LAUTERBACH A

DSP56K Debugger

DSP56K Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
D 1S o1 | PP r=

[153 2151 Q71 o TH e o= 1

L o Yo 11T o) o 4

Brief Overview of Documents for New Users 4

Demo and Start-up Scripts 4
L= T 1 ' 6

L@ T T Q3 - T 7

Lo 18] o == 0 T To £ 3V 10
SYStem.Up Errors 10

o 10

L0 o o) 1o 11 = 11T o R 11
On-chip Flash Programming and Debugging on 56F8xxx Derivatives 11
DSP56K Specific Implementationsccccccmmiimmmmnnnerns . 14
Breakpoints 14
Software Breakpoints 14
On-chip Breakpoints 14

CPU specific SYStem Settings and Restrictions ..o 15
SYStem.CPU Select the used CPU 15
SYStem.LOCK Lock and tristate the debug port 15
SYStem.MemAccess Select run-time memory access method 16
SYStem.Mode Establish the communication with the target 16
SYStem.CONFIG.state Display target configuration 18
SYStem.CONFIG Configure debugger according to target topology 19
Daisy-Chain Example 21
TapStates 22
SYStem.CONFIG.CORE Assign core to TRACE32 instance 23
SYStem.Option.COP Enable WATCHDOG 24
SYStem.Option.DE Enable DE line 24
SYStem.Option.IMASKASM Disable interrupts while single stepping 24
©1989-2024 Lauterbach DSP56K Debugger 2

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 25

SYStem.Option.SoftBreakFix Enables “SoftBreakFix” patch 25
SYStem.JtagClock Define JTAG clock 26
General Restrictions 27
o0 30
QIO T e 1T 0B 00T 1 11 F- T4 o £ 31
TrOnchip.state Opens configure panel 31
TrOnchip.A Trigger cycle 31
TrOnchip.AANDB Triggers if event occurs on unit A and unit B 32
TrOnchip.AAFTERB Triggers if event occurs first on unit A and then on unit B 32
TrOnchip.AORB Triggers if event occurs on unit A or unit B 32
TrOnchip.B Trigger cycle 32
TrOnchip.BAFTERA Triggers if event occurs first on unit B and then on unit A 33
TrOnchip.Count Delay counter 33
TrOnchip.DMA Trigger on DMA access 33
TrOnchip.Mode Defines used triggers 33
TrOnchip.OFF Disable on-chip trigger unit 34
TrOnchip.RESet Resets settings 34
Floating Point FOrmatscccccmiiiminsmns s s s s ssss s s 35
Integer ACCeSS KeYWOIASccccceriiiiemmrmmiisssnrmnsssssssssssssss s sssssss s s snsssss s s snssssss s ssnssssss s ennsnes 35
ONCE Connector (56002/56100)cccorrmsamrrsssmsmsssmsmssamsssssmsssssnsssssnsssssmsssssasssssasssssasssassnns 36
JTAG Connector (56300, 56800, 56800E)cccsssurrrsrmmmssansmsssnsmsssnsmsssssssssnsssssnsssssnsssssns 37
LT 4 o YA 03 = = T 39

©1989-2024 Lauterbach DSP56K Debugger | 3

DSP56K Debugger

Version 06-Jun-2024

Introduction

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

“Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.

“T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

“General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

“Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

“OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known DSP56K based hardware.

©1989-2024 Lauterbach DSP56K Debugger | 4

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/dsp56k/ subfolder of the system directory of TRACE32.

©1989-2024 Lauterbach DSP56K Debugger | 5

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

DSP56K Debugger |

6

Quick Start

Starting up the debugger is done as follows:

1. Select the device prompt for the ICD Debugger and reset the system.

183 3

RESet

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: : to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings.

SYStem.CPU <cpu_type>

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

3. Set the JTAG shift frequency

SyYStem.JtagClock <frequency>

Normally the default value is 1.0 MHz, but the 56800E requires a lower value in the starting process.

4. Inform the debugger about read-only address ranges (ROM, FLASH).

MAP.BOnchip <range>

The B(reak)Onchip information is necessary to decide where on-chip breakpoints must be used. On-
chip breakpoints are necessary to set program breakpoints to read-only memories. The sections of
FLASH and ROM depend on the specific CPU and its chip selects.

5. Enter debug mode.

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

©1989-2024 Lauterbach DSP56K Debugger | 7

6. Configure chip according application.

Register.Set O0MR 3 ; 56800: Development mode

Before loading binary data into the processor memory, the memory should be made writable.
Therefore processor configuration registers have to be set e.g. OMR, SR or chip select register. The
flash of the 56F8300 derivatives should be initialized here, too.

7. Load the program.

Data.LOAD.E1f program.elf ; ELF specifies the format,
; program.elf is the file name

The format of the Data.LOAD command depends on the file format generated by the compiler.

A detailed description of the Data.LOAD command and all available options is given in the “General
Commands Reference”.

©1989-2024 Lauterbach DSP56K Debugger | 8

A typical start sequence for the DSP56858 is shown below. This sequence can be written to a PRACTICE
script file (*.cmm, ASCII format) and executed with the command DO <file>. Other sequences can be found

in the ~~/demo/ directory.

EEN:

WinCLEAR

SYStem.CPU 56858
SYStem.JtagClock 687000.
MAP.BOnchip 0x1£f000..1f03ff

SYStem.Up

Register.Set PP 0x1F000

Register.Set OMR 0x0

Data.LOAD.E1f
1dm_external_ memory.elf /LARGE
/Verify

Go main
List.Mix
Register.view /SpotLight

Var .Local

I

Select the ICD device prompt
Clear all windows

Select CPU (56800E class here)
Choose JTAG frequency

Specify where read-only memory is

Reset the target and enter debug
mode

Set the extended program counter PP
(not PC!) to the begin of the boot
flash. The statement is redundant in
this case, but remember the
execution without loading a program
starts here.

Prepare access to memory by using
operating mode 0

Load the application with option
large memory model and verify the
process

Run and break at main/()
Open source window 2y
Open register window 2

Open window with local variables *)

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

DSP56K Debugger | 9

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

The JTAG lines are not connected correctly.
The target has no power.
The pull-up resistor between the JTAG[VCCS] pin and the target VCC is too large.

The target is in reset:

The debugger controls the processor reset and use the RESET line to reset the CPU on every
SYStem.Up. Therefore no external R-C combination or external reset controller is allowed.

There is logic added to the JTAG state machine:

By default the debugger supports only one processor in one JTAG chain. If the processor is the
only one member of a JTAG chain the debugger has to be informed about the target JTAG chain
configuration. Use the SYStem.CONFIG command to specify the position of the device in the
JTAG-chain. Debuggers for DSP56000 and DSP56100 do not support the SYStem.CONFIG
options! For the DSP56800 chips the support depends to the license. There is a license upgrade
available which also allows to debug 56800E core based chips. For Multicore DSP56300
systems e.g. DSP56720 or DSP56721 a Multicore License is necessary.

Wrong CPU is selected
JTAG clock is to high, especially for 56800E core based processors

CPU executed illegal code and is in a bad state that can be only be reverted by re-powering the
target. To avoid this situations first plug the debugger to the target, then power the target. The
debugger will keep the target in RESET state until the command SYStem.Up was successful.

There are additional loads or capacities on the JTAG lines.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach DSP56K Debugger | 10

https://support.lauterbach.com/kb

Configuration

The processor type must be selected by the SYStem.CPU command before issuing any other target related
commands.

On-chip Flash Programming and Debugging on 56F8xxx Derivatives

TRACE32 offers target based flash programming for the internal flash on the 56F8xx and 56F8300
derivative. Before accessing the flash the device has to be configured. Example scripts for programming and
debugging can be found in:

~~ldemo/dsp56800/flash and ~~/demo/dsp56800e/compiler/mwerks/56f8323

Configuration for flash programming:
. Select the CPU with SYStem.CPU and use SYStem.Up to enable debug mode.

J Optional: Adjust the processors system clock (SYS_CLK) to allow a faster JTAG communication
and shorter flash algorithm runtime.

Consult the processors architecture manual for the right PLL and Clock settings. An example for
the 56F8323 can be found in ~~/demo/dsp56800e/hardware/dsp568323demo/systemup.cmm

J Set the chip configuration register and peripherals to enable access to the memory sections with
flash.

Check the processor manual for correct setting of SR, OMR registers (especially EX bit and
MODE bits) and the chip select peripheral register. The exact configuration depends on your
application. Use the commands Register.Set and Data.Set to modify these registers.

. Configure the Flash programming

Use the TRACE32 commands FLASH.Create and FLASH.TARGET to inform the debugger about
Flash memory sections and the used flash algorithm. TRACES32 provides example scripts for all
known derivatives with the configuration EX=0 and Mode=0. Look in the
~~/demo/dsp56800/flash and ~~/demo/dsp56800¢e/flash directories for these scripts.

The implementation of the FLASH.Create command differs from the standard:

- The physical range addresses are counted in words.
- The sector size is passed in bytes.
- The bus width is fixed to “Word”.

- Additional access class parameter for 56800 and 56800E family.

56800 family: An additional parameter after the access size parameter is necessary. The 32 bit
parameter tells the target program the address of the flash controller base register and the flash
memory class to use. Bit 0..15 of this parameter give the base address of the flash controller
registers, bit 16..31 specify the access class. Access class:

0 : Program flash memory or boot flash memory
1 : Data flash memory

©1989-2024 Lauterbach DSP56K Debugger | 11

Example:

; Program flash, control base is 0x1020

FLASH.Create 1. P:0x0000--0x7bff 0x200 TARGET Word 0x01020
; Data flash, 0x10000 + control base 0x1060

FLASH.Create 2. X:0x1800--0x1fff 0x200 TARGET Word 0x11060

56800E family: An additional parameter after the access size parameter is necessary that tells
the target program about the flash memory class. Access class:

1 : Boot flash
2 : Program flash
3 : Data flash.

Example:

; Boot Flash

FLASH.Create 1. P:0x020000--0x020FFF 0x200 TARGET Word 1
; Program Flash

FLASH.Create 2. P:0x000000--0x003FFF 0x400 TARGET Word 2
; Data Flash

FLASH.Create 3. X:0x001000--0x001FFF 0x200 TARGET Word 3

J Enable Flash programming and download application

Use FLASH.AUTO ALL to enable cached write access to the flash memory and download your
application with Data.Load. Alternatively it is also possible to use FLASH.Erase and
FLASH.Program, especially when large memory blocks have been changed.

. Disable Flash programming with FLASH.AUTO OFF or FLASH.Program OFF.

©1989-2024 Lauterbach DSP56K Debugger | 12

Configuration for debugging in flash:

Select the CPU with SYStem.CPU and use SYStem.Up to enable debug mode.

Load Symbols

Assuming that the application is already programmed into flash, load the symbols with the help of
the TRACE32 command Data.Load with the additional parameters /NoCODE, /NOREG, /AS and
optional /LARGE if you use the large memory model.

Configure the flash programming

Execute start-up code to configure the device

The start-up code of your application includes normally instructions to configure the chip
registers and peripherals. You can execute the start-up code with the TRACES32 instruction “Go
main /ONCHIP”. The command lets the processor execute the code and breaks at main with the
help of an on-chip breakpoint.

Adjust JTAG-Clock and enable flash memory for write access.

Assuming that the PLL is initialized correctly by the start-up code, the JTAG frequency can be
optimized to allow faster communication. The TRACE32 command FLASH.AUTO ALL enables
the flash for writing. This is necessary for debugging in flash. The executed program code should
not change the system clock (SYS_CLK) otherwise the flash clock divider (can only be set one
time after reset) and JTAG frequency can become invalid.

Debug your application

The step-over function uses asm single steps to perform, because this safes flash life cycles. For
faster operation it is better to use break and go commands.

Shutdown the processor with FLASH.AUTO OFF and SYStem.Down to replace the software
breakpoints with the original application code.

©1989-2024 Lauterbach DSP56K Debugger | 13

DSP56K Specific Implementations

Breakpoints

There are two types of breakpoints available: Software breakpoints and on-chip breakpoints.

Software Breakpoints

Software breakpoints are the default breakpoints for program breakpoints. A software breakpoint is

implemented by patching a break code into the memory.

There is no restriction in the number of software breakpoints.

On-chip Breakpoints

The resources for the on-chip breakpoints are provided by the CPU.

The following list gives an overview of the on-chip breakpoints for the DSP56K:

o On-chip breakpoints: Total amount of available on-chip breakpoints.

. Instruction breakpoints: Number of on-chip breakpoints that can be used to set Program
breakpoints into ROM/FLASH/EEPROM.

J Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

J Data breakpoint: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an
address.

On-chip Instruction Read/Write Data
Breakpoints Breakpoints Breakpoints Breakpoint

DSP56K —

56k/5630 | 2 2 2

0/56800 1 1 1

56100

DSP 2 up to 2 single up to 1 single —

56300 address address

56800E

©1989-2024 Lauterbach

DSP56K Debugger

14

CPU specific SYStem Settings and Restrictions

SYStem.CPU Select the used CPU
Format: SYStem.CPU <cpu>
<cpu>: 56002 | 56004 | 56005 | 56006 | 56007 (56000 processors)

56301 | 56302 | 56303 | 56307 | 56309 | 56311 | 56321 | 56362 | 56364 | 56366
| 56367 | 56371 (56300 processors)

56801 | 56803 | 56805 | 56807 | 56809 | 56811 | 56827 (56800 processors)
56852 | 56853 | 56854 | 56855 | 56857 | 56858 (56800E 5685x processors)

56F8322 | 56F8323 | 56F8345 | 56F8346 | 56F8347 | 56F8355 | 56F8356 |
56F8357 | 56F8365 | 56F8366 | 56F8367 (56800E 56F83xx processors)

56F8122 | 56F8123 | 56F8145 | 56F8146 | 56F8147 | 56F8155 | 56F8156 |
56F8157 | 56F8165 | 56F8166 | 56F8167 (56800E 56F81xx processors)

56F8013 | 56F8014 (56800E 56F80xx processors)

Selects the processor type.

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

©1989-2024 Lauterbach DSP56K Debugger | 15

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)
Enable Real-time memory access during program execution to target is enabled.

CPU (deprecated)

Denied (default)

Real-time memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

For more information, see below.
SYStem.Mode Establish the communication with the target
Format: SYStem.Mode <mode>
SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down
NoDebug
Go
Attach
Up
Down Disables the debugger (default). The state of the CPU remains unchanged. The
JTAG port is tristated.
NoDebug Disables the debugger. The state of the CPU remains unchanged. The JTAG
port is tristated.
Go Resets the target and enables the debugger and start the program execution.
Program execution can be stopped by the break command or external trigger.
Attach User program remains running (no reset) and the debug mode is activated.

After this command the user program can be stopped with the break command
or if any break condition occurs.

©1989-2024 Lauterbach

DSP56K Debugger | 16

Resets the target, sets the CPU to debug mode and stops the CPU. After the

Up
execution of this command the CPU is stopped and all register are set to the
default level.

StandBy Not available for DSP56K.

©1989-2024 Lauterbach DSP56K Debugger | 17

SYStem.CONFIG.state Display target configuration

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab:
DebugPort or JTAG.
DebugPort Informs the debugger about the debug connector type and the

communication protocol it shall use.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.

©1989-2024 Lauterbach DSP56K Debugger | 18

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE <core>
<parameter>: DRPRE <bits>
(JTAG): DRPOST <bits>

IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel </evel>
TriState [ON | OFF]
Slave [ON | OFF]

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain
Example.

For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

g
CORE For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.
Further information can be found in SYStem.CONFIG.CORE.
DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of

interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

©1989-2024 Lauterbach DSP56K Debugger | 19

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nNRESET).

©1989-2024 Lauterbach DSP56K Debugger | 20

Daisy-Chain Example

TDl——-® Core A —Core B p Core C—» Core D +—» TDO

Chip 0 Chip 1

Below, configuration for core C.

Instruction register length of
. Core A: 3 bit
. Core B: 5 bit
. Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B
SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C i1s Core 0 in Chip 1

©1989-2024 Lauterbach DSP56K Debugger | 21

TapStates

0 Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR

© 00 N o 0o~ W N =

—_ - e e —d
o A~ WO N =+ O

Test-Logic-Reset

©1989-2024 Lauterbach DSP56K Debugger | 22

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1.0

<core_index>: 1...k

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips
Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

©1989-2024 Lauterbach DSP56K Debugger | 23

SYStem.Option.COP Enable WATCHDOG

Format: SYStem.Option.COP [ON | OFF]

Default: OFF.

The watchdog remains active when this option is set to ON. This option is not necessary for the 56800E
processors because their watchdog is disabled automatically in debug mode.

SYStem.Option.DE Enable DE line

Format: SYStem.Option.DE [ON | OFF]

Default: ON.

Enables the use of the /DE line on the JTAG connector. This increases the speed of the debugger for 56300
and 56800 processors. The 56800E processors can perform the SYStem.Up command faster when DE is

activated.
SYStem.Option.IMASKASM Disable interrupts while single stepping
Format: SYStem.Option.IMASKASM [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step. For 56800E processors IMASKASM ON is necessary for HLL stepping
and stepping from software breakpoints.

©1989-2024 Lauterbach DSP56K Debugger | 24

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Format: SYStem.Option.IMASKHLL [ON | OFF]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

SYStem.Option.SoftBreakFix Enables “SoftBreakFix” patch
Format: SYStem.Option.SoftBreakFix [ON | OFF]
Default: OFF.

If enabled an experimental patch gets active, which allows to set breakpoints in delay slots of conditional
branches (only 56800E processors). The patch is only useful, if the “pad pipeline” options for compiler and
assembler in the Metrowerks Codewarrior are disabled. The patch can have strange side effects e.g. in code
which reads data from p memory (case statements) or the debugger halts near a breakpoint.

©1989-2024 Lauterbach DSP56K Debugger | 25

SYStem.JtagClock Define JTAG clock

Format: SYStem.JtagClock <rate>
SYStem.BdmClock <rate> (deprecated)

<fixed>: 976. ... 15 000 000.

Selects the frequency for the debug interface.

J For a fast setup of the clock speed the pre-configured buttons can be used to enter the clock
speed. These are the most used frequencies fixed. The default frequency for the fixed clock is
1 MHz.

o The clock speed depends on the speed of the processor. Especially the 56800E processors

need a frequency lower or equal to 500000.Hz at SYStem.Up. After initializing the PLL to a core
clock of 120 MHz the JTAG clock can be increased up to 15 MHz. The other processors can
operate with the default JTAG clock setting at SYStem.Up.

NOTE: Buffers, additional loads or high capacities on the JTAG/COP lines reduce the
debug speed.

©1989-2024 Lauterbach DSP56K Debugger | 26

General Restrictions

SYS_CLK cannot be
changed while flash-
programming is active

Program Modifications

Setting the PC

Breakpoints in
L: memory

Breakpoints on second
XAB access on 56100

Program counter after
SYStem.UP

Debugging with
interrupts

JTAG Multi Core
configuration

Software Breakpoints in
hardware supported
REP-loops

The flash clock divider depends on the sys_clk. Since the flash clock
diver can only be set one time after system up, the flash clock
divider cannot be adapt to a modified system clock (SYS_CLK). The
restriction can cause a “flash timing error”

When the program is modified, the contents of the PIL and PDB
registers are not changed. If the modified address is already
fetched, the processor will execute the old instructions. Modifying
the PIL or PDB register, or setting the PC will cure this problem.
Program modifications by the debugger, like software breakpoints,
consider all pipeline effects.

In cases where the program counter consists of the PC register and
extension bits in SR register, the program counter can be set by the
register PP.

Setting the PC causes the execution of a jump instruction. Pending
REP instructions will be canceled.

Breakpoints in L: memory will be set to the Y: memory class.

Must be set by using the Y: memory access class.

In some cases the program counter after System.Up is not placed at
the begin of the boot flash.

When IMASKHLL or IMASKASM is enabled the debugger won’t
update correctly the interrupt level bits in the SR register in case the
core is placed into the highest priority.

The settings in the SYStem.CONFIG window are only active for
56300 with Multicore License or 56800 and 56800e core based
chips with the license type DSP56800. You can view your license
type with license.list.

For the DSP56300 family setting a program software breakpoint on
the instruction following a REP instruction and using the Go-
command to continue will result in invalid loopcounter register LC.
Code example:

= [B::Data.List]

M Step | B Over || 4 Mest | ¢ Fetun| ¢ Up | p Go | 1l Break |

breakpoint addr/line |code mnemonic comment
P:000200 (000000 nop
P 1000201 |0603A0 rep
P:000202 |000008 nc
P:000202 (000000 nop

©1989-2024 Lauterbach

DSP56K Debugger | 27

Software breakpoints in
hardware supported
DO-loops

Possible real-time viola-
tion using onchip pro-
gram breakpoints

If using software breakpoints the original instruction on the
breakpoint is replaced (invisible to the user) by a debug instruction.
The DSP executes the debug instruction, decrements the loop
counter register LC and then halts the system by entering debug
mode. Using the Go-command the debug instruction is replaced by
the original instruction which is then executed. This will decrement
the loop counter register LC one more time which is invalid.

To avoid this behavior do not use breakpoints within a hardware
supported REP-loop.

For the DSP56300 family proper operation of DO-loop, DOR-loop or
DO-forever-loop is only guaranteed if no software breakpoints are
set near the end of the loop at loopaddress-2, loopaddress-1 or
loopaddress.

In HLL debugging mode setting software breakpoints near the end
of HLL-loops of any kind must be handled with care. To avoid this
behavior use on-chip breakpoints for critical applications.

Code example:

[|[B::Data.List]

[l Step J(_wE Over][3§ Next [Retum](_ @ Up][B Go | 1N Break J[2] Mode
breakpoint addr/Tine code mnemonic

P:000200 [DE0880000205 do BO®E,0%209

:000202 (nop

;000203 nop
:000204 nop
:000205 inc

nap

If using software breakpoints the original instruction on the
breakpoint is replaced (invisible to the user) by a debug instruction.
The DSP halts after debug is executed. Prior to the next Go- or
Step-command debug is replaced by the original instruction and the
program counter is moved back onto the original instruction. Setting
the program counter on instructions near the loop-end will
decrement the loop counter register LC.

Using on-chip breakpoints of the DSP56300 family may violate

real-time execution under the following conditions:

. Setting on-chip breakpoints on the next three instructions fol-
lowing conditional branches, jumps, loop-breaks or condition
calls to subroutines.

. Setting on-chip breakpoints on the instruction that is a branch
target of conditional branches, jumps, loop-breaks or condi-
tional calls to subroutines if the conditional branch, jump,
break or call is not taken.

J Setting on-chip breakpoints on instructions that are executed
in parallel.
. Setting on-chip breakpoints on the instruction following a

hardware supported REP-loop.

©1989-2024 Lauterbach

DSP56K Debugger | 28

An onchip program breakpoint may get triggered even if the program
counter is not directly on the given program memory location of the
breakpoint. This is caused by the pipeline decode and prefetch
mechanism and the parallel execution capabilities of the DSP.

If the DSP is halted by an on-chip breakpoint the debugger spots the
current program counter and compares it with all on-chip breakpoint
addresses. This is to decide which breakpoint has triggered. Under
the above conditions sometimes no match can be found and the
debugger continues execution. This behavior violates real-time
execution and is signaled to the user in the state line by setting the
spot breakpoint active flag.This behavior also applies to debugging
in HLL mode.

Go [other || previous |
HLL UP
To avoid real-time violation, set on-chip breakpoints on instructions

which do not meet the above conditions or try using software
breakpoints instead.

Range of fractional For the DSP56300 family the range of fractional numbers which can
numbers be entered by using the command FPU.SET is limited to:
. -1.0 to 0.9999999999999929 for the registers X and Y.

. -256.0 to 255.9999999999999997 for the registers A and B.
Entering numbers outside this ranges is not supported by the DSP
and will lead to invalid displayed fractional numbers.

©1989-2024 Lauterbach DSP56K Debugger | 29

FPU

Format: FPU.view

Format: FPU.Set <register> <value>

view Display accumulator registers as fractional numbers.
FPU.Set Changes accumulator registers in fractional number format.

fiil B::FPU.view

»1 =1.0 X . oo=1.0

0.9999999 . Y 0.9999999403953481
0.9999999 . & 0.9999999403953481191
0.0 . B =256.0000000000000001

!
1
1]

©1989-2024 Lauterbach DSP56K Debugger | 30

TrOnchip Commands

The breakpoint registers on the ONCE debugger can be used to monitor data or program access in real-
time. They are automatically set, when a read or write breakpoint is set. On the 56300 family it is possible to
trigger on access sequences to two different addresses.

TrOnchip.state Opens configure panel

Format: TrOnchip.state

Control panel to configure the on-chip breakpoint registers.

DSP56300:
5 B::TrOnchip
tronchip . — Mode —A . —B
® OFF ® Read ® Read
CONVert () ADRB) Wite) Wiite
[DMa () AANDB () Aecess () Access
" (O AAFTERB .

Count . | (O BAFTERA
1.

TrOnchip.A Trigger cycle

Format: TrOnchip.A <cycle>
TrOnchip.B <cycle>

<cycle>: Read
Write
Access

Defines on which cycle the trigger system triggers (only 56300).

©1989-2024 Lauterbach DSP56K Debugger | 31

TrOnchip.AANDB Triggers if event occurs on unit A and unit B

Format: TrOnchip.AANDB

The on-chip breakpoint triggers, if an event occurs on trigger unit A and on trigger unit B (only 56300).

TrOnchip.AAFTERB Triggers if event occurs first on unit A and then on unit B

Format: TrOnchip.AAFTERB

The on-chip breakpoint triggers, if an event occurs first on trigger unit A and then on trigger unit B (only
56300).

TrOnchip.AORB Triggers if event occurs on unit A or unit B

Format: TrOnchip.AORB

The on-chip breakpoint triggers, if an event occurs on trigger unit A or on trigger unit B (only 56300).

TrOnchip.B Trigger cycle

Format: TrOnchip.A <cycle>
TrOnchip.B <cycle>

<cycle>: Read
Write
Access

Defines on which cycle the trigger system triggers (only 56300).

©1989-2024 Lauterbach DSP56K Debugger | 32

TrOnchip.BAFTERA Triggers if event occurs first on unit B and then on unit A

Format: TrOnchip.BAFTERA

The on-chip breakpoint triggers, if an event occurs first on trigger unit B and then on trigger unit A (only
56300)

TrOnchip.Count Delay counter

Format: TrOnchip.Count <count>

Defines the delay counter for the trigger system. A value of 1 means no delay (only 56300).

TrOnchip.DMA Trigger on DMA access

Format: TrOnchip.DMA [ON | OFF]

Trigger on DMA access instead of regular memory access (only 56300).

TrOnchip.Mode Defines used triggers
Format: TrOnchip.Mode <mode>
<mode>: OFF
AORB
AANDB
AAFTERB
BAFTERA

Defines which triggers are used and in what combination (only 56300). In OFF mode the triggers are used
for the regular read/write breakpoints. In the other modes the Alpha and Beta breakpoints are used to
define the memory addresses.

©1989-2024 Lauterbach DSP56K Debugger | 33

TrOnchip.OFF Disable on-chip trigger unit

Format: TrOnchip.OFF

Disables on-chip trigger unit.

TrOnchip.RESet Resets settings

Format: TrOnchip.RESet

Resets the trigger system to the default state.

©1989-2024 Lauterbach DSP56K Debugger | 34

Floating Point Formats

F24 Fractional fixed point 24 bit

F48 Fractional fixed point 48 bit

F16 Fractional fixed point 16 bit

F32 Fractional fixed point 32 bit

M56 Floating point format (56002)

leeeS Floating point format (56100)

NOTE: Fractional floating point numbers are always displayed with a fixed precision, i.e. a
fixed number of digits. Small fractional numbers can have many non relevant digits
displayed.

Integer Access Keywords

Word Word (16 bit)

TByte Triple byte (24 bit)

Long Double Word (32 bit), upper and lower word swapped
HByte Hexabyte (48 bit)

Quad Tertiary Word (64 bit), upper and lower word swapped

©1989-2024 Lauterbach DSP56K Debugger | 35

ONCE Connector (56002/56100)

This connector is obsolete.

Signal
DSI
DSO
DSCK
DR-
RESET-

Pin

[N O W] =

Signal

GND
GND
GND
VCC
GND

©1989-2024 Lauterbach

DSP56K Debugger

36

JTAG Connector (56300, 56800, 56800E)

Signal Pin Pin Signal
TDI 1 2 GND
TDO 3 4 GND
TCK 5 6 GND
N/C 7 8 KEY
RESET- 9 10 TMS
VCCS 11 12 N/C
DE- 13 14 TRST-
Pins Con- Description Recommendations
nection
1 TDI Test Data In Not 56300: If there are multiple chip devices on the
JTAG chain, connect TDI to the TDO signal of the
previous device in the chain.
2,4,6 GND System Connect to digital ground.
Ground Plan
3 TDO Test Data Out Not 56300: If there are multiple chip devices on the
JTAG chain, connect TDO to the TDI signal of the
next device in the chain.
5 TCK Test Clock Add 10 kQ pull-up resistor to VCC.
7,12 NC No Connect Leave unconnected.
8 KEY Mechanical Pin should be removed.
Keying
9 RESET Reset May be tied to HRESET.
10 TMS Test Mode None.
Select
11 VCCS VCC Sense Connect to Chip /0O voltage VDDH through a 10 Q
current limiting resistor.

©1989-2024 Lauterbach

DSP56K Debugger |

37

14 TRST

Test Reset

TRST has an internal pull-up resistor, so no external
pull-up or pull-down resistor is required. However, a
10 kQ pull-down resistor should added to GND on this
signal to keep the JTAG in reset mode while the
device is operating regularly. When using more than
one debug dongle driving this signal it is not
recommended to pull down the signal in debug mode,
because during the dongle source switch the signal
output is set to tristate.

13 DE

Debug Enable

Add 10 kQ pull-up resistor to VCC. This Signal is not
needed. If not available, set SYStem.Option.DE OFF.

©1989-2024 Lauterbach

DSP56K Debugger |

38

Memory Classes

Memory Class Description
X X: data memory space
Y Y: data memory space or second XAB access on 56100 for breakpoints

(not 56800, not 56800E)

L L: data memory space which is X:Y chained data memory
(not 56100, not 56800, not 56800E)

P P: programm memory space

©1989-2024 Lauterbach DSP56K Debugger | 39

	DSP56K Debugger
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Quick Start
	Troubleshooting
	SYStem.Up Errors

	FAQ
	Configuration
	On-chip Flash Programming and Debugging on 56F8xxx Derivatives

	DSP56K Specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints

	CPU specific SYStem Settings and Restrictions
	SYStem.CPU Select the used CPU
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.Option.COP Enable WATCHDOG
	SYStem.Option.DE Enable DE line
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.SoftBreakFix Enables “SoftBreakFix” patch
	SYStem.JtagClock Define JTAG clock
	General Restrictions

	FPU
	TrOnchip Commands
	TrOnchip.state Opens configure panel
	TrOnchip.A Trigger cycle
	TrOnchip.AANDB Triggers if event occurs on unit A and unit B
	TrOnchip.AAFTERB Triggers if event occurs first on unit A and then on unit B
	TrOnchip.AORB Triggers if event occurs on unit A or unit B
	TrOnchip.B Trigger cycle
	TrOnchip.BAFTERA Triggers if event occurs first on unit B and then on unit A
	TrOnchip.Count Delay counter
	TrOnchip.DMA Trigger on DMA access
	TrOnchip.Mode Defines used triggers
	TrOnchip.OFF Disable on-chip trigger unit
	TrOnchip.RESet Resets settings

	Floating Point Formats
	Integer Access Keywords
	ONCE Connector (56002/56100)
	JTAG Connector (56300, 56800, 56800E)
	Memory Classes

