LAUTERBACH A

M8051EW Debugger

M8051EW Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
IMBOSTEW ...coiciisiirismsns s sa s s ssms s a s sms s s s e s e s ems e e E e £ e £ SRR R R AR R £ ameEaRameEa s ameHensmn e s mnnnnamnnas r—
MBOSTEW DebUQGQErciiciiiiiiinmmmmmnsrsirsinsssssssmemss s r s s s sssmm s s s s r s e e e e s mmmmmn s a e e s n e e snnnaas 1

L (oo L1 T o o 5

Brief Overview of Documents for New Users 5
L5 T 1T ' 6

L@ T T 13- .o 7

LI 1810 (== o T 11 o 9
SYStem.Up Errors 9

KEIL OMF-51 and OMF2 10
Breakpoints 11
M8051EW Breakpoint Types 11

Why does the M8051EW not stop at my Breakpoint? 12

Why do my On-chip Breakpoints not work as expected? 13
Debugging with Low Target Frequencies 13
Mapping Memory 14

O 14

Lo o) 1o 117 = 11T o R 15

CPU specific SYStem Settings and Restrictions ..., 16
SYStem.state Open SYStem.state window 16
SYStem.CONFIG.state Display target configuration 16
SYStem.CONFIG Configure debugger according to target topology 17
Daisy-Chain Example 19
TapStates 20
SYStem.CONFIG.CORE Assign core to TRACE32 instance 21
SYStem.CPU Select CPU 22
SYStem.JtagClock Define JTAG clock 23
SYStem.LOCK Lock and tristate the debug port 23
SYStem.MemAccess Select run-time memory access method 24
SYStem.Mode Establish communication with the target 24
©1989-2024 Lauterbach M8051EW Debugger 2

SYStem.Option.IMASKASM Disable interrupts while single stepping 26

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 26
SYStem.Option.IntelSOC Slave core is part of Intel® SoC 26
SYStem.Option.LittleEnd Selection of little endian mode 27
SYStem.Option.PATCHBP Use patch unit for on-chip breakpoints 27
SYStem.Option.PRDELAY Set delay time after RESET 28
SYStem.Option.ResBreak Request break after reset 29
SYStem.Option. TRAPEN Enable TRAP_EN flagin EOR 29
Memory Classes 30
£33 111 oo B 0T o7 5 T3 1 T= 1 T = 31
Special Function Register (SFR) symbols 31
PUBSFR section in KEIL OMF-251 31
M8051EW SFR Symbol Definition with PRACTICE 32
QIO T3 e o 1T 0T 00T 1 1 F- T4 o E= 33
TrOnchip.state Display on-chip trigger window 33
TrOnchip.CONVert Adjust range breakpoint in on-chip resource 33
TrOnchip.RESet Set on-chip trigger to default state 33
TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 34
JTAG CONNECIOISueeciiiiiiecmiiiisiemsr i smms s smms s s mss s mms s e samn s s mm e s e e amm e e e e e ammnnn s 35
Target Board Connectors 35
FS2 TAP Connector 35
16pin Connector 37
LAUTERBACH Adapters 39
LA-7848 M8051EW 14-pin Adapter (MIPS EJTAG compatible) 39
LA-7849 M8051EW 16-pin Adapter 39
ARM 20-pin Adapter 40

©1989-2024 Lauterbach M8051EW Debugger | 3

M8051EW Debugger

TRACE3Z 8051 [POWER TRACE ETHERNET @POD-HAP4]
File Edt WView Var Bresk RBun CPU Misc Trace Perf Cov Window Help
ME 4 &¢ P 2K 0 SHul SeE @

Version 06-Jun-2024

EIE

3

— Membccess —— — Dum

P:DEODCE [SOE<

703
P:OEODDO [E<
P:OEDDDT (FC
P:OEODDZ

705
pJIEEI)D'S

List al

Q View) pdPetie|_© i O 0

= CPU [7] IMASKASM
300243 [@Dul'ad] MasKHLL
:igﬁzd 0 Cpubiccess [#] TRAFEN
FO ad O Enable '
ED moY a,rs .
2477 add 40477 gDM
EC moYy a,rd M
5280 wrl &, 40x90 o
346C 2, 401EC

— diagClack

SDABODST v | 10.0MHz v

[Bye v [E [Tisck FlHex FlAsci
7 4 3 A B C D E F D01234567B9ABCDEF

[e]
coverage: B4.685% runtime:
1% 2% 5% 10%

askC V66
\taskch 700

\taskch 702
\taskch 704
\taskch 706
\taskch 708
\taskcl709
\taskch 710
taskch 712

12.998%
20%

DE E [\taskch713
F--0EDE2D |\ taskc\715
£

ﬂi% \\H\\ A
100 00 00 80 00 00 CO 00 1C E:S\‘. e BELE NG bt
0 01 CO 00 00 18 98 00 00 00 GH4% !
B 26 F3 00 02 00 03 00 O3 00 SEYRERTACUSURERE ¥
300 03 00 02 00 02 00 03 00 GUEHRYEYRUGUERURY
E Af OD C3 0D FE 02 60 00 03 GHSRURERRRREE U5

TRT RaltiFo 0 =0 0]
GATI O CNT1 THR Mel 13bit CHTD TMR B0 13bit ~
Timer1 Hi 00 Lo DO inerd Hi 00 Lo 0O 04 00 FF 77 04 41 10 CC 7E 3
04 00 BC 00 20 00 06 0D AQD =
i)
SEUF FF
0 00 00§44
@ Interrupts 00 00 00 00 00 08 00 00 55 “HEhBEtubauLstsy
[Lenmiste][trgger][devices J[wace J[Data [Var J[PERF | [SvStem J[_ Step [Go |[Bieak][Reguer |[srmbal | [E--
D:000091 000020 \Ama05T ew\mE05] ew_startup'_STESTLAB 048 [s T |

©1989-2024 Lauterbach

M8051EW Debugger | 4

Introduction

This document describes the processor specific settings and features of the TRACE32 debugger for the
Mentor Graphics “M 8051Enterprise Warp” (M8051EW) CPU family.

This CPU core is one of several 8051 compatible IP designs available from Mentor Graphics. The unique
property of the M8051EW compared to the other members of the family is its JTAG On-Chip Instrumentation
(OCI) support.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.
J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

J “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach M8051EW Debugger | 5

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

M8051EW Debugger |

6

Quick Start

Starting up the debugger is done as follows:

1. Select the device prompt for the ICD Debugger and reset the system.

198 g

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: : to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings.

SYStem.CPU <cpu_type>

The default values of all other options are set to values that should allow to start work without
modification. Please consider that these values are possibly not the best configuration for your target.

3. Set up the JTAG electrical interface clock speed.

SYStem.JtagClock <frequency>

The default frequency is 10 MHz. If your JTAG connection does not support the RESET signal,
please press your target board reset button before the next command to ensure a HARD RESET.

4. Enter debug mode.

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

5. Load your application program.

Data.LOAD.Omf2 myprogram /Verify ; OMF2 specifies the format,
; myprogram is the file name

The format of the Data.LOAD command depends on the file format generated by the compiler. It is
recommended to use the option Verify that verifies all written data. This test spots any problems with
the electrical connection, wrong chip configurations or linker command file settings.

A detailed description of the Data.LOAD command and all available options is given in the
“General Commands Reference”.

©1989-2024 Lauterbach M8051EW Debugger | 7

The start-up can be automated using the programming language PRACTICE. A typical start sequence for
M8051EW-based CPUs is shown below. This sequence can be written to a PRACTICE script file (*.cmm,
ASCII format) and executed with the command DO <file>.

193 ¢

WinCLEAR

SYStem.CPU SDA80D51

SYStem.Up

’

Select the ICD device prompt
Clear all windows
Select CPU

Reset the target and enter debug mode

Data.LOAD.OMF APP.ABS /Verify ; Load the application, verify the
; process

Go main ; Run and break at main/()

PER.view ; Open a window to display and
; manipulate special function registers
; of peripherals and SoC function
; blocks. *)

List.Mix ; Open source code window *)

Register.view /SpotLight ; Open register window *)
Var.Local ; Open window with local variables *)

Frame.view /Locals /Caller ; Open the stack frame with
; local variables *)

Var .Watch flags ast ; Open watch window for the variables
; flags and ast *)

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

©1989-2024 Lauterbach M8051EW Debugger | 8

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

The JTAG lines are not connected correctly.
The target has no power.
The pull-up resistor between the JTAG[VTREF] pin and the target VCC is too large.

The target is in reset:

The debugger controls the processor reset and use the RESET line to reset the CPU on every
SYStem.Up. Additionally it executes an M8051EW soft reset. If you have no RESET line
connected, please make sure you manually hard-reset the target board before continuing.

There is logic added to the JTAG state machine:

The debugger is configured at start-up to expect only one M8051EW core in the JTAG chain.
Please use the SYStem.CONFIG command (“CONFIG” button) to configure the JTAG chain
position of the core in a multi-core configuration.

There are additional loads or capacities on the JTAG lines

The core you want to debug has to be started first by another core, or target board has additional
RESET delay logic. Please use SYStem.Option.PRDELAY.

You have additional logic on your board that requires special handling of JTAG lines during or at
the end of system RESET. Please make sure the JTAG port is enabled correctly.

©1989-2024 Lauterbach M8051EW Debugger | 9

KEIL OMF-51 and OMF2

. For M8051EW debugging, the KEIL compiler currently supports only the “Intel MCS-51 Object
Module Format” (OMF-51/OMF-251). KEIL extended this format to store some additional
information within the OMF file, e.g. to support banking.

. The KEIL linkers can generate OMF (OMF-51) and OMF2 (OMF-251) format, depending on your
project settings. Please select the appropriate TRACE32 command for loading OMF or OMF2.

Load your OMF-51 application program with:

Data.LOAD.Omf myprogram /verify ; OMF specifies the format,
; myprogram is the file name

Load your OMF2 application program with:

Data.LOAD.Omf2 myprogram /verify ; OMF2 specifies the format,
; myprogram is the file name

A detailed description of the Data.LOAD command and all available options is given in the
“General Commands Reference Guide D” (general_ref_d.pdf).

J OMF-51 specifies source files by name only, and does not include directories.

If your project is split into several subdirectories, and your HLL source code is not found, please
either provide a list of source directories using the Data.LOAD /PATH option, or by using the
sYmbol.SourcePATH.SetRecurseDir command.

©1989-2024 Lauterbach M8051EW Debugger | 10

Breakpoints

M8051EW Breakpoint Types

For a description of the general breakpoint types and commands, please see Break.Set.

To combine on-chip breakpoint actions, please set additional on-chip breakpoints of the
appropriate type and the same address/range/data values.

TRACE32/PowerView will combine as many breakpoints as possible.

If you combine an on-chip/stop/program breakpoint with an on-chip breakpoint with the actions
Delta, Echo, TraceOn or TraceOff, it will be overridden. If you require an additional
CodeExecution breakpoint, please add another Charly breakpoint.

If your patch unit can only be used to patch code in ROM, E2PROM or FLASH, for code in RAM
please use on-chip/Delta or SOFT breakpoints.

Implem.

Action

Type

Function

SOFT

stop

Program

Replaces program code in memory (RAM or FLASH)
with an 0A5h instruction (TRAP).

Please make sure that TRAP_EN is set, otherwise
your program will not stop.

Onchip

stop

Program

CodeExecution breakpoint, works similar to SOFT
breakpoints, by stuffing an 0A5h opcode into the
processor instruction pipeline.

If a patch unit is available, more breakpoints of this
type can be set (see SYStem.Option.PATCHBP).

Please make sure that TRAP_EN is set, otherwise
your program will not stop.

Onchip

Charly

default

Sets an explicit on-chip CodeExecution breakpoint
when you combine other on-chip breakpoints.
(Onchip combination disables any on-
chip/stop/program Breakpoint for the same
address/range).

Please make sure that TRAP_EN is set, otherwise
your program will not stop.

Onchip

Delta

default

DebugAssert action, works by setting an internal pro-
cessor signal. The signal is sampled at the start of the
next instruction.

Can be combined with other on-chip breakpoint

types.

©1989-2024 Lauterbach

M8051EW Debugger | 11

Onchip Echo default TrigOut action, sets an internal processor signal that a
chip designer can route to an external chip pad or use
for SoC internal triggering.

Can be combined with other on-chip breakpoint

types.

Onchip TraceON Program TraceOn action, starts use of the internal M8051EW
on-chip trace unit (if configured).

Can be combined with other on-chip breakpoint types
except TraceOFF.

Onchip TraceOFF Program TraceOff action, stops use of the internal M8051EW
on-chip trace unit (if configured).

Can be combined with other on-chip breakpoint types
except TraceON.

Why does the M8051EW not stop at my Breakpoint?

. The M8051EW extends the 8051 instruction set with the special command
MOVC @ (DPTR++) ,A

to write data (e.g. from a 12C LPC memory IC) into program RAM. As the 8051 instruction set is
only 8 bit wide, and there were no unused opcodes available, the M8051EW designers re-used
the TRAP opcode 0A5h for this instruction.

. The functionality of the 0A5h opcode is determined by the bit TRAP_EN in the Extended
Operations (EO) register (usually EO.4):.

TRAP_EN=1 (set) 0A5h means “TRAP”
TRAP_EN=0 (reset) 0A5h means “MOVC @ (DPTR++),A

. After a RESET, the bit TRAP_EN=0 (reset), therefore any encountered opcode 0A5h will be
interpreted as MOVC command.

J This conflicts with the operation of software breakpoints and on-chip code execution (“stop”)
breakpoints.

Software breakpoints are set by replacing an instruction with a “TRAP” instruction. When the
processor stops in debug mode, the original instruction is restored. The next STEP or GO
command then executes the instruction.

Similarly, OnChip “stop” breakpoints work by stuffing a TRAP instruction into the program flow -
the program memory content is not altered, but the processor “sees” an 0A5h opcode.

J Therefore a breakpoint may be illegally interpreted as an MOVC operation if you:
- disable the TRAP_EN check box (at next RESET, TRAC32 will not try to set TRAP_EN),

- manually reset the TRAP_EN bit (EO.4) in your program code. (NOTE: This can also be done
by your compiler as a side effect if it uses multiple DPTRs.), or

- issue a manual or watchdog time (WDT) RESET to the M8051EW.

©1989-2024 Lauterbach M8051EW Debugger | 12

Why do my On-chip Breakpoints not work as expected?

M8051EW supports a number of Triggers. These are used as on-chip breakpoints.

Depending on your core configuration, none, one, two or four triggers are available.
If two or four triggers are available, ranges can be defined.

Triggers can be defined to activate at a certain address/bank and data value.

Triggers can issue a “code execution breakpoint”, assert an internal DebugReq signal, assert an
external TrigOut signal (if defined in your core design), and can start or stop a trace.

“Code execution breakpoint” triggers (standard on-chip “stop” breakpoints) work by “instruction
stuffing” an OA5h opcode into the processor pipeline. To use them, it must be ensured that the
TRAP_EN flag in the M8051EW EOR register is set.

If a Patch Unit is available and usable for Breakpoints (SYStem.Option.PATCHBP is set), then
additional “Code execution breakpoints” can be used. For these, code bytes are “replaced”
(patched) with the M8051EW TRAP instruction OA5h. If you execute program code from RAM,
please note that your patch unit may be restricted to patch (X)ROM and FLASH memory only - in
this case for the RAM area you can and should use “SOFT” breakpoints.

“Assert DebugReq” triggers set an internal “processor debug request” signal (DebugReq) within
the on-chip instrumentation (OCI) logic. They are set using “Delta” on-chip breakpoints.

The DebugReq signal is sampled at the beginning of the next processor instruction, and the
processor goes into DEBUG state after this instruction finishes.

When you set an on-chip breakpoint, the processor will stop after the instruction where you set
the breakpoint.

When you set an “Assert DebugReq” breakpoint directly after an instruction that alters the
program flow, e.g. a “RET” opcode, the internal address counter may still trigger the breakpoint.
Then the DebugReq signal is asserted, and the processor stops after the execution of the “RET”
opcode - at a completely different address from your original breakpoint!

Debugging with Low Target Frequencies

When designing and testing your new chip with the M8051EW core, you might use an emulator that
supports only a fraction of normal JTAG and processor frequencies. In this case:

You can reduce the update rate of the TRACES32 PowerView GUI with

SETUP.URATE <rate per second | time>

You can cache program and data areas with
MAP.UpdateOnce P:0--0FFFFF

Please remember to access your data with the correct memory type specifiers (D, I:, P:, X:), do
not use C:. The cache is invalidated with each STEP or GO command.

Please restrict data windows to the minimum required address ranges.
E.g. instead of “d d:0” and “d i:0”, use “d d:80--OFF” and “d i:00--OFF”.

Minimizing windows you don’t currently need also reduces the amount of data that has to be
transferred between host and target.

©1989-2024 Lauterbach M8051EW Debugger | 13

Mapping Memory

Processor designs with Harvard architecture, such as the M8051EW, have separate program
and data memory buses.

For various purposes it may be useful or necessary to map data space to program space and
vice versa. Often during development a read-writable data memory area is mirrored into a read-
only program memory area, or e.g. program flash is mapped to a read-only data area.

An “unlimited” number of software breakpoints can only be set within read-writable memory. For
read-only memory only a very limited number of hardware on-chip breakpoints can be used.

If you have a read-writable data area that is mapped into read-only program space, you can
redirect the debugger breakpoint setting from program memory to data memory with the
TRANSIation command.

I TRANSIation.Create </ogical_range> [<physical_range>] [[<option>]

TRANSlation.Create P:0100--0FFFF X:4100
TRANSlation.ON

To automatically set on-chip breakpoints in read-only program memory areas, you can use

I MAP.BOnchip <addressrange>

MAP.BOnchip P:0--0FF

NOTE: Formerly, the MMU command group was used for address translation inside the

debugger. With the wide-spread adoption of hardware MMUs, it was necessary
to rename this command group to TRANSIation to avoid confusion with
hardware MMUs.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach M8051EW Debugger | 14

https://support.lauterbach.com/kb

Configuration

Example configuration for an M8051EW debugger.

PC or
Workstation

| —
L PODBUS SYNC J PPOWER DEBUG USB INTERFACE / USB 3 -
LAUTERBACH -
e
use Ore & e N
cable |[1 2 [l &
C Vil g
o L J g
[reesa— %

POWER DEBUG INTERFACE / USB 3

Wall Mount
0
Power Supply

Debug Cable

Target

Debug
Connector

The processor type must be selected by the SYStem.CPU command before issuing any other target related

commands.

©1989-2024 Lauterbach

M8051EW Debugger

15

CPU specific SYStem Settings and Restrictions

SYStem.state Open SYStem.state window

Format: SYStem.state

Opens a window with settings of CPU specific system commands. Settings can also be changed here.

A/B::SYStem E@@
Mode Memdccess Option
(%) Do [T IMASKASHM
() MoDebug () Denied [IMASKEHLL
O Go Cpubccess TRAPEM
O Atach () Enable
(*) Deried PRDELAY
O Monstop 0.000us
QOup
CPU JtagClock
MBOSIEw v || | [T00MHz v

SYStem.CONFIG.state Display target configuration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: DebugPort | Jtag

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on

the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab

descriptions, see below.

©1989-2024 Lauterbach M8051EW Debugger | 16

DebugPort Informs the debugger about the debug connector type and the
communication protocol it shall use.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access
the debug and trace facilities on the chip.

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE <core>
<parameter>: DRPRE <bits>
(JTAG): DRPOST <bits>

IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel </evel>
TriState [ON | OFF]
Slave [ON | OFF]

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain
Example.

For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

©1989-2024 Lauterbach M8051EW Debugger | 17

CORE

DRPRE

DRPOST

IRPRE

IRPOST

TAPState

TCKLevel

TriState

Slave

For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.

Further information can be found in SYStem.CONFIG.CORE.

(default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

(default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

(default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

(default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

(default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

(default: 0) Level of TCK signal when all debuggers are tristated.

(default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

(default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
NTRST and nSRST (nRESET).

©1989-2024 Lauterbach

M8051EW Debugger | 18

Daisy-Chain Example

TDl——-® Core A —Core B p Core C—» Core D +—» TDO

Chip 0 Chip 1

Below, configuration for core C.

Instruction register length of
. Core A: 3 bit
. Core B: 5 bit
. Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B
SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C i1s Core 0 in Chip 1

©1989-2024 Lauterbach M8051EW Debugger | 19

TapStates

0 Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR

© 00 N o 0o~ W N =

—_ - e e —d
a A~ WO N = O

Test-Logic-Reset

©1989-2024 Lauterbach M8051EW Debugger | 20

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1.0

<core_index>: 1...k

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips
Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

©1989-2024 Lauterbach M8051EW Debugger | 21

SYStem.CPU Select CPU

Format: SYStem.CPU <cpu>

<cpu>: M8051EW | SDA80OD51 | PMB8710 | PMB8720 | PMB8725 | PMB9604
VCT6TV | VCT7TV | VCT8TV | VCTITV

Selects the processor type. The available types depend on your adapter type and license.

©1989-2024 Lauterbach M8051EW Debugger | 22

SYStem.JtagClock Define JTAG clock

Format: SYStem.JtagClock [<frequency>]
SYStem.BdmClock [<frequency>] (deprecated)

<frequency>: 1.0MHz | 5.0MHz | 10.0MHz | <other>

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It may be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer.

<frequency> . Default is 10MHz
. <other>is 6kHz ... 80MHz
The debugger cannot select all frequencies accurately. It chooses the next
possible frequency and displays the real value in the SYStem.state window.
Instead of decimal numbers like “100000.”, short forms like “10kHz” or
“15MHZz” may be used. The short forms imply a decimal value, although no

“n

”is used.

When the debugger is not working correctly (e.g. memory display flickers), decrease the JtagClock.

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

©1989-2024 Lauterbach M8051EW Debugger | 23

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess <mode>
SYStem.ACCESS <mode> (deprecated)
<mode>: StopAndGo
Denied
Enable The mode “CPU” cannot be selected, because there is no way to do runtime

CPU (deprecated)

access to the memory while the M8051EW core is running.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed. For
more information, see below.

Denied The mode “CPU” cannot be selected, because there is no way to do runtime
access to the memory while the M8051EW core is running.

SYStem.Mode Establish communication with the target
Format: SYStem.Mode <mode>
SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down
NoDebug
Go
Attach
Up

Down The CPU is held in reset (if the RESET signal is attached), debug mode
is not active. Default state and state after fatal errors.

NoDebug Disables the debugger. The state of the CPU remains unchanged. The

JTAG port is tri-stated.

©1989-2024 Lauterbach

M8051EW Debugger | 24

Go Resets the target and enables the debugger and start the program
execution. Program execution can be stopped by the break command or
if any break condition occurs.

Attach User program remains running (no reset) and the debug mode is
activated. After this command the user program can be stopped with the
break command or if any break condition occurs.

Up Resets the target, sets the CPU to debug mode and stops the CPU. After
the execution of this command the CPU is stopped and all registers are
set to the default level.

StandBy Not supported.

©1989-2024 Lauterbach M8051EW Debugger | 25

SYStem.Option.IMASKASM Disable interrupts while single stepping

Format: SYStem.Option.IMASKASM [ON | OFF]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored.

SYStem.Option.IntelSOC Slave core is part of Intel® SoC
Format: SYStem.Option.IntelSOC [ON | OFF]
Default: OFF.

Informs the debugger that the core is part of an Intel® SoC. When enabled, all IR and DR pre/post settings
are handled automatically, no manual configuration is necessary.

Requires that the debugger for this core is slave in a multicore setup with x86 as the master debugger and
that SYStem.Option.CLTAPOnly is enabled in the x86 debugger.

©1989-2024 Lauterbach M8051EW Debugger | 26

SYStem.Option.LittleEnd Selection of little endian mode

Format: SYStem.Option.LittleEnd [ON | OFF]

With this option data is displayed little endian style.

SYStem.Option.PATCHBP Use patch unit for on-chip breakpoints
Format: SYStem.Option.PATCHBP [ON | OFF]
Default: OFF.

If enabled, additionally to the M8051EW on-chip trigger unit, an available patch unit is used for code
execution breakpoints. The instruction at the breakpoint address is replaced (patched) by an opcode 0A5h -
make sure the TRAP_EN flag is set to have the CPU stop at this address, either by setting TRAP_EN in your
code or by using SYStem.Option.TRAPEN.

NOTE: This option is only enabled for platforms that provide a patch unit. If enough free on-
chip triggers are available, these are used instead of the patch unit, even when this
option is set.

©1989-2024 Lauterbach M8051EW Debugger | 27

SYStem.Option.PRDELAY Set delay time after RESET

Format: SYStem.Option.PRDELAY [<time>]

<time>: 0 ... 60000ms

Set a wait time after releasing the RESET signal before JTAG communication with the target is continued.
Useful for target boards with an on-board reset delay unit, or if another core has to enable the target core
before JTAG communication is possible.

<time> Default is Ous

Instead of decimal numbers like “1000.”, abbreviated forms like “1s” or “600ms” may be used.This command

always implies a decimal value, although no “” is used. Fractional values can be entered (e.g. “1000.250”)
but the fractional part is ignored.

NOTE: Use this option for VCT9** AutoJTAG if you have a debug cable (e.g. LA-7848) that
does not have a line to sample RESETo (system reset out).

©1989-2024 Lauterbach M8051EW Debugger | 28

SYStem.Option.ResBreak Request break after reset

Format: SYStem.Option.ResBreak [ON | OFF]

When you issue the SYStem.Option.ResBreak ON command, the debugger instructs the SoC to issue an
M8051EW DebugReq (debug request) signal at the next target reset.

NOTE: Currently only available for 18051 core.
Works only for SoCs with special M8051EW-Break-after-Reset logic.

SYStem.Option.TRAPEN Enable TRAP_EN flag in EOR
Format: SYStem.Option.TRAPEN [ON | OFF]
Default: ON.

When the SYStem.Option.TRAPEN check box is checked, the debugger sets the TRAP_EN flag in the
Extended Operation (EO) register before executing the next STEP or GO command.

NOTE: When you disable this option, the TRAP_EN flag is not actively reset.

©1989-2024 Lauterbach M8051EW Debugger | 29

Memory Classes

The following memory classes are available:

Memory Class Description
P Program
X External data (XRAM)

I Internal RAM (Indirect Address)

D Special Function Registers + Internal RAM (Direct Address)

The low 128 bytes of the internal data memory are mirrored in the memory classes | and D.
The upper 128 bytes in the memory class D represent the Special Function Registers SFR
(standard, non-banked).

If the peripheral configuration of your chip supports SFR banking, then the banked SFR contents are visible
in the address range beyond 0x80--OxFF.
E.g. the SFR Bank 5 would be visible in the upper 128 bytes of D:0500--05FF.

©1989-2024 Lauterbach M8051EW Debugger | 30

SYMbol Commands

Special Function Register (SFR) symbols

Special Function Registers (SFRs) for all 8051 derivatives are located within the memory range D: 80--FF
and accessed via MOV “direct’ memory opcodes.

All SFRs with an address where bits 0..2 are not set (e.g. D: 80,D:88,D:90, D: 98, etc.) are bit-adressable
like the memory in the range D: 20--2F.

One problem for disassembly is to distinguish “normal” addresses and constants in the range 0x80..0xFF
from SFR and SFR bit definitions. Some registers (A, B, PSW) are available on all 8051 derivatives. For
these, default names and addresses (that can be overwritten by an external definition) are hard-coded into
the disassembler. But the majority of platforms will have different peripherals located on different addresses.

PUBSFR section in KEIL OMF-251

KEILs OMF-251 (OMF2) format contains a special PUBSFR section for SFR and SBIT definitions.

Here is an example for a KEIL definition for the PSW and its bit flags:

sfr PSW = 0xD0; // Program Status Word
sbit P = 0xD0; // Parity Flag

sbit F1 = 0xD1l; // General Purpose Flag 1
sbit ov = 0xD2; // Overflow Flag

sbit RSO = 0xD3; // Register Bank Select 0
sbit RS1 = 0xD4; // Register Bank Select 1
sbit FO = 0xD5; // General Purpose Flag 0
sbit AC = 0xD6; // Auxiliary Carry Flag
sbit CY = 0xD7; // Carry Flag

When such a definition is included in a C or ASM source file and the output format is set to OMF2, the
compiler/linker emits this definition in the ABS file. After symbol load the special function register is available
in the dis/assembler.

Pure symbol definitions (and no code) can be loaded from an OMF-251 file with:

Data.LOAD.Omf2 my symbols.om2 /NoCODE

©1989-2024 Lauterbach M8051EW Debugger | 31

M8051EW SFR Symbol Definition with PRACTICE

For M8051EW cores, SFR symbols can be created in PRACTICE with the D: and B: addressing modes.

D:00xx addresses (xx=0x80--0xFF) are SFR byte definitions, B:0yyy bit addresses are computed by

multiplying the SFR base address with 8 and then adding the bit offset.

Example: for the PSW at address 0xDO0, the PSW_3 bit address (RS0) is (0xDO * 8) + 3 = 0x683.

This is the PRACTICE definition for the M8B0O51EW PSW:

sYmbol .CREATE.RESet erase all user-defined symbols

sYmbol .CREATE start symbol creation

sYmbol .NEW PSW D:00DO Program Status Word

sYmbol .NEW P B:0680 Parity Flag (0xDO * 8 + 0)
sYmbol .NEW F1 B:0681 ; General Purpose Flag 1 (OxDO * 8 + 1)
sYmbol .NEW OV B:0682 Overflow Flag (0xDO * 8 + 2)
sYmbol .NEW RSO B:0683 Register Bank Select 0 (0xDO * 8 + 3)
sYmbol .NEW RS1 B:0684 Register Bank Select 1 (0xDO * 8 + 4)
sYmbol .NEW FO B:0685 ; General Purpose Flag 0 (0xDO * 8 + 5)
sYmbol .NEW AC B:0686 ; Auxiliary Carry Flag (0xDO * 8 + 6)
sYmbol .NEW CY B:0687 Carry Flag (0xDO * 8 + 7)
sYmbol .CREATE.Done finish symbol creation

NOTE: If the SYStem.CPU selection is not set to an M8051EW derivative, all D:xxxx

definitions will be mapped to l:xxxx definitions. These do not represent SFR

addresses.

©1989-2024 Lauterbach

M8051EW Debugger

32

TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the
breakpoint, it will automatically be converted into a single address breakpoint when this option is active. This
is the default. Otherwise an error message is generated.

TrOnchip.CONVert ON

Break.Set 0x1000--0x17ff /Write ; sets breakpoint at range

Break.Set 0x1001--0x17ff /Write ; 1000--17ff sets single breakpoint
; at address 1001

TrOnchip.CONVert OFF ; sets breakpoint at range

Break.Set 0x1000--0x17ff /Write ; 1000--17ff

Break.Set 0x1001--0x17ff /Write ; gives an error message
TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

©1989-2024 Lauterbach M8051EW Debugger | 33

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted
into a single address breakpoint. This is the default setting. Otherwise an error message is generated.

©1989-2024 Lauterbach M8051EW Debugger | 34

JTAG Connectors

Target Board Connectors

To allow easy interfacing from the LAUTERBACH Adapters to the Target Boards, here is a list of the most
common Target Board Connectors.

FS2 TAP Connector

Signal Pin Pin Signal
TCK 1 2 GND
TDO 3 4 VTREF
TMS 5 6 N/C

N/C 7 8 RST-
TDI 9 10 GND

The FS2 connector on the target is usually a standard 2 x 5 pin header
(pin-to-pin spacing: 0.1 inch = 2.54 mm).

Do not connect the N/C pins.
Connect all GND pins for shielding purposes.

Connect VTREF via a low-value resistor to the processor power supply voltage. It is used to
detect if target power is on and to supply the output buffers of the debugger.

Therefore the output voltage of the debugger signals (TMS, TDI, TCLK) depends directly on
VTREF. VTREF can be 2.25 ... 5.5 V. The output buffer takes about 2 mA.

RST- is controlled by an open drain driver.
An external watchdog must be switched off if the In-Circuit Debugger is used.

For the input pin TDO VIHmMIin =2.0 V, VILmax = 0.8 V.

©1989-2024 Lauterbach M8051EW Debugger | 35

Pins Connection Description Recommendations

1 TCLK Test clock None.

2,10 GND System Ground Connect to digital ground.

Plane

3 TDO Test Data Out If there are multiple devices on the JTAG
chain, connect TDO to the TDI signal of the
next device in the chain.

4 VTREF VCC reference Connect to Chip I/O voltage VCC.

5 TMS Test Mode Select None.

6,7 NC Not Connected None.

8 RST- Reset Target CPU Connect to debugger RESET- line. Do not
connect to TRST-.

9 TDI Test Data In None.

©1989-2024 Lauterbach

M8051EW Debugger | 36

16pin Connector

Signal Pin Pin Signal
TMS 1 2 VTREF
TDO 3 4 GND

RESETO 5 6 GND
TDI 7 8 DBRESET
N/C 9 10 N/C
TCK 11 12 GND
N/C 13 14 N/C
N/C 15 16 N/C

The 16pin connector on the target is usually a standard 2 x 8 pin header
(pin-to-pin spacing: 0.1 inch = 2.54 mm). The signal layout is HITEX™ compatible.

. Do not connect the N/C pins.
J Connect all GND pins for shielding purposes.
. Connect VTREF via a low-value resistor to the processor power supply voltage. It is used to

detect if target power is on and to supply the output buffers of the debugger.

Therefore the output voltage of the debugger signals (TMS, TDI, TCLK) depends directly on
VTREF. VTREF can be 2.25 ... 5.5 V. The output buffer takes about 2 mA.

J An external watchdog must be switched off if the In-Circuit Debugger is used.
. For the input pins TDO and RESETo VIHmin =2.0 V, VILmax = 0.8 V.

. If there are multiple devices on the JTAG chain, connect TDO to the TDI signal of the next device
in the chain. The device with the lowest possible JTAG clock speed determines the maximum
overall JTAG clock frequency for chained setups.

©1989-2024 Lauterbach M8051EW Debugger | 37

Pins Connection Description Recommendations

1 TMS Test Mode Select None.

2 VTREF VCC reference Connect to Chip I/0O voltage VCC.

3 TDO Test Data Out None.

4 GND Digital Ground Connect to System Ground Plane.

5 RESETo Reset out (Target) HIGH level until end of System Reset.
6 GND Digital Ground Connect to System Ground Plane.

7 TDI Test Data In None.

8 DBRESET Debug Reset HIGH during reset request from debugger.
9,10 NC Not Connected None.

11 TCLK Test clock None.

12 GND Digital Ground Connect to System Ground Plane.
13, 14, NC Not Connected None.

15, 16

©1989-2024 Lauterbach

M8051EW Debugger |

38

LAUTERBACH Adapters

These are the pin assignments for the LAUTERBACH M8051EW and (for reference only) ARM adapters.

LA-7848 M8051EW 14-pin Adapter (MIPS EJTAG compatible)

Signal Pin Pin Signal
TRST- 1 2 GND
TDI 3 4 GND
TDO 5 6 GND
TMS 7 8 GND
TCK 9 10 GND
RST- 11 - Key
DINT 13 14 VIO (Reference Voltage)

The signal DINT is not used for M8051EW debugging.

For the interfacing to your target board, please see Target Board Connectors.

LA-7849 M8051EW 16-pin Adapter

Signal Pin Pin Signal
TMS 1 2 VTREF
TDO 3 4 GND

RESETO 5 6 GND
TDI 7 8 DBRESET
N/C 9 10 N/C
TCK 11 12 GND
N/C 13 14 N/C
N/C 15 16 N/C

For the interfacing to your target board, please see Target Board Connectors.

©1989-2024 Lauterbach M8051EW Debugger |

ARM 20-pin Adapter

Signal
VREF-DEBUG
TRST-

TDI
TMSITMSCISWDIO
TCKITCKCISWCLK
RTCK

TDOI-ISWO
RESET-

DBGRQ

DBGACK

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20

Signal
VSUPPLY (not used)
GND
GND
GND
GND
GND
GND
GND
GND
GND

For the interfacing to your target board, please see Target Board Connectors.

©1989-2024 Lauterbach

M8051EW Debugger

40

	M8051EW Debugger
	Introduction
	Brief Overview of Documents for New Users

	Warning
	Quick Start
	Troubleshooting
	SYStem.Up Errors
	KEIL OMF-51 and OMF2
	Breakpoints
	M8051EW Breakpoint Types
	Why does the M8051EW not stop at my Breakpoint?
	Why do my On-chip Breakpoints not work as expected?

	Debugging with Low Target Frequencies
	Mapping Memory

	FAQ
	Configuration
	CPU specific SYStem Settings and Restrictions
	SYStem.state Open SYStem.state window
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CPU Select CPU
	SYStem.JtagClock Define JTAG clock
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish communication with the target
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.IntelSOC Slave core is part of Intel® SoC
	SYStem.Option.LittleEnd Selection of little endian mode
	SYStem.Option.PATCHBP Use patch unit for on-chip breakpoints
	SYStem.Option.PRDELAY Set delay time after RESET
	SYStem.Option.ResBreak Request break after reset
	SYStem.Option.TRAPEN Enable TRAP_EN flag in EOR
	Memory Classes

	SYMbol Commands
	Special Function Register (SFR) symbols
	PUBSFR section in KEIL OMF-251
	M8051EW SFR Symbol Definition with PRACTICE

	TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

	JTAG Connectors
	Target Board Connectors
	FS2 TAP Connector
	16pin Connector

	LAUTERBACH Adapters
	LA-7848 M8051EW 14-pin Adapter (MIPS EJTAG compatible)
	LA-7849 M8051EW 16-pin Adapter
	ARM 20-pin Adapter

