LAUTERBACH A

H8S/23x9 Debugger



H8S/23x9 Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES  ....cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQET ......cccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~
P r=

[ EE ST ) B 1= U e T T 1

L o Yo 11T o) o 4

Brief Overview of Documents for New Users 4

Demo and Start-up Scripts 5
L= T 0 1 ' 6

/Y o] o1 Lo 1o o T 11 e | (= 7
Location of Debug Connector 7

Reset Line 7
Enable JTAG Mode 7

QUICK Start JTAG .....ccoccciriiimrrssmrrssmssssmssssssssassmessssmsssssmsasssmsssssasnsssnsssasnsasssnnssssanssasannsssnns 8

QLo 10 o L= X= 0 T o 1] oV . 10
SYStem.Up Errors 10

£ 10

L0 o o) 1T 11 = 11T o R 11
System Overview 11
System COMMANAS .....ccceiiiiriiimiiiiir s as s sans s s an s e san s s e mnnnsnns 12
SYStem.CPU CPU type selection 12
SYStem.JtagClock JTAG clock selection 12
SYStem.Option.Advanced Advanced addressing mode 13
SYStem.Option.BrkVector Breakpoint trap 13
SYStem.Option.IMASKASM Interrupt disable on ASM 13
SYStem.Option.IMASKHLL Interrupt disable on HLL 13
SYStem.Option.KEYCODE Keycode 14
SYStem.Option.SLOWRESET Slow reset 14
SYStem.MemAccess Select run-time memory access method 15
SYStem.Mode System mode selection 15

IV TVTE e eZo T ¢=20 0 11 o 10 e T | 4V 17
©1989-2024 Lauterbach H8S/23x9 Debugger 2



SYStem.LOCK JTAG lock 17
SYStem.CONFIG Configure debugger according to target topology 18
Daisy-Chain Example 20
TapStates 21
SYStem.CONFIG.CORE Assign core to TRACE32 instance 22
SYStem.CONFIG.state Display target configuration 23
=== 1o T T ] 1 24
Software Breakpoints 24
On-chip Breakpoints 24
Breakpoint in ROM 24
Example for Breakpoints 24
QIO T e o 1T oI 0T 1 .1 F- T4 o E= 26
TrOnchip.state Display on-chip trigger window 26
TrOnchip.CONVert Adjust range breakpoint in on-chip resource 26
TrOnchip.DMA Trigger on DMA cycle 26
TrOnchip.DTC Trigger on DTC cycle 27
TrOnchip.SIZE Trigger on byte, word, long memory accesses 27
TrOnchip.RESet Set on-chip trigger to default state 27
TrOnchip.SEQ Sequential breakpoints 28
L= 4 o YA 03 = = =T 29
LT = 30
FIFO Trace 30
Runtime MeasuremMeNt .........cccccciiiiirmrimiisr i sss s s sass s s eansssmns s snnssas 31
B8 7Y€ R 0o T T 1= o o T 32
©1989-2024 Lauterbach H8S/23x9 Debugger | 3



H8S/23x9 Debugger

Version 06-Jun-2024

Introduction

This document describes the processor specific settings and features of the TRACE32 debugger for the
following CPUs:

. H8S/2329, H8S/2339

. H8S/2367, H8S/2377
Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by

Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

. “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach H8S/23x9 Debugger | 4



Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known H8S/23x9 based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS
. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo /h8s/ subfolder of the system directory of TRACE32.

©1989-2024 Lauterbach H8S/23x9 Debugger | 5



Warning

Signal Level

The debugger drives the output pins of the JTAG connector with 3.3 V always.

ESD Protection

1.

N o oo A W

—

P 0D

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACE32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACES32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACE32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

H8S/23x9 Debugger |




Application Note

Location of Debug Connector

Locate the JTAG connector as close as possible to the processor to minimize the capacitive influence of
the trace length and cross coupling of noise onto the BDM signals.

Reset Line

Ensure that the debugger signal RESET is connected directly to the RESET of the processor. This will
provide the ability for the debugger to drive and sense the status of RESET.

Reset circuit of debugger VCC

10 kQ

Reset Sense Target Reset

Force Reset

Enable JTAG Mode

Connect signal EMLE to VCC (enable debug mode)
Connect signal FWE to VCC (enable FLASH programming)

Connect signals MD[2..0] to VCC (enable Mode-7)

©1989-2024 Lauterbach H8S/23x9 Debugger |

7



Quick Start JTAG

Starting up the Debugger is done as follows:

1.

Select the device prompt B: for the ICD Debugger, if the device prompt is not active after the
TRACERS2 software was started.

b:
Select the CPU type to load the CPU specific settings.

SYStem.CPU H8S/2339

If the TRACE32-ICD hardware is installed properly, the following CPU is the default setting:
H8S
Tell the debugger where’s FLASH/ROM on the target.

MAP.BOnchip OxFF000000++0xFFFFFFFF

This command is necessary for the use of on-chip breakpoints.

Enter debug mode

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access the registers. Set the chip selects to get access to the target memory.

Data.Set ..

Load the program.

Data.LOAD.ELF diabc.elf ; elf specifies the format, diabc.elf
is
; the file name

The option of the Data.LOAD command depends on the file format generated by the compiler. A
detailed description of the Data.LOAD command is given in the “General Commands Reference”.

©1989-2024 Lauterbach H8S/23x9 Debugger | 8



The start-up can be automated using the programming language PRACTICE. A typical start sequence is
shown below. This sequence can be written to a PRACTICE script file (*.cmm, ASCII format) and executed

with the command DO <file>.

EEN:

WinClear

MAP.BOnchip 0x100000++0xQ0fffff
SYStem.CPU H8S/2339

SYStem.Up

Data.LOAD.COFF GNUSH7.X
Register.Set PC main
Data.List

Register

Frame.view /Locals /Caller

PER
Break.Set sieve

Break.Set 0x1000 /p

Break.Set 0x101000 /p

I

Select the ICD device prompt
Delete all windows

Specify where’s FLASH/ROM
Select the processor type

Reset the target and enter debug

mode

I

Load the application

Set the PC to function main
Open disassembly window *)
Open register window *)

Open the stack frame with
local variables *)

Open window with peripheral register
Set breakpoint to function sieve

Set software breakpoint to address
1000 (address 1000 is in RAM)

Set on-chip breakpoint to address
101000 (address 101000 is in ROM)
Refer to the restrictions in
On-chip Breakpoints.

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

H8S/23x9 Debugger | 9



Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

All The target has no power.

All The target is in reset:
The debugger controls the processor reset and use the RESET line to reset the
CPU on every SYStem.Up.

All There is logic added to the JTAG state machine:

By default the debugger supports only one processor on one JTAG chain.

If the processor is member of a JTAG chain the debugger has to be informed
about the target JTAG chain configuration. See Multicore Debugging.

All There are additional loads or capacities on the JTAG lines.

All KEYCODE if does not match FLASH content and FLASH programming disabled
(FWE pin low level)

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach H8S/23x9 Debugger | 10



https://support.lauterbach.com/kb

Configuration

System Overview

PODPC
PODPAR
PODETH

PODBUS Cable u

Debug
Interface

Basic

EPROM
Simulator
(optional)

[

—Debug Cable

|

)
CPU CLK

Target Connector

Target

EPROM

1
¢—RESET
¢—INT

configuration for the BDM Interface

©1989-2024 Lauterbach

H8S/23x9 Debugger

11



System Commands

SYStem.CPU CPU type selection
Format: SYStem.CPU <cpu>
<cpu>: H8S/2339

Default selection: H8S/2339.

Selects the CPU type.

SYStem.JtagClock JTAG clock selection

Format: SYStem.JtagClock [<frequency> | EXT/x]
SYStem.BdmClock [<frequency> | EXT/x] (deprecated)

Default frequency: 20 MHz.

Selects the JTAG port frequency (TCK). The maximum frequency is the same as the operation frequency of
the chip.

Any frequency can be entered, it will be generated by the debuggers internal PLL.

There is an additional plug on the debug cable on the debugger side. This plug can be used as an external
clock input. With setting EXT/x the external clock input (divided by x) is used as JTAG port frequency.

If there are buffers, additional loads or high capacities on the JTAG/COP
lines, reduce the debug speed.

©1989-2024 Lauterbach H8S/23x9 Debugger | 12



SYStem.Option.Advanced Advanced addressing mode

Format: SYStem.Option.Advanced [ON | OFF]

Defines the address mode of the CPU.

OFF Normal address mode (64K).
ON Advanced address mode (16M).

SYStem.Option.BrkVector Breakpoint trap
Format: SYStem.Option.BrkVector <0..3>

Defines the number of the TRAPA-Instruction used for breakpoints and single stepping.

SYStem.Option.IMASKASM Interrupt disable on ASM

Format: SYStem.Option.IMASKASM [ON | OFF]

Mask interrupts during assembler single steps. Useful to prevent interrupt disturbance during assembler

single stepping.
SYStem.Option.IMASKHLL Interrupt disable on HLL
Format: SYStem.Option.IMASKHLL [ON | OFF]

Mask interrupts during HLL single steps. Useful to prevent interrupt disturbance during HLL single stepping.

©1989-2024 Lauterbach H8S/23x9 Debugger | 13



SYStem.Option.KEYCODE Keycode

Format: SYStem.Option.KEYCODE [<32bit_value>]

During SYStem.Up the KEYCODE is sent to the CPU and compared against certain Flash contents. If the
KEYCODE does not fit, the CPU automatically erases its FLASH before the debug monitor can be
downloaded. This is a special security feature of the CPU.

H8S/2319 Keycode has to be the same value as present in CPU Flash at address
0x78--0x7B
H8S/2367 Keycode has to be the same value as present in CPU Flash at address
H8S/2377 0x4--0x7
H8SX
SYStem.Option.SLOWRESET Slow reset
Format: SYStem.Option.SLOWRESET [ON | OFF]
Default: OFF.

When this command is set to ON, debug communication starts five seconds after rising edge of reset.

©1989-2024 Lauterbach H8S/23x9 Debugger | 14



SYStem.MemAccess Select run-time memory access method
Format: SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)
Enable Memory access during program execution to target is enabled.

CPU (deprecated)

Denied (default)

Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

For more information, see below.
SYStem.Mode System mode selection

Format: SYStem.Mode <mode>

SYStem.Down (alias for SYStem.Mode Down)

SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down

Go

Up

Down Disables the Debugger.

Go Resets the target with debug mode enabled and prepares the CPU for
debug mode entry. After this command the CPU is in the system.up
mode and running. Now, the processor can be stopped with the break
command or until any break condition occurs.

Up Resets the target and sets the CPU to debug mode. After execution of
this command the CPU is stopped and prepared for debugging. All
register are set to the default value.

Attach Not supported.

©1989-2024 Lauterbach

H8S/23x9 Debugger | 15



NoDebug Not supported.

StandBy Not supported.

©1989-2024 Lauterbach H8S/23x9 Debugger | 16



Multicore Debugging

If your H8S device is the only one connected to the JTAG connector then the following system setting should
be left in their default position.

If your H8S CPU is lined up in a target JTAG chain then the debugger has to be informed about the “position”
of the H8S device inside the JTAG chain. Following system settings have to be done according to your target
configuration.

SYStem.LOCK JTAG lock

Format: SYStem.LOCK [ON | OFF]

Default: OFF. If the system is locked (ON) no access to the JTAG port will be performed by the debugger. All
JTAG connector signals of the debugger are tristated.

This command is useful if there are additional CPUs (Cores) on the target which have to use the same JTAG
lines for debugging. By locking the H8S debugger lines a different debugger can own mastership of the
JTAG interface.

It must be ensured that the state of the H8S core JTAG state machine remains unchanged while the system
is locked. To ensure correct hand-over between two debuggers a pull-down resistor on TCK and a pull-up
resistor on /TRST is required.

©1989-2024 Lauterbach H8S/23x9 Debugger | 17




SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE <core>
<parameter>: DRPRE <bits>
(JTAG): DRPOST <bits>

IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel </evel>
TriState [ON | OFF]
Slave [ON | OFF]

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain
Example.

For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

g
CORE For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.
Further information can be found in SYStem.CONFIG.CORE.
DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of

interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

©1989-2024 Lauterbach H8S/23x9 Debugger | 18



DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nNRESET).

©1989-2024 Lauterbach H8S/23x9 Debugger | 19



Daisy-Chain Example

TDl——-® Core A —Core B p Core C—» Core D +—» TDO

Chip 0 Chip 1

Below, configuration for core C.

Instruction register length of
. Core A: 3 bit
. Core B: 5 bit
. Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B
SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C i1s Core 0 in Chip 1

©1989-2024 Lauterbach H8S/23x9 Debugger | 20



TapStates

0 Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR

© 00 N o 0o~ W N =

—_ - e e —d
a A~ WO N = O

Test-Logic-Reset

©1989-2024 Lauterbach H8S/23x9 Debugger | 21



SYStem.CONFIG.CORE Assign core to TRACE32 instance

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1.0

<core_index>: 1...k

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips
Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

©1989-2024 Lauterbach H8S/23x9 Debugger | 22



SYStem.CONFIG.state Display target configuration

Format: SYStem.CONFIG.state

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configurations settings.

©1989-2024 Lauterbach H8S/23x9 Debugger | 23



Breakpoints

There are two types of breakpoints available: Software breakpoints (SW-BP) and on-chip breakpoints (HW-
BP).

Software Breakpoints

Software breakpoints are the default breakpoints. A special breakcode is patched to memory so it only can
be used in RAM areas.There is no restriction in the number of software breakpoints.

On-chip Breakpoints

The following list gives an overview of the usage of the on-chip breakpoints by

TRACE32-ICD..
CPU Family Number of Number of Sequential
Address Breakpoints Data Breakpoints Breakpoints
H8S 2 2
H8SX 4 1 B>A
C>B>A
D>C>B>A

Breakpoint in ROM

With the command MAP.BOnchip <range> it is possible to inform the debugger where you have ROM
(FLASH,EPROM) on the target. If a breakpoint is set within the specified address range the debugger uses
automatically the available on-chip breakpoints.

Example for Breakpoints

Assume you have a target with FLASH from 0 to 0xFFFFF and RAM from 0x100000 to 0x11FFFE The
command to configure TRACES32 correctly for this configuration is:

Map .BOnchip 0x0--0xOFFFFF

The following breakpoint combinations are possible.

©1989-2024 Lauterbach H8S/23x9 Debugger | 24




1. Software breakpoints:

Break.Set 0x100000 /Program ; Software Breakpoint 1
Break.Set 0x101000 /Program ; Software Breakpoint 2
Break.Set 0xx /Program ; Software Breakpoint 3

2. On-chip breakpoints:

Break.Set 0x100 /Program ; On-chip Breakpoint 1

Break.Set 0x0ff00 /Program ; On-chip Breakpoint 2

©1989-2024 Lauterbach H8S/23x9 Debugger | 25



TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

The onchip breakpoints can only cover specific ranges. If a range cannot be programmed into the breakpoint
it will automatically be converted into a single address breakpoint when this option is active. This is the
default. Otherwise an error message is generated.

TrOnchip.CONVert ON

Break.Set 0x1000--0x17ff /Write ; sets breakpoint at range

Break.Set 0x1001--0x17ff /Write ;1000--17ff sets single breakpoint
; at address 1001

TrOnchip.CONVert OFF ; sets breakpoint at range

Break.Set 0x1000--0x17ff /Write ; 1000--17ff

Break.Set 0x1001--0x17ff /Write ; gives an error message
TrOnchip.DMA Trigger on DMA cycle

Format: TrOnchip.DMA [ON | OFF]

Enable trigger on DMA cycle.

©1989-2024 Lauterbach H8S/23x9 Debugger | 26



TrOnchip.DTC Trigger on DTC cycle

Format: TrOnchip.DTC [ON | OFF]

Enable trigger on DTC cycle.

TrOnchip.SIZE Trigger on byte, word, long memory accesses

Format: TrOnchip.SIZE [ON | OFF]

If ON, breakpoints on single-byte, two-byte or four-byte addressranges only hit if the CPU accesses this
ranges with a byte, word or long buscycle.

Default: OFF

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

©1989-2024 Lauterbach H8S/23x9 Debugger | 27



TrOnchip.SEQ Sequential breakpoints

Format: TrOnchip.SEQ <mode>
<mode>: OFF

BA

CBA

DCBA

This trigger-on-chip command selects sequential breakpoints.

OFF Sequential break off.

BA Sequential break, first condition, then second condition.

CBA Sequential break, first condition, then second condition, then third
condition.

DCBA Sequential break, first condition, then second condition, then third

condition and the fourth condition.

Break.Set sieve /Delta /Program
Var.Break.Set flags[3] /Charly /Write

TrOnchip.SEQ DC

©1989-2024 Lauterbach H8S/23x9 Debugger | 28



Memory Classes

The following memory classes are available:

Memory Class Description
P Program
D Data

©1989-2024 Lauterbach

H8S/23x9 Debugger

29



Trace

To support analysis of the program history the ICD supports following algorithm

FIFO Trace

This CPU includes a 4-stage branch trace. This trace holds the source address of the last four program flow
changes.

The ICD command “FIFO” opens a window which displays the content of the branch trace.

This trace method does not slow down program execution.

©1989-2024 Lauterbach H8S/23x9 Debugger | 30



Runtime Measurement

Runtime measurement is done with about 5us resolution.

The debuggers RUNTIME window gives detailed information about the complete run-time of the application
code and the run-time since the last GO/STEP/STEP-OVER command.

©1989-2024 Lauterbach H8S/23x9 Debugger | 31



JTAG Connector

Signal description:

Signal Pin Pin Signal
TCK 1 2 GND
TRST- 3 4 GND
TDO 5 6 GND
RSTOUT- 7 8 VCC
TMS 9 10 GND
TDI 11 12 GND
RESET- 13 14 GND

TMS Jtag-TMS, output of debugger
TDI Jtag-TDI, output of debugger
TCK Jtag-TCK, output of debugger
ITRST Jtag-TRST, output of debugger
TDO Jtag-TDO, input for debugger
/RESET RESET, input/output for debugger
Connect this pin direct to the CPUs /RESET line
/RSTOUT /RESET-Out, output of debugger
This signal can be use as additional reset source for the target reset
logic.
VCC MCU Vcc pin, input for debugger (10 mA)

©1989-2024 Lauterbach

H8S/23x9 Debugger

32



	H8S/23x9 Debugger
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Application Note
	Location of Debug Connector
	Reset Line
	Enable JTAG Mode

	Quick Start JTAG
	Troubleshooting
	SYStem.Up Errors

	FAQ
	Configuration
	System Overview

	System Commands
	SYStem.CPU      CPU type selection
	SYStem.JtagClock      JTAG clock selection
	SYStem.Option.Advanced      Advanced addressing mode
	SYStem.Option.BrkVector      Breakpoint trap
	SYStem.Option.IMASKASM      Interrupt disable on ASM
	SYStem.Option.IMASKHLL      Interrupt disable on HLL
	SYStem.Option.KEYCODE      Keycode
	SYStem.Option.SLOWRESET      Slow reset
	SYStem.MemAccess      Select run-time memory access method
	SYStem.Mode      System mode selection

	Multicore Debugging
	SYStem.LOCK      JTAG lock
	SYStem.CONFIG      Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE      Assign core to TRACE32 instance
	SYStem.CONFIG.state      Display target configuration

	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	Breakpoint in ROM
	Example for Breakpoints

	TrOnchip Commands
	TrOnchip.state      Display on-chip trigger window
	TrOnchip.CONVert      Adjust range breakpoint in on-chip resource
	TrOnchip.DMA      Trigger on DMA cycle
	TrOnchip.DTC      Trigger on DTC cycle
	TrOnchip.SIZE      Trigger on byte, word, long memory accesses
	TrOnchip.RESet      Set on-chip trigger to default state
	TrOnchip.SEQ      Sequential breakpoints

	Memory Classes
	Trace
	FIFO Trace

	Runtime Measurement
	JTAG Connector


