
MANUAL

Converter from GDB
to PRACTICE

Converter from GDB to PRACTICE

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 GDB Support .. 

 Converter from GDB to PRACTICE ... 1

 Introduction ... 3

 Launching Converter .. 4

 Converter Limitations ... 5

 Converter-Specific Reserved Identifiers ... 6

 Using History Convenience Variables in CMM Script .. 7

 Using PRACTICE Commands from GDB Scripts ... 8

 Supported Commands .. 9

 Getting In and Out of GDB (TRACE32) 9

 Running Programs Under GDB (TRACE32) 9

 Stopping and Continuing 10

 Examining the Stack 13

 Examining Source Files 14

 Examining Data 15

 C Preprocessor Macros 16

 Examining the Symbol Table 17

 Using GDB (TRACE32) with Different Languages 18

 Altering Execution 18

 GDB (TRACE32) Files 18

 Specifying a Debugger Target 19

 Controlling GDB (TRACE32) 19

 Command Files 20

 Controlled Output 20

 User Interface 21

 Others 21
Converter from GDB to PRACTICE | 2©1989-2024 Lauterbach

Converter from GDB to PRACTICE

Version 06-Jun-2024

Introduction

This document describes how to use the GNU Debugger to PRACTICE Script Converter. The executable
file can be found in the TRACE32 installation directory under ~~/demo/tools/gdb_converter.
Converter from GDB to PRACTICE | 3©1989-2024 Lauterbach

Launching Converter

Format: converter [-a=ARCH_NAME{,ARCH_NAME}] [-e <error_file>] [-d] [-h] [-l]
<input_file> <output_file>

<input_file> Input GDB script file

<output_file> Output PRACTICE cmm file

-a Select target architectures. This option uses architecture definitions from
architectures.def file. Multiple architectures can be defined, however program
counter and data memory class definitions are taken only from first defined
architecture.

-e Redirect all warning and error messages to <error_file>.

-d Print not supported GDB commands to output file as commented lines instead
of generating errors.

-l Print line numbers.

-h Print help.
Converter from GDB to PRACTICE | 4©1989-2024 Lauterbach

Converter Limitations

The converter supports only C expressions in commands.

Following convenience variables are not supported by converter:

Other limitations for commands are listed in “chapter 7 – Supported commands”

$_exitcode, $cdir, $tpnum, $trace_file, $trace_frame, $trace_func, $trace_line, $tracepoint

Location Limitations

FILE:LINENUM not supported

FILE:FUNCTION not supported
Converter from GDB to PRACTICE | 5©1989-2024 Lauterbach

Converter-Specific Reserved Identifiers

Following identifiers cannot be used for convenience variables:

Following identifiers are used for labels in PRACTICE scripts generated by converter. Using these identifiers
may be UNPREDICTABLE

__V0, __V1, __V2, ...

history_0x0, history_0x1, history_0x2, ...

breakpoints_exist_0x0, breakpoints_exist_0x1, breakpoints_exist_0x2, ...

breakpoints_address_0x0, breakpoints_address_0x1, breakpoints_address_0x2, ...

x_default_address, history_last, history_before_last, history_count, breakpoints_count.

__L0, __L1, __L2, ...

update_history_values, get_history_back_value,

breakpoints_set, breakpoints_get_address_and_delete, breakpoints_get_address,

breakpoints_get_exist, breakpoints_print_list
Converter from GDB to PRACTICE | 6©1989-2024 Lauterbach

Using History Convenience Variables in CMM Script

GDB history variables - $, $$, $n, $$n – can be accessed in CMM output script by using following
equivalents:

(N is hexadecimal representation of n. No leading 0's are allowed in N)

&value contains the history value after get_history_back_value subprogram returns. “n” must be followed
by dot, to be treated as decimal number in PRACTICE script.

$: &history_last

$$: &history_before_last

$n: &history_0xN

$$n: This variable is read-only and can be accessed by calling subprogram
get_history_back_value:
GOSUB get_history_back_value n.
ENTRY &value
Converter from GDB to PRACTICE | 7©1989-2024 Lauterbach

Using PRACTICE Commands from GDB Scripts

There is the possibility to execute PRACTICE command directly from GDB script. To execute PRACTICE
command from GDB script, use the following construction:

For example:

Construction above must be placed in an empty line.

Architecture definitions file format (architectures.def)

architectures.def file allows converter to recognize target registers such as $pc, $sp, $r0 etc. in GDB script
file and treat them properly while converting. Names of architectures comes directly from sys.cpu TRACE32
window. Original architectures.def file contains over 1200 architecture names.

Format of each entry in architectures.def:

If register set for some architecture is the same as for previously defined architecture,
<reg_reference>referenced_architecture_name</reg_reference> can be used instead of sequence of
<reg></reg>

#!<practice_command>

#!system.up

NOTE: There is one exception with architecture names: 64-bit MIPS names contains '-64'
suffix to distinguish them from 32-bit MIPS, for example MIPS5K-64.

<cpu>
<name>ARM7TDMI</name>
<data_memory_class>d</data_memory_class>
<program_counter>pc</program_counter>
<reg>pc</reg>
<reg>r0</reg>
<reg>r1</reg>
...

</cpu>

<cpu>
<name>ARM7TDMI</name>
<data_memory_class>d</data_memory_class>
<program_counter>pc</program_counter>
<reg_reference>ARM7</reg_reference>

</cpu>
Converter from GDB to PRACTICE | 8©1989-2024 Lauterbach

Supported Commands

Getting In and Out of GDB (TRACE32)

Running Programs Under GDB (TRACE32)

Operations PRACTICE command

quit QUIT

shell OS

set logging file AREA.OPEN A000 <log_file>

Operations PRACTICE command

cd CD

Limitations: Argument version of 'run' is not supported.

r
run

GO

Limitations: Argument version of 'start' is not supported.

start GO main

pwd PWD

attach SYSTEM.MODE.ATTACH

Limitations: Argument version of 'attach' is not supported.

i threads
info threads

TASK.THREADS
Converter from GDB to PRACTICE | 9©1989-2024 Lauterbach

Stopping and Continuing

Operations PRACTICE command

i program
info program

IF RUN()
PRINT "The debugged program is running."
ELSE
PRINT "The debugged program is not running."

rwatch VAR.BREAK.SET <expr> /READ

Limitations: Target registers ($pc, $sp, ...) and history $$n cannot
be used in expression.

watch VAR.BREAK.SET <expr> /WRITE

Limitations: Target registers ($pc, $sp, ...) and history $$n cannot
be used in expression.

interrupt BREAK

clear BREAK.DELETE

Limitations: Non-argument version of 'clear' is not supported.
'Clear' command doesn't interact with 'info breakpoints' command –
Listing of breakpoints contains cleared breakpoints.

d
delete
delete breakpoints

BREAK.DELETE

Limitations: This commands interacts only with following
commands: break, hbreak, tbreak, thbreak.

dis
disable
disable breakpoints

BREAK.DISABLE

Limitations: This commands interacts only with following
commands: break, hbreak, tbreak, thbreak.

enable
enable breakpoints

BREAK.ENABLE

Limitations: This commands interacts only with following
commands: break, hbreak, tbreak, thbreak.

i breakpoints
info breakpoints

BREAK.LIST

Limitations: If last breakpoint listed has been set using line
number, default examine address command cannot be used by “x”
command. Using this address will cause PRACTICE script error.
Only non-argument version of 'info breakpoints' is supported.

b
break

BREAK.Set <location>

Limitations: Non-argument version of 'break' is no supported.
THREADNUM parameter is not supported by TRACE32. Target
registers ($pc, $sp, ...) and history values $$n are not supported in
CONDITION expression.
Converter from GDB to PRACTICE | 10©1989-2024 Lauterbach

hbreak BREAK.Set <location> /HARD

Limitations: Non-argument version of 'hbreak' is no supported.
THREADNUM parameter is not supported by TRACE32. Target
registers ($pc, $sp, ...) and history values $$n are not supported in
CONDITION expression.

tbreak BREAK.Set <location> /DISABLEHIT

Limitations: Non-argument version of 'tbreak' is no supported.
Temporary breakpoint deleting after hit is not supported by
TRACE32. Breakpoint will be disabled instead. THREADNUM
parameter is not supported by TRACE32. Target registers ($pc,
$sp, ...) and history values $$n are not supported in CONDITION
expression.

thbreak BREAK.Set <location> /HARD /DISABLEHIT

Limitations: Non-argument version of 'thbreak' is no supported.
Temporary breakpoint deleting after hit is not supported by
TRACE32. Breakpoint will be disabled instead. THREADNUM
parameter is not supported by TRACE32. Target registers ($pc,
$sp, ...) and history values $$n are not supported in CONDITION
expression.

finish GO.RETURN
STEP

Limitations: Printing return value is not supported.

c
fg
continue

GO

Limitations: Argument version of 'continue' is not supported.

advance GO <location>

Limitations: Program will not stop after exiting from current stack
frame. THREADNUM and CONDITION are not supported.

u
until

GO <location>

Limitations: Non-argument version of 'until' is not supported.
THREADNUM and CONDITION are not supported.

n
next

MODE.HLL
[REPEAT <n>] STEP.OVER

s
step

MODE.HLL
STEP [<n>]

ni
nexti

MODE.MIX
[REPEAT <n>] STEP.OVER

Operations PRACTICE command
Converter from GDB to PRACTICE | 11©1989-2024 Lauterbach

si
stepi

MODE.MIX
STEP [<n>]

i watchpoints
info watchpoints

BREAK.LIST

Limitations: Argument version of 'info watchpoints' is not
supported.

awatch VAR.BREAK.SET <expr> /R /W

Limitations: Target registers ($pc, $sp, ...) and history values $$n
cannot be used in <expr>.

Operations PRACTICE command
Converter from GDB to PRACTICE | 12©1989-2024 Lauterbach

Examining the Stack

Operations PRACTICE command

up GO.UP [<n>]

Limitations: Printing stack frame is not supported.

up-silently GO.UP [<n>]

i args
info args

VAR.FRAME /ARGS

i frame
info frame

VAR.FRAME /LOCALS /CALLER /ARGS

Limitations: Argument version of 'info frame' is not supported.

bt
backtrace

VAR.FRAME /NOVAR /NOCALLER [/LOCALS]

Limitations: Only non-argument version of 'backtrace' or 'backtrace
full' is supported.

i stack
info stack
i s
info s

VAR.FRAME /NOVAR /NOCALLER

Limitations: Only non-argument version of 'info stack' is supported.

where VAR.FRAME /NOVAR /NOCALLER [/LOCALS]

Limitations: Only non-argument version of 'where' or 'where full' is
supported.

i locals
info locals

VAR.LOCAL

Limitations: Only non-argument version of 'where' or 'where full' is
supported.
Converter from GDB to PRACTICE | 13©1989-2024 Lauterbach

Examining Source Files

Operations PRACTICE command

disassemble MODE.MIX
DATA.LIST

l
list

DATA.LIST

Limitations: Non argument-version of 'list' is not supported.

show directories SYMBOL.SOURCEPATH.LIST

directory SYMBOL.SOURCEPATH.SET <directory>

Limitations: Convenience variable $cdir is not supported as
<directory>.
Converter from GDB to PRACTICE | 14©1989-2024 Lauterbach

Examining Data

Operations PRACTICE command

i dache
info dcache

CTS.CACHE.STATE

dump memory
dump binary memory

DATA.SAVE.BINARY <file> <address_range>

dump ihex memory DATA.SAVE.INTELHEX <file> <address_range>

dump srec memory DATA.SAVE.S1RECORD <file> <address_range>

Limitations: S1RECORD is used instead of SRECORD.

dump tekhex memory DATA.SAVE.TEKHEX <file> <address_range>

x PRINT or DATA.PRINT

Limitations: Default parameters for 'x' command are constants
(n=1, f=x, u=w) and cannot be changed. This means that previous
'x' or 'print' command has no influence on default format used by 'x'
command. 'a' and 'i' formats are not supported. For 'f' format unit
size can be either 'w' or 'g'. Other unit sizes are not supported. For
'x', 'u', 't', 'c', 's' formats examined values are printed on TRACE32
AREA window. For 'd', 'o', 'f' formats PRACTICE script uses
separate DATA.PRINT window for each 'x' command.

display VAR.LOG <expr> /ONBREAK

Limitations: Because VAR.LOG needs to provide all expression at
once following rules applies when 'display' command is being used:
- All 'display' commands have to be placed in sequence, one after
another, without any blank lines between them.
- Next sequence of 'display' commands (on script execution flow),
discards previous 'display' sequence. Expressions from this
previous sequence are no longer displayed.
Only following formats of 'display' are supported: /x, /u, /t, /c, /s.

show convenience PMACRO.LIST

inspect PRINT

Limitations: Behavior the same as 'print' command.

p
print

PRINT

Limitations: Only 'x', 'u', 't', 'c', 's' formats are supported.
Values are always printed with new lines.

set print asm-demangle off SYMBOL.DEMANGLE OFF OFF

set print demangle off SYMBOL.DEMANGLE OFF OFF

set print asm-demangle on SYMBOL.DEMANGLE ON ON
Converter from GDB to PRACTICE | 15©1989-2024 Lauterbach

C Preprocessor Macros

set print demangle on SYMBOL.DEMANGLE ON ON

i all-registers
info all-registers
i registers
info registers

REGISTER (for non-argument version)
PRINT register_name REGISTER(register_name)

dump value
dump binary value

OPEN #1 <file> /CREATE
WRITE #1 %BINARY <value>
CLOSE #1

Limitations: Raw binary format is not supported. Values are written
to file as binary numbers.

dump ihex value
dump tekhex value

OPEN #1 <file> /CREATE
WRITE #1 %HEX <value>
CLOSE #1

Limitations: 'ihex' and 'tekhex' formats are not supported. Values
are written to file as hexadeximal numbers.

append value
append binary value

IF OS.FILE(<file>)
OPEN #1 <file> /WRITE
ELSE
OPEN #1 <file> /CREATE
WRITE #1 %BINARY <value>
CLOSE #1

Limitations: Raw binary format is not supported. Values are written
to file as binary numbers.

Operations PRACTICE command

macro list SYMBOL.LIST.MACRO

macro define SYMBOL.NEW.MACRO <macro>

Operations PRACTICE command
Converter from GDB to PRACTICE | 16©1989-2024 Lauterbach

Examining the Symbol Table

Operations PRACTICE command

i types
info types

SYMBOL.LIST.TYPE

Limitations: Only non-argument version of 'info types' is supported.

i address
info address

DATA.PRINT V.ADDRESS(<symbol_name>)

i symbol
info symbol

SYMBOL.INFO <symbol>|<address>

i classes
info classes

SYMBOL.CLASS <class_name>

Limitations: Non-argument version of 'info classes' is not
supported. Only strict class_name are supported – class_name
cannot be regular expression.

i functions
info functions

SYMBOL.LIST.FUNCTIONS

Limitations: Only non-argument version of 'info functions' is
supported.

i sources
info sources

SYMBOL.LIST.SOURCE

ptype VAR.TYPE <type>

Limitations: Only argument version of 'ptype' is supported.

whatis VAR.TYPE <expr>

Limitations: Target registers ($pc, $sp, ...) and history values $$n
cannot be used in <expr>.
Converter from GDB to PRACTICE | 17©1989-2024 Lauterbach

Using GDB (TRACE32) with Different Languages

Altering Execution

GDB (TRACE32) Files

Operations PRACTICE command

Set language SYMBOL.LANGUAGE <language_name>

show language SYMBOL.LANGUAGE

Operations PRACTICE command

set
set variable

Argument of 'set' command (assignment expression) is evaluated in
PRACTICE script.

jump IF RUN()
BREAK
REGISTER.SET PC <jump_address>|<line_number>

call VAR <function_call>

Operations PRACTICE command

symbol-file DATA.LOAD.AUTO <file> /NoCODE
or
SYMBOL.DELETE (for non-argument version)

file DATA.LOAD.AUTO <file>

Limitations: Non-argument version of 'file' is not supported.
Converter from GDB to PRACTICE | 18©1989-2024 Lauterbach

Specifying a Debugger Target

Controlling GDB (TRACE32)

Operations PRACTICE command

load DATA.LOAD.AUTO <file> [<offset>]

processor
show architecture

PRINT CPU()

show endian IF SYSTEM.BIGENDIAN()
PRINT "Current endianness is big endian."
ELSE
PRINT "Current endianness is little endian."

set architecture
set processor

SYSTEM.CPU <architecture_name>

Limitations: Architecture name 'auto' is not supported.

set endian little SYSTEM.OPTION.BIGENDIAN OFF

set endian big SYSTEM.OPTION.BIGENDIAN ON

Operations PRACTICE command

set history size HISTORY.SIZE

show commands HISTORY.TYPE

Limitations: Argument version of 'show commands' is not
supported.

set history filename
set history save off
set history save on
set history save

This commands are not supported in TRACE32 with exactly the
same behavior in as in GDB.
This commands are printed to output PRACTICE script as
commented lines.
Converter from GDB to PRACTICE | 19©1989-2024 Lauterbach

Command Files

Controlled Output

Operations PRACTICE command

If
else
end
while
loop_break
loop_continue

This set of commands is fully supported by converter by using IF,
GOTO and __Ln labels (n=0,1,2,...) in PRACTICE scripts.

source DO <cmm_script_file>

Notice: 'source' argument must point to cmm practice script

Operations PRACTICE command

echo PRINT

Limitations: Only following backslash-escape sequences are
supported: \\, \n, \t, \”. New line is always printed after text.

output Behavior the same as 'print' command.

printf PRINT

Limitations: Only following backslash-escape sequences are
supported: \\, \n, \t, \”. Only following % formats are supported: %x,
%u, %c, %s. New line is always printed after text.
Converter from GDB to PRACTICE | 20©1989-2024 Lauterbach

User Interface

Others

Operations PRACTICE command

layout layout src: DATA.LIST
layout asm: MODE.MIX, DATA.LIST
layout split: MODE.MIX, DATA.LIST
layout regs: REGISTER

Limitations: “prev” and “next” parameters are not supported.

refresh SCREEN

update SCREEN

tabset SETUP.TABSIZE <n>

Operations PRACTICE command

show This commands calls following supported 'show' subcommands:
show architecture
show commands
show convenience
show directories
show endian
show language
show version

show version VERSION
Converter from GDB to PRACTICE | 21©1989-2024 Lauterbach

	Converter from GDB to PRACTICE
	Introduction
	Launching Converter
	Converter Limitations
	Converter-Specific Reserved Identifiers
	Using History Convenience Variables in CMM Script
	Using PRACTICE Commands from GDB Scripts
	Supported Commands
	Getting In and Out of GDB (TRACE32)
	Running Programs Under GDB (TRACE32)
	Stopping and Continuing
	Examining the Stack
	Examining Source Files
	Examining Data
	C Preprocessor Macros
	Examining the Symbol Table
	Using GDB (TRACE32) with Different Languages
	Altering Execution
	GDB (TRACE32) Files
	Specifying a Debugger Target
	Controlling GDB (TRACE32)
	Command Files
	Controlled Output
	User Interface
	Others

