up counter start / stop events
Var .Break.Set sieve /Program /Onchip /Alpha
Var .Break.Set sieve /Program /Onchip /Beta /EXCLUDE

;set up additional BMC event to count function entries
Break.Set sYmbol.BEGIN(sieve) /Program /Onchip /Charly

;set up CNTO0 to count processor cycles (using start/stop event)
BMC.CNTO.EVENT PROC-CYC
BMC.CNTO.ATOB ON

;set up CNT2 to count function entries
BMC.CNT2.EVENT CHARLY

;run measurement (for 10 seconds)
BMC.Init
Go
Wait 10s
Break

PRINT FORMAT.DECIMAL(1l.,BMC.COUNTER(O)/BMC.COUNTER(2))+" cycles"

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 122

Example 3: Measure instructions per processor cycle for a specific task on an RTOS:

;Measure instructions per clock for task my_task
BMC.RESet
Break.Delete

;set up counter start / stop events
&magic=TASK.MAGIC ("my_task") ;get magic value for the task of interest
Break.Set task.config(magic) /ReadWrite /Onchip /Data &magic /Alpha
Break.Set task.config(magic) /ReadWrite /Onchip /Data !&magic /Beta

;set up CNTO to count processor cycles (using start/stop event)
BMC.CNTO.EVENT PROC-CYC
BMC.CNTO.ATOB ON

;set up CNT1 to count instructions executed (using start/stop event)
BMC.CNT1.EVENT INST-CMP
BMC.CNT1.ATOB ON

;set up ratio for BMC.state window display
BMC.CNT1.RATIO X/CNTO
BMC.state

;run measurement (for 10 second)
BMC.Init
Go
Wait 10s
Break

PRINT FORMAT.FLOAT(5.,2.,1.0*BMC.COUNTER (1) /BMC.COUNTER(OQ))+" IPC"

BMC.<counter>.FREEZE Freeze counter in certain core states
Format: BMC.<counter>.FREEZE <state> [ON | OFF]
<states: USER | SUPERVISOR | MASKSET | MASKCLEAR

Halts the selected performance counter if one or more of the enabled states (i.e. states set to ON) match the
current state of the core. If contradicting states are enabled (e.g. SUPERVISOR and USER), the counter will
be permanently frozen. The table below explains the meaning of the individual states.

<state> Dependency in core
USER Counter frozen if MSR[PR]==1
SUPERVISOR Counter frozen if MSR[PR]==

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 123

MASKSET Counter frozen if MSR[PMM]==

MASKCLEAR Counter frozen if MSR[PMM]==0
BMC.FREEZE Freeze counters while core halted
Format: BMC.FREEZE [ON | OFF]

On MPC5XXX, the core performance counters automatically stop when a core enters debug mode.
Therefore this command has no effect.

BMC.Trace Trace performance monitor events

Format: BMC.Trace [ON | OFF] <periodicity>

<periodicity>: 270127 12741278 12214127201 2”31

This feature configured the processor to generate watchpoint hit messages upon performance monitor
events. The frequency of the watchpoint messages can be controlled with the <periodicity> parameter.
If <periodicity> is e.g. set to 278, the processor will generate a watchpoint hit message every 256
events.

This feature can help to improve time resolution on processors that do not support on-chip time-stam
generation.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 124

Command Reference: TrOnchip

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

Format: TrOnchip.CONVert [ON | OFF]

There are 2 data address breakpoints. These breakpoints can be used to mark two single data addresses or
one data address range.

ON (default) After a data address breakpoint is set to an address range all on-chip
breakpoints are spent. As soon as a new data address breakpoint is set
the data address breakpoint to the address range is converted to a single
data address breakpoint. Please be aware, that the breakpoint is still
listed as a range breakpoint in the Break.List window. Use the Data.View
command to verify the set data address breakpoints.

OFF An error message is displayed when the user wants to set a new data
address breakpoint after all on-chip breakpoints are spent by a data address
breakpoint to an address range.

TrOnchip.CONVert ON
Break.Set 0x6020++0x1f
Break.Set 0x7400++0x3f
Data.View 0x6020
Data.View 0x7400

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 125

TrOnchip.EDBRACO Assign debug events to target software

Format: TrOnchip.EDBRACO <edbrac0O> <dirconfig>
TrOnchip.DBERCO <edbracO>

Use this command to assign which debug resources are reserved for debugger use and which resources
should be used by the by the target application. On MPC56XX/SPC56XX, the assignment is done using the
DBERCO register, but on MPC57XX/SPC57XX the functionality was moved to EDBRACO.

<edbrac0> Value written to EDBRACO or DBERCO register. Default: 0x00000008
The selected events are excluded from debugger use (via Break.Set) and
assigned for use by the target application.

<dirconfig> Default: 0x00000000
The selected events are excluded from debugger use (via Break.Set) and
are available for direct register configuration through debugger writes,
e.g. Data.Set.

See core reference manual for the EDBRACO/DBERCO bit definitions.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 126

TrOnchip.EVTEN

Enable EVTIl and EVTO pins

Format:

TrOnchip.EVTEN [ON | OFF]

When enabled, the processor is configured to enable the EVTI/EVTO pins. If disabled, that pins can be used

for GPIO. (Default: ON)

NOTE:

This option sets the EVT_EN bit in the NPC_PCR register. It is not avail-
able on all processor. Please check the processor reference manual for
availability.

On MPC551X, set this option to OFF when the EVTx pins are used for
the EBI (External Bus Interface).

If the EVTx pins are not used for EVTI/EVTO, they should be discon-
nected from the debug/trace connector to avoid additional load, signal
reflections etc.

LA-7610 and LA-7612 only: If the EVTx pins are not used for EVTI/EVTO,
they must not be connected to the debug/trace connector.

LA-7630: EVTI pin is tristated when TrOnchip.EVTEN is OFF.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 127

TrOnchip.RESet Reset on-chip trigger settings

Format: TrOnchip.RESet

Resets the on-chip trigger system to the default state.

TrOnchip.Set Enable special on-chip breakpoints
Format: TrOnchip.Set <event>[ON | OFF]
<event>: BRT | IRPT | RET | CIRPT | CRET | BKPT

Enables the specified on-chip trigger facility to stop the core on below events. Default is OFF unless
specified otherwise.

<event> Break events, see below.

BRT Branch taken.

IRPT Interrupt entry.

RET Return from interrupt.

CIRPT Critical interrupt entry.

CRET Critical interrupt return.

BKPT Execution of the BKPT pseudo-opcode.

(Default: ON) Please note that this opcode represents the software breakpoint for

€200z750, e200z6, e200z3, e200z1 and e200z0HN2 cores when
operated in VLE mode.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 128

TrOnchip.VarCONVert Set single address breakpoint for scalar

Format: TrOnchip.VarCONVert [ON | OFF]
Default: ON.
OFF If a breakpoint is set to a scalar variable (int, float, double) breakpoints are

set to all memory addresses that store the variable value.

+ The program execution stops also on any unintentional accesses to the
variable’s address space.
- Requires two onchip breakpoints since a range breakpoint is used.

ON If a breakpoint is set to a scalar variable (int, float, double) the breakpoint is
set to the start address of the variable.

+ Requires only one single address breakpoint.

- Program will not stop on unintentional accesses to the variable’s
address space.

TrOnchip.VarCONVert ON
Var.Break.Set vint /Write
Data.View vint

Q B::Data.View vint

breakpoint address | data [value
W SD:4000406C] 00 T
SD:4000406D | 00 N
SD:4000406E | 00 N
SD:4000406F | 00 e

4

TrOnchip.VarCONVert OFF
Var.Break.Set vint /Write
Data.View vint

Q B::Data.View vint

breakpoint address | data [value
W SD:4000406C || 00

W 5D:4000406D) 00
W 5D:4000406E| 00
W 5D:4000406F || 00

5D:40004070 | 00

4

T T T

=
G
o
G
o
G
o
G
o
G

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 129

TrOnchip.state

View on-chip trigger setup window

Format: TrOnchip.state

Displays the TrOnchip.state window for on-chip trigger setup.

Different commands are available in the TrOnchip.state window, depending on the Lauterbach hardware

used:

Debug cable LA-2708, LA-3736 (AUTO26) pinout)

& BuTrOnchip.state EI@

tronchip Alpha

[Reset ||| [oFe -
CONVert Beta
VarConvert
[ClevTt Charly
[CIevto
EVTEN Defta

Set Echo
[CIBRT OFF -
CIwreT
[CIReT

Debug cable LA-7753 (JTAG/OnCE pinout)

& BuTrOnchip.state EI@

tronchip Alpha

[Reset ||| [oFe -
CONVert Beta
VarConvert
EVTEN Charly

Set Delta
[lBRT
CIwreT Echo
[CIReT OFF -

NEXUS adapter LA-7610/12/30

& BuTrOnchip.state

tronchip Alpha

[Reset ||| [oFe -
CONVert Beta
VarConvert
[CevT Charly
[CIevto
EVTEN Defta
TOOLIOZ OFF v
[oFe]| |- Echo

OFF -

Set
[CIBRT
[CIwreT
[CIReT

=0 ESH =
EXTernal
@ OFF
0 IND
(@151

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 130

Command Reference: Onchip

Onchip.TBARange Set on-chip trace buffer address range
Format: Onchip.TBARange <access>:<range>
<access>: A
EEC

Sets the address space and size of the on-chip NEXUS trace buffer. This setting depends on the target
processor in use. See MPC57XX/SPC57X on-chip trace for details about possible address ranges.

A Default address space, e.g. production device.
EEC Address space of emulation device trace buffer.
<range> Address range of trace buffer, e.g. 0xD000000--0xDOO3FFF

Example for MPC5777M: automatic trace setup depending on connected debug tool and processor:

SYStem.DEECT CPU
IF CHIP.EmulationDevice ()

(
IF POWERTRACE () && ! POWERNEXUS ()

(
;use AURORA Nexus trace
&all NEXUS.PortSize 4Lane
&all NEXUS.PortMode 1250Mbps
&all NEXUS.RefClock ON
&all Trace.Method Analyzer

)

ELSE

(
;use on-chip trace buffer of buddy die

Onchip.TBARange EEC:0x0C000000--0x0C1lFFFFF
&all Trace.Method Onchip

)
ELSE

(

;use on-chip trace buffer of production device
Onchip.TBARange A:0x0D000000--0x0DO003FFF
&all Trace.Method Onchip

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 131

Command Reference: NEXUS

NEXUS.BTM Enable program trace messaging

Format: NEXUS.BTM [ON | OFF]
SYStem.Option.BTM [ON | OFF] (deprecated)

Control for NEXUS program trace messaging.

ON (default) Program trace messaging enabled.

OFF Program trace messaging disabled.
NEXUS.CLIENT<x>.BUSSEL Set NXMC target RAM

Format: NEXUS.CLIENT1.BUSSEL [PRAMO | PRAM1 | PRAM2]

MPC574xG only. Select the target RAM for which the NXMC should generate messages.

NEXUS.CLIENT<x>.MODE Set data trace mode of nexus client

Format: NEXUS.CLIENT1.MODE [Read | Write | ReadWrite | OFF]
NEXUS.CLIENT2.MODE [Read | Write | ReadWrite | OFF]
NEXUS.CLIENT3.MODE [Read | Write | ReadWrite | OFF]

Sets the data trace mode of the selected trace client. Select the trace client using
NEXUS.CLIENT<x>.SELECT before setting the trace mode.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 132

NEXUS.CLIENT<x>.SELECT Select a nexus client for data tracing

Format: NEXUS.CLIENT1.SELECT <client>
NEXUS.CLIENT2.SELECT <client>
NEXUS.CLIENT3.SELECT <client>

<client>: (dedicated trace clients, e.g. MPC5554, MPC5674F)
DMA_O0 | DMA_1 | FLEXRAY

(source selector for SRAM port sniffers, e.g. MPC564xL, MPC567xK)
ALL | CORE | NEXCORE | DMA_0 | DMA_1

Select the trace client for data tracing. For processors with dedicated trace clients (e.g. MPC5554), any trace
client can be assigned to any CLIENT field.

For processors with SRAM port sniffers (e.g. MPC564xL), the port sniffers are fix assigned to CLIENT fields
(NXSSO0 -> CLIENT1, NXSS1 -> CLIENT2) and <client> configures the source selector of the SRAM port

sniffer.
NEXUS.CLIENT3.SPTACQMASTER Trace individual SPT masters
Format: NEXUS.CLIENT3.SPTACQMASTER OFF | <master_id>

MPC577xK only. If set to OFF (default), the processor sends messages if all SPT acquisition accesses. If set
to a specific master ID, only the ID of this master is traced.

NEXUS.CoreENable Enable core tracing for dedicated cores in SMP

Format: NEXUS.CoreENable {<logical_core>}

Core tracing is enabled for all core of an SMP system by default. The command NEXUS.CoreENable allows
to enable core tracing for only the logical cores specified.

The Core pulldown of the TRACES32 state line shows you the list of logical cores that form the SMP system.

NEXUS.CoreENable 1. ; Enable core tracing only for
; the logical core 1. of the SMP
; system

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 133

NEXUS.DDR Enable NEXUS double data rate mode

Format: NEXUS.DDR [ON | OFF]
SYStem.Option.DDR [ON | OFF] (deprecated)

Default: OFF. Set trace port and NEXUS adapter to operate in DDR (double data rate) mode.

Only supported by NEXUS AutoFocus adapter (LA-7630).

Check processor reference manual if the processor supports DDR.
Usually DDR mode is not allowed with NEXUS.PortMode 1/1 and 1/3.
On many processors (esp. MPC55XX/56XX), MCKO does not change
when data is valid, but together with data. In this case it is required to
move the sample point using Analyzer.SAMPLE.

] If DDR mode is used with high trace port frequencies, sometimes sample
point fine tuning is required (Analyzer.SAMPLE)

NOTE:

NEXUS.DMADTM Enable DMA data trace messaging

Format: NEXUS.DMADTM [Read | Write | ReadWrite | DTM | OFF] (deprecated)
SYStem.Option.DMADTM [ON | OFF] (deprecated)

Deprecated. Use NEXUS.CLIENT<x> commands.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 134

NEXUS.DTM Enable data trace messaging

Format: NEXUS.DTM <mode>
SYStem.Option.DTM [Read | Write | ReadWrite | OFF] (deprecated)

<mode>: OFF | Read | Write | ReadWrite | IFETCH
ReadLimited | WriteLimited | ReadWriteLimited

Controls the Data Trace Messaging method.

OFF Data trace messaging disabled (default)

Read Data trace messages for read accesses (load instructions)

Write Data trace messages for write accesses (store instructions)
ReadWrite Data trace messages for read and write accesses (load and store

instructions)

ReadLimited Same as above, but excluding data accesses using GPR R1 in effective

WriteLimited address computations.

ReadWriteLimited NOTE: Only supported by MPC57XX and newer processors.

IFETCH Data trace messages contain information about instruction fetches
NEXUS.DTMARK Data trace mark

Format: NEXUS.DTMARK [ON | OFF]

Controls the influence of MSR[PMM] in data trace messaging. Only available on processors which
implement IEEE-ISTO 5001-2008 or later.

OFF Ignore MSR[PMM)] for masking data trace messages (default)

ON Mask (disable) data trace messages when MSR[PMM] = 0, unmask
(enable) data trace messages when MSR[PMM] = 1

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 135

NEXUS.DTMWhileHalted Data trace messaging while core halted

Format: NEXUS.DTMWhileHalted [ON | OFF]

In the default setting (OFF), the debugger disables data trace messaging while the core is halted in debug
mode. Therefore the core will not generate data trace messages for debugger issues read and write
accesses while core halted. Set to ON to record the debugger’s write accesses while the core is halted.
Please note that memory accesses through the NEXUS block (SYStem.MemAccess NEXUS) do not
generate data trace messages.

NEXUS.DQM Enable data acquisition messaging

Format: NEXUS.DQM [ON | OFF]
SYStem.Option.DQM [ON | OFF] (deprecated)

Default: OFF.

Set to ON to enable data acquisition messaging. Only available on processors which implement IEEE-
ISTO 5001-2008 or later.

NEXUS.FRAYDTM Enable FlexRay data trace messaging

Format: NEXUS.FRAYDTM [Read | Write | ReadWrite | DTM | OFF] (deprecated)
SYStem.Option.DMADTM [ON | OFF] (deprecated)

Deprecated. Use NEXUS.CLIENT<x> commands.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 136

NEXUS.HTM Enable branch history messaging

Format: NEXUS.HTM [ON | OFF]
SYStem.Option.HTM [ON | OFF] (deprecated)

Control program trace messaging mode.

OFF (default) The core generates a program trace message for every taken direct or
indirect branch (i.e. branch trace messaging).

ON The core generates only program trace messages for taken indirect
branches. For all direct branches, only the information taken/not take in
generated (branch history trace messaging).

HTM can reduce the amount of program trace messages to about 10% of the classical branch trace
messaging. Use this option to increase trace recording time or to prevent overflows of the on-chip nexus
message fifo.

NOTE: The debugger can reconstruct the full program flow with BTM as well as when

using HTM. The only drawback of HTM is that runtime statistic results will be
less accurate because of the lower amount of messages (fewer messages and
therefore fewer timestamps per instruction). To some degree, the longer
recording time will compensate the loss of accuracy.
When supported by the processor, enable program trace correlation messages
at branch-and-link occurrence (NEXUS.PTCM.BL_HTM ON) together with HTM.
Doing so will achieve the same accuracy as BTM for run-time measurements on
function level.

NEXUS.OFF Switch the NEXUS trace port off

Format: NEXUS.OFF

If the debugger is used stand-alone, the trace port is disabled by the debugger.

If the debugger is used together with a calibration tool (SYStem.Option.ETK / SYStem.Option.GSlI), any
writes to trace registers (by the debugger) are suppressed. Use this setting if the calibration tool makes use
of the data trace (e.g. XETK-V2 in data trace configuration). The debugger will continue to record the trace
as a slave (i.e. trace configuration is exclusively done by calibration tool).

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 137

NEXUS.ON Switch the NEXUS trace port on

Format: NEXUS.ON

The NEXUS trace port is switched on. All trace registers are configured by debugger. Do not use if
calibration tool makes use of data trace (e.g. XETK-V2 in data trace configuration).

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 138

NEXUS.OTM Enable ownership trace messaging

Format: NEXUS.OTM [PIDO | NPIDR | OFF]
SYStem.Option.OTM [ON | OFF] (deprecated)

Controls ownership trace messaging.

OFF Ownership trace messaging disabled (default)

PIDO Enable ownership trace messaging. An OTM is generated if the
application writes to the PIDO register.

NPIDR Enable ownership trace messaging. An OTM is generated if the
application writes to the NPIDR register.

ON Deprecated, use PIDO.

NOTE:] Enable ownership trace messaging in order to get trace information
about task switches. Some operating systems use a set of OTMs to
transfer task switch information to the trace tool. In this case periodic
ownership trace must be disabled using NEXUS.POTD ON.

. If program trace messaging is enabled (NEXUS.BTM ON) and
NEXUS.PTCM.PID_MSR is ON, the core sends program trace correlation
massages instead of ownership trace messages. The ownership data
source (PIDO/NIPDR) is nevertheless determined by the NEXUS.OTM
setting.

NEXUS.PCRCONFIG Configure NEXUS PCR for tracing

Format: NEXUS.PCRCONFIG [ON | OFF]

When enabled, the debugger configures the pads of MCKO, MDO and MSEO to NEXUS function. This
command is only implemented for MPC560xS / SPC560S (Spectrum) and SPC56AP60.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 139

NEXUS.PINCR

Define DCI PINCR register value

Format:

NEXUS.PINCR
NEXUS.PINCR <value>

When this command is

called with a value, the specified value is written to the DCI_PINCR register every

time the debugger connects to the processor (SYStem.Up, Attach, Go, StandBy). The meaning of the
individual bits, and the existence of this register in general, depends on the target processor.

Example for SPC570S:
SYStem.CPU SC570S50 ; select CPU
NEXUS.PortSize MDO4 ; set trace port size to 4 MDOs
NEXUS.PINCR 0x01492492 ; map all trace pins to port "B"
SYStem.Up ; reset processor and halt core
NEXUS.PortMode Set NEXUS trace port frequency
Format: NEXUS.PortMode <mode>

<mode>:

SYStem.Option.MCKO <mode> (deprecated)

Parallel NEXUS:
1111/211/311/411/8

Aurora NEXUS:
625MBPS | 750MBPS | 850MBPS | 1000MBPS | 1250MBPS |
1500MBPS | 17700MBPS | 2000MBPS | 2500MBPS | 3000MBPS | 3125MBPS

Sets the NEXUS trace port frequency. For parallel NEXUS, the setting is the system clock divider. For Aurora
NEXUS, the setting is a fixed bit clock which is independent of the system frequency.

NOTES:

Parallel NEXUS: The settings 1/1 and 1/3 is not supported by all processors.
Check the processor reference manual if this is a valid mode for your processor.

Parallel NEXUS: Please check in the processor’s data sheet if the NEXUS trace
port of your processor is functional at the selected system frequency and
MCKO divider. Current silicon versions allow trace port frequencies up to
60~80 MHz.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 140

Aurora NEXUS: Set the bit clock according to the processor’s data sheet.

Aurora NEXUS: Automotive processors usually need an external reference
clock for Aurora operation. The Aurora preprocessor can provide that clock
signal. It is enabled using NEXUS.RefClock ON.

NEXUS.PortSize Set trace port width

Format: NEXUS.PortSize <port_size>
SYStem.Option.NEXUS <port_size> (deprecated)

<port_size>: Parallel NEXUS:
MDO16 | MDO12 | MDO8 | MDO 4 | MDO2

Aurora NEXUS:
2Lane | 4Lane

Sets the nexus port width to the number of used MDO pins or Aurora lanes. The setting can only be
changed if no debug session is active (SYStem.Down).

NEXUS.POTD Periodic ownership trace disable

Format: NEXUS.POTD [ON | OFF]

Default: OFF. When enabled, the core is configured to suppress periodic ownership trace messages. A
periodic ownership trace message is an OTM, which is generated without a write access to the PID register.
Enable this option, when the OTM is used to generate trace information about task switches. OTMs are
usually used for task switch tracing on processors with NEXUS 2+, because data trace is unavailable.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 141

NEXUS.PTCM Enable program trace correlation messages

Format: NEXUS.PTCM.<event> [ON | OFF]

<event>: PID_MSR | BL_HTM | TLBNEW | TLBINV

Enables a program trace correlation message (PTCM) for the specified event. This program trace correlation
messages are not needed to reconstruct the program flow, but give additional information which can
increase precision of statistic measurements.

PID_MSR Core generates PTCM when PID or MSR][IS] changes (EVCODE 0x5).

BL_HTM Core generates PTCM on Branch and Link occurrence (EVCODE 0xA).
Enable this PTCM to improve function profiling in branch history tracing
mode.

TLBNEW Core generates PTCM on new address translation - (EVCODE 0xB).

TLBINV Core generates PTCM on address translation invalidated - (EVCODE
0xC).

NEXUS.PTMARK Program trace mark
Format: NEXUS.PTMARK [ON | OFF]

Controls the influence of MSR[PMM] in program trace messaging. Only available on processors which
implement IEEE-ISTO 5001-2008 or later.

OFF Ignore MSR[PMM] for masking program trace messages (default)

ON Mask (disable) program trace messages when MSR[PMM] = 0, unmask
(enable) program trace messages when MSR[PMM] = 1

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 142

NEXUS.RefClock Enable Aurora reference clock

Format: NEXUS.RefClock [ON | OFF]

Aurora NEXUS only. When set to ON, the preprocessor provides the reference clock for the Aurora NEXUS
block on the processor. Only enable when the processor requires this reference clock and when no module
provides the Aurora clock source for the processor.

NEXUS.Register Display NEXUS trace control registers

Format: NEXUS.Register

This command opens a window which shows the NEXUS configuration and status registers of NPC, core
and other trace clients.

NEXUS.RESet Reset NEXUS trace port settings

Format: NEXUS.RESet

Resets NEXUS trace port settings to default settings.

NEXUS.RFMHISTBUGFIX Double RFM workaround

Format: NEXUS.RFMHISTBUGFIX [<time>]

Enable workaround for doubly issued register full messages. The program flow decoder will ignore the
duplicate message when the processor sends the message twice within the specified time.

Affected processors are: MPC564xB/C, SPC564B/SPC56EC, MPC5674F, MPC567xK, SPC57HK,
MPC564xL, SPC56EL, MPC564xA, SPC564A.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 143

NEXUS.SmartTrace Enable smart trace analysis

Format: NEXUS.SmartTrace [ON | OFF] (deprecated)
NEXUS.Spen<messagetype> Enable message suppression
Format: NEXUS.SpenDTM [ON | OFF]

NEXUS.SpenDQM [ON | OFF]
NEXUS.SpenOTM [ON | OFF]
NEXUS.SpenPTM [ON | OFF]
NEXUS.SpenWTM [ON | OFF]

Configures the core to suppress one or more message types (WTM, PTM, DTM and OTM) when the on-
chip NEXUS message FIFO reaches a certain fill level. Enabling one of these options will in most cases
cause problems in trace analysis, because the trace message stream contains no information about if and
when messages have been suppressed. The fill level at which message suppression occurs can be
configured via the command NEXUS.SupprTHReshold.

NOTE: Only available for processors which implement the IEEE-ISTO 5001-2008 or later.
NEXUS.STALL Stall the program execution when FIFO full
Format: Processors which implement IEEE-ISTO 5001-2003 standard:

NEXUS.STALL [ON | OFF]

Processors which implement IEEE-ISTO 5001-2008 or later:
NEXUS.STALL [1/4 | 1/2 | 3/4 | OFF]

SYStem.Option.STALL [ON | OFF] (deprecated)

Stall the program execution whenever the on-chip NEXUS-FIFO threatens to overflow. If this option is
enabled, the NEXUS port controller will stop the core’s execution pipeline until all messaged in the on-chip
NEXUS FIFO are sent. Enabling this command will affect (delay) the instruction execution timing of the CPU.
This system option, which is a representation of a feature of the processor, will remarkably reduce the
amount FIFO OVERFLOW errors, but can not avoid them completely.

For processors which implement the IEEE-ISTO 5001-2008 or later, STALL can be configured to occur at
several fill levels, while processors which implement an older standard have a fixed level.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 144

NEXUS.state Display NEXUS port configuration window

Format: NEXUS.state

Displays the NEXUS trace configuration window.

NEXUS.SupprTHReshold Set fill level for message suppression

Format: NEXUS.SupprTHReshold [1/4 | 1/2 | 3/4]

Sets the NEXUS message FIFO fill level, at which messages will be suppressed by the core. The message
types which will be suppressed are configured via the command NEXUS.Suppr<message>

NOTE: Only available for processors which implement the IEEE-ISTO 5001-2008 or later.
NEXUS.TimeStamps Enable on-chip timestamp generation
Format: NEXUS.TimeStamps [ON | OFF]

MPC57XX/SPC57X only. When enabled, the processor is configured to add timestamps to the NEXUS
messages. If the chip-external trace is used (tracing to PowerTrace unit), on-chip timestamps are usually not
needed, because the PowerTrace unit will add it's own timestamp. When using the on-chip trace (trace-to-
memory), enable NEXUS.TimeStamps for run-time measurements.

NOTE: . Check the processor reference manual if the used processor supports
NEXUS timestamps.
. Not all trace clients of a processor may support NEXUS timestamps.

(e.g. MPC5746M and SPC57EMB80 do not support timestamps for
NEXUS messages of the cores)
. Timestamps will consume ~20% of the trace bandwidth/trace memory

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 145

NEXUS.WTM Enable watchpoint messaging

Format: NEXUS.WTM [ON | OFF]
SYStem.Option.WTM [ON | OFF] (deprecated)

ON NEXUS outputs watchpoint messages.
OFF No watchpoint messages are output by NEXUS.
NOTE: When a watchpoint is set with a Break.Set command, the NEXUS.WTM setting will

be internally overridden to ON.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 146

Nexus specific TrOnchip Commands

TrOnchip.Alpha

Set special breakpoint function

Format:

<function>:

<X>.

TrOnchip.Alpha <function>

OFF
ProgramTraceON
ProgramTraceOFF
DataTraceON
DataTraceOFF

TraceEnableClient<x>
TraceDataClient<x>
TraceONClient<x>
TraceOFFClient<x>
TraceTriggerClient<x>
BusTriggerClient<x>
BusCountClient<x>
WATCHClient<x>

deprecated:

TraceEnableDMA | TraceDataDMA | TraceONDMA | TraceOFFDMA
TraceTriggerDMA | BusTriggerDMA | BusCountDMA | WATCHDMA
TraceEnableFRAY | TraceDataFRAY | TraceONFRAY | TraceOFFFRAY
TraceTriggerFRAY | BusTriggerFRAY | BusCountFRAY | WATCHFRAY

112131415

Configures the functionality of the Alpha breakpoint. This breakpoint can be used to configure the on-chip
NEXUS trace for special core features and for the trace clients configured via NEXUS.CLIENT<x>SELECT.

For a description of the functionality and examples, see Trace Filtering and Triggering with Debug
Events and Tracing Peripheral Modules / Bus Masters.

TrOnchip.Beta

Set special breakpoint function

Format:

TrOnchip.Beta <function>

See TrOnchip.Alpha.

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace |

147

TrOnchip.Charly Set special breakpoint function

Format: TrOnchip.Charly <function>

See TrOnchip.Alpha.

TrOnchip.Delta Set special breakpoint function

Format: TrOnchip.Delta <function>

See TrOnchip.Alpha.

TrOnchip.DISable Disable NEXUS trace register control

Format: TrOnchip.DISable

Disables NEXUS register control by the debugger. By executing this command, the debugger will not write or
modify any registers of the NEXUS block. This option can be used to manually set up the NEXUS trace
registers. The NEXUS memory access is not affected by this command. To re-enable NEXUS register
control, use command TrOnchip.ENable. Per default, NEXUS register control is enabled.

TrOnchip.Echo Set special breakpoint function

Format: TrOnchip.Echo <function>

See TrOnchip.Alpha.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 148

TrOnchip.ENable Enable NEXUS trace register control

Format: TrOnchip.ENable

Enables NEXUS register control by the debugger. By default, NEXUS register control is enabled. This
command is only needed after disabling NEXUS register control using TrOnchip.DISable.

TrOnchip.EVTI Allow the EVTI signal to stop the program execution

Format: TrOnchip.EVTI [ON | OFF]

Default: OFF. If enabled, the debugger will use the EVTI signal to break program execution instead of
sending a JTAG command. This will speed up reaction time. If the complex trigger unit is used to stop
program execution, it is recommended to enable this option to achieve a shorter delay. If this option is
disabled, the debugger will drive EVTI permanently high.

NOTES:

. Only enable this option if the EVTI pin of the processor is connected to the NEXUS connector.

. This option has no effect if TrOnchip.EVTEN is disabled.

TrOnchip.EVTO Use EVTO signal for runtime measurement

Format: TrOnchip.EVTO [ON | OFF]

Default: OFF. If enabled, the debugger will use the EVTO for Run-time measurement and external watchdog
control. This will improve the precision of run-time measurement and reduce external watchdog control

delays.

NOTE: . Only enable this option if the EVTO pin of the processor is connected to

the NEXUS connector.
. This option has no effect if TrOnchip.EVTEN is disabled.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 149

TrOnchip.EXTernal Enable trace trigger input of NEXUS adapter

Format: TrOnchip.EXTernal <source>

<source>: OFF | INO

The NEXUS adapter provides an additional (active-high) trigger input to stop the trace recording. The input
is labeled “IN” or “INO” on LA-7610 and “IX0” on LA-7630 adapters. The input channel recognizes signals
with a minimum pulse length of 20 ns.

The recorded value of the input channel can be observed in the Trigger.0 row of the Trace.List window.

; Show program flow and input channel
Trace.List DEFault Trigger.O0

The Complex Trigger Unit (CTU) supports the input channel level as condition /N.

TrOnchip.Out0 Select OUTO pin signal source
Format: TrOnchip.Out0 <source>
<source>: Trigger | Evto | WDTC

Selects the signal source for the OUTO pin of the NEXUS connector. On LA-7630 adapters, the signal is

labeled “Ox0”.
Trigger Trigger output of CTU (OUT.A)
Evto High-active EVTO signal
(inverted from processor’s low-active EVTO signal)
WDTC Watchdog Timer Control

WDTC source can be used to activate the OUTO output in parallel to the TD/WDTE pin. It can control an
external watchdog. It is a second output, controlled by TrOnchip.TOOLIO2.

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 150

There are the following features and restrictions:
J Only valid for Nexus AutoFocus preprocessor (LA-7630)
J Settings before the correct CPU is recognized or selected, will be removed.

J If TriggerOnchip.Out0 WDTC is selected, an external WDT can be controlled by the OUTO pin
of the Nexus probe.

. OUTO pin can control a WDTC before a SYStem.Up command. (TD/WDTE pin cannot offer that).
. OUTO can not be tristated and is always driving HIGH or LOW.
. OUTO is not 5V tolerant, it can drive only 3.3V circuitry.

TrOnchip.Out1 Select OUT1 pin signal source
Format: TrOnchip.Out1 <source>
<source>: Trigger | Low | High | Run

Selects the signal source for the OUT1 pin of the NEXUS connector. Only available on LA-7610.

Trigger Trigger output of CTU (OUT.B)

Low Permanently low (GND)

High Permanently high (VCC)

Run Low while CPU running, high while stopped

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 151

TrOnchip.TOOLIO2 Select TOOLIO2 pin signal source

Format: TrOnchip.TOOLIO2 <source>

<source>: OFF | Trigger | Low | High | Run | Stop

Selects the signal source for the TOOLIO2 pin of the NEXUS connector. The signal source of TOOLIO2 is
pin OUT1 on the NEXUS preprocessor, so changing this setting will also change OUT1.
Refer also to TrOnchip.Out0 command as a second way to control an output pin with slightly different

features.
OFF Tristated
Trigger Trigger output of CTU (OUT.A)
Low Permanently low (GND)
High Permanently high (VCC)
Run Low while CPU running, high while stopped; can be used to disable on-
board watchdogs.
Stop High while CPU running, low while stopped

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 152

TrOnchip.TRaceControl Trace control with special debug events

Format: TrOnchip.TRaceControl <event> <action>
<event>: IRPT

RET

CIRPT

CRET
<action>: OFF

TraceON | TraceOFF
ProgramTraceON | ProgramTraceOFF
DataTraceON | DataTraceOFF
TraceTrigger | BusTrigger

WATCH

Use this command to enable above trace actions for the specified debug event. Only available on
processors which implement IEEE-ISTO 5001-2008 or later. See Trace Filtering and Triggering with
Debug Events for an explanation of the available actions.

IRPT Interrupt taken debug event
RET Interrupt return debug event
CIRPT Critical interrupt taken debug event
CRET Critical interrupt return debug event

The example below shows how to disable the program trace for interrupts. On account of the on-chip
implementation, the program trace will start after the first interrupt return (RFI instruction) is executed.

;Disable program trace for interrupt handler

TrOnchip.TRaceControl IRPT TraceOFF
TrOnchip.TRaceControl RET TraceON

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 153

Debug and Trace Connectors

14-pin JTAG/OnCE Connector (JTAG)

Signal

TDI

TDO

TCK

(EVTI)
RESET-
JTAG-VTREF
(RDY-)

This connector is compatible to the JTAG connector used on the NXP/Freescale and STM evaluation

boards.

AUTO26 Connector (JTAG)

Pin

= | =lO|N|O1|w|—=

W=

Signal
GND
GND
GND
N/C
TMS
GND
JCOMP

Signal
VTREF
GND

GND
KEY(GND)
GND(PRESENCE)
GND

GND

GND

GND

GND

GND

GND

GND

Pin Pin
1 2
3 4
5 6
- 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26

Signal
TMS
TCK
TDO

TDI
RESET-
RESETOUT-
WDTDIS
JCOMP
EVTI-
EVTO-
BREQ-
BGRNT-
EXTIO

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

154

10-pin ECU14 Connector (with converter LA-3843)

Signal Pin Pin Signal
GND 1 2 TCK/DAPO
TRST-/JCOMP 3 4 TDO/DAP2
TMS/DAP1 5 6 TDI/DAPEN
USERIO 7 8 VTREF
RESETOUT- 9 10 RESET-
38-pin Mictor Connector (NEXUS parallel)
Signal Pin Pin Signal
MDO12 1 2 MDO13
MDO14 3 4 MDO15
MDO09 5 6 (CLKOUT)
N/C 7 8 MDOO08
RSTIN- 9 10 EVTI-
TDO 11 12 VTREF
MDO10 13 14 RDY-
TCK 15 16 MDO07
T™S 17 18 MDOO06
TDI 19 20 MDOO05
JCOmP 21 22 MDO04
MDO11 23 24 MDOO03
RESETOUT 25 26 MDO02
TDET/WDTDIS 27 28 MDOO1
BGRNT 29 30 MDOO00
N/C 31 32 EVTO-
N/C 33 34 MCKO
BREQ 35 36 MSEO1-
N/C 37 38 MSEQO-

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

155

50-pin SAMTEC ERF8 Connector (NEXUS parallel)

Signal
MSEQO-
MSEO1-

GND
MDOO00
MDOO1

GND
MDOO02
MDOO03

GND

MCKO

MDOO04

GND
MDOO05
MDOO06

GND
MDOO07
MDOO08

GND
MDO09
MDO10

GND
MDO11
MDO12

GND
MDO15

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
41 42
43 44
45 46
47 48
49 50

Signal
VREF
TCK

TMS

TDI

TDO
TRST- (JCOMP)
DBGACK- (RDY)
EVTI-
EVTO-
RSTIN-
RSTOUT
GND
CLKOUT
TD/WDTE
GND

DAI1

DAI2
GND
ARBREQ
ARBGRT
GND
MDO13
MDO14
GND

N/C

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

156

51-pin GlenAir / ROBUST Connector (NEXUS parallel)

Pin

0N~ |WIN|f—=

[(e]

Signal
N/C

N/C

N/C
ARBREQ(TOOLIOO0)
TDO
RDY-
RSTIN-
VREF
EVTI-
GND
TRST-
GND
TMS
GND
TDI
GND
TCK
GND
MDOO0
GND
MCKO
GND
EVTO-
GND
MSEQO-
MDO9
MDO1
GND
MDO2
GND
MDO3
GND
ARBGRT(TOOLIO1)
GND
MSEO1-
GND
MDO4
GND
MDO5
GND
MDOG6
GND
MDO7
GND
MDOS8
GND
MDO10
GND
MDO11
GND (TDET)
RSTOUT(VENIO2)

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

157

34-pin SAMTEC ERF8 Connector (Aurora NEXUS)

Signal
TXPO
TXNO
GND
TXP1
TXN1
GND
TXP2
TXN2
GND
TXP3
TXN3
GND
N/C
N/C
GND
N/C
N/C

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34

Signal
JTAG-VTREF
TCK
TMS

TDI

TDO
JCOMP-
N/C
EVTI-
EVTO-
RSTOUT-
RSTIN-
GND
CLKP
CLKN
GND
RDY-
WDIS

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

158

Mechanical Dimensions

Dimension

LA-7610 NEXUS-MPC5500

TOP VIEW

REGULAR

= >

2475
1975
1462

1 {
=g\ 2Xdia 100 fo
% \M2,5 screw

|
L

~ e immme

r

675
N

¢ ‘#-» 500 =

=275

SIDE VIEW

3500

i

|-

5

f o

ALL DIMENSIONS IN 1/1000 INCH

CONVERTER MICTOR TO GLENAIR 51

1«100
850 —

TWO ROTATE VERSIONS OF THE GLENAIR 51 PLUG AVAILABLE
STANDARD ORIENTATION IS OUTSIDE

TOP VIEW
e HeR
1 PIN1®]
L, =
[te) = =
N c, =
- cl. = ™
c. = 5
-~ il —
jl PIN1 :
-
3 _TO_J e
<
¥ OUTSIDE INSIDE | ¢

B> r=+325
[<— 850 —&=

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

159

Dimension

LA-7611 CONV-MIC38-GL51-5500

CONVERTER MICTOR TO GLENAIR 51

TOP VIEW
O O
l PIN1®
1
| g = -
) | = =
= =i = =
- = = - 0
cl, = = >
- ®~= = et
Y PINT !
Lo :
s LLO-a L
¥ OUTSIDE INSIDE ¥
] I<HOO £ =325
<—— 850 —= [<t— 850 —&>

TWO ROTATE VERSIONS OF THE GLENAIR 51 PLUG AVAILABLE
STANDARD ORIENTATION IS OUTSIDE

LA-7612 NEXUS-MPC551X

TOP VIEW CABLE

2475
1525

538

500,
<—1050
fe——1500—=1

4050 &)

S
£ N | .

ALL DIMENSIONS IN 1/1000 INCH

SIDE VIEW

675
75
—

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 160

Dimension

LA-7630 NEXUS-MPC5500-AF

TOP VIEW

CABLE

'é— 1525 —I]>|

PIN1

400

g

HOvad3Lnvl

d31dvav SNX3aN

la——— 1400 ——]

SIDE VIEW

3950 |

675

T
J; 4;}5]2

[

&

]

—BiZ75I<—

ALL DIMENSIONS IN 1/1000 INCH

LA-7631 CONV-MIC38-GENERIC

TOP VIEW

1500

GND
GND

™

L GND
L GND
I” OX0
" GND

GND

<H———— 975 —&>

- |=<+125
=<+— 713 ——EJ

ALL DIMENSIONS IN 1/1000 INCH

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

161

Dimension

LA-7632 CONV-GL51-MPC5500

TOP VIEW —2xRs50
21
~sa

=
| owlfm] =le
| oND| =p

s o | owllel =8

L o | ©ND|)

oxo =
I enol ="
| oND| =p
{ PIN1||®@ | =*
i L |

= l<F188

<—— 1050 —F=

ALL DIMENSIONS IN 1/1000 INCH

LA-7633 CONV-MIC38-MPC5500R

2x dia 100 for screws

TOP VIEW

/ o |
LAUTERBACH
-~
@ . =d
- || -0
PIN1E EiO =9
) T 2= |lo| =9
o L T %= lo| =
= T o= 5] =4 %NAF MODULE
- ®© -l o I— -
- - o = |0 =g
g [T°7 |9 =
S Lol =9
0 | | —=dg
o L_d
Yb ADAPTER
MPC55xx
o
¢ 100
—£> 75
{213
838 —

ALL DIMENSIONS IN 1/1000 INCH

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 162

Dimension

LA-7636 CONV-MIC76-MPC5500-L

TOP VIEW

NEXUS
AutoFocus

1500
XXX XXXY 1§
PIRRRRRRRRRRnnnnn

(NId 08) 8x43 DI LNV Jeidepy
HOVENILNY T

1

1

L

363
|

ooLr
Lowr

> L—238

<+— 675 —
ALL DIMENSIONS IN 1/1000 INCH

LA-7637 CONV-MIC76-MPC5500-S

TOP VIEW

NEXUS
AutoFocus

— T T T THOvadalnvl
o)
g

q____ 1
[Feeeeeon]

PIN 1

Adapter|SAMTEC
ERx8|(20 PIN)

lk<t—+— 1500
l=t+—613
P F
3

=+238

<+— 675—>
ALL DIMENSIONS IN 1/1000 INCH

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 163

Dimension

LA-7638 CONV-MIC38-MPC5500-L

TOP VIEW
» T3
: 0
3 JEE
8 E 27 | . |
pay E|S, wml O mm
o | 8 |E|§EE-E
N oo g E|SgmC =
© o E|Sc=o0m=
< [E|EE-E
N E|3
=S Pint
4& ¢
[2
™
Ly L
Yj] Q LAUTERBACH
o 150
o et 238
fet—— 850 —— =

ALL DIMENSIONS IN 1/1000 INCH

LA-7639 CONV-MIC38-MPC5500-S

TOP VIEW

Q

o

=

<

(0]

Ol |§

3- g

| | %

- O >

© E|2 mm, <
== =

~ El= - =

~ == m

~ E|S mfg @)

S m m

| U m O o

Lefz g

N

o

3

b4

|<|—150

238 (=t

i g 1 X I:‘

[<——850 —&>
ALL DIMENSIONS IN 1/1000 INCH

2 X DIA 100 for screws <750

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 164

Dimension

LA-7640 CONV-MIC76-JTAG14

TOP VIEW
| 1675 |

®

[6)
jin)
=
=
<
7]
z
o

975
| 375

- ———

| S,

O ARRRTRRRURRRNARD ERRRRLERRRRRNRIRRRD O

je—————— 1500 ———»

, 3550 » SIDE VIEW

A
% i CABLE (FLEX) —b o0

VI:I] |'|_|'| Y=
IS MR,] =

¥

ALL DIMENSIONS IN 1/1000 INCH

LA-7641 CONV-SAM50-MPC5500-L

TOP VIEW 2X diameter 100 for screws

PIN1

1775
1625

lt——— 1113 ———>
‘b T? ket 150

4& 3

N

>

ALL DIMENSIONS IN 1/1000 INCH

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

165

Dimension

LA-7645 NEXUS-AVR32-AF

TOP VIEW CABLE

3

PIN1

HOVaH3LNY1

d31dvav SNX3aN

2475

—

400 §§

la——— 1400 ——]

SIDE VIEW §§
T 55—
=]
—9,275I6—

ALL DIMENSIONS IN 1/1000 INCH

LA-3725 CONV-MIC38-J14-5500

i< 1000 >i

ey ——
Iy MICTOR38

PIN1
Q
=)

PIN1

ﬂ JTAG14
v ,
= 900 =

ALL DIMENSIONS IN 1/1000 INCH

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 166

Dimension

LA-3854 ET176-SPC56ECXX

TOP VIEW
1—-|1Z1mm

; N

NEXUS CONNECTOR

80.0mm

12.1mm

BGA

80.0mm

AN 4

SIDE VIEW

NEXUS connector

pnnooinTmoriaaganaog

TET-ADAPTER TO-1325
10.2mm H
TARGET SOCKET TO-1388

ALL DIMENSIONS IN mm

LA-3855 ET176-MPC5607BC

TOP VIEW

3150

SIDE VIEW
3150

NEXUS connector

TET ADAPTER
TET SOCKET
TARGET

ALL DIMENSIONS IN 1/1000 INCH

550

©1989-2024 Lauterbach Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace | 167

Technical Data

Operation Voltage

Adapter OrderNo Voltage Range
Debugger for MPC5xxx Automotive PRO LA-2708 09..55V
Debug-Bundle MPC5xxx/RH850 Automotive PRO LA-2712 1.6..55V
Debug-Bundle MPC5xxx/TriCore Automotive PRO LA-2713 1.6..55V
JTAG Debugger for MPC5xxx Automotive LA-3736 1.6..55V
Debugger-Bundle MPC5xxx/TriCore Automotive LA-3738 1.6..55V
JTAG Debugger Qorivva MPC5xxx/SPC5xxx (ICD) LA-7753 16..55V
Adapter OrderNo Voltage Range
Adap. SPC560B64-BGA208 to ET176 NEXUS LA-3850 3.0..35V
Adap. SPC560C50-BGA208 to ET100 NEXUS LA-3852 3.0..35V
Adap. MPC5646C-BGA256 to ET176 NEXUS LA-3853 3.0..35V
Adap. SPC56ECxx-BGA256 to ET176 NEXUS LA-3854 3.0..35V
Adap. MPC5607BC-BGA208 to ET176 NEXUS LA-3855 3.0..35V
Adap. MPC5604BC-BGA208 to ET144 NEXUS LA-3856 3.0..35V
Adap. MPC5604BC-BGA208 to ET100 NEXUS LA-3857 3.0..35V
NEXUS Debug/Trace for Qorivva MPC5xxx/SPC5xxx LA-7630 1.0..52V

Operation Frequency

Parallel NEXUS:
o 0 .. 100MHz

Aurora NEXUS:
. up to 3.125 gigabit/second with 4 lanes
. up to 6.250 gigabit/second with up to 3 lanes

J reference clock output up to 3.125 GHz

©1989-2024 Lauterbach

Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace

168

	Qorivva MPC5xxx/SPC5xx Debugger and NEXUS Trace
	History
	Introduction
	Available Tools
	JTAG/OnCE Debugger
	On-chip Trace
	High-Speed Serial Off-chip Trace (Aurora NEXUS)
	Parallel Off-chip Trace (parallel NEXUS)
	Co-Processor Debugging (eTPU/GTM/SPT)
	Multicore Debugging
	Software-only Debugging (HostMCI) via XCP

	Software Installation
	Hardware Installation
	JTAG Debugger
	Parallel Nexus Debugger and Trace
	Aurora Nexus Debugger and Trace

	ESD Protection Considerations
	Demo and Start-up Scripts
	Debug Cable / Nexus Adapter Versions and Detection
	Brief Overview of Documents for New Users

	Target Design Requirement/Recommendations
	General (ICD Debugger)

	Quick Start
	Run Program from On-chip SRAM
	Run Program from FLASH
	Connect to Running Program (hot plug-in)

	FAQ
	Debugging
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	Breakpoints on Program Addresses
	Breakpoints on Data Addresses
	Breakpoints on Data Access at Program Address
	Breakpoints on Data Value
	Counting Debug Events with Core Performance Monitor

	Memory Access
	Access Classes
	Access Classes to Memory and Memory Mapped Resources
	Access Classes to Other Addressable Core and Peripheral Resources

	Cache Debugging Support
	Memory Coherency
	Memory Coherency During run-time Memory Access
	Viewing Cache Contents
	MESI States and Cache Status Flags
	Using Cache Lines as SRAM Extension

	Support for Peripheral Modules
	Displaying Peripheral Module Registers
	Peripheral Registers Modified by TRACE32

	Debugging and Tracing Through Reset
	Multicore Debugging
	SMP Debugging
	AMP Debugging

	Watchdog Timer Support
	e200 Core Watchdog (TCR/TSR)
	On-chip Watchdog (SWT)
	Chip External Watchdog

	Censorship Unlock
	Censorship unlock on MPC56XX and SPC56X processors
	Censorship unlock on MPC57XX, SPC57X/SPC58X and S32R processors
	Recovering a censored processor (MPC57XX, SPC57X/SPC58X and S32R)

	Non-secure boot (S32R294)
	Non-secure boot by script
	Non-secure boot if fuses blown

	Troubleshooting Debug

	Tracing
	e200 PCFIFO On-chip Trace
	MPC57XX/SPC57X/SPC58X NEXUS On-chip Trace (trace-to-memory)
	External Trace Ports (Parallel NEXUS/Aurora NEXUS)
	Basic Setup for Parallel Nexus
	Basic Setup for Aurora Nexus

	Tracing the Program Flow
	Tracing of Data (read/write) Transactions
	Example: Data Trace with Address Range

	Tracing of Context Switches
	Trace Context Switches using Data Trace Messaging (DTM)
	Trace Context Switch using Ownership Trace Messaging (OTM)

	Trace Based Run-time Measurement / Timestamping
	Trace Based Run-time Measurement for off-chip Parallel NEXUS
	Trace Based Run-time Measurement for off-chip Aurora NEXUS
	Trace Based Run-time Measurement for on-chip Trace / Trace-to-memory
	Correlation of the Trace Timestamp with Other Tool Timestamps
	Implications of Using the Processor Generated Timestamps
	Processors with on-chip timestamp support

	Trace Filtering and Triggering with Debug Events
	Overview
	Example: Selective Program Tracing
	Example: Event Controlled Program/Data Trace Start and End
	Example: Event Controlled Trace Recording
	Example: Event Controlled Trigger Signals
	Example: Event Counter

	Tracing Peripheral Modules / Bus Masters
	Example: Filter by Address Range
	Example: Event Controlled Trace Start and End

	Trace Filtering and Triggering Features Provided by TRACE32
	Troubleshooting Trace
	Tracing VLE or Mixed FLE/VLE Applications

	FLASH Programming Support
	FLASH Programming Scripts
	Requirements due to FLASH ECC Protection
	Programming the RCHW or Boot Header
	Programming the Shadow Row
	Programming Serial Boot Password and Censorship Word
	TEST / UTEST / OTP FLASH Programming
	Programming an OTP Sector
	Programming an UTEST Sector which is not set to OTP

	Brownout Depletion Recovery
	Troubleshooting FLASH

	Command Reference: SYStem Commands
	SYStem.BdmClock Set BDM clock frequency
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CONFIG.DEBUGPORTTYPE Set debug cable interface mode
	Hardware Requirements for cJTAG Operation

	SYStem.CONFIG.EXTWDTDIS Disable external watchdog
	SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool
	SYStem.CPU Select the target processor
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Select operation mode

	Command Reference: SYStem.Option Commands
	SYStem.Option.BISTRUN Debug with BIST enabled
	SYStem.Option.CoreStandBy On-the-fly breakpoint and trace setup
	SYStem.Option.DCFREEZE Data cache state frozen while core halted
	SYStem.Option.DCREAD Read from data cache
	SYStem.Option.DISableResetEscalation Control reset escalation disabling
	SYStem.Option.DISableShortSequence Short reset sequence handling
	SYStem.Option.DisMode Disassembler operation mode
	SYStem.Option.DUALPORT Implicitly use run-time memory access
	SYStem.Option.FASTACCESS Special operation mode for fast run control
	SYStem.Option.FREEZE Freeze system timers on debug events
	SYStem.Option.HoldReset Set reset hold time
	SYStem.Option.ICFLUSH Invalidate instruction cache before go and step
	SYStem.Option.ICREAD Read from instruction cache
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.KEYCODE Inhibit censorship protection
	SYStem.Option.LPMDebug Enable low power mode debug handshake
	SYStem.Option.LockStepDebug Enable lock-step core register access
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.NexusMemoryCoherency Coherent NEXUS mem-access
	SYStem.Option.NoDebugStop Disable JTAG stop on debug events
	SYStem.Option.NoJtagRdy Do not evaluate JTAG_RDY signal
	SYStem.Option.NOTRAP Use brkpt instruction for software breakpoints
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.PC Set fetch address debug actions
	SYStem.Option.RESetBehavior Set behavior when target reset detected
	SYStem.Option.ResBreak Halt the core while reset asserted
	SYStem.Option.ResetDetection Configure reset detection method
	SYStem.Option.ResetMode Select reset mode for SYStem.Up
	SYStem.Option.SLOWRESET Relaxed reset timing
	SYStem.Option.STEPSOFT Use alternative method for ASM single step
	SYStem.Option.TDOSELect Select TDO source of lock step core pair
	SYStem.Option.VECTORS Specify interrupt vector table address
	SYStem.Option.WaitBoomRom Wait for BootROM completion
	SYStem.Option.WaitReset Set reset wait time
	SYStem.Option.WATCHDOG Debug with software watchdog timer

	Command Reference: MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU
	MMU.Set Set an MMU TLB entry

	Command Reference: BenchMarkCounter
	BMC.<counter>.ATOB Enable event triggered counter start and stop
	BMC.<counter>.FREEZE Freeze counter in certain core states
	BMC.FREEZE Freeze counters while core halted
	BMC.Trace Trace performance monitor events

	Command Reference: TrOnchip
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.EDBRAC0 Assign debug events to target software
	TrOnchip.EVTEN Enable EVTI and EVTO pins
	TrOnchip.RESet Reset on-chip trigger settings
	TrOnchip.Set Enable special on-chip breakpoints
	TrOnchip.VarCONVert Set single address breakpoint for scalar
	TrOnchip.state View on-chip trigger setup window

	Command Reference: Onchip
	Onchip.TBARange Set on-chip trace buffer address range

	Command Reference: NEXUS
	NEXUS.BTM Enable program trace messaging
	NEXUS.CLIENT<x>.BUSSEL Set NXMC target RAM
	NEXUS.CLIENT<x>.MODE Set data trace mode of nexus client
	NEXUS.CLIENT<x>.SELECT Select a nexus client for data tracing
	NEXUS.CLIENT3.SPTACQMASTER Trace individual SPT masters
	NEXUS.CoreENable Enable core tracing for dedicated cores in SMP
	NEXUS.DDR Enable NEXUS double data rate mode
	NEXUS.DMADTM Enable DMA data trace messaging
	NEXUS.DTM Enable data trace messaging
	NEXUS.DTMARK Data trace mark
	NEXUS.DTMWhileHalted Data trace messaging while core halted
	NEXUS.DQM Enable data acquisition messaging
	NEXUS.FRAYDTM Enable FlexRay data trace messaging
	NEXUS.HTM Enable branch history messaging
	NEXUS.OFF Switch the NEXUS trace port off
	NEXUS.ON Switch the NEXUS trace port on
	NEXUS.OTM Enable ownership trace messaging
	NEXUS.PCRCONFIG Configure NEXUS PCR for tracing
	NEXUS.PINCR Define DCI PINCR register value
	NEXUS.PortMode Set NEXUS trace port frequency
	NEXUS.PortSize Set trace port width
	NEXUS.POTD Periodic ownership trace disable
	NEXUS.PTCM Enable program trace correlation messages
	NEXUS.PTMARK Program trace mark
	NEXUS.RefClock Enable Aurora reference clock
	NEXUS.Register Display NEXUS trace control registers
	NEXUS.RESet Reset NEXUS trace port settings
	NEXUS.RFMHISTBUGFIX Double RFM workaround
	NEXUS.SmartTrace Enable smart trace analysis
	NEXUS.Spen<messagetype> Enable message suppression
	NEXUS.STALL Stall the program execution when FIFO full
	NEXUS.state Display NEXUS port configuration window
	NEXUS.SupprTHReshold Set fill level for message suppression
	NEXUS.TimeStamps Enable on-chip timestamp generation
	NEXUS.WTM Enable watchpoint messaging

	Nexus specific TrOnchip Commands
	TrOnchip.Alpha Set special breakpoint function
	TrOnchip.Beta Set special breakpoint function
	TrOnchip.Charly Set special breakpoint function
	TrOnchip.Delta Set special breakpoint function
	TrOnchip.DISable Disable NEXUS trace register control
	TrOnchip.Echo Set special breakpoint function
	TrOnchip.ENable Enable NEXUS trace register control
	TrOnchip.EVTI Allow the EVTI signal to stop the program execution
	TrOnchip.EVTO Use EVTO signal for runtime measurement
	TrOnchip.EXTernal Enable trace trigger input of NEXUS adapter
	TrOnchip.Out0 Select OUT0 pin signal source
	TrOnchip.Out1 Select OUT1 pin signal source
	TrOnchip.TOOLIO2 Select TOOLIO2 pin signal source
	TrOnchip.TRaceControl Trace control with special debug events

	Debug and Trace Connectors
	14-pin JTAG/OnCE Connector (JTAG)
	AUTO26 Connector (JTAG)
	10-pin ECU14 Connector (with converter LA-3843)
	38-pin Mictor Connector (NEXUS parallel)
	50-pin SAMTEC ERF8 Connector (NEXUS parallel)
	51-pin GlenAir / ROBUST Connector (NEXUS parallel)
	34-pin SAMTEC ERF8 Connector (Aurora NEXUS)

	Mechanical Dimensions
	Technical Data
	Operation Voltage
	Operation Frequency

