
MANUAL

M8051EW Debugger

M8051EW Debugger

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 M8051EW .. 

 M8051EW Debugger ... 1

 Introduction ... 5

 Brief Overview of Documents for New Users 5

 Warning .. 6

 Quick Start ... 7

 Troubleshooting .. 9

 SYStem.Up Errors 9

 KEIL OMF-51 and OMF2 10

 Breakpoints 11

 M8051EW Breakpoint Types 11

 Why does the M8051EW not stop at my Breakpoint? 12

 Why do my On-chip Breakpoints not work as expected? 13

 Debugging with Low Target Frequencies 13

 Mapping Memory 14

 FAQ ... 14

 Configuration ... 15

 CPU specific SYStem Settings and Restrictions ... 16

 SYStem.state Open SYStem.state window 16

 SYStem.CONFIG.state Display target configuration 16

 SYStem.CONFIG Configure debugger according to target topology 17

 Daisy-Chain Example 19

 TapStates 20

 SYStem.CONFIG.CORE Assign core to TRACE32 instance 21

 SYStem.CPU Select CPU 22

 SYStem.JtagClock Define JTAG clock 23

 SYStem.LOCK Lock and tristate the debug port 23

 SYStem.MemAccess Select run-time memory access method 24

 SYStem.Mode Establish communication with the target 24
M8051EW Debugger | 2©1989-2024 Lauterbach

 SYStem.Option.IMASKASM Disable interrupts while single stepping 26

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 26

 SYStem.Option.IntelSOC Slave core is part of Intel® SoC 26

 SYStem.Option.LittleEnd Selection of little endian mode 27

 SYStem.Option.PATCHBP Use patch unit for on-chip breakpoints 27

 SYStem.Option.PRDELAY Set delay time after RESET 28

 SYStem.Option.ResBreak Request break after reset 29

 SYStem.Option.TRAPEN Enable TRAP_EN flag in EOR 29

 Memory Classes 30

 SYMbol Commands ... 31

 Special Function Register (SFR) symbols 31

 PUBSFR section in KEIL OMF-251 31

 M8051EW SFR Symbol Definition with PRACTICE 32

 TrOnchip Commands .. 33

 TrOnchip.state Display on-chip trigger window 33

 TrOnchip.CONVert Adjust range breakpoint in on-chip resource 33

 TrOnchip.RESet Set on-chip trigger to default state 33

 TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 34

 JTAG Connectors .. 35

 Target Board Connectors 35

 FS2 TAP Connector 35

 16pin Connector 37

 LAUTERBACH Adapters 39

 LA-7848 M8051EW 14-pin Adapter (MIPS EJTAG compatible) 39

 LA-7849 M8051EW 16-pin Adapter 39

 ARM 20-pin Adapter 40
M8051EW Debugger | 3©1989-2024 Lauterbach

M8051EW Debugger

Version 06-Jun-2024
M8051EW Debugger | 4©1989-2024 Lauterbach

Introduction

This document describes the processor specific settings and features of the TRACE32 debugger for the
Mentor Graphics “M 8051Enterprise Warp” (M8051EW) CPU family.

This CPU core is one of several 8051 compatible IP designs available from Mentor Graphics. The unique
property of the M8051EW compared to the other members of the family is its JTAG On-Chip Instrumentation
(OCI) support.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

M8051EW Debugger | 5©1989-2024 Lauterbach

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
M8051EW Debugger | 6©1989-2024 Lauterbach

Quick Start

Starting up the debugger is done as follows:

1. Select the device prompt for the ICD Debugger and reset the system.

The device prompt B:: is normally already selected in the TRACE32 command line. If this is not the
case, enter B:: to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings.

The default values of all other options are set to values that should allow to start work without
modification. Please consider that these values are possibly not the best configuration for your target.

3. Set up the JTAG electrical interface clock speed.

The default frequency is 10 MHz. If your JTAG connection does not support the RESET signal,
please press your target board reset button before the next command to ensure a HARD RESET.

4. Enter debug mode.

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

5. Load your application program.

The format of the Data.LOAD command depends on the file format generated by the compiler. It is
recommended to use the option Verify that verifies all written data. This test spots any problems with
the electrical connection, wrong chip configurations or linker command file settings.

A detailed description of the Data.LOAD command and all available options is given in the
“General Commands Reference”.

b::

SYStem.CPU <cpu_type>

SYStem.JtagClock <frequency>

SYStem.Up

Data.LOAD.Omf2 myprogram /Verify ; OMF2 specifies the format,
; myprogram is the file name
M8051EW Debugger | 7©1989-2024 Lauterbach

The start-up can be automated using the programming language PRACTICE. A typical start sequence for
M8051EW-based CPUs is shown below. This sequence can be written to a PRACTICE script file (*.cmm,
ASCII format) and executed with the command DO <file>.

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

b:: ; Select the ICD device prompt

WinCLEAR ; Clear all windows

SYStem.CPU SDA80D51 ; Select CPU

SYStem.Up ; Reset the target and enter debug mode

Data.LOAD.OMF APP.ABS /Verify ; Load the application, verify the
; process

Go main ; Run and break at main()

PER.view ; Open a window to display and
; manipulate special function registers
; of peripherals and SoC function
; blocks. *)

List.Mix ; Open source code window *)

Register.view /SpotLight ; Open register window *)

Var.Local ; Open window with local variables *)

Frame.view /Locals /Caller ; Open the stack frame with
; local variables *)

Var.Watch flags ast ; Open watch window for the variables
; flags and ast *)
M8051EW Debugger | 8©1989-2024 Lauterbach

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

• The JTAG lines are not connected correctly.

• The target has no power.

• The pull-up resistor between the JTAG[VTREF] pin and the target VCC is too large.

• The target is in reset:

The debugger controls the processor reset and use the RESET line to reset the CPU on every
SYStem.Up. Additionally it executes an M8051EW soft reset. If you have no RESET line
connected, please make sure you manually hard-reset the target board before continuing.

• There is logic added to the JTAG state machine:

The debugger is configured at start-up to expect only one M8051EW core in the JTAG chain.
Please use the SYStem.CONFIG command (“CONFIG” button) to configure the JTAG chain
position of the core in a multi-core configuration.

• There are additional loads or capacities on the JTAG lines

• The core you want to debug has to be started first by another core, or target board has additional
RESET delay logic. Please use SYStem.Option.PRDELAY.

• You have additional logic on your board that requires special handling of JTAG lines during or at
the end of system RESET. Please make sure the JTAG port is enabled correctly.
M8051EW Debugger | 9©1989-2024 Lauterbach

KEIL OMF-51 and OMF2

• For M8051EW debugging, the KEIL compiler currently supports only the “Intel MCS-51 Object
Module Format” (OMF-51/OMF-251). KEIL extended this format to store some additional
information within the OMF file, e.g. to support banking.

• The KEIL linkers can generate OMF (OMF-51) and OMF2 (OMF-251) format, depending on your
project settings. Please select the appropriate TRACE32 command for loading OMF or OMF2.

Load your OMF-51 application program with:

Load your OMF2 application program with:

A detailed description of the Data.LOAD command and all available options is given in the
“General Commands Reference Guide D” (general_ref_d.pdf).

• OMF-51 specifies source files by name only, and does not include directories.

If your project is split into several subdirectories, and your HLL source code is not found, please
either provide a list of source directories using the Data.LOAD /PATH option, or by using the
sYmbol.SourcePATH.SetRecurseDir command.

Data.LOAD.Omf myprogram /verify ; OMF specifies the format,
; myprogram is the file name

Data.LOAD.Omf2 myprogram /verify ; OMF2 specifies the format,
; myprogram is the file name
M8051EW Debugger | 10©1989-2024 Lauterbach

Breakpoints

M8051EW Breakpoint Types

• For a description of the general breakpoint types and commands, please see Break.Set.

• To combine on-chip breakpoint actions, please set additional on-chip breakpoints of the
appropriate type and the same address/range/data values.

TRACE32/PowerView will combine as many breakpoints as possible.

• If you combine an on-chip/stop/program breakpoint with an on-chip breakpoint with the actions
Delta, Echo, TraceOn or TraceOff, it will be overridden. If you require an additional
CodeExecution breakpoint, please add another Charly breakpoint.

• If your patch unit can only be used to patch code in ROM, E2PROM or FLASH, for code in RAM
please use on-chip/Delta or SOFT breakpoints.

Implem. Action Type Function

SOFT stop Program Replaces program code in memory (RAM or FLASH)
with an 0A5h instruction (TRAP).

Please make sure that TRAP_EN is set, otherwise
your program will not stop.

Onchip stop Program CodeExecution breakpoint, works similar to SOFT
breakpoints, by stuffing an 0A5h opcode into the
processor instruction pipeline.

If a patch unit is available, more breakpoints of this
type can be set (see SYStem.Option.PATCHBP).

Please make sure that TRAP_EN is set, otherwise
your program will not stop.

Onchip Charly default Sets an explicit on-chip CodeExecution breakpoint
when you combine other on-chip breakpoints.
(Onchip combination disables any on-
chip/stop/program Breakpoint for the same
address/range).

Please make sure that TRAP_EN is set, otherwise
your program will not stop.

Onchip Delta default DebugAssert action, works by setting an internal pro-
cessor signal. The signal is sampled at the start of the
next instruction.
Can be combined with other on-chip breakpoint
types.
M8051EW Debugger | 11©1989-2024 Lauterbach

Why does the M8051EW not stop at my Breakpoint?

• The M8051EW extends the 8051 instruction set with the special command
MOVC @(DPTR++),A

to write data (e.g. from a I2C LPC memory IC) into program RAM. As the 8051 instruction set is
only 8 bit wide, and there were no unused opcodes available, the M8051EW designers re-used
the TRAP opcode 0A5h for this instruction.

• The functionality of the 0A5h opcode is determined by the bit TRAP_EN in the Extended
Operations (EO) register (usually EO.4):.

• After a RESET, the bit TRAP_EN=0 (reset), therefore any encountered opcode 0A5h will be
interpreted as MOVC command.

• This conflicts with the operation of software breakpoints and on-chip code execution (“stop”)
breakpoints.

Software breakpoints are set by replacing an instruction with a “TRAP” instruction. When the
processor stops in debug mode, the original instruction is restored. The next STEP or GO
command then executes the instruction.

Similarly, OnChip “stop” breakpoints work by stuffing a TRAP instruction into the program flow -
the program memory content is not altered, but the processor “sees” an 0A5h opcode.

• Therefore a breakpoint may be illegally interpreted as an MOVC operation if you:

- disable the TRAP_EN check box (at next RESET, TRAC32 will not try to set TRAP_EN),

- manually reset the TRAP_EN bit (EO.4) in your program code. (NOTE: This can also be done
by your compiler as a side effect if it uses multiple DPTRs.), or

- issue a manual or watchdog time (WDT) RESET to the M8051EW.

Onchip Echo default TrigOut action, sets an internal processor signal that a
chip designer can route to an external chip pad or use
for SoC internal triggering.
Can be combined with other on-chip breakpoint
types.

Onchip TraceON Program TraceOn action, starts use of the internal M8051EW
on-chip trace unit (if configured).
Can be combined with other on-chip breakpoint types
except TraceOFF.

Onchip TraceOFF Program TraceOff action, stops use of the internal M8051EW
on-chip trace unit (if configured).
Can be combined with other on-chip breakpoint types
except TraceON.

TRAP_EN=1 (set) 0A5h means “TRAP”

TRAP_EN=0 (reset) 0A5h means “MOVC @(DPTR++),A
M8051EW Debugger | 12©1989-2024 Lauterbach

Why do my On-chip Breakpoints not work as expected?

• M8051EW supports a number of Triggers. These are used as on-chip breakpoints.

Depending on your core configuration, none, one, two or four triggers are available.
If two or four triggers are available, ranges can be defined.

Triggers can be defined to activate at a certain address/bank and data value.

Triggers can issue a “code execution breakpoint”, assert an internal DebugReq signal, assert an
external TrigOut signal (if defined in your core design), and can start or stop a trace.

• “Code execution breakpoint” triggers (standard on-chip “stop” breakpoints) work by “instruction
stuffing” an 0A5h opcode into the processor pipeline. To use them, it must be ensured that the
TRAP_EN flag in the M8051EW EOR register is set.

If a Patch Unit is available and usable for Breakpoints (SYStem.Option.PATCHBP is set), then
additional “Code execution breakpoints” can be used. For these, code bytes are “replaced”
(patched) with the M8051EW TRAP instruction 0A5h. If you execute program code from RAM,
please note that your patch unit may be restricted to patch (X)ROM and FLASH memory only - in
this case for the RAM area you can and should use “SOFT” breakpoints.

• “Assert DebugReq” triggers set an internal “processor debug request” signal (DebugReq) within
the on-chip instrumentation (OCI) logic. They are set using “Delta” on-chip breakpoints.

The DebugReq signal is sampled at the beginning of the next processor instruction, and the
processor goes into DEBUG state after this instruction finishes.

When you set an on-chip breakpoint, the processor will stop after the instruction where you set
the breakpoint.

When you set an “Assert DebugReq” breakpoint directly after an instruction that alters the
program flow, e.g. a “RET” opcode, the internal address counter may still trigger the breakpoint.
Then the DebugReq signal is asserted, and the processor stops after the execution of the “RET”
opcode - at a completely different address from your original breakpoint!

Debugging with Low Target Frequencies

When designing and testing your new chip with the M8051EW core, you might use an emulator that
supports only a fraction of normal JTAG and processor frequencies. In this case:

• You can reduce the update rate of the TRACE32 PowerView GUI with

SETUP.URATE <rate per second | time>

• You can cache program and data areas with

MAP.UpdateOnce P:0--0FFFFF

Please remember to access your data with the correct memory type specifiers (D:, I:, P:, X:), do
not use C:. The cache is invalidated with each STEP or GO command.

• Please restrict data windows to the minimum required address ranges.
E.g. instead of “d d:0” and “d i:0”, use “d d:80--0FF” and “d i:00--0FF”.

• Minimizing windows you don’t currently need also reduces the amount of data that has to be
transferred between host and target.
M8051EW Debugger | 13©1989-2024 Lauterbach

Mapping Memory

• Processor designs with Harvard architecture, such as the M8051EW, have separate program
and data memory buses.

• For various purposes it may be useful or necessary to map data space to program space and
vice versa. Often during development a read-writable data memory area is mirrored into a read-
only program memory area, or e.g. program flash is mapped to a read-only data area.

• An “unlimited” number of software breakpoints can only be set within read-writable memory. For
read-only memory only a very limited number of hardware on-chip breakpoints can be used.

• If you have a read-writable data area that is mapped into read-only program space, you can
redirect the debugger breakpoint setting from program memory to data memory with the
TRANSlation command.

• To automatically set on-chip breakpoints in read-only program memory areas, you can use

FAQ

Please refer to https://support.lauterbach.com/kb.

TRANSlation.Create <logical_range> [<physical_range>] [/<option>]

TRANSlation.Create P:0100--0FFFF X:4100
TRANSlation.ON

MAP.BOnchip <addressrange>

MAP.BOnchip P:0--0FF

NOTE: Formerly, the MMU command group was used for address translation inside the
debugger. With the wide-spread adoption of hardware MMUs, it was necessary
to rename this command group to TRANSlation to avoid confusion with
hardware MMUs.
M8051EW Debugger | 14©1989-2024 Lauterbach

https://support.lauterbach.com/kb

Configuration

Example configuration for an M8051EW debugger.

The processor type must be selected by the SYStem.CPU command before issuing any other target related
commands.

��������	

POWER DEBUG USB INTERFACE / USB 3

POWER DEBUG INTERFACE / USB 3

PC or
Workstation

USB
Cable

Target

D
eb

ug
C

on
ne

ct
or

Debug Cable
M8051EW Debugger | 15©1989-2024 Lauterbach

CPU specific SYStem Settings and Restrictions

SYStem.state Open SYStem.state window

Opens a window with settings of CPU specific system commands. Settings can also be changed here.

SYStem.CONFIG.state Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Format: SYStem.state

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.
M8051EW Debugger | 16©1989-2024 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain
Example.
For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

DebugPort Informs the debugger about the debug connector type and the
communication protocol it shall use.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access
the debug and trace facilities on the chip.

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE <core>

<parameter>:
(JTAG):

DRPRE <bits>
DRPOST <bits>
IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Slave [ON | OFF]

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).
M8051EW Debugger | 17©1989-2024 Lauterbach

CORE For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.
Further information can be found in SYStem.CONFIG.CORE.

DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET).
M8051EW Debugger | 18©1989-2024 Lauterbach

Daisy-Chain Example

Below, configuration for core C.

Instruction register length of

• Core A: 3 bit

• Core B: 5 bit

• Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B

SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C is Core 0 in Chip 1

Core A Core B Core C Core D TDOTDI

Chip 0 Chip 1
M8051EW Debugger | 19©1989-2024 Lauterbach

TapStates

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan

5 Update-DR

6 Capture-DR

7 Select-DR-Scan

8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle

13 Update-IR

14 Capture-IR

15 Test-Logic-Reset
M8051EW Debugger | 20©1989-2024 Lauterbach

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips

Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1 … i

<core_index>: 1 … k
M8051EW Debugger | 21©1989-2024 Lauterbach

SYStem.CPU Select CPU

Selects the processor type. The available types depend on your adapter type and license.

Format: SYStem.CPU <cpu>

<cpu>: M8051EW | SDA80D51 | PMB8710 | PMB8720 | PMB8725 | PMB9604
VCT6TV | VCT7TV | VCT8TV | VCT9TV
M8051EW Debugger | 22©1989-2024 Lauterbach

SYStem.JtagClock Define JTAG clock

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It may be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer.

When the debugger is not working correctly (e.g. memory display flickers), decrease the JtagClock.

SYStem.LOCK Lock and tristate the debug port

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

Format: SYStem.JtagClock [<frequency>]
SYStem.BdmClock [<frequency>] (deprecated)

<frequency>: 1.0MHz | 5.0MHz | 10.0MHz | <other>

<frequency> • Default is 10MHz
• <other> is 6kHz … 80MHz
The debugger cannot select all frequencies accurately. It chooses the next
possible frequency and displays the real value in the SYStem.state window.
Instead of decimal numbers like “100000.”, short forms like “10kHz” or
“15MHz” may be used. The short forms imply a decimal value, although no
“.” is used.

Format: SYStem.LOCK [ON | OFF]
M8051EW Debugger | 23©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

SYStem.Mode Establish communication with the target

Format: SYStem.MemAccess <mode>
SYStem.ACCESS <mode> (deprecated)

<mode>: StopAndGo
Denied

Enable
CPU (deprecated)

The mode “CPU” cannot be selected, because there is no way to do runtime
access to the memory while the M8051EW core is running.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed. For
more information, see below.

Denied The mode “CPU” cannot be selected, because there is no way to do runtime
access to the memory while the M8051EW core is running.

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Go
Attach
Up

Down The CPU is held in reset (if the RESET signal is attached), debug mode
is not active. Default state and state after fatal errors.

NoDebug Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tri-stated.
M8051EW Debugger | 24©1989-2024 Lauterbach

Go Resets the target and enables the debugger and start the program
execution. Program execution can be stopped by the break command or
if any break condition occurs.

Attach User program remains running (no reset) and the debug mode is
activated. After this command the user program can be stopped with the
break command or if any break condition occurs.

Up Resets the target, sets the CPU to debug mode and stops the CPU. After
the execution of this command the CPU is stopped and all registers are
set to the default level.

StandBy Not supported.
M8051EW Debugger | 25©1989-2024 Lauterbach

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored.

SYStem.Option.IntelSOC Slave core is part of Intel® SoC

Default: OFF.

Informs the debugger that the core is part of an Intel® SoC. When enabled, all IR and DR pre/post settings
are handled automatically, no manual configuration is necessary.

Requires that the debugger for this core is slave in a multicore setup with x86 as the master debugger and
that SYStem.Option.CLTAPOnly is enabled in the x86 debugger.

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]

Format: SYStem.Option.IntelSOC [ON | OFF]
M8051EW Debugger | 26©1989-2024 Lauterbach

SYStem.Option.LittleEnd Selection of little endian mode

With this option data is displayed little endian style.

SYStem.Option.PATCHBP Use patch unit for on-chip breakpoints

Default: OFF.

If enabled, additionally to the M8051EW on-chip trigger unit, an available patch unit is used for code
execution breakpoints. The instruction at the breakpoint address is replaced (patched) by an opcode 0A5h -
make sure the TRAP_EN flag is set to have the CPU stop at this address, either by setting TRAP_EN in your
code or by using SYStem.Option.TRAPEN.

Format: SYStem.Option.LittleEnd [ON | OFF]

Format: SYStem.Option.PATCHBP [ON | OFF]

NOTE: This option is only enabled for platforms that provide a patch unit. If enough free on-
chip triggers are available, these are used instead of the patch unit, even when this
option is set.
M8051EW Debugger | 27©1989-2024 Lauterbach

SYStem.Option.PRDELAY Set delay time after RESET

Set a wait time after releasing the RESET signal before JTAG communication with the target is continued.
Useful for target boards with an on-board reset delay unit, or if another core has to enable the target core
before JTAG communication is possible.

Instead of decimal numbers like “1000.”, abbreviated forms like “1s” or “500ms” may be used.This command
always implies a decimal value, although no “.” is used. Fractional values can be entered (e.g. “1000.250”)
but the fractional part is ignored.

Format: SYStem.Option.PRDELAY [<time>]

<time>: 0 … 60000ms

<time> Default is 0us

NOTE: Use this option for VCT9** AutoJTAG if you have a debug cable (e.g. LA-7848) that
does not have a line to sample RESETo (system reset out).
M8051EW Debugger | 28©1989-2024 Lauterbach

SYStem.Option.ResBreak Request break after reset

When you issue the SYStem.Option.ResBreak ON command, the debugger instructs the SoC to issue an
M8051EW DebugReq (debug request) signal at the next target reset.

SYStem.Option.TRAPEN Enable TRAP_EN flag in EOR

Default: ON.

When the SYStem.Option.TRAPEN check box is checked, the debugger sets the TRAP_EN flag in the
Extended Operation (EO) register before executing the next STEP or GO command.

Format: SYStem.Option.ResBreak [ON | OFF]

NOTE: Currently only available for I8051 core.
Works only for SoCs with special M8051EW-Break-after-Reset logic.

Format: SYStem.Option.TRAPEN [ON | OFF]

NOTE: When you disable this option, the TRAP_EN flag is not actively reset.
M8051EW Debugger | 29©1989-2024 Lauterbach

Memory Classes

The following memory classes are available:

The low 128 bytes of the internal data memory are mirrored in the memory classes I and D.
The upper 128 bytes in the memory class D represent the Special Function Registers SFR
(standard, non-banked).

If the peripheral configuration of your chip supports SFR banking, then the banked SFR contents are visible
in the address range beyond 0x80--0xFF.
E.g. the SFR Bank 5 would be visible in the upper 128 bytes of D:0500--05FF.

Memory Class Description

P Program

X External data (XRAM)

I Internal RAM (Indirect Address)

D Special Function Registers + Internal RAM (Direct Address)
M8051EW Debugger | 30©1989-2024 Lauterbach

SYMbol Commands

Special Function Register (SFR) symbols

Special Function Registers (SFRs) for all 8051 derivatives are located within the memory range D:80--FF
and accessed via MOV ’direct’ memory opcodes.

All SFRs with an address where bits 0..2 are not set (e.g. D:80, D:88, D:90, D:98, etc.) are bit-adressable
like the memory in the range D:20--2F.

One problem for disassembly is to distinguish “normal” addresses and constants in the range 0x80..0xFF
from SFR and SFR bit definitions. Some registers (A, B, PSW) are available on all 8051 derivatives. For
these, default names and addresses (that can be overwritten by an external definition) are hard-coded into
the disassembler. But the majority of platforms will have different peripherals located on different addresses.

PUBSFR section in KEIL OMF-251

KEILs OMF-251 (OMF2) format contains a special PUBSFR section for SFR and SBIT definitions.

Here is an example for a KEIL definition for the PSW and its bit flags:
sfr PSW = 0xD0; // Program Status Word
sbit P = 0xD0; // Parity Flag
sbit F1 = 0xD1; // General Purpose Flag 1
sbit OV = 0xD2; // Overflow Flag
sbit RS0 = 0xD3; // Register Bank Select 0
sbit RS1 = 0xD4; // Register Bank Select 1
sbit F0 = 0xD5; // General Purpose Flag 0
sbit AC = 0xD6; // Auxiliary Carry Flag
sbit CY = 0xD7; // Carry Flag

When such a definition is included in a C or ASM source file and the output format is set to OMF2, the
compiler/linker emits this definition in the ABS file. After symbol load the special function register is available
in the dis/assembler.

Pure symbol definitions (and no code) can be loaded from an OMF-251 file with:

Data.LOAD.Omf2 my_symbols.om2 /NoCODE
M8051EW Debugger | 31©1989-2024 Lauterbach

M8051EW SFR Symbol Definition with PRACTICE

For M8051EW cores, SFR symbols can be created in PRACTICE with the D: and B: addressing modes.

D:00xx addresses (xx=0x80--0xFF) are SFR byte definitions, B:0yyy bit addresses are computed by
multiplying the SFR base address with 8 and then adding the bit offset.

Example: for the PSW at address 0xD0, the PSW_3 bit address (RS0) is (0xD0 * 8) + 3 = 0x683.

This is the PRACTICE definition for the M8051EW PSW:

sYmbol.CREATE.RESet ; erase all user-defined symbols
sYmbol.CREATE ; start symbol creation
sYmbol.NEW PSW D:00D0 ; Program Status Word
sYmbol.NEW P B:0680 ; Parity Flag (0xD0 * 8 + 0)
sYmbol.NEW F1 B:0681 ; General Purpose Flag 1 (0xD0 * 8 + 1)
sYmbol.NEW OV B:0682 ; Overflow Flag (0xD0 * 8 + 2)
sYmbol.NEW RS0 B:0683 ; Register Bank Select 0 (0xD0 * 8 + 3)
sYmbol.NEW RS1 B:0684 ; Register Bank Select 1 (0xD0 * 8 + 4)
sYmbol.NEW F0 B:0685 ; General Purpose Flag 0 (0xD0 * 8 + 5)
sYmbol.NEW AC B:0686 ; Auxiliary Carry Flag (0xD0 * 8 + 6)
sYmbol.NEW CY B:0687 ; Carry Flag (0xD0 * 8 + 7)
sYmbol.CREATE.Done ; finish symbol creation

NOTE: If the SYStem.CPU selection is not set to an M8051EW derivative, all D:xxxx
definitions will be mapped to I:xxxx definitions. These do not represent SFR
addresses.
M8051EW Debugger | 32©1989-2024 Lauterbach

TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Opens the TrOnchip.state window.

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the
breakpoint, it will automatically be converted into a single address breakpoint when this option is active. This
is the default. Otherwise an error message is generated.

TrOnchip.RESet Set on-chip trigger to default state

Sets the TrOnchip settings and trigger module to the default settings.

Format: TrOnchip.state

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

TrOnchip.CONVert ON
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write
…

TrOnchip.CONVert OFF
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write

; sets breakpoint at range
; 1000--17ff sets single breakpoint
; at address 1001

; sets breakpoint at range
; 1000--17ff
; gives an error message

Format: TrOnchip.RESet
M8051EW Debugger | 33©1989-2024 Lauterbach

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted
into a single address breakpoint. This is the default setting. Otherwise an error message is generated.

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead
M8051EW Debugger | 34©1989-2024 Lauterbach

JTAG Connectors

Target Board Connectors

To allow easy interfacing from the LAUTERBACH Adapters to the Target Boards, here is a list of the most
common Target Board Connectors.

FS2 TAP Connector

The FS2 connector on the target is usually a standard 2 x 5 pin header
(pin-to-pin spacing: 0.1 inch = 2.54 mm).

• Do not connect the N/C pins.

• Connect all GND pins for shielding purposes.

• Connect VTREF via a low-value resistor to the processor power supply voltage. It is used to
detect if target power is on and to supply the output buffers of the debugger.

Therefore the output voltage of the debugger signals (TMS, TDI, TCLK) depends directly on
VTREF. VTREF can be 2.25 … 5.5 V. The output buffer takes about 2 mA.

• RST- is controlled by an open drain driver.

• An external watchdog must be switched off if the In-Circuit Debugger is used.

• For the input pin TDO VIHmin = 2.0 V, VILmax = 0.8 V.

Signal Pin Pin Signal
TCK 1 2 GND
TDO 3 4 VTREF
TMS 5 6 N/C
N/C 7 8 RST-
TDI 9 10 GND
M8051EW Debugger | 35©1989-2024 Lauterbach

Pins Connection Description Recommendations

1 TCLK Test clock None.

2, 10 GND System Ground
Plane

Connect to digital ground.

3 TDO Test Data Out If there are multiple devices on the JTAG
chain, connect TDO to the TDI signal of the
next device in the chain.

4 VTREF VCC reference Connect to Chip I/O voltage VCC.

5 TMS Test Mode Select None.

6, 7 NC Not Connected None.

8 RST- Reset Target CPU Connect to debugger RESET- line. Do not
connect to TRST-.

9 TDI Test Data In None.
M8051EW Debugger | 36©1989-2024 Lauterbach

16pin Connector

The 16pin connector on the target is usually a standard 2 x 8 pin header

(pin-to-pin spacing: 0.1 inch = 2.54 mm). The signal layout is HITEXTM compatible.

• Do not connect the N/C pins.

• Connect all GND pins for shielding purposes.

• Connect VTREF via a low-value resistor to the processor power supply voltage. It is used to
detect if target power is on and to supply the output buffers of the debugger.

Therefore the output voltage of the debugger signals (TMS, TDI, TCLK) depends directly on
VTREF. VTREF can be 2.25 … 5.5 V. The output buffer takes about 2 mA.

• An external watchdog must be switched off if the In-Circuit Debugger is used.

• For the input pins TDO and RESETo VIHmin = 2.0 V, VILmax = 0.8 V.

• If there are multiple devices on the JTAG chain, connect TDO to the TDI signal of the next device
in the chain. The device with the lowest possible JTAG clock speed determines the maximum
overall JTAG clock frequency for chained setups.

Signal Pin Pin Signal
TMS 1 2 VTREF
TDO 3 4 GND

RESETO 5 6 GND
TDI 7 8 DBRESET
N/C 9 10 N/C
TCK 11 12 GND
N/C 13 14 N/C
N/C 15 16 N/C
M8051EW Debugger | 37©1989-2024 Lauterbach

Pins Connection Description Recommendations

1 TMS Test Mode Select None.

2 VTREF VCC reference Connect to Chip I/O voltage VCC.

3 TDO Test Data Out None.

4 GND Digital Ground Connect to System Ground Plane.

5 RESETo Reset out (Target) HIGH level until end of System Reset.

6 GND Digital Ground Connect to System Ground Plane.

7 TDI Test Data In None.

8 DBRESET Debug Reset HIGH during reset request from debugger.

9, 10 NC Not Connected None.

11 TCLK Test clock None.

12 GND Digital Ground Connect to System Ground Plane.

13, 14,
15, 16

NC Not Connected None.
M8051EW Debugger | 38©1989-2024 Lauterbach

LAUTERBACH Adapters

These are the pin assignments for the LAUTERBACH M8051EW and (for reference only) ARM adapters.

LA-7848 M8051EW 14-pin Adapter (MIPS EJTAG compatible)

The signal DINT is not used for M8051EW debugging.

For the interfacing to your target board, please see Target Board Connectors.

LA-7849 M8051EW 16-pin Adapter

For the interfacing to your target board, please see Target Board Connectors.

Signal Pin Pin Signal
TRST- 1 2 GND

TDI 3 4 GND
TDO 5 6 GND
TMS 7 8 GND
TCK 9 10 GND
RST- 11 - Key
DINT 13 14 VIO (Reference Voltage)

Signal Pin Pin Signal
TMS 1 2 VTREF
TDO 3 4 GND

RESETO 5 6 GND
TDI 7 8 DBRESET
N/C 9 10 N/C
TCK 11 12 GND
N/C 13 14 N/C
N/C 15 16 N/C
M8051EW Debugger | 39©1989-2024 Lauterbach

ARM 20-pin Adapter

For the interfacing to your target board, please see Target Board Connectors.

Signal Pin Pin Signal
VREF-DEBUG 1 2 VSUPPLY (not used)

TRST- 3 4 GND
TDI 5 6 GND

TMS|TMSC|SWDIO 7 8 GND
TCK|TCKC|SWCLK 9 10 GND

RTCK 11 12 GND
TDO|-|SWO 13 14 GND

RESET- 15 16 GND
DBGRQ 17 18 GND

DBGACK 19 20 GND
M8051EW Debugger | 40©1989-2024 Lauterbach

	M8051EW Debugger
	Introduction
	Brief Overview of Documents for New Users

	Warning
	Quick Start
	Troubleshooting
	SYStem.Up Errors
	KEIL OMF-51 and OMF2
	Breakpoints
	M8051EW Breakpoint Types
	Why does the M8051EW not stop at my Breakpoint?
	Why do my On-chip Breakpoints not work as expected?

	Debugging with Low Target Frequencies
	Mapping Memory

	FAQ
	Configuration
	CPU specific SYStem Settings and Restrictions
	SYStem.state Open SYStem.state window
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CPU Select CPU
	SYStem.JtagClock Define JTAG clock
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish communication with the target
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.IntelSOC Slave core is part of Intel® SoC
	SYStem.Option.LittleEnd Selection of little endian mode
	SYStem.Option.PATCHBP Use patch unit for on-chip breakpoints
	SYStem.Option.PRDELAY Set delay time after RESET
	SYStem.Option.ResBreak Request break after reset
	SYStem.Option.TRAPEN Enable TRAP_EN flag in EOR
	Memory Classes

	SYMbol Commands
	Special Function Register (SFR) symbols
	PUBSFR section in KEIL OMF-251
	M8051EW SFR Symbol Definition with PRACTICE

	TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

	JTAG Connectors
	Target Board Connectors
	FS2 TAP Connector
	16pin Connector

	LAUTERBACH Adapters
	LA-7848 M8051EW 14-pin Adapter (MIPS EJTAG compatible)
	LA-7849 M8051EW 16-pin Adapter
	ARM 20-pin Adapter

