
MANUAL

H8S/23x9 Debugger

H8S/23x9 Debugger

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 H8S ... 

 H8S/23x9 Debugger .. 1

 Introduction ... 4

 Brief Overview of Documents for New Users 4

 Demo and Start-up Scripts 5

 Warning .. 6

 Application Note .. 7

 Location of Debug Connector 7

 Reset Line 7

 Enable JTAG Mode 7

 Quick Start JTAG ... 8

 Troubleshooting .. 10

 SYStem.Up Errors 10

 FAQ ... 10

 Configuration ... 11

 System Overview 11

 System Commands ... 12

 SYStem.CPU CPU type selection 12

 SYStem.JtagClock JTAG clock selection 12

 SYStem.Option.Advanced Advanced addressing mode 13

 SYStem.Option.BrkVector Breakpoint trap 13

 SYStem.Option.IMASKASM Interrupt disable on ASM 13

 SYStem.Option.IMASKHLL Interrupt disable on HLL 13

 SYStem.Option.KEYCODE Keycode 14

 SYStem.Option.SLOWRESET Slow reset 14

 SYStem.MemAccess Select run-time memory access method 15

 SYStem.Mode System mode selection 15

 Multicore Debugging ... 17
H8S/23x9 Debugger | 2©1989-2024 Lauterbach

 SYStem.LOCK JTAG lock 17

 SYStem.CONFIG Configure debugger according to target topology 18

 Daisy-Chain Example 20

 TapStates 21

 SYStem.CONFIG.CORE Assign core to TRACE32 instance 22

 SYStem.CONFIG.state Display target configuration 23

 Breakpoints .. 24

 Software Breakpoints 24

 On-chip Breakpoints 24

 Breakpoint in ROM 24

 Example for Breakpoints 24

 TrOnchip Commands .. 26

 TrOnchip.state Display on-chip trigger window 26

 TrOnchip.CONVert Adjust range breakpoint in on-chip resource 26

 TrOnchip.DMA Trigger on DMA cycle 26

 TrOnchip.DTC Trigger on DTC cycle 27

 TrOnchip.SIZE Trigger on byte, word, long memory accesses 27

 TrOnchip.RESet Set on-chip trigger to default state 27

 TrOnchip.SEQ Sequential breakpoints 28

 Memory Classes .. 29

 Trace ... 30

 FIFO Trace 30

 Runtime Measurement .. 31

 JTAG Connector .. 32
H8S/23x9 Debugger | 3©1989-2024 Lauterbach

H8S/23x9 Debugger

Version 06-Jun-2024

Introduction

This document describes the processor specific settings and features of the TRACE32 debugger for the
following CPUs:

• H8S/2329, H8S/2339

• H8S/2367, H8S/2377

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.
H8S/23x9 Debugger | 4©1989-2024 Lauterbach

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known H8S/23x9 based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/h8s/ subfolder of the system directory of TRACE32.
H8S/23x9 Debugger | 5©1989-2024 Lauterbach

Warning

Signal Level

The debugger drives the output pins of the JTAG connector with 3.3 V always.

ESD Protection

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
H8S/23x9 Debugger | 6©1989-2024 Lauterbach

Application Note

Location of Debug Connector

Locate the JTAG connector as close as possible to the processor to minimize the capacitive influence of
the trace length and cross coupling of noise onto the BDM signals.

Reset Line

Ensure that the debugger signal RESET is connected directly to the RESET of the processor. This will
provide the ability for the debugger to drive and sense the status of RESET.

Enable JTAG Mode

Connect signal EMLE to VCC (enable debug mode)

Connect signal FWE to VCC (enable FLASH programming)

Connect signals MD[2..0] to VCC (enable Mode-7)

VCC

10 k

Force Reset

Reset Sense Target Reset

Reset circuit of debugger
H8S/23x9 Debugger | 7©1989-2024 Lauterbach

Quick Start JTAG

Starting up the Debugger is done as follows:

1. Select the device prompt B: for the ICD Debugger, if the device prompt is not active after the
TRACE32 software was started.

2. Select the CPU type to load the CPU specific settings.

3. If the TRACE32-ICD hardware is installed properly, the following CPU is the default setting:

H8S

4. Tell the debugger where’s FLASH/ROM on the target.

This command is necessary for the use of on-chip breakpoints.

5. Enter debug mode

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access the registers. Set the chip selects to get access to the target memory.

6. Load the program.

The option of the Data.LOAD command depends on the file format generated by the compiler. A
detailed description of the Data.LOAD command is given in the “General Commands Reference”.

b:

SYStem.CPU H8S/2339

MAP.BOnchip 0xFF000000++0xFFFFFFFF

SYStem.Up

Data.Set …

Data.LOAD.ELF diabc.elf ; elf specifies the format, diabc.elf
is
; the file name
H8S/23x9 Debugger | 8©1989-2024 Lauterbach

The start-up can be automated using the programming language PRACTICE. A typical start sequence is
shown below. This sequence can be written to a PRACTICE script file (*.cmm, ASCII format) and executed
with the command DO <file>.

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

B:: ; Select the ICD device prompt

WinClear ; Delete all windows

MAP.BOnchip 0x100000++0x0fffff ; Specify where’s FLASH/ROM

SYStem.CPU H8S/2339 ; Select the processor type

SYStem.Up ; Reset the target and enter debug
mode

Data.LOAD.COFF GNUSH7.X ; Load the application

Register.Set PC main ; Set the PC to function main

Data.List ; Open disassembly window *)

Register ; Open register window *)

Frame.view /Locals /Caller ; Open the stack frame with
; local variables *)

PER ; Open window with peripheral register

Break.Set sieve ; Set breakpoint to function sieve

Break.Set 0x1000 /p ; Set software breakpoint to address
; 1000 (address 1000 is in RAM)

Break.Set 0x101000 /p ; Set on-chip breakpoint to address
; 101000 (address 101000 is in ROM)
; Refer to the restrictions in
; On-chip Breakpoints.
H8S/23x9 Debugger | 9©1989-2024 Lauterbach

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

FAQ

Please refer to https://support.lauterbach.com/kb.

All The target has no power.

All The target is in reset:
The debugger controls the processor reset and use the RESET line to reset the
CPU on every SYStem.Up.

All There is logic added to the JTAG state machine:
By default the debugger supports only one processor on one JTAG chain.
If the processor is member of a JTAG chain the debugger has to be informed
about the target JTAG chain configuration. See Multicore Debugging.

All There are additional loads or capacities on the JTAG lines.

All KEYCODE if does not match FLASH content and FLASH programming disabled
(FWE pin low level)
H8S/23x9 Debugger | 10©1989-2024 Lauterbach

https://support.lauterbach.com/kb

Configuration

System Overview

PODBUS Cable
PODPC
PODPAR Debug EPROM
PODETH Interface Simulator ...

(optional)

Debug Cable


CPU CLK  RESET

 INT
Target Connector

EPROM

Target

Basic configuration for the BDM Interface
H8S/23x9 Debugger | 11©1989-2024 Lauterbach

System Commands

SYStem.CPU CPU type selection

Default selection: H8S/2339.

Selects the CPU type.

SYStem.JtagClock JTAG clock selection

Default frequency: 20 MHz.

Selects the JTAG port frequency (TCK). The maximum frequency is the same as the operation frequency of
the chip.

Any frequency can be entered, it will be generated by the debuggers internal PLL.

There is an additional plug on the debug cable on the debugger side. This plug can be used as an external
clock input. With setting EXT/x the external clock input (divided by x) is used as JTAG port frequency.

Format: SYStem.CPU <cpu>

<cpu>: H8S/2339

Format: SYStem.JtagClock [<frequency> | EXT/x]
SYStem.BdmClock [<frequency> | EXT/x] (deprecated)

If there are buffers, additional loads or high capacities on the JTAG/COP
lines, reduce the debug speed.
H8S/23x9 Debugger | 12©1989-2024 Lauterbach

SYStem.Option.Advanced Advanced addressing mode

Defines the address mode of the CPU.

SYStem.Option.BrkVector Breakpoint trap

Defines the number of the TRAPA-Instruction used for breakpoints and single stepping.

SYStem.Option.IMASKASM Interrupt disable on ASM

Mask interrupts during assembler single steps. Useful to prevent interrupt disturbance during assembler
single stepping.

SYStem.Option.IMASKHLL Interrupt disable on HLL

Mask interrupts during HLL single steps. Useful to prevent interrupt disturbance during HLL single stepping.

Format: SYStem.Option.Advanced [ON | OFF]

OFF Normal address mode (64K).

ON Advanced address mode (16M).

Format: SYStem.Option.BrkVector <0..3>

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]
H8S/23x9 Debugger | 13©1989-2024 Lauterbach

SYStem.Option.KEYCODE Keycode

During SYStem.Up the KEYCODE is sent to the CPU and compared against certain Flash contents. If the
KEYCODE does not fit, the CPU automatically erases its FLASH before the debug monitor can be
downloaded. This is a special security feature of the CPU.

SYStem.Option.SLOWRESET Slow reset

Default: OFF.

When this command is set to ON, debug communication starts five seconds after rising edge of reset.

Format: SYStem.Option.KEYCODE [<32bit_value>]

H8S/2319 Keycode has to be the same value as present in CPU Flash at address
0x78--0x7B

H8S/2367
H8S/2377
H8SX

Keycode has to be the same value as present in CPU Flash at address
0x4--0x7

Format: SYStem.Option.SLOWRESET [ON | OFF]
H8S/23x9 Debugger | 14©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

SYStem.Mode System mode selection

Format: SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)

Enable
CPU (deprecated)

Memory access during program execution to target is enabled.

Denied (default) Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
For more information, see below.

Format: SYStem.Mode <mode>

SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
Go
Up

Down Disables the Debugger.

Go Resets the target with debug mode enabled and prepares the CPU for
debug mode entry. After this command the CPU is in the system.up
mode and running. Now, the processor can be stopped with the break
command or until any break condition occurs.

Up Resets the target and sets the CPU to debug mode. After execution of
this command the CPU is stopped and prepared for debugging. All
register are set to the default value.

Attach Not supported.
H8S/23x9 Debugger | 15©1989-2024 Lauterbach

NoDebug Not supported.

StandBy Not supported.
H8S/23x9 Debugger | 16©1989-2024 Lauterbach

Multicore Debugging

If your H8S device is the only one connected to the JTAG connector then the following system setting should
be left in their default position.

If your H8S CPU is lined up in a target JTAG chain then the debugger has to be informed about the “position”
of the H8S device inside the JTAG chain. Following system settings have to be done according to your target
configuration.

SYStem.LOCK JTAG lock

Default: OFF. If the system is locked (ON) no access to the JTAG port will be performed by the debugger. All
JTAG connector signals of the debugger are tristated.

This command is useful if there are additional CPUs (Cores) on the target which have to use the same JTAG
lines for debugging. By locking the H8S debugger lines a different debugger can own mastership of the
JTAG interface.

It must be ensured that the state of the H8S core JTAG state machine remains unchanged while the system
is locked. To ensure correct hand-over between two debuggers a pull-down resistor on TCK and a pull-up
resistor on /TRST is required.

Format: SYStem.LOCK [ON | OFF]
H8S/23x9 Debugger | 17©1989-2024 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain
Example.
For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE <core>

<parameter>:
(JTAG):

DRPRE <bits>
DRPOST <bits>
IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Slave [ON | OFF]

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

CORE For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.
Further information can be found in SYStem.CONFIG.CORE.

DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.
H8S/23x9 Debugger | 18©1989-2024 Lauterbach

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET).
H8S/23x9 Debugger | 19©1989-2024 Lauterbach

Daisy-Chain Example

Below, configuration for core C.

Instruction register length of

• Core A: 3 bit

• Core B: 5 bit

• Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B

SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C is Core 0 in Chip 1

Core A Core B Core C Core D TDOTDI

Chip 0 Chip 1
H8S/23x9 Debugger | 20©1989-2024 Lauterbach

TapStates

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan

5 Update-DR

6 Capture-DR

7 Select-DR-Scan

8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle

13 Update-IR

14 Capture-IR

15 Test-Logic-Reset
H8S/23x9 Debugger | 21©1989-2024 Lauterbach

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips

Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1 … i

<core_index>: 1 … k
H8S/23x9 Debugger | 22©1989-2024 Lauterbach

SYStem.CONFIG.state Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configurations settings.

Format: SYStem.CONFIG.state
H8S/23x9 Debugger | 23©1989-2024 Lauterbach

Breakpoints

There are two types of breakpoints available: Software breakpoints (SW-BP) and on-chip breakpoints (HW-
BP).

Software Breakpoints

Software breakpoints are the default breakpoints. A special breakcode is patched to memory so it only can
be used in RAM areas.There is no restriction in the number of software breakpoints.

On-chip Breakpoints

The following list gives an overview of the usage of the on-chip breakpoints by
TRACE32-ICD:.

Breakpoint in ROM

With the command MAP.BOnchip <range> it is possible to inform the debugger where you have ROM
(FLASH,EPROM) on the target. If a breakpoint is set within the specified address range the debugger uses
automatically the available on-chip breakpoints.

Example for Breakpoints

Assume you have a target with FLASH from 0 to 0xFFFFF and RAM from 0x100000 to 0x11FFFF. The
command to configure TRACE32 correctly for this configuration is:

The following breakpoint combinations are possible.

CPU Family Number of
Address Breakpoints

Number of
Data Breakpoints

Sequential
Breakpoints

H8S 2 2 ---

H8SX 4 1 B>A
C>B>A
D>C>B>A

Map.BOnchip 0x0--0x0FFFFF
H8S/23x9 Debugger | 24©1989-2024 Lauterbach

1. Software breakpoints:

2. On-chip breakpoints:

Break.Set 0x100000 /Program ; Software Breakpoint 1

Break.Set 0x101000 /Program ; Software Breakpoint 2

Break.Set 0xx /Program ; Software Breakpoint 3

Break.Set 0x100 /Program ; On-chip Breakpoint 1

Break.Set 0x0ff00 /Program ; On-chip Breakpoint 2
H8S/23x9 Debugger | 25©1989-2024 Lauterbach

TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Opens the TrOnchip.state window.

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

The onchip breakpoints can only cover specific ranges. If a range cannot be programmed into the breakpoint
it will automatically be converted into a single address breakpoint when this option is active. This is the
default. Otherwise an error message is generated.

TrOnchip.DMA Trigger on DMA cycle

Enable trigger on DMA cycle.

Format: TrOnchip.state

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

TrOnchip.CONVert ON
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write
...

TrOnchip.CONVert OFF
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write

; sets breakpoint at range
;1000--17ff sets single breakpoint
; at address 1001

; sets breakpoint at range
; 1000--17ff
; gives an error message

Format: TrOnchip.DMA [ON | OFF]
H8S/23x9 Debugger | 26©1989-2024 Lauterbach

TrOnchip.DTC Trigger on DTC cycle

Enable trigger on DTC cycle.

TrOnchip.SIZE Trigger on byte, word, long memory accesses

If ON, breakpoints on single-byte, two-byte or four-byte addressranges only hit if the CPU accesses this
ranges with a byte, word or long buscycle.

Default: OFF

TrOnchip.RESet Set on-chip trigger to default state

Sets the TrOnchip settings and trigger module to the default settings.

Format: TrOnchip.DTC [ON | OFF]

Format: TrOnchip.SIZE [ON | OFF]

Format: TrOnchip.RESet
H8S/23x9 Debugger | 27©1989-2024 Lauterbach

TrOnchip.SEQ Sequential breakpoints

This trigger-on-chip command selects sequential breakpoints.

Format: TrOnchip.SEQ <mode>

<mode>: OFF
BA
CBA
DCBA

OFF Sequential break off.

BA Sequential break, first condition, then second condition.

CBA Sequential break, first condition, then second condition, then third
condition.

DCBA Sequential break, first condition, then second condition, then third
condition and the fourth condition.

Break.Set sieve /Delta /Program

Var.Break.Set flags[3] /Charly /Write

TrOnchip.SEQ DC
H8S/23x9 Debugger | 28©1989-2024 Lauterbach

Memory Classes

The following memory classes are available:

Memory Class Description

P Program

D Data
H8S/23x9 Debugger | 29©1989-2024 Lauterbach

Trace

To support analysis of the program history the ICD supports following algorithm

FIFO Trace

This CPU includes a 4-stage branch trace. This trace holds the source address of the last four program flow
changes.

The ICD command “FIFO” opens a window which displays the content of the branch trace.

This trace method does not slow down program execution.
H8S/23x9 Debugger | 30©1989-2024 Lauterbach

Runtime Measurement

Runtime measurement is done with about 5us resolution.

The debuggers RUNTIME window gives detailed information about the complete run-time of the application
code and the run-time since the last GO/STEP/STEP-OVER command.
H8S/23x9 Debugger | 31©1989-2024 Lauterbach

JTAG Connector

Signal description:

Signal Pin Pin Signal
TCK 1 2 GND

TRST- 3 4 GND
TDO 5 6 GND

RSTOUT- 7 8 VCC
TMS 9 10 GND
TDI 11 12 GND

RESET- 13 14 GND

TMS Jtag-TMS, output of debugger

TDI Jtag-TDI, output of debugger

TCK Jtag-TCK, output of debugger

/TRST Jtag-TRST, output of debugger

TDO Jtag-TDO, input for debugger

/RESET RESET, input/output for debugger
Connect this pin direct to the CPUs /RESET line

/RSTOUT /RESET-Out, output of debugger
This signal can be use as additional reset source for the target reset
logic.

VCC MCU Vcc pin, input for debugger (10 mA)
H8S/23x9 Debugger | 32©1989-2024 Lauterbach

	H8S/23x9 Debugger
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Application Note
	Location of Debug Connector
	Reset Line
	Enable JTAG Mode

	Quick Start JTAG
	Troubleshooting
	SYStem.Up Errors

	FAQ
	Configuration
	System Overview

	System Commands
	SYStem.CPU CPU type selection
	SYStem.JtagClock JTAG clock selection
	SYStem.Option.Advanced Advanced addressing mode
	SYStem.Option.BrkVector Breakpoint trap
	SYStem.Option.IMASKASM Interrupt disable on ASM
	SYStem.Option.IMASKHLL Interrupt disable on HLL
	SYStem.Option.KEYCODE Keycode
	SYStem.Option.SLOWRESET Slow reset
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode System mode selection

	Multicore Debugging
	SYStem.LOCK JTAG lock
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CONFIG.state Display target configuration

	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	Breakpoint in ROM
	Example for Breakpoints

	TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.DMA Trigger on DMA cycle
	TrOnchip.DTC Trigger on DTC cycle
	TrOnchip.SIZE Trigger on byte, word, long memory accesses
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.SEQ Sequential breakpoints

	Memory Classes
	Trace
	FIFO Trace

	Runtime Measurement
	JTAG Connector

