LAUTERBACH A

APEX Debugger

APEX Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
£ o r—
Y o = G 1= o 10 T e =T 1

L (oo LU T o) o 4

Brief Overview of Documents for New Users 4
A5 T 0 T ' 5
Quick Start of the JTAG Debugger ... s s sssss e 6

LI 1810 (== o T 1 o 8
SYStem.Up Errors 8

O 8
APEX Specific Implementationscccccoiiimiiin i 9
Breakpoints 9
Software Breakpoints 9

On-chip Breakpoints for Instructions 9
Example for Standard Breakpoints 10

Runtime Measurement 10
Memory Classes 10

Bus Width Mapping 11

CPU specific SYStem Commandscccccemmimiiiiiiiisisssssccssers e s ssssssssssssssssssssssessesssssssnnnes 12
SYStem.CONFIG.state Display target configuration 12
SYStem.CONFIG Configure debugger according to target topology 14
<parameters> describing the “DebugPort” 17
<parameters> describing the “JTAG” scan chain and signal behavior 19
<parameters> configuring a CoreSight Debug Access Port “DAP” 21
<parameters> describing debug and trace “Components” 22
SYStem.CPU Select the used CPU 27
SYStem.JtagClock Define JTAG frequency 28
SYStem.LOCK Tristate the JTAG port 29
SYStem.MemAccess Select run-time memory access method 30
SYStem.Mode Establish the communication with the target 31
©1989-2024 Lauterbach APEX Debugger 2

SYStem.Option.AHBHPROT Select AHB-AP HPROT bits 31
SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP 32
SYStem.Option.AXICACHEFLAGS Select AXI-AP CACHE bits 32
SYStem.Option. AXIHPROT Select AXI-AP HPROT bits 32
SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP 33
SYStem.Option.DAPNOIRCHECK No DAP instruction register check 33
SYStem.Option.DAPREMAP Rearrange DAP memory map 34
SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP 34
SYStem.Option.DEBUGPORTOptions Options for debug port handling 35
SYStem.Option.EnReset Allow the debugger to drive nRESET/nSRST 36
SYStem.Option.IgnoreAttributes Obey ELF attributes for breakpoints 36
SYStem.Option.IMASKASM Disable interrupts while single stepping 36
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 37
SYStem.Option.MEMoryMODEL Select view of memory classes 38
SYStem.Option. MEMORYHPROT Select memory-AP HPROT bits 39
SYStem.Option.ResBreak Halt the core after reset 39
SYStem.Option. TRST Allow debugger to drive TRST 40
SYStem.Option.WaitReset Wait with JTAG activities after deasserting reset 40
SYStem.RESetOut Assert nNRESET/nSRST on JTAG connector 41
SYStem.state Display SYStem.state window 41
APEX Specific TrOnchip COMMAaNAScccccemrmmiiimmmmmmnssssrmssss s s sssssssssns 42
TrOnchip.state Display on-chip trigger window 42
TrOnchip.RESet Set on-chip trigger to default state 42
TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 42
Target Adaptionccccceiiiimmriins s 43
Interface Standards JTAG, Serial Wire Debug, cJTAG 43
Pinout 43
©1989-2024 Lauterbach APEX Debugger | 3

APEX Debugger

Version 06-Jun-2024

Introduction

This manual serves as a guideline for debugging and describes all processor-specific TRACE32 settings
and features.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.
J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

J “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach APEX Debugger | 4

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

APEX Debugger |

5

Quick Start of the JTAG Debugger

Starting up the debugger is done as follows:

1. Select the device prompt for the ICD Debugger and reset the system.

183 3

RESet

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: : to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Inform TRACE32 about the CPU under debug.

SYStem.CPU APEX321

The other settings in the SYStem window are set in such a way that it should be possible to work
without modification. Please consider that this might not be the best configuration for your target.

3. Specify address ranges where the access width is restricted.

MAP.BUS32 0x060000000++1FFFF

If a memory range can only be accessed with a certain bus width you can use the
Map.BUSx <range> command to force the debugger to use solely the according load or store
instructions.

4. Establish the debug communication..

; 1lssue a core reset but no SoC reset
SYStem.Mode.Up

©1989-2024 Lauterbach APEX Debugger | 6

5. Load the program.

Data.LOAD.auto myproject /Long

; load the compiler output

;the option /Long advises the
;debugger to use 32-bit accesses
;while loading the code to the

; target

The format of the Data.LOAD command depends on the file format generated by the compiler.

A detailed description of the Data.LOAD command and all available options is given in the “General

Commands Reference”.

A typical start sequence is shown below. This sequence can be written to a PRACTICE script file (*.cmm,
ASCII format) and executed with the command DO <file>.

B3 3
WinCLEAR

MAP.BUS32 0x50000000++0x1ffff

SYStem.Up
Data.LOAD.elf apex_project
Register.Set PC _ResetVector

Register.Set Al O0x63FFFFFC

List.Mix
Register.view /SpotLight

Frame.view /Locals /Caller

7

Select the ICD device prompt
Clear all windows

Force the debugger to access the
specified address range 32-bit wide

Establish the debug communication
Load the application
Set the PC to start point

Set the stack pointer to address
0x63FFFFFC

Open source code window %)
Open register window =)

Open the stack frame with
local variables)

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

APEX Debugger | 7

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

FAQ

The target has no power.

The target is in reset.

The APEX core is not enabled.

There is logic added to the JTAG state machine.

There are additional loads or capacities on the JTAG lines.

There is a short circuit on at least one of the output lines of the core.

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach

APEX Debugger

8

https://support.lauterbach.com/kb

APEX Specific Implementations

Breakpoints

Software Breakpoints

If a software breakpoint is used, the original code at the breakpoint location is patched by a breakpoint code.

On-chip Breakpoints for Instructions

If on-chip breakpoints are used, the resources to set the breakpoints are provided by the CPU. On-chip
breakpoints are usually needed to set Program breakpoints to instructions in FLASH. The APEX supports
up to four On-chip breakpoints on single addresses, address ranges are not supported.

©1989-2024 Lauterbach APEX Debugger | 9

Example for Standard Breakpoints

TRACE32 automatically uses the appropriate breakpoint implementation.

Break.Set P:0x100000 /Program ; Software breakpoint 1
Break.Set P:0x101000 /Program ; Software breakpoint 2
Break.Set func6 /Program ; Software breakpoint 3

Runtime Measurement

The command RunTime allows run time measurement based on polling the CPU run status by software.
Therefore the result will be about few milliseconds higher than the real value.

Memory Classes

The following APEX specific memory classes are available.

Memory Class Description

P Program Memory

D Data Memory

\% Vector Memory

E Run-time memory access (see SYStem.CpuAccess and
SYStem.MemAccess)

To access a memory class, write the class in front of the address.
Example:

Data.dump D:0x0--0x3

©1989-2024 Lauterbach APEX Debugger |

Bus Width Mapping

MAP.BUS8 Forces the debugger to access the specified range with Load / Store 8-bit
commands.

MAP.BUS16 Forces the debugger to access the specified range with Load / Store 16-bit
commands.

MAP.BUS32 Forces the debugger to access the specified range with Load / Store 32-bit
commands.

©1989-2024 Lauterbach APEX Debugger | 11

CPU specific SYStem Commands

Please be aware that if the APEX is used in a multicore debug environment with an Arm core, most
SYSTem settings are already done by this core. But since the APEX debugger is using the same debug
interface, the settings are also visible in the APEX debugger GUI.

SYStem.CONFIG.state Display target configuration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: DebugPort | Jtag | DAP | COmponents

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort The DebugPort tab informs the debugger about the debug connector type
(default) and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see DebugPort.

Jtag The Jtag tab informs the debugger about the position of the Test Access
Ports (TAP) in the JTAG chain which the debugger needs to talk to in order
to access the debug and trace facilities on the chip.

For descriptions of the commands on the Jtag tab, see Jtag.

DAP The DAP tab informs the debugger about an ARM CoreSight Debug
Access Port (DAP) and about how to control the DAP to access chip-
internal memory busses (AHB, APB, AXI) or chip-internal JTAG interfaces.

For descriptions of the commands on the DAP tab, see DAP.

©1989-2024 Lauterbach APEX Debugger | 12

COmponents

The COmponents tab informs the debugger (a) about the existence and
interconnection of on-chip CoreSight debug and trace modules and (b)
informs the debugger on which memory bus and at which base address
the debugger can find the control registers of the modules.

For descriptions of the commands on the COmponents tab, see
COmponents.

©1989-2024 Lauterbach

APEX Debugger |

13

SYStem.CONFIG

Configure debugger according to target topology

Format:

<parameter>:
(DebugPort)

<parameter>:
(DebugPort cont.)

<parameter>:
(DAP)

<parameter>:
(COmponents)

SYStem.CONFIG <parameter>
SYStem.MultiCore <parameter> (deprecated)

CJTAGFLAGS <flags>

CJTAGTCA <value>

CORE <core> <chip>

DEBUGPORTTYPE [JTAG | SWD | CJTAG]

Slave [ON | OFF]

SWDP [ON | OFF]
SWDPIDLEHIGH [ON | OFF]
SWDPTargetSel <value>
DAP2SWDPTargetSel <value>
TriState [ON | OFF]

DAPDRPOST <bits>
DAPDRPRE <bits>
DAPIRPOST <bits>
DAPIRPRE <bits>

DRPOST <bits>
DRPRE <bits>
IRPOST <bits>
IRPRE <bits>

Slave [ON | OFF]
TAPState <state>
TCKLevel <level>

AHBACCESSPORT <port>
APBACCESSPORT <port>
AXIACCESSPORT <port>
DEBUGACCESSPORT <port>
MEMORYACCESSPORT <port>
JTAGACCESSPORT <port>

COREDEBUG.Base <address>
COREDEBUG.RESet
COREDEBUG.view

CTl.Base <address>

CTI.Config [NONE | ARMV1 | ARMPostinit | OMAP3 | TMS570 | CortexV1 |
Qv1i]

CTI.RESet

CTl.view

ETB.ATBSource <source>

©1989-2024 Lauterbach

APEX Debugger | 14

<parameter>:
(COmponents
cont.)

ETB.Base <address>

ETB.Name <string>

ETB.NoFlush [ON | OFF]

ETB.RESet

ETB.Size <size>

ETB.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETB.view

ETF.ATBSource <source>

ETF.Base <address>

ETF.Name <string>

ETF.NoFlush [ON | OFF]

ETF.RESet

ETF.Size <size>

ETF.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETF.view

ETR.ATBSource <source>

ETR.Base <address>

ETR.CATUBase <address>

ETR.Name <string>

ETR.NoFlush [ON | OFF]

ETR.RESet

ETR.Size <size>

ETR.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETR.view

ETS.ATBSource <source>

ETS.Base <address>

ETS.Name <string>

ETS.NoFlush [ON | OFF]

ETS.RESet

ETS.Size <size>

ETS.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETS.view

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.RESet

FUNNEL.view

REP.ATBSource <source>
REP.Base <address>
REP.Name <string>
REP.RESet

REP.view

©1989-2024 Lauterbach

APEX Debugger | 15

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

Ideally you can select with SYStem.CPU the chip you are using which causes all setup you need and you do
not need any further SYStem.CONFIG command.

The SYStem.CONFIG command information shall be provided after the SYStem.CPU command, which
might be a precondition to enter certain SYStem.CONFIG commands, and before you start up the debug
session e.g. by SYStem.Up.

©1989-2024 Lauterbach APEX Debugger | 16

<parameters> describing the “DebugPort”

CJTAGFLAGS <flags>

CJTAGTCA <value>

CORE <core> <chip>

CORE <core> <chip>

(cont.)

Activates bug fixes for “cJTAG” implementations.
Bit 0: Disable scanning of cJTAG ID.

Bit 1: Target has no “keeper”.

Bit 2: Inverted meaning of SREDGE register.

Bit 3: Old command opcodes.

Bit 4: Unlock cJTAG via APFC register.

Default: 0

Selects the TCA (TAP Controller Address) to address a device in a
c¢JTAG Star-2 configuration. The Star-2 configuration requires a
unique TCA for each device on the debug port.

The command helps to identify debug and trace resources which
are commonly used by different cores. The command might be
required in a multicore environment if you use multiple debugger
instances (multiple TRACE32 PowerView GUIs) to simultaneously
debug different cores on the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2

each debugger instance assumes that all notified debug and trace
resources can exclusively be used.

But some target systems have shared resources for different
cores, for example a common trace port. The default setting
causes that each debugger instance controls the same trace port.
Sometimes it does not hurt if such a module is controlled twice.
But sometimes it is a must to tell the debugger that these cores
share resources on the same <chip>. Whereby the “chip” does not
need to be identical with the device on your target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1

For cores on the same <chip>, the debugger assumes that the
cores share the same resource if the control registers of the
resource have the same address.

Default:

<core> depends on CPU selection, usually 1.

<chip> derived from CORE= parameter in the configuration file
(config.t32), usually 1. If you start multiple debugger instances with
the help of t32start.exe, you will get ascending values (1, 2, 3,...).

©1989-2024 Lauterbach

APEX Debugger | 17

DEBUGPORTTYPE
[JTAG | SWD | CJTAG]

Slave [ON | OFF]

SWDP [ON | OFF]

SWDPIdleHigh
[ON | OFF]

SWDPTargetSel <value>

TriState [ON | OFF]

It specifies the used debug port type “JTAG”, “SWD”, “CJTAG”,
“CJTAG-SWD”. It assumes the selected type is supported by the
target.

Default: JTAG.

If several debuggers share the same debug port, all except one
must have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the
signals nTRST and nSRST (nRESET). The other debuggers need

to have the setting Slave ON.

Default: OFF.

Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

With this command you can change from the normal JTAG

interface to the serial wire debug mode. SWDP (Serial Wire Debug

Port) uses just two signals instead of five. It is required that the
target and the debugger hard- and software supports this
interface.

Default: OFF.

Keep SWDIO line high when idle. Only for Serialwire Debug mode.

Usually the debugger will pull the SWDIO data line low, when no
operation is in progress, so while the clock on the SWCLK line is
stopped (kept low).

You can configure the debugger to pull the SWDIO data line
high, when no operation is in progress by using
SYStem.CONFIG SWDPIdleHigh ON

Default: OFF.
Device address in case of a multidrop serial wire debug port.
Default: none set (any address accepted).

TriState has to be used if several debug cables are connected to a
common JTAG port. TAPState and TCKLevel define the TAP state
and TCK level which is selected when the debugger switches to
tristate mode.

Please note:

. NTRST must have a pull-up resistor on the target.

. TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.

Default: OFF.

©1989-2024 Lauterbach

APEX Debugger |

18

<parameters> describing the “JTAG” scan chain and signal behavior

With the JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

NTRST (reset)

TCK (clock)

TMS (state machine control)
TDI (data input)

TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to. The TAP position can be defined
with the first four commands in the table below.

... DRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

... DRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

... IRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing. See possible TAP types and example below.

Default: 0.

... IRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal. See possible TAP types and example
below.

Default: 0.

NOTE: If you are not sure about your settings concerning IRPRE, IRPOST, DRPRE,
and DRPOST, you can try to detect the settings automatically with the
SYStem.DETECT.DaisyChain command.

©1989-2024 Lauterbach APEX Debugger | 19

Slave [ON | OFF] If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
NTRST and nSRST (nNRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF.

Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).
For CortexM: Please check also
SYStem.Option.DISableSOFTRES [ON | OFF]

TAPState <state> This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan
5 Update-DR

6 Capture-DR

7 Select-DR-Scan
8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle
13 Update-IR

14 Capture-IR

15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

TCKLevel <level> Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.

Default: 0.

TAP types:

Core TAP providing access to the debug register of the core you intend to debug.
-> DRPOST, DRPRE, IRPOST, IRPRE.

DAP (Debug Access Port) TAP providing access to the debug register of the core you intend to debug. It
might be needed additionally to a Core TAP if the DAP is only used to access memory and not to access the
core debug register.

-> DAPDRPOST, DAPDRPRE, DAPIRPOST, DAPIRPRE.

©1989-2024 Lauterbach APEX Debugger | 20

<parameters> configuring a CoreSight Debug Access Port “DAP”

A Debug Access Port (DAP) is a CoreSight module from ARM which provides access via its debugport
(JTAG, cJTAG, SWD) to:

1.

Different memory busses (AHB, APB, AXI). This is especially important if the on-chip debug
register needs to be accessed this way. You can access the memory buses by using certain
access classes with the debugger commands: “AHB:”, “APB:”, “AXI:, “DAP”, “E:”. The interface to
these buses is called Memory Access Port (MEM-AP).

Other, chip-internal JTAG interfaces. This is especially important if the core you intend to debug
is connected to such an internal JTAG interface. The module controlling these JTAG interfaces is
called JTAG Access Port (JTAG-AP). Each JTAG-AP can control up to 8 internal JTAG interfaces.
A port number between 0 and 7 denotes the JTAG interfaces to be addressed.

At emulation or simulation system with using bus transactors the access to the busses must be
specified by using the transactor identification name instead using the access port commands.
For emulations/simulations with a DAP transactor the individual bus transactor name don’t need
to be configured. Instead of this the DAP transactor name need to be passed and the regular
access ports to the busses.

AHBACCESSPORT <port>

APBACCESSPORT <port>

AXIACCESSPORT <port>

DEBUGACCESSPORT
<port>

MEMORYACCESSPORT
<port>

JTAGACCESSPORT <port>

DAP access port number (0-255) which shall be used for “AHB:”
access class. Default: <port>=0.

DAP access port number (0-255) which shall be used for “APB:”
access class. Default: <port>=1.

DAP access port number (0-255) which shall be used for “AXI:”
access class. Default: port not available

DAP access port number (0-255) where the debug register can
be found (typically on APB). Used for “DAP:” access class.
Default: <port>=1.

DAP access port number where system memory can be
accessed even during runtime (typically on AHB). Used for “E:”
access class while running, assuming “SYStem.MemoryAccess
DAP”. Default: <port>=0.

DAP access port number (0-255) of the JTAG Access Port.

©1989-2024 Lauterbach

APEX Debugger | 21

<parameters> describing debug and trace “Components”

On the Components tab in the SYStem.CONFIG.state window, you can comfortably add the debug and
trace components your chip includes and which you intend to use with the debugger’s help.

& B::5Y5tem, CONFIG.state /COmponents EI@

| DebugPort ” Jtag ” DAP " COmponents|

|- Select components to display - v|

il

Base 10:0x300 [Config CROSSBREAK -

Each configuration can be done by a command in a script file as well. Then you do not need to enter
everything again on the next debug session. If you press the button with the three dots you get the
corresponding command in the command line where you can view and maybe copy it into a script file.

You can have several of the following components: ETB, ETF, ETR, FUNNEL.
Example: FUNNEL1, FUNNEL2, FUNNELS,...

©1989-2024 Lauterbach APEX Debugger | 22

The <address> parameter can be just an address (e.g. 0x80001000) or you can add the access class in
front (e.g. AHB:0x80001000). Without access class it gets the command specific default access class which

is “EDAP:” in most cases.

... .ATBSource <source>

... .BASE <address>

... .Name

Specify for components collecting trace information from where the
trace data are coming from. This way you inform the debugger
about the interconnection of different trace components on a
common trace bus.

You need to specify the “... .Base <address>" or other attributes
that define the amount of existing peripheral modules before you
can describe the interconnection by “... .ATBSource <source>".

A CoreSight trace FUNNEL has eight input ports (port 0-7) to
combine the data of various trace sources to a common trace
stream. Therefore you can enter instead of a single source a list
of sources and input port numbers.

For a list of possible components including a short description
see Components and Available Commands.

This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETB.Base APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Buffer (ETB) starts at address 0x8011c000 and is accessible via
APB bus.

For a list of possible components including a short description
see Components and Available Commands.

The name is a freely configurable identifier to describe how many
instances exists in a target systems chip. TRACE32 PowerView
GUI shares with other opened PowerView GUIs settings and the
state of components identified by the same name and component
type. Components using different names are not shared. Other
attributes as the address or the type are used when no name is
configured.

©1989-2024 Lauterbach

APEX Debugger | 23

... .NoFlush [ON | OFF]

... .RESet

... .Size <size>

... .STackMode [NotAvailbale
| TRGETM | FULLTIDRM |
NOTSET | FULLSTOP |
FULLCTI]

Example 1: Shared None-Programmable Funnel:
PowerView1:

SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
PowerView2:

SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
SYStem.CONFIG.Core 2. 1. ; merge configuration to describe a
target system with one chip containing a single none-
programmable FUNNEL.

Example 2: Cluster ETFs:

1. Configures the ETF base address and access for each core

SYStem.CONFIG.ETF.Base DAP:0x80001000 \
APB:0x80001000 DAP:0x80001000 APB:0x80001000

2. Tells the system the core 1 and 3 share cluster-etf-1 and core

2 and 4 share cluster-etf-2 despite using the same address for all

ETFs

SYStem.CONFIG.ETF.Name "“cluster-etf-1" "cluster-etf-2" \
"cluster-etf-1" "cluster-etf-2"

Deactivates a component flush request at the end of the trace
recording. This is a workaround for a bug on a certain chip. You
will loose trace data at the end of the recording. Don’t use it if not
needed. Default: OFF.

Undo the configuration for this component. This does not cause a
physical reset for the component on the chip.

For a list of possible components including a short description
see Components and Available Commands.

Specifies the size of the component. The component size can
normally be read out by the debugger. Therefore this command
is only needed if this can not be done for any reason.

Specifies the which method is used to implement the Stack mode
of the on-chip trace.

NotAvailable: stack mode is not available for this on-chip trace.
TRGETM: the trigger delay counter of the onchip-trace is used. It
starts by a trigger signal that must be provided by a trace source.
Usually those events are routed through one or more CTls to the
on-chip trace.

FULLTIDRM: trigger mechanism for Tl devices.

NOTSET: the method is derived by other GUIs or hardware.
detection.

FULLSTOP: on-chip trace stack mode by implementation.
FULLCTI: on-chip trace provides a trigger signal that is routed
back to on-chip trace over a CTI.

©1989-2024 Lauterbach

APEX Debugger | 24

... .view

CTl.Config <type>

ETR.CATUBase <address>

FUNNEL.Name <string>

FUNNEL.PROGrammable
[ON | OFF]

Opens a window showing the current configuration of the
component.

For a list of possible components including a short description
see Components and Available Commands.

Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTl is not used by the debugger.

ARMV1: This mode is used for ARM7/9/11 cores which support
synchronous halt, only.

ARMPostlnit: Like ARMV1 but the CTI connection differs from the
ARM recommendation.

OMAPS: This mode is not yet used.

TMS570: Used for a certain CTI connection used on a TMS570
derivative.

CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTl are done as recommended by
ARM. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.

QV1: This mode is not yet used.

ARMV8V1: Channel 0 and 1 of the CTM are used to distribute
start/stop events from and to the CTls. ARMv8 only.

ARMV8V2: Channel 2 and 3 of the CTM are used to distribute
start/stop events from and to the CTls. ARMv8 only.

ARMV8V3: Channel 0, 1 and 2 of the CTM are used to distribute
start/stop events. Implemented on request. ARMv8 only.

Base address of the CoreSight Address Translation Unit (CATU).

It is possible that different funnels have the same address for
their control register block. This assumes they are on different
buses and for different cores. In this case it is needed to give the
funnel different names to differentiate them.

Default is ON. If set to ON the peripheral is controlled by
TRACES2 in order to route ATB trace data through the ATB bus
network. If PROGrammable is configured to value OFF then
TRACES2 will not access the FUNNEL registers and the base
address doesn't need to be configured. This can be useful for
FUNNELSs that don't have registers or when those registers are
read-only. TRACES32 need still be aware of the connected ATB
trace sources and sink in order to know the ATB topology. To
build a complete topology across multiple instances of
PowerView the property Name should be set at all instances to a
chip wide unique identifier.

©1989-2024 Lauterbach

APEX Debugger | 25

Components and Available Commands

See the description of the commands above. Please note that there is a common description for
... .ATBSource,Base, ,RESet,TracelD.

COREDEBUG.Base <address>

COREDEBUG.RESet

Core Debug Register - ARM debug register, e.g. on Cortex-A/R

Some cores do not have a fix location for their debug register used to control the core. In this case it is
essential to specify its location before you can connect by e.g. SYStem.Up.

CTl.Base <address>

CTI.Config [NONE | ARMV1 | ARMPostinit | OMAP3 | TMS570 | CortexV1 | QV1]

CTI.RESet

Cross Trigger Interface (CTI) - ARM CoreSight module

If notified the debugger uses it to synchronously halt (and sometimes also to start) multiple cores.

ETB.ATBSource <source>

ETB.Base <address>

ETB.RESet

ETB.Size <size>

Embedded Trace Buffer (ETB) - ARM CoreSight module

Enables trace to be stored in a dedicated SRAM. The trace data will be read out through the debug port after
the capturing has finished.

ETF.ATBSource <source>

ETF.Base <address>

ETF.RESet

Embedded Trace FIFO (ETF) - ARM CoreSight module
On-chip trace buffer used to lower the trace bandwidth peaks.

ETR.ATBSource <source>

ETR.Base <address>

ETR.CATUBase <address>

ETR.RESet

Embedded Trace Router (ETR) - ARM CoreSight module

Enables trace to be routed over an AXI bus to system memory or to any other AXI slave.

FUNNEL.ATBSource <sourcelist>

FUNNEL.Base <address>

FUNNEL.Name <string>

FUNNEL.PROGrammable [ON | OFF]

FUNNEL.RESet

CoreSight Trace Funnel (CSTF) - ARM CoreSight module

Combines multiple trace sources onto a single trace bus (ATB = AMBA Trace Bus)

REP.ATBSource <sourcelist>

REP.Base <address>

REP.Name <string>

REP.RESet

CoreSight Replicator - ARM CoreSight module

©1989-2024 Lauterbach APEX Debugger | 26

This command group is used to configure ARM Coresight Replicators with programming interface. After the
Replicator(s) have been defined by the base address and optional names the ATB sources REPlicatorA and
REPIlicatorB can be used from other ATB sinks to connect to output A or B to the Replicator.

SYStem.CPU Select the used CPU
Format: SYStem.CPU <cpu>
<cpus: APEX321 | APEX642-APUO | APEX642-APU1 | ...

Selects the processor type. For the APEX642, consisting of 2 APUs, it is possible to select the single APUs
separately. Besides, there are selections available that target-specific EVBs containing an APEX CPU.

©1989-2024 Lauterbach APEX Debugger | 27

SYStem.JtagClock Define JTAG frequency

Format: SYStem.JtagClock [<frequency> | RTCK]

<frequency>: 10000. ... 40000000.
1250000. | 2500000. | 5000000. | 10000000. (on obsolete ICD hardware)

Default frequency: 10 MHz.

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer.

<frequency> The debugger cannot select all frequencies accurately. It chooses the
next possible frequency and displays the real value in the SYStem.state
window.
Besides a decimal number like “100000.” short forms like “10kHz” or
“15MHz” can also be used. The short forms imply a decimal value,

wn

although no “” is used.

ARTCK The JTAG interface of the APEX does not offer ARTCK (Accelerated
Returned TCK). However, in multicore applications with ARM, RTCK can
be used to control the JTAG clock.

CRTCK The JTAG interface of the APEX does not offer CRTCK.
However, in multicore applications with ARM, CRTCK can be used to
control the JTAG clock.

CTCK The JTAG interface of the APEX does not offer CTCK.
However, in multicore applications with ARM, CTCK can be used to
control the JTAG clock.

RTCK The JTAG interface of the APEX does not offer RTCK (Returned TCK).
However, in multicore applications with ARM, RTCK can be used to
control the JTAG clock.

©1989-2024 Lauterbach APEX Debugger | 28

SYStem.LOCK Tristate the JTAG port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the JTAG port will be performed by the debugger. While locked the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the APEX core JTAG state machine remains unchanged while the
system is locked. To ensure correct hand-over, the options SYStem.CONFIG TAPState and
SYStem.CONFIG TCKLevel must be set properly. They define the TAP state and TCK level which is
selected when the debugger switches to tristate mode.

©1989-2024 Lauterbach APEX Debugger | 29

SYStem.MemAccess Select run-time memory access method

Format:

<mode>:

SYStem.MemAccess <mode>

DAP
Enable
StopAndGo
Denied

Default: Denied.

If SYStem.MemAccess is not Denied, it is possible to read from memory, to write to memory and to set
software breakpoints while the CPU is executing the program.

DAP

Enable
CPU (deprecated)

Denied

StopAndGo

A run-time memory access is done via a Memory Access Port (MEM-AP) of
the Debug Access Port (DAP). This is only possible if a DAP is available on
the chip and if the memory bus is connected to it (ARM Cortex, CoreSight).
The debugger uses the AXI MEM-AP specified by SYStem.CONFIG
AXIACCESSPORT if available, the MEM-AP (typically AHB) specified by
SYStem.CONFIG MEMORYACCESSPORT otherwise.

A run-time memory access is made without CPU intervention while the
program is running. This is only possible on the instruction set simulator.

No memory access is possible while the CPU is executing the program.

Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

For more information, see below.

If specific windows that display memory or variables should be updated while the program is running, select
the memory class E: or the format option %E.

Data.dump ED:0x100

Var.View %E first

©1989-2024 Lauterbach

APEX Debugger | 30

SYStem.Mode Establish the communication with the target

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Go
Attach
Up
Down Disables the debugger (default). The state of the CPU remains

unchanged. The JTAG port is tristated.

NoDebug Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

Go Resets the target and enables the debugger and start the program
execution. Program execution can be stopped by the break command or
external trigger.

Attach User program remains running (no reset) and the debug mode is
activated. After this command the user program can be stopped with the
break command or if any break condition occurs.

StandBy Not available for APEX.
Up Resets the target, sets the CPU to debug mode and stops the CPU. After

the execution of this command the CPU is stopped and all register are
set to the default level.

SYStem.Option.AHBHPROT Select AHB-AP HPROT bits
Format: SYStem.Option.AHBHPROT <value>
Default: 0

This option selects the value used for the HPROT bits in the Control Status Word (CSW) of an AHB Access
Port of a DAP, when using the AHB: memory class.

©1989-2024 Lauterbach APEX Debugger | 31

SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP

Format: SYStem.Option.AXIACEEnable [ON | OFF]

Default: OFF

Enable ACE transactions on the DAP AXI-AP, including barriers.

SYStem.Option.AXICACHEFLAGS Select AXI-AP CACHE bits
Format: SYStem.Option.AXICACHEFLAGS <value>
Default: 0

This option selects the value used for the CACHE bits in the Control Status Word (CSW) of an AXI Access
Port of a DAP, when using the AXI: memory class.

SYStem.Option.AXIHPROT Select AXI-AP HPROT bits
Format: SYStem.Option.AXIHPROT <value>
Default: 0

This option selects the value used for the HPROT bits in the Control Status Word (CSW) of an AXI Access
Port of a DAP, when using the AXI: memory class.

©1989-2024 Lauterbach APEX Debugger | 32

SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP

Format: SYStem.Option.DAPDBGPWRUPREQ [ON | AlwaysON | OFF]

Default: ON.

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start because debug power is mandatory for debugger operation.

ON Debug power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The debug power is not released at the end of the debug session, and
the control bit is set to 0.

OFF Only for test purposes: Debug power is not requested and not checked
by the debugger. The control bit is set to 0.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAPDBGPWRUPREQ is set to

AlwaysON.
SYStem.Option.DAPNOIRCHECK No DAP instruction register check
Format: SYStem.Option.DAPNOIRCHECK [ON | OFF]
Default: OFF.

Bug fix for derivatives which do not return the correct pattern on a DAP (Arm CoreSight Debug Access Port)
instruction register (IR) scan. When activated, the returned pattern will not be checked by the debugger.

©1989-2024 Lauterbach APEX Debugger | 33

SYStem.Option.DAPREMAP Rearrange DAP memory map

Format: SYStem.Option.DAPREMAP {<address_range> <address>}

The Debug Access Port (DAP) can be used for memory access during runtime. If the mapping on the DAP is
different than the processor view, then this re-mapping command can be used

NOTE: Up to 16 <address_range>/<address> pairs are possible. Each pair has to
contain an address range followed by a single address.

SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
Format: SYStem.Option.DAPSYSPWRUPREQ [AlwaysON | ON | OFF]
Default: ON.

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
during and after the debug session

AlwaysON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is not released at the end of the debug session, and the
control bit remains at 1.

ON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.

OFF System power is not requested by the debugger on a debug session start,
and the control bit is set to 0.

©1989-2024 Lauterbach APEX Debugger | 34

SYStem.Option.DEBUGPORTOptions Options for debug port handling

Format: SYStem.Option.DEBUGPORTOptions <option>

<option>: SWITCHTOSWD.[TryAll | None | JtagToSwd | LuminaryJtagToSwd | Dor-
mantToSwd | JtagToDormantToSwd]
SWDTRSTKEEP.[DEFault | LOW | HIGH]

Default: SWITCHTOSWD.TryAll, SWDTRSTKEEP.DEFault.

See Arm CoreSight manuals to understand the used terms and abbreviations and what is going on here.

SWITCHTOSWD tells the debugger what to do in order to switch the debug port to serial wire mode:

TryAll

Try all switching methods in the order they are listed below. This is
the default. Normally it does not hurt to try improper switching
sequences. Therefore this succeeds in most cases.

None

There is no switching sequence required. The SW-DP is ready
after power-up. The debug port of this device can only be used as
SW-DP.

JtagToSwd

Switching procedure as it is required on SWJ-DP without a
dormant state. The device is in JTAG mode after power-up.

LuminaryJtagToSwd

Switching procedure as it is required on devices from
LuminaryMicro. The device is in JTAG mode after power-up.

DormantToSwd Switching procedure which is required if the device starts up in
dormant state. The device has a dormant state but does not
support JTAG.

JtagToDormantToSwd Switching procedure as it is required on SWJ-DP with a dormant

state. The device is in JTAG mode after power-up.

SWDTRSTKEERP tells the debugger what to do with the nTRST signal on the debug connector during serial
wire operation. This signal is not required for the serial wire mode but might have effect on some target
boards, so that it needs to have a certain signal level.

DEFault Use nTRST the same way as in JTAG mode which is typically a low-pulse
on debugger start-up followed by keeping it high.

LOwW Keep nTRST low during serial wire operation.

HIGH Keep nTRST high during serial wire operation

©1989-2024 Lauterbach

APEX Debugger | 35

SYStem.Option.EnReset Allow the debugger to drive nRESET/nSRST

Format: SYStem.Option.EnReset [ON | OFF]

Default: ON.

If this option is disabled in case of a DAP configuration alongside an ARM processor, the debugger will never
drive the nSRST line on the JTAG connector. This is necessary if nNSRST is no open collector or tristate
signal.

From the view of the ARM core it is not necessary that NRESET / nSRST becomes active at the start of a
debug session (SYStem.Up), but there may be other logic on the target which requires a reset.

SYStem.Option.IgnoreAttributes Obey ELF attributes for breakpoints
Format: SYStem.Option.IgnoreAttributes [ON | OFF]
Default: ON.

TRACE32 obeys per default ELF file attributes for onchip and software breakpoints. THis behavior can be
changed by setting this option to OFF.

SYStem.Option.IMASKASM Disable interrupts while single stepping
[SYStem.state window > IMASKASM]|
Format: SYStem.Option.IMASKASM [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After a single step, the interrupt mask bits are
restored to the value before the step.

©1989-2024 Lauterbach APEX Debugger | 36

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

[SYStem.state window > IMASKHLL]

Format: SYStem.Option.IMASKHLL [ON | OFF]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After a single step, the interrupt mask bits are restored
to the value before the step.

©1989-2024 Lauterbach APEX Debugger | 37

SYStem.Option.MEMoryMODEL Select view of memory classes

Format: SYStem.Option.MEMoryMODEL [SMEM | SMEM+DMEM | IMEM+DMEM]

Default: SMEM

With this option it is possible to choose at which address the memory content is shown in a Data.dump
window. The alternatives are:

SMEM Data and program memory are displayed in the same address space.
Program memory starts after data memory.

SMEM+DMEM The P: memory class shows SMEM addresses without an offset. The D:
memory class shows the memory relatively to the DM_START register.

IMEM+DMEM Program and data memory are displayed in different address spaces,
both starting at 0.

©1989-2024 Lauterbach APEX Debugger | 38

SYStem.Option.MEMORYHPROT Select memory-AP HPROT bits

Format: SYStem.Option.MEMORYHPROT <value>

Default: 0

This option selects the value used for the HPROT bits in the Control Status Word (CSW) of an Memory
Access Port of a DAP, when using the E: memory class.

SYStem.Option.ResBreak Halt the core after reset
Format: SYStem.Option.ResBreak [ON | OFF]
Default: ON.

This option has to be disabled if the nTRST line is connected to the nRESET / nSRST line on the target. In
this case the CPU executes some cycles while the SYStem.Up command is executed. The reason for this
behavior is the fact that it is necessary to halt the core (enter debug mode) by a JTAG sequence. This
sequence is only possible while nTRST is inactive. In the following figure the marked time between the
deassertion of reset and the entry into debug mode is the time of this JTAG sequence plus a time delay
selectable by SYStem.Option.WaitReset (default = 3 msec).

nSRST |
nTRST |

CPU State | reset running debug

If "TRST is available and not connected to nRESET/nSRST it is possible to force the CPU directly after
reset (without cycles) into debug mode. This is also possible by pulling nTRST fixed to VCC (inactive), but
then there is the problem that it is normally not ensured that the JTAG port is reset in normal operation. If the
ResBreak option is enabled the debugger first deasserts nTRST, then it executes a JTAG sequence to set
the DBGRQ bit in the ICE breaker control register and then it deasserts nRESET/nSRST.

nSRST
nTRST |

CPU State | reset [debug

©1989-2024 Lauterbach APEX Debugger | 39

SYStem.Option.TRST Allow debugger to drive TRST

Format: SYStem.Option.TRST [ON | OFF]

Default: ON.

If this option is disabled the nTRST line is never asserted by the debugger (permanent high). Instead five
consecutive TCK pulses with TMS high are asserted to reset the TAP controller which have the same effect.

SYStem.Option.WaitReset = Wait with JTAG activities after deasserting reset

Format: SYStem.Option.WaitReset [ON | OFF | <time>]

Default: OFF.

If SYStem.Option.ResBreak is disabled the debugger waits after the deassertion of NRESET/nSRST and

nTRST before the first JTAG activity starts (see picture below). During this time the ARM core may execute

some code, e.g. to enable the JTAG port. If SYStem.Option.ResBreak is enabled the debugger waits after
the deassertion of NTRST before the first JTAG activity starts while nSRST remains active.

ON 1 sec delay

OFF 3 msec delay

<time> Selectable time delay, min 50 usec, max 30 sec, use 'us’, ‘'ms, ’s’ as unit.
nRESET/nSRST |

NTRST L >1 5 (ON) g

CPU State | reset running debug

©1989-2024 Lauterbach APEX Debugger | 40

Assert NnRESET/nSRST on JTAG connector

[SYStem.state window > RESetOut]

SYStem.RESetOut

Format: SYStem.RESetOut

If possible (nRESET/nSRST is open collector), this command asserts the nRESET/nSRST line on the JTAG
connector. While the CPU is in debug mode, this function will be ignored. Use the SYStem.Up command if

you want to reset the CPU in debug mode.

SYStem.state Display SYStem.state window

Format: SYStem.state

Displays the SYStem.state window for system settings that configure debugger and target behavior.

©1989-2024 Lauterbach APEX Debugger | 41

APEX Specific TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

Format: TrOnchip.VarCONVert [ON | OFF]

Not used by the APEX debugger.

©1989-2024 Lauterbach APEX Debugger | 42

Target Adaption

Interface Standards JTAG, Serial Wire Debug, cJTAG

The Debug Cable supports JTAG (IEEE 1149.1), Serial Wire Debug (CoreSight ARM), and Compact JTAG
(IEEE 1149.7, cJTAG) interface standards. The different modes are supported by the same connector. Only
some signals get a different function. The mode can be selected by debugger commands. This assumes of
course that your target supports this interface standard.

Serial Wire Debug is activated/deactivated by SYStem.CONFIG DEBUGPORTTYPE [SWD | JTAG]. In a
multidrop configuration you need to specify the address of your debug client by SYStem.CONFIG
SWDPTARGETSEL.

cJTAG is activated/deactivated by SYStem.CONFIG DEBUGPORTTYPE [CJTAG | JTAG]. Your system
might need bug fixes which can be activated by SYStem.CONFIG CJTAGFLAGS.

Serial Wire Debug (SWD) and Compact JTAG (cJTAG) require a Debug Cable version V4 or newer
(delivered since 2008) and one of the newer base modules (Power Debug Pro, Power Debug Interface USB
2.0/USB 3.0, Power Debug Ethernet, PowerTrace or Power Debug II).

Pinout

Adaption for ARM Debug Cable: See https://www.lauterbach.com/adarmdbg.html.

Signal Pin Pin Signal
VREF-DEBUG 1 2 VSUPPLY (not used)

TRST- 3 4 GND
TDI 5 6 GND
TMSITMSCISWDIO 7 8 GND
TCKITCKCISWCLK 9 10 GND
RTCK 11 12 GND
TDOI-ISWO 13 14 GND
RESET- 15 16 GND
DBGRQ 17 18 GND
DBGACK 19 20 GND

For details on logical functionality, physical connector, alternative connectors, electrical characteristics,
timing behavior and printing circuit design hints, refer to “ARM JTAG Interface Specifications”

(app_arm_jtag.pdf).

©1989-2024 Lauterbach APEX Debugger | 43

https://www.lauterbach.com/adarmdbg.html

	APEX Debugger
	Introduction
	Brief Overview of Documents for New Users

	Warning
	Quick Start of the JTAG Debugger
	Troubleshooting
	SYStem.Up Errors

	FAQ
	APEX Specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints for Instructions
	Example for Standard Breakpoints

	Runtime Measurement
	Memory Classes
	Bus Width Mapping

	CPU specific SYStem Commands
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior
	<parameters> configuring a CoreSight Debug Access Port “DAP”
	<parameters> describing debug and trace “Components”

	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define JTAG frequency
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option.AHBHPROT Select AHB-AP HPROT bits
	SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP
	SYStem.Option.AXICACHEFLAGS Select AXI-AP CACHE bits
	SYStem.Option.AXIHPROT Select AXI-AP HPROT bits
	SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP
	SYStem.Option.DAPNOIRCHECK No DAP instruction register check
	SYStem.Option.DAPREMAP Rearrange DAP memory map
	SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
	SYStem.Option.DEBUGPORTOptions Options for debug port handling
	SYStem.Option.EnReset Allow the debugger to drive nRESET/nSRST
	SYStem.Option.IgnoreAttributes Obey ELF attributes for breakpoints
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MEMoryMODEL Select view of memory classes
	SYStem.Option.MEMORYHPROT Select memory-AP HPROT bits
	SYStem.Option.ResBreak Halt the core after reset
	SYStem.Option.TRST Allow debugger to drive TRST
	SYStem.Option.WaitReset Wait with JTAG activities after deasserting reset
	SYStem.RESetOut Assert nRESET/nSRST on JTAG connector
	SYStem.state Display SYStem.state window

	APEX Specific TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

	Target Adaption
	Interface Standards JTAG, Serial Wire Debug, cJTAG
	Pinout

