LAUTERBACH A

Application Note for
IAMP Debugging

Application Note for IAMP Debugging

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 Documents

Multicore Debugging

Application Note for iIAMP Debuggingccccoriiimmrmmnismmsrmnssssnnssssss s s sssss s s ssmsssness

SMP, iAMP or AMP?

iAMP Setup
Example iAMP Setup

AN

©1989-2024 Lauterbach

Application Note for iAMP Debugging

2

Application Note for IAMP Debugging

Version 06-Jun-2024

11-Nov-2021 New manual.

SMP, iAMP or AMP?

TRACE32 offers various configuration possibilities for debugging multi-core target systems. This chapter
explains the basic differences between:

. SMP (Symmetrical MultiProcessig)
L iAMP (integrated Asymmetrical MultiProcessing)

. AMP (Asymmetrical MultiProcessig)

This application note focuses on iIAMP. It gives you a basic overview of the iIAMP concept and helps you to
choose the right configuration for your setup. For further details about iAMP and the commands used here,
you can also see the “General Reference Guide” (general_ref_<x>.pdf) or contact
support@lauterbach.com.

If you want to create a new TRACES32 setup for any multicore system, one of the very first decisions you
have to make is “AMP or SMP or iAMP?”. In some cases, only one of the possibilities is supported by
TRACE32, for example: if you have several cores of different architectures (like one Arm core, one Xtensa
core and one RISC-V core), then AMP is the only possible option. But in many cases, you have a choice.

Let’s first take a look at the key properties of the three concepts:

©1989-2024 Lauterbach Application Note for iAMP Debugging | 3

SMP (Symmetrical MultiProcessing):

All cores have the same instruction set.

All cores use the same instance of an OS (when not bare-metal and unless you are using a
hypervisor (“Hypervisor Debugging User Guide” (hypervisor_user.pdf)).

All cores use the same memory model and same address translations (unless you are using a
hypervisor).

All cores share the same physical and logical address space.
All cores share the same debug symbols (typically the same elf file).

All cores are debugged from a single TRACE32 PowerView instance. You can have up to
1024 cores.

TRACERS2 starts and stops all cores simultaneously (even though you can temporarily single out
one core for independent start/stop).

iAMP (integrated asymmetrical multiprocessing):

All cores have the same instruction set.
There are typically multiple OS instances (if not bare metal).

There is just one global physical address space but each OS maintains its own set of virtual
address spaces.

All cores are debugged from a single TRACE32 PowerView GUI. The number of cores is limited
just by the core architecture used and can be very high.

TRACERS?2 allows to group cores logically into machines; this grouping depends on the logical
structure of the system under debug - each machine consists of one or more cores. Up to
30 machines are possible.

Each machine has its own OS instance (if not bare metal).
Each machine has its own memory model, address translations and debug symbols.

TRACERS2 starts and stops all cores simultaneously (even though you can temporarily single out
one core for independent start/stop).

©1989-2024 Lauterbach Application Note for iIAMP Debugging | 4

AMP (Asymmetrical MultiProcessing):

AMP can bundle single cores, as well as SMP and iAMP subsystems.
Mixing of different core architectures with different instruction sets is possible.
Each core/subsystem has its own TRACE32 PowerView GUI.

Each core/subsystem has its own (different) memory models, address translations, elf files and
debug symbols.

Each core/subsystem can have its own physical address space.
Each core/subsystem has its own logical address spaces.
Each core/subsystem starts and stops independently but can also be synchronized.

AMP is limited to 16 TRACE32 PowerView GUIs.

An example of an AMP system that bundles single cores, an SMP and an iAMP subsystem can be found on
page 10.

The most important questions for the decision are:

Do all my cores use the same instruction set?
If not, it is definitely AMP.
Do all my cores of the same instruction set run a single instance of OS?

If yes, these cores form an SMP (sub)system.

Are there SMP subsystems and single cores of the same instruction set? Does it make
sense to configure them as an iAMP system and debug them from a single TRACE32
PowerView instance?

Yes, if they are all using a global physical address space.

Yes, if they logically belong together; that means they work together or in parallel on the same
tasks.

Yes, if you want or need to reduce the number of TRACE32 PowerView instances.

©1989-2024 Lauterbach Application Note for iIAMP Debugging |

5

The following table provides a systematic overview:

SMP AMP iAMP
Homogeneous cores (cores of the same instruction set) v v v
Heterogeneous cores v
Single TRACE32 instance/GUI v v
Multiple TRACES32 instances/GUIs <16
Hypervisor with statically assigned guests (core identity) v v v
Hypervisor with dynamic core assignment (core sharing) v
SMP OS (a single OS managing multiple cores) v
Multiple OSes without hypervisor v
Synchronous run v v 4
Asynchronous run v

iIAMP is available for selected core architectures like Arm, Hexagon and TriCore. If you need iAMP and your
platform does not support it yet, please contact your local Lauterbach representative or

support@Ilauterbach.com.

Some of the decision criteria are easy to evaluate (like more than 16 CPUs) but some of them are quite
fuzzy - talking to Lauterbach representative or Lauterbach support might help you with the decision.

©1989-2024 Lauterbach

Application Note for iAMP Debugging | 6

IAMP Setup

The basis for an iAMP system is that cores are grouped into machines.
The SYStem.Option.MACHINESPACES ON command creates the basis for this.

All cores that use the same instance of an OS (when not bare-metal) can be grouped and assigned to a
machine by the TASK.Create.MACHINE command.

Example:

TASK.Create.MACHINE , 0. "mainO" /CORE 0. 1.
TASK.Create.MACHINE , 1. "mainl" /CORE 2. 3.

This will create two machines, each of them with two cores. Their setup can be then displayed using the
command TASK.List. MACHINES:

o BiTASK.List MACHINES = =R
magic name mid [cores laccess [vtth traceid |extension(s) |
maind 0. [0. 1. |D:
mainl 1. (2. 3. |D:

The columns name and cores in the screenshot are self-explaining, ‘mid’ displays the machine ID, other
columns are not relevant for our example.

It may be necessary to use the CORE.ASSIGN command beforehand to assign the physical cores to the
logical cores of the iIAMP system.

Use the command CORE.select <logical_core> to switch to the core of interest and the TRACE32
PowerView GUI will display the system information from the perspective of the selected core. To understand
how this works, think that “the machine is never selected directly but always follows selected core”.

By default, all cores are started and stopped simultaneously, but you can single out a single core for
independent start/stop by using the CORE.SINGLE <logical_core>command.

The CORE.select command without an argument can be used to reverse this selection after the core is
stopped.

It is imperative to ensure that the symbols loaded by any of the Data.LOAD.* commands will be added to the
right machine space. When loading executables and symbol information, the safest way is to explicitly select
the core to which the executable belongs — it then explicitly defines both the core and machine. One of the
reasons is that registers like PC might be pre-initialized during Data.LOAD so by selecting the correct core it
becomes clear where the register(s) are to be set:

CORE.select 0.

Data.LOAD.El1f application_subsystemO.elf
CORE.select 2.

Data.LOAD.E1f application_subsysteml.elf /NoClear

©1989-2024 Lauterbach Application Note for iIAMP Debugging | 7

On the other hand, when you load only symbol information and no register content, it is sufficient to specify
only the machine; knowledge of the specific core is not required. To specify only the machine, use the
loading offset parameter to Data.LOAD.* where this offset contains the machine number. In most cases you
use zero as offset (unless you need to shift the data to another base address).

Data.LOAD.El1f application_subsystemO.elf 0x0:::0 /NoCODE /NoReg
Data.LOAD.El1f application_subsysteml.elf 0xl:::0 /NoClear /NoCODE /NoReg

NOTE: This concept is extended to allow you to access a logical address on any
machine and works like this:
[<access_class>:] [<machine_1id>:::]<address_offset>
Example:

P:1:::0x1234000 means program address P: 0x1234000 on machine 1.

R:0:::0x81021864 means AArch32 Arm code at address R: 0x81021864
on machine 0.

Loading symbols using the machine ID makes them machine aware as can be seen in the image below.

a B::Break.List EI@
B senp... || 3% Delete All|| O Disable Al @ Enable All| @ Init | 52 store...| 52 Load... || B set...
address type method |
R:0:::81021864 [[Program SOFT Y (& | whapp_ddrisieveimain
R:1:::70011864 |Program SOFT ¥ [| \h\app_ram'sieveimain

The machine name can be explicitly specified in a symbol name using triple-backslash (\\\) syntax.
Example:

List.Asm \\\mainl\\\Global\start

This command will show the source of the symbol start from the module Global on the machine named
mainl.

The general format for symbol names becomes:
[\\\<machine_ name>]\\ [<program_name>] \ [<module_name>] \<symbol_name>

Both <program_name> and <module_name> may be omitted if there is no ambiguity with another symbol
but the appropriate backslashes must remain to indicate where they were, for example:

\\\<machine_name>\\\<symbol_name>
So, our example of \\\mainl\\Global\start now becomes \\\mainl\\\\start

When you activate the iIAMP mode, the behavior of many commands changes. The commands now also
consider the correct machine scope, for example:

©1989-2024 Lauterbach Application Note for iIAMP Debugging | 8

Normally, MMU.DUMP.TLB shows the only TLB in the system (where available). With iAMP, the contents
displayed by MMU.DUMP.TLB will update after every change of machine and always show the TLB of the
currently selected machine.

The program counter is now shown everywhere with the machine number included - like in this CORE.List
window:

&% B:CORE.List =N =R)

sel core |stop |state pc symbo | |
W 0 * SR:0:::81020040 [\ \app_ddr\Global'_start
1 * SR:0::: 00000000
2 * SR:1:::70010040 \‘\app_ram\Global'_start
3 * SR:1:::00000000
£ >

The machine number is also included in many other outputs and windows, almost everywhere where you
see an address. The screenshot below shows the sYmbol.List.SECtion window. It can be seen that
sections from all machines and all addresses include the machine number.

|

H B::*bol.List.SECtion = =R

address path\section acc |load [physical |
P:0:::81020000--8102001F [\\app_ddr’.isr_vector R-X [L-
P:0 1020020--81022DFB |\ \app_ddr",. text R-X |L-
D:0 1022DFC--81022E53 [\ app_ddr'.rodata R-- |L-
D:0 1022E58--81022EBF |\\app_ddr',.data Rw- |L-
D:0 1022EC0O--8102382B |\\app_ddr'. bss Rw- |--
D:0 102382C--81023A2B |\\app_ddr',.stack Rw- |--
D:0 1027E00--81027FFF |%'\app_ddr',.stack_mp RW- |--
Pzl 0010000--7001001F [%'\app_ram',.isr_vector R-X |L-
Pz1 0010020--70012DFB |\ \app_ram\,.text R-X |L-
D:1 0012DFC--70012E53 [\ app_ram'.rodata R-- |L-
D:1 0012E58--70012EEF |\ \app_ram\,.data Rw- |L-
D: 0012ECO--70013828 |\‘\app_ram\.bss Rw- |--
D: 001382C--70013A2E [\ app_ram'.stack RW- |--
D: 0017E00--7O0L7FFF [4\app_ram'.stack_mp RW- |--

£ >

©1989-2024 Lauterbach Application Note for iAMP Debugging | 9

Example iAMP Setup

Assume the following system, based on a TDA4VM chip from Texas Instruments:

J Four Cortex-R5 cores, grouped in two core pairs, called “main0” and “main1”. These four cores
form our example iAMP system.

Each core pair has its own symbols and ELF file (app_ddr.elf and app_sram.elf).

Both core pairs use logical memory but have their own translations.

J In addition to that, there is also a Cortex-M3 core (“master”), Cortex-R5 (“mcu”) based SMP
subsystem and a Tl C71x (“dsp”) on the chip, which all need to be debugged as well.

Four TRACE32 PowerView GUIs are needed to debug this AMP system:
1. GUI to control the Cortex-R5 based iAMP subsystem

2 GUI to control a single Cortex-M3

3. GUI to control the Cortex-R5 based SMP subsystem

4 GUI to control a single C71x DSP

TDA4VM AMP Debug Session

S T—
Cortex-M3 =
master - =

Debug Port

Cortex-M3
master

mcu

main0 mainl

TDA4VM

©1989-2024 Lauterbach Application Note for iAMP Debugging | 10

So, let's focus on the IAMP subsystem - we want to preload all elf files, execute all startups immediately after
loading, and then start the execution of all cores/machines from the symbol main simultaneously. For this
setup, the following script can be used:

sYmbol .RESet
SYStem.Option.MACHINESPACES ON

TASK.
TASK.

CORE.
Data.
CORE.
Data.

CORE.

CREATE.MACHINE , 0. "mainO" /CORE 0. 1.
CREATE.MACHINE , 1. "mainl" /CORE 2. 3.

select 0.

LOAD.E1f app_ddr.elf

select 2.

LOAD.E1f app_ram.elf /NoClear

SINGLE O. ; enter single core execution mode

Go main

WAIT

CORE.

! STATE .RUN ()

SINGLE 2. ; enter single core execution mode

Go main

WAIT

CORE.

! STATE .RUN ()

select 0. ; leaving single core execution mode

PRINT "Now we are ready to debug from main"

The other subsystems of SoC are initialized as usual with their own scripts.

The structure of the whole system can be then displayed via the command TargetSystem ALL.

©1989-2024 Lauterbach Application Note for iAMP Debugging | 11

	Application Note for iAMP Debugging
	SMP, iAMP or AMP?
	iAMP Setup
	Example iAMP Setup

