LAUTERBACH A

Debugger for eSi-RISC

Debugger for eSi-RISC

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
L= T O r—
Debugger for €Si-RISC ... s s s s 1

L (oo L1 T o o 5

Brief Overview of Documents for New Users 5

Demo and Start-up Scripts 5
L= T 1 ' 6
Quick Start of the JTAG DEDUGQErcceivemriiriirinir s s s s e s 7

Lo 18] o == 0 T To7 £ 3V 9
SYStem.Up Errors 9

O 9
eSi-RISC Specific Implementations ..o —————— 10
Access Classes 10
Breakpoints 11
Software Breakpoints 11
On-chip Breakpoints 11

CPU specific SYStem CommaNndsccccceemmimiiiiiiniiisssssccsees e ssssssssssssssssssssssessesssssssnnnes 12
SYStem.CONFIG.state Display target configuration 12
SYStem.CONFIG Configure debugger according to target topology 13
<parameters> describing the “DebugPort” 14
<parameters> describing the “JTAG” scan chain and signal behavior 16
SYStem.CPU Select the used CPU 18
SYStem.JtagClock Define JTAG frequency 18
SYStem.LOCK Tristate the JTAG port 18
SYStem.MemAccess Select run-time memory access method 20
SYStem.Mode Establish the communication with the target 21
SYStem.Option.IMASKASM Disable interrupts while single stepping 21
SYStem.Option.GPREG Configure number of GP registers 22
SYStem.state Display SYStem.state window 22

CPU specific TrOnchip Commandsccccuciimiissmminsssiismsnnssssssssssss s sssss s sssssssssanes 23
©1989-2024 Lauterbach Debugger for eSi-RISC 2

Target Adaptionccccceiiiiimiiinier s 24
Connector Type and Pinout 24

©1989-2024 Lauterbach Debugger for eSi-RISC | 3

Debugger for eSi-RISC

Version 06-Jun-2024

©1989-2024 Lauterbach Debugger for eSi-RISC | 4

Introduction

This manual serves as a guideline for debugging one or multiple eSi-RISC cores via TRACE32.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

. “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

PRACTICE Script Language:
J “Training Script Language PRACTICE” (training_practice.pdf)
. “PRACTICE Script Language Reference Guide” (practice_ref.pdf)

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known eSi-RISC based hardware.

©1989-2024 Lauterbach Debugger for eSi-RISC | 5

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/esirisc/ subfolder of the system directory of TRACE32.

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACES32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

N o o &~

Configure your debugger e.g. via a start-up script.

Power down:
1. Switch off the target power.
2 Disconnect the Debug Cable from the target.
3. Close the TRACE32 software.
4 Power OFF the TRACE32 hardware.

©1989-2024 Lauterbach Debugger for eSi-RISC | 6

Quick Start of the JTAG Debugger

Starting up the debugger is done as follows:

1.

Select the device prompt for the ICD Debugger and reset the system.

183 3

RESet

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: : to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

Specify the CPU specific settings.

SYStem.CPU ESI3200

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

Enter debug mode.

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

Load the program.

Data.LOAD <file> ; load the compiler output.

The format of the Data.LOAD command depends on the file format generated by the compiler.

A detailed description of the Data.LOAD command and all available options is given in the “General
Commands Reference”.

A simple start sequence without EPROM simulator is shown below. This sequence can be written to a
PRACTICE script file (*.cmm, ASCII format) and executed with the command DO <file>.

B:: ; Select the ICD device prompt

WinCLEAR ; Clear all windows

SYStem.Up ; Reset the target and enter debug
; mode

Data.LOAD.elf my project ; Load the application

©1989-2024 Lauterbach Debugger for eSi-RISC | 7

Register.Set PC _ResetVector ; Set the program counter (PC) to
; start point

List.Mix ; Open source code window *)
Register.view /SpotLight ; Open register window *)
Frame.view /Locals /Caller ; Open the stack frame with

; local variables *)

Var .Watch %SpotLight flags ast ; Open watch window for variables *)

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

©1989-2024 Lauterbach Debugger for eSi-RISC | 8

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command, this may have the following reasons:

. The target has no power.
. The target is in reset.
. The core is not enabled.

. There is logic added to the JTAG state machine.

o There are additional loads or capacities or serial resistors on the JTAG lines.
. There is a short circuit on at least one of the output lines of the core.
J There are stubs on the signal line.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach Debugger for eSi-RISC | 9

https://support.lauterbach.com/kb

eSi-RISC Specific Implementations

Access Classes

For background information about the term access class, see “TRACE32 Glossary” (glossary.pdf).

The following eSi-RISC specific access classes are available.

Access Class Description
P Program memory access
D Data memory access
E Run-time memory access
(see SYStem.CpuAccess and SYStem.MemAccess)
CSR CSR (Control and Status Register) access

To perform an access with a certain access class, write the class in front of the address.

Example:

Data.dump D:0x0--0x3

©1989-2024 Lauterbach Debugger for eSi-RISC | 10

Breakpoints

There are two types of breakpoints available: Software breakpoints and on-chip breakpoints.

Software Breakpoints

Software breakpoints are the default breakpoints for program breakpoints. A software breakpoint is
implemented by patching a break code into the memory.

There is no restriction in the number of software breakpoints.

On-chip Breakpoints

The resources for the on-chip breakpoints are provided by the CPU.

The following list gives an overview of the on-chip breakpoints for the eSi-RISC:

. On-chip breakpoints: Total amount of available on-chip breakpoints.

J Instruction breakpoints: Number of on-chip breakpoints that can be used to set Program
breakpoints into ROM/FLASH/EEPROM.

J Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

. Data breakpoint: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an
address.

On-chip Instruction Read/Write Data
Breakpoints Breakpoints Breakpoints Breakpoint
eSi-RISC | up to 8 instruction upto 8 up to 8 single —
up to 8 read/write single address address or
up to 4 ranges

©1989-2024 Lauterbach Debugger for eSi-RISC | 11

CPU specific SYStem Commands

SYStem.CONFIG.state

Display target configuration

Format:

<tab>:

SYStem.CONFIG.state [/<tab>]

DebugPort | Jtag

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the

debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab>

Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort
(default)

The DebugPort tab informs the debugger about the debug connector type
and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see DebugPort.

Jtag

The Jtag tab informs the debugger about the position of the Test Access
Ports (TAP) in the JTAG chain which the debugger needs to talk to in order
to access the debug and trace facilities on the chip.

For descriptions of the commands on the Jtag tab, see Jtag.

©1989-2024 Lauterbach

Debugger for eSi-RISC | 12

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter>
<parameter>: CORE <core> <chip>
(DebugPort) CoreNumber <number>

DEBUGPORT [DebugCable0]
DEBUGPORTTYPE [JTAG]
Slave [ON | OFF]

TriState [ON | OFF]

<parameter>: DRPOST <bits>

(JTAG) DRPRE <bits>
IRPOST <bits>
IRPRE <bits>
Slave [ON | OFF]

TAPState <state>
TCKLevel </evel>
TriState [ON | OFF]

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

The SYStem.CONFIG command information shall be provided after the SYStem.CPU command, which
might be a precondition to enter certain SYStem.CONFIG commands, and before you start up the debug
session, e.g. by SYStem.Up.

Syntax Remarks

The commands are not case sensitive. Capital letters show how the command can be shortened.
Example: “SYStem.CONFIG.TriState ON” -> “SYStem.CONFIG.TS ON”

The dots after “SYStem.CONFIG” can alternatively be a blank.
Example:
“SYStem.CONFIG.TriState ON” or “SYStem.CONFIG TriState ON”

©1989-2024 Lauterbach Debugger for eSi-RISC | 13

<parameters> describing the “DebugPort”

CORE <core>
<chip>

CoreNumber
<number>

The command helps to identify debug and trace resources which are
commonly used by different cores. The command might be required in a
multicore environment if you use multiple debugger instances (multiple
TRACE32 PowerView GUIs) to simultaneously debug different cores on
the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2

each debugger instance assumes that all notified debug and trace
resources can exclusively be used.

But some target systems have shared resources for different cores, for
example a common trace port. The default setting causes that each
debugger instance controls the same trace port. Sometimes it does not
hurt if such a module is controlled twice. But sometimes it is a must to tell
the debugger that these cores share resources on the same <chip>.
Whereby the “chip” does not need to be identical with the device on your
target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1

For cores on the same <chip>, the debugger assumes that the cores
share the same resource if the control registers of the resource have the
same address.

Default:

<core> depends on CPU selection, usually 1.

<chip> derives from the CORE= parameter in the configuration file
(config.t32), usually 1. If you start multiple debugger instances with the
help of t32start.exe, you will get ascending values (1, 2, 3,...).

Number of cores to be considered in an SMP (symmetric
multiprocessing) debug session. There are eSi-RISC core types which
can be used as a single core processor or as a scalable multicore
processor of the same type. If you intend to debug more than one such
core in an SMP debug session you need to specify the number of cores
you intend to debug.

Default: 1.

©1989-2024 Lauterbach

Debugger for eSi-RISC | 14

DEBUGPORT
[DebugCable0]

DEBUGPORTTYPE

[JTAG]

Slave [ON | OFF]

TriState [ON | OFF]

It specifies which probe cable shall be used e.g. “DebugCable0”. At the
moment only the CombiProbe allows to connect more than one probe
cable.

Default: depends on detection.

It specifies the used debug port type “JTAG”. It assumes the selected
type is supported by the target.

Default: JTAG.

If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.

Please note:

] nTRST must have a pull-up resistor on the target.

] TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.
Default: OFF.

©1989-2024 Lauterbach

Debugger for eSi-RISC |

15

<parameters> describing the “JTAG” scan chain and signal behavior

With the JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

NnTRST (reset)

TCK (clock)

TMS (state machine control)
TDI (data input)

TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to. The TAP position can be defined
with the first four commands in the table below.

DRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit.
Default: 0.

DRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit.
Default: 0.

IRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing.

Default: 0.

IRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal.

Default: 0.

Slave [ON | OFF] If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

©1989-2024 Lauterbach Debugger for eSi-RISC | 16

TAPState <state> This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan
5 Update-DR

6 Capture-DR

7 Select-DR-Scan
8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle
13 Update-IR

14 Capture-IR

15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

TCKLevel <level> Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.

Default: 0.

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.

Please note:

. nTRST must have a pull-up resistor on the target.

. TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.

Default: OFF.

NOTE: If you are not sure about your settings concerning IRPRE, IRPOST, DRPRE,
and DRPOST, you can try to detect the settings automatically with the
SYStem.DETECT.DaisyChain command.

©1989-2024 Lauterbach Debugger for eSi-RISC | 17

SYStem.CPU Select the used CPU

Format: SYStem.CPU <cpu>

<cpus: ESI3200

ESI3200 is the default entry for eSi-RISC. If you want to extend this about your CPU or SoC, please contact
technical support.

SYStem.JtagClock Define JTAG frequency
Format: SYStem.JtagClock [<frequency>]
<frequency>: 10000. ... 40000000.

Default frequency: 10 MHz.

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer.

<frequency> The debugger cannot select all frequencies accurately. It chooses the
next possible frequency and displays the real value in the SYStem.state
window.

Besides a decimal number like “100000.” short forms like “10kHz” or
“15MHz” can also be used. The short forms imply a decimal value,
although no “” is used.

SYStem.LOCK Tristate the JTAG port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the JTAG port will be performed by the debugger. While locked the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

©1989-2024 Lauterbach Debugger for eSi-RISC | 18

It must be ensured that the state of the RISC-V DTM JTAG state machine remains unchanged while the
system is locked. To ensure correct hand-over, the options SYStem.CONFIG TAPState and
SYStem.CONFIG TCKLevel must be set properly. They define the TAP state and TCK level which is
selected when the debugger switches to tristate mode.

©1989-2024 Lauterbach Debugger for eSi-RISC | 19

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess <mode>

<mode>: Enable | Denied | StopAndGo

Default: Denied.

If SYStem.MemAccess is not Denied, it is possible to read from memory, to write to memory and to set
software breakpoints while the CPU is executing the program.

Enable Memory access during program execution to target is enabled.
CPU (deprecated)
Denied No memory access is possible while the CPU is executing the program.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

For more information, see below.

If specific windows that display memory or variables should be updated while the program is running, select
the memory access class E: or the format option %E.

Data.dump E:0x100

Var.View %E first

©1989-2024 Lauterbach Debugger for eSi-RISC | 20

SYStem.Mode Establish the communication with the target

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)

SYStem.Down (alias for SYStem.Mode Down)

SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down

Go

Attach

Up

NoDebug

Down Disables the debugger. The state of the CPU remains unchanged. The

(default) JTAG port is tristated.

Go Initializes a debug connection, resets the target and lets the CPU run
from its reset vector.

Attach Initializes a debug connection. The target is not reset, i.e. the state of the
target is not changed. Consequently the user program stays running if it
was running, or stays stopped if it was stopped.

Up Initializes a debug connection, resets the target, sets the CPU to debug
mode and stops the CPU at its reset vector.

StandBy Not supported.

NoDebug Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

SYStem.Option.IMASKASM Disable interrupts while single stepping
Format: SYStem.Option.IMASKASM [ON | OFF]

©1989-2024 Lauterbach

Debugger for eSi-RISC | 21

Default: OFF.

ON The Global Interrupt Enable Bits will be cleared during assembler single-step
operations. The interrupt routine is not executed during single-step
operations. After single step the Global Interrupt Enable bits will be restored
to the value before the step.

OFF A pending interrupt will be executed on a single-step, but it does not halt
there. The specific interrupt handler is completely executed even if single
steps are done, i.e. step over is forced per default. If the core should halt in
the interrupt routine, use TrOnchip.StepVector ON.

SYStem.Option.GPREG Configure number of GP registers
Format: SYStem.Option.GPREG <number _of registers>
Default: 16.

Defines the number of GP registers in current core. Allowed values are 8, 16 and 32.

SYStem.state Display SY Stem.state window

Format: SYStem.state

Displays the SYStem.state window for system settings that configure debugger and target behavior.

©1989-2024 Lauterbach Debugger for eSi-RISC | 22

CPU specific TrOnchip Commands

The TrOnchip command group is not available for the eSi-RISC debugger.

©1989-2024 Lauterbach Debugger for eSi-RISC | 23

Target Adaption

Connector Type and Pinout

It is recommended to connect all N/C pins to GND (if you work with LAUTERBACH tools only).

Signal Pin Pin Signal
TDO 1 2 N/C
TDI 3 4 TRST- (¥)
N/C 5 6 VCCS
TCK 7 8 N/C
TMS 9 10 N/C
SRST- 11 12 N/C
N/C 13 - KEY
N/C 15 16 GND

This is a standard 16-pin double row (two rows of eight pins) connector (pin-to-pin spacing: 0.100 in.).

©1989-2024 Lauterbach Debugger for eSi-RISC | 24

	Debugger for eSi-RISC
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Quick Start of the JTAG Debugger
	Troubleshooting
	SYStem.Up Errors

	FAQ
	eSi-RISC Specific Implementations
	Access Classes
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints

	CPU specific SYStem Commands
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior

	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define JTAG frequency
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.GPREG Configure number of GP registers
	SYStem.state Display SYStem.state window

	CPU specific TrOnchip Commands
	Target Adaption
	Connector Type and Pinout

