LAUTERBACH A

Andes Debugger

Andes Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
Y Lo (= r—
Y Lo L= T 1= o ¥ T = 1

L 1= (o 4

Y e Yo 11T £ o) o T 5
Brief Overview of Documents for New Users 5
Demo and Start-up Scripts 5
L= T 11 ' 6
Quick Start of the JTAG DebUugger ... s ssasss e 7
TroubleShOOtING ...cccccciiiiir e 9
Communication Between Debugger and Processor Can Not Be Established 9

O 10
AndesCore Specific Implementations ... cccccccsccr - 11
Registers 11
Breakpoints 11
Software Breakpoints 11
On-chip Breakpoints for Instructions 11
On-chip Breakpoints for Data 12
Example for Standard Breakpoints 13
Runtime Measurement 14
Standby Mode 15
Memory Classes 16
Interruption Handling in Hardware 17
Interruption Handling for Interruption Stack Level Transition 0/1 and 1/2 17
Interruption handling for interruption stack level transition 2/3 19
Maximum Interruption Stack Level Option 19
Software Lowering Interruption Stack Level 20
AndesCore specific SYStem Commandsccccciiimmiirsmmmnssinssssssss s sssassss 24
SYStem.CONFIG Configure debugger according to target topology 24
SYStem.CPU Select the used CPU 27

©1989-2024 Lauterbach Andes Debugger | 2

SYStem.JtagClock Define JTAG frequency 28

SYStem.LOCK Tristate the JTAG port 29
SYStem.MemAccess Select run-time memory access mthod 30
SYStem.Mode Establish the communication with the target 30
SYStem.Option.ArchVersion Configure version of architecture 32
SYStem.Option.ArchMcu Configure MCU architecture 32
SYStem.Option.ArchRdreg Configure reduced register set 33
SYStem.Option.DIMBR Define base address of debug instruction memory 33
SYStem.Option.IMASKASM Disable interrupts while single stepping 33
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 34
SYStem.Option. MMUSPACES Separate address spaces by space IDs 34
SYStem.Option.SCRATCH Define address for dummy reads 35
SYStem.Option.TURBO Speed up memory access 35
SYStem.state Display SYStem window 36
AndesCore Specific TrOnchip COmMmMandsccccccemmniiimmmrmninisssr s ————- 37
TrOnchip.ContextID Enable context ID comparison 37
TrOnchip.RESet Reset on-chip trigger settings 37
TrOnchip.StepVector Halt on exception entry when single-stepping 37
TrOnchip.state Display on-chip trigger window 38
CPU specific MMU COMMANAS cciccemmimiismmnrnisssmssmnssssssssnssssssss s sssssssssssssssssssssnssssssas 39
MMU.DUMP Page wise display of MMU translation table 39
MMU.List Compact display of MMU translation table 41
MMU.SCAN Load MMU table from CPU 43
JTAG CONNECLION ... m s s s me e e s e e e e e s ammmmmnnn e s s e e s snnnaan 45

©1989-2024 Lauterbach Andes Debugger | 3

Andes Debugger

Version 06-Jun-2024

History

20-Jul-22 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second
parameter.

©1989-2024 Lauterbach Andes Debugger | 4

Introduction

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known Andes based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/andes/ subfolder of the system directory of TRACE32.

©1989-2024 Lauterbach Andes Debugger | 5

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

Andes Debugger |

6

Quick Start of the JTAG Debugger

Starting up the debugger is done as follows:

1.

Select the device prompt for the ICD Debugger and reset the system.

183 3

RESet

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: : to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

Specify the CPU specific settings.

SYStem.CPU <cpu_type>

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

Inform the debugger about read-only address ranges (ROM, FLASH).

MAP.BOnchip 0x00000000++0x07ffffff

The B(reak)Onchip information is necessary to decide where on-chip breakpoints must be used. On-
chip breakpoints are necessary to set program breakpoints to FLASH/ROM.

Enter debug mode.

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

©1989-2024 Lauterbach Andes Debugger | 7

Load the program.

Data.LOAD.ELF sieve.elf

’

7

.ELF specifies the format
sieve.elf is the file name

The format of the Data.LOAD command depends on the file format generated by the compiler.

A detailed description of the Data.LOAD command and all available options is given in the “General

Reference Guide”.

WinCLEAR

SYStem.CPU N1213S
MAP.BOnchip 0++0x07ffffff
SYStem.Up

Data.LOAD.ELF sieve.elf
Register.Set pc main
Register.Set r31 0x10£00000
WinPOS 0. O.

List.Mix

Register.view /SpotLight

Frame.view /Locals /Caller

Var.Watch flags ast

Break.Set 0x10001000 /Program

Break.Set 0x40000 /Program

7

A typical start sequence is shown below. This sequence can be written to a PRACTICE script file (*.cmm,
ASCII format) and executed with the command DO <file>.

Clear all windows

Select the core type

Specify where FLASH/ROM is

Reset the target and enter debug mode
Load the application

Set the PC to function main

Set the stack pointer to address
0x10£00000

Position of next window
Open source code window %)

Open register window *)

Open the stack frame with
local variables *)

Open watch window for wvariables *)

Set software breakpoint to address
10001000 (address outside of BOnchip
range)

Set on-chip breakpoint to address
40000 (address within BOnchip range)

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

©1989-2024 Lauterbach Andes Debugger | 8

Troubleshooting

Communication Between Debugger and Processor Can Not Be
Established

Typically the SYStem.Up command is the first command of a debug session where communication with the
target is required. If you receive error messages like “debug port fail” or “debug port time out” while executing
this command, this may have the reasons below. “target processor in reset” is just a follow-up error
message. Open the AREA.view window to see all error messages.

The target has no power or the debug cable is not connected to the target. This results in the
error message “target power fail”.

You did not select the correct core type SYStem.CPU <type>.

There is an issue with the JTAG interface. See the manuals or schematic of your target to check
the physical and electrical interface. Maybe there is the need to set jumpers on the target to
connect the correct signals to the JTAG connector.

There is the need to enable (jumper) the debug features on the target. It will e.g. not work if
nTRST signal is directly connected to ground on target side.

The target is in an unrecoverable state. Re-power your target and try again.

The target can not communicate with the debugger while in reset. Try SYStem.Mode Attach
followed by “Break” instead of SYStem.Up.

The default JTAG clock speed is too fast, especially if you emulate your core or if you use an
FPGA-based target. In this case try SYStem.JtagClock 50kHz and optimize the speed when you
got it working.

The core is used in a multicore system and the appropriate settings for the debugger are missing.
See for example SYStem.CONFIG IRPRE. This is the case if you get a value IR_Width > 4 when
you enter “DIAG 16001” and “AREA”. If you get IR_Width = 4, then you have just your core and
you do not need to set these options. If the value can not be detected, then you might have a
JTAG interface issue.

The core has no clock.
The core is kept in reset.
There is a watchdog which needs to be deactivated.

Your target needs special debugger settings. Check the directory \demo\andes if there is an
suitable script file *.cmm for your target.

©1989-2024 Lauterbach Andes Debugger | 9

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach Andes Debugger | 10

https://support.lauterbach.com/kb

AndesCore Specific Inplementations

Registers

In addition to the normal register, TRACE32 implements the following pseudo-registers corresponding to the
fields of the PSW: CPL, IFCOM, DME, IME, DT, IT, BE, POM, INTL, GIE.

These pseudo-registers can be used to easily inspect or modify the corresponding fields in the PSW via the
Register.Set command.

Register.Set GIE 1 ; set the Global Interrupt Enable flag in PSW

Breakpoints

Software Breakpoints

If a software breakpoint is used, the original code at the breakpoint location is patched by a breakpoint code.

There is no restriction in the number of software breakpoints.

On-chip Breakpoints for Instructions

If on-chip breakpoints are used, the resources to set the breakpoints are provided by the CPU. On-chip
breakpoints are usually needed for instructions in FLASH/ROM.

With the command MAP.BOnchip <range> it is possible to tell the debugger where you have ROM / FLASH
on the target. If a breakpoint is set into a location mapped as BOnchip one on-chip breakpoint will be used.

©1989-2024 Lauterbach Andes Debugger | 11

On-chip Breakpoints for Data

To stop the CPU after a read or write access to a memory location on-chip breakpoints are required.

Overview:

. On-chip breakpoints: Total amount of available on-chip breakpoints.

J Instruction breakpoints: Number of on-chip breakpoints that can be used to set program
breakpoints into ROM/FLASH/EPROM.

. Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

. Data breakpoint: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an
address

On-chip Instruction Read/Write Data Breakpoint

Breakpoints

Breakpoints

Breakpoints

upto 8

upto 8

upto 8
range as bitmask

up to 8

©1989-2024 Lauterbach

Andes Debugger

12

Example for Standard Breakpoints

Assume you have a target with
° FLASH from 0x0--0x07ffffff

. SDRAM from 0x10000000--0x4fffffff
The command to configure TRACES32 correctly for this configuration is:
Map.BOnchip 0x0--0x07ffffff

The following standard breakpoint combinations are possible.

©1989-2024 Lauterbach Andes Debugger | 13

1. Unlimited breakpoints in RAM and one breakpoint in ROM/FLASH

Break.Set 0x10000000 /Program
Break.Set 0x10001000 /Program
Break.Set addr /Program

Break.Set 0x100 /Program

Software breakpoint
Software breakpoint
Software breakpoint

On-chip breakpoint

2. Unlimited breakpoints in RAM and one breakpoint on a read or write access

Break.Set 0x10000000 /Program
Break.Set 0x10001000 /Program
Break.Set addr /Program

Break.Set 0x10008000 /Write

3. Two breakpoints in ROM/FLASH

Break.Set 0x100 /Program

Break.Set 0x200 /Program

4. Two breakpoints on a read or write access

Break.Set 0x10008000 /Write

Break.Set 0x10008010 /Read

Software breakpoint
Software breakpoint
Software breakpoint

On-chip breakpoint

On-chip breakpoint

On-chip breakpoint

On-chip breakpoint

On-chip breakpoint

5. One breakpoint in ROM/FLASH and one breakpoint on a read or write access
Break.Set 0x100 /Program ; On-chip breakpoint 1
Break.Set 0x10008010 /Read ; On-chip breakpoint 2

Runtime Measurement

The command RunTime allows run time measurement based on polling the CPU run status by software.
Therefore the result will be about few milliseconds higher than the real value.

If the signal DBGACK on the JTAG connector is available, the measurement will automatically be based on
this hardware signal which delivers very exact results.

©1989-2024 Lauterbach Andes Debugger | 14

Standby Mode

If the core is in standby mode due to a STANDBY command, the debugger will show 'running’. Manual
‘break’ is only possible in no wake grant.

©1989-2024 Lauterbach Andes Debugger | 15

Memory Classes

Memory classes are used to specify which memory to access (e.g. data memory versus instruction
memory) and how the access is performed (e.g. via the CPU, via DMA, ...).

The following memory classes are available for AndesCore.

Memory Class Description

P: Program Memory

D: Data Memory

IC: Program Memory seen through Instruction Cache
DC: Data Memory seen through Data Cache

NC: Memory seen with cache switched off

SR: Access to System Registers.

The address is formed from nibbles containing the register’'s major, minor and
extension values.

Example: the program status word PSW (major=1, minor = 0, extension = 0)
is accessed through the address SR:0x100.

Note: The Andes opcodes mtsr, mfsr use a slightly different address.

VM: Virtual Memory (memory on the debug system)

E: Run-time memory access
(see SYStem.CpuAccess and SYStem.MemAccess)

ILM: Instruction local memory, using DMA-access

DLM: Data local memory, using DMA-access

BUS: main bus, using DMA-access

EILM: like ILM:, but performs the access even when core is executing
EDLM: like DLM:, but performs the access even when core is executing
EBUS: like BUS:, but performs the access even when core is executing

©1989-2024 Lauterbach Andes Debugger | 16

Interruption Handling in Hardware

In Andes architecture, interruption is handled in hardware based on the “interruption stack level transition”
(ISLT). Currently, four interruption stack levels are defined in the architecture, 0-3. And interruption stack
level 0 means no interruption. Thus, hardware behaviors for handling an interruption are defined for three
interruption stack level transitions, 0/1, 1/2, and 2/3.

Interruption Handling for Interruption Stack Level Transition 0/1 and 1/2

For ISLT 0/1 and 1/2, key interruption states will be saved and restore from and to hardware interruption
stack registers. These saving and restoring states are needed since when transition into higher levels of
interruption (0 ? 1, and 1 ? 2), the following states will be updated before fetching and executing the first
instruction in the interruption handler:

PSW
PSW

Interruption Stack Level <- Interruption Stack Level ++

Global Interrupt enable <- 0
. PSW
PSW

PSW

Privilege Mode <- 1 (Superuser mode)
IT/DT <- 0

BE <- default endian (MMU_CFG.DE)
PSW
PSW
PSW

DRBE <- MMU_CFG.DRDE

IME <- (Instruction Machine Error) ? 1 : IME
DME <- (Data Machine Error) ? 1 : DME
PSW
PSW

DEX <- (Debug Exception) ? 1 : DEX

(
(
(
(
(
(
(
(
(
(HSS <- (PSW.HSS) ? INT_MASK.DSSIM : 0

~ =~ ~ ~ ~ ~ ~

J Interruption Type
J Exception VA (meaningful for only certain exceptions)

. Program Counter <- Interruption vectored entry point

So before updating these values, the old content of these registers will be saved to the lower level
interruption stack registers.

Saving/restoring operations for ISLT 0/1

When entering into interruption stack level 1 from level O, the saving of registers will be performed as follows:

. IPSW <- PSW
. IPC <- PC

©1989-2024 Lauterbach Andes Debugger |

17

When returning from interruption stack level 1 to level 0, the restoring of registers will be performed as
follows:

. IPSW -> PSW
. IPC -> PC

Saving/restoring operations for ISLT 1/2

When entering into interruption stack level 2 from level 1, the saving of registers will be performed as follows:
. P_IPSW <- IPSW <- PSW

. P_IPC <- IPC <- PC

. P_ITYPE <- ITYPE

. P_EVA <- EVA

. P_P0O <- PO

. P_P1<-P1

When returning from interruption stack level 2 to level 1, the restoring of registers will be performed as
follows:

. P_IPSW -> IPSW -> PSW

. P_IPC -> IPC -> PC

. P_ITYPE -> ITYPE

. P_EVA -> EVA

. P_P0O -> PO

. P_P1->P1

This register stack design allows nested debug/error exception handling in the code area where software
has not prepared itself to handle nested interruption event.

©1989-2024 Lauterbach Andes Debugger | 18

Interruption handling for interruption stack level transition 2/3

When an Andes core transition from interruption stack level 2 to interruption stack level 3, since the
hardware register stack has been used up for level 2, only very limited interruption states will be updated.
The assumption is that interruption stack level 3 will be entered only when severe error condition happens
during debugging or handling of a nested kernel exception. In these cases, the following states will be
updated to permit minimum handling:

PSW) Interruption Stack Level <- 3 (i.e. maximum stack level)

(PSW)
(PSW) IME <- (Instruction Machine Error) ? 1 : IME
J (PSW) DME <- (Data Machine Error) ? 1 : DME
(PSW) DEX <- (EDM_CFG.VER < 0x0030 && Debug Exception) ? 1 : DEX
. Overflow_IPC <- Program Counter

. Program Counter <- Interruption vectored entry point

And, the following hardware behaviors still change based on the fact that the interruption stack level is 3
without updating the corresponding control states.

J Disable interrupt

. Turn off instruction/data address translation

J Use “default endian (MMU_CFG.DE)” as the data access endian

. Use “MMU_CFG.DRDE” as the device register access endian if MMU_CTL.DREE is asserted.
J For EDM_CFG.VER >= 0x0030, disable Hardware Single Stepping

When an Andes core returns from interruption stack level 3 to interruption stack level 2 executing “return
from interruption” instructions, the following states will be updated:

J Program Counter <- Overflow_IPC

J Interruption Stack Level <- 2 (i.e. maximum stack level minus 1)

Maximum Interruption Stack Level Option

For implementations to save hardware cost, Andes architecture provides a configuration option to allow an
implementation to choose the maximum interruption stack level to be either 3 or 2. The INTLC field in the
MISC_CFG system register records this choice.

The previous two sections describes the operations performed at the interruption stack level transition
between 0/1, 1/2, and 2/3 when the INTLC field is set to zero (i.e. maximum interruption stack level is 3).

When the INTLC field is set to 1 (i.e. maximum interruption stack level is 2), all the P_* interruption stack
system registers will be removed from an implementation. And the operations performed at the interruption
stack level transition between 1/2 will be changed to operations equivalent to those ones performed at the
interruption stack level transition between 2/3 when the maximum interruption stack level is 3.

©1989-2024 Lauterbach Andes Debugger | 19

Software Lowering Interruption Stack Level

Since the level depth of the hardware interruption stack is limited, for software to handle nested interruptions,
lowering interruption stack level is needed to allow unlimited number of nested interruptions to happen. The
operations of lowering interruption stack level include saving lower-level interruption stack registers, reducing
the interruption stack level, and later after the nested interruptions complete, restoring lower-level
interruption stack registers, increasing the interruption stack level. These procedures can be shown in the

following figures.

Figure 1. Operations of lowering interruption stack level from 2 to 1

ITL 0
ITL 1
IITL 2
Save level-0(p *) registers
Reduce INTL to 1
Enahle intermpt
ITL 2
IITL 1
Dizable mterrupt
Eestore level -0 (p * registers
Increase INTL to 2
INTL 1
ITL 0

-

©1989-2024 Lauterbach Andes Debugger | 20

Figure 2. Operations of lowering interruption stack level from 1 to 0

TR O

IITL 1

Zave level) (1%) registers
Reduce INTL to 0
Enahle interrupt

IIL 1

Dizable interrupt

Eestorelevel -0 (1*) registers
Increase INTL to 1

TR O

-

Lowering interruption stack level from 2 to 1

As Figure 1 shown, when in interruption stack level 2, the interruption stack contains level-0 (p_*), level-1 (i¥),
and level-2 information. Lowering interruption stack level from 2 to 1 means that changing the level-1 (i*) to
level-0, changing the level-2 to level-1, and the level-0 (p_*) states are no longer valid/protected. So the level-
0 (p_*) information needs to be saved before the lowering happens. The system registers needed to be
saved in this case include P_IPSW, P_IPC, P_ITYPE, P_EVA, P_PO, and P_P1.

Lowering interruption stack level from 1 to 0

As Figure 2 shown, when in interruption stack level 1, the interruption stack contains level-0 (i*), and level-1
information. Lowering interruption stack level from 1 to 0 means that changing the level-1 to level-0, and the
level-0 (i*) states are no longer valid/protected. So the level-0 (i*) information needs to be saved before the
lowering happens. The system registers needed to be saved in this case include IPSW, IPC, ITYPE, EVA,
PO, and P1.

Lowering interruption stack level from 3 to 2

Interruption stack level 3 is an overflow interruption level. When in interruption stack level 3, the interruption
stack contains level-0 (p_%), level-1 (i*), and level-2 information plus additional level-2 O_IPC state. In this
level, the level-2 interruption type and exception VA is not recorded in any register.

If there is a need to lower the interruption stack level from 3 to 2, more steps are required to re-arrange the
interruption stack states to the correct stack level hierarchy. Basically, software is required to save the level-0
(p_") information, and then emulates a stack push operation by (1) moving IPSW, IPC, ITYPE, EVA, PO, and

©1989-2024 Lauterbach Andes Debugger | 21

P1 to their corresponding P_* registers, then (2) moving PSW to IPSW, O_IPC to IPC, and (3) updating
PSW to the intended operating values along with the stack level change. Once the update of PSW
completes, the CPU will be operating under the interruption stack level 2.

©1989-2024 Lauterbach Andes Debugger | 22

Example codes for ISLT handling:

The following example shows the handling routine for ISLT level 3.

Exception entry:
; use Sp0 and Spl to switch stack pointer
pushm Sr28, Sr30
pushm Sr0, Sr25
mfusr Sr6, sdl.lo
mfusr Srl4, sdl.hi
mfusr Srl3, $d0.1lo
mfusr Srl2, $d0.hi

mfsr Srll, SP_P1

mfsr Srl10, SP_PO

mfsr Sr9, SP_IPC

mfsr Sr8, SP_IPSW

mfsr Srl8, SIPC

mfsr Srl7, SIPSW

mfsr Srl6, SPSW

push Sr6

pushm Sr8, srl4d

andi Srl9, Srl6, #PSW_mskINTL

slti Sr20, $rl9, #4 ; check if the INTL is 2
bnez Sr20, 1f

addi $r2l, Srlé6, #-2 ; decrease one level
mtsr Sr2l, SPSW

isb

Exception exit:

popm Srl6, Srl8

mtsr Srl6, SPSW ; use the original one
popm Sr8, Sril4

pop $r6

mtsr Srl7, SIPSW

mtsr Srl8, SIPC

mtsr Sr8, S$P_IPSW

mtsr Sr9, $P_IPC

mtsr $rl0, $P_PO

mtsr Srll, SP_P1

mtusr Srl2, $dO0.hi
mtusr Srl3, $d0.lo
mtusr Srl4d, sdl.hi
mtusr Sr6, $dl.lo

popm Sr0, S$r25

popm Sr28, Sr30

; use Sp0, Spl to change back stack pointer
iret

©1989-2024 Lauterbach Andes Debugger | 23

AndesCore specific SYStem Commands

SYStem.CONFIG Configure debugger according to target topology
Format: SYStem.CONFIG <parameter>
<parameters: state

DRPRE <bits>
DRPOST <bits>
IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel </evel>
TriState [ON | OFF]
Slave [ON | OFF]

These commands describe the physical configuration at the JTAG port of a multi core system.

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Andes +
DSP). The information is required before the debugger can be activated e.g. by a SYStem.Up.

See Daisy-Chain Example.

For some CPU selections (SYStem.CPU) the above setting might be set automatically, since the required
system configuration of these CPUs are well-known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

state Show selected configuration.

DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

©1989-2024 Lauterbach Andes Debugger | 24

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

See Daisy-Chain Example.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. This
option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active. Only one debugger - the
"master” - is allowed to control the signals nTRST and nSRST.

©1989-2024 Lauterbach Andes Debugger | 25

Daisy-Chain Example

IRPOST IRPRE
I 1 I 1
TAP1 TAP2 TAP3 TAP4
. R | 4 IR | 3 IR | 5 Core R | 6 .
DR/ 1 DR/ 1 DR | 1 DR | 1
L I | I
DRPOST DRPRE

IR: Instruction register length DR: Data register length Core: The core you want to debug

Daisy chains can be configured using a PRACTICE script (*.cmm) or the SYStem.CONFIG.state window.

&2 B::SYStem.CONFIG state /Jtag =n| Wl <
DebugPort Jtag MultiTap DAP | COmponents
IRPOST IRPRE
12, 6.
TDI kk — DRPOST M| core | M- DRPRE ke TDO
3. P] [S 1.

Example: This script explains how to obtain the individual IR and DR values for the above daisy chain.

SYStem.CONFIG.state /Jtag ; optional: open the window

SYStem.CONFIG IRPRE 6. ; IRPRE: There is only one TAP.
; So type just the IR bits of TAP4, i.e. 6.

SYStem.CONFIG IRPOST 12. ; IRPOST: Add up the IR bits of TAPl, TAP2
; and TAP3, i.e. 4. + 3. + 5. = 12.
SYStem.CONFIG DRPRE 1. ; DRPRE: There is only one TAP which is

; 1in BYPASS mode.
; So type just the DR of TAP4, i.e. 1.

SYStem.CONFIG DRPOST 3. ; DRPOST: Add up one DR bit per TAP which
; 1s in BYPASS mode, i.e. 1. + 1. + 1. = 3.
; This completes the configuration.

NOTE: In many cases, the number of TAPs equals the number of cores. But in many
other cases, additional TAPs have to be taken into account; for example, the
TAP of an FPGA or the TAP for boundary scan.

©1989-2024 Lauterbach Andes Debugger | 26

TapStates

0 Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR

© 00 N o 0o A~ W N =

—_ - e e o
o A WO N =+ O

Test-Logic-Reset

SYStem.CPU Select the used CPU
Format: SYStem.CPU <cpu>
<cpu>: N1213S | N1213HBO

Selects the processor type. If your chip is not listed, select the type of the integrated AndesCore.

Default selection: N1213S

©1989-2024 Lauterbach Andes Debugger | 27

SYStem.JtagClock Define JTAG frequency
Format: SYStem.JtagClock [<frequency> | RTCK | ARTCK <frequency> |
CTCK <frequency> | CRTCK <frequency>]
SYStem.BdmClock <frequency> (deprecated)
<frequency>: 4 kHz...80 MHz

Default frequency: 10 MHz.

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer. Therefore we recommend to use
the default setting if possible.

<frequency>

RTCK

ARTCK

CTCK

CRTCK

The debugger cannot select all frequencies accurately. It chooses the
next possible frequency and displays the real value in the SYStem.state
window.

Besides a decimal number like “100000.” short forms like “10kHz” or
“15MHz” can also be used. The short forms imply a decimal value,

wn

although no “” is used.

The JTAG clock is controlled by the RTCK signal (Returned TCK). The
debugger does not progress to the next TCK edge until after an RTCK edge
is received. This mode is not recommended for this debugger since it is not
needed here.

Accelerated method to control the JTAG clock by the RTCK signal
(Accelerated Returned TCK). In ARTCK mode the debugger uses a fixed
JTAG frequency for TCK, independent of the RTCK signal. This frequency
must be specified by the user. TDI and TMS will be delayed by 1/2 TCK clock
cycle. TDO will be sampled with RTCK. This mode is not recommended for
this debugger since it is not needed here.

With this option higher JTAG speeds can be reached. The TDO signal will be
sampled by a signal which derives from TCK, but which is timely
compensated regarding the debugger-internal driver propagation delays
(Compensation by TCK).

With this option higher JTAG speeds can be reached. The TDO signal will be
sampled by the RTCK signal. This compensates the debugger-internal driver
propagation delays, the delays on the cable and on the target
(Compensation by RTCK). This feature requires that the target sends back
the TCK signal onto the RTCK signal. In contrast to the RTCK option, the
TCK is always output with the selected, fixed frequency.

©1989-2024 Lauterbach

Andes Debugger | 28

SYStem.LOCK Tristate the JTAG port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the JTAG port will be performed by the debugger. While locked the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the AndesCore JTAG state machine remains unchanged while the
system is locked. To ensure correct hand-over, the options SYStem.CONFIG TAPState and
SYStem.CONFIG TCKLevel must be set properly. They define the TAP state and TCK level which is
selected when the debugger switches to tristate mode. Please note: nTRST and EDBGRQ must have a pull-
up resistor on the target.

©1989-2024 Lauterbach Andes Debugger | 29

SYStem.MemAccess

Select run-time memory access mthod

Format:

<mode>:

SYStem.MemAccess <mode>

Denied | StopAndGo

Default: Denied.

There’s no possibility to access memory while CPU is running. The debugger can access memory only if the

CPU is stopped.

SYStem.Mode Establish the communication with the target

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)

SYStem.Down (alias for SYStem.Mode Down)

SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down

NoDebug

Go

Attach

StandBy

Up

Down Disables the debugger (default). The state of the CPU remains
unchanged. The JTAG port is tristated.

NoDebug Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

Go Resets the target and enables the debugger and start the program
execution. Program execution can be stopped by the break command or
external trigger.

Attach User program remains running (no reset) and the debug mode is

activated. After this command the user program can be stopped with the
break command or if any break condition occurs.

©1989-2024 Lauterbach

Andes Debugger | 30

StandBy

Up

You need to be in DOWN state when switching to this mode. It resets and
starts the program when power is detected. Halt the program execution
and set all the breakpoints and trace conditions you need, then re-start
the program. Now you can even debug a power cycle, because debug
register (breakpoints and trace control) will be restored on power up. This
mode is not yet available.

Resets the target, sets the CPU to debug mode and stops the CPU. After
the execution of this command the CPU is stopped and all register are
set to the default level.

©1989-2024 Lauterbach

Andes Debugger | 31

SYStem.Option.ArchVersion Configure version of architecture

Format: SYStem.Option.ArchVersion <arch>

The option configures the architecture of the AndesCore of the target.

<arch>=2 Andes V2
<arch>=3 Andes V3
NOTE: This option is mostly intended for the use with the built-in instruction set simulator.

For physical targets the debugger automatically detects the correct value.

SYStem.Option.ArchMcu Configure MCU architecture

Format: SYStem.Option.ArchMcu <mcu_flag>

The option configures the debugger so it knows whether the target has an MCU architecture or a DSP
architecture. This has some implications regarding the instruction set and register file.

<mcu_flag>=0 DSP architecture
<mcu_flag>=1 MCU architecture
NOTE: This option is mostly intended for the use with the built-in instruction set simulator.

For physical targets the debugger automatically detects the correct value.

©1989-2024 Lauterbach Andes Debugger | 32

SYStem.Option.ArchRdreg Configure reduced register set

Format: SYStem.Option.ArchRdreg <rdreg>

The option configures the debugger so it knows whether the target has a full or reduced set of general
purpose registers.

<rdreg>=0 full set of general purpose registers (r0-r31)
<rdreg> =1 reduced set of general purpose registers (r0-r10;r15;r28-r31)
NOTE: This option is mostly intended for the use with the built-in instruction set simulator.

For physical targets the debugger automatically detects the correct value.

SYStem.Option.DIMBR Define base address of debug instruction memory

Format: SYStem.Option.DIMBR <address>

Default: 0xa0800000.

SYStem.Option.IMASKASM Disable interrupts while single stepping
Format: SYStem.Option.IMASKASM [ON | OFF]
Default: OFF.
ON The Global Interrupt Enable Bits will be cleared during assembler single-step

operations. The interrupt routine is not executed during single-step
operations. After single step the Global Interrupt Enable bits will be restored
to the value before the step.

OFF A pending interrupt will be executed on a single-step, but it does not halt
there. The specific interrupt handler is completely executed even if single
steps are done, i.e. step over is forced per default. If the core should halt in
the interrupt routine, use TrOnchip.StepVector ON.

©1989-2024 Lauterbach Andes Debugger | 33

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Format: SYStem.Option.IMASKHLL [ON | OFF]

Default: OFF.

If enabled, the Global Interrupt Enable Bit s(SR.IEE and SR.TEE) will be cleared during high-level-language
single-step operations. The interrupt routine is not executed during single-step operations. After single step
the Global Interrupt Enable bit will be restored to the value before the step.

If disabled, a pending interrupt will be executed on a single-step, but it does not halt there i.e. the interrupt
handler is always over stepped. If you want to halt in the interrupt routine, use TrOnchip.StepVector ON.

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.
Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

©1989-2024 Lauterbach Andes Debugger | 34

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

SYStem.Option.SCRATCH Define address for dummy reads
Format: SYStem.Option.SCRATCH <address>
Default: Oxffffffff.

The Andes core has a data cache line buffer. The debugger needs to force a write back into the data cache
in order to display the cached data memory properly. To do so it reads from an accessible, data cacheable
dummy address which needs to be different from the address hold in the cache line buffer.

On the default value (Oxffffffff) it uses the current program counter value. If the program counter value is not
in a data cacheable area or if there are constant data next to the program counter location, the user needs to
specify a better suitable address with this option.

SYStem.Option.TURBO Speed up memory access
Format: SYStem.Option. TURBO [ON | OFF]
Default: OFF.

If TURBO is enabled the debugger will not take care of cache coherency or address translation when
accessing memory. But this way the memory access is significantly faster. The user needs to make sure that
neither cache nor address translation (MMU) is active, like it is the case after a chip reset. Even if TURBO is
activated it is only used for 32-bit accesses.

We recommend to use this option only for a program download when starting-up a debug session.
Especially when the local memory is enabled, this option shall not be used.

©1989-2024 Lauterbach Andes Debugger | 35

Example:

SYStem.Option.TURBO ON
Data.LOAD.ELF <file> /Long

SYStem.Option.TURBO OFF

SYStem.state Display SYStem window

Format: SYStem.state

Display the SYStem.state window of the AndesCore debugger.

©1989-2024 Lauterbach Andes Debugger | 36

AndesCore Specific TrOnchip Commands

The TrOnchip command provides low-level access to the on-chip debug register.

TrOnchip.ContextiD Enable context ID comparison
Format: TrOnchip.ContextIiD [ON | OFF]
Default: OFF.

If the AndesCore debug unit provides breakpoint registers with ContextlD comparison capability
TrOnchip.ContextlD has to be set to ON in order to set task/process specific breakpoints that work in real-

time.

TrOnchip.ContextID ON

Break.Set VectorSwi /Program /Onchip /TASK EKern.exe:Threadl

TrOnchip.RESet Reset on-chip trigger settings

Format: TrOnchip.RESet

Resets all TrOnchip settings.

TrOnchip.StepVector Halt on exception entry when single-stepping
Format: TrOnchip.StepVector [ON | OFF]
Default: OFF.
Andes Debugger | 37

©1989-2024 Lauterbach

If StepVector is activated, a breakpoint range will is set on the trap vector table when single-stepping through
code. This is helpful to check if interrupts, traps or exceptions occur while single-stepping.

NOTE: For catching exceptions that occur in code that is freely executed (rather than
single-stepped), manually set a range of onchip breakpoints on the vector table
e.g. by Break.Set 0x0++0xff /Onchip (assuming the vector table is
located at 0x0).

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

©1989-2024 Lauterbach Andes Debugger | 38

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table
Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>]
MMU. <table>.dump (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

Displays the contents of the CPU specific MMU translation table.

. If called without parameters, the complete table will be displayed.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable

Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID: displays the translation
table of the specified process

. else, this command displays the table the CPU currently uses for
MMU translation.

©1989-2024 Lauterbach

Andes Debugger | 39

KernelPageTable

Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

©1989-2024 Lauterbach

Andes Debugger |

40

CPU specific tables in MMU.DUMP <table>

ITLB Displays the contents of the Instruction Translation Lookaside Buffer.
DTLB Displays the contents of the Data Translation Lookaside Buffer.
TLB Displays the contents of the Translation Lookaside Buffer.
MMU.List Compact display of MMU translation table
Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]

MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

Lists the address translation of the CPU-specific MMU table.
J If called without address or range parameters, the complete table will be displayed.

. If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

. If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range> Limit the address range displayed to either an address range
<address> or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Lists the entries of an MMU translation table.

. if <range> or <address> have a space ID: list the translation table
of the specified process

o else, this command lists the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach Andes Debugger | 41

KernelPageTable

Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

©1989-2024 Lauterbach

Andes Debugger |

42

MMU.SCAN Load MMU table from CPU

Format: MMU.SCAN <table> [<range> <address>]
MMU. <table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]
<cpu_specific_tables>

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

J If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
J if <range> or <address> have a space ID: loads the translation table
of the specified process
. else, this command loads the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach Andes Debugger | 43

KernelPageTable

Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the table
of the kernel and copies its address translation into the debugger-internal
static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static translation
table.

o For information about the first three parameters, see “What to know
about the Task Parameters” (general_ref_t.pdf).
J See also the appropriate OS Awareness Manual.

ALL [Clear]

Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the debugger-
internal static translation table.

See also the appropriate OS Awareness Manual.

Clear: This option allows to clear the static translations list before reading
it from all page translation tables.

©1989-2024 Lauterbach

Andes Debugger | 44

JTAG Connection

Pinout of the 20-pin Debug Cable:

Signal
VREF-DEBUG
TRST-

TDI
TMSITMSCISWDIO
TCKITCKCISWCLK
RTCK

TDOI-ISWO
RESET-

DBGRQ

DBGACK

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20

Signal
VSUPPLY (not used)
GND
GND
GND
GND
GND
GND
GND
GND
GND

For details on logical functionality, physical connector, alternative connectors, electrical characteristics,
timing behavior and printing circuit design hints refer to the application note “Arm Debug and Trace
Interface Specification” (app_arm_target_interface.pdf). It describes a debug cable which is technically
the same as the AndesCore debug cable. Only the logical level of the signals DBGRQ/nDBGI and

DBGACK/NnDBGACK are different. They are active low for AndesCore.

©1989-2024 Lauterbach

Andes Debugger |

45

	Andes Debugger
	History
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Quick Start of the JTAG Debugger
	Troubleshooting
	Communication Between Debugger and Processor Can Not Be Established

	FAQ
	AndesCore Specific Implementations
	Registers
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints for Instructions
	On-chip Breakpoints for Data
	Example for Standard Breakpoints

	Runtime Measurement
	Standby Mode
	Memory Classes
	Interruption Handling in Hardware
	Interruption Handling for Interruption Stack Level Transition 0/1 and 1/2
	Interruption handling for interruption stack level transition 2/3
	Maximum Interruption Stack Level Option
	Software Lowering Interruption Stack Level

	AndesCore specific SYStem Commands
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define JTAG frequency
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access mthod
	SYStem.Mode Establish the communication with the target
	SYStem.Option.ArchVersion Configure version of architecture
	SYStem.Option.ArchMcu Configure MCU architecture
	SYStem.Option.ArchRdreg Configure reduced register set
	SYStem.Option.DIMBR Define base address of debug instruction memory
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.SCRATCH Define address for dummy reads
	SYStem.Option.TURBO Speed up memory access
	SYStem.state Display SYStem window

	AndesCore Specific TrOnchip Commands
	TrOnchip.ContextID Enable context ID comparison
	TrOnchip.RESet Reset on-chip trigger settings
	TrOnchip.StepVector Halt on exception entry when single-stepping
	TrOnchip.state Display on-chip trigger window

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU

	JTAG Connection

