LAUTERBACH A

CEVA-X Debugger and Trace

CEVA-X Debugger and Trace

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 DOCUMENTS ciceeiiiiiiiemns s inisess s snnsss s s rassss e e s s e s ee e m s e e ea s m s e b e a s mn e e R e a s annn e nnnnnn
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns

Processor Architecture Manualscciiciiimiiiieiirerrr s s e an s an s an s s ennsssennssss

CEVA-X Debugger and TracCecccccriirssmirimsssssmsrissssssssissssnssssssssnssssssssanssssssssnsssssssssnnses

e T 11 ez 4 oY o R
Brief Overview of Documents for New Users
Demo and Start-up Scripts

L= T 1 '

L0 LT T 7= -1 o

CPU Specific Implementations ...
Breakpoints
Software Breakpoints
On-chip Breakpoints
Disassembler
MS Windows
Linux

CPU specific SYStem Settingsccccuvvvmmmminnmmrmnnessrnssss s s sssss s s ssssss s
SYStem.CONFIG.state Display target configuration
SYStem.CONFIG Configure debugger according to target topology

<parameters> describing the “DebugPort”

<parameters> describing the “JTAG” scan chain and signal behavior
<parameters> describing a system level TAP “MultiTap”
<parameters> configuring a CoreSight Debug Access Port “AP”
<parameters> describing debug and trace “Components”
<parameters> which are “Deprecated”

SYStem.CONFIG.EXTMEM External program memory
SYStem.CPU Select the used CPU
SYStem.JtagClock Define JTAG clock
SYStem.LOCK Lock and tristate the debug port

©1989-2024 Lauterbach CEVA-X Debugger and Trace

SYStem.MemAccess Select run-time memory access method 42
SYStem.Mode Establish the communication with the target 42
SYStem.Option.IMASKASM Disable interrupts while single stepping 43
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 44
SYStem.Option.OVERLAY Enable overlay support 44
SYStem.Option.PBOsize Setup size of internal program memory 45
SYStem.Option.RisingTDO Target outputs TDO on rising edge 45
SYStem.VCU Vector Computation Units (VCU) 46
SYStem.VCU.INSTances Number of available VCUs 46
SYStem.VCU.MLD MLD available or not 46
General Restrictions 46
CEVA-X specific ETM CommaNndccccimiiiiiiiiisisinsscccssessnnnes 47
ETM.BranchBBC Control branch BBC mode 47
ETM.IgnorelSyncPredicate Ignore I-Sync predicates 47
ETM.LoopBBC Branch broadcast 47
ETM.PredicateAddress Set predicate address 47
ETM.PredicatePeriod Predicated counter in ETM wrapper 48
ETM.TimeStamplnjectorTracelD CoreSight ATB ID 48
ETM.WrapperFilter Global breakpoint enable 48
ETM.WrapperSTALL Enable/disable wrapper stall 48
TrONChip COMMANMScoiiiiiiiiniiir s s s s saan s e ane e nnmnnnaan 49
TrOnchip.CONVert Adjust range breakpoint in on-chip resource 49
TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 49
TrOnchip.RESet Set on-chip trigger to default state 50
TrOnchip.Set Set breakpoint 50
TrOnchip.state Display “Trigger-Onchip” dialog 50
Ceva Specific Benchmarking Commandscccoiiiiimninnnsmnninnsssnsssssssssssssssssssns 51
BMC.CLOCKS.FORMAT Cycle counter value format 54
=T 4 o YA 0 - o T Y N 55
O 17 Y € 00T T 1= o 56
©1989-2024 Lauterbach CEVA-X Debugger and Trace 3

CEVA-X Debugger and Trace

Version 06-Jun-2024

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 4

Introduction

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known CEVA-X based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo /cevax/ subfolder of the system directory of TRACE32.

©1989-2024 Lauterbach CEVA-X Debuggerand Trace | 5

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

CEVA-X Debugger and Trace |

6

Quick Start

Starting up the debugger is done as follows:

1. Select the device prompt for the ICD Debugger and reset the system.

Big ¢
RESet
The device prompt B: : is normally already selected in the command line. If this is not the case, enter

B: : to set the correct device prompt. The RESet command is only necessary if you do not start
directly after booting the TRACES32 development tool.

2. Specify the CPU.

SYStem.CPU <cpu_type>

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

3. Set the JTAG frequency

SyYStem.JtagClock <frequency>

The default value is 1.0 MHz.

4. Inform the debugger about read-only address ranges (ROM, FLASH).

MAP.BOnchip <range>

The B(reak)Onchip information is necessary to decide where on-chip breakpoints must be used. On-
chip breakpoints are necessary to set program breakpoints to FLASH/ROM. The sections of FLASH
and ROM depend on the specific CPU and its chip selects.

5. Enter debug mode.

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed it is possible
to access memory and registers.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 7

6. Load the program.

Data.LOAD.COFF program.a

; COFF specifies the format, program.a

; 1s the file name)

The format of the Data.LOAD command depends on the file format generated by the compiler.

A detailed description of the Data.LOAD command and all available options is given in the ”General

Reference Guide”.

A typical start sequence for the TeakLiteDev-C is shown below. This sequence can be written to a

PRACTICE script file (*.cmm, ASCII format) and executed with the command DO <file>. Other sequences

can be found in the ~~/demo/ directory.

B2 g 7
WinClear 8
SYS.CPU TeakLiteDev-C 8
SYStem.JtagClock 10MHz :
SYStem.UP g

Data.LOAD.COFF demo.a 8

Register.Set PC start 3

List.Mix
Go main
Register.view /SpotLight

Var .Local

Select the ICD device prompt

Clear all windows

Select CPU

Choose JTAG frequency

Reset the target and enter debug mode

Load the application with option large
memory model and verify the process

Set program counter

Open source code window %))
Run and break at main()

Open register window *)

Open window with local variables *)

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

CEVA-X Debugger and Trace

8

Troubleshooting

No information available

FAQ

Please refer to hitps://support.lauterbach.com/kb.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 9

https://support.lauterbach.com/kb

CPU Specific Implementations

Breakpoints

There are two types of breakpoints available: Software breakpoints and on-chip breakpoints.

Software Breakpoints

Software breakpoints are the default breakpoints for program breakpoints. A software breakpoint is
implemented by patching a break code into the memory.

There is no restriction in the number of software breakpoints.

On-chip Breakpoints

The resources for the on-chip breakpoints are provided by the CPU.

The following list gives an overview of the supported on-chip breakpoints:

o On-chip breakpoints: Total amount of available on-chip breakpoints.

. Instruction breakpoints: Number of on-chip breakpoints that can be used to set Program
breakpoints into ROM/FLASH/EEPROM.

J Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

J Data breakpoint: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an
address.

) Onchip Program Read/Write Data Value
Family Breakpoints Breakpoints Breakpoints Breakpoints
CEVA-X 4 instruction 4 single address 4 single address or | 2
4 read/write range

©1989-2024 Lauterbach

CEVA-X Debugger and Trace | 10

Disassembler

Starting with CEVA-ToolBox v18, TRACES32 must be configured to use the disassembler libraries provided
by Ceva. The only exception from this rule is the NeuPro (Ceva-XM6), which can optionally still use the build-
in disassembler of TRACES32.

MS Windows

1. Install CEVA-ToolBox for your CPU.
2. Browse to <CEVA-ToolBox>\<version>\<cpu>\cevatools\bin.
3. Copy the following two files to <TRACE32>\bin\windows64:
- cevaxasmsrv.dll
- <cpu>db.dil

4. Add the following line to your *.cmm script:

apu.load ~~/bin/windows64/t32cevadislink.dll "cevaxasmsrv.dll" "<cpu>"

Linux

1. Install CEVA-ToolBox for your CPU.

2. Optional: Browse to <CEVA-ToolBox>/<version>/<cpu>/cevatools/bin.

3. Optional: Copy the following two files to <TRACE32>/bin/pc_linux64:
- libcevaxasmsrv.so

- lib<cpu>db.so

4. Add the path of the disassembiler libraries (step 2 or step 3) to LD_LIBRARY_PATH:

export LD_LIBRARY_PATH=<path_to_libraries>

5. Add the following line to your *.cmm script:

apu.load ~~/bin/pc_linux64/t32cevadislink.so "libcevaxasmsrv.so" "<cpu>"

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 11

CPU specific SYStem Settings

SYStem.CONFIG.state Display target configuration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: DebugPort | Jtag | AccessPorts | COmponents

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort The DebugPort tab informs the debugger about the debug connector type
(default) and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see DebugPort.

Jtag The Jtag tab informs the debugger about the position of the Test Access
Ports (TAP) in the JTAG chain which the debugger needs to talk to in order
to access the debug and trace facilities on the chip.

For descriptions of the commands on the Jtag tab, see Jtag.

AccessPorts This tab informs the debugger about an Arm CoreSight Access Port (AP)
and about how to control the AP to access chip-internal memory busses
(AHB, APB, AXI) or chip-internal JTAG interfaces.

For a descriptions of a corresponding commands, refer to AP.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 12

COmponents

The COmponents tab informs the debugger (a) about the existence and
interconnection of on-chip CoreSight debug and trace modules and (b)
informs the debugger on which memory bus and at which base address
the debugger can find the control registers of the modules.

For descriptions of the commands on the COmponents tab, see
COmponents.

©1989-2024 Lauterbach

CEVA-X Debugger and Trace |

13

SYStem.CONFIG

Configure debugger according to target topology

Format:

<parameter>:
(DebugPort)

<parameter>:
(JTAG)

<parameter>:
(MultiTap)

<parameter>:
(AccessPorts

)

SYStem.CONFIG <parameter>
SYStem.MultiCore <parameter> (deprecated)

CONNECTOR [MIPI34 | MIPI20T]

CORE <core> <chip>

DEBUGPORT [DebugCable0 | DebugCableA | DebugCableB]
DEBUGPORTTYPE [JTAG | SWD | CJTAG]

Slave [ON | OFF]

SWDP [ON | OFF]
SWDPIDLEHIGH [ON | OFF]
SWDPTargetSel <value>
TriState [ON | OFF]

DAPDRPOST <bits>
DAPDRPRE <bits>
DAPIRPOST <bits>
DAPIRPRE <bits>

DRPOST <bits>
DRPRE <bits>
IRPOST <bits>
IRPRE <bits>

Slave [ON | OFF]
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]

CFGCONNECT <code>

MULTITAP [NONE | IcepickA | IcepickB | IcepickC | IcepickD | IcepickBB |
IcepickBC | IcepickCC | IcepickDD | STCLTAP1 | STCLTAP2 |
STCLTAP3 |
MSMTAP <irlength> <irvalue> <drlength> <drvalue>
JtagSEQuence <sub_cmd>]

AHBAPN.Base <address>
AHBAPN.HPROT [<value> | <name>]
AHBAPnN.Port <port>
AHBAPN.RESet

AHBAPN.view

AHBAPN.XtorName <name>

APBAPN.Base <address>
APBAPN.Port <port>

©1989-2024 Lauterbach

CEVA-X Debugger and Trace | 14

<parameter>:
(AccessPorts
cont.)

<parameter>:
(COmponents)

APBAPN.RESet
APBAPN.view
APBAPN.XtorName <name>

AXIAPn.ACEEnable [ON | OFF]
AXIAPn.Base <address>
AXIAPNn.CacheFlags <value>
AXIAPNn.HPROT [<value> | <name>]
AXIAPn.Port <port>
AXIAPNn.RESet

AXIAPn.view

AXIAPNn.XtorName <name>

DEBUGAPN.Port <port>
DEBUGAPN.RESet
DEBUGAPN.view
DEBUGAPN.XtorName <name>

JTAGAPN.Base <address>
JTAGAPN.Port <port>
JTAGAPnN.CorePort <port>
JTAGAPN.RESet
JTAGAPN.view
JTAGAPN.XtorName <name>

MEMORYAPN.HPROT [<value> | <name>]
MEMORYAPN.Port <port>
MEMORYAPN.RESet

MEMORYAPN.view
MEMORYAPN.XtorName <name>

COREDEBUG.Base <address>
COREDEBUG.RESet
COREDEBUG.view

CTIl.Base <address>

CTI.Config [NONE | ARMV1 | ARMPostinit | OMAP3 | TMS570 | CortexV1 |
Qv1i]

CTI.RESet

CTl.view

ETB.ATBSource <source>

ETB.Base <address>

ETB.Name <string>

ETB.NoFlush [ON | OFF]

ETB.RESet

ETB.Size <size>

ETB.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]

ETB.view

©1989-2024 Lauterbach

CEVA-X Debugger and Trace |

15

©19¢

<parameter>:
(COmponents
cont.)

ETF.ATBSource <source>

ETF.Base <address>

ETF.Name <string>

ETF.NoFlush [ON | OFF]

ETF.RESet

ETF.Size <size>

ETF.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETF.view

ETM.Base <address>
ETM.RESet
ETM.view

ETR.ATBSource <source>

ETR.Base <address>

ETR.CATUBase <address>

ETR.Name <string>

ETR.NoFlush [ON | OFF]

ETR.RESet

ETR.Size <size>

ETR.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETR.view

ETS.ATBSource <source>

ETS.Base <address>

ETS.Name <string>

ETS.NoFlush [ON | OFF]

ETS.RESet

ETS.Size <size>

ETS.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETS.view

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.view

FUNNEL.RESet

HTM.Base <address>
HTM.RESet
HTM.Type [CoreSight | WPT]

REP.ATBSource <source>
REP.Base <address>
REP.Name <string>
REP.RESet

REP.view

STM.Base <address>

STM.Mode [NONE | XTIv2 | SDTI | STP | STP64 | STPv2]
STM.RESet

STM.Type [None | GenericARM | SDTI | TI]

<parameter>: COREBASE <address>

(Deprecated) CTIBASE <address>
CTICONFIG [NONE | ARMV1 | ARMPostInit | OMAP3 | TMS570 | CortexV1 |

QV1]

DEBUGBASE <address>
ETBBASE <address>
ETBFUNNELBASE <address>
ETFBASE <address>
ETMBASE <address>
ETMETBFUNNELPORT <port>
ETMFUNNEL2PORT <port>
ETMFUNNELPORT <port>
ETMTPIUFUNNELPORT <port>
FUNNEL2BASE <address>
FUNNELBASE <address>
HTMBASE <address>
HTMETBFUNNELPORT <port>
HTMFUNNEL2PORT <port>
HTMFUNNELPORT <port>
HTMTPIUFUNNELPORT <port>
TPIUBASE <address>
TPIUFUNNELBASE <address>
view

AHBACCESSPORT <port>
APBACCESSPORT <port>
AXIACCESSPORT <port>
COREJTAGPORT <port>
DEBUGACCESSPORT <port>
JTAGACCESSPORT <port>
MEMORYACCESSPORT <port>

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

Some commands need a certain CPU type selection (SYStem.CPU <type>) to become active and might
additionally depend on further settings.

Ideally you can select with SYStem.CPU the chip you are using which causes all setup you need and you do
not need any further SYStem.CONFIG command.

The SYStem.CONFIG command information shall be provided after the SYStem.CPU command, which
might be a precondition to enter certain SYStem.CONFIG commands, and before you start up the debug
session e.g. by SYStem.Up.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 17

<parameters> describing the “DebugPort”

CONNECTOR
[MIPI34 | MIPI20T]

CORE <core> <chip>

CORE <core> <chip>

(cont.)

DEBUGPORT
[DebugCable0 | DebugCa-
bleA | DebugCableB]

Specifies the connector “MIPI134” or “MIPI20T” on the target. This
is mainly needed in order to notify the trace pin location.

Default: MIPI34 if CombiProbe is used.

The command helps to identify debug and trace resources which
are commonly used by different cores. The command might be
required in a multicore environment if you use multiple debugger
instances (multiple TRACE32 PowerView GUIs) to simultaneously
debug different cores on the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2

each debugger instance assumes that all notified debug and trace
resources can exclusively be used.

But some target systems have shared resources for different
cores, for example a common trace port. The default setting
causes that each debugger instance controls the same trace port.
Sometimes it does not hurt if such a module is controlled twice.
But sometimes it is a must to tell the debugger that these cores
share resources on the same <chip>. Whereby the “chip” does not
need to be identical with the device on your target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1

For cores on the same <chip>, the debugger assumes that the
cores share the same resource if the control registers of the
resource have the same address.

Default:

<core> depends on CPU selection, usually 1.

<chip> derived from CORE= parameter in the configuration file
(config.t32), usually 1. If you start multiple debugger instances with
the help of t32start.exe, you will get ascending values (1, 2, 3,...).

It specifies which probe cable shall be used e.g. “DebugCableA” or
“DebugCableB”. At the moment only the CombiProbe allows to
connect more than one probe cable.

Default: depends on detection.

©1989-2024 Lauterbach

CEVA-X Debugger and Trace | 18

DEBUGPORTTYPE It specifies the used debug port type “JTAG”, “SWD”, “CJTAG”,
[JTAG | SWD | CJTAG | “CJTAG-SWD”. It assumes the selected type is supported by the
CJTAGSWD] target.

Default: JTAG.

Slave [ON | OFF] If several debuggers share the same debug port, all except one
must have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the
signals nTRST and nSRST (nRESET). The other debuggers need
to have the setting Slave ON.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

SWDPIdleHigh Keep SWDIOQ line high when idle. Only for Serialwire Debug mode.

[ON | OFF] Usually the debugger will pull the SWDIO data line low, when no
operation is in progress, so while the clock on the SWCLK line is
stopped (kept low).

You can configure the debugger to pull the SWDIO data line
high, when no operation is in progress by using
SYStem.CONFIG SWDPIdleHigh ON

Default: OFF.
SWDPTargetSel <value> Device address in case of a multidrop serial wire debug port.
Default: none set (any address accepted).

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a
common JTAG port. TAPState and TCKLevel define the TAP state
and TCK level which is selected when the debugger switches to
tristate mode.

Please note:

. NTRST must have a pull-up resistor on the target.

. TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.

Default: OFF.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 19

<parameters> describing the “JTAG” scan chain and signal behavior

With the JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

NTRST (reset)

TCK (clock)

TMS (state machine control)
TDI (data input)

TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to. The TAP position can be defined
with the first four commands in the table below.

... DRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

... DRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

... IRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing. See possible TAP types and example below.

Default: 0.

... IRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal. See possible TAP types and example
below.

Default: 0.

NOTE: If you are not sure about your settings concerning IRPRE, IRPOST, DRPRE,
and DRPOST, you can try to detect the settings automatically with the
SYStem.DETECT.DaisyChain command.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 20

Slave [ON | OFF]

TAPState <state>

TCKLevel <level>

TriState [ON | OFF]

If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
NTRST and nSRST (nNRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan
5 Update-DR

6 Capture-DR

7 Select-DR-Scan
8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle
13 Update-IR

14 Capture-IR

15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.

Default: 0.

TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.

Please note:

J nTRST must have a pull-up resistor on the target.

] TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.
Default: OFF.

©1989-2024 Lauterbach

CEVA-X Debugger and Trace | 21

TAP types:

Core TAP providing access to the debug register of the core you intend to debug.
-> DRPOST, DRPRE, IRPOST, IRPRE.

DAP (Debug Access Port) TAP providing access to the debug register of the core you intend to debug. It
might be needed additionally to a Core TAP if the DAP is only used to access memory and not to access the
core debug register.

-> DAPDRPOST, DAPDRPRE, DAPIRPOST, DAPIRPRE.

<parameters> describing a system level TAP “MultiTap”

A “Multitap” is a system level or chip level test access port (TAP) in a JTAG scan chain. It can for example
provide functions to re-configure the JTAG chain or view and control power, clock, reset and security of
different chip components.

The <code> is a hexadecimal number which defines the JTAG
scan chain configuration. You need the chip documentation to
figure out the suitable code. In most cases the chip specific
default value can be used for the debug session.

CFGCONNECT <code>

Used if MULTITAP=STCLTAPx.

MULTITAP

[NONE | IcepickA | IcepickB
| IcepickC | IcepickD |
IcepickM |

IcepickBB | IcepickBC |

Selects the type and version of the MULTITAP.

In case of MSMTAP you need to add parameters which specify
which IR pattern and DR pattern needed to be shifted by the
debugger to initialize the MSMTAP. Please note some of these

IcepickCC | IcepickDD | parameters need a decimal input (dot at the end).
STCLTAP1|STCLTAP2|
STCLTAP3 | MSMTAP
<irlength> <irvalue>
<drlength> <drvalue>

JtagSEQuence <sub_cmd>]

IcepickXY means that there is an Icepick version “X” which
includes a subsystem with an Icepick of version “Y”.

For a description of the JtagSEQuence subcommands, see
SYStem.CONFIG.MULTITAP JtagSEQuence.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 22

<parameters> configuring a CoreSight Debug Access Port “AP”

An Access Port (AP) is a CoreSight module from ARM which provides access via its debug link (JTAG,
cJTAG, SWD, USB, UDP/TCP-IP, GTL, PCle...) to:

1.

Different memory busses (AHB, APB, AXI). This is especially important if the on-chip debug
register needs to be accessed this way. You can access the memory buses by using certain
access classes with the debugger commands: “AHB:”, “APB:”, “AXI:, “DAP”, “E:”. The interface to
these buses is called Memory Access Port (MEM-AP).

Other, chip-internal JTAG interfaces. This is especially important if the core you intend to debug
is connected to such an internal JTAG interface. The module controlling these JTAG interfaces is
called JTAG Access Port (JTAG-AP). Each JTAG-AP can control up to 8 internal JTAG interfaces.
A port number between 0 and 7 denotes the JTAG interfaces to be addressed.

A transactor name for virtual connections to AMBA bus level transactors can be configured by
the property SYStem.CONFIG.*APn.XtorName <name>. A JTAG or SWD transactor must be
configured for virtual connections to use the property “Port” or “Base” (with “DP:” access) in case
XtorName remains empty.

Example 1: SoC-400

ROM table

Memory
Access Port
(MEM-AP) CoreSight

Component

ROM table
Access Port
(MEM-AP)
CoreSight
Component
JTAG

Access Port
(JTAG-AP)

DAP

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 23

Example 2: SoC-600

Debug

MING))

(va-v9/2¢€) da

AHBAPN.HPROT [<value> |
<name>)

AXIAPNn.HPROT [<value> |
<name>)

MEMORYAPN.HPROT
[<value> | <name>]

I
NO-9/ZE E

CoreSight
Component

SoC-600

ROM table

| | CoreSight
. Component

CoreSight
. Component

ROM table

Memory System 2

H9-v9/Ce

Memory System 1

(0] VREVIEM (expected) * [CoreSight

. Component

; C%%;?)iiﬁ;:;t (possible) Memory System 3

Default: 0.

Selects the value used for the HPROT bits in the Control Status
Word (CSW) of a CoreSight AHB Access Port, when using the AHB:
memory class.

Default: 0.

This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight AXI Access Port, when using
the AXIl: memory class.

Default: 0.

This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight Memory Access Port, when
using the E: memory class.

©1989-2024 Lauterbach

CEVA-X Debugger and Trace | 24

AXIAPn.ACEEnable [ON |

OFF]

AXIAPn.CacheFlags

<value>

The below offered selection options are all non-bufferable. Alternatively you can enter a <value>, where

Default: OFF.

Enables ACE transactions on the AXI-AP, including barriers. This
does only work if the debug logic of the target CPU implements
coherent accesses. Otherwise this option will be without effect.

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).
This option configures the value used for the Cache and Domain

bits in the Control Status Word (CSW[27:24]->Cache, CSW[14:13]-

>Domain) of an Access Port, when using the AXI: memory class.

value[5:4] determines the Domain bits and value[3:0] the Cache bits.

<name>

DeviceSYStem

NonCacheableSYStem
ReadAllocateNonShareable
ReadAllocatelnnerShareable
ReadAllocateOuterShareable
WriteAllocateNonShareable
WriteAllocatelnnerShareable

WriteAllocateOuterShareable

Description

=0x30:
=0x32:
=0x06:
=0x16:
=0x26:
=0x0A:
=0x1A:
=0x2A:

ReadWriteAllocateNonShareable =0x0E:

ReadWriteAllocatelnnerShareable =0x1E:

ReadWriteAllocateOuterShareable =0x2E:

AHBAPN.XtorName

<name>

APBAPN.XtorName <name>

Domain=0x3, Cache=0x0
Domain=0x3, Cache=0x2
Domain=0x0, Cache=0x6
Domain=0x1, Cache=0x6
Domain=0x2, Cache=0x6
Domain=0x0, Cache=0xA
Domain=0x1, Cache=0xA
Domain=0x2, Cache=0xA
Domain=0x0, Cache=0xE
Domain=0x1, Cache=0xE

Domain=0x2, Cache=0xE

APB bus transactor name that shall be used for “APBn:” access
class.

AHB bus transactor name that shall be used for “AHBN:” access
class.

©1989-2024 Lauterbach

CEVA-X Debugger and Trace

25

AXIAPn.XtorName <name>

DEBUGAPN.XtorName
<name>

MEMORYAPN.XtorName
<name>

... .RESet

. View

AXI bus transactor name that shall be used for “AXIn:” access
class.

APB bus transactor name identifying the bus where the debug
register can be found. Used for “DAP:” access class.

AHB bus transactor name identifying the bus where system
memory can be accessed even during runtime. Used for “E:”
access class while running, assuming “SYStem.MemAccess
DAP”.

Undo the configuration for this access port. This does not cause

a physical reset for the access port on the chip.

Opens a window showing the current configuration of the access

port.

©1989-2024 Lauterbach

CEVA-X Debugger and Trace |

26

S0C-400 Specific Commands

AHBAPN.Port <port> Access Port Number (0-255) of a SoC-400 system which shall be
AHBACCESSPORT <port> used for “AHBnN:” access class. Default: <port>=0.

(deprecated)

APBAPnN.Port <port> Access Port Number (0-255) of a SoC-400 system which shall be
APBACCESSPORT <port> used for “APBnN:” access class. Default: <port>=1.

(deprecated)

AXIAPN.Port <port> Access Port Number (0-255) of a SoC-400 system which shall be
AXIACCESSPORT <port> used for “AXIn;” access class. Default: port not available.
(deprecated)

DEBUGAPN.Port <port> AP access port number (0-255) of a SoC-400 system where the
DEBUGACCESSPORT debug register can be found (typically on APB). Used for “DAP:”
<port> (deprecated) access class. Default: <port>=1.

JTAGAPN.CorePort <port> JTAG-AP port number (0-7) connected to the core which shall be

COREJTAGPORT <port> debugged.

(deprecated)

JTAGAPN.Port <port> Access port number (0-255) of a SoC-400 system of the JTAG
JTAGACCESSPORT <port> Access Port.

(deprecated)

MEMORYAPN.Port <port> AP access port number (0-255) of a SoC-400 system where
MEMORYACCESSPORT system memory can be accessed even during runtime (typically
<port> (deprecated) an AHB). Used for “E:” access class while running, assuming

“SYStem.MemAccess DAP”. Default: <port>=0.

S0C-600 Specific Commands

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 27

AHBAPN.Base <address>

APBAPN.Base <address>

AXIAPn.Base <address>

JTAGAPN.Base <address>

This command informs the debugger about the start address of
the register block of the “AHBAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AHBAP1.Base DP:0x80002000
Meaning: The control register block of the AHB access ports
starts at address 0x80002000.

This command informs the debugger about the start address of
the register block of the “APBAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.APBAP1.Base DP:0x80003000
Meaning: The control register block of the APB access ports
starts at address 0x80003000.

This command informs the debugger about the start address of
the register block of the “AXIAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AXIAP1.Base DP:0x80004000
Meaning: The control register block of the AXI access ports
starts at address 0x80004000.

This command informs the debugger about the start address of
the register block of the “JTAGAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.JTAGAP1.Base DP:0x80005000
Meaning: The control register block of the JTAG access ports
starts at address 0x80005000.

©1989-2024 Lauterbach

CEVA-X Debugger and Trace | 28

<parameters> describing debug and trace “Components”

On the Components tab in the SYStem.CONFIG.state window, you can comfortably add the debug and

trace components your chip includes and which you intend to use with the debugger’s help.

& B::5YStem, CONFIG.state /COmponents

| DebugPort ” Jtag ” DAP " COmponent5|

(=[O sl

’- Select components to display -

’)

CTIL
Base 10:0x300

E] Config

CROSSBREAK =

B Bi:S¥Stem.CONFIG state /COmponents

DebugPort Jtag MultiTap AccessPorts

(o] 2)

COmponents

- Select components to display -

- Select components to display -
CMI1

CMN1
COREDEBUG
CTI2

L— DRM

DTM

ELA

EPM

ETB1
ETB2AXI
ETF1

ETR1

ETS1
FUNMELL
GICD
HTM1

ICE

ImM1
L2CACHE
ocp

PMI
REPlicatorl
RTP

sC

SMMUL
STM1
TPIU1
TRACEJUNCTION1

B Bi:S¥Stem.CONFIG state /COmponents

DebugPort Jtag MultiTap AccessPorts

- Select components to display -

ETM

(o] 2)

COmponents

Each configuration can be done by a command in a script file as well. Then you do not need to enter

everything again on the next debug session. If you press the button with the three dots you get the

corresponding command in the command line where you can view and maybe copy it into a script file.

B::5Y5.CONFIG.ETM. Base
ddress: DAP : 00000000

[okl | [<address> | [<value> |

©1989-2024 Lauterbach

CEVA-X Debugger and Trace

29

You can have several of the following components: CMI, ETB, ETF, ETR, FUNNEL, STM.
Example: FUNNEL1, FUNNEL2, FUNNELS,...

The <address> parameter can be just an address (e.g. 0x80001000) or you can add the access class in
front (e.g. AHB:0x80001000). Without access class it gets the command specific default access class which
is “EDAP:” in most cases.

Example:

SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.

Core —— B

Core |— B

CONFIG.
CONFIG.
CONFIG.
CONFIG.
CONFIG.
CONFIG.
CONFIG.
CONFIG.
CONFIG.
CONFIG.
CONFIG.

ETM

ETM
0
1 FUNNEL

STM

FUNNEL TPIU

COREDEBUG.Base 0x80010000 0x80012000
ETM.Base 0x8001c000 0x8001d4000
STM1 .Base EAHB:0x20008000

STM1 .Type ARM

STM1 .Mode STPv2

FUNNEL1.Base 0x80004000

FUNNEL2 .Base 0x80005000

TPIU.Base 0x80003000

FUNNEL1 .ATBSource ETM.0 0 ETM.1 1
FUNNEL2 .ATBSource FUNNEL1 0 STM1 7
TPIU.ATBSource FUNNEL2

©1989-2024 Lauterbach

CEVA-X Debugger and Trace | 30

& B::5YStem, CONFIG.state /COmponents

Debugport | ITAG Multitap DAP

Components

(=[O sl

|— Mew Component -

4

COREDEBUG

Base(s) DAP:0x80010000 DAP:0x80012000
BMC

Base(s) DAP:0x80011000 DAP:0x80013000
ETM

Base(s) DAP:0x8001C000 DAP:0x8001D000
STM1

Base EAHB:0x20008000 [...] Type
Mode STPv2 -/

FUNNEL1

Base DAP:0XB0004000 [

ATBSource ETM
FUNMEL2

Base DAP:0x80005000 [wud]
ATBSource FUNNELL 0 STM1 7
TPIU

Base DAP:0x80003000

[] ATBSource FUNNELZ

B8 B

@)

B B

... .ATBSource <source>

Specify for components collecting trace information from where the
trace data are coming from. This way you inform the debugger
about the interconnection of different trace components on a
common trace bus.

You need to specify the “... .Base <address>" or other attributes
that define the amount of existing peripheral modules before you
can describe the interconnection by “... .ATBSource <source>".

A CoreSight trace FUNNEL has eight input ports (port 0-7) to
combine the data of various trace sources to a common trace
stream. Therefore you can enter instead of a single source a list
of sources and input port numbers.

Example:
SYStem.CONFIG FUNNEL.ATBSource ETM 0 HTM 1 STM 7

Meaning: The funnel gets trace data from ETM on port 0, from
HTM on port 1 and from STM on port 7.

In an SMP (Symmetric MultiProcessing) debug session where
you used a list of base addresses to specify one component per
core you need to indicate which component in the list is meant:

©1989-2024 Lauterbach

CEVA-X Debugger and Trace | 31

Example: Four cores with ETM modules.

SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG FUNNEL1.ATBSource ETM.0 0 ETM.1 1
ETM.22 ETM.3 3

"...2" of "ETM.2" indicates it is the third ETM module which has
the base address 0x3000. The indices of a list are 0, 1, 2, 3,...
If the numbering is accelerating, starting from 0, without gaps,
like the example above then you can shorten it to
SYStem.CONFIG FUNNEL1.ATBSource ETM

Example: Four cores, each having an ETM module and an ETB
module.

SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG ETB.Base 0x5000 0x6000 0x7000 0x8000
SYStem.CONFIG ETB.ATBSource ETM.2 2

The third "ETM.2" module is connected to the third ETB. The last
"2" in the command above is the index for the ETB. It is not a port
number which exists only for FUNNELSs.

For a list of possible components including a short description
see Components and Available Commands.

... .BASE <address> This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETMBASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components COREBEBUG, CTI, ETB, ETF, ETM, ETR
a list of base addresses to specify one component per core.

Example assuming four cores: SYStem.CONFIG
COREDEBUG.Base 0x80001000 0x80003000 0x80005000
0x80007000

For a list of possible components including a short description
see Components and Available Commands.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 32

... .Name

... .NoFlush [ON | OFF]

... .RESet

... .Size <size>

The name is a freely configurable identifier to describe how many
instances exists in a target systems chip. TRACE32 PowerView
GUI shares with other opened PowerView GUIs settings and the
state of components identified by the same name and component
type. Components using different names are not shared. Other
attributes as the address or the type are used when no name is
configured.

Example 1: Shared None-Programmable Funnel:
PowerView1:

SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
PowerView2:

SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
SYStem.CONFIG.Core 2. 1. ; merge configuration to describe a
target system with one chip containing a single none-
programmable FUNNEL.

Example 2: Cluster ETFs:

1. Configures the ETF base address and access for each core

SYStem.CONFIG.ETF.Base DAP:0x80001000 \
APB:0x80001000 DAP:0x80001000 APB:0x80001000

2. Tells the system the core 1 and 3 share cluster-etf-1 and core
2 and 4 share cluster-etf-2 despite using the same address for all
ETFs

SYStem.CONFIG.ETF.Name "cluster-etf-1" "cluster-etf-2" \
"cluster-etf-1" "cluster-etf-2"

Deactivates a component flush request at the end of the trace
recording. This is a workaround for a bug on a certain chip. You
will loose trace data at the end of the recording. Don’t use it if not
needed. Default: OFF.

Undo the configuration for this component. This does not cause a
physical reset for the component on the chip.

For a list of possible components including a short description
see Components and Available Commands.

Specifies the size of the component. The component size can
normally be read out by the debugger. Therefore this command
is only needed if this can not be done for any reason.

©1989-2024 Lauterbach

CEVA-X Debugger and Trace | 33

... .STackMode [NotAvailbale
| TRGETM | FULLTIDRM |
NOTSET | FULLSTOP |
FULLCTI]

... .view

... .TracelD <id>

Specifies the which method is used to implement the Stack mode
of the on-chip trace.

NotAvailable: stack mode is not available for this on-chip trace.
TRGETM: the trigger delay counter of the onchip-trace is used. It
starts by a trigger signal that must be provided by a trace source.
Usually those events are routed through one or more CTls to the
on-chip trace.

FULLTIDRM: trigger mechanism for T| devices.

NOTSET: the method is derived by other GUIs or hardware.
detection.

FULLSTOP: on-chip trace stack mode by implementation.
FULLCTI: on-chip trace provides a trigger signal that is routed
back to on-chip trace over a CTI.

Opens a window showing the current configuration of the
component.

For a list of possible components including a short description
see Components and Available Commands.

Identifies from which component the trace packet is coming from.
Components which produce trace information (trace sources) for a
common trace stream have a selectable “.TracelD <id>”.

If you miss this SYStem.CONFIG command for a certain trace
source (e.g. ETM) then there is a dedicated command group for
this component where you can select the ID (ETM.TracelD <id>).

The default setting is typically fine because the debugger uses
different default trace IDs for different components.

For a list of possible components including a short description
see Components and Available Commands.

©1989-2024 Lauterbach

CEVA-X Debugger and Trace | 34

CTl.Config <type>

ETR.CATUBase <address>

FUNNEL.Name <string>

FUNNEL.PROGrammable
[ON | OFF]

HTM.Type [CoreSight | WPT]

Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTl is not used by the debugger.

ARMV1: This mode is used for ARM7/9/11 cores which support
synchronous halt, only.

ARMPostinit: Like ARMV1 but the CTI connection differs from the
ARM recommendation.

OMAPS3: This mode is not yet used.

TMS570: Used for a certain CTI connection used on a TMS570
derivative.

CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTl are done as recommended by
ARM. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.

QV1: This mode is not yet used.

ARMV8V1: Channel 0 and 1 of the CTM are used to distribute
start/stop events from and to the CTIs. ARMv8 only.

ARMV8V2: Channel 2 and 3 of the CTM are used to distribute
start/stop events from and to the CTls. ARMv8 only.

ARMV8V3: Channel 0, 1 and 2 of the CTM are used to distribute
start/stop events. Implemented on request. ARMv8 only.

Base address of the CoreSight Address Translation Unit (CATU).

It is possible that different funnels have the same address for
their control register block. This assumes they are on different
buses and for different cores. In this case it is needed to give the
funnel different names to differentiate them.

Default is ON. If set to ON the peripheral is controlled by
TRACES2 in order to route ATB trace data through the ATB bus
network. If PROGrammable is configured to value OFF then
TRACES2 will not access the FUNNEL registers and the base
address doesn't need to be configured. This can be useful for
FUNNELSs that don't have registers or when those registers are
read-only. TRACES32 need still be aware of the connected ATB
trace sources and sink in order to know the ATB topology. To
build a complete topology across multiple instances of
PowerView the property Name should be set at all instances to a
chip wide unique identifier.

Selects the type of the AMBA AHB Trace Macrocell (HTM).
CoreSight is the type as described in the ARM CoreSight
manuals. WPT is a NXP proprietary trace module.

©1989-2024 Lauterbach

CEVA-X Debugger and Trace | 35

STM.Mode [NONE | XTIv2 | Selects the protocol type used by the System Trace Module (STM).
SDTI | STP | STP64 | STPv2]

STM.Type [None | Generic | Selects the type of the System Trace Module (STM). Some types
ARM | SDTI | TI] allow to work with different protocols (see STM.Mode).
TPIU.Type [CoreSight | Selects the type of the Trace Port Interface Unit (TPIU).
Generic]

CoreSight: Default. CoreSight TPIU. TPIU control register
located at TPIU.Base <address> will be handled by the
debugger.

Generic: Proprietary TPIU. TPIU control register will not be
handled by the debugger.

Components and Available Commands

See the description of the commands above. Please note that there is a common description for
... .ATBSource,Base, ,RESet,TracelD.

COREDEBUG.Base <address>

COREDEBUG.RESet

Core Debug Register - ARM debug register, e.g. on Cortex-A/R

Some cores do not have a fix location for their debug register used to control the core. In this case it is
essential to specify its location before you can connect by e.g. SYStem.Up.

CTl.Base <address>

CTI.Config [NONE | ARMV1 | ARMPostinit | OMAP3 | TMS570 | CortexV1 | QV1]

CTI.RESet

Cross Trigger Interface (CTI) - ARM CoreSight module

If notified the debugger uses it to synchronously halt (and sometimes also to start) multiple cores.

ETB.ATBSource <source>

ETB.Base <address>

ETB.RESet

ETB.Size <size>

Embedded Trace Buffer (ETB) - ARM CoreSight module

Enables trace to be stored in a dedicated SRAM. The trace data will be read out through the debug port after
the capturing has finished.

ETF.ATBSource <source>

ETF.Base <address>

ETF.RESet

Embedded Trace FIFO (ETF) - ARM CoreSight module
On-chip trace buffer used to lower the trace bandwidth peaks.

ETM.Base <address>

ETM.RESet

Embedded Trace Macrocell (ETM) - ARM CoreSight module

Program Trace Macrocell (PTM) - ARM CoreSight module

Trace source providing information about program flow and data accesses of a core.
The ETM commands will be used even for PTM.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 36

ETR.ATBSource <source>

ETR.CATUBase <address>

ETR.Base <address>

ETR.RESet

Embedded Trace Router (ETR) - ARM CoreSight module

Enables trace to be routed over an AXI bus to system memory or to any other AXI slave.

FUNNEL.ATBSource <sourcelist>

FUNNEL.Base <address>

FUNNEL.Name <string>

FUNNEL.PROGrammable [ON | OFF]

FUNNEL.RESet

CoreSight Trace Funnel (CSTF) - ARM CoreSight module

Combines multiple trace sources onto a single trace bus (ATB = AMBA Trace Bus).

REP.ATBSource <sourcelist>

REP.Base <address>

REP.Name <string>

REP.RESet

CoreSight Replicator - ARM CoreSight module

This command group is used to configure ARM Coresight Replicators with programming interface. After the
Replicator(s) have been defined by the base address and optional names the ATB sources REPlicatorA and
REPIlicatorB can be used from other ATB sinks to connect to output A or B to the Replicator.

HTM.Base <address>

HTM.RESet

HTM.Type [CoreSight | WPT]

AMBA AHB Trace Macrocell (HTM) - ARM CoreSight module
Trace source delivering trace data of access to an AHB bus.

STM.Base <address>

STM.Mode [NONE | XTIv2 | SDTI | STP | STP64 | STPv2]

STM.RESet

STM.Type [None | Generic | ARM | SDTI | TI]

System Trace Macrocell (STM) - MIPI, ARM CoreSight, others

Trace source delivering system trace information e.g. sent by software in printf() style.

TPIU.ATBSource <source>

TPIU.Base <address>

TPIU.RESet

TPIU.Type [CoreSight | Generic]

Trace Port Interface Unit (TPIU) - ARM CoreSight module

Trace sink sending the trace off-chip on a parallel trace port (chip pins).

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 37

<parameters> which are “Deprecated”

In the last years the chips and its debug and trace architecture became much more complex. Especially the
CoreSight trace components and their interconnection on a common trace bus required a reform of our
commands. The new commands can deal even with complex structures.

... BASE <address>

... PORT <port>

This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETMBASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components CORE, CTl, ETB, ETF, ETM, ETR a list of
base addresses to specify one component per core.

Example assuming four cores: “SYStem.CONFIG COREBASE
0x80001000 0x80003000 0x80005000 0x80007000".

For a list of possible components including a short description
see Components and Available Commands.

Informs the debugger about which trace source is connected to
which input port of which funnel. A CoreSight trace funnel
provides 8 input ports (port 0-7) to combine the data of various
trace sources to a common trace stream.

Example: SYStem.CONFIG STMFUNNEL2PORT 3

Meaning: The System Trace Module (STM) is connected to input
port #3 on FUNNEL2.

On an SMP debug session some of these commands can have a
list of <port> parameter.

In case there are dedicated funnels for the ETB and the TPIU
their base addresses are specified by ETBFUNNELBASE,
TPIUFUNNELBASE respectively. And the funnel port number for
the ETM are declared by ETMETBFUNNELPORT,
ETMTPIUFUNNELPORT respectively.

For a list of possible components including a short description
see Components and Available Commands.

©1989-2024 Lauterbach

CEVA-X Debugger and Trace | 38

CTICONFIG <type>

view

Deprecated and New Commands

Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTl is not used by the debugger.

ARMV1: This mode is used for ARM7/9/11 cores which support
synchronous halt, only.

ARMPostinit: Like ARMV1 but the CTI connection differs from the
ARM recommendation.

OMAPS3: This mode is not yet used.

TMS570: Used for a certain CTI connection used on a TMS570
derivative.

CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTl are done as recommended by
ARM. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.

QV1: This mode is not yet used.

Opens a window showing most of the SYStem.CONFIG settings
and allows to modify them.

In the following you find the list of deprecated commands which can still be used for compatibility reasons
and the corresponding new command.

SYStem.CONFIG <parameter>

<parameter>:
(Deprecated)

COREBASE <address>
CTIBASE <address>
CTICONFIG <type>
DEBUGBASE <address>
ETBBASE <address>
ETBFUNNELBASE <address>
ETFBASE <address>
ETMBASE <address>
ETMETBFUNNELPORT <port>
ETMFUNNEL2PORT <port>

<parameter>:
(New)

COREDEBUG.Base <address>
CTl.Base <address>

CTl.Config <type>
COREDEBUG.Base <address>
ETB1.Base <address>
FUNNEL4.Base <address>
ETF1.Base <address>

ETM.Base <address>
FUNNEL4.ATBSource ETM <port> (1)
FUNNEL2.ATBSource ETM <port> (1)

©1989-2024 Lauterbach

CEVA-X Debugger and Trace | 39

ETMFUNNELPORT <port>
ETMTPIUFUNNELPORT <port>
FUNNEL2BASE <address>
FUNNELBASE <address>
HSMBASE <address>
HTMBASE <address>
HTMETBFUNNELPORT <port>
HTMFUNNEL2PORT <port>
HTMFUNNELPORT <port>
HTMTPIUFUNNELPORT <port>
TPIUBASE <address>
TPIUFUNNELBASE <address>

view

FUNNEL1.ATBSource ETM <port> (1)
FUNNEL3.ATBSource ETM <port> (1)
FUNNEL2.Base <address>
FUNNEL1.Base <address>
HSM.Base <address>

HTM.Base <address>
FUNNEL4.ATBSource HTM <port> (1
FUNNEL2.ATBSource HTM <port> (1
FUNNEL1.ATBSource HTM <port> (1
FUNNEL3.ATBSource HTM <port> (1
TPIU.Base <address>
FUNNEL3.Base <address>

state

(1)
(1)
(1)
(1)

(1) Further “<component>.ATBSource <source>" commands might be needed to describe the full trace data

path from trace source to trace sink.

SYStem.CONFIG.EXTMEM

External program memory

Format: SYStem.CONFIG.EXTMEM.<sub_cmd> ...

<sub_cmd>: Base <address>| L2A <attribute> | QOS <value> | RESet

Base Defines the base address of common external program and data memory.
L2A Level 2 cache attributes.

Qos Quality of Service attributes.

RESet Resets EXTMEM settings.

©1989-2024 Lauterbach

CEVA-X Debugger and Trace

| 40

SYStem.CPU Select the used CPU

Format: SYStem.CPU <cpu>

<cpu>: OAK,PMB8870P | PMB8870S (OAK cores)

TeakLiteDev-A | TeakLiteDev-B | TeakLiteDev-C | PMB8875 | 88i6523
(TeakLite cores)

TEAK-REVA | TEAK-RTL2_0 | TEAK_REVB | XPERTTEAK (Teak cores)

Selects the processor type. If your ASIC is not listed, select the type of the integrated core.

SYStem.JtagClock Define JTAG clock

Format: SYStem.JtagClock <frequency>

Default: 1 MHz.

Selects the frequency for the debug interface.

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 41

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)
Enable Memory access during program execution to target is enabled.

CPU (deprecated)

Denied Memory access during program execution to target is disabled.
StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
SYStem.Mode Establish the communication with the target

Format: SYStem.Mode <mode>
SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
Up
Attach

Down Disables the debugger (default). The state of the CPU remains unchanged. The
JTAG port is tristated.

Up Reset the target, sets the CPU to debug mode and stops the CPU.

Attach No reset happens, the mode of the core (running or halted) does not change.
The debug port will be initialized.
After this command has been executed, the user program can, for example, be
stopped with the Break command.

StandBy Not available for CEVA-X.

NoDebug

Go

©1989-2024 Lauterbach

CEVA-X Debugger and Trace | 42

SYStem.Option.IMASKASM Disable interrupts while single stepping

Format: SYStem.Option.IMASKASM [ON | OFF]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step. For 56800E processors IMASKASM ON is necessary for HLL stepping
and stepping from software breakpoints.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 43

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Format: SYStem.Option.IMASKHLL [ON | OFF]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to

the value before the step.

SYStem.Option.OVERLAY Enable overlay support
Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]
Default: OFF.
ON Activates the overlay extension and extends the address scheme of the

OFF

WithOVS

Example:

debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

Disables support for code overlays.

Like option ON, but also enables support for software breakpoints. This
means that TRACE32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes
to the execution area. For using this option, the storage area must be
readable and writable for the debugger.

SYStem.Option.OVERLAY ON
Data.List 0x2:0x1lc4d ; Data.List <overlay_ id>:<address>

©1989-2024 Lauterbach

CEVA-X Debugger and Trace | 44

SYStem.Option.PB0size Setup size of internal program memory

Format: SYStem.Option.PBOsize <size>

<size> 32KB | 64KB | 128KB | 256KB | 512KB | 1024KB

Sets the size of the internal program memory (PTCM), usually detected automatically.

SYStem.Option.RisingTDO Target outputs TDO on rising edge
Format: SYStem.Option.RisingTDO [ON | OFF]
Default: OFF.

Bug fix for chips which output the TDO on the rising edge instead of on the falling.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 45

SYStem.VCU Vector Computation Units (VCU)

SYStem.VCU.INSTances Number of available VCUs
Format: SYStem.VCU.INSTances <count>
Default: 0

Specifies the number of implemented Vector Computation Units (VCU) of the SOC.

SYStem.VCU.MLD MLD available or not

Format: SYStem.VCU.MLD [ON | OFF]

Default: OFF

Defines whether the VCU instance(s) features a Maximum-Likelyhood-Decoder (ON) or not (OFF).

General Restrictions

Setting the In cases where the program counter consists of the PC register and program
PC page extension bits, the program counter can be set by the register PP.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 46

CEVA-X specific ETM Command

ETM.BranchBBC Control branch BBC mode

Format: ETM.BranchBBC [ON | OFF]

Controls branch BBC mode.

ETM.IgnorelSyncPredicate Ignore |-Sync predicates
Format: ETM.IgnorelSyncPredicate [ON | OFF]
Default: OFF.

Workaround in ETM trace decoder for bad predicates at I-Sync.

ETM.LoopBBC Branch broadcast

Format: ETM.LoopBBC [ON | OFF]

Enables/disables branch-broadcasting globally.

ETM.PredicateAddress Set predicate address

Format: ETM.PredicateAddress [<address>]

Configures predicate address.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 47

ETM.PredicatePeriod Predicated counter in ETM wrapper

Format: ETM.PredicatePeriod [<cycles>]

This command sets up predicated counter in ETM wrapper.

ETM.TimeStamplnjectorTracelD CoreSight ATB ID

Format: ETM.TimeStamplnjectorTracelD <id_tsiO> <id_tsi1> ...

Some SoCs feature a global timestamp unit, which allows a correlation of multiple core traces in time. In
order to do that, each core in turn is a associated with a so-called timestamp injector. The timestamps from
the timestamp injectors are not directly injected into the core trace, but have their own CoreSight ATB IDs.

ETM.WrapperFilter Global breakpoint enable

Format: ETM.WrapperFilter [ON | OFF]

Disables or enabled all data and program breakpoints at once.

Default: ON.
ETM.WrapperSTALL Enable/disable wrapper stall
Format: ETM.WrapperSTALL [ON | OFF]
Default: ON.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 48

TrOnchip Commands

The OCEM registers can be used to break on several conditions.

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the
breakpoint, it will automatically be converted into a single address breakpoint when this option is active. This
is the default. Otherwise an error message is generated.

TrOnchip.CONVert ON

Break.Set 0x1000--0x17ff /Write ; sets breakpoint at range

Break.Set 0x1001--0x17ff /Write ; 1000--17ff sets single breakpoint
; at address 1001

TrOnchip.CONVert OFF ; sets breakpoint at range

Break.Set 0x1000--0x17ff /Write ; 1000--17ff
Break.Set 0x1001--0x17ff /Write ; gilives an error message

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted
into a single address breakpoint. This is the default setting. Otherwise an error message is generated.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 49

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.Set Set breakpoint
Format: TrOnchip.Set.<trigger> [ON | OFF]
<trigger>: EXT1
EXT2
EXT3
EXT4

Sets a trigger condition which causes the core to stop. Not all events listed below may be available on all

CPUs.
EXT1 Trigger on external input #1.
EXT2 Trigger on external input #2.
EXT3 Trigger on external input #3.
EXT4 Trigger on external input #4.
TrOnchip.state Display “Trigger-Onchip” dialog
Format: TrOnchip.state

Control panel to configure the on-chip breakpoint registers.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 50

Ceva Specific Benchmarking Commands

The BMC (BenchMark Counter) commands provide control of the optional on-chip profiler module. The
profiler consists of a group of counters that can be configured to count certain events in order to get statistics
on the operation of the processor and the memory system.

The counters can be read by the application at run-time and by the debugger only when stopped.
For information about architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).

In addition the Ceva architecture offers the possibility to embed profile counter values in the program trace
flow. Even though not supported by hardware directly, a little software workaround can “unlock” this useful
feature.

The general approach is as follows:

1. Read profile counters by application code

2 Write counter values to a dummy location in the internal data memory
3. Configure the ETM-R4 to track data writes
4

Configure the ETM-R4 wrapper to filter out all data writes we are not interested in

For illustration we will take the Free Running Clock Counter (FRCC) and the Wait Counter (WAITCNT) as an
example. Below steps have been carried out on a Ceva-XC4500 and may vary on other target systems.

In our sieve demo the result will look like this:

i BuTrace.List EI@
(& setup...][Goto...|| #3Find... [| Chart |[B Profie || BMPS | % More |[X Less |

record |run |address cycle |data symbol t1.back |

1714 int sieve() /* =zieve of erathostenes 0.036us :

{ =

register int 1, primz, k; =

int anzahl;

-
1719 READ_BMCS 0. 01l4us
-008548 D:00008F54 wr-Tong 01914E6D “\sieve'Global‘_FRCC 0.079%us
-008536 D:00008F50 wr-Tong 00000000 “\sieve\Global'_WAITCNT 0. 007us
1721 anzahl = 0; 0.075%us
1723 for (1 =0 ; i <= 5IZE ; flags[i++] = TRUE) ; 0.014us
1725 for (1 =0; 1 <= 5IZE ; 1++) 2.434us
1727 it [flags[i 1 0.065%us

{

1729 primz = 1 + i + 3; 0.085us
1730 k=1 + primz; 0.032us
1731 while (k == SIZE) 0.053us
1733 flags[k] = FALSE; 0.042us
1734 k += primz; 0.053us

{ -
}

Before we can start with step #1, let’s start with some preliminary thoughts:

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 51

The ETM-R4 wrapper by Ceva offers three comparators. They can be used as filters for three different data
addresses or for one range + one single address. This leads to three possible implementations of step 2):

J Declare three dummy variables somewhere in the internal memory => maximum of three profile
counters to be traced.

. Write all profile counter values to the same dummy variable => no limitation of profile counters
but debugger cannot distinguish between them.

J Declare a dummy variable for each counter and make sure their addresses are coherent => no
limitations.

The first two items are quite straightforward and do not need any more explanation. Hence we will continue
with the last one.

Unfortunately the Ceva inline assembler does not recognize structures etc. written in C language and putting
all dummy variables together does not necessarily mean that the compiler will map them to continuous
memory addresses. The most comfortable way to reserve a memory range for the dummy variables is to put
them into a separate “dummy” data section:

volatile unsigned int FRCC _ _asm__ ("FRCC") _ attribute__ ((section
(" .DSECT dummy"))) ;

volatile unsigned int WAITCNT _ _asm__ ("WAITCNT") _ attribute_ ((section
(" .DSECT dummy"))) ;

(etc.)

Note that we have to use the “volatile’ keyword. Later on we will make use of the labels FRCC and
WAITCNT in the inline assembler statements only, which would be skipped by the compiler otherwise. As a
result the compiler will optimize FRCC and WAITCNT away and the linker will fail when trying to link C- and
assembler object files.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 52

Now we can define a macro which can be used anywhere in our application code to output the profile
counters (step #1 & #2):

#define READ_BMCS { \

— " ")\ #il, *2
— "nop") ; \ #il, *2
| "push{4dw} modx") ; \ &Y

n

L
L (
L (
. ("push{dw} r0");\

. ("push{dw} r7");\

L ("mov #0x3, mod2") ;\ w2
. ("push{dw} a0O");\

. ("push{dw} a7");\

("1n{dw cpm} @0x08, xr0");\

L ("nop") ;\

("1n{dw cpm} @0x0c, r7");\

(ll
L (
L (
L (
L (
L (
L (
L (
L
L (
L (

(e}

n

S

-~ nop") ;\
-~ "nop") ; \
"nop") ; \
-~ "nop") ; \
— "mov r0, al0");\
"mov r7, a7");\
— "st{dw} a0, [#_FRCC] || pop{dw}r7");\
. "st{dw} a7, [#_WAITCNT] || pop{dw}r0");\

"pop{dw} a7");\
"pop{dw} alO");\
"pop{4dw} modx") ;\ w2

- |

*1 We only need those two ‘nop’s if the macro is placed after an instruction which modifies the stack
pointer (e.g. “push”, function entry).

*2 If the application does not make use of the mod2 register, we can omit these assembler

instructions and put __asm__ ("mov #0x3, mod2") somewhere else in an initialization
routine.

Finally we just need to configure TRACES2 (step #3 & #4):

; Trace data write accesses
ETM.DataTrace Write

; Will also switch on FRCC automatically
BMC.WaitCounter ON

; Set range comparators for data write accesses
Break.Set var.address (WAITCNT)--var.end (FRCC) /Write /TraceData

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 53

BMC.CLOCKS.FORMAT Cycle counter value format

Format: BMC.CLOCKS.FORMAT <format>

Sets up the display format for the for each benchmark cycle counter.

BMC .CLOCKS .FORMAT DECimal ; Display the cycle counter value in
; decimal format.

BMC .CLOCKS.FORMAT HEXadecimal ; Display the cycle counter value in
; hexadecimal format.

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 54

Memory Classes

Memory Class Description
D Data memory
P Program memory

©1989-2024 Lauterbach CEVA-X Debugger and Trace | 55

JTAG Connector

Signal
VREF-DEBUG
TRST-

TDI
TMSITMSCISWDIO
TCKITCKCISWCLK
RTCK

TDOI-ISWO
RESET-

DBGRQ

DBGACK

Pins 17 and 19 are not used.

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20

Signal
VSUPPLY (not used)
GND
GND
GND
GND
GND
GND
GND
GND
GND

This is a standard 20 pin double row connector (pin-to-pin spacing: 0.100 in.).

We strongly recommend to use a connector on your target with housing and having a center polarization

(e.g. AMP: 2-827745-0). A connection the other way around indeed causes damage to the output driver of

the debugger.

©1989-2024 Lauterbach

CEVA-X Debugger and Trace

56

	CEVA-X Debugger and Trace
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Quick Start
	Troubleshooting
	FAQ
	CPU Specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	Disassembler
	MS Windows
	Linux

	CPU specific SYStem Settings
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior
	<parameters> describing a system level TAP “MultiTap”
	<parameters> configuring a CoreSight Debug Access Port “AP”
	<parameters> describing debug and trace “Components”
	<parameters> which are “Deprecated”

	SYStem.CONFIG.EXTMEM External program memory
	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define JTAG clock
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.PB0size Setup size of internal program memory
	SYStem.Option.RisingTDO Target outputs TDO on rising edge
	SYStem.VCU Vector Computation Units (VCU)
	SYStem.VCU.INSTances Number of available VCUs
	SYStem.VCU.MLD MLD available or not
	General Restrictions

	CEVA-X specific ETM Command
	ETM.BranchBBC Control branch BBC mode
	ETM.IgnoreISyncPredicate Ignore I-Sync predicates
	ETM.LoopBBC Branch broadcast
	ETM.PredicateAddress Set predicate address
	ETM.PredicatePeriod Predicated counter in ETM wrapper
	ETM.TimeStampInjectorTraceID CoreSight ATB ID
	ETM.WrapperFilter Global breakpoint enable
	ETM.WrapperSTALL Enable/disable wrapper stall

	TrOnchip Commands
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.Set Set breakpoint
	TrOnchip.state Display “Trigger-Onchip” dialog

	Ceva Specific Benchmarking Commands
	BMC.CLOCKS.FORMAT Cycle counter value format

	Memory Classes
	JTAG Connector

