LAUTERBACH A

IPU Debugger

IPU Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~
PP U e r e e e re e e e eereeessmeeeeessmeeeeesssmeeeeessameeeeessenmeEeessesmeeeessssnmeeeeesssmeeessennereees r=

L o U 1= o ¥ T o = 1

L o T 11T o) 5

Brief Overview of Documents for New Users 5
L5 T 1T ' 6
Quick Start of the JTAG Debugger ... s s sssss s 7

LI 1810 (== o T 1T T 9
SYStem.Up Errors 9

- 9

IPU Specific Implementations ... i e 10
IPUS and IPUV Core Debugging in Heterogeneous SMP System 10
Heterogeneous Register Window 10
Heterogeneous Disassembler 10

IPU Specific Peripheral Files 11
Breakpoints 12
Software Breakpoints 12

On-chip Breakpoints for Instructions 12

On-chip Breakpoints for Data 12
Example for On-Chip Breakpoints 12

Memory Access Classes 13

CPU specific SYStem Commandscccccuiivemmrmminsmsmmmnssssmsss s ssssssssssssssssssssnas 14
SYStem.CONFIG.state Display target configuration 14
SYStem.CONFIG Configure debugger according to target topology 15
<parameters> describing the “DebugPort” 17
<parameters> describing the “JTAG” scan chain and signal behavior 20
<parameters> configuring a CoreSight Debug Access Port “DAP” 22
<parameters> describing debug and trace “Components” 25
SYStem.CPU Select the used CPU 29
SYStem.JtagClock Define JTAG frequency 29
©1989-2024 Lauterbach IPU Debugger 2

SYStem.LOCK

SYStem.MemAccess

SYStem.Mode
SYStem.Option.AHBHPROT
SYStem.Option.AXIACEEnable
SYStem.Option. AXICACHEFLAGS
SYStem.Option.AXIHPROT
SYStem.Option.DAPNOIRCHECK
SYStem.Option.DAPREMAP
SYStem.Option.DAPDBGPWRUPREQ
SYStem.Option.DAPSYSPWRUPREQ
SYStem.Option.DEBUGPORTOptions
SYStem.state

IPU Specific TrOnchip Commands
TrOnchip.Set.FINISH
TrOnchip.Set.POS
TrOnchip.Set.XPOS
TrOnchip.Set.YPOS
TrOnchip.RESet

TrOnchip.state

Tristate the JTAG port

Select run-time memory access method
Establish the communication with the target
Select AHB-AP HPROT bits

ACE enable flag of the AXI-AP
Configure AXI-AP cache bits

Select AXI-AP HPROT bits

No DAP instruction register check
Rearrange DAP memory map

Force debug power in DAP

Force system power in DAP

Options for debug port handling

Display SYStem.state window

Set 'Break on Finish' on-chip breakpoint

Set on-chip trigger for total pixel position

Set on-chip trigger for horizontal pixel position
Set on-chip trigger for vertical pixel position
Set on-chip trigger to default state

Display on-chip trigger window

31
32
33
33
33
34
35
35
35
36
36
37
38

39
39
39
39
40
40
40

©1989-2024 Lauterbach

IPU Debugger

3

IPU Debugger

Version 06-Jun-2024

©1989-2024 Lauterbach IPU Debugger | 4

Introduction

This manual serves as a guideline for debugging IPU (“Image Processing Unit”) core(s) via TRACE32.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

. “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

PRACTICE Script Language:
J “Training Script Language PRACTICE” (training_practice.pdf)
. “PRACTICE Script Language Reference Guide” (practice_ref.pdf)

©1989-2024 Lauterbach IPU Debugger | 5

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

IPU Debugger |

6

Quick Start of the JTAG Debugger

Starting up the debugger is done as follows:

1. Select the device prompt for the ICD Debugger and reset the system.

183 3

RESet

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: : to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings.

SYStem.CPU <cpu_type>

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

3. Inform the debugger about read-only address ranges (ROM, FLASH).

MAP.BOnchip 0x060000000++3FFFF

The B(reak)Onchip information is necessary to decide where on-chip breakpoints must be used. On-
chip breakpoints are necessary to set program breakpoints to FLASH/ROM.

4. Specify ranges where the access width is restricted.

MAP.BUS32 0x060000000++1FFFF

If a memory location can only be accessed with a certain bus width you can use Map.BUS8 / BUS16
/ BUS32 to force the debugger to use solely the according load or store instructions. This allows for
example to have a byte-by-byte dump of a 32 bit wide memory area, where a byte access would
cause an exception.

5. Enter debug mode.

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

©1989-2024 Lauterbach IPU Debugger | 7

6. Load the program.

Data.LOAD <file> /LONG

; load the compiler output.
;the option /LONG tells the
;debugger to use 32 bit accesses

The format of the Data.LOAD command depends on the file format generated by the compiler.

A detailed description of the Data.LOAD command and all available options is given in the “General

Commands Reference”.

A typical start sequence without EPROM simulator is shown below. This sequence can be written to a
PRACTICE script file (*.cmm, ASCII format) and executed with the command DO <file>.

B3 3
WinCLEAR
MAP.BOnchip 0x60000000++0xfffff

MAP.BUS32 0x50000000++0x1f£fff

SYStem.Up

Data.LOAD.elf xtensa_project
Register.Set PC _ResetVector

Register.Set al Ox63FFFFFC

List.Mix
Register.view /SpotLight

Frame.view /Locals /Caller

Var .Watch %SpotLight flags ast

Break.Set 0x60100000 /Program

Break.Set 0x60001000 /Program

7

I

Select the ICD device prompt
Clear all windows
Specify where FLASH/ROM is

Force the debugger to access this
area 32 bit wide

Reset the target and enter debug
mode

Load the application
Set the PC to start point

Set the stack pointer to address
0x63FFFFFC

Open source code window)
Open register window =)

Open the stack frame with
local variables)

Open watch window for variables *)

Set software breakpoint to address
0x60100000 (address 0x60100000
outside of BOnchip range)

Set on-chip breakpoint
to address 0x60001000 (address
0x60001000 is within BOnchip range)

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

IPU Debugger | 8

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command, this may have the following reasons:

FAQ

The target has no power.

The target is in reset.

The IPU core is not enabled.

There is logic added to the JTAG state machine.

There are additional loads or capacities on the JTAG lines.

There is a short circuit on at least one of the output lines of the core.

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach

IPU Debugger

9

https://support.lauterbach.com/kb

IPU Specific Implementations

IPUS and IPUV Core Debugging in Heterogeneous SMP System

There are the following types of IPU cores:
. IPUS (Scalar Image Processing Unit)

. IPUV (Vector Image Processing Unit)

Although IPUS and IPUV differ in core architecture and their sets of core and debug registers, TRACE32
supports to debug both core types simultaneously in one TRACE32 PowerView instance (t32mipu.exe). This
makes TRACE32 debugger for IPU a heterogeneous debug system.

The type of each core under debug is determined indirectly via the assignment of its respective base
address of the debug registers. See SYStem.CONFIG.IPUSDEBUG.Base for more details.

Heterogeneous Register Window

Although the two core types have different sets of CPU registers, one instance of TRACE32 PowerView for
IPU allows to debug both core types, i.e. IPUS and IPUV, simultaneously. TRACE32 PowerView
automatically adapts the registers that are displayed in each Register.view window according to the core
that it corresponds to.

Register.view /CORE 3. ;display register information from core 3

For details, see CORE.SHOWACTIVE.

Heterogeneous Disassembler

Although the two core types have different instruction sets, one instance of TRACE32 PowerView for IPU
allows to debug both core types, i.e. IPUS and IPUV, simultaneously. TRACES32 PowerView automatically
adapts each process of disassembly according to the core that it corresponds to.

List.Mix funcl /CORE 3. ;display source listing from core 3

For details, see CORE.SHOWACTIVE.

©1989-2024 Lauterbach IPU Debugger | 10

IPU Specific Peripheral Files

If the CPU S32V234-IPU is selected, then the additional menu IPU’s is added to the TRACE32 main menu
bar. The menu options provide quick access to the following IPU specific peripheral files (*.per):

. IPUSO, IPUS1, ... IPUS7: Access to debug, control and CPU registers of one of the 8 IPUS cores
on the S32V234 board.

o IPUVO, IPUV1, IPUV2, IPUV3: Access to debug, control and CPU registers of one of the 4 IPUV
cores on the S32V234 board.

. IPU_X: Generic peripheral file for all IPUS and IPUV cores on the S32V234 board. The file does
have the same structure and functional scope as any of the IPUS and IPUV files. However, the
content and structure that gets displayed is automatically adapted to the core that is currently
selected (e.g. via CORE.select command). So if for example IPUV core #2 is selected, then the
IPU_X peripheral file does have the structure of IPUV files and displays the content of IPUV core
#2.

. CTI IPUS / CTI IPUV: Allows to control the CTI (cross trigger interface) modules of the IPUS or
IPUV cores respectively.

M Window Help
o VSEQ 1
| o IPU_X

- IPUSD

- IPUSL

o IPUS2

o IPUS3

o IPUS4

o IPUSS

" IPUSE

o IPUST

o IPUVD

- IPUV1

o IPUV2

o IPUV3

o CTIIPUS

o CTIIPUV/APEX

For more information about peripheral files in general, refer to the PER command group.

©1989-2024 Lauterbach IPU Debugger | 11

Breakpoints

Software Breakpoints

Software breakpoints are currently not supported for IPU.

On-chip Breakpoints for Instructions

If on-chip breakpoints are used, the resources to set the breakpoints are provided by the CPU.

Each IPU core provides one on-chip breakpoint for instructions.

On-chip Breakpoints for Data

On-chip breakpoints are used to stop the CPU after a read or write access to a memory location.

Each IPU core provides one on-chip breakpoint for read- and one on-chip breakpoint for write accesses.

Example for On-Chip Breakpoints

The following is an example for setting standard on-chip breakpoints..

Break.Set 0x40 /Program ; On-chip instruction breakpoint
Break.Set 0x101000 /Read ; On-chip data breakpoint (read)
Break.Set 0x102000 /Write ; On-chip data breakpoint (write)

©1989-2024 Lauterbach IPU Debugger | 12

Memory Access Classes

The following ARM specific memory access classes are available.

Memory Description
P Program Memory
D Data Memory

To access a memory class, write the class in front of the address.

Example:

Data.dump D:0x0--0x3

The following IPU specific memory access class is available:

Memory

Description

DAP

Within the range DAP:0xE0000000--DAP:0xEO00FFF, the 12 lower bits
get interpreted as a relative offset. The actual absolute address is then
calculated by automatically adding up this offset and the base address of
the currently selected IPU core.

This has the advantage that the base address can be neglected as it will
be automatically added by the debugger.

Outside of the range DAP:0xE0000000--DAP:0xEO00FFF, the DAP
access class works like the D access class.

This access class can e.g. be used to observe certain memory ranges in a
Data.dump window and have the Data.dump window automatically switch
context when a different core is selected.

Furthermore the access class is used throughout the generic peripheral
file ~~/peripux.per in order to always address the debug registers of the
currently selected core.

Example: Comparison of D and DAP memory accesses:

Assume that active core has BaseAddress = 0x40022000

Memory access #1:
Memory access #2:

"D:0x40022040"
"DAP:0xE0000040"

Both memory accesses are directed to the same address!

Calculation:
Offset_access_2 =

0xE0000040 & OxFFF = 0x40

Actual absolute address of access 2 = BaseAddress + Offset_access_2 =
= 0x4002000 + Ox40 = 0x40022040

©1989-2024 Lauterbach

IPU Debugger | 13

CPU specific SYStem Commands

SYStem.CONFIG.state Display target configuration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: DebugPort | Jtag | DAP | COmponents

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort The DebugPort tab informs the debugger about the debug connector type

(default) and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see DebugPort.

Jtag The Jtag tab informs the debugger about the position of the Test Access
Ports (TAP) in the JTAG chain which the debugger needs to talk to in order
to access the debug and trace facilities on the chip.

For descriptions of the commands on the Jtag tab, see Jtag.

DAP The DAP tab informs the debugger about an ARM CoreSight Debug
Access Port (DAP) and about how to control the DAP to access chip-
internal memory busses (AHB, APB, AXI) or chip-internal JTAG interfaces.

For descriptions of the commands on the DAP tab, see DAP.

COmponents The COmponents tab informs the debugger (a) about the existence and
interconnection of on-chip CoreSight debug and trace modules and (b)
informs the debugger on which memory bus and at which base address
the debugger can find the control registers of the modules.

For descriptions of the commands on the COmponents tab, see
COmponents.

©1989-2024 Lauterbach IPU Debugger | 14

SYStem.CONFIG

Configure debugger according to target topology

Format:

<parameter>:
(DebugPort)

<parameters:
(JTAG)

<parameter>:
(DAP)

<parameters:
(COmponents)

SYStem.CONFIG <parameter>

CJTAGFLAGS <flags>
CJTAGTCA <value>
CONNECTOR [MIPI34 | MIPI20T]
CORE <core> <chip>
CoreNumber <number>
DEBUGPORT [DebugCable0]
DEBUGPORTTYPE [JTAG | SWD]
Slave [ON | OFF]

SWDP [ON | OFF]

TriState [ON | OFF]

DAPDRPOST <bits>
DAPDRPRE <bits>
DAPIRPOST <bits>
DAPIRPRE <bits>
Slave [ON | OFF]
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]

AHBACCESSPORT <port>
APBACCESSPORT <port>
AXIACCESSPORT <port>
COREJTAGPORT <port>
DEBUGACCESSPORT <port>
JTAGACCESSPORT <port>
MEMORYACCESSPORT <port>

CTl.Base <address>

CTI.Config [NONE | ARMV1 | ARMPostinit | OMAP3 | TMS570 | CortexV1 |
Qv1i]

CTI.RESET

IPUSDEBUG.Base <address>

IPUSDEBUG.RESET

IPUVDEBUG.Base <address>

IPUVDEBUG.RESET

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

The SYStem.CONFIG command information shall be provided after the SYStem.CPU command, which
might be a precondition to enter certain SYStem.CONFIG commands, and before you start up the debug
session e.g. by SYStem.Up.

©1989-2024 Lauterbach

IPU Debugger | 15

Syntax Remarks

The commands are not case sensitive. Capital letters show how the command can be shortened.
Example: “SYStem.CONFIG.IPUSDEBUG.Base 0x1000” -> “SYS.CONFIG.IPUSDEBUG.B 0x1000”

The dots after “SYStem.CONFIG” can alternatively be a blank.
Example:
“SYStem.CONFIG.IPUSDEBUG.Base 0x1000” or “SYStem.CONFIG IPUSDEBUG Base 0x1000”.

©1989-2024 Lauterbach IPU Debugger | 16

<parameters> describing the “DebugPort”

CJTAGFLAGS Activates bug fixes for “cJTAG” implementations.
<flags> Bit 0: Disable scanning of cJTAG ID.

Bit 1: Target has no “keeper”.

Bit 2: Inverted meaning of SREDGE register.

Bit 3: Old command opcodes.

Bit 4: Unlock cJTAG via APFC register.

Default: 0
CJTAGTCA <value> Selects the TCA (TAP Controller Address) to address a device in a

cJTAG Star-2 configuration. The Star-2 configuration requires a unique
TCA for each device on the debug port.

CONNECTOR Specifies the connector “MIPI34” or “MIPI20T” on the target. This is
[MIPI34 | MIPI20T] mainly needed in order to notify the trace pin location.
Default: MIPI34 if CombiProbe is used, MIPI20T if yTrace (MicroTrace) is
used.
CORE <core> The command helps to identify debug and trace resources which are
<chip> commonly used by different cores. The command might be required in a

multicore environment if you use multiple debugger instances (multiple
TRACE32 PowerView GUIs) to simultaneously debug different cores on
the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2

each debugger instance assumes that all notified debug and trace
resources can exclusively be used.

But some target systems have shared resources for different cores, for
example a common trace port. The default setting causes that each
debugger instance controls the same trace port. Sometimes it does not
hurt if such a module is controlled twice. But sometimes it is a must to tell
the debugger that these cores share resources on the same <chip>.
Whereby the “chip” does not need to be identical with the device on your
target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1

©1989-2024 Lauterbach IPU Debugger | 17

CORE <core>
<chip>

(cont.)

CoreNumber
<number>

DEBUGPORT
[DebugCable0]

DEBUGPORTTYPE
[JTAG | SWD]

Slave [ON | OFF]

For cores on the same <chip>, the debugger assumes that the cores
share the same resource if the control registers of the resource have the
same address.

Default:

<core> depends on CPU selection, usually 1.

<chip> derives from CORE= parameter in the configuration file
(config.t32), usually 1. If you start multiple debugger instances with the
help of t32start.exe, you will get ascending values (1, 2, 3,...).

Number of cores to be considered in an SMP (symmetric
multiprocessing) debug session. There are core types like
ARM11MPCore, CortexA5SMPCore, CortexA9MPCore and Scorpion
which can be used as a single core processor or as a scalable multicore
processor of the same type. If you intend to debug more than one such
core in an SMP debug session you need to specify the number of cores
you intend to debug.

Default: 1.

It specifies which probe cable shall be used e.g. “DebugCable0”. At the
moment only the CombiProbe allows to connect more than one probe
cable.

Default: depends on detection.

It specifies the used debug port type “UTAG”, “SWD”. It assumes the
selected type is supported by the target.

Default: JTAG.

If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
NnTRST and nSRST (nNRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF; ON if CORE=... >1 in config file (e.g. config.t32).

©1989-2024 Lauterbach

IPU Debugger | 18

SWDP [ON | OFF]

TriState [ON | OFF]

With this command you can change from the normal JTAG interface to
the serial wire debug mode. SWDP (Serial Wire Debug Port) uses just
two signals instead of five. It is required that the target and the debugger
hard- and software supports this interface.

Default: OFF.

TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.

Please note:

. nTRST must have a pull-up resistor on the target.

. TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.
Default: OFF.

©1989-2024 Lauterbach

IPU Debugger | 19

<parameters> describing the “JTAG” scan chain and signal behavior

With the JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

NTRST (reset)

TCK (clock)

TMS (state machine control)
TDI (data input)

TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to. The TAP position can be defined
with the first four commands in the table below.

DAPDRPOST <bits> Defines the DAP (Debug Access Port) TAP position in a JTAG scan chain.
Number of TAPs in the JTAG chain between the TDI signal and the TAP
you are describing. In BYPASS mode, each TAP contributes one data
register bit. See possible TAP types and example below.

Default: 0.

DAPDRPRE <bits> Defines the DAP (Debug Access Port) TAP position in a JTAG scan chain.
Number of TAPs in the JTAG chain between the TAP you are describing
and the TDO signal. In BYPASS mode, each TAP contributes one data
register bit. See possible TAP types and example below.

Default: 0.

DAPIRPOST <bits> Defines the DAP (Debug Access Port) TAP position in a JTAG scan chain.
Number of Instruction Register (IR) bits of all TAPs in the JTAG chain
between TDI signal and the TAP you are describing. See possible TAP
types and example below.

Default: 0.

DAPIRPRE <bits> Defines the DAP (Debug Access Port) TAP position in a JTAG scan chain.
Number of Instruction Register (IR) bits of all TAPs in the JTAG chain
between the TAP you are describing and the TDO signal. See possible
TAP types and example below.

Default: 0.

NOTE: If you are not sure about your settings concerning DAPIRPRE, DAPIRPOST,
DAPDRPRE, and DAPDRPOST, you can try to detect the settings automatically
withSYStem.DETECT.DaisyChain or SYStem.DETECT.SHOWChain.

©1989-2024 Lauterbach IPU Debugger | 20

Slave [ON | OFF]

TAPState <state>

TCKLevel <level>

TriState [ON | OFF]

TAP Types:

If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
NTRST and nSRST (nNRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF; ON if CORE=... >1 in configuration file (e.g. config.t32).

This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.
0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan

5 Update-DR

6 Capture-DR

7 Select-DR-Scan

8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle

13 Update-IR

14 Capture-IR

15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.
Default: 0.

TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.

Please note:

] nTRST must have a pull-up resistor on the target.

] TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.
Default: OFF.

Core TAP providing access to the debug register of the core you intend to debug.
-> DRPOST, DRPRE, IRPOST, IRPRE.

DAP (Debug Access Port) TAP providing access to the debug register of the core you intend to debug. It
might be needed additionally to a Core TAP if the DAP is only used to access memory and not to access the

core debug register.

-> DAPDRPOST, DAPDRPRE, DAPIRPOST, DAPIRPRE.

©1989-2024 Lauterbach

IPU Debugger | 21

<parameters> configuring a CoreSight Debug Access Port “DAP”

A Debug Access Port (DAP) is a CoreSight module from ARM which provides access via its debugport
(JTAG, cJTAG, SWD) to:

1. Different memory busses (AHB, APB, AXI). This is especially important if the on-chip debug
register needs to be accessed this way. You can access the memory buses by using certain
access es with the debugger commands: “AHB:”, “APB:”, “AXI:, “DAP”, “E:”. The interface to
these buses is called Memory Access Port (MEM-AP).

2. Other, chip-internal JTAG interfaces. This is especially important if the core you intend to debug
is connected to such an internal JTAG interface. The module controlling these JTAG interfaces is
called JTAG Access Port (JTAG-AP). Each JTAG-AP can control up to 8 internal JTAG interfaces.
A port number between 0 and 7 denotes the JTAG interfaces to be addressed.

3. At emulation or simulation system with using bus transactors the access to the busses must be
specified by using the transactor identification name instead using the access port commands.
For emulations/simulations with a DAP transactor the individual bus transactor name don’t need
to be configured. Instead of this the DAP transactor name need to be passed and the regular
access ports to the busses.

©1989-2024 Lauterbach IPU Debugger | 22

Example:

A
Chip §~ System Memory
<
) A
>
@
Debug Access Port (DAP) GE) .
3 @ Debug Register ‘
7 <
%) <
& Memory Access Port ®
(MEM-AP) a
v g)
=h ﬂ Trace Register ‘
o
_ 1> I\I/\I/legwl\?lrx PAccess Port < >
g Debug Port ()
D JTAG or ROM Table ‘
2 c¢JTAG or
(=] SWD v
0 JTAG
A JTAG Access Port ¢ : ’
(JTAG-AP) o
7 JTAG ARM9
A A
1 1
1 1
1 1
1 1
1 1
AHBACCESSPORT 0 COREJTAGPORT 7
MEMORYACCESSPORT 0

APBACCESSPORT 1
DEBUGACCESSPORT 1
JTAGACCESSPORT 2

AHBACCESSPORT <port> DAP access port number (0-255) which shall be used for “AHB:”
access class. Default: <port>=0.

APBACCESSPORT <port> DAP access port number (0-255) which shall be used for “APB:”
access class. Default: <port>=1.

AXIACCESSPORT <port> DAP access port number (0-255) which shall be used for “AXI:”
access class. Default: port not available

COREJTAGPORT <port> JTAG-AP port number (0-7) connected to the core which shall be
debugged.

©1989-2024 Lauterbach IPU Debugger | 23

DEBUGACCESSPORT
<port>
JTAGACCESSPORT <port>

MEMORYACCESSPORT
<port>

DAP access port number (0-255) where the debug register can
be found (typically on APB). Used for “DAP:” access class.
Default: <port>=1.

DAP access port number (0-255) of the JTAG Access Port.

DAP access port number where system memory can be
accessed even during runtime (typically on AHB). Used for “E:”

access while running, assuming “SY Stem.MemoryAccess DAP”.

Default: <port>=0.

©1989-2024 Lauterbach

IPU Debugger |

24

<parameters> describing debug and trace “Components”

Using the commands on the COmponents tab of the SYStem.CONFIG.state window , you can add the
configurations of base addresses for the IPUS and IPUV cores you want to debug.

IPUSDEBUG.Base Base address for debug registers of IPUS (IPU scalar) cores.

{<address>} This command informs the debugger about the start address of the
register block of the component. And this way it notifies the existence of
the component. An on-chip debug and trace component typically
provides a control register block which needs to be accessed by the
debugger to control this component.

Example assuming one IPUS core:
SYStem.CONFIG.IPUSDEBUG D:0x40022000

Meaning: The control register block of the IPUS core #0 starts at address
0x40022000 and is accessible via the data access class D.

For an IPU debugger, the following components are available: IPUSDEBUG,
IPUVDEBUG, CTI.

Example assuming four IPUV cores:
SYStem.CONFIG.IPUVDEBUG.Base 0x40042000 0x40043000
0x40044000 0x40045000

IPUVDEBUG.Base Base address for debug registers of IPUV (IPU vector) cores.
{<address>} See IPUSDEBUG.BASE

... .RESET Undo the configuration for this component. This does not cause a physical
reset for the component on the chip.

CTI.Config <type> Informs about the interconnection of the core Cross Trigger Interfaces
(CTI) - ARM CoreSight module. Certain ways of interconnection are
common and these are supported by the debugger e.g. to synchronously
halt (and sometimes also to start) multiple cores.

For a description of the available types, see table below.

CTl.Base <address> Informs the debugger about the start address of the register block of the
CTIl module.

©1989-2024 Lauterbach IPU Debugger | 25

Available CTl.Config <types>

NONE The CTl is not used by the debugger.

ARMVA1 This mode is used for ARM7/9/11 cores which support synchronous halt,
only.

ARMPostinit Like ARMV1 but the CTI connection differs from the ARM
recommendation.

OMAP3 This mode is not yet used.

TMS570 Used for a certain CTI connection used on a TMS570 derivative.

CortexV1 The CTI will be configured for synchronous start and stop via CTI. It
assumes the connection of DBGRQ, DBGACK, DBGRESTART signals to
CTI are done as recommended by ARM. The CTIBASE must be notified.
CortexV1 is the default value if a Cortex-A/R core is selected and the
CTIBASE is notified.

Qv1 This mode is not yet used.

ARMV8V1 Channel 0 and 1 of the CTM are used to distribute start/stop events from
and to the CTls. ARMvS8 only.

ARMV8V2 Channel 2 and 3 of the CTM are used to distribute start/stop events from
and to the CTls. ARMvS8 only.

About the Configuration Examples

The configuration steps can either be performed via the TRACE32 PowerView GUI, the TRACE32
command line, or a PRACTICE script (*.cmm). Scripting the commands has the advantage that you do not
need to manually enter the configuration again for future debug sessions.

Next:
J “Example - Configuring IPU Components via the GUI”, page 27
. “Example - Configuring IPU Components via the TRACE32 Command Line”, page 28

©1989-2024 Lauterbach

IPU Debugger | 26

Example - Configuring IPU Components via the GUI

To configure the base address for one or multiple IPUS cores:
1. Click the COmponents tab in the SYStem.CONFIG.state window.
&2 B::SYStem CONFIG state =N

|DebugP0rt ” Itag H DAP || COmponent5|

’— Select components to display - vl

2. Select IPUSDEBUG from the drop-down list.
&2 B::SYStem.CONFIG state =n| Wl <

|DebugP0rt ” Itag ” DAP " COmponents |

l— Select components to display - v]

- Select components to display -
CTI

" [PUSDEBUG

IPUVDEBUG

A new section named IPUSDEBUG appears.
&2 B::SYStem.CONFIG state =n| Wl <

|DebugP0rt ” Itag ” DAP " COmponents |

’— Select components to display - v]

IPUSDEBUG

Base E]

3. Add one or multiple base addresses in the Base field.

- For more details about the syntax, see “Example - Configuring IPU Components via the
TRACE32 Command Line”, page 28.

- The button with the three dots copies the corresponding command to the command line. The
command can now, for example, be copied and pasted into a PRACTICE script (*.cmm) for

re-use.

©1989-2024 Lauterbach IPU Debugger | 27

Example - Configuring IPU Components via the TRACE32 Command Line

Each configuration can be done by a command that is executed in the command line.

B::5¥5tem. CONFIG. IPUSDEBUG. Base |
Address: DAP:0x0

[okl | [<address> | [<value> |

You can have several of the following components: IPUSDEBUG and IPUVDEBUG.

The <address> parameter can be just an address (e.g. 0x80001000), or you can add the access class in
front (e.g. D:0x40022000). Without access class, the address gets the command specific default access
class, which is “DAP:” in most cases.

Configuration of the base addresses of the following IPU cores:
. 4 |PUS cores with base addresses 0x40022000, 0x40023000, 0x40024000, and 0x40025000
. 2 IPUV cores with base addresses 0x40042000 and 0x40043000

SYStem.CONFIG.IPUSDEBUG.Base 0x40022000 0x40023000 0x40024000 0x40025000
SYStem.CONFIG.IPUVDEBUG.Base 0x40042000 0x40043000

The configuration result can be seen on the COmponents tab of the SYStem.CONFIG.state window:

&2 B::SYStem.CONFIG state =n| Wl <

|DebugP0rt ” Itag ” DAP " COmponents |

|— Select components to display - v|

IPUSDEBUG
Base(s) DAP:0x40022000 DAP:0x40023000 DAP:0x40024000 DAP: l:l
IPUVDEBUG
Base(s) DAP:0x40042000 DAP:0x40043000 DAP:0x0 DAP:0x0 DAP: l:l

©1989-2024 Lauterbach IPU Debugger | 28

SYStem.CPU Select the used CPU

Format: SYStem.CPU <cpu>

<cpu>: IPU | S32V234-IPU

Selecting S32V234-IPU configures TRACE32 PowerView for debugging IPU cores on an NXP S32V234
board. The debugger automatically loads configuration that is necessary to debug the full cluster of 8 IPUS
and 4 IPUV cores.

SYStem.JtagClock Define JTAG frequency
Format: SYStem.JtagClock [<frequency> | RTCK]
<frequency>: 10000. ... 40000000.
1250000. | 2500000. | 5000000. | 10000000. (on obsolete ICD hardware)

Default frequency: 10 MHz.

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer.

<frequency> The debugger cannot select all frequencies accurately. It chooses the
next possible frequency and displays the real value in the SYStem.state
window.
Besides a decimal number like “100000.” short forms like “10kHz” or
“15MHz” can also be used. The short forms imply a decimal value,

“

although no “ is used.

©1989-2024 Lauterbach IPU Debugger | 29

ARTCK The JTAG interface of the IPU does not offer RTCK (Returned TCK).
However, in multicore applications with ARM, RTCK can be used to
control the JTAG clock.

Accelerated method to control the JTAG clock by the RTCK signal
(Accelerated Returned TCK).

RTCK mode allows theoretical frequencies up to 1/6 (ARM7, ARM9) or 1/8
(ARM11) of the processor clock. For designs using a very low processor
clock we offer a different mode (ARTCK) which does not work as
recommended by ARM and might not work on all target systems. In ARTCK
mode the debugger uses a fixed JTAG frequency for TCK, independent of
the RTCK signal. This frequency must be specified by the user and has to be
below 1/3 of the processor clock speed. TDI and TMS will be delayed by 1/2
TCK clock cycle. TDO will be sampled with RTCK

CRTCK The JTAG interface of the IPU does not offer RTCK (Returned TCK).
However, in multicore applications with ARM, RTCK can be used to
control the JTAG clock.

With this option higher JTAG speeds can be reached. The TDO signal will be
sampled by the RTCK signal. This compensates the debugger-internal driver
propagation delays, the delays on the cable and on the target
(Compensation by RTCK). This feature requires that the target provides an
RTCK signal. In contrast to the RTCK option, the TCK is always output with
the selected, fixed frequency.

CTCK The JTAG interface of the IPU does not offer RTCK (Returned TCK).
However, in multicore applications with ARM, RTCK can be used to
control the JTAG clock.

With this option higher JTAG speeds can be reached. The TDO signal will be
sampled by a signal which derives from TCK, but which is timely
compensated regarding the debugger-internal driver propagation delays
(Compensation by TCK). This feature can be used with a debug cable
versions 3b or newer. If it is selected, although the debug cable is not
suitable, a fix JTAG clock will be selected instead (minimum of 10 MHz and
selected clock).

©1989-2024 Lauterbach IPU Debugger | 30

RTCK

SYStem.LOCK

The JTAG interface of the IPU does not offer RTCK (Returned TCK).
However, in multicore applications with ARM, RTCK can be used to
control the JTAG clock.

On some processor derivatives, there is the need to synchronize the
processor clock and the JTAG clock. In this case RTCK shall be selected.
Synchronization is maintained, because the debugger does not progress
to the next TCK edge until after an RTCK edge is received.

In case you have a processor derivative requiring a synchronization of
the processor clock and the JTAG clock, but your target does not provide
an RTCK signal, you need to select a fix JTAG clock below 1/6 of the
processor clock (ARM7, ARM9), below 1/8 of the processor clock
(ARM11), respectively.

When RTCK is selected, the frequency depends on the processor clock and

on the propagation delays. The maximum reachable frequency is about
16 MHz.

Tristate the JTAG port

Format:

SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the JTAG port will be performed by the debugger. While locked the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the IPU core JTAG state machine remains unchanged while the system
is locked. To ensure correct hand-over, the options SYStem.CONFIG TAPState and SYStem.CONFIG
TCKLevel must be set properly. They define the TAP state and TCK level which is selected when the
debugger switches to tristate mode.

©1989-2024 Lauterbach

IPU Debugger | 31

SYStem.MemAccess

Select run-time memory access method

Format:

<mode>:

SYStem.MemAccess <mode>

Denied
StopAndGo

Default: Denied.

If SYStem.MemAccess is not Denied, it is possible to read from memory, to write to memory and to set
software breakpoints while the CPU is executing the program.

DAP

Denied

StopAndGo

A run-time memory access is done via a Memory Access Port (MEM-AP) of
the Debug Access Port (DAP). This is only possible if a DAP is available on
the chip and if the memory bus is connected to it (ARM Cortex, CoreSight).
The debugger uses the AXI MEM-AP specified by SYStem.CONFIG
AXIACCESSPORT if available, the MEM-AP (typically AHB) specified by
SYStem.CONFIG MEMORYACCESSPORT otherwise.

No memory access is possible while the CPU is executing the program.

Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

For more information, see below.

If specific windows that display memory or variables should be updated while the program is running, select
the memory access class E: or the format option %E.

Data.dump E:0x100

Var.View %E first

©1989-2024 Lauterbach

IPU Debugger | 32

SYStem.Mode Establish the communication with the target

Format: SYStem.Mode <mode>
<mode>: Down
Attach
Up
Down Disables the debugger (default). The state of the CPU remains

unchanged. The JTAG port is tristated.

Attach User program remains running (no reset) and the debug mode is
activated. After this command the user program can be stopped with the
break command or if any break condition occurs.

Up Resets the target, sets the CPU to debug mode and stops the CPU. After
the execution of this command the CPU is stopped and all register are
set to the default level.

SYStem.Option. AHBHPROT Select AHB-AP HPROT bits
Format: SYStem.Option.AHBHPROT <value>
Default: 0

Selects the value used for the HPROT bits in the Control Status Word (CSW) of an AHB Access Port of a
DAP, when using the AHB: memory class.

SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP
Format: SYStem.Option.AXIACEEnable [ON | OFF]
Default: OFF.

Enables ACE transactions on the DAP AXI-AP, including barriers. This does only work if the debug logic of
the target CPU implements coherent AXI accesses. Otherwise this option will be without effect.

©1989-2024 Lauterbach IPU Debugger | 33

SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits

Format: SYStem.Option.AXICACHEFLAGS <value>
<value>: DeviceSYStem
NonCacheableSYStem

ReadAllocateNonShareable
ReadAllocatelnnerShareable
ReadAllocateOuterShareable
WriteAllocateNonShareable
WriteAllocatelnnerShareable
WriteAllocateOuterShareable
ReadWriteAllocateNonShareable
ReadWriteAllocatelnnerShareable
ReadWriteAllocateOuterShareable

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0)

This option configures the value used for the Cache and Domain bits in the Control Status Word
(CSW[27:24]->Cache, CSW[14:13]->Domain) of an AXI Access Port of a DAP, when using the AXI: memory
class.

The below offered selection options are all non-bufferable. Alternatively you can enter a <value>, where
value[5:4] determines the Domain bits and value[3:0] the Cache bits.

DeviceSYStem =0x30: Domain=0x3, Cache=0x0
NonCacheableSYStem =0x32: Domain=0x3, Cache=0x2
ReadAllocateNonShareable =0x06: Domain=0x0, Cache=0x6
ReadAllocatelnnerShareable =0x16: Domain=0x1, Cache=0x6
ReadAllocateOuterShareable =0x26: Domain=0x2, Cache=0x6
WriteAllocateNonShareable =0x0A: Domain=0x0, Cache=0xA
WriteAllocatelnnerShareable =0x1A: Domain=0x1, Cache=0xA
WriteAllocateOuterShareable =0x2A: Domain=0x2, Cache=0xA
ReadWriteAllocateNonShareable =0x0E: Domain=0x0, Cache=0xE
ReadWriteAllocatelnnerShareable =0x1E: Domain=0x1, Cache=0xE
ReadWriteAllocateOuterShareable =0x2E: Domain=0x2, Cache=0xE

©1989-2024 Lauterbach IPU Debugger | 34

SYStem.Option.AXIHPROT Select AXI-AP HPROT bits

Format: SYStem.Option.AXIHPROT <value>

Default: 0

This option selects the value used for the HPROT bits in the Control Status Word (CSW) of an AXI Access
Port of a DAP, when using the AXI: memory class.

SYStem.Option.DAPNOIRCHECK No DAP instruction register check
Format: SYStem.Option.DAPNOIRCHECK [ON | OFF]
Default: OFF.

Bug fix for derivatives which do not return the correct pattern on a DAP (Arm CoreSight Debug Access Port)
instruction register (IR) scan. When activated, the returned pattern will not be checked by the debugger.

SYStem.Option.DAPREMAP Rearrange DAP memory map

Format: SYStem.Option.DAPREMAP {<address_range> <address>}

The Debug Access Port (DAP) can be used for memory access during runtime. If the mapping on the DAP is
different than the processor view, then this re-mapping command can be used

NOTE: Up to 16 <address_range>/<address> pairs are possible. Each pair has to
contain an address range followed by a single address.

©1989-2024 Lauterbach IPU Debugger | 35

SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP

Format: SYStem.Option.DAPDBGPWRUPREQ [ON | AlwaysON | OFF]

Default: ON.

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start because debug power is mandatory for debugger operation.

ON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is not released at the end of the debug session, and the
control bit is set to 0.

OFF Only for test purposes: Debug power is not requested and not checked by
the debugger. The control bit is set to 0.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAPDBGPWRUPREQ is set to

AlwaysON.
SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
Format: SYStem.Option.DAPSYSPWRUPREQ [AlwaysON | ON | OFF]
Default: ON.

©1989-2024 Lauterbach IPU Debugger | 36

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
during and after the debug session

AlwaysON System power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The system power is not released at the end of the debug session, and
the control bit remains at 1.
ON System power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.
OFF System power is not requested by the debugger on a debug session
start, and the control bit is set to 0.
SYStem.Option.DEBUGPORTOptions Options for debug port handling
Format: SYStem.Option.DEBUGPORTOptions <option>
<option>: SWITCHTOSWD.[TryAll | None | JtagToSwd | LuminaryJtagToSwd | Dor-
mantToSwd | JtagToDormantToSwd]
SWDTRSTKEEP.[DEFault | LOW | HIGH]

Default: SWITCHTOSWD.TryAll, SWDTRSTKEEP.DEFault.

See Arm CoreSight manuals to understand the used terms and abbreviations and what is going on here.

SWITCHTOSWD tells the debugger what to do in order to switch the debug port to serial wire mode:

TryAll

Try all switching methods in the order they are listed below. This is
the default. Normally it does not hurt to try improper switching
sequences. Therefore this succeeds in most cases.

None

There is no switching sequence required. The SW-DP is ready
after power-up. The debug port of this device can only be used as
SW-DP.

JtagToSwd

Switching procedure as it is required on SWJ-DP without a
dormant state. The device is in JTAG mode after power-up.

LuminaryJtagToSwd

Switching procedure as it is required on devices from
LuminaryMicro. The device is in JTAG mode after power-up.

©1989-2024 Lauterbach

IPU Debugger | 37

DormantToSwd Switching procedure which is required if the device starts up in
dormant state. The device has a dormant state but does not
support JTAG.

JtagToDormantToSwd Switching procedure as it is required on SWJ-DP with a dormant
state. The device is in JTAG mode after power-up.

SWDTRSTKEERP tells the debugger what to do with the nTRST signal on the debug connector during serial
wire operation. This signal is not required for the serial wire mode but might have effect on some target
boards, so that it needs to have a certain signal level.

DEFault Use nTRST the same way as in JTAG mode which is typically a low-pulse
on debugger start-up followed by keeping it high.

LOwW Keep nTRST low during serial wire operation.
HIGH Keep nTRST high during serial wire operation

SYStem.state Display SYStem.state window
Format: SYStem.state

Displays the SYStem.state window for system settings that configure debugger and target behavior.

©1989-2024 Lauterbach IPU Debugger | 38

IPU Specific TrOnchip Commands

The TrOnchip command provides low-level access to the on-chip debug register.

TrOnchip.Set.FINISH Set "Break on Finish" on-chip breakpoint

Format: TrOnchip.Set.FINISH [ON | OFF]

Activates the ‘Break on Finish’ on-chip breakpoint.

The CPU stops the application execution at the ‘Break on Finish’ on-chip breakpoint after the processing of
a line is finished and a line-done event was generated by the pixel-done instruction.

TrOnchip.Set.POS Set on-chip trigger for total pixel position

Format: TrOnchip.Set.POS [ON | OFF]

Activates the ‘Pixel Position’ on-chip breakpoint.

The CPU stops the application execution at the ‘Pixel Position” on-chip breakpoint when any instruction is
executed at a certain pixel position. The pixel position must be pre-defined by the TrOnchip.Set.XPOS and
TrOnchip.Set.YPOS commands. Application execution is stopped when the values for both XPOS and
YPOS match.

TrOnchip.Set.XPOS Set on-chip trigger for horizontal pixel position

Format: TrOnchip.Set.XPOS [ON | OFF | <value>]

Activates the on-chip breakpoint for horizontal pixel position.

The CPU stops the application execution when any instruction is executed at a pixel with the number defined
by <value>.

©1989-2024 Lauterbach IPU Debugger | 39

TrOnchip.Set.YPOS Set on-chip trigger for vertical pixel position

Format: TrOnchip.Set.YPOS [ON | OFF | <value>]

Activates the on-chip breakpoint for vertical pixel position.

The CPU stops the application execution when any instruction is executed in a pixel line with the number
defined by <value>.

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

[B:TrOnchip.state EI@
TrOnchip

RESet

XPOS5 0.
¥| YPDS 5.
POS

| FINISH

©1989-2024 Lauterbach IPU Debugger | 40

	IPU Debugger
	Introduction
	Brief Overview of Documents for New Users

	Warning
	Quick Start of the JTAG Debugger
	Troubleshooting
	SYStem.Up Errors

	FAQ
	IPU Specific Implementations
	IPUS and IPUV Core Debugging in Heterogeneous SMP System
	Heterogeneous Register Window
	Heterogeneous Disassembler

	IPU Specific Peripheral Files
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints for Instructions
	On-chip Breakpoints for Data
	Example for On-Chip Breakpoints

	Memory Access Classes

	CPU specific SYStem Commands
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior
	<parameters> configuring a CoreSight Debug Access Port “DAP”
	<parameters> describing debug and trace “Components”

	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define JTAG frequency
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option.AHBHPROT Select AHB-AP HPROT bits
	SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP
	SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits
	SYStem.Option.AXIHPROT Select AXI-AP HPROT bits
	SYStem.Option.DAPNOIRCHECK No DAP instruction register check
	SYStem.Option.DAPREMAP Rearrange DAP memory map
	SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP
	SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
	SYStem.Option.DEBUGPORTOptions Options for debug port handling
	SYStem.state Display SYStem.state window

	IPU Specific TrOnchip Commands
	TrOnchip.Set.FINISH Set "Break on Finish" on-chip breakpoint
	TrOnchip.Set.POS Set on-chip trigger for total pixel position
	TrOnchip.Set.XPOS Set on-chip trigger for horizontal pixel position
	TrOnchip.Set.YPOS Set on-chip trigger for vertical pixel position
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.state Display on-chip trigger window

