LAUTERBACH A

CPU32/ColdFire Debugger
and Trace

CPU32/ColdFire Debugger and Trace

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~
CPUB2 and COIAFIrecccciiiiiiiiiiiiissnssmmeenssssssssssssssssssssmsssssssssessssssssssnsmmmsssssnsssssssssssssannmmnsnssnns r=
CPU32/ColdFire Debugger and Tracecc.cccuceerissssmnssssmsssssmssssmssssssssssssnssssssssssssssassssss
L 1= (o 5
Brief Overview of Documents for New USErSc.ccciciiciiinsssmsmmmmmnnnnnnssssssssssssssmsssnssnssnas 5
(D=1 03 Lol= T Lo I3 e T U] o TR T o g o £ 6
L= T o 1T ' 6
Quick Start of the BDM DebUgQerccciiiimmmmiinemnmnisssssnssssssssssssssssssssssssssssssmsssnnas 7
Quick Start of the ROM MORNIEOrcccciiiemirisnrssssrssssssssssssssssssssssmsssssnsssssmsssssnsssssnsssssnes 9
2 L= o1 o L= 12
TroubleShOOtING ...ccccccciiiiicr s s 13
£ 13
210 11 1o 1 o 14
Monitor Features 14
Monitor Files 14
Address Layout 15
Vector Table 16
Configuration 17
Break without Hardware Interrupt 17
CPU specific Implementations ... ssssssnnas 18
Hardware Breakpoint for MC68360 18
Memory Classes 19
CPU specific SYStem Commandscccccemmimimiiiiniiisssssccnesr e sssssssssssssssssssssssessesssssssnnnas 20
SYStem.BdmClock Select BDM-clock 20
SYStem.CPU Select CPU type 21
SYStem.LOCK Lock and tristate the debug port 21
SYStem.MemAccess Select run-time memory access method 22
SYStem.Mode Establish the communication with the CPU 22
©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace 2

SYStem.CONFIG Configure debugger according to target topology =~ 23
Daisy-Chain Example 26
TapStates 27

SYStem.CONFIG.CORE Assign core to TRACE32 instance 28

SYStem.CONFIG.state Display target configuration 29

SYStem.Option.BASE Select peripheral base address 29

SYStem.Option.CACHE Flush instruction cache on MC68349 29

SYStem.Option.HOOK Compare PC to hook address 29

SYStem.Option.ICFLUSH Flush of instruction cache before step and go 31

SYStem.Option.IMASKASM Disable interrupts while single stepping 31

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 31

SYStem.Option.MMUPhysLogMemaccess Memory access preferences 31

SYStem.Option. MMUSPACES Separate address spaces by space IDs 32

SYStem.Option.OTE Ownership trace 33

SYStem.Option.SLOWRESET Slow reset enable 33

SYStem.Option.PST Detect HALT condition of the CPU 33

SYStem.Option.PSTCLKTERM Termination of the PSTCLK pin 34

SYStem.Option.ResetAction Debugger behavior when RESET is detected 34

SYStem.Option.StandbyAction Debugger behavior when power is restored 35

SYStem.Option.TracePULSE Use PULSE instruction 35

SYStem.Option. TraceWDDATA Use WDDATA instruction 35

SYStem.RESetOut Reset target without reset of debug port 35

SYStem.Option.StepFlat Step without exceptions 36

Trace specific SYStem.Option Commandsccccoriieccccicccccecmerr e 37

SYStem.Option.BTB Change the width of the address information 37

SYStem.Option.DDC Configure the tracing of data accesses 37

SYStem.Option. TSYNC Send the PC to the trace port 37

CPU specific TrOnchip ComMmandsccccccccmmmiiiimmmmnnnessrsnesssss s sssssssssssns 38

TrOnchip.ALIGN Enable breakpoint alignment 38

TrOnchip.RESet Set on-chip trigger to default state 38

TrOnchip.state Display on-chip trigger window 38

TrOnchip.SIZE Enable break on SIZE lines 39

TrOnchip.TEnable Set filter for the trace 39

TrOnchip. TOFF Switch the sampling to the trace to OFF 39

TrOnchip.TON Switch the sampling to the trace to “ON” 39

TrOnchip.TTrigger Set a trigger for the trace 40

CPU specific MMU COMMANAScccoceecmmmmimmiiiiisissssssssscsmmssssssssssssssssssssmmsssssssssesssssssssnnnnas 41

MMU.DUMP Page wise display of MMU translation table 41

MMU.List Compact display of MMU translation table 43

MMU.SCAN Load MMU table from CPU 45

BDM CoNNECOr B8Kceeiiiiiisummriiissnmnrinssssssssisssssmsssssssssss s sssssasss s ssssssssssessssnsnsenssssnnnsnnnssan 47
BDM and Trace Connector COIAFIre ... s s s s s sassssseseas 47
©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace 3

BDM Connectors for ColdFire V1, V2, V3, V4 and ColdFire+ 47
BDM Connector 6 pin ColdFire+/V1 CPUs Debugger 47
BDM Connector 26 pin ColdFire V2 or V3 CPUs Debugger and Trace 48
BDM Connector 26 pin ColdFire V2 or V3 CPUs with ALLPST only Debugger 48
BDM Connector 26 pin ColdFire V4 CPUs Debugger and Trace 49

Technical Data BDIM 68Kcccceiiiiiiiiiiiiinsscmmsnnnsnsssssssssssssmssmsssssssssssssssssssssmsmmssssssnssnssnns 50

Operation Voltage 50

Technical Data BDM COIAFIFeccccciiiisssmmmmmennnnsisssssssssssssmmsssssssssssssssssssnssmmssssssnsssss snsnsas 51

Operation Voltage 51

Technical Data Trace COIAFIreccccccirrieeiieiiir s 52

Operation Voltage 52
©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 4

CPU32/ColdFire Debugger and Trace

Version 06-Jun-2024

History

20-Jul-22 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second
parameter.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

J “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your debug cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

. “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 5

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known CPU32/ColdFire based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

J Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/coldfire/ subfolder of the system directory of

TRACES32.

Warning

1.

N o o A~

1.

2
3.
4

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACES32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.qg. via a start-up script.

Power down:

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACE32 software.

Power OFF the TRACE32 hardware.

©1989-2024 Lauterbach

CPU32/ColdFire Debugger and Trace |

Quick Start of the BDM Debugger

Starting up the debugger is done as follows:

1. Reset the system.

RESet

2. Specify CPU specific settings.

SYStem.CPU M68360

SYStem.Option.Base <address>

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

3. Map the EPROM simulator if available (optional).

MAP.ROM 0x0--0x1FFFF

This command maps a standard 8 bit wide 27x010 EPROM.

4. Enter debug mode.

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

Some ColdFire V1 derivatives need a Power On Reset to enter debug mode out of reset without
executing code. Dependent from their actual memory contents these derivatives might stuck in a
reset loop. When you enter SYStem.Up the debugger tries to get the CPU out of such a loop, but if
the time between two resets is too small this attempt might fail. Use SYStem.Mode StandBy in this
case, remove power from the target and switch it on again.

5. Load the program.

Data.LOAD.I mcc.abs

The format of the Data.LOAD command depends on the file format generated by the compiler. The
corresponding options for all available compilers are listed in the compiler list. A detailed description
of the Data.LOAD command is given in the “General Commands Reference”.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 7

A typical start sequence without EPROM simulator is shown below. This sequence can be written to a
PRACTICE script file (*.cmm, ASCII format) and executed with the command DO <file>.

WinCLEAR

SYStem.Up

Data.LOAD.1 mccp.x /nil
Register.Set PC main
Register.Set USP OFEFF
Register.Set SPP OFFFF
List.Mix

PER.view

Register.view /SpotLight

Frame.view /Locals /Caller

Var.Watch %$SpotLight flags ast

Break.Set 0x1000 /Program

Clear all windows

Reset the target and enter debug mode

Load the application

Set the PC to function main

Set USP to address FEFF

Set SSP to address FFFF

Open disassembly window *)

Show clearly arranged peripherals
in window *)

Open register window *)

Open the stack frame with
local variables *)

Open watch window for variables *)

Set breakpoint to address 1000

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

CPU32/ColdFire Debugger and Trace

8

Quick Start of the ROM Monitor

Starting up the ROM Monitor is done as follows.

1. Select the device prompt for the ICD Debugger and reset the system.

b:

RESet

On all host systems except of the emulator device B is already selected. The RESet command is only
necessary if you don’t start directly after booting.

2. Specify CPU specific settings.

SYStem.CPU M68020

SYStem.Option.Base <address>

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

3. Map the EPROM simulator.

MAP.ROM 0x0--0x1FFFF

This command maps a standard 8 bit wide 27x010 EPROM.

4. Load the monitor program.

Data.LOAD.B rom68.bin /ny

5. Configure the Monitor program.
Data.Set 0x400 0x9f ; select 68020 CPU
Data.Set 0x402 1 ; 1l6bit EPROM

At least the CPU type and EPROM size must be specified.
6. Set the polarity of the Reset and NMI signal according to your target.

eXception.RESetPOL -
eXception.NMIPOL -

eXception.NMIBREAK ON

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 9

7. Start the ROM Monitor.

SYStem.Up

If the RESET output of the ESI is not connected you have to reset your target after the SYStem.Up
command manually.

8. Load the application.

Data.LOAD.i1 mcc.abs

The format of the Data.LOAD command depends on the file format generated by the compiler. The
corresponding options for all available compilers are listed in the compiler list. A detailed description of the
Data.LOAD command is given in the “General Commands Reference”.

A typical start sequence for a ROM monitor (68332, EPROM 0--1ffff, RAM 40000--5ffff) is shown below. This
sequence can be written to a PRACTICE script file (*.cmm, ASCII format) and executed with the command

DO <file>
B:: ; Select the ICD device prompt
WinCLEAR ; Clear all windows
SYStem.CPU M68332 ; Set CPU for debugger
; software
Data.LOAD.1 mccp.x /nil ; Load the application
MAP.ROM 0x0--0x1FFFF ; Map the ESI
Data.LOAD rom68.hex /ny ; Load the monitor program
; add patch to disable 332 watchdog
Data.Set sp:0x0 %$Long 0x41000 ; Initialize the SSP
Data.Set sp:0x4 %Long 0x0ff0 ; Initialize the reset vector
Data.Ass sp:0x0ff0 move.b #40,0x0fffa2l ; Extra code to disable
; watchdog
Data.Ass, jmp 0x440 ; Jump to monitor start
; initialize the monitor configuration table
d.s sp:0x400 %Sbyte 10. ; Set CPU for monitor program
d.s sp:0x402 %$byte 0x0 ; Set the EPROM bus width
; set the polarity of RESET and NMI
eXception.RESetPOL - ; Negative polarity for Reset

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 10

eXception.NMIPOL -

eXception.RESBREAK ON

; start debugging

SYStem.Up

Data.LOAD.rof rof 0x4000 0x40000 /col
Register.Set PC main

Register.Set USP OxOFEFF

Register.Set SPP OxOFFFF

List.Mix

Register

Var .Frame /Locals /Caller

Var .Watch <varl> <var2>

Break.Set 0x10000 /p

Negative polarity for NMI

Enable Reset activation

Start monitor

Load application

Set the PC to function main
Set USP to address FEFF

Set SSP to address FFFF
Open disassembly window *)
Open register window =)

Open the stack frame with
local variables)

Add variables to watch
window)

Set breakpoint to address
10000

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

CPU32/ColdFire Debugger and Trace | 11

Restrictions

Stack Memory All 68000-type ROM debuggers need memory in the supervisor
(only ROM Monitor) stack area (SSP) to break correctly. If you get an invalid PC value
after stopping the program, the SSP register may be outside the
memory area. This must be considered especially when debugging
the startup code of an application. The ROM Monitor needs up to
40 bytes space on the stack for step, go and EPROM modification
(Hot Patch). The stack is not required for starting the Monitor and
memory read or modify commands. BDM debuggers need no stack.

Register Setup The SR register trace flag should not be set to 1.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 12

Troubleshooting

No information available.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 13

https://support.lauterbach.com/kb

ROM Monitor

Monitor Features

The monitor requires no stack during startup and memory operations. A valid stack is only required for
modifications in the EPROM while the monitor is running (Hot Patch) and for single step and go commands.
This allows to use the monitor for testing not fully functional hardware, as only the EPROM access must
work correctly to operate the monitor. The position independent code of the monitor allows to relocate the
monitor during debugging. The NMI pin of the EPROM simulator can be used to manually stop the target
program. On serial linked ROM monitors the NMI line can be controlled by the RTS or DTR lines.

Monitor Files

The “rom68” monitor is for EPROM simulator solutions, while the “rom68e” monitor is used as foreground
monitor for emulators. By using a foreground monitor the target program can be single stepped without
stopping the target processors interrupts or DMA transfers.

The monitor “rom68s"”is the serial line monitor. It requires linking with a serial line driver module. See the
example files in the monitor directory “...\files\demo\m68k\monitor” for details. All monitors have the same
source file “rom68.asm”. This source file should not be modified, it is only included for reference purposes.
There are two possibilities to include the monitor in the application: loading the “.bin” by the Eprom Simulator
or linking the “.src” file together with the application. The “.src” files contain only the monitor code, a
corresponding configuration table has to be included in the target program.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 14

Address Layout

The ROM monitor is freely relocatable in the whole address space. The communication area for the EPROM
simulator is located at the fixed address 1000 to 1FFF of the first EPROM. The CPU address depends on
the bus width of the EPROMSs. The following table shows the address ranges occupied by the

communication port:

Bus Width Start Address End Address

8 bit EPROM_BASE+1000 EPROM_BASE+1FFF
16 bit EPROM_BASE+2000 EPROM_BASE+3FFF
32 bit EPROM_BASE+4000 EPROM_BASE+7FFF

The monitor program consists of three parts:

. Vector Table
J Configuration Table
. Monitor Program Code

The ".bin' and '.asm' files contain all three parts of the monitor. The address layout of the default monitor is as

follows:
0000--03FF Vector Table
0400--041F Configuration Table
0420--=FFF Monitor Code

©1989-2024 Lauterbach

CPU32/ColdFire Debugger and Trace | 15

Vector Table

For the first tests of a software, the “.bin” files can be loaded with vector and configuration table. When the
vector table becomes part of the application, it is not loaded with the monitor. Instead the table is setup
according to the application (the table may also reside in RAM). Some vectors must be set up to point into
the monitor program code. The entry points are located at the beginning of the monitor.

vec offs ent Usage
00 000 - Reset Stack (optional)
01 004 +20 Reset PC (optional, can also go to application)
02 008 +50 Bus Error (optional, when Bus Errors should enter monitor)
03 0oC +50 Address Error (optional, when they should enter monitor)
04 010 +30 lllegal Instruction (used for breakpoints)
09 024 +30 Trace (used for single step)
NMI XXX +30 Manual Break (optional)
+40 Any unused vector may be handled by the monitor

©1989-2024 Lauterbach

CPU32/ColdFire Debugger and Trace | 16

Configuration

The configuration table of the monitor must always be located directly before the monitor code. The default
location used in the binary files is 400 (hex).

J Processor core type (byte at offset 00H):
00 = 6800x, 6830x, 68322, 68356 (default)
03 = 68010, CPU32
9F = 68020, 68030 no MMU
A7 = 68040 no MMU
A3 = 68060 no MMU
01 = 68070, 93Cxx
. EPROM Bus Width (byte at offset 02H):
0 = 8 bit (default)
1 =16 bit
2 = 32 bit
. Monitor Interrupt Level (byte at offset 04H)

0 = all interrupts enabled in monitor

7 = all interrupts disabled in monitor (default)

J Relative Monitor Location (long at offset 0CH).

This is the offset from the start of the EPROM to the monitor configuration table. It is not the
absolute address of the monitor.

Break without Hardware Interrupt

If no hardware interrupts are free for the implementation of the Break command, it is possible to implement
a software solution. An interrupt of the target program (usually the timer interrupt) polls the address of the
communication area to determine when a break has been entered. If bit zero of the status byte (at location
1400H) is set, the interrupt should enter the monitor through the breakpoint entry point. The stack should be
set in the same way as if an NMI has been executed.

Clock_Interrupt:

btst #0,$1400 ; clear hardware bits here, if required
beg Normal_ Interrupt

Jmp $420+$30 ; enter monitor if bit 0 is set

Normal_Interrupt: ; continue with normal interrupt

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 17

CPU specific Implementations

Hardware Breakpoint for MC68360

The built-in hardware breakpoint of the 68360 can be used by the debugger. It can be used to stop the
debugger on a read or write to a variable or a fetch in the ROM area. They are set with the regular breakpoint
command as read or write breakpoints. Note that the MBAR-Register and the SYStem.Option.BASE value
must be equal before setting the breakpoints. When a program breakpoint is set in a read-only mapped
area, it is automatically converted into a hardware read breakpoint.

The behavior of the hardware breakpoints can be controlled with the TrOnchip commands.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 18

Memory Classes

Memory Class Description

FCO Function-Code 0

FC1 USER-DATA

ub USER-DATA

FC2 USER-PROGRAM

upP USER-PROGRAM

FC3 Function-Code 3

FC4 Function-Code 4

FC5 SUPERVISOR-DATA

SD SUPERVISOR-DATA

FC6 SUPERVISOR-PROGRAM

SP SUPERVISOR-PROGRAM

FC7 Function-Code 7

CPU CPU Function-Code

U User

S Supervisor

D Data

P Program

C Memory access by CPU
Emulation memory access

©1989-2024 Lauterbach

CPU32/ColdFire Debugger and Trace

19

CPU specific SYStem Commands

SYStem.BdmClock Select BDM-clock
Format: SYStem.BdmClock <rate>
<rate>: 4 | 8 | <fixed>
<fixed>: 1000. ... 5000000.

Either the clock frequency divided by 4 or 8 is used as the BDM clock or a fixed clock rate. The fixed clock
rate must be used when the operation frequency is very slow or the clock is turned off or the target clock line
is not connected. The default is a fixed rate of 1 MHz.

There is an additional plug on the debug cable on the debugger side. This plug can be used as an external
clock input. With setting EXT/x the external clock input (divided by x) is used as BDM port frequency.

The ColdFire+/V1 offers two clock sources for the communication between debugger and CPU:

Format: SYStem.BdmClock BusClock | Async

BusClock Time base for BDM communication is the bus frequency of the CPU. This
allows a faster download if the data rate is increased by configuring the
FLL. On the other hand moving the communication frequency can cause
problems, because the debugger has to synchronize again after each
change of frequency.

Async The lower clock of the FLL is fixed time base for BDM communication.
The bus frequency can be modified without affecting the BDM channel.
This selection requires no resynchronization on bus clock changes.

This command tells the debugger how to configure the CPU when you start your debug session. If you have
to download big files you can use “BusClock” to get the highest available bus frequency and as a result the
highest download performance.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 20

SYStem.CPU Select CPU type

Format: SYStem.CPU <mode>

<mode>: 000|010 | 020 | 030 | 040 | 060
302 | LC302 | PM302 | EN302 | 356 | 306 | 307
330 ... 68336 | 340 | 341 | 349 | 360

Selects the processor type.

NOTE: ROM debuggers require also a modification in the debug monitor for different
processor types.
SYStem.LOCK Lock and tristate the debug port
Format: SYStem.LOCK [ON | OFF]
Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give

debug access to another tool.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 21

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)

Enable Memory access during program execution to target is enabled.
CPU (deprecated)

Denied (default) Memory access during program execution to target is disabled.
StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of

the assigned cores, and the operations that should be performed.
For more information, see below.

SYStem.Mode Establish the communication with the CPU

Format: SYStem.Mode <mode>

SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Go
Up

Default: Down.
Selects the target operating mode.

“Debug mode is active” means the communication channel via debug port (JTAG) is established. The
features of the “on-chip debug support” (OCDS) are enabled and available.

Down The CPU is in reset. Debug mode is not active. Default state and state
after fatal errors.

NoDebug The CPU is running. Debug mode is not active. Debug port is tristate. In
this mode the target should behave as if the debugger is not connected.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 22

Go The CPU is running. Debug mode is active. After this command the CPU
can be stopped with the break command or if any break condition occurs.

Up The CPU is not in reset but halted. Debug mode is active. In this mode
the CPU can be started and stopped. This is the most typical way to
activate debugging.

Attach Not supported.

StandBy Not supported.

If the mode “Go” is selected, this mode will be entered, but the control button in the SYStem window jumps
to the mode “UP”.

The “Emulate” LED on the debug module is ON when the debug mode is active and the CPU is running.

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE <core>
<parameter>: DRPRE <bits>
(JTAG): DRPOST <bits>

IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel </evel>
TriState [ON | OFF]
Slave [ON | OFF]

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain
Example.

For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 23

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

CORE

DRPRE

DRPOST

IRPRE

IRPOST

TAPState

TCKLevel

TriState

For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.

Further information can be found in SYStem.CONFIG.CORE.

(default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

(default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

(default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

(default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

(default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

(default: 0) Level of TCK signal when all debuggers are tristated.

(default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

©1989-2024 Lauterbach

CPU32/ColdFire Debugger and Trace | 24

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET).

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 25

Daisy-Chain Example

TDl——-® Core A —Core B p Core C—» Core D +—» TDO

Chip 0 Chip 1

Below, configuration for core C.

Instruction register length of
. Core A: 3 bit
. Core B: 5 bit
. Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B
SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C i1s Core 0 in Chip 1

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 26

TapStates

0 Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR

© 00 N o 0o~ W N =

—_ - e e —d
a A~ WO N = O

Test-Logic-Reset

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 27

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1.0

<core_index>: 1...k

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips
Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 28

SYStem.CONFIG.state Display target configuration

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on

the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

SYStem.Option.BASE Select peripheral base address

Format: SYStem.Option.BASE <address>

Defines the base address of the internal 10 of some 683xx processors. This should be set to the value used

by the target system.
SYStem.Option.CACHE Flush instruction cache on MC68349
Format: SYStem.Option.CACHE [ON | OFF]

Flushes instruction cache on MC68349.

SYStem.Option.HOOK Compare PC to hook address

Format: SYStem.Option.HOOK <address> | <address_range>

The command defines the hook address. After program break the hook address is compared against the
program counter value.

If the values are equal, it is supposed that a hook function was executed. This information is used to
determine the right break address by the debugger.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 29

Defines the location of the PC after a break in the hook function. The hook function allows to insert a piece of
code in the execution of breakpoints. When the option is active (nonzero) the BGND breakpoint command is
replaced by an undefined instruction. The undefined instruction handler should then execute the required
code and then stop with a BGND instruction. After the code after the BGND instruction is executed with the
next Step or Go command. The code in the hook function should not modify the SSP register.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 30

SYStem.Option.ICFLUSH Flush of instruction cache before step and go

Format: SYStem.Option.ICFLUSH [ON | OFF]

Default: OFF.

If this option is enabled, the instruction cache will be invalidated before debug mode will be left (in case of a
Step or Go).

SYStem.Option.IMASKASM Disable interrupts while single stepping
Format: SYStem.Option.IMASKASM [ON | OFF]
Default: OFF.

If enabled, the bit responsible for ignoring pending interrupts during assembler single-step operations of the
CPU will be set. The interrupt routine is not executed during single-step operations.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

SYStem.Option.MMUPhysLogMemaccess Memory access preferences
Format: SYStem.Option.MMUPhysLogMemaccess [ON | OFF]
Default: ON.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 31

Controls whether TRACE32 prefers a cached logical memory access over a (potentially uncached) physical
memory access to keep caches updated and coherent.

NOTE: This option should usually not be changed.

ON A cached logical memory access is used.

OFF A (potentially uncached) physical memory access is used.
SYStem.Option.MMUSPACES Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]

SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.
Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 32

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with

;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

SYStem.Option.OTE Ownership trace

Format: SYStem.Option.OTE [ON | OFF]

Enables/disables ASID trace.

SYStem.Option.SLOWRESET Slow reset enable

Format: SYStem.Option.SlowReset [ON | OFF]

Has to be switched ON if the reset line of the debug connector is not(!) connected direct to the CPU reset
pin.

Problem: At system-up the debugger has to enable the CPUs debug mode first. This is done by a certain
sequence of the debug signals. This sequence becomes faulty if the target includes a reset-circuit which
hold the reset line for a unknown period.

If SlowReset is switched “ON” the debugger accepts a reset-hold period of up to 1 s. A system up needs
about 3 s then!

SYStem.Option.PST Detect HALT condition of the CPU
Format: SYStem.Option.PST [ON | OFF]
Default: OFF.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 33

Setting this option to ON enables the hardware-based check method for the HALT-condition of the CPU. For
this setting to work correctly the signals PST[3..0] (V2 and V3 ColdFire cores), ALLPST (some pin-limited
CPU's) or PSTDDATA[7..0] have to be properly connected to the debug connector.

If these signals are located on pins sharing some other functions, the PST mode of these CPU pins has to
be enabled first. The recommended setting is ON, because otherwise the HALT state of the CPU cannot be
reliably detected.

SYStem.Option.PSTCLKTERM Termination of the PSTCLK pin
Format: SYStem.Option.PSTCLKTERM [ON | OFF]
Default: ON.

Turns the termination of the PSTCLK pin on the debug connector ON/OFF.
Works only with the COLDFIRE-HS whisker.

SYStem.Option.ResetAction Debugger behavior when RESET is detected

Format: SYStem.Option.ResetAction [NOTHING | HALT | GO]

Default: HALT.

This setting changes the behavior of the debugger when a RESET is detected on the target board.

NOTHING Do nothing at all; the CPU keeps running without the debugger influencing
the CPU after a RESET.

HALT Break immediately after reset.

GO After setting up basic registers (on-chip breakpoints, etc.), a GO is issued

automatically.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 34

SYStem.Option.StandbyAction = Debugger behavior when power is restored

Format: SYStem.Option.StandbyAction [HALT | GO]

Default: GO.

This setting changes the behavior of the debugger when the power is restored on the target board.

HALT Break immediately after power comes back.

GO After setting up basic registers (on-chip breakpoints, etc.), a GO is issued
automatically.

SYStem.Option.TracePULSE Use PULSE instruction

Format: SYStem.Option.TracePULSE [ON | OFF]

When set to ON, the PULSE instruction is used to trigger the trace.

SYStem.Option.TraceWDDATA Use WDDATA instruction

Format: SYStem.Option.TracePULSE [ON | OFF]

When set to ON, the WDDATA instruction is used to turn on or off the trace similar to TraceON/TraceOFF
breakpoints (bit 0 of data).

SYStem.RESetOut Reset target without reset of debug port

Format: SYStem.RESetOut

If possible (NnRESET is open collector), this command asserts the nRESET line on the debug connector.
This will reset the target including the CPU but not the debug port. The function only works when the system
is in SYStem.Mode.Up.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 35

SYStem.Option.StepFlat Step without exceptions

Format: SYStem.Option.StepFlat [HALT | GO]

Avoids stepping into TLB miss handlers.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 36

Trace specific SYStem.Option Commands

SYStem.Option.BTB Change the width of the address information

Format: SYStem.Option.BTB [16 | 24 | 32 | OFF]

Default without trace: OFF.
Default with trace: 32.

Changes the width of the address information sent to the trace. The default setting of 32 bits gives the best
trace decoding results.

SYStem.Option.DDC Configure the tracing of data accesses
Format: SYStem.Option.DDC [Write | Read | ReadWrite | OFF]
Default: OFF.

Configures the tracing of data accesses. Only accesses that leave the cache can be traced.

SYStem.Option.TSYNC Send the PC to the trace port
Format: SYStem.Option.TSYNC [ON | OFF]
Default: OFF.

Forces the CPU to send the current PC to the trace port every few milliseconds (a) when set to ON and (b) if
the CPU supports the SYNC_PC BDM instruction.

Set to ON when you have long-running code-sequences without any indirect branches, which confuse the
trace display.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 37

CPU specific TrOnchip Commands

TrOnchip.ALIGN Enable breakpoint alignment

Format: TrOnchip.ALIGN [ON | OFF]

Some 68360 chips cannot set the breakpoint correctly in 8 and 16 bit chip select areas. This option tries to
work around this bug by setting the breakpoint to the next quad aligned address.

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 38

TrOnchip.SIZE Enable break on SIZE lines

Format: TrOnchip.SIZE [ON | OFF]

If activated, the SIZE lines of the processor are also used as a breakpoint criteria. The debugger will only be
stopped when the SIZE lines match the breakpoint size. Breakpoint ranges can have a size of 1,2,3 or 4
bytes. Breakpoints on a single address have no size. The following example shows the difference.

TrOnchip.SIZE ON

Break.Set 0x1000 /WRITE ; lgnores the SIZE lines

Break.Set 0x1000--0x1000 /W ; break only on BYTE access

Break.Set 0x1000--0x1003 /W ; break only on LONG access
TrOnchip.TEnable Set filter for the trace

Format: TrOnchip.TEnable <par> (deprecated)

Refer to the Break.Set command to set trace filters.

TrOnchip.TOFF Switch the sampling to the trace to OFF

Format: TrOnchip.TOFF (deprecated)

Refer to the Break.Set command to set trace filters.

TrOnchip.TON Switch the sampling to the trace to “ON”

Format: TrOnchip.TON EXT | Break (deprecated)

Refer to the Break.Set command to set trace filters.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 39

TrOnchip.TTrigger Set a trigger for the trace

Format: TrOnchip.TTrigger <par> (deprecated)

Refer to the Break.Set command to set a trigger for the trace.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 40

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table
Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>]
MMU. <table>.dump (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

Displays the contents of the CPU specific MMU translation table.

. If called without parameters, the complete table will be displayed.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable

Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID: displays the translation
table of the specified process

. else, this command displays the table the CPU currently uses for
MMU translation.

©1989-2024 Lauterbach

CPU32/ColdFire Debugger and Trace | 41

KernelPageTable

Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

©1989-2024 Lauterbach

CPU32/ColdFire Debugger and Trace |

42

CPU specific Tables in MMU.DUMP <table>

ITLB Displays the contents of the ITLB translation table.
Deprecated command syntax: MMU.ITLB.
DTLB Displays the contents of the DTLB translation table.
Deprecated command syntax: MMU.DTLB.
MMU.List Compact display of MMU translation table
Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
MMU.<table>.List (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

Lists the address translation of the CPU-specific MMU table.

o If called without address or range parameters, the complete table will be displayed.

. If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

J If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.
<range> Limit the address range displayed to either an address range
<address> or to addresses larger or equal to <address>.
For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.
PageTable Lists the entries of an MMU translation table.
. if <range> or <address> have a space ID: list the translation table
of the specified process
. else, this command lists the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach

CPU32/ColdFire Debugger and Trace | 43

KernelPageTable

Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

©1989-2024 Lauterbach

CPU32/ColdFire Debugger and Trace |

44

MMU.SCAN Load MMU table from CPU

Format: MMU.SCAN <table> [<range> <address>]
MMU. <table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]
<cpu_specific_tables>

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

J If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
J if <range> or <address> have a space ID: loads the translation table
of the specified process
. else, this command loads the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 45

KernelPageTable

Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the table
of the kernel and copies its address translation into the debugger-internal
static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of

the TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU

translation table. This command reads the table of the specified process,

and copies its address translation into the debugger-internal static translation

table.

o For information about the first three parameters, see “What to know
about the Task Parameters” (general_ref_t.pdf).

J See also the appropriate OS Awareness Manual.

ALL [Clear]

Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the debugger-
internal static translation table.

See also the appropriate OS Awareness Manual.

Clear: This option allows to clear the static translations list before reading
it from all page translation tables.

CPU specific tables:

-- No CPU specific tables --

©1989-2024 Lauterbach

CPU32/ColdFire Debugger and Trace | 46

BDM Connector 68K

Signal
DS-
GND
GND
RESET-
VCCS

Pin

[N O W] =

BDM and Trace Connector ColdFire

Signal

BERR-

BKPT-
FREEZE

DSI (IFETCH-)
DSO (IPIPE-)

BDM Connectors for ColdFire V1, V2, V3, V4 and ColdFire+

. The signals needed for debugging and tracing are combined in a single connector.

. Some of the pins in the schematics below have multiple alternate signal names. Please check
the "BDM Connector Pinout" chapter of the reference manual for the exact CPU you are using
for further details or contact our support team.

BDM Connector 6 pin ColdFire+/V1 CPUs Debugger

Signal
BKGD
N/C
N/C

Pin Pin
1 2
3 4
5 6

Signal
GND
RESET-
VCC

©1989-2024 Lauterbach

CPU32/ColdFire Debugger and Trace | 47

BDM Connector 26 pin ColdFire V2 or V3 CPUs Debugger and Trace

Signal Pin Pin Signal
N/C 1 2 BKPT-
GND 3 4 DSCLK
GND 5 6 N/C
RESET- 7 8 DSI
vDD_10 1.8..5.0V 9 10 DSO
GND 11 12 PST3
PST2 13 14 PST1
PSTO 15 16 DDATA3
DDATA2 17 18 DDATA1
DDATAO 19 20 GND
N/C 21 22 N/C
GND 23 24 PSTCLK/CLKOUT/CPUCLK
VDD_CPU 1.8-5.0V 25 26 TEA-/TA-/DTACK-/BERR-

If the tracing capability is not needed, DDATAS..0 can be connected or pulled down to GND.

BDM Connector 26 pin ColdFire V2 or V3 CPUs with ALLPST only Debugger

Signal Pin Pin Signal
N/C 1 2 BKPT-
GND 3 4 DSCLK
GND 5 6 N/C
RESET- 7 8 DSI
VDD_IO 1.8-5.0V 9 10 DSO
GND 11 12 ALLPST
ALLPST or pull-up resistor 13 14 ALLPST or pull-up resistor
ALLPST or pull-up resistor 15 16 GND or pull-down resistor
GND or pull-down resistor 17 18 GND or pull-down resistor
GND or pull-down resistor 19 20 GND
N/C 21 22 N/C
GND 23 24 PSTCLK/CLKOUT/CPUCLK
VDD_CPU 1.8..5.0V 25 26 TEA-/TA-/DTACK-/BERR-

This connector cannot be used for tracing, because the CPU variants with the ALLPST signal miss the
necessary PST3..0 and DDATAS..0 signals.

©1989-2024 Lauterbach CPU32/ColdFire Debugger and Trace | 48

BDM Connector 26 pin ColdFire V4 CPUs Debugger and Trace

Signal

N/C

GND

GND

RESET-

VDD _ 10 1.8..5.0V
GND

PSTDDATAG
PSTDDATA4
PSTDDATA2
PSTDDATAO

N/C

GND

VDD_CPU 1.8-5.0V

Pin Pin Signal

1 2 BKPT-

3 4 DSCLK

5 6 N/C

7 8 DSI

9 10 DSO

11 12 PSTDDATA7
13 14 PSTDDATA5
15 16 PSTDDATA3
17 18 PSTDDATA1
19 20 GND

21 22 N/C

23 24 PSTCLK

25 26 TA-

©1989-2024 Lauterbach

CPU32/ColdFire Debugger and Trace

49

Technical Data BDM 68K

Operation Voltage

Adapter

OrderNo

Voltage Range

BDM Debugger for 68K (ICD)

LA-7710

3.0..55V

©1989-2024 Lauterbach

CPU32/ColdFire Debugger and Trace

50

Technical Data BDM ColdFire

Operation Voltage

Adapter OrderNo Voltage Range
BDM Debugger for ColdFire+/V1 (ICD) LA-3746 3.0..55V
BDM Debugger for ColdFire HS (ICD) LA-3757 3.0..55V

©1989-2024 Lauterbach

CPU32/ColdFire Debugger and Trace

51

Technical Data Trace ColdFire

Operation Voltage

Adapter

OrderNo

Voltage Range

Preprocessor for ColdFire family HS

LA-3759

3.0..55V

©1989-2024 Lauterbach

CPU32/ColdFire Debugger and Trace

52

	CPU32/ColdFire Debugger and Trace
	History
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts
	Warning
	Quick Start of the BDM Debugger
	Quick Start of the ROM Monitor
	Restrictions
	Troubleshooting
	FAQ
	ROM Monitor
	Monitor Features
	Monitor Files
	Address Layout
	Vector Table
	Configuration
	Break without Hardware Interrupt

	CPU specific Implementations
	Hardware Breakpoint for MC68360
	Memory Classes

	CPU specific SYStem Commands
	SYStem.BdmClock Select BDM-clock
	SYStem.CPU Select CPU type
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the CPU
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CONFIG.state Display target configuration
	SYStem.Option.BASE Select peripheral base address
	SYStem.Option.CACHE Flush instruction cache on MC68349
	SYStem.Option.HOOK Compare PC to hook address
	SYStem.Option.ICFLUSH Flush of instruction cache before step and go
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MMUPhysLogMemaccess Memory access preferences
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.OTE Ownership trace
	SYStem.Option.SLOWRESET Slow reset enable
	SYStem.Option.PST Detect HALT condition of the CPU
	SYStem.Option.PSTCLKTERM Termination of the PSTCLK pin
	SYStem.Option.ResetAction Debugger behavior when RESET is detected
	SYStem.Option.StandbyAction Debugger behavior when power is restored
	SYStem.Option.TracePULSE Use PULSE instruction
	SYStem.Option.TraceWDDATA Use WDDATA instruction
	SYStem.RESetOut Reset target without reset of debug port
	SYStem.Option.StepFlat Step without exceptions

	Trace specific SYStem.Option Commands
	SYStem.Option.BTB Change the width of the address information
	SYStem.Option.DDC Configure the tracing of data accesses
	SYStem.Option.TSYNC Send the PC to the trace port

	CPU specific TrOnchip Commands
	TrOnchip.ALIGN Enable breakpoint alignment
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.state Display on-chip trigger window
	TrOnchip.SIZE Enable break on SIZE lines
	TrOnchip.TEnable Set filter for the trace
	TrOnchip.TOFF Switch the sampling to the trace to OFF
	TrOnchip.TON Switch the sampling to the trace to “ON”
	TrOnchip.TTrigger Set a trigger for the trace

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU

	BDM Connector 68K
	BDM and Trace Connector ColdFire
	BDM Connectors for ColdFire V1, V2, V3, V4 and ColdFire+
	BDM Connector 6 pin ColdFire+/V1 CPUs Debugger
	BDM Connector 26 pin ColdFire V2 or V3 CPUs Debugger and Trace
	BDM Connector 26 pin ColdFire V2 or V3 CPUs with ALLPST only Debugger
	BDM Connector 26 pin ColdFire V4 CPUs Debugger and Trace

	Technical Data BDM 68K
	Operation Voltage

	Technical Data BDM ColdFire
	Operation Voltage

	Technical Data Trace ColdFire
	Operation Voltage

