LAUTERBACH A

Blackfin Debugger



Blackfin Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES  ....cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQET ......cccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~
5] = T 4 {1 o r—
=7 0= o 1T T .71 o TH T T =T 1

L o Yo 11T o) 4

Brief Overview of Documents for New Users 4

Demo and Start-up Scripts 5
Location of Debug Connector 5

R T 1T ' 5
QUICK STart JTAG ....cccceericrcecerressssnerrsssssmserssssssmesesssssmsesesssssmsnseasssnmennesssansenessssnnennesssnnnnnees 6
TroubleShOOtING ... e 8
SYStem.Up Errors 8

- N 8
ConfiguIration ... e 9
System Overview 9
Blackfin specific SYStem Commands .........cccccciiiicmimiiiiniccsssssssscsere s e s sssssmnnneenes 10
SYStem.CONFIG Configure debugger according to target topology 10
Daisy-Chain Example 13
TapStates 14
SYStem.CONFIG.CORE Assign core to TRACES32 instance 15
SYStem.CPU CPU type selection 16
SYStem.JtagClock JTAG clock selection 17
SYStem.LOCK Lock and tristate the debug port 17
SYStem.MemAccess Select run-time memory access method 18
SYStem.Mode System mode selection 19
SYStem.Option.IMASKASM Interrupt disable 19
SYStem.Option.IMASKHLL Interrupt disable 20

=T == 1 o o ] 21
Software Breakpoints 21
On-chip Breakpoints 21
Breakpoint in ROM 21
©1989-2024 Lauterbach Blackfin Debugger 2



Example for Breakpoints 22

=T 4 oL YA 07 = = T 23

CPU specific TrOnchip CoOmMmands ........ccccuciimiisemmiisssiismsissssssssssssss s sasssssssssssssssasanes 24

0 17X € 0o T3 T e (o1 25
©1989-2024 Lauterbach Blackfin Debugger | 3



Blackfin Debugger

Version 06-Jun-2024

Introduction

This document describes the processor specific settings and features for the Blackfin Embedded Media
Processor. TRACE32-ICD supports all Blackfin devices which are equipped with the JTAG debug interface.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

If some of the described functions, options, signals or connections in this Processor Architecture Manual are
only valid for a single CPU the name is added in brackets.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACEB32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach Blackfin Debugger | 4



Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known Blackfin based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/blackfin/ subfolder of the system directory of
TRACES32.

Location of Debug Connector

Locate the debug connector on your target board as close as possible to the processor to minimize the
capacitive influence of the trace length and cross coupling of noise onto the JTAG signals.

Warning

Signal Level

The debugger output voltage follows the target voltage level. It supports a voltage range of 0.4 ... 5.2 V.

ESD Protection

NOTE: To prevent debugger and target from damage it is recommended to connect or
disconnect the debug cable only while the target power is OFF.

Recommendation for the software start:

. Disconnect the debug cable from the target while the target power is off.
. Connect the host system, the TRACE32 hardware and the debug cable.
. Start the TRACE32 software.

. Connect the debug cable to the target.

. Switch the target power ON.

Power down:
. Switch off the target power.
. Disconnect the debug cable from the target.

©1989-2024 Lauterbach Blackfin Debugger | 5



Quick Start JTAG

Starting up the debugger is done as follows:
1. Select the device prompt B: for the ICD Debugger, if the device prompt is not active after the
TRACERS2 software was started.
B:

2. Select the CPU type to load the CPU specific settings.

SYStem.CPU BF537

3. Enter debug mode:

SYStem.Up

This command resets the CPU and enters debug mode. After the execution of this command access
to the registers and to memory is possible. Before performing the first access to external SDRAM or
FLASH the External Bus Interface Unit (EBIU) must be configured.

4. The following command sequence is for the BF537 processor and configures the SDRAM
controller with default values that were derived for maximum flexibility. They work for a system
clock frequency between 54 MHz and 133 MHz.

In the example a ST M29W320DB flash device is used in 16-bit mode. All four memory
banks and CLKOUT are enabled.

; configure SDRAM controller ; EBIU_SDGCTL
Data.Set OxFFCO0A1sLONG 0x0091998D ; EBIU_SDBCTL
Data.Set OxFFCO0Al1l4 SWORD 0x0025 ; EBIU_SDRRC

Data.Set OxFFCOOA1C SWORD 0x03A0

; enable all flash memory banks and clock
out ; EBIU_AMGCTL
Data.Set OxFFCO0AQOO0 SWORD O0x00FF

; ST M29W320DB flash device in 16-bit mode

FLASH.Create 1. 0x20000000--0x20003FFF 0x4000 AM29LV100 Word
FLASH.Create 1. 0x20004000--0x20007FFF 0x2000 AM29LV100 Word
FLASH.Create 1. 0x20008000--0x2000FFFF 0x8000 AM29LV100 Word
FLASH.Create 1. 0x20010000--0x203FFFFF 0x10000 AM29LV100 Word

©1989-2024 Lauterbach Blackfin Debugger | 6



5. Load the program.

Data.LOAD.El1f demo.dxe

The option of the Data.LOAD command depends on the file format generated by the compiler. A

; The file demo.dxe is in ELF format

detailed description of the Data.LOAD command is given in the “General Commands Reference”.

The start-up sequence can be automated using the programming language PRACTICE. A typical start
sequence is shown below. This sequence can be written to a PRACTICE script file (*.cmm, ASCII format)

and executed with the command DO <file>.

B::

WinClear

SYStem.CPU BF537
SYStem.Up

Data.Load.Elf sieve.dxe
Register.Set PC main
List.Mix

Register.view

PER.view

Break.Set sieve

Break.Set 0x1000 /p

’

Select the ICD device prompt

Delete all windows

select the processor

Reset the target and enter debug mode
Load the application

Set the PC to function main

Open disassembly window *)
Open register window *)
Open window with peripheral register *)
Set breakpoint to function sieve

Set on-chip breakpoint to address 1000
Refer to the restrictions in
On-chip Breakpoints.

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

Blackfin Debugger

7



Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

All The target has no power.
All There are additional loads or capacities on the JTAG lines.
All The JTAG clock is too fast.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach Blackfin Debugger | 8


https://support.lauterbach.com/kb

Configuration

System Overview

SWITCH

1 GBit Ethernet

PC or
Workstation

Debug Cable

Ethernet
(Cable |

[ oo —
[

LauTERBACH

POWER DEBUG PRO

L Desktop
Power Supply

Target

Debug
Connector

©1989-2024

Lauterbach

Blackfin Debugger

9



Blackfin specific SYStem Commands

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE <core>
<parameter>: DRPRE <bits>
(JTAG): DRPOST <bits>

IRPRE  <bits>

IRPOST <bits>
DAPDRPOST <bits>
DAPDRPRE <bits>
DAPIRPOST <bits>
DAPIRPRE <bits>
TAPState <state>
TCKLevel </evel>

TriState [ON | OFF]

Slave [ON | OFF]
DEBUGPORTTYPE [JTAG | SWD]
SWDPIDLEHIGH [ON | OFF]
SWDPTargetSel <value>

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. ARM +
DSP). The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-
chain Example.

For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

©1989-2024 Lauterbach Blackfin Debugger | 10



CORE

.. DRPOST <bits>

.. DRPRE <bits>

.. IRPOST <bits>

.. IRPRE <bits>

TAPState

TCKLevel

TriState

Slave

For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.

Further information can be found in SYStem.CONFIG.CORE.

Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing. See possible TAP types and example below.

Default: 0.

Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal. See possible TAP types and example
below.

Default: 0.

(default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

(default: 0) Level of TCK signal when all debuggers are tristated.

(default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

(default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET).

©1989-2024 Lauterbach

Blackfin Debugger | 11



DEBUGPORTTYPE It specifies the used debug port type “JTAG”, “SWD”. It assumes the
[JTAG | SWD] selected type is supported by the target.

Default: JTAG.

SWDPIdleHigh Keep SWDIO line high when idle. Only for Serialwire Debug mode.

[ON | OFF] Usually the debugger will pull the SWDIO data line low, when no
operation is in progress, so while the clock on the SWCLK line is stopped
(kept low).

You can configure the debugger to pull the SWDIO data line
high, when no operation is in progress by using
SYStem.CONFIG SWDPIdleHigh ON

Default: OFF.
SWDPTargetSel Device address in case of a multidrop serial wire debug port.

<value>
Default: none set (any address accepted).

©1989-2024 Lauterbach Blackfin Debugger | 12



Daisy-Chain Example

TDl——-® Core A —Core B p Core C—» Core D +—» TDO

Chip 0 Chip 1

Below, configuration for core C.

Instruction register length of
. Core A: 3 bit
. Core B: 5 bit
. Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B
SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C i1s Core 0 in Chip 1

©1989-2024 Lauterbach Blackfin Debugger | 13



TapStates

0 Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR

© 00 N o 0o~ W N =

—_ - e e —d
o A~ WO N =+ O

Test-Logic-Reset

©1989-2024 Lauterbach Blackfin Debugger | 14



SYStem.CONFIG.CORE Assign core to TRACE32 instance

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1.0

<core_index>: 1...k

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips
Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

©1989-2024 Lauterbach Blackfin Debugger | 15



SYStem.CPU CPU type selection

Format: SYStem.CPU <cpu>

<cpu>: BF531 | BF532 | BF533 | BF534 ...

Default selection: BF534.

Selects the CPU type.

©1989-2024 Lauterbach Blackfin Debugger | 16



SYStem.JtagClock JTAG clock selection

Format: SYStem.JtagClock [<frequency>]
SYStem.BdmClock <frequency> (deprecated)

Default frequency: 1 MHz.

Selects the JTAG port frequency (TCK). Any frequency up to 50 MHz can be entered, it will be generated by

the debuggers internal PLL.
For CPUs which come up with very low clock speeds it might be necessary to slow down the JTAG

frequency. After initialization of the CPUs PLL the JTAG clock can be increased.

If there are buffers, additional loads or high capacities on the JTAG/COP lines,
reduce the debug speed.

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give

debug access to another tool.

©1989-2024 Lauterbach Blackfin Debugger | 17



SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess Denied | StopAndGo | BTC

BTC “BTC” allows a non-intrusive memory access while the core is running, if a
Background Telemetry Channel (BTC) is defined in your application. Any
information on how to create such a channel can be found in Analog
Devices’ VisualDSP++ user's manual. The JTAG clock speed should be as
fast as possible to get good performance

Denied Memory access during program execution to target is disabled.
StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop

takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

©1989-2024 Lauterbach Blackfin Debugger | 18



SYStem.Mode System mode selection

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)

SYStem.Down (alias for SYStem.Mode Down)

SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down

Go

Attach

Up

Down Disables the debugger.

Go Resets the target with debug mode enabled and prepares the CPU for
debug mode entry. After this command the CPU is in the system.up
mode and running. Now, the processor can be stopped with the break
command or if a break condition occurs.

Attach User program remains running (no reset) and the debug interface is
initialized.

Up Resets the target and sets the CPU to debug mode. After execution of
this command the CPU is stopped and prepared for debugging.

StandBy Not supported.

NoDebug Not supported.

SYStem.Option.IMASKASM Interrupt disable
Format: SYStem.Option.IMASKASM [ON | OFF]

Mask interrupts during assembler single steps. Useful to prevent interrupt disturbance during assembler

single stepping.

©1989-2024 Lauterbach

Blackfin Debugger | 19



SYStem.Option.IMASKHLL Interrupt disable

Format: SYStem.Option.IMASKHLL [ON | OFF]

Mask interrupts during HLL single steps. Useful to prevent interrupt disturbance during HLL single stepping.

©1989-2024 Lauterbach Blackfin Debugger | 20



Breakpoints

There are two types of breakpoints available: software breakpoints and on-chip breakpoints.

Software Breakpoints

Software breakpoints are the default breakpoints. A special breakcode is patched to memory so it only can
be used in RAM or FLASH areas.There is no restriction in the number of software breakpoints.

On-chip Breakpoints

The Blackfin processor has a total of six instruction and two data on-chip breakpoints.

A pair of two breakpoints may be further grouped together to form a range breakpoint. A range breakpoint
can be including or excluding. In the first case the core is stopped if an address in the range is detected, in
the second case the core is stopped when an address outside of the range is observed.

Breakpoint in ROM

With the command MAP.BOnchip <range> it is possible to inform the debugger about ROM
(FLASH,EPROM) address ranges in target. If a breakpoint is set within the specified address range the
debugger uses automatically the available on-chip breakpoints.

©1989-2024 Lauterbach Blackfin Debugger | 21



Example for Breakpoints

Assume you have a target with FLASH from 0x20000000 to 0x200FFFFF and RAM from 0x0 to
0x1000000. The command to configure TRACES32 correctly for this configuration is:

Map.BOnchip 0x20000000--0x200FFFFF

The following breakpoint combinations are possible.

Software breakpoints:

Break.Set 0x0 /Program ; Software Breakpoint 1

Break.Set 0x1000 /Program ; Software Breakpoint 2

On-chip breakpoints:

Break.Set 0x20000100 /Program ; On-chip Breakpoint 1

Break.Set 0x2000£f£f00 /Program ; On-chip Breakpoint 2

©1989-2024 Lauterbach Blackfin Debugger | 22



Memory Classes

The following memory classes are available:

Memory Class Description
P Program
D Data

©1989-2024 Lauterbach

Blackfin Debugger

23



CPU specific TrOnchip Commands

The TrOnchip command group is not available for the Blackfin debugger.

©1989-2024 Lauterbach Blackfin Debugger | 24



JTAG Connector

Signal Pin Pin
GND 1 2
N/C 3 4
VDDIO 5 6
N/C 7 8
N/C 9 10
N/C 11 12
GND 13 14

Signal
EMU-
GND
TMS
TCK
TRST-
TDI
TDO

JTAG Connector Signal Description CPU Signal

TMS JTAG-TMS, TMS
output of debugger

TDI JTAG-TDI, TDI
output of debugger

TCK JTAG-TCK, TCK
output of debugger

ITRST JTAG-TRST, [TRST
output of debugger

TDO JTAG-TDO, TDO
input for debugger

/EMU JTAG Emulation Flag /EMU

vDDIO This pin is used by the debugger to sense the target VvDDIO
I/0 voltage and to set the drive levels accordingly. If
the sensed voltage level is too low (e.g. target has no
power) the debugger powers down its drivers to
prevent the target from damage.

©1989-2024 Lauterbach

Blackfin Debugger |

25



	Blackfin Debugger
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts
	Location of Debug Connector

	Warning
	Quick Start JTAG
	Troubleshooting
	SYStem.Up Errors

	FAQ
	Configuration
	System Overview

	Blackfin specific SYStem Commands
	SYStem.CONFIG      Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE      Assign core to TRACE32 instance
	SYStem.CPU      CPU type selection
	SYStem.JtagClock      JTAG clock selection
	SYStem.LOCK      Lock and tristate the debug port
	SYStem.MemAccess      Select run-time memory access method
	SYStem.Mode      System mode selection
	SYStem.Option.IMASKASM      Interrupt disable
	SYStem.Option.IMASKHLL      Interrupt disable

	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	Breakpoint in ROM
	Example for Breakpoints

	Memory Classes
	CPU specific TrOnchip Commands
	JTAG Connector


