LAUTERBACH A

MCS12 Debugger

MCS12 Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~
1L PP r=
L0230 2 7T o ¥ T o = 1
Brief Overview of Documents for New USErsccccoiiiiircecerresssmeerssssemeesesssmse s eensanes 5
L= o 1 ' 6

LI 1810 (== o T 1T T 7
SYStem.Up Errors 7

£ 7

CPU Specific Implementations ... s s sssnes 8
Breakpoints 8
Software Breakpoints 8
On-chip Breakpoints 8

Quick Start of the ICD Debugger for HC12 ... ssae s 9

1. Prepare the Start 9

2. Select the Clock for the BDM Communication 10

3. Configure the Debugger according to the Needs of the Application 10

4. Map the EPROM Simulator if Available (optional) 11

5. Tell the Debugger Where it should use On-chip Breakpoints (optional) 11

6. Enter Debug Mode 11

7. Load the Program 12

8. Initialize Program Counter and Stackpointer 12

9. View the Source Code 13

CPU specific SYStem Settings and Restrictionsccccciiiiicmnnnnncnnnnnnesnnsceenns 15
Restrictions 15
SYStem.BdmClock Select clock for BDM communication 16
SYStem.CONFIG Configure debugger according to target topology 16
SYStem.CPU Select CPU type 17
SYStem.LOCK Lock and tristate the debug port 17
SYStem.MemAccess Select run-time memory access method 17
SYStem.Mode Select target reset mode 18
©1989-2024 Lauterbach MCS12 Debugger 2

SYStem.Option.BASE Base address of internal registers 19
SYStem.Option.CLKSW Force BDM to work on CPU bus frequency 19
SYStem.Option.DUALPORT All memory accesses are done hidden 20
SYStem.Option.GLOBAL Memory accesses are done global 20
SYStem.Option.MonBase Monitor relocation 21
SYStem.Option.SOFTWORD Breakpoints are set by word access 21
SYStem.Option.VFP Voltage for FLASH programming 22
SYStem.Option.WATCHDOG COP support 23
Hardware BreakpointScccccccrriiismmmmmissssms s ssssssss s snsssssss s snsssssss s snnsses 24
Program Breakpoints 24
Read and Write Breakpoints 24
Data Breakpoints 25
L0 T T2 1B 0o 14T 14T 1T 26
Onchip.Mode.DetailTrace Detailed trace recording mode 26
Onchip.Mode.EventTrace Start recording after trigger event 26
Onchip.Mode.FlowTrace Flow trace mode 26
Onchip.Mode.LoopTrace Inhibit redundant entries 26
Onchip.Mode.CPU Select CPU as onchip trace source 27
Onchip.Mode. XGATE Select XGATE as onchip trace source 27
Onchip.Mode.BOTH Select CPU adn XGATE as onchip trace source 27
Onchip.Mode.TimeStamp Enable onchip timestamps 27
QIO e o T o B 00T 0 1 F- T4 o £ 28
TrOnchip.state Display on-chip trigger window 28
TrOnchip.Mode Select trace and trigger mode 29
TrOnchip.RESet Set on-chip trigger to default state 30
TrOnchip.XBreakt Enable crossbreak between S12 core and XGATE 30
TrOnchip.RESERVE Deprive debugger of address comparator use 30
LT 0 o] YA 03 = = T 31
Debugging With @Ctive PLL ... insssss s sssssssss s sssssssss s sssssssssssnnssas 32
Debugging with active Watchdogccccccmiininmmiinnr s sssnas 33
FLASH EEPROM Managementcccocceminimmmiimsmses s ssssssssmsssssss s sssmsssssmsssnsmsssssmsnas 34
FLASH EEPROM on S12X Derivatives 34
EEPROM Managementcccccciiemiiimmminmsinississsss s ssssssssssss sassmsssssss sassss snssms s sssmssnnsmnnas 35
Banked ApPPliCatioNScccceiiiiiimmriiiiisir s 37
Background and Compatibility Information ... s 37
SYStem.Option.PAGING Banked applications 37
SYStem.Option.RAMHM Alternate RAM mapping 38
SYStem.Option.ROMHM ROM in second half of map 38
SYStem.Option.TRANS Transparent mode 38
Local and Global Memory Map on S12X Targets 41
©1989-2024 Lauterbach MCS12 Debugger 3

Using the MMU for HC12DA/DG/DT128 42

SYStem.Option.MEMEXP Memory expansion 43
SYStem.Option.ROMTST FLASH EEPROM test mode 43
Using the MMU for HC12A4/F8 44
Basics 44
Logical Address 44
Physical Address 44
Expanded Physical Address 45
Memory Mapping Unit 47
=701 0 4T3 =T o (o 48
BDM Connector ICD - MCS12, ICD-S12X 48
BDM Connector ICD - HC12 48
1. Original 6-pin Version from FREESCALE 49
2. Modified 6-pin Version from FREESCALE 49
3. 10-pin Version from LAUTERBACH 49

©1989-2024 Lauterbach MCS12 Debugger | 4

MCS12 Debugger

Version 06-Jun-2024

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACES32 debugger.
J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

J “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your debug cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach MCS12 Debugger | 5

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

MCS12 Debugger |

6

Troubleshooting

SYStem.Up Errors

The SYStem.UP command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

. The target has no power.

. The target is in reset - another device may hold the reset line active.

. There is a short circuit on at least one of the output lines of the core.

. There is a problem with the electrical connection between ICD12 and the target - check if the

BDM connector is plugged correctly and if the target is built corresponding to the definition of the
used BDM connector.

o The 68HC12 has no clock - check the frequency on the EXTAL pin with a scope.

. The clock for the BDM transmission is not set correctly - refer to SYStem.BdmClock

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach MCS12 Debugger | 7

https://support.lauterbach.com/kb

CPU Specific Implementations

Breakpoints

There are two types of breakpoints available: Software breakpoints and on-chip breakpoints.

Software Breakpoints

Software breakpoints are the default breakpoints for program breakpoints. A software breakpoint is
implemented by patching a break code into the memory.

There is no restriction in the number of software breakpoints.

On-chip Breakpoints

The resources for the on-chip breakpoints are provided by the CPU.

The following list gives an overview of the supported on-chip breakpoints:

o On-chip breakpoints: Total amount of available on-chip breakpoints.

. Instruction breakpoints: Number of on-chip breakpoints that can be used to set Program
breakpoints into ROM/FLASH/EEPROM.

J Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

J Data breakpoint: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an
address.

) Onchip Program Read/Write Data Value
Family Breakpoints Breakpoints Breakpoints Breakpoints

68HC12 up to 2 up to 2 single up to 2 single 1

68HC12A address address

MCS12 upto3 up to 3 single up to 3 single 1

MCS12C address address

S12X 4 up to 4 single up to 4 single 1

S122 address or 2 address or 2

address ranges address ranges

©1989-2024 Lauterbach

MCS12 Debugger

8

Quick Start of the ICD Debugger for HC12

This chapter should help you to prepare your Debugger for 68HC12. Depending on your application not all
steps might be necessary.

For some applications additional steps might be necessary, that are not described in this Quick Start section.

1. Prepare the Start

Connect the Debug Cable to your target. There are two different connectors on the Debug Cable. Refer to
chapter BDM Connector for detailed information.

It is not necessary to connect the Clock Cable for the first start.
Power up your TRACES32 system (This is not necessary on PODPC).
Start the TRACE32 Debugger Software.

Power up your Target!

To prevent damage please take care on this sequence all the time you are
preparing a start.

©1989-2024 Lauterbach MCS12 Debugger | 9

2. Select the Clock for the BDM Communication

For the first start the BdmClock should be set to INT and the value in the field clock should meet the
frequency of ECLK (Signal on PortE bit 4). Generally ECLK runs at the half frequency of EXTAL after reset.
Alternative to using the menu the clock can be selected with the command

SYStem.BdmClock <value_of eclk>.

With the TRACE32 user interface all numbers are interpreted as hex
numbers. To enter a decimal number, please type a dot after the last digit
(e.g. 10.).

The internal clock generator can only generate each frequency entered
in the clock field. The software will select the best one for your
application. So don’ t worry if the value you see differs from the one you
c entered.

3. Configure the Debugger according to the Needs of the Application

Most of the configuration can be done with the SYStem Window which provides all CPU specific settings.
Use System Settings ... in the CPU menu to open this window

Inform the debugger about the CPU type on your target. Select the correct CPU type from the pull down
menu in the field CPU or with the command SYStem.CPU <cpu_type>.

NOTE: If you type system.CPU to the command line followed by blank, the softkeys (below the command
line) provide you with all supported derivatives.

SYStem.CPU M68HC12A

Set the SYStem Options in the option field corresponding to your target configuration and application
program. Generally the SYStem Options can remain at the default values for the first start, except for banked
applications.

If banking is in use, the debugger must know how the CPU is configured to access the banks. Items of
interest are:

J Which of the higher address lines are used as address lines, which are used as ports (only
HC12A4/F8)? This information is given with the command SYStem.Option.Axx.

. Which of the chip select lines are used as chip selects, which are used as ports (only
HC12A4/F8)? This information is given with the command SYStem.Option.CSxx.

. How are the according bits in the MISC register set (only HC12DA128/HC12DG128)? This
information is given with the command SYStem.Option.ROMTST and the
SYStem.Option.ROMHM.

©1989-2024 Lauterbach MCS12 Debugger | 10

To use banking on HC12DA128 or HC12DG 128 the SYStem.Option.MEMEXP must be switched to on.

For details please refer to the chapters Using the MMU for HC12A4/F8 and Using the MMU for
HC12DA/DG128.

4. Map the EPROM Simulator if Available (optional)

MAP.ROM 0x0--0x1FFFF

This command maps a standard 8 bit wide 27x010 EPROM.

5. Tell the Debugger Where it should use On-chip Breakpoints (optional)

MAP.BOnchip 0x1000--0x0ffff

By default the In Circuit Debugger for 68HC12 (ICD12) modifies the code to realize a breakpoint. This will
not work for ROM or FLASH. To provide breakpoints in ROM/FLASH areas the CPU’ s on-chip breakpoints
can be used (not HC12A4).

6. Enter Debug Mode

SYStem.Up

This command asserts a reset to the CPU and drives the line BKGD to GND. So the CPU will enter the
“special” variant of the operating mode defined by the pins MODA and MODB, which must be configured by
the target.

LAUTERBACH recommends to use single chip mode for starting from reset. In this case the CPU will enter
Special Single Chip Mode without executing any code. So all registers will contain reset values. In all other
cases the CPU will try to execute code after reset, until the debugger gets control on it. So some registers
may contain unexpected values.

©1989-2024 Lauterbach MCS12 Debugger | 11

7. Load the Program

Before loading the code the CPU must be configured so that the memory can be accessed. Take care of the
registers MODE, PEAR, MISC, INITRG, INITRM, INITEE.

If banking is in use the registers for the memory expansion and chip select unit must also be set correctly.
Refer to the CPU’ s technical summary and the chapters Using the MMU for HC12A4/F8 and Using the
MMU for HC12DA/DG128.

If you want to load code to internal FLASH or EEPROM memory, refer to the chapters
FLASH EEPROM Management and EEPROM Management.

When the CPU is prepared the code can be loaded. This can be done with the command
Data.Load.<file_format> <file>. Applications can be loaded by various file formats. The format depends
from the compiler. Here are some typical load commands for 68HC12 applications:

Data.Load.COSMIC <file>.cosl2 ; load application file generated
; with a COSMIC compiler

Data.Load.Elf <file>.abs /verify ; load application file generated
; with a HIWARE compiler and verify
; 1f it 1s written correct to memory

d.load.u <iar6812>.dbg ; load application file generated
; with a HIWARE compiler

8. Initialize Program Counter and Stackpointer

Many compilers add these settings in the start-up code to the user program automatically. In this case no
action is necessary. You can check the contents of Program Counter and Stack Pointer in the Register
Window which provides the contents of all CPU Registers. Use CPU Registers in the CPU menu to open
this window.

The Program Counter and the Stackpointer and all other registers can be set with the commands
Register.Set PC <value> and Register.Set SP <value>. Here is an example of how to use these

commands:
Register.Set PC 0xC000 ; Set the Program Counter to address
; 0xC000
Register.Set SP O0xBFF ; Set the Stack Pointer to address
; OxXBFF
Register.Set PC main ; Set the PC to a label (here: function
; main)

©1989-2024 Lauterbach MCS12 Debugger | 12

9. View the Source Code

Use the command Data.List to view the source code at the location of the Program Counter.

Now the quick start is done. If you were successful you can start to debug. Lauterbach recommends to
prepare a PRACTICE script file (*.cmm) to be able to do all the necessary actions with only one command.
Here is a typical start sequence without EPROM simulator and banking:

B::
WinCLEAR

SYStem.Reset

SYStem.BdmClock 2000000.

SYStem.CPU M68HC12B.

MAP.BOnchip 0x08000--0x0ffff

SYStem.Up

Data.Set 0x11l 0x08

SYStem.Option.BASE 0x0800

Data.LOAD.E1f hic.abs

Register.Set PC main
Register.Set SP O0xBFF
Data.List

Register.view /SpotLight

Frame.view /Locals /Caller

Var.Watch %$SpotLight flags ast

7

Select the ICD device prompt
Clear all windows

Bring all settings in the SYStem
window to default value

Set frequency for BDM communication
to 2 MHz

Select CPU type

Select on-chip breakpoints for the
FLASH EEPROM area

Reset the target and enter special
mode

Move the internal registers to 0x0800
by writing the INITRG register

Tell the debugger that the internal
registers now can be found at address
0x0800

Load the application - here an
absolute file in ELF/DWARF format

Set the PC to function main

Set the stack pointer to address O0xBFF
Open disassembly window *)

Open register window *)

Open the stack frame with
local variables *)

Open watch window for variables *)

©1989-2024 Lauterbach

MCS12 Debugger | 13

PER.view ; Show clearly arranged peripherals
; in window *)

Break.Set 0x100 /Program ; Set software breakpoint to
; address 100
; (address 100 is outside of read-only
; range)

Break.0xSet 8024 /Program ; Set on-chip breakpoint to
; address 8024
; (address 8024 is within read-only
; range)

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

You can find suggestions for such PRACTICE script files (*.cmm) in the TRACE32 demo folder
~~/demo/m68hc12/compiler.

Refer to the “MCS12 Debugger” (debugger_hc12.pdf) and “Debugger Tutorial” (debugger_tutorial.pdf) or
to the “PRACTICE Script Language User’s Guide” (practice_user.pdf) how to do this. You can also find
some information on basic actions with the debugger.

Please keep in mind that only the Processor Architecture Manual (the document you are reading in at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs. So if there are
questions related to the CPU the Processor Architecture Manual should be your first choice.

©1989-2024 Lauterbach MCS12 Debugger | 14

CPU specific SYStem Settings and Restrictions

Restrictions

Reset Configura-
tion

For using the In Circuit Debugger (BDM) the CPU should be configured
for Single Chip Mode at reset. To meet this the target should have
capability to pull the pins MODA and MODB to GND.

COP Function

The watchdog can only be used with the longest timer period. Refer to
SYStem.Option.WATCHDOG.

On-chip Break-
points on deriva-
tives with paging

The built in breakpoints on some derivatives with paging react only on the
addresses within the 64K memory map. They do not take care of the
paging (e.g.: HC12DA/DG128). This is a problem of the CPU, which
cannot be solved by the debugger.

TrBus commands
do not work

Neither Trigger_Out, nor Trigger_In do work on the HC/MCS12. They are
not implemented, because the reaction time would be too long.

©1989-2024 Lauterbach

MCS12 Debugger | 15

SYStem.BdmClock Select clock for BDM communication

Format: SYStem.BdmClock AUTO | EXT | EXT/2 | ECLK | INT | <value>

AUTO Clock source for BDM communication is the internal oscillator. The clock
is calculated and set automatically with help of a synchronization
mechanism. This selection can only work if the used processor contains
a BDM implementation which offers the SYNC command (not available
on LA-7714 and LA-7717).

EXT Clock source is the frequency from clock cable or from pin 10 of the 10
pin connector. The Clock Cable is a flying lead connection.

EXT/2 Clock source is the frequency from clock cable or from pin 10 of the 10
pin connector divided by two. The Clock Cable is a flying lead connection.

ECLK Clock source for BDM communication is the ECLK (PE4) of the
processor. The ICD12 expects this signal on Pin 3 of the 6pin connector
or Pin 8 of the 10 pin connector. If ECLK is selected, the CLKSW bit of
the BDM Status Register is set.

INT Clock source for BDM communication is the internal oscillator, which can
be set with the command SYStem.BdmClock <value>.

<value> SYStem.BdmClock <value> is used to set the frequency for the internal
oscillator, which can operate in the range [1000. ... 25000000. Hz]. If a
value is entered the clock source for BDM communication is switched to
the internal oscillator.

This command selects the source for the clock to be used for the communication between BDM an CPU.
Generally this frequency has to match the frequency of ECLK (unstretched). At derivatives without PLL this
frequency is half of the frequency applied to the CPU’s EXTAL pin.

The internal oscillator cannot provide every frequency. The software uses the best setting for the selected
value and shows it in the SYStem window in the field BdmClock.

If your application requires to debug with active PLL please refer to the chapter Debugging with active
PLL.

SYStem.CONFIG Configure debugger according to target topology

The SYSTem.CONFIG command group is not supported.

©1989-2024 Lauterbach MCS12 Debugger | 16

SYStem.CPU Select CPU type

Format: SYStem.CPU <type>

<type>: M68HC12A | M68HC12B | M68HC12BC | M68HC12D | M68BHC12DA |
M68HC12DG | M68HC12G | M68HC12F

With this command the processor type is selected.

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.
If the system is locked, no access to the debug port will be performed by the debugger. While locked, the

debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)

Enable Memory access during program execution to target is enabled.
CPU (deprecated)

Denied (default) Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

For more information, see below.

©1989-2024 Lauterbach MCS12 Debugger | 17

SYStem.Mode

Select target reset mode

Format: SYStem.Mode <mode>
SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)
<mode>: Attach
Down
Go
Up
NoDebug

Attach This command works similar to Up command. The difference is that the
target CPU is not reset. The BDM/JTAG/COP interface will be
synchronized and the CPU state will be read out. After this command the
CPU is in the SYStem.Up mode and can be stopped and debugged.

Down Disables the Debugger. The state of the CPU remains unchanged.

Go Resets the target with debug mode enabled and prepares the CPU for
debug mode entry. After this command the CPU is in the system.up
mode and running. Now, the processor can be stopped with the break
command or until any break condition occurs.

StandBy Not available for HC12/MCS12/S12X.

Up Resets the target and sets the CPU to debug mode. After execution of
this command the CPU is stopped and prepared for debugging. All
register are set to the default value.

NoDebug Disables the Debugger. The state of the CPU remains unchanged.

©1989-2024 Lauterbach

MCS12 Debugger | 18

SYStem.Option.BASE Base address of internal registers

Format: SYStem.Option.BASE <address>

The SYStem.Option.BASE defines the base address of the internal registers. On HC12 target systems the
user should always keep this address on the same value as the internal CPU register INITRG. (<address> is
a 16 bit value). On MC9S12 and S12X targets the value of INITRG can be read by the DBM interface and so
there is no action necessary.

The ICD needs to know, where the CPU’ s internal registers are assigned to. This information is used to
show the CPU’ s internal registers in the peripheral window, which can be opened by the PERipheral
command and to control some of the internal registers, when the EEPROM and FLASH programming
algorithms or the on-chip Hardware Breakpoints are in use.

Technical background: The registers of the CPU12 family members can be assigned to any 2-Kilobyte
boundary within the standard 64-Kilobyte address space. The location of the registers in the memory map of
M68HC12X depends from the register INITRG (Adr. 0x0011 after reset). The difficulty with this is that
INITRG is also mapped with the rest of the register block. If the INITRG is changed from 0x00 to 0x28 the
address of INITRG changes from 0x0011 to 0x2811. After this the SYStem.Option.BASE is to be changed
from 0x0 to 0x2800:

After reset (at SYStem.Up the CPU receives a reset) the register block
resides at location 0x0000. If the SYStem.Option.BASE holds a value other
than 0x0, the peripheral window for example shows nonsense.

o,
SYStem.Option.CLKSW Force BDM to work on CPU bus frequency
Format: SYStem.Option.CLKSW [ON | OFF]

If the SYStem.Option.CLKSW is set to on, the debugger will set the CLKSW bit in the BDM Status register.
This configures the BDM interface of the CPU to work on bus frequency. If this frequency changes (for
example if an application switches to PLL clock) BDM communication will be lost if the user does not change
the contents of SYStem.Option.BdmClock accordingly.

©1989-2024 Lauterbach MCS12 Debugger | 19

SYStem.Option.DUALPORT All memory accesses are done hidden

Format: SYStem.Option.DUALPORT [ON | OFF]

If the SYStem.Option.DUALPORT is active, the debugger does all memory accesses by hidden access. So
there will be no window freeze while executing user code. Disadvantage of doing so is that the hidden
memory access may slow down the target application.

SYStem.Option.GLOBAL Memory accesses are done global

Format: SYStem.Option.GLOBAL [ON | OFF]

On S12X targets two different views on the memory map are possible. One is similar to the view used for the
MC9S12 with a 64k address room and memory expansion using page pointers in some ranges (Local
Memory Map), the other view has one linear address map (Global Memory Map).

If you use commands without memory class and the SYStem.Option.Global is off, the TRACE32 software
will use the memory classes p: and d: which are intended to be used for logical addresses (Local Memory
Map).

If you use commands without memory class and the SYStem.Option.Global is on, the TRACES32 software
will use the classes gp: and gd: which are intended to be used for global addresses (Global Memory Map).

©1989-2024 Lauterbach MCS12 Debugger | 20

SYStem.Option.MonBase Monitor relocation

Format: SYStem.Option.MonBase <address>
SYStem.Option.SOFTWORD Breakpoints are set by word access
Format: SYStem.Option.SOFTWORD [ON | OFF]

When a software breakpoint is set, the first byte of the original opcode is replaced with the command BGND
(Opcode 0x00). If the desired memory location is located in a range which can only be written by word
access, a special mechanism is required which does a read-modify-write operation. With the option you can
activate this mechanism:

OFF Software breakpoints are set by byte access.

ON Software breakpoints are set by word access.

©1989-2024 Lauterbach MCS12 Debugger | 21

SYStem.Option.VFP Voltage for FLASH programming

Format: SYStem.Option.VFP [ON | OFF]
OFF Programming voltage generation is inactive
ON Programming voltage is applied to VFP pin

To program the FLASH EEPROM on some derivatives the necessary programming voltage can be applied
to the VFP pin. This option is activated and deactivated automatically if the debugger’ s capability to program
the FLASH EEPROM is used.

The line VFP on the BDM Connector is at 5 V if SYStem.Option.VFP is off and at 12 V if
SYStem.Option.VFP is on.

Further information can be found in the Chapters FLASH EEPROM Management.

©1989-2024 Lauterbach MCS12 Debugger | 22

SYStem.Option.WATCHDOG COP support

Only HC12

Format: SYStem.Option. WATCHDOG [ON | OFF]

The ICD12 can trigger the COP while in background Mode:

OFF The Watchdog (COP) is not triggered by the emulator
ON The Watchdog (COP) is triggered by the emulator while the CPU is in

break mode. The debugger continuously generates write accesses to
address 0x3F altering the write data between OxAA and 0x55.

This mechanism allows to debug an application which needs an active Watchdog (COP). To make the
mechanism work properly, the Watchdog Timer Rate must be switched to the slowest mode.

For details, please refer to “Debugging with active Watchdog”, page 33.

©1989-2024 Lauterbach MCS12 Debugger | 23

Hardware Breakpoints

Most derivatives of the CPU12 family contain a breakpoint module with two 16 bit registers. Refer to the
Technical Summary of your derivative to check if hardware breakpoints are available.

The built in breakpoints on some derivatives with paging react only on the
addresses within the 64K memory map. They do not take care of the
paging (e.g.: HC12DA/DG128). This is a problem of the CPU, which

9 cannot be solved by the debugger.

Example: If an on-chip breakpoint is set for example to address 68004 the CPU will break on fetching from
58004 (or from any other page).

The hardware breakpoints are controlled by registers located in the CPU’
s register block. This block can be mapped with the INITRG register. To
have the hardware breakpoints working proper the user must take care
c that the debugger knows the position of the registers all the time. This
information is given by the SYStem.Option.BASE.

The on-chip hardware breakpoints can be used in the following modes:

Program Breakpoints

Generally the In Circuit Debugger for HC12 (ICD12) uses software breakpoints to realize program
breakpoints. Software breakpoint means that the code at the desired memory location is modified by the
debugger to make the CPU break when the program counter meets this address. After this the original
contents of this memory location is restored.

This mechanism does not work proper if a certain memory area can only be written by word accesses. In
this case use the SYStem.Option.SOFTWORD.

This mechanism cannot work in Read Only Memory. To provide breakpoints in ROM areas the CPU’ s
hardware breakpoints can be used. The memory ranges, where hardware breakpoints should be used, have
to be defined with the command MAP.BOnchip.

MAP.BOnchip 0x1000--0x0ffff

With the command Break.List the actual breakpoint configuration can be checked.

Read and Write Breakpoints

Read and Write Breakpoints always use the CPU’ s Hardware Breakpoints regardless off the ranges defined
with MAP.BOnchip.

©1989-2024 Lauterbach MCS12 Debugger | 24

Read and Write Breakpoints can be set with the command Break.Set...:

Break.Set 0x4738 /w ; The CPU will be stopped if there is a write
; access to address 0x4738

b.s 0x0b223 /r ; The CPU will be stopped if there is a read
; access to address 0xB223

Data Breakpoints

Data Breakpoints always use the CPU’ s Hardware Breakpoints regardless off the ranges defined with
MAP.BOnchip. To provide a Breakpoint on address match and data match both 16 bit registers are needed.
So there is only one breakpoint of this type available.

Data Breakpoints can be set with the TrOnchip menu. Use OnChip Trigger... in the Trigger menu to open
this window. The address is specified with the following command:

Break.Set 0x4738 /a ; The CPU will be stopped if this address is
; accessed and the data matches the value
; specified in the TrOnchip window.

©1989-2024 Lauterbach MCS12 Debugger | 25

Onchip Commands

Onchip.Mode.DetailTrace Detailed trace recording mode

Format: Onchip.Mode.DetailTrace

Address and data of all cycles except for fetches and free cycles are recorded.

Onchip.Mode.EventTrace Start recording after trigger event

Format: Onchip.Mode.EventTrace

Recording starts after trigger event.

Onchip.Mode.FlowTrace Flow trace mode

Format: Onchip.Mode.FlowTrace

Flow trace mode.

Onchip.Mode.LoopTrace Inhibit redundant entries

Format: Onchip.Mode.LoopTrace

Flow trace inhibiting redundant entries to capture memory.

©1989-2024 Lauterbach MCS12 Debugger | 26

Onchip.Mode.CPU Select CPU as onchip trace source

Format: Onchip.Mode.CPU

Selects CPU as Onchip trace source.

Onchip.Mode. XGATE Select XGATE as onchip trace source

Format: Onchip.Mode . XGATE

Selects XGATE as Onchip trace source.

Onchip.Mode.BOTH Select CPU adn XGATE as onchip trace source

Format: Onchip.Mode.BOTH

Selects CPU and XGATE as Onchip trace source.

Onchip.Mode.TimeStamp Enable onchip timestamps

Format: Onchip.Mode.TimeStamp

©1989-2024 Lauterbach MCS12 Debugger | 27

TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

©1989-2024 Lauterbach MCS12 Debugger | 28

TrOnchip.Mode Select trace and trigger mode

Format: TrOnchip.Mode <mode>

<mode>: BreakAORB

BreakATHENB
TraceAORB
TraceATHENB
OFF

BreakAORB Real-time execution is stopped if one of the two comparators A or B
matches.

BreakATHENB Real-time execution is stopped if as a first step the comparators A
matzohs and then as a second step the comparator B matches.

TraceAORB Recording cycles to the on-chip trace is stopped if one of the two
comparators A or B matches.

TraceATHENB Recording cycles to the on-chip trace is stopped if as a first step the
comparators A matzohs and then as a second step the comparator B
matches.

OFF Complex on-chip debug features are disabled.

Some derivatives of 9512 have an enhanced on-chip debug module which offers some complex trigger
features and a small on-chip trace. Please refer to your CPU’ s manual to check if your chip offers this
feature. These debug features are based on two address comparators which can be specified in the

following way:

Break.Set 0x8000 /Alpha /Read ; Set the Debug Comparator A to match on

; a read access from the address 0x8000.

Break.Set 0x8010 /Beta /Write ; Set the Debug Comparator B to match on

; a write access from the address
; 0x8100.

Note that it is a must to specify whether the access is read or write.

©1989-2024 Lauterbach

MCS12 Debugger | 29

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the on-chip trace and trigger module to reset state.

TrOnchip.XBreakt Enable crossbreak between S12 core and XGATE

Format: TrOnchip.XBreak [ON | OFF]

The hardware breakpoints of the HCS12 can only cover specific ranges. If you want to set a marker or
breakpoint to a complex variable, the on-chip break resources of the HCS12 CPU may be not powerful
enough to cover the whole structure. If the option TrOnchip.VarCONVert is on the breakpoint will

automatically be converted into a single address breakpoint. This is the default setting. Otherwise an error
message is generated.

TrOnchip.RESERVE Deprive debugger of address comparator use

Format: TrOnchip.RESERVE [BPx] [ON | OFF]

Reserve on-chip breakpoint comparators to be used by the target application (only HC11).

OFF The on-chip breakpoint can be used by the debugger.

ON The on-chip breakpoint is used by the target application.

©1989-2024 Lauterbach MCS12 Debugger | 30

Memory Classes

Memory Class Description
C:, P, D: Specify the same address-area (CPU-access)
G:;, GC:, GP:, GD: Global Memory accesses, specify the same address-area (CPU-access)
A: Absolute memory access (requires MMU-table)
EEPROM: EEPROM write
E: Emulation memory access (dual-ported)
AP: Physical address (68HC12A4/F8/DA128/DG128 only)
C:,P: and D:

This storage classes operate on the same physically memory. They are only used to be compatible with
other emulation probes.

On S12X targets the numbers following the semicolon are taken as addresses in the local memory map.

G:, GC:, GP: and GD:

This storage classes are only available on S12X targets and operate on the same physically memory. They
are only used to be compatible with other emulation probes. The numbers following the semicolon are taken
as addresses in the global memory map.

EEPROM:

This storage class is used to program the internal EEPROM. On read cycles there is no difference to the
access mode with C: or D:. On write cycles the monitor program executes an EEPROM write protocol.

Data.Set EEPROM:0EQ00 12 34
D.s EE: OEOO 12 34 EE: can be used as short form

©1989-2024 Lauterbach MCS12 Debugger | 31

Debugging with active PLL

Here is a list of derivatives with suggestions on how to set up the debugger for using the PLL:

CPU Mask Action
MC68HC912A4 all Masks Select ECLK as clock source.
MC68HC912D60 0F68K Select ECLK as clock source.
1F68K
O0K75F
MC68HC912D60 XF73K Select any option than ECLK and take care that the
BDM interface is supplied with a frequency at half
value of EXTAL.
Warning: Due to a chip problem the CPU might stop
unexpected while debugging with active PLL.
MC68HC912DA128 OH55W Select any option than ECLK and take care that the
4H55W BDM interface is supplied with a frequency at half
value of EXTAL.
Warning: Due to a chip problem the CPU might stop
unexpected while debugging with active PLL.
MC68HC912DG 128 OH55W Select any option than ECLK and take care that the
4H55W BDM interface is supplied with a frequency at half
value of EXTAL.
Warning: Due to a chip problem the CPU might stop
unexpected while debugging with active PLL.
MC68HC912DG128 OK50E Select ECLK as clock source.

©1989-2024 Lauterbach

MCS12 Debugger | 32

Debugging with active Watchdog

Applications with active Watchdog (COP) need a special treatment when the CPU is in background mode.
Activating the COP without any special action will force the CPU to reset shortly after entering background
mode (after a COP timer period), because the COP is not triggered. Most HC12/S12 derivatives can stop
the COP in this case by setting a bit, typically named RSBCK, in the respective control register. Refer to the
Clocks and Reset Generator Module specification of your CPU and search for registers named CPMUCOP
or COPCTL. For older devices without RSBCK bit the SYStem.Option.WATCHDOG can be used.

For convenience, TRACES32 offers the following mechanism: When a change from the running state to the
stopped state is detected, the debugger checks if the COP is enabled. If yes, it attempts to set the RSBCK
bit and a message is generated to inform that the bit was modified by the debugger. If the bit cannot be set
by some reason a warning is generated to the message AREA window.

Another way to deal with an active watchdog can be found in a modification of the application. To keep it
disabled for debugging, you can patch the write access to COPCTL with NOPs.

©1989-2024 Lauterbach MCS12 Debugger | 33

FLASH EEPROM Management

The PRACTICE script file flash.cmm is located in the TRACE32 demo folder
~~ldemo/m68hc12/flash/flash. This file contains the necessary settings for the different derivatives with
on-chip FLASH EEPROM.

. Take a copy of this file and modify the Data.LOAD command to the needs of your application.

J If you do not use the Programming Voltage Generator of the ICD12 supply the CPU’ s VFP pin
with the necessary voltage (12 V FLASH types only).

J Select the correct CPU type in the SYStem window.

. Start your modified copy of the file flash.cmm.

To be able to debug within FLASH EEPROM areas the CPU’ s Hardware Breakpoints must be activated.
Refer to chapter Using Hardware Breakpoints.

Using FLASH.Erase <unit> with MC9S12DP family members will also
erase the three other units which belong to the same flash block.

The reason can be found in the different sizes of flash pages in the

g memory (16 KByte) and block erasable hardware units (64 KByte).
To avoid this, you can use the command FLASH.Erase <range>.

FLASH EEPROM on S12X Derivatives

Use FLASH.AUTO ALL instead of FLASH.Program ALL for programming a FLASH module with ECC
check.

Technical background: Some S12X derivatives contain a FLASH module with ECC (Error Correction Code)
functionality. These modules do not allow cumulative program cycles on the bytes within a phrase (Group of
bytes associated with a group of ECC bits). Since there is no need to place code sections on phrase
boundaries, cumulative writes within phrases can occur when downloading code. The mechanism of the
FLASH.AUTO command avoids these cumulative writes since it collects all writes to the flash and allows to
write this collection in one go.

©1989-2024 Lauterbach MCS12 Debugger | 34

EEPROM Management

The ICD12 supports easy writing to the internal EEPROM. It executes the necessary EEPROM program
sequence instead of the normal write operation if a write access to the EEPROM is indicated. There are two
ways to do this:

1. Using the storage class EEPROM (not MC9S12DP family)

Any write access done by a command using the storage class EEPROM (shortening: EE) starts the
EEPROM program sequence. So the EEPROM can be initialized with standard set or load
commands using the storage class EEPROM or EE:

d.s EEPROM:0D00 2 3 4 5 ; setting bytes

d.s EE:0D00 2 3 4 5 ; short form

d.s EEPROM:0D00++2ff Off ; clear EEPROM

d.load.b eepromdat.bin EEPROM:0DO00 ; loading a binary file named

; eepromdat.bin

It is possible to load the application using the command
Data.Load <file> EEPROM:

because write accesses to RAM done by this command will not cause an error. The only
disadvantage of this method is that it takes a lot of time.

IF the EEPROM is mapped to an address higher than 0x4000 on the next
generation HC12 derivatives (MC9S12DP family members) the debugger
needs to know the position to separate the EEPROM from the FLASH
EEPROM. This can be done with the command MMU.Create.

Example: EEPROM is mapped to 0x4000 (INITEE = 0x41)

MMU.Create 0x4000+-+0fff 0x4000

©1989-2024 Lauterbach MCS12 Debugger | 35

2. Using the program mechanism for the FLASH

This method allows you to download an applications in one step into EEPROM and into FLASH. The
set of commands used for programming FLASH was expanded for this purpose by the memory type
EEPROM. To specify which writing mechanism must be used, the system has to be informed where
is the FLASH and where the EEPROM memory. The definition for the EEPROM memory range is
done by the command FLASH.Create EEPROM <range>. (This is not necessary on next
generation HC12 derivatives. Here the EEPROM is created by default as unit 1.)The rest of the
handling is the same as for the FLASH EEPROM.

The command FLASH.ERASE... has no effect on the EEPROM. To erase
the EEPROM use Data.Set <range of EEPROM> Off if flash programming
is active or Data.Set EEPROM:<range of EEPROM> if flash programming
is inactive.

An example of how to load an application to RAM, ROM, EEPROM for the HC12D60 in one step can be
found in ~~/demo/m68hc12/flash/eeprom.cmm

Writes to EEPROM can only be successful, when the according protection
bits in the register EEPROT (0x00F1, EEPROM Block Protect) are cleared.

©1989-2024 Lauterbach MCS12 Debugger | 36

Banked Applications

To support applications which use more than the 64K direct accessible memory paging is required. To
activate banking on targets switch the SYStem.Option.PAGING to ON and set the
SYStem.Option.ROMHM and the SYStem.Option.TRANS according to the needs of your application.

On MC9S12 and S12X targets the SYStem.Option.PAGING to ON

Background and Compatibility Information

There are two memory schemes to support banked applications. One is based on the memory model used
in the ICE12 with the artificial expanded physical addresses, the other one is based on the memory model
used in FIRE12 where all commands are based on logical addresses. The last one is easier to use and

available for all derivatives except for HC12A4. For applications with HC12A4 refer to the chapter Using the
MMU for HC12A4/F8.

To activate banking with the FIRE12 similar memory model switch the SYStem.Option.PAGING to ON. This
is available for all MCS12 (Star12) derivatives.

For HC12DA/DG/DT128 both options are available. For new designs LAUTERBACH recommends to use
FIRE12 based memory scheme. The ICE12 based memory model is still there to be compatible with old
command files (*.cmm - files). See chapter Using the MMU for HC12DA/DG/GT128 for further information.

SYStem.Option.PAGING Banked applications

Format: SYStem.Option.PAGING [ON | OFF]

The SYStem.Option.PAGING enables the support for banked applications on HC12 applications. It
activates a memory scheme similar to the one used for FIRE12. No MMU is required, all address based
commands (MAP.Bonchip, flash programming) are based on logical addresses.

Do not activate this option on S12X targets. On MC9S12 targets, you can
use this option for compatibility to old PRACTICE (*.cmm) files. Do not
use it for new designs.

©1989-2024 Lauterbach MCS12 Debugger | 37

SYStem.Option.RAMHM

Alternate RAM mapping

Format:

SYStem.Option.RAMHM [ON | OFF]

The SYStem.Option.RAMHM must be set if the bit RAMHM is set in the CPU’s MISC register.

SYStem.Option.ROMHM

ROM in second half of map

Format:

SYStem.Option.ROMHM [ON | OFF]

The SYStem.Option.ROMHM must be set if the bit ROMHM is set in the CPU’s MISC register. In this case
page 6 of the FLASH EEPROM is visible from 0x4000--0x7fff.

SYStem.Option.TRANS

Transparent mode

Format:

SYStem.Option. TRANS [ON | OFF]

The SYStem.Option.Trans has effect on logical addresses smaller then 64K. If it is on then accesses in this
area show the 64K of memory as seen by the CPU in the current paging configuration. This is the
transparent mode. If it is off then in banked areas page zero of this area is shown and the contents of the
according page register has no influence. It has no effect on the memory access of the CPU executing user

code.

Address

Access to

000000--00ffff

current 64K address space (when TRANS is on)

000000--00ffff

page 0 (when TRANS is off)

010000--O0ffffff

pages 1..0ff

100000--0ffffffff

current 64K address space

©1989-2024 Lauterbach

MCS12 Debugger | 38

A logical address alone doesn't unique identify the physical address, as the address depends also on the
setup of the INITRG, WINDEF, MXAR, MISC, CSCTLO and CSCTL1 registers. As a result, logical
addresses should only be used, if the MMU registers were already setup. Accessing internal resources
(RAM or peripherals) is handled like an access outside of the MMU window. The following schematic shows
these relations for some examples:

preset: CSCTL0=30,CSCTL1=10, WINDEF=40

logical address: 0 3 8 5 6 7 (Hex)
| | 16 bit |
A21..A14 logical CPU address

--> exp. physical addrébsc567

logical address: 0 1 4 5 6 7 (Hex)
| | 16 bit |
PAGE logical CPU address

--> exp. physical addré6£§£§4567

logical address: 0 0 8 5 6 7 (Hex)
| | 16 bit |
current-mmu logical CPU address

--> 1inside PROG , assume PPAGE=1
--> exp. physical addréb£4567

logical address: 0 0 e d e f (Hex)
| | 16 bit |
current-mmu logical CPU address

--> outside pages
--> exp. physical addréffcdef

©1989-2024 Lauterbach MCS12 Debugger | 39

To activate the correct address translation for breakpoints, the MMU command must be activated. The
creation and activation of the MMU translation can be done automatically for some file formats during
download. The following script will prepare the 68HC12A4 for using the MMU without additional address
lines and with CSPO line to select between RAM and ROM:

sys.res

Y.

res

mmu.res
map.res

sys.o csplOe on

sys.m ai

map.m fast

map.ram 0x0200--0x0ffff
map.ram 0x0bf0000++0x0ffff
map.opf 0x8000--0x0ffff
map.opf 0x0bf0000++0x0ffff

map.1i

d.s 0x013 0x0e ; disable rom

d.s 0x16 0x0 ; disable the watchdog
d.s 0x3c 0x30 ; CSCTLO

d.s 0x3d 0x10 ; CSCTL1

d.s 0x12 0x11 ; set EEPROM to 0x1000
d.s 0x3e 0x5

d.s 0x0f0 0x0fc

d.s 0x0fl 0x0

d.s 0x37 0x40 ; enable P-Paging
d.load.elf bankdemo.abs /spath /mmu

enddo

When accessing memory with physical addressing (A:) by the CPU the
address for the CPU is transformed to a bank and offset using the MMU
table. Physical addressing of emulation memory is always possible
without transformation (EA:).

©1989-2024 Lauterbach MCS12 Debugger |

40

Local and Global Memory Map on S12X Targets

On S12X targets two different views on the memory map are possible. One is similar to the view used for the
MC9S12 with a 64k address room and memory expansion using page pointers in some ranges (Local
Memory Map), the other view has one linear address map (Global Memory Map)

If you use the memory classes g, gp: or gd: the debugger expects global addresses. This means that you
have a linear memory map from 0x000000 to 0x7FFFFF (Global Memory Map).

If you use the memory classes p: or d: the debugger expects logical addresses. This means that you have a
64k address map (Local Memory Map). The S12X uses paging to do memory expansion for

. EEPROM using the 1K window from 0x800--OxBFF
i RAM using the 4K window from 0x1000--Ox1FFF
. FLASH using the 16K Window from 0x8000--OxBFFF

The logical address in these ranges is composed by the address within the 64k memory map (A15..A0) and
the byte above to select the desired page (A23..A16).

Examples:
Local Address Global Address | Comment
P:0xFD8000 GP:0x7F4000 third flash page counting back from the last one.
D:0x021000 GD:0x003000 third ram page counting from the first one
D:0xFBOA23 GD:0Ox13EE23 5th eeprom page counting back from the last one
P:0xFDC100 GP:0x7FC100 there is no window with paging in this address range

©1989-2024 Lauterbach MCS12 Debugger | 41

Using the MMU for HC12DA/DG/DT128

Banked applications on HC912DA128, HC912DG 128 or HC12DT 128 are supported similar to
HC812A4/F8. Refer to that chapter to get BASIC information. Different to that derivatives is that HC12Dx128
have no chip selects or address lines higher than A15. The memory expansion is done with the PPAGE
register which contains the page index (Bit2--BitO of the PPAGE register are called PIX2--PIX0). So there is
a different table for the expanded physical address:

Address| SYStem. A23 | A22| A21| A20| A19| A18| A17| A16| A15| A14
in 64K Options
area
0x0000--| MEMEXP off| 0 0 0 0 0 0 0 0 0 0
O0x3FFF
MEMEXP on| 1 1 1 1 1 1 1 1 0 0
0x4000--| MEMEXP off| 0 0 0 0 0 0 0 0 0 1
Ox7FFF
MEMEXP on| 1 1 1 1 1 1 1 1 0 1
ROMHM off
MEMEXP on| 1 1 1 1 1 1 1 0 1 1
ROMHM on
0x8000--| MEMEXP off| 0 0 0 0 0 0 0 0 1 0
OxBFFF
MEMEXP on| 1 1 1 1 1 PIX | PIX| PIX| 1 1
ROMTST off 2 1 0
MEMEXP on| 1 1 1 1 1 PIX | PIX| O 1 1
ROMTST on 2 1
0xC000- | MEMEXP off| 0 0 0 0 0 0 0 0 1 1
-OxFFFF
MEMEXP on| 1 1 1 1 1 1 1 1 1 1
ROMTST off
MEMEXP on| 1 1 1 1 1 PIX | PIX| 1 1 1
ROMTST on 2 1

The expanded physical address lines A13 to A0 contain the same level as the according pins of the CPU.

The table shows that the expanded physical address depends on the address, the page index and on the
bits ROMTST and ROMHM in the MISC register of the CPU. The emulator needs to know how these bits
are configured in the application. This information is given with the following SYStem.Options:

©1989-2024 Lauterbach MCS12 Debugger | 42

SYStem.Option.MEMEXP Memory expansion

Format: SYStem.Option.MEMEXP [ON | OFF]

The SYStem.Option.MEMEXP enables the support for banked applications. If it is off, then the address
information on the CPU’s pins is put on the emulator's memory, break and trace system directly. If it is on the
expanded physical address is put on instead.

SYStem.Option.ROMTST FLASH EEPROM test mode

Format: SYStem.Option.ROMTST [ON | OFF]

The SYStem.Option.ROMTST must be set if the bit ROMTST is set in the CPU’s MISC register. In this case
the CPU is running in the Flash EEPROM TEST mode, where the FLASH EEPROM is in use as four 32K
windows located from 0x8000--0xffff. This option is only available if SYStem.Option.MEMEXP is activated.

©1989-2024 Lauterbach MCS12 Debugger | 43

Using the MMU for HC12A4/F8

Basics

To support memory expansion beyond 64K the ICD12 needs to know how the memory expansion and chip
select unit of the CPU is used in the target application. To make the system work, an exact relation must be
given between the logical address (address in the 64K area combined with the selected program or data
page) and the physical address combined with the chip select generated by the CPU. This relation is given
by an expanded physical address and an MMU table (Memory Mapping Unit table).

There were a few important expressions in this first paragraph. The following lines will describe these

expressions.

Logical Address

The logical address is a combination of an address in the 64K address area and the selected program or
data page. It contains 6 hexadecimal digits. The lower four digits contain the 64K address and the upper two
digits contain the number of the program or data page. The following table shows a few examples:

Address in 64K Address Range

Contents of affected Page Register

Logical Address

0x8000 PPAGE = OxF1 0xF18000
0x7124 DPAGE = 0x10 0x107124
0x400 EPAGE = 0x03 0x30400

Physical Address

The physical address is the address the CPU shows on its bus. It depends on the application which address
lines are used and which not. To make the ICD12 know if an Address or ChipSelect is used or not there is a
switch for each of the Addresses ADDR[21..16].

Format: SYStem.Option.A16E [ON | OFF]
SYStem.Option.A17E [ON | OFF]
SYStem.Option.A18E [ON | OFF]
SYStem.Option.A19E [ON | OFF]
SYStem.Option.A20E [ON | OFF]
SYStem.Option.A21E [ON | OFF]

©1989-2024 Lauterbach

MCS12 Debugger | 44

If a line of PortG is used as address line the according SYStem.Option must be set to ON if it is used as
general I/O it should be set to OFF.

Format: SYStem.Option.CSPOE [ON | OFF]
SYStem.Option.CSP1E [ON | OFF]
SYStem.Option.CSDE [ON | OFF]
SYStem.Option.CSD2E [ON | OFF]
SYStem.Option.CS3E [ON | OFF]

If a line of PortF is used as chip select line the according SYStem.Option must be set to ON. If it is used as
general I/O is should be set to OFF.

Expanded Physical Address

Physical address combined with the information on the chip select lines select a location in memory. To be
compatible with the modular concept of TRACES2 the information on the chip select lines is translated to
additional address lines. The following table shows the translation table for HC12A4/F8.

Active Chip Select A23 A22 A21 A20

CS3 0 0 1 0

CcsD 0 0 0 1

CSD2 0 0 0 0

CSP1 0 1 CPU A21 | CPU A20
CSPO 1 0 CPU A21 | CPU A20
all other cases 1 1 CPU A21 | CPU A20

The expanded physical address range contains 23 address lines though the CPU has only 21 address lines.
The chip select lines affect A[23..20] of the expanded physical address. IF CSD, CSD2 or CS3 are active the
lines A21 and A20 contain levels which may be different to the levels on the CPU’s pins. A[19..0] contain the
same levels as the CPU’s pins (These statements and the table are only valid if the address lines A21 to A16
on the CPU are in use as address).

©1989-2024 Lauterbach MCS12 Debugger | 45

The following table gives an overview on the relation between logical address and expanded physical
address on the HC12A4:

Address in Active A23 | A22 | A21 A20 A19 A18 A17 A16
64K Area Chip

Select
0x0000-- CSs3 0 0 1 0 1 1 PEA1 PEA1
O0x03FF 7 6
EWDIR =1
EWEN = 1
0x0400-- CS3 0 0 1 0 1 1 PEA1 PEA1
0x07FF 7 6
EWDIR =0
or
EWEN = 1
0x7000-- CSD 0 0 0 1 PDAA1 PDA1 PDA1 PDA1
Ox7FFF 9 8 7 6
0x8000-- CSP1 0 1 PPA2 PPA2 PPA1 PPA1 PPA1 PPA1
OxBFFF 1 0 9 8 7 6
PWEN = 1
0x8000-- CSPO 1 0 PPA2 PPA2 PPA1 PPA1 PPA1 PPA1
OxBFFF 1 0 9 8 7 6
PWEN = 1
all other 1 1 1 1 1 1 1 1
cases

©1989-2024 Lauterbach MCS12 Debugger | 46

Address in Active A15 Al14 A13 A12 A1t A10 A9--A0
64K Area Chip
Select

0x0000-- CS3 PEA15| PEA14| PEA13| PEA12| PEA11| PEA10| A9--A0
0x03FF

EWDIR =1,
EWEN = 1

0x0400-- CS3 PEA15| PEA14| PEA13| PEA12| PEA11| PEA10| A9--A0
0x07FF
EWDIR =0
or
EWEN = 1

0x7000-- CSD PDA15| PDA14| PDA13| PDA12| A1 A10 A9--AQ
OX7FFF

0x8000-- CSP1 PPA15 | PPA14 | A13 A12 A1 A10 A9--A0
OxBFFF
PWEN =1

0x8000-- CSPO PPA15 | PPA14 | A13 A12 A1l A10 A9--A0
OxBFFF
PWEN =1

all other A15 A14 A13 A12 A1 A10 A9--A0
cases

Memory Mapping Unit

The MMU (Memory Mapping Unit) translation table is used for translating logical addresses to expanded
physical addresses and vice versa. This table is specified with the commands concerning MMU.

On ICD12 there is a mechanism which calculates the correct expanded physical address from the logical
address. This mechanism is started if the physical address is not specified when using the command
TRANSIation.Create. In this case the logical to expanded physical address translation is done by reading
the MMU registers of the CPU and calculating the expanded physical address dependent on the
SYStem.Options concerning chip selects and higher address lines. This calculation doesn't take care about
memory areas, which are overlaid by internal memory or I/O. It is strongly recommended to define all logical
and physical addresses in the MMU table.

The breakpoints are based on the expanded physical address. So the MMU must be set correct to make
them work proper.

©1989-2024 Lauterbach MCS12 Debugger | 47

BDM Connector

BDM Connector ICD - MCS12, ICD-S12X

BKGD GND
ECLK /RESET
N/C vCcC

This Pinout shows the male connector on the target board.

Some MCS12 devices need the ECLK (PE4) if debugging with active PLL is required. In this case the
application must configure the register PEAR so, that PE4 drives ECLK. PE4 cannot be used as general I/0
in this case.

On S12X devices ECLK (PE4) must not be connected if the ECLK
frequency is higher than 25 MHz.

BDM Connector ICD - HC12

There are several connector definitions to connect the BDM Interface to a target. The type of supported
connector(s) can be found by the serial number. The number to check is shown by the last 4 digits of the
Serial Number on the BDM Dongle:

If the last 4 digits of the Serial Number show a number smaller than 3000 the BDM supports original 6-pin
version from FREESCALE (1) and if there is a 10-pin connector the 10-pin version from LAUTERBACH (3).

If the last 4 digits of the Serial Number show a number higher than 3000 the BDM supports modified 6-pin
version from FREESCALEFREESCALE (2) and the 10-pin version from LAUTERBACH (3).

There is an additional small female connector on the BDM-Dongle. With the according wire you can supply
the BDM with an external clock. This clock has to match EXTAL or EXTAL divided by 2. See
SYStem.BdmClock.

©1989-2024 Lauterbach MCS12 Debugger | 48

1. Original 6-pin Version from FREESCALE

BKGD GND
GND /RESET
GND vCcC

The pins 3 and 5 are connected to GND on the BDM’s connector. Be careful in using this connector with the
modified 6-pin Version from FREESCALE. You might cause short circuits to ECLK and VFP! If you want to
stay compatible add jumpers to your design to disconnect ECLK and VFP from the BDM connector.

2. Modified 6-pin Version from FREESCALE

—
BKGD le o GND
ECLK /RESET
VEFP VCC

This Connector is supported if the last 4 digits of the Serial Number show a number higher than 3000. It is
recommended to add a capacitor (100 nF ... 1 uF between Pin5 (VFP) and GND) to the target, if the BDM
should supply the cpu with the necessary programming voltage for the FLASH EEPROM.

3. 10-pin Version from LAUTERBACH

BKGD |le 2| GND
N/C o o /RESET
N/C [¢ ¢ | VCC
GND e o ECLK (CPU PortE Bit4)

VFP o o EXTAL

Be careful with the pins 3 and 5. They are connected to GND on the BDM’s female connector. The drawing
above shows how the male connector on the target should be connected.

Pin 10 (EXTAL) must not be connected, if there is a crystal used as clock source. It is recommended to add
a capacitor (100 nF ... 1 uF between Pin9 (VFP) and GND) to the target, if the BDM should supply the cpu
with the necessary programming voltage for the FLASH EEPROM.

©1989-2024 Lauterbach MCS12 Debugger | 49

	MCS12 Debugger
	Brief Overview of Documents for New Users
	Warning
	Troubleshooting
	SYStem.Up Errors

	FAQ
	CPU Specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints

	Quick Start of the ICD Debugger for HC12
	1. Prepare the Start
	2. Select the Clock for the BDM Communication
	3. Configure the Debugger according to the Needs of the Application
	4. Map the EPROM Simulator if Available (optional)
	5. Tell the Debugger Where it should use On-chip Breakpoints (optional)
	6. Enter Debug Mode
	7. Load the Program
	8. Initialize Program Counter and Stackpointer
	9. View the Source Code

	CPU specific SYStem Settings and Restrictions
	Restrictions
	SYStem.BdmClock Select clock for BDM communication
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CPU Select CPU type
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Select target reset mode
	SYStem.Option.BASE Base address of internal registers
	SYStem.Option.CLKSW Force BDM to work on CPU bus frequency
	SYStem.Option.DUALPORT All memory accesses are done hidden
	SYStem.Option.GLOBAL Memory accesses are done global
	SYStem.Option.MonBase Monitor relocation
	SYStem.Option.SOFTWORD Breakpoints are set by word access
	SYStem.Option.VFP Voltage for FLASH programming
	SYStem.Option.WATCHDOG COP support

	Hardware Breakpoints
	Program Breakpoints
	Read and Write Breakpoints
	Data Breakpoints

	Onchip Commands
	Onchip.Mode.DetailTrace Detailed trace recording mode
	Onchip.Mode.EventTrace Start recording after trigger event
	Onchip.Mode.FlowTrace Flow trace mode
	Onchip.Mode.LoopTrace Inhibit redundant entries
	Onchip.Mode.CPU Select CPU as onchip trace source
	Onchip.Mode.XGATE Select XGATE as onchip trace source
	Onchip.Mode.BOTH Select CPU adn XGATE as onchip trace source
	Onchip.Mode.TimeStamp Enable onchip timestamps

	TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.Mode Select trace and trigger mode
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.XBreakt Enable crossbreak between S12 core and XGATE
	TrOnchip.RESERVE Deprive debugger of address comparator use

	Memory Classes
	Debugging with active PLL
	Debugging with active Watchdog
	FLASH EEPROM Management
	FLASH EEPROM on S12X Derivatives

	EEPROM Management
	Banked Applications
	Background and Compatibility Information
	SYStem.Option.PAGING Banked applications
	SYStem.Option.RAMHM Alternate RAM mapping
	SYStem.Option.ROMHM ROM in second half of map
	SYStem.Option.TRANS Transparent mode
	Local and Global Memory Map on S12X Targets
	Using the MMU for HC12DA/DG/DT128
	SYStem.Option.MEMEXP Memory expansion
	SYStem.Option.ROMTST FLASH EEPROM test mode
	Using the MMU for HC12A4/F8
	Basics
	Logical Address
	Physical Address
	Expanded Physical Address
	Memory Mapping Unit

	BDM Connector
	BDM Connector ICD - MCS12, ICD-S12X
	BDM Connector ICD - HC12
	1. Original 6-pin Version from FREESCALE
	2. Modified 6-pin Version from FREESCALE
	3. 10-pin Version from LAUTERBACH

