LAUTERBACH A

Debugging via Infineon
DAS Server

Debugging via Infineon DAS Server

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES2 DOCUMENTESuiiiiiiiiiieiiiiissseseennnanenmsnssssssssssssssssssesesesemmsnsnsnsmsmsmsmssssssssssssssssssssessensnsnnnnnnnn r—
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~

8 1 02 - SR r—
Debugging via INfineon DAS SEIVEr ... smms s s ssmmsssnas 1

L o T 11T o) 3
Related Documents 3
Contacting Support 3

System ArchiteCture ... 5
PowerView System Configurations ... sssnas 6
System Initialization via the TRACE32 PowerView GUIcccccmiiimmmnnisemssmnssssssssnnnns 9
System Initialization via the TRACE32 Command Lineccccciivmmmmmiisssmssmmsssssssnnnnes 11

Keep the Graphical User Interface ReSponsiveccccccicvcmmmmmrninissssssssssscmsessssnesessnns 13
Timing Adaplion ... —————————— 14

(020 1074 F= T Lo I 2 1= {1 =Y o T < XSS 15
SYStem.InfineonDAS Configure the InfineonDAS debug port 15
SYStem.InfineonDAS.CBSBUSNAME Bus access transactor 15
SYStem.InfineonDAS.CBSINSTRNAME Cerberus instruction transactor 15
SYStem.InfineonDAS.CONNECT Connect to DAS server 16
SYStem.InfineonDAS.DISCONNECT Disconnect from the server 16
SYStem.InfineonDAS.EXPLore Explore server interactively 17
SYStem.InfineonDAS.InfineonDAPNAME DAP transactor 18
SYStem.InfineonDAS.MODELNAME Select port instance 18
SYStem.InfineonDAS.SERVERCONFIG Configure server options 19
©1989-2024 Lauterbach Debugging via Infineon DAS Server | 2

Debugging via Infineon DAS Server

Version 06-Jun-2024

Introduction

This document describes the TRACE32 support for the Infineon DAS server.

The intended use case is to use TRACE32 together with an emulation system connected to the DAS server.

NOTE: TRACE32 requires an installation of the DAS server which is available from

Infineon. Please refer to the Infineon homepage for system requirements of the
DAS server.

Related Documents

“T32Start” (app_t32start.pdf): The T32Start application assists you in setting up multicore /
multiprocessor debug environments, and software-only debug environments. T32Start is only
available for Windows.

For more information about software-only debug environments, please refer to:
“Software-only Debugging (Host MCI)” (app_t32start.pdf).

“TriCore Debugger and Trace” (debugger_tricore.pdf)
“GTM Debugger and Trace” (debugger_gtm.pdf)

Contacting Support

Use the Lauterbach Support Center: https://support.lauterbach.com

To contact your local TRACES32 support team directly.
To register and submit a support ticket to the TRACE32 global center.
To log in and manage your support tickets.

To benefit from the TRACES32 knowledgebase (FAQs, technical articles, tutorial videos) and our
tips & tricks around debugging.

Or send an email in the traditional way to support@ lauterbach.com.

©1989-2024 Lauterbach Debugging via Infineon DAS Server | 3

https://support.lauterbach.com

Be sure to include detailed system information about your TRACE32 configuration.

1. To generate a system information report, choose TRACE32 > Help > Support > Systeminfo.

Lauterbach Homepage
Support
N About TRACE32

b & System Information...
2 Update TRACE32...
B Technical Support Contacts

4 Contact Lauterbach &

Company:
Prefix:
Firstname:
Surname:
Street:
City:
Country:
Telephone:
eMail:

Product:

Compiler:

Generate TRACE32 Support Information

Lauterbach

Andrea

Martin

Altlaufstr, 40

Hoehenkirchen-Siegertsbr.

Germany

Department:

P.O.Box:
ZIP Code:

(+49) 8102-9876-555

Press the following button to get help on how to generate Support Information:

85635

andrea.martin@lauterbach.com

PowerTrace PX

Target CPU:

ARMS40T

Hostsystem:

Windows 10 v

Arm

Realtime05:

MNeno

Generate Support Information:

Safe Mode:

O

Save to Clipboard ||

Save to File

NOTE: Please help to speed up processing of your support request. By filling out the
system information form completely and with correct data, you minimize the
number of additional questions and clarification request e-mails we need to
resolve your problem.

2. Preferred: click Save to File, and send the system information as an attachment to your e-mail.
3. Click Save to Clipboard, and then paste the system information into your e-mail.

©1989-2024 Lauterbach

Debugging via Infineon DAS Server

4

System Architecture

The following picture illustrates the overall system architecture:

TRACES32 PowerView ____— Device (DUT)

TriCore Driver Device (DUT)

Bus Cerberus
Access Instructions

DAS Driver

HostMCI

TRACE32 runs completely on a host computer. This includes the debugger back-end (HostMCI) containing

the high-performance multicore debug driver; the same driver that is also used together with real Lauterbach
hardware.

In the debug back-end, the TriCore driver communicates with the DAS driver through two independent
channels (transactors):

. The bus access transactor, which handles accesses to the TriCore system bus(es), and
J The Cerberus instruction transactor, which handles accesses to the TriCore Cerberus module.
The DAS driver communicates through the DAS DLL with the DAS server. The server provides several ports

where one or more devices under tests (DUT) can be connected. In TRACE32, the ports are currently
referred to as models. TRACES32 can currently debug one device at one port.

©1989-2024 Lauterbach Debugging via Infineon DAS Server | 5

PowerView System Configurations

The TRACES32 PowerView instances can be set up in different ways.

1. A single TRACE32 PowerView instance runs on the same host as the back-end, see Setup 1. This
configuration can’t handle AMP debug scenarios.

2. Multiple TRACES32 PowerView instances run on the same host as the back-end, see Setup 2.

3. The TRACE32 PowerView instances run on a dedicated workstation; the back-end runs on another

host, see Setup 3.

The Lauterbach Debug Driver library (hostmci . so for Linux/Mac users and hostmci.dl1l for Windows
users) can be integrated into the TRACE32 PowerView application or run as a separate process, called
t32mciserver. Running it as a separate process provides two main benefits:

1. The MCI server can execute on one host, whilst one or more instances of TRACE32 PowerView
execute on another host.

2. Multiple instances of TRACE32 PowerView can execute on a single host, sharing the MCI
connection.
Setup 1

Setup with a single TRACE32 PowerView instance running on the same host as the back-end:

Workstation / Simulation Host
Linux / Windows

PowerView

hostmci.so/.dll

Modify the config.t32 file as follows:

PBI=MCILIB ; configure system to use hostmci.so

©1989-2024 Lauterbach Debugging via Infineon DAS Server | 6

Setup 2

Setup with multiple TRACE32 PowerView instances (AMP) running on the same host as the back-end:

Linux / Windows

Workstation / Simulation Host

PowerView 1

hostmci.so/.dll

PowerView 2

PowerView n

TCP

Modify the config.t32 as follows:

PBI=MCISERVER
PORT=30000
INSTANCE=AUTO

set up the usage of hostmci.so and open
server at 30000 for the first instance.
consecutive number of instance or AUTO

©1989-2024 Lauterbach

Debugging via Infineon DAS Server

7

Setup 3

Setup with multiple TRACE32 PowerView instances (AMP) running on another host:

Workstation
Windows / Linux

PowerView 1

Simulation Host
Linux / Windows

t32mciserver

PowerView 2 TCP

PowerView n

Start t32mciserver on the simulation host:

./t32mciserver port=30000

Modify the config.t32 file as follows:

PBI=MCISERVER
NODE=192.168.0.1
PORT=30000
INSTANCE=AUTO
DEDICATED

hostmci.so/.dll

; start t32mciserver at port 30000

; set up connection to t32mciserver
; connect to IP 192.168.0.1

; at port 30000

; consecutive number of instances

; avoid to fall into Setup2 case

Linux example: To start TRACES32 PowerView with a specific config file, use e.g.:

bin/pc_linux/t32mtc -c¢ config.t32

Windows example: To start TRACE32 PowerView with a specific config file, use e.qg.:

bin/windows/t32mtc.exe -c config.t32

©1989-2024 Lauterbach

Debugging via Infineon DAS Server

8

System Initialization via the TRACE32 PowerView GUI

The following step-by-step procedure describes how to connect to the Infineon DAS server by using the
TRACE32 PowerView GUI. Alternatively, all steps described below can also be executed via the TRACE32
command line, see “System Initialization via the TRACE32 Command Line”, page 11.

Prerequisites:

You have configured and started TRACE32, as described in “PowerView System
Configurations”, page 6.

The DAS server works with the default configuration HOST=1ocalhost. If the DAS server uses
a host other than 1ocalhost, then you need to inform TRACES32 about the used host with the
command SYStem.InfineonDAS.SERVERCONFIG.

To initialize the system via the TRACE32 PowerView GUI:

1.

Open the SYStem.CONFIG.state window by typing at the TRACE32 command line:

SYStem.CONFIG.state /DebugPort

From the DEBUGPORT drop-down list, select the debug back-end InfineonDAS.

&2 B::SYStem.CONFIG.state /DebugPort =n| Wl <
DebugPort Itag MOdules
DEBUGPORT) CONNECTOR
—] [[] Tristate
I nrineon I DSE\'E

You can close the SYStem.CONFIG.state window, since we do not need it anymore in this step-
by-step procedure.

Selecting the debug back-end InfineonDAS activates the SYStem.InfineonDAS commands. Now
the SYStem.InfineonDAS.EXPLore window can be used to select port and device interactively as
described in the following steps:

Open the SYStem.InfineonDAS.EXPLore window by typing at the TRACE32 command line:

SYStem.InfineonDAS.EXPLore

Right-click the model you want to connect to, and then select Connect from the popup menu.

_-k B::5YStem. InfineonDAS.EXPLore EI@
Structure Type |
= IDAS DebugPort ~
d . | [Mod .g_l_
UDAS JDS[1] bl |
i3S Ject 1
uDas 1D5[3] -
UDAS IDS[4] Disconnect
UDAS JD5[5] Disconnect unused transactors
UDAS 1D5[6]
uDas 1D5[7] Model
UDAS IDS[8] Model -

©1989-2024 Lauterbach Debugging via Infineon DAS Server | 9

5. Expand the entry by clicking the plus sign.

Jk B::5YStem. InfineonDAS.EXPLore

Type

Structure
= IDAS

DebugPort
Model

MA
TriCore-Family[0].BUS Transactor

UDAS JDs[0 .
L Disconnect when not used

upas 1D5[1]
upas J1Ds[2]
UDAS JD5[3] Use by SYS.IDAS.CBSBUSNAME
UDAS J1D5[4]
UDAS JDS[5] Use by 5YSIDAS.CBSINSTRNAME
uDAs J1D5[6] Mone T -
6. To select the Cerberus instruction transactor, right-click the entry for your device ending with

“.INSTR”, and then select Use by SYS.IDAS.CBSINSTRNAME from the popup menu.

- If the transactor has already been selected, the popup menu displays the option

Do not use by SYS.IDAS.CBSINSTRNAME.

7. To select the bus access transactor, right click the entry for your device ending with “.BUS”, and
then select Use by SYS.IDAS.CBSBUSNAME from the popup menu.

- If the transactor has already been selected, the popup menu displays the option

Do not use by SYS.IDAS.CBSBUSNAME.

Result: You have established a connection to the Infineon DAS server.

Next Steps: You can now select the CPU of the target with the SYStem.CPU command and execute the
SYStem.Up command. You are then ready to debug and trace the target, see Related Documents.

Tip

You can save the above configuration as a PRACTICE script (*.cmm) using the STOre command:

STORE ~~~/my-file.cmm SYStem

The configuration can be reproduced by calling the PRACTICE script with the DO or CD.DO command as

follows:

CD.DO ~~~/my-file.cmm

;save script to the temporary directory
;of TRACE32

©1989-2024 Lauterbach

Debugging via Infineon DAS Server

10

System Initialization via the TRACE32 Command Line

Prerequisites:

o You have configured and started TRACE32, as described in “PowerView System
Configurations”, page 6.

To initialize the system via the TRACE32 command line:

1. Select the debug back-end InfineonDAS.

SYStem.CONFIG.DEBUGPORT InfineonDAS

2. Configure the DAS server you want to use.

SYStem.InfineonDAS.SERVERCONFIG "HOST=localhost"

3. Select the DUT you want to use.

SYStem.InfineonDAS.MODELNAME "DAS JDS TriBoard TC3X9 TH V1.0[0]"
SYStem.InfineonDAS.CBSINSTRNAME "TriCore-Family[0].INSTR"

SYStem.InfineonDAS.CBSBUSNAME "TriCore-Family[0].BUS"

- The name for SYStem. InfineonDAS.MODELNAME is the port name returned from the DAS
sever plus an index in square brackets.

- The name for SYStem. InfineonDAS.CBSINSTRNAME is the name of the device as
reported from the DAS server plus an index in square brackets and the suffix . INSTR.

- The name for SYStem. InfineonDAS.CBSBUSNAME is the name of the device as reported
from the DAS server plus an index in square brackets and the suffix . BUS.

4. Continue with the normal core configuration; for example, as described in “Debugging”
(debugger_tricore.pdf). A minimal script would be:

SYStem.CPU TC399XE-Astep
SYStem.Up

©1989-2024 Lauterbach Debugging via Infineon DAS Server | 11

Tip

You can save the above configuration as a PRACTICE script (*.cmm) using the STOre command:

STORE ~~~/my-file.cmm SYStem ;save script to the temporary directory
;of TRACE32

The configuration can be reproduced by calling the PRACTICE script with the DO or CD.DO command as
follows:

CD.DO ~~~/my-file.cmm

©1989-2024 Lauterbach Debugging via Infineon DAS Server | 12

Keep the Graphical User Interface Responsive

Due to slow RTL simulation, small operations such as reading the state or showing memory dumps take a
long time. This chapter describes how to adjust the virtual time scale to ultra-slow simulators and how to
reduce screen flicker caused by slow RTL simulation. To keep the user interface smooth multiple tuning
options can be set.

The most important setting is SETUP.URATE to configure the update rate of the TRACE32 windows. The
processors state is also polled by this rate.

SETUP.URATE 10s ; screen will be updated every 10s

To avoid screen update while PRACTICE scripts are running:

SCREEN.OFF ; switch off update of the windows when
; a PRACTICE script is executed

SCREEN ; trigger a manual update of the windows
; inside a PRACTICE script

To switch off state polling when the CPU is stopped, the command SYStem.POLLING can be used, but the
debugger can’t detect when another CPU changes the state from stopped to running e.g. by soft reset.

SYStem.POLLING DEF OFF ; disable processor state polling when
; stopped

The command MAP.UpdateOnce can be used to read memory regions only one time after a break is
detected.

MAP.UpdateOnce 0x0++0x1000 ; read memory of regions 0x0--0x1000
; only one time after break

For analysis and data display purposes it is recommended that you use the code from the TRACE32 virtual
memory (VM:) instead of the code from the target memory. Therefore, the code needs to be copied to the
virtual memory when an *.elf file is being loaded.

Data.Load.ELF *.elf /VM ; download code to target and copy it to
; VM:

Data.List VM: ; open source window, but use VM: memory

Onchip.Access VM ; use VM memory for trace analysis

©1989-2024 Lauterbach Debugging via Infineon DAS Server | 13

Timing Adaption

TRACE32 software includes of a set of efficient low-level driver routines to access the target. These routines
have a certain timing that must be adjusted to ultra-slow simulators that can be million times slower than real
silicon. In general, there are code parts that pause the execution, wait until a time-out is reached or just use
a certain point of time.

For example, when the simulation is 1,000,000 times slower than real time, these commands can be used to
adjust the timing in most cases:

; configure usage of model time base instead host base to avoid timeouts
; while the emulation is paused.

SYStem.VirtualTiming.TimeinTargetTime ON
SYStem.VirtualTiming.PauseinTargetTime ON

;make the pauses and timeouts 100 times shorter
SYStem.VirtualTiming.TimeScale 0.01

;this will limit any pause statements to 10us target time
SYStem.VirtualTiming.MaxPause 10us

;this will limit any small time-out to read register to lms
SYStem.VirtualTiming.MaxTimeout Ilms

The following timing SYStem commands are available:

SYStem.VirtualTiming.MaxPause Limit pause
SYStem.VirtualTiming.MaxTimeout Override time-outs
SYStem.VirtualTiming.PauseinTargetTime Set up pause time-base
SYStem.VirtualTiming.PauseScale Multiply pause with a factor
SYStem.VirtualTiming.TimeinTargetTime Set up general time-base
SYStem.VirtualTiming.TimeScale Multiply time-base with a factor
SYStem.VirtualTiming.HardwareTimeout Can disable hardware timeout
SYStem.VirtualTiming.HardwareTimeoutScale Multiply hardware timeout
SYStem.VirtualTiming.InternalClock Base for artificial time calculation
SYStem.VirtualTiming.OperationPause Insert a pause after each action to slow
down timing.

©1989-2024 Lauterbach Debugging via Infineon DAS Server | 14

Command Reference

SYStem.InfineonDAS Configure the InfineonDAS debug port

The SYStem.InfineonDAS command group allows to configure the back-end for DAS. The command group
is available after InfineonDASO has been selected as debug port.

;selecting the DAS back-end activates the SYStem.InfineonDAS commands
SYStem.CONFIG.DEBUGPORT InfineonDASO

See also

B SYStem.InfineonDAS.CBSBUSNAME B SYStem.InfineonDAS.CBSINSTRNAME
B SYStem.InfineonDAS.CONNECT B SYStem.InfineonDAS.DISCONNECT

B SYStem.InfineonDAS.EXPLore B SYStem.InfineonDAS.InfineonDAPNAME
B SYStem.InfineonDAS.MODELNAME B SYStem.InfineonDAS.SERVERCONFIG

B SYStem.state

SYStem.InfineonDAS.CBSBUSNAME Bus access transactor

Format: SYStem.InfineonDAS.CBSBUSNAME <name> | ""

Sets the name of the transactor for system bus accesses (same as selecting Use by... from the popup menu
in the SYStem.InfineonDAS.EXPLore window).

If an empty string is passed, then the setting is reset (same as selecting Do not use by... from the popup
menu in the SYStem.InfineonDAS.EXPLore window).

See also
B SYStem.InfineonDAS

SYStem.InfineonDAS.CBSINSTRNAME Cerberus instruction transactor

Format: SYStem.InfineonDAS.CBSINSTRNAME <name> | ""

Sets the name of the transactor for Cerberus instructions (same as selecting Use by... from the popup menu
in the SYStem.InfineonDAS.EXPLore window).

©1989-2024 Lauterbach Debugging via Infineon DAS Server | 15

If an empty string is passed, then the setting is reset (same as selecting Do not use by... from the popup
menu in the SYStem.InfineonDAS.EXPLore window).

See also
B SYStem.InfineonDAS

SYStem.InfineonDAS.CONNECT Connect to DAS server

Format: SYStem.InfineonDAS.CONNECT [/TRY]

Connects to the DAS server.

TRY Forces the command to continue quietly when the connection could not be
established.

See also
B SYStem.InfineonDAS

SYStem.InfineonDAS.DISCONNECT Disconnect from the server

Format: SYStem.InfineonDAS.DISCONNECT ["<transactor_name>"] [/[UNUSED]

Disconnects from the DAS server and disables the periodic re-connection tries.

<transactor_name> Disconnects a named transactor when it is not used anymore.
UNUSED Disconnects from all transactors that are not used anymore.
See also

B SYStem.InfineonDAS

©1989-2024 Lauterbach Debugging via Infineon DAS Server | 16

SYStem.InfineonDAS.EXPLore

Explore server interactively

Format: SYStem.InfineonDAS.EXPLore [DEFault | <column> ...]

<column>; Structure
Connected
tYpe
UsedByCommand
CoNFig

Opens the SYStem.InfineonDAS.EXPLore window, where you can explore available models and
transactors. The list of available devices is read from the DAS server:

A B::5YStem InfineonDAS.EXPLore Structure Connected t¥pe UsedByCommand ColNFig EI@
%tFMUCture connected EiESgPor‘t UzedByComand ﬁgglgocalhost, NAME=UDAS ,I
=/DAS ID5 TriBoard TC3X9 TH V1.0[0] yes Model

e T R saRe s

DAS IDS miniWiggler JTAG/DAP/SPD VZ[0] Model
upas 1Ds[0] Model
upas 1D5[1] Model
upas J1Ds[2] Model
upas J1D5[3] Model
UDAS J1D5[4] Model
upas J1D5[5] Model -

DEFault Without parameter or with the parameter DEFault, only the columns
Structure and Type are displayed.

Structure Shows the name of the models (port instances) and associated
transactors.

Connected A yes indicates that TRACES32 has established a connection to the
models (port instance) / transactor. A no indicates that no connection has
been established.

Type Type of the entry.

UsedByCommand Only for transactors: This column displays the command that was
executed to set the names of the transactors. See
SYStem.InfineonDAS.CBSBUSNAME and
SYStem.InfineonDAS.CBSINSTRNAME.

CoNFig Only for the root node. The configuration set by
SYStem.InfineonDAS.SERVERCONFIG.

See also

B SYStem.InfineonDAS

©1989-2024 Lauterbach

Debugging via Infineon DAS Server |

17

SYStem.InfineonDAS.InfineonDAPNAME DAP transactor

Format: SYStem.InfineonDAS.InfineonDAPNAME <name> | ""

Sets the name of the transactor for low-level DAP telegrams (same as selecting Use by... from the popup
menu in the SYStem.InfineonDAS.EXPLore window). This is only required for special use cases.

See also
B SYStem.InfineonDAS

SYStem.InfineonDAS.MODELNAME Select port instance

Format: SYStem.InfineonDAS.MODELNAME " <port_name>[<index>]"

Selects a specific instance of a DAS server port. The name is the port name reported by the DAS server
plus an index in square brackets.

The available models can be explored using the SYStem.InfineonDAS.EXPLore window.
Example:

SYStem.InfineonDAS.MODELNAME "DAS JDS TriBoard TC3X9 TH V1.0[0]1"

See also
B SYStem.InfineonDAS

©1989-2024 Lauterbach Debugging via Infineon DAS Server | 18

SYStem.InfineonDAS.SERVERCONFIG Configure server options

Format: SYStem.InfineonDAS.SERVERCONFIG " <options>"

<options>: <option0>=<value0>, <option1>=<valueil>, ...

Configures options to connect to the DAS server. The list of options is a comma-separated list of option
name and value pairs. The following options are available:

HOST Domain name or IP address of the server host.
Default: localhost.

NAME Server name.
Default: UDAS.

START AUTO will automatically start the DAS server if it is not already running.
NO will only connect to running servers.

Example:

SYStem.InfineonDAS.SERVERCONFIG "HOST=127.0.0.1, NAME=UDAS, START=NO"

See also
B SYStem.InfineonDAS

©1989-2024 Lauterbach Debugging via Infineon DAS Server | 19

	Debugging via Infineon DAS Server
	Introduction
	Related Documents
	Contacting Support

	System Architecture
	PowerView System Configurations
	System Initialization via the TRACE32 PowerView GUI
	System Initialization via the TRACE32 Command Line
	Keep the Graphical User Interface Responsive
	Timing Adaption
	Command Reference
	SYStem.InfineonDAS Configure the InfineonDAS debug port
	SYStem.InfineonDAS.CBSBUSNAME Bus access transactor
	SYStem.InfineonDAS.CBSINSTRNAME Cerberus instruction transactor
	SYStem.InfineonDAS.CONNECT Connect to DAS server
	SYStem.InfineonDAS.DISCONNECT Disconnect from the server
	SYStem.InfineonDAS.EXPLore Explore server interactively
	SYStem.InfineonDAS.InfineonDAPNAME DAP transactor
	SYStem.InfineonDAS.MODELNAME Select port instance
	SYStem.InfineonDAS.SERVERCONFIG Configure server options

