LAUTERBACH A

Application Note
for the LOGGER Trace

Application Note for the LOGGER Trace

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
Trace Application NOTES ... e s e e s s mmmsmssssssssssssssssssnnsnnnns =
£ Lo 1= LI = o = r—~
Application Note for the LOGGER Traceccccccccecmmiiiismmrninssssssinsssssssssssssssssssssssssssnsssssens 1
LT3 o 3
Lo Yo 11T o) 3
Related Tutorials 3

The LOGGER Trace FOrmatcccciieieeommmmnscerrrsssccesssssssmesssssssmsesssssssmssnsssssmmmsssssssmmmsseeas 4
LOGGER Description Block 4
LOGGER Trace Records 5
Address and Data Trace 5
Program Flow Trace 6
LOGGER Target Applicationcccciiiiiiemmminiisr s s ss s s s s s s e ssmsns s 7
LOGGER Functions 7
T32_Loggerlnit 7
T32_Timerlnit 8
T32_TimerGet 8
T32_LoggerData 8
T32_LoggerDataFast 10
T32_LoggerTrigger 10
LOGGER Macros 11

Data Cycles 11

Cycle Types 11
LOGGER Size 11
LOGGER Trace Configurationcccccccecmmminismmrmnnisssnnssss s sssssssss s s s s ssssss s 12
Display of LOGGER Trace CONtentscccccccvecmimiiiimnninniemss i sssssssss s s sssssssssnnas 15
List of Recorded Samples 16
Graphical Display of LOGGER Trace Results 18
Using the LOGGER for Task Switch Trace ... sssessssssssmesnns 19
LOGGER Trace TIHQQEIccceceirrisrmssosmsssnssiassssssssssasmsssssssssssssssssnsssssasssssasssssasssasansssssnnssssans 20
©1989-2024 Lauterbach Application Note for the LOGGER Trace | 2

Application Note for the LOGGER Trace

Version 06-Jun-2024

History
22-Jan-21 New manual.
Introduction

LOGGER is a software trace method which requires a modification of the target application in order to write
specific trace information to the a reserved buffer on the target memory using a trace format provided by
LAUTERBACH. TRACES32 loads then the trace information from the target memory for display and

processing.

The trace method LOGGER is mainly used when no hardware based trace is available.

A description of the TRACE32 LOGGER commands can be found under “LOGGER” in General
Commands Reference Guide L, page 45 (general_ref_|.pdf).

Related Tutorials

For video tutorials about the LOGGER, visit:
support.lauterbach.com/kb/articles/trace32-logger-trace

©1989-2024 Lauterbach Application Note for the LOGGER Trace | 3

https://support.lauterbach.com/kb/articles/trace32-logger-trace

The LOGGER Trace Format

The LOGGER trace buffer includes a description block followed by the trace data.

LOGGER 7

address

LOGGER

16-bit 48-bit 32/64-bit 32/64-bit

description block flags timestamp address data

Trace start address —»

Size

Index

Trigger counter

Flags from the host

Flags to the host

(currently not used)

(currently not used)

Target RAM

LOGGER Description Block

The LOGGER description block has the following format:

(32- or 64-bit)

Trace data start address

Start address of the trace data in the target RAM. This is the start
of the LOGGER buffer plus the size of the logger header.

The command LOGGER.Mode 64Bit controls the size of the start
address:

OFF (default): 32-bit

ON : 64-bit

Size (32-bit)

Number of trace records (trace packets). The format of a trace
record is described below.

Index (32-bit)

Index of the next record that should be written by the trace.

Trigger counter (32-bit)

Index of the trace record when the trigger was generated.

©1989-2024 Lauterbach

Application Note for the LOGGER Trace |

4

Flags from the host Bit 0: Arm (high active)
(32-bit) Bit 8: FIFO mode (low active), Stack mode (high active)

Flags to the host (32-bit) Bit 0: Overrun (high active)
Bit 8: Trigger (high active)
Bit 9: Break (high active)

LOGGER Trace Records

The software trace can work in 2 operation modes:

. Address/data trace

Address and data information is sampled.

4 Flow trace

A flow trace is available on architectures which provide a ’branch trace’ capability like all
PowerPC families. For a flow trace all changes in the program flow are sampled. The TRACE32
software reconstructs and displays the complete program flow out of this information. This mode
is not documented in this manual. Refer to “MPC5xx/8xx Debugger and Trace”
(debugger_ppc.pdf) for more information.

Address and Data Trace

Software Trace Record Description

Flags (16-bit) Bits 12 .. 15: trace packet type:
. Fetch (Ox1)

. Data Read (0x2)

. Data Write (0x3)

Bits 8 .. 11: data width (1, 2, 4 or 8 bytes)

Bits 0 .. 7: core number for SMP trace.

Timestamp (48-bit) Timestamp from a timer, counter etc. from the target

Address (32- or 64-bit) Fetch or data address.
This field is 32- or 64-bit depending on LOGGER.Mode 64Bit.

Data (32- or 64-bit) Data value.
This field is 32- or 64-bit depending on LOGGER.Mode 64Bit.

©1989-2024 Lauterbach Application Note for the LOGGER Trace | 5

Program Flow Trace

Software Trace Record Description FlowTrace (e.g. PowerPC, SH4)

Flags (16-bit) 0xFOO0x: Flow trace record

Timestamp (48-bit) Timestamp from a timer, counter etc. from the target
Address (32-bit) Address 1

Address (32-bit) Address 2

©1989-2024 Lauterbach Application Note for the LOGGER Trace | 6

LOGGER Target Application

C and C++ source and header files for using the TRACE32 LOGGER are available in TRACE32 system
directory under ~~/demo/etc/logger:
. logger.h / logger.hpp

This header file contains the necessary type and macro definitions as well as function
prototypes.

L logger.c / logger.cpp
Contains the LOGGER functions.

Whenever a part of the application uses the LOGGER, the header file "1ogger .h"/"logger . hpp" must be
included.

If the LOGGER is used in 64-bit mode, the macro LOGGER_64BIT has to be
defined.

If the LOGGER is used in SMP mode, the macro LOGGER_SMP has to be defined.

LOGGER Functions

T32_Loggerlnit

Prototype:

void T32_LoggerInit () ;
void T32_LoggerC: :T32_LoggerInit () ;

Initializes the LOGGER internal data structures and calls T32_Timerlnit(). This routine must be called
before using any other LOGGER related routines.

When using the C++ LOGGER files, this function is called in the constructor of the T32_LoggerC class.

The LOGGER.Init command has to be executed after calling this function in order to read the LOGGER
buffer size.

©1989-2024 Lauterbach Application Note for the LOGGER Trace | 7

T32_Timerlnit

Prototype:

void T32 TimerInit () ;
void T32_LoggerC: :T32_TimerInit () ;

Initializes the architecture specific timer. This routine is architecture specific and must be implemented by the
user.

T32 TimerGet

Prototype:

unsigned long long T32_TimerGet () ;
unsigned long long T32_LoggerC: :T32_TimerGet ()

Returns current timestamp of architecture specific timer (48-bit width). This routine is architecture specific
and must be implemented by the user.

Example for PowerPC using the TBL register:

unsigned long long T32_TimerGet ()

{
unsigned long tb;
asm volatile ("mftb %0": "=r" (tb));
return tb;

T32_LoggerData

Prototype:
Single core mode (LOGGER_SMP undefined):

void T32_LoggerData (int cycletype, void* address, data_t data);

SMP mode (LOGGER_SMP defined):

void T32_LoggerData (int cycletype, void* address, data_t data,int core);

©1989-2024 Lauterbach Application Note for the LOGGER Trace | 8

C++:

void T32_LoggerC::T32_LoggerData (int cycletype, void* address,
data_t data, int core=0)

Adds a new event to the LOGGER.

Parameters:

cycletype ; Type of the event e.g. T32_FETCH or
; (T32_DATA_READ|T32_LONG) .

address ; Address of the event. This is an instruction
; address in case of T32_ FETCH and T32_EXECUTE,
; otherwise a data address.

data ; Data related to the event.

core ; Core number for SMP systems.

Examples (single core):

// add a write cycle of the 32-bit variable mcount to the LOGGER trace
T32_LoggerData (T32_DATA_WRITE|T32_LONG, &mcount, mcount) ;

// add a read cycle of the 8-bit variable vchar to the LOGGER trace
T32_LoggerData (T32_DATA_WRITE|T32_BYTE, &vchar, vchar) ;

// add a fetch cycle of the function func2 to the LOGGER trace
T32_LoggerData (T32_FETCH, func2, 0 /* unused */);

Examples (SMP):

// add a write cycle of the 16-bit variable vshort to the LOGGER trace
// for core 1
T32_LoggerData (T32_DATA_WRITE|T32_WORD, &vshort, wvshort, 1);

// add a fetch cycle of the function funcl to the LOGGER trace for
// core 0
T32_LoggerData (T32_FETCH, funcl, 0 /* unused */, 0);

©1989-2024 Lauterbach Application Note for the LOGGER Trace | 9

T32_LoggerDataFast

Prototype:
Single core mode (LOGGER_SMP undefined):

void T32_LoggerDataFast (int cycletype, void* address, data_t data);

SMP mode (LOGGER_SMP defined):

void T32_LoggerDataFast (int cycletype, void* address, data_t data,
int core) ;

C++:

void T32_LoggerC: :T32_LoggerDataFast (int cycletype, void* address,
data_t data, int core=0);

Adds a new event to the LOGGER. In comparison with T32_LoggerData(), this function
o does not write a timestamp

. does not check if the LOGGER is armed (LOGGER.Arm)

J does not support Stack mode (LOGGER.Mode Stack)

Refer to T32_LoggerData() for a description of the parameters.

T32_LoggerTrigger

Prototype:

void T32_LoggerTrigger () ;
void T32_LoggerC: :T32_LoggerTrigger ()

Generates a LOGGER trigger.

©1989-2024 Lauterbach Application Note for the LOGGER Trace | 10

LOGGER Macros

Data Cycles

Used together with T32_DATA_READ and T32_DATA_WRITE.

T32_BYTE 8-bit access
T32_WORD 16-bit access
T32_LONG 32-bit access
T32_QUAD 64-bit access
Cycle Types
T32_FETCH Adds a trace record for a program fetch cycle.

T32_EXECUTE

Adds a trace record for a program execute cycle, data holds number of
executed bytes.

T32_DATA_READ

Adds a trace record with a read transaction (load).

T32_DATA_WRITE

Adds a trace record with a write transaction (store).

LOGGER Size

T32_LOGGER_SIZE

Size of the LOGGER ring buffer, must be a power of 2.

©1989-2024 Lauterbach

Application Note for the LOGGER Trace |

11

LOGGER Trace Configuration

NOTE: In this chapter, we assume that the target application has already been
instrumented to include the LOGGER functionality.

The LOGGER trace is part of the TRACE32 trace framework. To configure the LOGGER trace:

1. On the TRACE32 main menu bar, choose Trace menu > Configuration:
A

File Edit View Var Break Run CPU Misc | Trace | Perf Cov CycloneVSOC Window Help

EEEEXEINNE IR oo I
B CTS Settings...

ETM Settings...
Trigger Dialeg...
£ List 2
2. Under METHOD, click the radio option LOGGER.
& BuTrace EI@
METHOD
Onchip () Analyzer CAnalyzer (! HAnalyzer Intearator (| Probe IProbe OLA
ClProbe (O ART I@LOGGER |O SNOOPer (O FDX (O NONE
state used TimeStamp
(®) DiSable (® OFF
O OFF Oup
() Arm SIZE () Down
(O trigger 0. Rate
O break ADDRESS 0.
L]

commands

& Init Mode Mode

&3 SnapShot (® Fifo [Create

2 List () Stack [runtimE
] AutoArm [64Bit
[Autolnit

Or execute the following commands on the TRACE32 command line:

Trace.state
Trace.METHOD LOGGER

Alternatively, execute the LOGGER.state command:

LOGGER. state

©1989-2024 Lauterbach Application Note for the LOGGER Trace | 12

All commands relative to the LOGGER trace can be executed using the Trace command group (e.g.
Trace.List) after selecting the LOGGER method in the Trace.state window, or using the LOGGER
command group (e.g. LOGGER.List). The second form is especially useful if the LOGGER trace
should be used together with a different trace method. In this application note, the LOGGER command

group will be used.
The following steps are needed to configure the LOGGER trace:
1. Reset the LOGGER trace to its default settings using the command LOGGER.RESet.

2. Define the address of the LOGGER trace control block in memory using the ADDRESS field [A]
of the LOGGER.state window or using the command LOGGER.ADDRESS

2 B:LOGGER state = =R
state used TimeStamp
O Disable @ OFF 4-@]
@ OFF Oup

O Am R Size O Down

(O trigger 0. Rate

O break ADDRESS 40000000,
SD:0x81918

commands ’

@ Init Mode Mode

&3 SnapShot (® Fifo [Create
2 List (O Stack [runtimE |

AutoArm [64Bit
[Autolnit [FlowTrace

LOGGER.ADDRESS T32_LoggerStruct

3. Select the recording mode [C]. In Fifo mode, if the LOGGER trace buffer is full, new trace records
will overwrite older records. Therefore the LOGGER trace memory always contains the last cycles
before stopping the trace. In Stack mode however, if the LOGGER trace buffer is full the recording will
be stopped so that the trace buffer always contains the first records.

The recording mode can also be set using the commands LOGGER.Mode Fifo or
LOGGER.Mode Stack. The LOGGER trace recording mode is set per default to Fifo.

4. Initialize the LOGGER by pressing the Init button [B] or using the LOGGER.Init command. The
function T32_Loggerlnit() should have been already executed before initializing the LOGGER,

for example:

Go sYmbol.EXIT(T32_LoggerInit)
LOGGER.Init

After the initialization, the SIZE field contains the size of the LOGGER trace.

©1989-2024 Lauterbach Application Note for the LOGGER Trace | 13

Please note that it is also possible to use the debugger in order to initialize the LOGGER control block
instead of calling the T32_Loggerlnit() function. This can be enabled by setting the LOGGER mode
Create [G] or executing the command LOGGER.Mode Create ON. It will be then possible to specify
the LOGGER size in TRACE32. You should however make sure in this case that the selected size is
reserved by the target application for the LOGGER buffer.

Example:

LOGGER.Mode Create ON
LOGGER.SIZE 1024
LOGGER.Init

5. Configure the timestamp usage of the LOGGER trace [D]. Per default, timestamps are disabled
(OFF). This setting should be used if the LOGGER target code does not generate timestamp
information in the LOGGER trace records. Otherwise, Up should be selected if generated
timestamps are counting upwards and Down if generated timestamps are counting downwards.

If timestamps are used, their frequency (in ticks per second) has additionally to be specified using the
Rate field [E] or the LOGGER.TimeStamp.Rate command.

6. If the LOGGER operates in 64-bit mode, the 64Bit check box [F] has to be selected.
Alternatively, use the command LOGGER.Mode 64Bit.

The settings done in the LOGGER.state window can be saved in the format of a PRACTICE script to an
external file using the STOre command or to the clipboard using the ClipSTOre command.

STOre <file> LOGGER Create a PRACTICE script to restore the LOGGER trace settings
ClipSTOre LOGGER Provide the commands to restore the LOGGER trace settings in the
cliptext

Per default, the LOGGER automatically starts recording when the program execution is started and stops
recording when it is stopped. This behavior can be controlled using the command LOGGER.AutoArm or
the AutoArm check box from the LOGGER.state window. The trace recording can also be controlled
manually using the commands LOGGER.Arm and LOGGER.OFF, or the Arm and OFF radio buttons.

©1989-2024 Lauterbach Application Note for the LOGGER Trace | 14

Display of LOGGER Trace Contents

The LOGGER trace contents can only be displayed after the recording has been stopped (state OFF or
break). A display of the trace contents while recording is not possible. Moreover, in order to read the trace
data, the debugger needs to access the memory. This means that either the program execution has to be
stopped or, if supported by the target processor, memory access on run-time needs to me enabled. Please
refer to the description of the command SYStem.MemAccess in your Processor Architecture Manual for
more information. The LOGGER dual port mode (LOGGER.Mode E ON) needs to be enabled if the
LOGGER should access the memory on run-time.

Example 1: display the LOGGER result after stopping the program execution

LOGGER.AutoArm ON

; stop the program execution, trace recording will also be stopped:
Break

; display the trace recording

LOGGER.List

Example 2: display the LOGGER result on run-time without stopping the target processor:

; enable memory access on run-time (if supported by the target processor)
; the command may differ depending on the target architecture
SYStem.MemAccess Enable

; enable LOGGER dual port mode
LOGGER.Mode E ON

; stop the trace recording
LOGGER.OFF

; display the trace recording
LOGGER.List

©1989-2024 Lauterbach Application Note for the LOGGER Trace | 15

List of Recorded Samples

The LOGGER trace contents can be displayed using the List button from the LOGGER.state window or
using the command LOGGER.List.

2 B:LOGGER state = =R
state used TimeStamp
(O DiSable (® OFF
(® OFF Oup
O Arm SIZE () Down
(O trigger 0. Rate

rea .
O break ADDRESS 40000000
SDn0x81918

commands
& Init Mode Mode
(® Fifo [Create
List (O Stack [runtimE
[Autolrm [64Bit
[Autolnit [FlowTrace

LOGGER.List

:LOGGER List = =R
B setup...|| 1 Goto... | FyFind... | el Chart | EProfile | I MIPS & Mare Y Less

record run address cycle |data symbaol ti.back i
"""""""" Ll
+00000002 P:0000: 08040568 fet Lo ?ger\T32ThreadDebugLogger ino‘\setup -
+00000003 P:0000: 08040508 fe \T32ThreadDebuglLogger _1no'\LedRed0FF 0. 000us =
+00000004 P:0000: 08040548 fe "\T32ThreadDebugLogger 1no\LedGreen0FF 0. 000us e
+00000005 P:0000:08040444 fe "gLogger\T32ThreadDebugLoggeF_1no\]oop 93. 000us ~
+00000006 P:0000:080405C8 fetc ..er'\T32ThreadDebugLogger_1no‘\fast_loop 0. 000us
+00000007 D:0000:24001120 wr—]ong 00000001 ..er'T32ThreadDebuglogger_ 1n0\FastC0unt 0. 000us
+00000008 P:0000:080404E8 fetch "ger\T32ThreadDebugLogger 1no\LedRed0N 0. 000us
+00000009 P:0000:08040618 fetch ..er'\T32ThreadDebugLogger_ 1no\s1ow loop 0. 000us
+00000010 D:0000:24001224 wr—byte 01 ..erT32ThreadDebuglLogger_ 1n0\510w(0unt 0. 000us
+00000011 P:0000:08040528 fetc ..r'\T32ThreadDebuglLogger_ 1n0\LedGreen0N 0. 000us
+00000012 P:0000: 08040508 fetch ..er'\T32ThreadDebugLogger_ 1n0\LedRed0FF 49.375ms
+00000013 P:0000:08040548 fetch ..\ T32ThreadDebuglLogger_ 1no\LedGreen0FF 50.000ms
+00000014 P:0000:080403B4 fetch ..r'\T32ThreadDebuglLogger_ 1no\s1eue main 400.000ms
+00000015 P:0000:080405C8 fetch ..er'\T32ThreadDebugLogger_ 1no\Fast _loop 50.000ms v

The LOGGER.List window displays per default for each recorded trace packet the following information:

run displays the core number for SMP systems if the LOGGER is used in SMP
mode. This column is empty otherwise.

address instruction address for fetch cycles or data load/store address for data cycles.

©1989-2024 Lauterbach Application Note for the LOGGER Trace | 16

cycle cycle type:
. fetch: program fetch cycle
. execute: program execute cycle
o wr-<width>: read transaction. <width>: byte, word, long or quad.
. rd-<width>: read transaction. <width>: byte, word, long or quad.
symbol symbolic information.
ti.back time relative to previous record. This column is empty if timestamps are not
enabled.

The different columns in the window can be rearranged by changing the order of the LOGGER.List
parameters. Moreover, other columns can be added to the window. You can use for example the keyword
Var to display the recorded variable in its HLL representation or TIme.Zero to display the time relative to the
start of the recording. Please refer to the documentation of the LOGGER.List command for a complete list
of the different possible parameters.

Example:

LOGGER.List address CYcle Var ti.back ti.zero VarSymbol

B:LOGGER List address CYcle Var ti.back tizero VarsVmbol = =R
B setup...|| 1 Goto... | FyFind... | el Chart | EProfile | I MIPS & Mare Y Less

record |address cycle |var ti.back ti.zero varsymbol i
+00000005 P:0000:080404A4 Tetch 93. 000us 22.577s Toop ~
+00000006 P:0000:080405C8 fetch 0.000us 22.577s fast_loop -
+00000007 D:0000:24001120 wr-long FastCount = 1 0.000us 22.577s FastCount =
+00000008 P:0000:080404E8 fetch 0.000us 22.577s LedRedON e
+00000009 P:0000:08040618 fetch 0.000us 22.577s slow_loop ~
+00000010 D:0000:24001224 wr-byte SlowCount = 1 0.000us 22.577s SlowCount
+00000011 P:0000:08040528 fetc 0.000us 22.577s LedGreenON
+00000012 P:0000:08040508 raf l 49.375ms 22.6265 LedRedOFF
+00000013 P:0000:08040548 fetch 50.000ms 22.676s5 LedGreenOFF
+00000014 P:0000:080403B4 fe":l 400.000ms 23.076s sieve_main
+00000015 P:0000:080405C8 fetch 50.000ms 23.126s fast_loop
+00000016 D:0000:24001120 wr-long FastCount = 2 0.000us 23.126s FastCount
+00000017 P:0000:080404E8 fetch 0.000us 23.1265 LedRedON
+00000018 P:0000: 08040508 fetch 50.000ms 23.176s LedRedOFF v

©1989-2024 Lauterbach

Application Note for the LOGGER Trace | 17

Graphical Display of LOGGER Trace Results

You can use the command LOGGER.DRAW to display the recorded data values graphically. Please refer to

the documentation of the <trace>.DRAW command group for more information.
Example:

LOGGER.DRAW.Var %$DEFault FastCount SlowCount

4 B:LOGGER.DRAW.Var %DEFault FastCount SlowCount = =R
2 Setup...|| 3 Goto... | #3Find... | fwChart |« In | M4 Out| @Full| S In | 2 out | E Full
H . ThreadDebugLogger ino‘FastCount [l ..ThreadDebuglLogger_ino'5lowCount
000us 200.000ms 400.000ms 600.000ms B800.000ms 1.000s 1.200s 1.400s 1.600s
| | | | | | | | I
Ll
6. =
5. v
Ll
4.

If fetch accesses are recorded for multiple function, then you can display the function activity chart using the

command LOGGER.Chart.sYmbol.

e B:LOGGER.Chart.sYmbol

&Setup...

iii Groups...

== Config...

1 Goto...

3 Goto...

$#3Find...

000us
address i

500.000ms
|

4k In

M4 OQut | [Full
1.000s
I I

(other) &¥
Toop
fast_loophM
LedRedON &y
slow_Tloop iy
LedGreen0N 4y
LedRedOFF iy
LedGreen0OFF {y
sieve_mainHy

©1989-2024 Lauterbach

Application Note for the LOGGER Trace

18

Using the LOGGER for Task Switch Trace

If the used target processor does not provide an on-chip trace support for recording task switches, the

operating system can be patched with the LOGGER functions in order to write the task switch information to

a reserved buffer in the memory. The task switch information can be then displayed with the command

LOGGER.Chart.TASK
ﬂ B:LOGGER.Chart. TASK EI@
[#senp... |[iil Goups... [38 Gnfis... |3 Goto...][#3 Find... |[4» In |[#4 0ut] M Ful]
-500 -400 -300 -200 -100 T
rangeip 1 1 1 1 1 -
(unknown) el o |
SYNC_supers 4=l
kworker/O=1-00 GRG0 C T
flush-1:0 e | -

 sh:0 @l i
s1eved L -
sieve?
sievel
sieves
sievel
(unknown)
kworker/1:2
kworker,/0:0
sievel
sievel
sieves
migration/1

sieve2

J « [» o«

RH
sieved:l g INENOWERERRE 00 Rl
;

swapper N L

[

An example for the Linux kernel based on a kernel module is described under “Using the LOGGER for

Task Switch Trace” in Training Linux Debugging, page 51 (training_rtos_linux.pdf).

©1989-2024 Lauterbach

Application Note for the LOGGER Trace

19

LOGGER Trace Trigger

The TRACE32 LOGGER offers a basic triggering functionality. The target application can trigger the
LOGGER to stop recording on a specific event. The trigger can be generated by calling the function

T32_LoggerTrigger().

In order to react on the trigger, the debugger needs to access the LOGGER control data on run-time. The
LOGGER trigger can thus only work if memory access on run-time is possible and enabled
(SYStem.MemAccess). Moreover, the LOGGER dual port access needs to be enabled using the

command LOGGER.Mode E ON.

Depending on the speed of the memory access on run-time, there could be a delay before the debugger

reacts on the trigger.

Example: generate a trigger in order to stop the trace recording when the variable mcount gets the value 5

T32_LoggerData (T32_DATA WRITE | T32_LONG, &mcount, mcount, 0);

mcount++;

if

(mcount == 5) {

T32_LoggerTrigger () ;

T32_LoggerStruct.oflags | = T32LOGGERDATA_OFLAG_BREAK;

You can see in the following screen shot that the trigger was generated after 5 records (T00000000) but the
debugger reacted after 12 additional records.

LOGGER List =R o
2 snp... || Goto...| #4Find... | flChart || BE Profile | EEMIPS | 4 More | X Less
record |run |address cycle |data symbol
-00000005 D:200017F0 wr-Tong 00000000 '\ demo'sieve'\mcount
-00000004 D:200017F0 wr-Tong 00000001 '\ demo'sieve'\mcount
-00000003 D:200017F0 wr-Tong 00000002 '\ demo'sieve'\mcount
-00000002 D:200017F0 wr-Tong 00000003 '\ demo'sieve'\mcount
-00000001 D:200017F0 wr-Tong 00000004 '\ demo'sieve'\mcount
[TOO0D0000 D:200017F0 wr-Tong 00000005 '\ demo'sieve'\mcount
H00000001 D:200017F0 wr-Tong 00000006 '\ demo'sieve'\mcount
H00000002 D:200017F0 wr-Tong 00000007 '\ demo'sieve'\mcount
H00000003 D:200017F0 wr-Tong 00000008 '\ demo'sieve'\mcount
H+00000004 D:200017F0 wr-Tong 00000009 '\ demo'sieve'\mcount
H+00000005 D:200017F0 wr-Tong 0000000A '\ demo'sieve'\mcount
H00000006 D:200017F0 wr-Tong 0000000B '\ demo'sieve'\mcount
H00000007 D:200017F0 wr-Tong 0000000C '\ demo'sieve'\mcount
H+00000008 D:200017F0 wr-Tong 0000000D ‘\demo'sieve'\mcount
H+00000009 D:200017F0 wr-Tong O00O00D0E '\ demo'sieve'\mcount
H00000010 D:200017F0 wr-Tong 0000000F '\ demo'sieve'\mcount
H+00000011 D:200017F0 wr-Tong 00000010 \demo'sieve'\mcount
H00000012 D:200017F0 wr-Tong 00000011 W\ demo'sieve'\mcount

©1989-2024 Lauterbach

Application Note for the LOGGER Trace

20

	Application Note for the LOGGER Trace
	History
	Introduction
	Related Tutorials

	The LOGGER Trace Format
	LOGGER Description Block
	LOGGER Trace Records
	Address and Data Trace
	Program Flow Trace

	LOGGER Target Application
	LOGGER Functions
	T32_LoggerInit
	T32_TimerInit
	T32_TimerGet
	T32_LoggerData
	T32_LoggerDataFast
	T32_LoggerTrigger

	LOGGER Macros
	Data Cycles
	Cycle Types
	LOGGER Size

	LOGGER Trace Configuration
	Display of LOGGER Trace Contents
	List of Recorded Samples
	Graphical Display of LOGGER Trace Results

	Using the LOGGER for Task Switch Trace
	LOGGER Trace Trigger

