LAUTERBACH A

Converter from GDB
to PRACTICE

Converter from GDB to PRACTICE

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTS ciceeiiiiiiiemns s inisess s snnsss s s rassss e e s s e s ee e m s e e ea s m s e b e a s mn e e R e a s annn e nnnnnn =
(€1 = =TT o oo o =
Converter from GDB to PRACTICEcccociiiiiiisnnssiess s s s s s sassssssss sassss snssmssas 1
L oo [T o 3

LIS THT T 1T a T TR 0o)Y =T Y 4
00 4 V=T g (=T gl Ty T 2= o T 5
Converter-Specific Reserved ldentifiers ... 6
Using History Convenience Variables in CMM Scriptccccoiivimmininnnrnncsssssssssssnenaes 7
Using PRACTICE Commands from GDB SCIHPtSccccciivmmmmmmnisemsmmnnssesssnnsssssssssssssssssenns 8

(ST 07 o] T 5 1= o I 0670 T 0T 4 F- T4 Lo £ 9
Getting In and Out of GDB (TRACES32) 9
Running Programs Under GDB (TRACE32) 9
Stopping and Continuing 10
Examining the Stack 13
Examining Source Files 14
Examining Data 15

C Preprocessor Macros 16
Examining the Symbol Table 17
Using GDB (TRACES2) with Different Languages 18
Altering Execution 18
GDB (TRACE32) Files 18
Specifying a Debugger Target 19
Controlling GDB (TRACES32) 19
Command Files 20
Controlled Output 20

User Interface 21
Others 21
©1989-2024 Lauterbach Converter from GDB to PRACTICE | 2

Converter from GDB to PRACTICE

Version 06-Jun-2024

Introduction

This document describes how to use the GNU Debugger to PRACTICE Script Converter. The executable
file can be found in the TRACES32 installation directory under ~~/demof/tools/gdb_converter.

©1989-2024 Lauterbach Converter from GDB to PRACTICE | 3

Launching Converter

Format:

<input_file>

<output_file>

converter [-a=ARCH_NAME{,ARCH_NAME}] [-e <error_file>] [-d] [-h] [-1]
<input_file> <output _file>

Input GDB script file

Output PRACTICE cmm file

Select target architectures. This option uses architecture definitions from
architectures.def file. Multiple architectures can be defined, however program
counter and data memory class definitions are taken only from first defined
architecture.

Redirect all warning and error messages to <error_file>.

Print not supported GDB commands to output file as commented lines instead
of generating errors.

Print line numbers.

Print help.

©1989-2024 Lauterbach

Converter from GDB to PRACTICE |

4

Converter Limitations

The converter supports only C expressions in commands.

Following convenience variables are not supported by converter:

$_exitcode, $cdir, $tpnum, $trace_file, $trace_frame, $trace_func, $trace_line, $tracepoint

Location

Limitations

FILE:LINENUM

not supported

FILE:FUNCTION

not supported

Other limitations for commands are listed in “chapter 7 — Supported commands”

©1989-2024 Lauterbach

Converter from GDB to PRACTICE

5

Converter-Specific Reserved ldentifiers

Following identifiers cannot be used for convenience variables:

_Vo,_V1,_ V2,..
history_0x0, history_0x1, history 0x2, ...
breakpoints_exist_0x0, breakpoints_exist_0x1, breakpoints_exist_0x2, ...

breakpoints_address_0x0, breakpoints_address_0x1, breakpoints_address_0x2, ...

x_default_address, history_last, history_before_last, history_count, breakpoints_count.

Following identifiers are used for labels in PRACTICE scripts generated by converter. Using these identifiers
may be UNPREDICTABLE

_Lo,_L1,_L2,..
update_history_values, get_history_back_value,

breakpoints_set, breakpoints_get_address_and_delete, breakpoints_get_address,

breakpoints_get_exist, breakpoints_print_list

©1989-2024 Lauterbach Converter from GDB to PRACTICE | 6

Using History Convenience Variables in CMM Script

GDB history variables - $, $$, $n, $$n — can be accessed in CMM output script by using following

equivalents:
$: &history_last
$$: &history_before_last
$n: &history_0xN

(N is hexadecimal representation of n. No leading O's are allowed in N)

$$n: This variable is read-only and can be accessed by calling subprogram
get_history_back_value:

GOSUB get_history_back_value n.

ENTRY &value

&value contains the history value after get_history_back_value subprogram returns. “n” must be followed
by dot, to be treated as decimal number in PRACTICE script.

©1989-2024 Lauterbach Converter from GDB to PRACTICE | 7

Using PRACTICE Commands from GDB Scripts

There is the possibility to execute PRACTICE command directly from GDB script. To execute PRACTICE
command from GDB script, use the following construction:

I #!<practice_command>
For example:

#!system.up

Construction above must be placed in an empty line.
Architecture definitions file format (architectures.def)

architectures.def file allows converter to recognize target registers such as $pc, $sp, $r0 etc. in GDB script
file and treat them properly while converting. Names of architectures comes directly from sys.cpou TRACE32
window. Original architectures.def file contains over 1200 architecture names.

NOTE: There is one exception with architecture names: 64-bit MIPS names contains '-64'
suffix to distinguish them from 32-bit MIPS, for example MIPS5K-64.

Format of each entry in architectures.def:

<cpu>
<name>ARM7TDMI< /name>
<data_memory class>d</data_memory class>
<program counter>pc</program counter>
<reg>pc</reg>
<reg>r0</reg>
<reg>rl</reg>

</cpu>

If register set for some architecture is the same as for previously defined architecture,
<reg_reference>referenced_architecture_name</reg_reference> can be used instead of sequence of
<reg></reg>

<cpu>
<name>ARM7TDMI< /name>
<data_memory class>d</data_memory class>
<program_counter>pc</program counter>
<reg reference>ARM7/</reg reference>
</cpu>

©1989-2024 Lauterbach Converter from GDB to PRACTICE | 8

Supported Commands

Getting In and Out of GDB (TRACE32)

Operations PRACTICE command

quit QUIT

shell oS

set logging file AREA.OPEN A000 </og_file>

Running Programs Under GDB (TRACE32)

Operations PRACTICE command

cd CD

Limitations: Argument version of 'run' is not supported.

r GO
run

Limitations: Argument version of 'start' is not supported.

start GO main
pwd PWD
attach SYSTEM.MODE.ATTACH

Limitations: Argument version of 'attach' is not supported.

i threads TASK.THREADS
info threads

©1989-2024 Lauterbach Converter from GDB to PRACTICE | 9

Stopping and Continuing

Operations PRACTICE command

i program IF RUN()

info program PRINT "The debugged program is running."
ELSE

PRINT "The debugged program is not running."

rwatch VAR.BREAK.SET <expr>/READ
Limitations: Target registers ($pc, $sp, ...) and history $$n cannot
be used in expression.

watch VAR.BREAK.SET <expr> /WRITE
Limitations: Target registers ($pc, $sp, ...) and history $$n cannot
be used in expression.

interrupt BREAK

clear BREAK.DELETE
Limitations: Non-argument version of ‘clear' is not supported.
'Clear' command doesn't interact with 'info breakpoints' command —
Listing of breakpoints contains cleared breakpoints.

d BREAK.DELETE

delete

delete breakpoints

Limitations: This commands interacts only with following
commands: break, hbreak, tbreak, thbreak.

dis
disable
disable breakpoints

BREAK.DISABLE

Limitations: This commands interacts only with following
commands: break, hbreak, tbreak, thbreak.

enable
enable breakpoints

BREAK.ENABLE

Limitations: This commands interacts only with following
commands: break, hbreak, tbreak, thbreak.

i breakpoints
info breakpoints

BREAK.LIST

Limitations: If last breakpoint listed has been set using line
number, default examine address command cannot be used by “x”
command. Using this address will cause PRACTICE script error.
Only non-argument version of 'info breakpoints' is supported.

break

BREAK.Set </ocation>

Limitations: Non-argument version of 'break’ is no supported.
THREADNUM parameter is not supported by TRACE32. Target
registers ($pc, $sp, ...) and history values $$n are not supported in
CONDITION expression.

©1989-2024 Lauterbach

Converter from GDB to PRACTICE | 10

Operations PRACTICE command

hbreak BREAK.Set </ocation>/HARD

Limitations: Non-argument version of 'hbreak' is no supported.
THREADNUM parameter is not supported by TRACE32. Target
registers ($pc, $sp, ...) and history values $$n are not supported in
CONDITION expression.

tbreak BREAK.Set </ocation> /IDISABLEHIT

Limitations: Non-argument version of 'tbreak’ is no supported.
Temporary breakpoint deleting after hit is not supported by
TRACERS2. Breakpoint will be disabled instead. THREADNUM
parameter is not supported by TRACES32. Target registers ($pc,
$sp, ...) and history values $$n are not supported in CONDITION
expression.

thbreak BREAK.Set </ocation>/HARD /DISABLEHIT

Limitations: Non-argument version of 'thbreak' is no supported.
Temporary breakpoint deleting after hit is not supported by
TRACERS2. Breakpoint will be disabled instead. THREADNUM
parameter is not supported by TRACE32. Target registers ($pc,
$sp, ...) and history values $$n are not supported in CONDITION
expression.

finish GO.RETURN
STEP

Limitations: Printing return value is not supported.

c GO

fg

continue Limitations: Argument version of ‘continue' is not supported.
advance GO <location>

Limitations: Program will not stop after exiting from current stack
frame. THREADNUM and CONDITION are not supported.

u GO <location>
until
Limitations: Non-argument version of 'until' is not supported.
THREADNUM and CONDITION are not supported.

n MODE.HLL
next [REPEAT <n>] STEP.OVER
s MODE.HLL
step STEP [<n>]
ni MODE.MIX
nexti [REPEAT <n>] STEP.OVER

©1989-2024 Lauterbach Converter from GDB to PRACTICE | 11

Operations PRACTICE command

si MODE.MIX
stepi STEP [<n>]
i watchpoints BREAK.LIST

info watchpoints
Limitations: Argument version of 'info watchpoints' is not
supported.

awatch VAR.BREAK.SET <expr> /R /W

Limitations: Target registers ($pc, $sp, ...) and history values $$n
cannot be used in <expr>.

©1989-2024 Lauterbach Converter from GDB to PRACTICE | 12

Examining the Stack

Operations PRACTICE command

up GO.UP [<n>]
Limitations: Printing stack frame is not supported.

up-silently GO.UP [<n>]

i args VAR.FRAME /ARGS

info args

i frame VAR.FRAME /LOCALS /CALLER /ARGS

info frame
Limitations: Argument version of 'info frame' is not supported.

bt VAR.FRAME /NOVAR /NOCALLER [/LOCALS]

backtrace
Limitations: Only non-argument version of 'backtrace' or '‘backtrace
full' is supported.

i stack VAR.FRAME /NOVAR /NOCALLER

info stack

is Limitations: Only non-argument version of 'info stack' is supported.

info s

where VAR.FRAME /NOVAR /NOCALLER [/LOCALS]
Limitations: Only non-argument version of ‘where' or ‘where full' is
supported.

i locals VAR.LOCAL

info locals
Limitations: Only non-argument version of 'where' or 'where full' is
supported.

©1989-2024 Lauterbach

Converter from GDB to PRACTICE | 13

Examining Source Files

list

Operations PRACTICE command

disassemble MODE.MIX
DATA.LIST

I DATA.LIST

Limitations: Non argument-version of 'list' is not supported.

show directories

SYMBOL.SOURCEPATH.LIST

directory

SYMBOL.SOURCEPATH.SET <directory>

Limitations: Convenience variable $cdir is not supported as
<directory>.

©1989-2024 Lauterbach

Converter from GDB to PRACTICE

14

Examining Data

Operations PRACTICE command
i dache CTS.CACHE.STATE
info dcache

dump memory
dump binary memory

DATA.SAVE.BINARY <file> <address_range>

dump ihex memory

DATA.SAVE.INTELHEX <file> <address_range>

dump srec memory

DATA.SAVE.S1RECORD <file> <address_range>

Limitations: STRECORD is used instead of SRECORD.

dump tekhex memory

DATA.SAVE.TEKHEX <file> <address_range>

X

PRINT or DATA.PRINT

Limitations: Default parameters for 'x' command are constants
(n=1, f=x, u=w) and cannot be changed. This means that previous
X' or 'print' command has no influence on default format used by 'x'
command. 'a' and 'i' formats are not supported. For 'f' format unit
size can be either 'w' or 'g'. Other unit sizes are not supported. For
X', 'u', 't', 'c', 's' formats examined values are printed on TRACES32
AREA window. For 'd', '0', 'f' formats PRACTICE script uses
separate DATA.PRINT window for each 'x' command.

display

VAR.LOG <expr>/ONBREAK

Limitations: Because VAR.LOG needs to provide all expression at
once following rules applies when 'display' command is being used:
- All 'display' commands have to be placed in sequence, one after
another, without any blank lines between them.

- Next sequence of 'display' commands (on script execution flow),
discards previous 'display' sequence. Expressions from this
previous sequence are no longer displayed.

Only following formats of 'display' are supported: /x, /u, /t, /c, /s.

show convenience PMACRO.LIST
inspect PRINT
Limitations: Behavior the same as 'print' command.
p PRINT
print

Limitations: Only 'x', 'u', 't', 'c', 's' formats are supported.
Values are always printed with new lines.

set print asm-demangle off

SYMBOL.DEMANGLE OFF OFF

set print demangle off

SYMBOL.DEMANGLE OFF OFF

set print asm-demangle on

SYMBOL.DEMANGLE ON ON

©1989-2024 Lauterbach

Converter from GDB to PRACTICE | 15

Operations

PRACTICE command

set print demangle on

SYMBOL.DEMANGLE ON ON

i all-registers
info all-registers
i registers

info registers

REGISTER (for non-argument version)
PRINT register_name REGISTER(register_name)

dump value
dump binary value

OPEN #1 <file> /CREATE
WRITE #1 %BINARY <value>
CLOSE #1

Limitations: Raw binary format is not supported. Values are written
to file as binary numbers.

dump ihex value
dump tekhex value

OPEN #1 <file> /CREATE
WRITE #1 %HEX <value>
CLOSE #1

Limitations: 'ihex' and 'tekhex' formats are not supported. Values
are written to file as hexadeximal numbers.

append value
append binary value

IF OS.FILE(<file>)

OPEN #1 <file> /WRITE
ELSE

OPEN #1 <file>/CREATE
WRITE #1 %BINARY <value>
CLOSE #1

Limitations: Raw binary format is not supported. Values are written
to file as binary numbers.

C Preprocessor Macros

Operations

PRACTICE command

macro list

SYMBOL.LIST.MACRO

macro define

SYMBOL.NEW.MACRO <macro>

©1989-2024 Lauterbach

Converter from GDB to PRACTICE | 16

Examining the Symbol Table

info address

Operations PRACTICE command
i types SYMBOL.LIST.TYPE
info types
Limitations: Only non-argument version of 'info types' is supported.
i address DATA.PRINT V.ADDRESS(<symbol_name>)

info functions

i symbol SYMBOL.INFO <symbol>l<address>

info symbol

i classes SYMBOL.CLASS <class_name>

info classes
Limitations: Non-argument version of 'info classes' is not
supported. Only strict class_name are supported — class_name
cannot be regular expression.

i functions SYMBOL.LIST.FUNCTIONS

Limitations: Only non-argument version of 'info functions' is
supported.

i sources
info sources

SYMBOL.LIST.SOURCE

ptype VAR.TYPE <type>
Limitations: Only argument version of 'ptype' is supported.
whatis VAR.TYPE <expr>

Limitations: Target registers ($pc, $sp, ...) and history values $$n
cannot be used in <expr>.

©1989-2024 Lauterbach

Converter from GDB to PRACTICE |

17

Using GDB (TRACE32) with Different Languages

Operations

PRACTICE command

Set language

SYMBOL.LANGUAGE </anguage_name>

show language

SYMBOL.LANGUAGE

Altering Execution

Operations PRACTICE command
set Argument of 'set' command (assignment expression) is evaluated in
set variable PRACTICE script.
jump IF RUN()
BREAK
REGISTER.SET PC <jump_address>l<line_number>
call VAR <function_call>
GDB (TRACE32) Files
Operations PRACTICE command
symbol-file DATA.LOAD.AUTO <file> INoCODE
or
SYMBOL.DELETE (for non-argument version)
file DATA.LOAD.AUTO <file>
Limitations: Non-argument version of 'file' is not supported.

©1989-2024 Lauterbach

Converter from GDB to PRACTICE | 18

Specifying a Debugger Target

show architecture

Operations PRACTICE command
load DATA.LOAD.AUTO <file> [<offset>]
processor PRINT CPU()

show endian

IF SYSTEM.BIGENDIAN()

PRINT "Current endianness is big endian."
ELSE

PRINT "Current endianness is little endian."

set architecture
set processor

SYSTEM.CPU <architecture_name>

Limitations: Architecture name 'auto’ is not supported.

set endian little

SYSTEM.OPTION.BIGENDIAN OFF

set endian big

SYSTEM.OPTION.BIGENDIAN ON

Controlling GDB (TRACE32)

Operations

PRACTICE command

set history size

HISTORY.SIZE

show commands

HISTORY.TYPE

Limitations: Argument version of 'show commands' is not
supported.

set history filename
set history save off

set history save on

set history save

This commands are not supported in TRACES32 with exactly the
same behavior in as in GDB.

This commands are printed to output PRACTICE script as
commented lines.

©1989-2024 Lauterbach

Converter from GDB to PRACTICE

19

Command Files

loop_continue

Operations PRACTICE command

If This set of commands is fully supported by converter by using IF,
else GOTO and __Ln labels (n=0,1,2,...) in PRACTICE scripts.

end

while

loop_break

source DO <cmm_script_file>
Notice: 'source' argument must point to cmm practice script
Controlled Output
Operations PRACTICE command
echo PRINT
Limitations: Only following backslash-escape sequences are
supported: \\, \n, \, \”. New line is always printed after text.
output Behavior the same as 'print' command.
printf PRINT
Limitations: Only following backslash-escape sequences are
supported: \\, \n, \t, \”. Only following % formats are supported: %X,
%U, %C, %s. New line is always printed after text.

©1989-2024 Lauterbach

Converter from GDB to PRACTICE | 20

User Interface

Operations PRACTICE command
layout layout src: DATA.LIST
layout asm: MODE.MIX, DATA.LIST
layout split: MODE.MIX, DATA.LIST
layout regs: REGISTER
Limitations: “prev” and “next” parameters are not supported.
refresh SCREEN
update SCREEN
tabset SETUP.TABSIZE <n>
Others
Operations PRACTICE command
show This commands calls following supported 'show' subcommands:

show architecture
show commands
show convenience
show directories
show endian
show language
show version

show version

VERSION

©1989-2024 Lauterbach

Converter from GDB to PRACTICE |

21

	Converter from GDB to PRACTICE
	Introduction
	Launching Converter
	Converter Limitations
	Converter-Specific Reserved Identifiers
	Using History Convenience Variables in CMM Script
	Using PRACTICE Commands from GDB Scripts
	Supported Commands
	Getting In and Out of GDB (TRACE32)
	Running Programs Under GDB (TRACE32)
	Stopping and Continuing
	Examining the Stack
	Examining Source Files
	Examining Data
	C Preprocessor Macros
	Examining the Symbol Table
	Using GDB (TRACE32) with Different Languages
	Altering Execution
	GDB (TRACE32) Files
	Specifying a Debugger Target
	Controlling GDB (TRACE32)
	Command Files
	Controlled Output
	User Interface
	Others

