
MANUAL

M32R Debugger and Trace

M32R Debugger and Trace

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 M32R ... 

 M32R Debugger and Trace .. 1

 Introduction ... 5

 Brief Overview of Documents for New Users 5

 Demo and Start-up Scripts 5

 Warning .. 7

 Quick Start ... 8

 Troubleshooting .. 11

 SYStem.Up Errors 11

 Memory Access Errors 11

 FAQ ... 11

 CPU specific SYStem Settings and Restrictions ... 12

 SYStem.CONFIG Configure debugger according to target topology 12

 SYStem.CPU Select target CPU 12

 SYStem.JtagClock Define JTAG clock 13

 SYStem.LOCK Lock and tristate the debug port 13

 SYStem.MemAccess Select run-time memory access method 14

 SYStem.Mode Establish the communication with the target 15

 SYStem.Option Display SYStem window 15

 SYStem.Option.DBI Enables program break via debug interrupt 15

 SYStem.Option.IMASKASM Disable interrupts while single stepping 16

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 16

 SYStem.Option.KEYCODE Code protection 17

 SYStem.Option.TriState Allow debugger to drive JTAG and reset 18

 SYStem.state Display SYStem.state window 18

 Trace specific Commands .. 19

 SYStem.Option.BTM Enables program trace messages 19

 SYStem.Option.DTM Enables data trace messages 19

 SYStem.Option.STALL Trace message overrun control 19
M32R Debugger and Trace | 2©1989-2024 Lauterbach

 SYStem.Option.TRCLK Trace output clock ratio 20

 SYStem.Option.TRDATA Trace port width 20

 TrOnchip .. 21

 TrOnchip.RESet Resets all TO settings 21

 TrOnchip.state Opens configuration panel 22

 Security Levels of the M32R Family .. 23

 Security Level 23

 Flash Erase if Device is secured 24

 General Restrictions and Hints 25

 Floating Point Formats 26

 Integer Access Keywords 26

 JTAG Connection .. 27

 Mechanical Description of the 10-pin Debug Cable 27

 Electrical Description of the 10-pin Debug Cable 27

 Mechanical Description of the 20-pin Trace Connector 28

 Memory Classes .. 30
M32R Debugger and Trace | 3©1989-2024 Lauterbach

M32R Debugger and Trace

Version 06-Jun-2024
M32R Debugger and Trace | 4©1989-2024 Lauterbach

Introduction

This document describes the processor specific settings and features of the TRACE32 debugger for the
following Renesas M32R CPU families:

• (SDI-3) M32192, M32195, M32196, M32185, M32186

• (SDI-2) M32176, M32180

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

If some of the described functions, options, signals or connections in this Processor Architecture Manual are
only valid for a single CPU or for specific families, the names of the families are added in brackets.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known M32R based hardware.
M32R Debugger and Trace | 5©1989-2024 Lauterbach

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/m32r/ subfolder of the system directory of TRACE32.
M32R Debugger and Trace | 6©1989-2024 Lauterbach

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
M32R Debugger and Trace | 7©1989-2024 Lauterbach

Quick Start

Starting up the debugger is done as follows:

1. Select the device prompt for the ICD Debugger and reset the system.

The device prompt B:: is normally already selected in the TRACE32 command line. If this is not the
case, enter B:: to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings.

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

3. Set up data for electrical interface.

Normally the default value is 10.0 MHz, but the it can be increased up to 25 MHz.

4. Inform the debugger about read only and none-readable address ranges (ROM, FLASH).

The BreakOnchip information is necessary to decide where on-chip breakpoints must be used. On-
chip breakpoints are necessary to set program breakpoints to FLASH/ROM. The sections of FLASH
and ROM depend on the specific CPU and its chip selects. Accesses to invalid addresses can cause
unrecoverable bus errors. To avoid bus errors from the debugger side use the subcommands of MAP
to define inaccessible memory areas. Bus errors can be removed by executing SYStem.Up. Make
sure that there isn’t any TRACE32 window open which accesses to a inaccessible memory that is not
masked out, otherwise the bus error can occur again.

B::

RESet

SYStem.CPU <cpu_type>

SYStem.JtagClock <frequency>

MAP.DenyAccess

MAP.NoDenyAccess <range>

MAP.BOnchip <range>
M32R Debugger and Trace | 8©1989-2024 Lauterbach

5. Enter debug mode.

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

6. Configure chip according application.

Before loading binary data into the processor memory, the memory should be made writable for the
debugger. Therefore processor configuration registers have to be set e.g. chip select register.

7. Load the program.

The format of the Data.LOAD command depends on the file format generated by the compiler. It is
recommended to use the option /Verify that verifies all written data. This test discovers a problem with
the electrical connection, wrong chip configurations or linker command file settings.

For a detailed description of the Data.LOAD command and all available options, see “Data” in
“General Commands Reference Guide D” (general_ref_d.pdf).

SYStem.Up

Data.LOAD.SR program.abs /Verify ; SR specifies the format,
; program.abs is the file name
M32R Debugger and Trace | 9©1989-2024 Lauterbach

A typical start sequence for the MSC8101 is shown below. This sequence can be written to a PRACTICE
script file (*.cmm, ASCII format) and executed with the command DO <file>. Other sequences can be found
in the directory ~~/demo/m32r.

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

B:: ; Select the ICD device prompt

WinClear ; Clear all windows

SYS.CPU M32196 ; Select CPU

SYS.JC 15000000. ; Choose JTAG frequency

SYStem.Up ; Reset the target and enter debug
; mode

MAP.DENYACCESS ; Forbid any access to the memory in
; general

MAP.BONCHIP 0x0000--0x007FFF
; ROM

; Specifies the program memory where
; on-chip breakpoints must be used

Data.LOAD.SR Sieve.abs /Verify ; Load the application, verify the
; process

Go main ; Run and break at main()

List.Mix ; Open source window *)

Register.view /SpotLight ; Open register window *)

Var.Local ; Open window with local variables *)
M32R Debugger and Trace | 10©1989-2024 Lauterbach

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

• The JTAG lines are not connected correctly.

• The target has no power.

• The pull-up resistor between the JTAG[VCCS] pin and the target VCC is too large.

• The target is in reset:

The debugger controls the processor reset and use the RESET line to reset the CPU on every
SYStem.Up. Therefore no external R-C combination or external reset controller is allowed.

• There is logic added to the JTAG state machine:

By default the debugger supports only one processor in one JTAG chain. If the processor is only
one member of a JTAG chain the debugger has to be informed about the target JTAG chain
configuration. Use the SYStem.CONFIG command to specify the position of the device in the
JTAG-chain.

• There are additional loads or capacities on the JTAG lines.

Memory Access Errors

After system up is completed successfully, data can be written to or read from memory. Trying to access
memory not belonging to the memory map of the processor will be refused with the error message

and When a unrecoverable bus error occurs the target processor has to be reset.

FAQ

Please refer to https://support.lauterbach.com/kb.

no memory mapped at address D:XXXXXXXX

bus error generated by CPU
M32R Debugger and Trace | 11©1989-2024 Lauterbach

https://support.lauterbach.com/kb

CPU specific SYStem Settings and Restrictions

Trace features can only be used, if a special device and /or a special adapter board (Pitch-Converter) is
used. Both products are provided by Renesas.

SYStem.CONFIG Configure debugger according to target topology
The SYSTem.CONFIG command group is not supported for the M32R.

SYStem.CPU Select target CPU

Selects the processor type.

The processor type must be selected by the SYStem.CPU command before issuing any other target related
commands.

NOTE: All trace related settings described here are only relevant, if the device provides
trace capabilities!

Format: SYStem.CPU <cpu>

<cpu>: M32192 | M32192FPU | M32176 | M32180
M32R Debugger and Trace | 12©1989-2024 Lauterbach

SYStem.JtagClock Define JTAG clock

Default frequency: 10 MHz.

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer. Therefore we recommend to use
the default setting if possible.

When the debugger is not working correctly (e.g. memory is flickering) decrease the JtagClock.

SYStem.LOCK Lock and tristate the debug port

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

Format: SYStem.JtagClock [<frequency>]
SYStem.BdmClock (deprecated)

<frequency>: 6 kHz…25 MHz
1250000. | 2500000. | 5000000. | 10000000.

<frequency> The debugger cannot select all frequencies accurately. It chooses the next
possible frequency and displays the real value in the SYStem.state window.
Besides a decimal number like “100000.’ short forms like”10kHz” or “15MHz”
can also be used. The short forms imply a decimal value, although no “.” is
used.

Format: SYStem.LOCK [ON | OFF]
M32R Debugger and Trace | 13©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

Default: Enable.

Format: SYStem.MemAccess <mode>

<mode>: CPU
StopAndGo
Denied

Enable
CPU (deprecated)

Provides access to memory while the core is running.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed. For
more information, see below.

Denied No access to memory while the core is running.
M32R Debugger and Trace | 14©1989-2024 Lauterbach

SYStem.Mode Establish the communication with the target

SYStem.Option Display SYStem window

It has the same effect as SYStem.state

SYStem.Option.DBI Enables program break via debug interrupt

Default: OFF.

When DBI is ON, the chip will stop faster rather than via SW control, provided the CPU offers DBI capability.

Format: SYStem.Mode <mode>

SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
Up

Down Disables the debugger (default). The state of the CPU remains
unchanged. The JTAG port is tristated if SYStem.Option.TriState is
checked.In other case the debugger drives JTAG signals and Reset.

Up Resets the target, sets the CPU to debug mode and stops the CPU. After
the execution of this command the CPU is stopped and all register are
set to the default level.

Attach
Go
StandBy

Not available.

Format: SYStem.Option.DBI [ON | OFF]
M32R Debugger and Trace | 15©1989-2024 Lauterbach

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]
M32R Debugger and Trace | 16©1989-2024 Lauterbach

SYStem.Option.KEYCODE Code protection

Default: 12 times 0xFF.

Some of the devices support Code Protection ID feature. Without a valid ID code, there is no access to the
device by the debugger.

Use the AREA window to get further information about the Security status after startup.

Use the following sequence in all your startup scripts or enter it in the command line one time in order to get
access to the device:

By default use:

If the device is blank, the debugger automatically uses 12 time 0xFF per default. Then no SYS.OPTION
KEYCODE command is needed. The number and location of bytes depends on the use MCU. It is normally
hard coded!

Format: SYStem.Option.Keycode [1…32 Byte keycode]

SYStem.Option.KEYCODE up to 32 byte representing your keycode

SYS.OPTION KEYCODE 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF\
0xFF 0xFF

; Source code example for Renesas Compiler (CPU 32192, code location
; 0x00084)

.SECTION PROTECTID, DATA, ALIGN=1

; H'0000 0084 Protect ID
.DATA.B H'FF

.DATA.B H'FF,H'FF,H'FF,H'FF,H'FF,H'FF,H'FF

.DATA.B H'FF,H'FF,H'FF,H'FF
M32R Debugger and Trace | 17©1989-2024 Lauterbach

SYStem.Option.TriState Allow debugger to drive JTAG and reset

Default: OFF.

If this option is OFF the JTAG signals and nRST line are never driven by the debugger.

SYStem.state Display SYStem.state window

Displays the SYStem.state window.

Format: SYStem.Option.TriState [ON | OFF]

Format: SYStem.state
M32R Debugger and Trace | 18©1989-2024 Lauterbach

Trace specific Commands

SYStem.Option.BTM Enables program trace messages

Default: ON.

The option can be switched when the chip has trace support. When BTM is ON, the chip delivers program
trace messages.

SYStem.Option.DTM Enables data trace messages

Default: OFF.

The option can be used if the chip has trace support. When the option is set to READ|WRITE|READWRITE,
the CPU generates data trace messages, according to the selected access type.

SYStem.Option.STALL Trace message overrun control

Default: OFF.

The option can be set when the chip has trace support and defines the behavior that becomes active when
the chip intern trace message FIFO buffer gets full. Stall OFF will cause losing of messages when the buffer
overruns.

Format: SYStem.Option.BTM [ON | OFF]

Format: SYStem.Option.DTM [OFF | Read | Write | ReadWrite]

Format: SYStem.Option.STALL [ON | OFF]
M32R Debugger and Trace | 19©1989-2024 Lauterbach

SYStem.Option.TRCLK Trace output clock ratio

Default: 1/2.

The option can be set when the chip has trace support and defines the frequency of the trace output clock
based on the processor frequency. High frequencies can cause electrical connection problems during the
record of trace messages.

SYStem.Option.TRDATA Trace port width

Default: 8.

The option can be set when the chip has trace support and defines port width of the trace data. The
maximum is defined by the derivatives maximum trace pin count.

Format: SYStem.Option.TRCLK [1/8 | 1/4 | 1/3 | 1/2 | * 1 | *2 | *3 | *4]

Format: SYStem.Option.TRDATA [4 | 8]
M32R Debugger and Trace | 20©1989-2024 Lauterbach

TrOnchip

The OCE unit of the M32R allows to set on-chip breakpoints. The registers are controlled by TRACE32.
TRACE32 uses the on-chip trigger registers to perform on-chip breakpoints, which can be set in the
Data.List window or in the dialog Breakpoint.Set. The current user interface of TRACE32 offers many
possible configurations of the OCE unit. However the usable number of breakpoints is depending on the
device.

• Up to 32 program address breakpoints

(M32192: 4 program breakpoints)

• Up to 4 data address breakpoints

(M32192 : 4 data breakpoints)

The amount of range breakpoints is limited that’s why it is sometimes useful to set the
Break.CONFIG.InexactAddress option. When enabled, this option let transform range breakpoints into
normal, if necessary. The OCE can perform more operations than TRACE32 offers with it’s user interface
e.g. build a chain of breakpoints.

The on-chip trigger unit events can be also used to control the trace. The possible actions can be defined in
the Break.Set dialog. To control the trace unit an appropriate action has to be chosen for the Break.Set
command.

On-chip Breakpoints can stimulate the EVENT0 … 2 pins. These signals can be used as input events for the
Simple Trigger Unit (STU).

TrOnchip.RESet Resets all TO settings

Resets the trigger system to the default state.

b.s flags /TraceData ; Set up a filter for Data Trace
; (only with DTM option set to on)

b.s flags /TraceEnable ; Set up a filter for Program Trace

b.s main /TraceTrigger ; Set Watchpoint message to generate
; Trigger for the Trace analyzer

b.s main /BusTrigger ; Set Watchpoint message to generate a
; trigger pulse on the PodBus

b.s main /BusCount ; Set Watchpoint message to allow
; frequency counter feature

Format: TrOnchip.RESet
M32R Debugger and Trace | 21©1989-2024 Lauterbach

TrOnchip.state Opens configuration panel

Control panel to configure the on-chip breakpoint and trace registers. The details are described in section
TrOnchip.

Format: TrOnchip.state
M32R Debugger and Trace | 22©1989-2024 Lauterbach

Security Levels of the M32R Family

Security Level

Depending on the verification result and the security level, the following
accesses to the device is possible:

• Security ID code matches: Any access is possibly, there are no limitations

• Security ID code does not match:

Security Level 0: There is no access at all, even flashing is not possible. The debugger
generates an error message and remains in down state.

Security Level 1: The debugger reaches up state, but all read/write access to the Flash memory,
to RAM, to registers and peripherals are blocked. No command will be accepted, except a
special command to erase the complete Flash area. Any attempt to execute a command (except
the Flash erase command) will cause an error message.

The special Flash erase command takes care that just a complete erased Flash allows access to
the device by the default Security ID code.
M32R Debugger and Trace | 23©1989-2024 Lauterbach

Flash Erase if Device is secured

How to manage Flash erase if Security Level 1 is activated and the security key code is unknown?

• Close all windows on the screen and perform a SYstem.up.

• Enter diag 0x3000 0xF5 and wait until erasing is ready.

• Enter the default Security Code and system up the debugger or

just system up the debugger (default Security Code is used implicitly).

Another way is to clear the flash memory of the CPU by using the instruction

…/unsecure.

Now the device is open with a cleared Flash RAM.

The JTAG clock must be limited to 1/2 of the M32 core clock.

Buffers, additional loads or high capacities on the JTAG/COP lines
reduce the debug speed.

Trace related options only in case the device provides Trace capabilities.
M32R Debugger and Trace | 24©1989-2024 Lauterbach

General Restrictions and Hints

System.Up duration System.Up takes 1 … 2 s caused by the target CPU.
If a new trace port width is selected (4->8 or 8->4), next SYStem.Up
command takes a bit longer due to probe CPLD reprogramming.

ASM debugging in
hardware loops -
stepping

The debugger tries to step over delay slots. If the debugger is not
successful, set a software breakpoint after the hardware loop and use go
to step over the hardware loop.

HLL debugging in
optimized code

HLL debugging in optimized code is restricted. Source lines may be
assigned wrong, local variables may not be displayed.

Debugging with
interrupts

When IMASKHLL or IMASKASM is enabled the debugger won’t update
correctly the interrupt disable bit in the SR register in case the code
executed the DI instruction. Use SYStem.Option.IPLDI to switch the
behavior.

Ignore RESET Mon-
itoring

Normally the debugger monitors RESET and stops operation if RESET is
asserted. If one wants to disable RESET monitoring, he has to enter
DIAG 0x3000 0xB1 1
To allow RESET monitoring again, enter
DIAG 0x3000 0xB1 0 (default after startup)

External Watchdog
Timer

An external WDT must normally be turned off. For the case that it is not
possible, there are 2 solutions.
1. For the case the WDT can be feed by toggling a CPU pin:
DIAG 0x3000 0xEA <pin> (Example: DIAG 0x3000 0xEA 124.)
DIAG 0x3000 0xEB [0 | 1] (Example DIAG: 0x3000 0xEB 1 for on)
2. For the case the WDT must be feed by anyhow:
Refer to DATA.TIMER.SEQUENCE and similar instructions

By default external WDT support is not enabled.
M32R Debugger and Trace | 25©1989-2024 Lauterbach

Floating Point Formats

Integer Access Keywords

F24 Fractional fixed point 24 bit

F48 Fractional fixed point 48 bit

F16 Fractional fixed point 16 bit

F32 Fractional fixed point 32 bit

NOTE: Fractional floating point numbers are always displays with a fixed precision, i.e. a
fixed number of digits. Small fractional numbers can have many non relevant digits
displayed.

Word Word (16 bit)

TByte Triple byte (24 bit)

Long Double Word (32 bit), upper and lower word swapped

HByte Hexabyte (48 bit)

Quad Tertiary Word (64 bit), upper and lower word swapped
M32R Debugger and Trace | 26©1989-2024 Lauterbach

JTAG Connection

Mechanical Description of the 10-pin Debug Cable

This connector is defined by ARM and we recommend this connector for all future designs. Our debugger
“JTAG Debugger for StarCore” (LA-7845) is supplied with this connector:

This is a standard 10 pin double row connector (pin-to-pin spacing: 0.100 in.). We strongly recommend to
use a connector on your target with housing and having a center polarization (e.g. AMP: 2-827745-0). A
connection the other way around indeed causes damage to the output driver of the debugger.

Electrical Description of the 10-pin Debug Cable

• The input and output signals are 3.3 V TTL compatible.

VTREF is used as a sense line for the target voltage. It is also used as supply voltage for the
supply translating transceiver of the ICD interface to make an adaptation to the target voltage
(1.5 V) 1.8 … 3.3 V (3.6 V). On the newer debug cables (September 2003 and newer) it is used
as sense line, only.

• RST, TDI, TMS, TCK: In normal operation mode the driver is enabled, but it can be disabled to
give another tool access to the JTAG port. In environments where multiple tools can access the
JTAG port, it is required that there is a pull-up or pull-down resistor at TCK. This is to ensure that
TCK maintains its level during a hand-over between different tools.

• TDO is an ICD input. It is connected to the supply translating transceiver.

• RST (reset) is used by the debugger to reset the target CPU or to detect a reset on the target. It
is driven by an open collector buffer. A pull-up resistor is included in the ICD connector. The
debugger will only assert a pulse on nSRST when the SYStem.UP, the SYStem.Mode Go or the
SYStem.RESetOUT command is executed.

• DBI is an output which can force the CPU into debug mode by hardware.

• VCCTRB is an output and supplies the trace date buffer on the target. Normally 1.8 V.

• N/C (= Vsupply) is not connected in the ICD. This pin is used by debuggers of other
manufacturers for supply voltage input. The ICD is self-powered.

Signal Pin Pin Signal
TCK 1 2 GND
TDI 3 4 TDO

TMS 5 6 TRST-
DBI 7 8 VCCTRB (trace buffer)

VCC 9 10 RST-
M32R Debugger and Trace | 27©1989-2024 Lauterbach

Mechanical Description of the 20-pin Trace Connector

This connector is the standard for single M32R targets. For pure debug features, this connector is not
needed. Not using this connector does not impact debug features at all.

Signal Pin Pin Signal
TRCK 1 2 VSS

TRSYNC 3 4 TRDATA0
TRDATA1 5 6 VSS
TRDATA2 7 8 TRDATA3

VSS 9 10 TRDATA4
TRDATA5 11 12 VSS
TRDATA6 13 14 TRDATA7

VCC 15 16 EVENT0
EVENT1 17 18 EVENT2
EVENT3 19 20 N/C

Pins Connection Description Recommendations

1 TRCLK Trace Clock

2 VSS System Ground Plan Connect to digital ground.

3 TRSYNC TRace Sync. Strobe for valid Trace data.

4 TRDATA0 Trace data 0

5 TRDATA1 Trace data 1

6 VSS System Ground Plan Connect to digital ground.

7 TRDATA2 Trace data 2

8 TRDATA3 Trace data 3

9 VSS System Ground Plan Connect to digital ground.

10 TRDATA4 Trace data 4

11 TRDATA5 Trace data 5

12 VSS System Ground Plan Connect to digital ground.

13 TRDATA6 Trace data 5

14 TRDATA7 Trace data 6
M32R Debugger and Trace | 28©1989-2024 Lauterbach

15 VCC Target VCC Just used for voltage
reference.

16 EVENT0 Event output

17 EVENT1 Event output

18 EVENT2 Event output

19 EVENT3 Event output

20 N/C
M32R Debugger and Trace | 29©1989-2024 Lauterbach

Memory Classes

Memory Class Description

D,C Data memory. Memory seen from the cores point of view.

P Program memory.
M32R Debugger and Trace | 30©1989-2024 Lauterbach

	M32R Debugger and Trace
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Quick Start
	Troubleshooting
	SYStem.Up Errors
	Memory Access Errors

	FAQ
	CPU specific SYStem Settings and Restrictions
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CPU Select target CPU
	SYStem.JtagClock Define JTAG clock
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option Display SYStem window
	SYStem.Option.DBI Enables program break via debug interrupt
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.KEYCODE Code protection
	SYStem.Option.TriState Allow debugger to drive JTAG and reset
	SYStem.state Display SYStem.state window

	Trace specific Commands
	SYStem.Option.BTM Enables program trace messages
	SYStem.Option.DTM Enables data trace messages
	SYStem.Option.STALL Trace message overrun control
	SYStem.Option.TRCLK Trace output clock ratio
	SYStem.Option.TRDATA Trace port width

	TrOnchip
	TrOnchip.RESet Resets all TO settings
	TrOnchip.state Opens configuration panel

	Security Levels of the M32R Family
	Security Level
	Flash Erase if Device is secured
	General Restrictions and Hints
	Floating Point Formats
	Integer Access Keywords

	JTAG Connection
	Mechanical Description of the 10-pin Debug Cable
	Electrical Description of the 10-pin Debug Cable
	Mechanical Description of the 20-pin Trace Connector

	Memory Classes

