LAUTERBACH A

Mico32 Debugger

Mico32 Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~
1o o r—
1V Lo 72 B 1= o ¥ T 1= 1

L 1= (o 4

Y e Yo 11T £ o) o T 5

Brief Overview of Documents for New Users 5

Demo and Start-up Scripts 6
L= T 11 ' 7
Quick Start of the DebUgQgercccciiimmrmminsmrrrrnne s s 8
TroubleShOOtiNG ...cccccciiiiiir s s 10
Communication between Debugger and Processor can not be established 10

o 10
Mico32 specific Implementationscccooicciiiiiiccrr s 11
Mico32 Configuration 11
Mico32 Debug Monitor 11
Access Classes 12

P Access Class 13

CSR Access Class 13
Breakpoints 14
Software Breakpoints 14

On-chip Breakpoints 14

On-chip Watchpoints 14

Mico32 specific Event for the ON and GLOBALON Commandccccceemmrrnisnnnnnnnnnnens 16
Mico32 specific SETUP Commandsccccccvermmmmmmmimmnisssssssssssmmsssssssesssssssssssnssmmssnssnssns 17
SETUP.DIS Disassembler configuration 17
Mico32 specific SYStem Commandsccccciiiiiiccmmmrnrrrirsssssssssssese s e s s s ssmssmmsnnsenes 19
SYStem.CONFIG.state Display target configuration 19
SYStem.CONFIG Configure debugger according to target topology 20
<parameters> describing the “DebugPort” 21
©1989-2024 Lauterbach Mico32 Debugger 2

<parameters> describing the “JTAG” scan chain and signal behavior 23

SYStem.CPU Select the used CPU 26
SYStem.JtagClock Define JTAG frequency 26
SYStem.LOCK Lock and tristate the debug port 27
SYStem.MemAccess Select run-time memory access method 28
SYStem.Mode Establish communication with target 29
SYStem.Option.AllowDirectlIWAccess Allow direct instruction bus access 29
SYStem.Option.CacheCoherentACCESS Second level cache settings 30
SYStem.Option.CorePowerDetection Special core power detection 30
SYStem.Option.DUALPORT Update all memory displays during runtime 31
SYStem.Option.IMASKASM Disable interrupts while single stepping 31
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 32
SYStem.Option.STEPSOFT Use alternative method for ASM single step 32
SYStem.state Display SYStem.state window 32
Mico32 specific TrOnchip COommandscccceecmiiiniissmmrnner s 33
TrOnchip.RESet Set on-chip trigger to default state 33
TrOnchip.state Display on-chip trigger window 33
TrOnchip.StepVector Halt on exception entry when single-stepping 33
LI Lo (=T T o 1o o 34
Probe Cables 34
Interface Standards JTAG 34
Connector Type and Pinout 34
Debug Cable 34

©1989-2024 Lauterbach Mico32 Debugger | 3

Mico32 Debugger

Version 06-Jun-2024

History

07-Mar-2019 Initial version of the manual.

©1989-2024 Lauterbach Mico32 Debugger | 4

Introduction

This manual serves as a guideline for debugging Mico32 cores and describes all processor-specific
TRACES2 settings and features.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by

Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your

first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

. “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

To get started with the most important manuals, use the Welcome to TRACE32! dialog (WELCOME.view):

£ Welcome to TRACE32! [f=lfE ==

TRACE32 PowerView for Mico32 / PowerDebug PRO

Before you can start debugaging, the debug environment needs to be set up.
This setup is usually done by a start-up script. Click "Start with examples” to
search for an example start-up script for your target.

Example scripts can be modified to fit your exact system setup and configuration.

Related manuals

@ Mico32 Debugger
@ Debugger Basics - Training
@ Training Script Language PRACTICE

) == -
Show this dialog at start | 2 Heip | [#15tart with examples
Re-open dialog via menu Help -> Welcome to TRACE32

©1989-2024 Lauterbach Mico32 Debugger |

5

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known Mico32-based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/mico32/ subfolder of the system directory of TRACE32.

Warning

1.

N o o A~

1.

2
3.
4

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACES32 hardware.

Start the TRACES32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACE32 hardware.

©1989-2024 Lauterbach

Mico32 Debugger |

©1989-2024 Lauterbach Mico32 Debugger | 7

Quick Start of the Debugger

Starting up the debugger is done as follows:

1.

Reset the debugger.

RESet

The RESet command is only necessary if you do not start directly after booting the TRACE32
development tool.

Set the target CPU to configure the debugger.

SYStem.CPU <cpu>

The default values of all other options are set in such a way that it should be possible to work without
modifications. Please consider that this may not be the best configuration for your target.

Establish the communication to the target.

SYStem.Up

This command resets the target and tries to stop it at the Mico32-EBA (exception base address).
After this command is executed, it is possible to access memory and registers.

Load the program into the memory.

Data.LOAD.Elf sieve.elf ; .ELF specifies the file format
; sieve.elf is the file name

A typical start sequence is shown below. This sequence can be written to a PRACTICE script file (*.cmm,
ASCII format) and executed with the command DO <file>.

RESet ; Reset the debugger

System.CPU MICO32 ; Set target CPU, here the generic

; MICO32 to configure the debugger

SYStem.Up ; Establish communication to target
Data.LOAD.E1f sieve.elf ; Load the application program
WinCLEAR ; Remove all windows

List.Mix ; Open source window *)
Register.view ; Open register window *)

©1989-2024 Lauterbach Mico32 Debugger | 8

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

©1989-2024 Lauterbach Mico32 Debugger | 9

Troubleshooting

Communication between Debugger and Processor can not be established

Typically the SYStem.Up command is the first command of a debug session where communication with the
target is required. If you receive error messages like “debug port fail” or “debug port time out” while executing
this command, this may have the reasons described below. “target processor in reset” is just a follow-up
error message. Open the AREA.view window to view all error messages.

FAQ

The target has no power or the debug cable is not connected to the target or the target reference
voltage is not connected to the debug connector. This results in the error message “target power
fail”.

The target is in reset.
The target is in an unrecoverable state. Re-power your target and try again.
You have selected the incorrect CPU with SYStem.CPU.

The debug monitor running on the target is not supported by the debugger. Make sure a
supported debug monitor was programmed onto the target.

There is an issue with the JTAG interface. See “Arm JTAG Interface Specifications”
(app_arm_jtag.pdf) and the manuals or schematic of your target to check the physical and
electrical interface. Maybe there is the need to set jumpers on the target to connect the correct
signals to the JTAG connector.

The default JTAG clock speed is too fast, especially if you emulate your core or if you use an
FPGA-based target. In this case try SYStem.JtagClock 50kHz and optimize the speed when you
got it working.

You might have several TAP controllers in a JTAG-chain. Example: You have a multicore system
with chained TAPSs. In this case you have to check your pre- and post-bit configuration. See
SYStem.CONFIG IRPRE or SYStem.CONFIG DRPRE.

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach Mico32 Debugger | 10

https://support.lauterbach.com/kb

Mico32 specific Implementations

Mico32 Configuration

The hardware feature set of the Mico32 architecture is highly configurable and customizable. Configuration
possibilities range from memories and computational features to the debug infrastructure. That means,
some of the debug features discussed here might not be available for every Mico32 implementation.

Mico32 Debug Monitor

In order to debug a Mico32 target, a debug monitor is required. The debug monitor is a software program
which executes on the target whenever the target receives a halt request, e.g. by a breakpoint or a user
initiated break. The debug monitor then communicates with the debugger, which allows access to the target
system. Therefore, the debug monitor capabilities have a direct influence on the debugger capabilities.

Lauterbach provides a debug monitor which is compatible with the debug driver of the generic MICO32
selection of the SYStem.CPU command. The debug monitor is designed to support all basic and advanced
debug features offered by the Mico32 architecture. The debug monitor can be found in the demo folder
~~/demo/mico32/monitor/debug_monitor.

The Lauterbach debug monitor requires 2KiB of memory and must be loaded to the Mico32 Debug
exception base address (DEBA). In general, the debug monitor code must be present in the target memory
before the debugger can be used. However, if the Mico32 hardware-based debugging support is available
for the specific target, then it is also possible to hot-load the debug monitor while the target is running.
Limitations due to the used memory type for the DEBA memory region may still apply.

Debug monitor hot-loading:

; Configuration, e.g. CPU selection and JTAG settings

’

; Attach to the target
SYStem.Attach

; Load a debug monitor
; Run-time access class E: must be used as an offset parameter
Data.LOAD.El1f <debug monitor_file> E:

; ... your code

©1989-2024 Lauterbach Mico32 Debugger | 11

Access Classes

Access classes are used to specify which memory to access. For background information about the term
access class, see “TRACE32 Concepts” (trace32_concepts.pdf).

The following common access classes have the same meaning for all CPUs of the Mico32 architecture.

Access Class Description

P Program or data memory access. Target implementation defined.
D Data memory access

CSR Control and status register access.

DBG Special, virtual memory. Target implementation defined.

E Prefix: Run-time access specifier.

VM Virtual Memory. Memory on the debug host system.

To perform an access with a certain access class, write the class in front of the address.

Examples:

List P:0x80000

List EP:0x120000
Data.dump D:0x4--0x7
PRINT Data.Long (CSR:0x6)

©1989-2024 Lauterbach Mico32 Debugger | 12

P Access Class

The Mico32 architecture is a Harvard-type processor architecture. It has two separate buses, an instruction
WHISBONE bus for program memory accesses and a data WHISBONE bus for data memory accesses.
Whether the debugger’s P access class is able to provide access to the program memory or not, is defined
by the target implementation. The ability to provide program memory access depends on the memory
mapping of the targeted Mico32 and if the Mico32 hardware-based debugging support is available.

Hardware-based debugging support available

If hardware-based debugging support is available, the instruction WHISBONE bus of the Mico32
architecture is exposed and can be accessed by the debugger. This allows the debugger to access all
connected program memories.

Run-time memory access via the EP access class is possible without stopping the CPU. Although the
access via the instruction WHISBONE bus is non-intrusive at run-time, the access can still have an effect on
the CPU and the debugging behavior. This is due to the following limitations:

J The access may slow down the target execution.
. The access will generate instruction bus errors when unmapped memory regions are accessed.
J Write accesses might not take immediate effect because of caching effects.

If required, the direct instruction WHISBONE access can be disabled via the command
SYStem.Option.AllowDirectlWAccess. The system then behaves as if the Mico32 hardware-based
debugging support was not available. This is helpful to detect errors, as it allows target debugging when
only the instruction WHISBONE access of the debugger fails.

Hardware-based debugging support not available

If the hardware-based debugging support is not available, memory access for the debugger is only available
via the data WHISBONE bus of the Mico32. In this case, the P access class is mapped to the D access
class and both will produce the same results. A full access to all program memories might still be possible if
the instruction and data WHISBONE buses have an identical memory mapping. Non-intrusive run-time
memory access via the EP access class is no longer possible.

CSR Access Class

The CSR access class allows access to the control and status registers of the Mico32 core. Limitations
regarding reading and writing access are the same as specified in the official processor reference manual.

The address specified for the access corresponds to the official index of the respective CSR. The access
width of a CSR is always 32 bits.

Examples:
Data.Set CSR:0x0 0x0 ; Writing access to the IE register
Data.Set CSR:0x1 0x18 ; Writing access to the IM register
PRINT Data.Long (CSR:0x6) ; Reading access to the CFG register

©1989-2024 Lauterbach Mico32 Debugger | 13

Breakpoints

For general information about setting breakpoints, refer to the Break.Set command.

Software Breakpoints

If a software breakpoint is used, the original code at the breakpoint location is temporarily patched by a
breakpoint code (Mico32 break instruction). There is no restriction in the number of software breakpoints.
Software breakpoints are break before make.

On-chip Breakpoints

If on-chip breakpoints are used, the resources to set the breakpoints are provided by the hardware of the
core itself. The Mico32 supports up to 4 program on-chip breakpoints. These breakpoints are single address
only. The debugger is able to detect the number of available on-chip breakpoints by analyzing the contents
of the CFG (Configuration) control and status register.

If programmed, the breakpoint hardware compares its breakpoint address and the current program counter.
If they are equal, a breakpoint exception is raised which in general will set the Mico32 core into debug mode.
On-chip breakpoints are break before make.

Examples:
Break.Set 0x08000024 /Program ; Configures an on-chip breakpoint
/Onchip ; which activates when the program
; counter matches 0x08000024
Break.Set 0x08000024 /Onchip ; Same as above, since the default

; for breakpoints is /Program

On-chip Watchpoints

If on-chip watchpoints are used, the resources to set the watchpoints are provided by the hardware of the
core itself. The Mico32 supports up to 4 data on-chip watchpoints. These watchpoints are single address
only. The debugger is able to detect the number of available on-chip watchpoints by analyzing the contents
of the CFG (Configuration) control and status register.

On-chip watchpoints compare their programmed address and their read, write or read-write access
condition with addresses of load and store instructions. If addresses and conditions match, a watchpoint
exception is raised which in general will set the Mico32 core into debug mode. On-chip watchpoints are
break before make.

In TRACE32, the on-chip watchpoint functionality is mapped to data address breakpoints. That means to set
a watchpoint, the Break.Set command is used in conjunction with the Read, Write or ReadWrite options.

©1989-2024 Lauterbach Mico32 Debugger | 14

Examples:

Break.Set 0x08001000

Break.Set 0x08001000

Break.Set 0x08001000

Break.Set 0x08001000

/Read /Onchip

/Read

/Write

/ReadWrite

Configures an on-chip read
watchpoint which activates when
a load instruction accesses
address 0x08001000

Same as above, since read
breakpoints are always on-chip

Write watchpoint for store
instructions

ReadWrite watchpoint for load and
store instructions

©1989-2024 Lauterbach

Mico32 Debugger | 15

Mico32 specific Event for the ON and GLOBALON Command

TRACE32 can be programmed to detect CPU specific events and execute a user-defined <action> in
response to the detected <event>. The user-defined action is a PRACTICE script (*.cmm).

The following commands and CPU specific events are available:

GLOBALON <event> [<action>] Global event-controlled PRACTICE script execution.

ON <event> [<action>]

The event is detectable during an entire TRACE32 session.

Event-controlled PRACTICE script execution.
The event is detectable only by a particular PRACTICE script.

CPU specific <event>

Description

PDRESETOFF

The target performs a transition from the power down reset state into any
other target state. The availability of the event is target CPU dependent
and can only be used if SYStem.Option.CorePowerDetection is
enabled.

©1989-2024 Lauterbach

Mico32 Debugger | 16

Mico32 specific SETUP Commands

SETUP.DIS Disassembler configuration
Format: SETUP.DIS [<fields>] [<bar>] [<constants>]
<constants>: [RegNames | AliasNames] [<other_constants>]

Sets default values for configuring the disassembler output of newly opened windows. Affected windows
and commands are List.Asm and Register.view.

The command does not affect existing windows containing disassembler output.

<fields>, <bar>, For a description of the generic arguments, see SETUP.DIS in
<constants> general_ref_s.pdf.
AliasNames Use the alias naming scheme for the names of the Mico32 general

purpose registers.

RegNames Use the generic register number (r0, r1, ..., r31) naming scheme for the
(default naming names of the Mico32 general purpose registers.
scheme)

Example 1: The changed naming scheme takes immediate effect in the Register.view window.

SETUP.DIS RegNames ;by default, the register number naming scheme is
;used for the general purpose registers

Register.view ;let’s open a register window

;... your code

SETUP.DIS AliasNames ;let's now switch the naming scheme of the general

;purpose registers to the alias naming scheme

[} BRegisterview ! A I [2= [} BRegisterview ! B I ===
RO 0 R& 0 R16 0 RrR24 0 - RO 0 r& 0 R16 0 0 -
R1 0 r9 0 r1/ 0 Rr2 0 [z R1 0 r9 0 r1/ 0 0 [z
RZ2 0 Rr10 0 R18 0 [rRZ6] 01011880 RZ2 0 r10 0 R18 0 01011880
R3 01009300 r11 0 r19 0 (r2 10001FF4 R3 01009300 r11 0 r19 0 10001FF4
R4 01009330 Rr12 0 RrR20 0 [rR28| 10001FF8 R4 01009330 ri2 0 Rr20 0 10001FF8
R5 01009408 Rr13 0 r21 0 [r29| 01000834 R5 01009408 r13 0 r21 0 01000834
RO 0 Rrl4 0 Rr22 0 [rR30| 01000000 RO 0 Rrl4 0 Rr22 0 01000000
R7 0 Rr15 0 Rr23 0 [r3 01002cpC R7 0 rl5 0 Rr23 0 01002CDC
EeA 01000000 EID 1 1M 2 PC 01002cDC 01000000 EID 1 1M 2 PC 01002cDC
DEBA 0 IE 4 1P 1 - 0 IE 4 1P 1 2
< I b < n 3
A Register number naming scheme (default B Alias naming scheme. The alias names are
naming scheme). also available in Register.Set.

©1989-2024 Lauterbach Mico32 Debugger | 17

Example 2: The changed naming scheme does not affect an existing List.Asm window. You need to open
another List.Asm window to view the changed naming scheme.

SETUP.DIS RegNames
List.Asm

;... your code

SETUP.DIS AliasNames

List.Asm ;open another disassembler output window
=i/ [BsList.Asm] o =@
M Step || % over |[AuDiverge) ¢ Return|[e up | »Go | 10 Break [¥ Mode]@@ Find:
addr/line code label mnemonigc comment |
| P:01002CDC |- “CFRDO main: addi r28,r28,-0x30 -
P:01002CEQ |5B8B000C swW (r28+0xC),rll
P:01002CE4 55950008 sw (r28+0x8) ,r27 B
P:01002CES8 |589D00004 sw (r28+0x4),r29
P:01002CEC |BBE0DE00 myv r27,r28 -
=i/ [BsList.Asm] | <
M Step || M over |[AsDiverge| ¢ Return|[e up | »Go | 1N Ereak | "EMode]@@ Find:
addr/1ine |code Tabel mnemonic comment |
: [379CEEDO main: addi sp,sp,-0x30 -
P:01002CEOQ |5B8BE000C sw (sp+0xC),rll
P:01002CE4 55950008 sw . (sp+0x8) . fp B
P:01002CES |569D00004 sw (sp+0x4),ra
P:01002CEC |[BBE0DE00 mv fp,sp -

A Register number naming scheme (default naming scheme).

B Alias naming scheme. The alias names are also available in Register.Set.

NOTE: The command Register.Set and the function Register() always accept the generic
name and the alias name as a register parameter. They are not affected by this
SETUP command.

©1989-2024 Lauterbach Mico32 Debugger | 18

Mico32 specific SYStem Commands

SYStem.CONFIG.state

Display target configuration

Format:

<tab>:

SYStem.CONFIG.state [/<tab>]

DebugPort | Jtag

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the

debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab>

Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort
(default)

The DebugPort tab informs the debugger about the debug connector type
and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see DebugPort.

Jtag

The Jtag tab informs the debugger about the position of the Test Access
Ports (TAP) in the JTAG chain which the debugger needs to talk to in order
to access the debug and trace facilities on the chip.

For descriptions of the commands on the Jtag tab, see Jtag.

©1989-2024 Lauterbach

Mico32 Debugger | 19

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter>

<parameter>: CORE <core> <chip>

(DebugPort) DEBUGPORT [DebugCable0]
DEBUGPORTTYPE [JTAG]
Slave [ON | OFF]

TriState [ON | OFF]

<parameter>: DRPOST <bits>

(JTAG) DRPRE <bits>
IRPOST <bits>
IRPRE <bits>
Slave [ON | OFF]

TAPState <state>
TCKLevel </evel>
TriState [ON | OFF]

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

The SYStem.CONFIG command information shall be provided after the SYStem.CPU command, which
might be a precondition to enter certain SYStem.CONFIG commands, and before you start up the debug
session, e.g. by SYStem.Up.

Syntax Remarks

The commands are not case sensitive. Capital letters show how the command can be shortened.
Example: “SYStem.CONFIG.TriState ON” -> “SYStem.CONFIG.TS ON”

The dots after “SYStem.CONFIG” can alternatively be a blank.
Example:
“SYStem.CONFIG.TriState ON” or “SYStem.CONFIG TriState ON”

©1989-2024 Lauterbach Mico32 Debugger | 20

<parameters> describing the “DebugPort”

CORE <core>
<chip>

CORE <core>
<chip>

(cont.)

DEBUGPORT
[DebugCable0]

DEBUGPORTTYPE
[JTAG]

The command helps to identify debug and trace resources which are
commonly used by different cores. The command might be required in a
multicore environment if you use multiple debugger instances (multiple
TRACE32 PowerView GUIs) to simultaneously debug different cores on
the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2

each debugger instance assumes that all notified debug resources can
exclusively be used.

But some target systems have shared resources for different cores, for
example a common trace port. The default setting causes that each
debugger instance controls the same trace port. Sometimes it does not
hurt if such a module is controlled twice. But sometimes it is a must to tell
the debugger that these cores share resources on the same <chip>.
Whereby the “chip” does not need to be identical with the device on your
target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1

For cores on the same <chip>, the debugger assumes that the cores
share the same resource if the control registers of the resource have the
same address.

Default:

<core> depends on CPU selection, usually 1.

<chip> derives from the CORE= parameter in the configuration file
(config.t32), usually 1. If you start multiple debugger instances with the
help of t32start.exe, you will get ascending values (1, 2, 3,...).

It specifies which probe cable shall be used e.g. “DebugCable0”.
Default: depends on detection.

It specifies the used debug port type “JTAG”. It assumes the selected
type is supported by the target.

Default: JTAG.

©1989-2024 Lauterbach

Mico32 Debugger | 21

Slave [ON | OFF]

TriState [ON | OFF]

If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
NTRST and nSRST (nNRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.

Please note:

. nTRST must have a pull-up resistor on the target.

. TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.
Default: OFF.

©1989-2024 Lauterbach

Mico32 Debugger |

22

<parameters> describing the “JTAG” scan chain and signal behavior

With the JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

NTRST(reset)
TCK (clock)

TMS (state machine control)

TDI (data input)
TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to. The TAP position can be defined
with the first four commands in the table below.

DRPOST <bits>

DRPRE <bits>

IRPOST <bits>

IRPRE <bits>

Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit. See example
below.

Default: 0.

Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit. See example
below.

Default: 0.

Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing. See example below.

Default: 0.

Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal. See example below.

Default: 0.

NOTE: If you are not sure about your settings concerning IRPRE, IRPOST, DRPRE,
and DRPOST, you can try to detect the settings automatically with the
SYStem.DETECT.DaisyChain command.

©1989-2024 Lauterbach

Mico32 Debugger | 23

Slave [ON | OFF] If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
NTRST and nSRST (nNRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

TAPState <state> This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan
5 Update-DR

6 Capture-DR

7 Select-DR-Scan
8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle
13 Update-IR

14 Capture-IR

15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

TCKLevel <level> Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.

Default: 0.

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.

Please note:

] NTRST must have a pull-up resistor on the target.

] TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.

Default: OFF.

©1989-2024 Lauterbach Mico32 Debugger | 24

Daisy-Chain Example

IRPOST IRPRE
I 1 I 1
TAP1 TAP2 TAP3 TAP4
. R | 4 IR | 3 IR | 5 Core R | 6 .
DR/ 1 DR/ 1 DR | 1 DR | 1
L I | I
DRPOST DRPRE

IR: Instruction register length DR: Data register length Core: The core you want to debug

Daisy chains can be configured using a PRACTICE script (*.cmm) or the SYStem.CONFIG.state window.

&2 B::SYStem.CONFIG state /Jtag =n| Wl <
DebugPort Jtag MultiTap DAP | COmponents
IRPOST IRPRE
12, 6.
TDI kk — DRPOST M| core | M- DRPRE ke TDO
3. P] [S 1.

Example: This script explains how to obtain the individual IR and DR values for the above daisy chain.

SYStem.CONFIG.state /Jtag ; optional: open the window

SYStem.CONFIG IRPRE 6. ; IRPRE: There is only one TAP.
; So type just the IR bits of TAP4, i.e. 6.

SYStem.CONFIG IRPOST 12. ; IRPOST: Add up the IR bits of TAPl, TAP2
; and TAP3, i.e. 4. + 3. + 5. = 12.
SYStem.CONFIG DRPRE 1. ; DRPRE: There is only one TAP which is

; 1in BYPASS mode.
; So type just the DR of TAP4, i.e. 1.

SYStem.CONFIG DRPOST 3. ; DRPOST: Add up one DR bit per TAP which
; 1s in BYPASS mode, i.e. 1. + 1. + 1. = 3.
; This completes the configuration.

NOTE: In many cases, the number of TAPs equals the number of cores. But in many
other cases, additional TAPs have to be taken into account; for example, the
TAP of an FPGA or the TAP for boundary scan.

©1989-2024 Lauterbach Mico32 Debugger | 25

SYStem.CPU Select the used CPU

Format: SYStem.CPU <cpu>

<cpu>: LATTICE | MICO32

The choice of the CPU will determine pre-configurations made by the debugger. It will also determine the
supported debug monitor.

LATTICE Generic CPU for LATTICE Mico32 targets. Supports the LATTICE debug
monitor.

MICO32 Generic CPU for Mico32 targets. Supports the debug monitor provided
by Lauterbach. For more information, see Mico32 Debug Monitor.

SYStem.JtagClock Define JTAG frequency
Format: SYStem.JtagClock [<frequency>]
<frequency>: 10000. ... 40000000.

Default frequency: 1 MHz.

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer.

<frequency> The debugger cannot select all frequencies accurately. It chooses the
next possible frequency and displays the real value in the SYStem.state
window.
Besides a decimal number like “100000.” short forms like “10kHz” or
“15MHz” can also be used. The short forms imply a decimal value

wn

although no “” is used.

©1989-2024 Lauterbach Mico32 Debugger | 26

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give

debug access to another tool.

©1989-2024 Lauterbach Mico32 Debugger | 27

SYStem.MemAccess Select run-time memory access method
Format: SYStem.MemAccess <mode>
<mode>: Enable | Denied | StopAndGo
Default: CPU.

If SYStem.MemAccess is not Denied, it is possible to read from memory, to write to memory and to set
software breakpoints while the CPU is executing the program.

Enable
CPU (deprecated)

Denied

StopAndGo

Run-time memory access is done via the instruction bus of the CPU.

No memory access is possible while the CPU is executing the program.

Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

NOTE:

Non-intrusive run-time memory access for the Mico32 is only possible for the P
access class and only if Mico32 hardware-based debugging support is
available. For more information, see chapter P Access Class.

Example: If specific windows that display memory or variables should be updated while the program is
running, select the access class prefix E or the format option %E.

SYStem.MemAccess Enable

Data.dump EP:0x100

List E:

Var.View %E varl

©1989-2024 Lauterbach

Mico32 Debugger |

28

SYStem.Mode

Establish communication with target

Format: SYStem.Mode <mode>
SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down
Attach
Up

Attach No reset happens, the mode of the core (running or halted) does not
change. The debug port (JTAG) will be initialized.

After this command has been executed, a possible running user program
can, for example, be stopped with the Break command.

Down Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

Up Resets the target via the reset line, initializes the debug port (JTAG),
performs a core (soft) reset and enters debug mode. The core stops at
the exception base address (EBA).

For a reset via the JTAG line, the reset line has to be connected to the
debug connector.

Go Not available.

StandBy

SYStem.Option.AllowDirectiWAccess Allow direct instruction bus access

Only available for some CPUs.

Format:

SYStem.Option.AllowDirectiWAccess [ON | OFF]

Default: ON.

Enables or disables the debugger’s ability to directly access the instruction WHISBONE bus of the target.
Consequently, the command has a direct influence on the P access class. For more information, see chapter
P Access Class. This option only has an effect if the Mico32 hardware-based debugging support is

available.

©1989-2024 Lauterbach

Mico32 Debugger | 29

SYStem.Option.CacheCoherentACCESS Second level cache settings

Only available for some CPUs.

Format: SYStem.Option.CacheCoherentACCESS <parameter>

<parameter>: ENABLE [ON | OFF]
CFGREGADDRESS <address>

Default ENABLE: OFF.
Default CFGREGADDRESS: 0x800.

Enables or disables cache-coherent memory access in target systems with second-level instruction and
data caches. If enabled, the P and D access classes will yield the same results when shared memory
locations are accessed. If disabled, memory access results may differ depending on the cache status.

ENABLE [ON | OFF] Enables or disables cache-coherent memory access.

CFGREGADDRESS Specifies the address of the target register that is responsible for

<address> enabling and disabling the settings for cache-coherent memory access.
If not specified correctly, SYStem.Option.CacheCoherentACCESS
ENABLE will fail or will have no effect.

SYStem.Option.CorePowerDetection Special core power detection
Only available for some CPUs.
Format: SYStem.Option.CorePowerDetection [ON | OFF]
Default: ON.

Enables or disables the core power detection. If enabled, special target registers will be polled to detect the
power status of the target core.

When this option is enabled, the special PRACTICE event PDRESETOFF becomes available.

©1989-2024 Lauterbach Mico32 Debugger | 30

SYStem.Option.DUALPORT Update all memory displays during runtime

Format: SYStem.Option.DUALPORT [ON | OFF]

Default: ON.

All TRACE32 windows that display memory are updated while the processor is executing code (e.g.
Data.dump, List.Mix, PER.view, Var.View). This setting has no effect if SYStem.Option.MemAccess is
disabled.

If only selected memory windows should update their content during runtime, leave
SYStem.Option.DUALPORT OFF and use the access class prefix E or the format option %E for the
specific windows.

SYStem.Option.IMASKASM Disable interrupts while single stepping
Format: SYStem.Option.IMASKASM [ON | OFF]
Default: OFF.
ON The Global Interrupt Enable Bits will be cleared during assembler single-step

operations. The interrupt routine is not executed during single-step
operations. After single step the Global Interrupt Enable bits will be restored
to the value before the step.

OFF A pending interrupt will be executed on a single-step, but it does not halt
there. The specific interrupt handler is completely executed even if single
steps are done, i.e. step over is forced per default. If the core should halt in
the interrupt routine, use TrOnchip.StepVector ON.

©1989-2024 Lauterbach Mico32 Debugger | 31

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.
ON The Global Interrupt Enable Bits will be cleared during high-level-language

single-step operations. The interrupt routine is not executed during single-
step operations. After single step, the Global Interrupt Enable bit will be
restored to the value before the step.

OFF A pending interrupt will be executed on a single-step, but it does not halt
there, i.e. the interrupt handler is always stepped over. If you want to halt in
the interrupt routine, use TrOnchip.StepVector ON.

SYStem.Option.STEPSOFT Use alternative method for ASM single step
Format: SYStem.Option.STEPSOFT [ON | OFF]
Default: ON.

Normally, the default value does not need to be changed. Turning this option OFF might yield in strange
stepping-behavior if not fully supported by the target.

ON Regular assembler single-stepping on the Mico32 is achieved via software
breakpoints.

OFF Allows to make use of Mico32’s hardware-based single step functionality if
hardware-based debugging support is available for the target
implementation.

SYStem.state Display SYStem.state window

Format: SYStem.state

Displays the SYStem.state window for system settings that configure debugger and target behavior.

©1989-2024 Lauterbach Mico32 Debugger | 32

Mico32 specific TrOnchip Commands

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

TrOnchip.StepVector Halt on exception entry when single-stepping
Format: TrOnchip.StepVector [ON | OFF]
Default: OFF.

Determines the behavior of a single step when an exception or an interrupt occurs.

ON A breakpoint will be set on the interrupt exception vector when single-

stepping through code. This is helpful to check if interrupts occur while
single-stepping.

OFF Halts on the next instruction.

©1989-2024 Lauterbach Mico32 Debugger | 33

Target Adaption

Probe Cables

For debugging, the following kinds of probe cables can be used to connect the debugger to the target:
. Debug Cable

o n/a

Interface Standards JTAG

The Debug Cable supports the JTAG (IEEE 1149.1) interface standard.

Connector Type and Pinout

Debug Cable

Adaption for ARM Debug Cable: See https://www.lauterbach.com/adarmdbg.html. These adaptions also
cover the Mico32 possibilities.

Mechanical description of the 20-pin Debug Cable:

Signal Pin Pin Signal
VREF-DEBUG 1 2 VSUPPLY (not used)

TRST- 3 4 GND
TDI 5 6 GND
TMSITMSCISWDIO 7 8 GND
TCKITCKCISWCLK 9 10 GND
RTCK 11 12 GND
TDOI-ISWO 13 14 GND
RESET- 15 16 GND
DBGRQ 17 18 GND
DBGACK 19 20 GND

For details on logical functionality, physical connector, alternative connectors, electrical characteristics,
timing behavior and printing circuit design hints, refer to “ARM JTAG Interface Specifications”
(app_arm_jtag.pdf).

©1989-2024 Lauterbach Mico32 Debugger | 34

https://www.lauterbach.com/adarmdbg.html

	Mico32 Debugger
	History
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Quick Start of the Debugger
	Troubleshooting
	Communication between Debugger and Processor can not be established

	FAQ
	Mico32 specific Implementations
	Mico32 Configuration
	Mico32 Debug Monitor
	Access Classes
	P Access Class
	CSR Access Class

	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	On-chip Watchpoints

	Mico32 specific Event for the ON and GLOBALON Command
	Mico32 specific SETUP Commands
	SETUP.DIS Disassembler configuration

	Mico32 specific SYStem Commands
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior

	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define JTAG frequency
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish communication with target
	SYStem.Option.AllowDirectIWAccess Allow direct instruction bus access
	SYStem.Option.CacheCoherentACCESS Second level cache settings
	SYStem.Option.CorePowerDetection Special core power detection
	SYStem.Option.DUALPORT Update all memory displays during runtime
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.STEPSOFT Use alternative method for ASM single step
	SYStem.state Display SYStem.state window

	Mico32 specific TrOnchip Commands
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.state Display on-chip trigger window
	TrOnchip.StepVector Halt on exception entry when single-stepping

	Target Adaption
	Probe Cables
	Interface Standards JTAG
	Connector Type and Pinout
	Debug Cable

