LAUTERBACH A

Application Note Profiling on
AUTOSAR CP with ARTI

Application Note Profiling on AUTOSAR CP with ARTI

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES2 DOCUMENTS .ccuuiiieeiireesiirensisssssssisnsssssessssssssssrsssssssnsssssssssssssssssessssssnsssssnsssssanssssnnsssssnssssnnnns r—
OS AWAreness MaANUAIScccceeceiiiiimemmeiiriieseesrrrrsnssssresnn—.sran——sssrrresnnsssrannsssrnn————. =
0OS Awareness Manuals fOr ARTIcccccccciiiiimemmeiiiriresssssiirsssssssserisssssssssresnsssssssesassssssserasnnnnnns =
Application Note Profiling on AUTOSAR CP with ARTIcccccmiiiiiimmniiinn e 1
[T o 4
/Y o Yo 101 88 4 1 £ 1 7= 1 LU - 1 5
03 (o T 11 e £ T'o Y o 5
Related Documentationcicccciieiiiimciireire e s s e n s e n s nn s mn s s nma e nnn e 6
USiNg ARTI HOOKScoccimiiiiiieennrnisems s rnnsssss s sssms s s ssass s s s e sam s s e amm s s e amm s e snnmnns 7
Hook Macros 7
OS Hooks 7

RTE Hooks 7
Instrumentation 8
Trace Methods 9

Data Trace 9

AURIX TriCore Bus Trace 10
TRACE32 LOGGER Trace 10
TRACE32 FDX Trace 11
Vendor Specifics 12
Object Detection 13

JLILL LT T T = 1= T = (= . 14
Overview of TRACE32 Command STruCtUrecccciieeciimmsiiiemsissssssrssssssrsnsssssnssssennsssee 16
TASK.ARTI 16
TASK.ORTI 16
TASK.List 17
Trace.List 18
Trace.Chart 18
Trace.ProfileChart 19
Trace.STATistic 19
Trace.PROfileSTATistic 20
DURation Analysis 20
DIStance Analysis 21

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 2

SMP Options 21

GROUP 22
BMC 23
Trace.EXPORT 23
Task RUNtIME ANAIYSIS ..o s e 24
Trace.Chart. TASKState 25
Trace.STATistic. TASKState 26
Trace.STATistic. TASKStateDURation 27
Runnable RUNtiMe ANAlYSISccccuvvemeriiiismsrrinimsss s rssssss s s s smss s s samss s enssamssn s 28
Trace.Chart.Runnable 28
Trace.STATistic. RUNNABLE 29
Trace.STATistic. RUNNABLEDURation <runnablestart> 29
ISR2 RUNIME ANAIYSIS ..eeeeiiiiiieciiiiiimr s issms s sssss s s s s mn s s s e mmn s s e e nmmnns 30
Trace.Chart. TASKINTR 30
Trace.STATistic. TASKINTR 31
Trace.Chart. TASKORINTRState 31
Trace.STATistic. TASKORINTRState 31
Interrupt RUNtime ANAlYSiS ...cceiiiiiecmriiiims s e 32
SPINIOCK ANAIYSIS ..uueeeiiiiiiieiriiiiierr i s e am s e e e e amn e e nnnan 33
CPU Load Measurementcccccciiiimmmmeeiiiiiesssssimmssnsssssssisssnssssserisssnsssssesssnssssssssensnssssssnes 34
Grouping the Idle Tasks 34
CPU Load Overview 35
CPU Load in Time Slots 35
CPU Load by Benchmark Counters 36
Jitter MeasSUremMeNnt ... e s s s s s n s s s ma s e sans s ans s amas s e ana s e ans s ranasrnnnnns 37
Jitter on Tasks 37
Jitter on Runnables 38
o T o 40
CSV Export 40
Trace.EXPORT.TASKEVENTS (deprecated) 40
Trace.EXPORT.ARTI 40
Trace.EXPORT.MDF 41
11171 43

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 3

Application Note Profiling on AUTOSAR CP with ARTI

Version 06-Jun-2024

History

03-Oct-23 DAP Streaming for miniMCDS in chapter “TriCore Bus Trace" added.

01-Aug-23 PowerDebug E40/PRO/X50 and AUTO26 Debug Cable added as second configuration for
TriCore DAP Streaming.

05-Jul-23 Initial version of the manual.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 4

About this manual

This document provides information about using TRACE32 for performance analysis on systems based on
the AUTOSAR Classic Platform.

Introduction

Starting with release R20-11, AUTOSAR includes the so-called “AUTOSAR Run-Time Interface” (ARTI),
which is intended for debugging and tracing applications and the OS of the Classic Platform. It basically
includes a description of the implemented OS and a hook interface for instrumented tracing.

For detailed information, please refer to the AUTOSAR specifications (see “Related Documentation”,
page 6).

The OS description of ARTI is created in ARXML and is meant to be a successor of the “OSEK Run-Time
Interface” (ORTI) description. As of today (July 2023), no commercial AUTOSAR stack provider supports
the creation of the ARTI description yet, however TRACES32 already supports the import of the ARTI ARXML
file. The ARTI features described in this document still rely on the available ORTI description, with some side
notes on the upcoming ARTI description.

ARTI defined a new interface to trace events based on instrumented hooks. This was not available for ORTI
profiling, which relies completely on hardware based data trace capabilities. Using instrumented hooks
overcomes several limitations that a data trace has. The hook based interface allows to:

J trace all cores, even if there is a hardware limitation (e.g. TriCore MCDS, which only allows
tracing for n cores out of r (n <=r))

J trace complex events that would overload the trace port (e.g. task states)
J trace specific AUTOSAR artifacts (e.g. runnables)

J trace only events of interest, increasing the trace depth drastically and allowing medium speed
trace tools such as TRACE32 CombiProbe

J accomplish a pure software trace, if no hardware trace is available at all

This manual will show you how to instrument your software to use ARTI profiling on various trace methods,
as well as the evaluation and analysis of the trace information generated by this instrumentation.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 5

Related Documentation

1. AUTOSAR specifications
- AUTOSAR_CP_SWS_OS.pdf (formerly AUTOSAR_SWS_OS.pdf)
- AUTOSAR_CP_SWS_ARTI.pdf (formerly AUTOSAR_SWS_ClassicPlatformARTI.pdf)
- AUTOSAR_CP_EXP_ARTI.pdf (formerly AUTOSAR_EXP_ClassicPlatformARTI.pdf)
- AUTOSAR_FO_TR_TimingAnalysis.pdf (formerly AUTOSAR_TR_TimingAnalysis.pdf)

- AUTOSAR_CP_TPS_TimingExtensions.pdf (formerly
AUTOSAR_TPS_TimingExtensions.pdf)

2. TRACE32 documentation

- “General Commands Reference Guide T” (general_ref_t.pdf): Trace.STATistic / Trace.Chart

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 6

Using ARTI Hooks

Hook Macros

The AUTOSAR CP ARTI specification includes hook macros called ‘ARTI_TRACE’.

This chapter describes these hooks. The OS or the RTE must include the hooks in the appropriate locations.
The user can decide which events are of interest to him by switching on the individual hooks, The generation
of the trace messages, appropriate to the selected TRACE32 trace method is then done by the
implementation of the hook macro, provided by Lauterbach.

OS Hooks

By specification, the OS contains empty ARTI hooks for the following events of interest:

. task state changes
o ISR2 state changes
U spinlocks

. OS calls

Lauterbach offers ready-to-use OS hook implementations, see chapter “Instrumentation”, page 8. A hook
is switched on by its implementation.

ARTI also defines ISR1 (interrupt) hooks. Since ISR1s are not part of the OS, the user must manually place
the ISR1 hooks in his interrupt routines.

As of today (July 2023), most OSes do not natively contain ARTI hooks. Instead, each OS contains
individual, proprietary hooks. The ARTI hook implementation for TRACE32 contains adapters to map these
proprietary hook interfaces to ARTI (see chapter “Instrumentation”, page 8).

RTE Hooks

The ARTI hooks for the RTE mainly include the start and stop events of runnables. The AUTOSAR VFB
(Virtual Function Bus) tracing hooks are used to realize the RTE hooks. This requires two steps to switch on
the RTE hooks for the events “Runnable started” and “Runnable stopped”.

1. Enable the VFB tracing hooks in the configuration of the AUTOSAR system in general and for the
individual runnables.

2. Use the RTE vendor specific Python script provided by Lauterbach that populates the VFB
tracing hooks with ARTI hooks (see chapter “Instrumentation”, page 8).

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 7

Instrumentation

You can find the ARTI hook implementation and TRACE32 adapters for the proprietary hooks in the
TRACE32 installation folder, directory ~~/demo/kernel/arti/hooks_cp.

arti ARTI top-level directory
Y
hooks_cp Hook implementation for CP
common vendor scripts
Files common Vend/or shlé‘cifj\c files Setup and
for all vendors P helper scripts
P | ;
/ |
» A | A
vendor_a vendor_b

To include the TRACES32 support for ARTI in your project, simply copy the common directory to your build

environment, and add the arti . c file to your build artifacts. Within arti . h, select the trace method to use.

Please also read the readme . txt file within the common directory.

The directory scripts contains scripts for the TRACES32 setup for the selected TRACE32 trace method.

Additionally, you may execute the arti_menu . cmm script to add a menu item ARTI_Perf to easily access

some of the features of TRACE32 for ARTI Profiling.

N TRACE32 for AUTOSAR - | X
File Edit View Var Break FRun CPU Misc Trace Pedf Cov TC39x AUTOSAR_OS ART_Perf Window Help
| M % ﬂ| + ¢ | (]| | {‘_°_.| ? k°| | S Y {:H oy & ﬁf| [} Tasks and ISR2s > | ¢l Task State Show as Timing
Runnables » | E| Task State Show Mumerical
S e nui CPU Load 5 | i 15R2s Show as Timing
M Step W Over | JMAyDiverge | & Return ¢ Up b Go 1l Break =| ISR2s Show Numerical
ddr /14) i :
addr/Tine ?ﬁzr;;n(vmd; Y Show ARTI trace list il Tasks and ISR2s as Timing
sendif = Task Runtime Distribution...
46, EcuM_Init(); Liostart 05 newver rcetucns 4
47 return 0;
48 |}
e R N b e
v
B::
components trace Data Var List PERF SYStem Step Go other previous
P:80034C18 \\TRICORE_TC39XX_simple_demo_eth_rte_multicore_trp\main\main 0 |stopped at breakpoint HLL |UP

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI

8

Trace Methods

Various TRACES32 trace methods can be used for ARTI profiling. The methods depend on the actually used
core architecture and TRACE32 tool set. The TRACE32 trace methods differ significantly in their impact to
the application. Some have almost no impact at all but depend on the availability and capability of the trace
protocol of the core-under-test (e.g. data trace). Some have a high impact on memory consumption (e.g.
LOGGER), and some have a high impact on timing (e.g. FDX). Please also read carefully the readme . txt
files in the appropriate folder of the implementation.

Data Trace

Message generation: The trace message for the event-of-interest is generated by the core trace logic when
a write access to the ARTI trace variables occur.

Trace sink: Onchip trace buffer or trace buffer within the TRACES32 trace tool.

Prerequisites:

J The core(s)-under-test must provide the capability to generate trace messages on write
accesses to variables.

o A trace sink must be available, either on chip or in form of a TRACE32 trace tool.

J Very low impact in code size.

. Low impact with regards to the timing behavior.

J Simple TRACES32 trace setup, only trace filter on address ranges required. Please refer to your
Processor Architecture Manual.

. Onchip trace: chip timestamp required, TRACE32 trace license required.

. Parallel off-chip trace port: TRACE32 Trace Tool required, CombiProbe possible if available for

the core architecture under test, TRACE32 Trace Streaming possible without limitations.

J Serial off-chip trace port: TRACES32 Trace Tool required, chip timestamp required, TRACE32
Trace Streaming possible without limitations.

Caveats:

. Not suitable for TriCore AURIX, data tracing is not always possible for all cores.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 9

AURIX TriCore Bus Trace

Message generation: The trace message for the event-of-interest is generated by the MCDS, MCDSlight or
miniMCDS when a write accesses to the ARTI trace variables that are located in the LMU space (TC2xx) or
in the OLDA memory space (TC3xx, TC4x) occur. Via the MCDS.MODULE.NAME() function you can find

out whether your AURIX TriCore microcontroller has one of the necessary MCDS variants.

Trace sink: Onchip trace buffer or trace buffer within the TRACES32 trace tool.

Prerequisites:

J Very low impact in code size, but adjustment to linker script required.
. Low impact with regards to the timing behavior.

. Complex TRACES32 trace setup, CTL trigger program required.

J TRACE32 Trace Streaming possible without limitations for DAP streaming and AGBT/SGBT
serial trace.

Details of the trace sinks:

. Onchip trace: always possible if the microcontroller contains one of the necessary MCDS
variants.
. DAP streaming: almost always possible if the microcontroller contains one of the necessary

MCDS variants. Some pre-production microcontrollers include an MCDS variant, but are not
capable of DAP streaming. In case of doubt, please contact your local Lauterbach support.

There are two TRACERS2 tool variants for DAP streaming:
1. TRACE32 PowerDebug Module and Debug Cable

PowerDebug Module with USB interface (PowerDebug E40 available since 06/2022 and all
models to come thereafter) or TRACE32 PowerDebug with USB and Ethernet interface
(PowerDebug PRO available since 12/2014 and all models to come thereafter)

plus TRACE32 AUTO26 Debug Cable V3 (available since 04/2023 and all debug cable variants

to come thereafter)

2. TRACES32 medium range debug and trace tool CombiProbe otherwise

. AGBT/SGBT serial trace: TRACE32 high-end trace tool required, MCDS (TC2xx, TC3xx, TC4x)

or MCDSlight (TC3xx) required

TRACE32 LOGGER Trace

Message generation: The trace message for the event-of-interest is generated by the LOGGER trace
instrumentation in the target application when a write access to the ARTI trace variables occur.

Trace sink: Target memory, the LOGGER trace instrumentation stores the trace message in the target

memory.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI

10

https://support.lauterbach.com/new-ticket

There are two implementations available: one for SMP and one for single-core. The SMP variant is free of
spinlocks, but uses a inter-core buffer management that adds some overhead compared to the single-core

variant.

J Suitable for all cores (that do not provide a core trace logic), but timestamp resource such as
timer, counter required on the target.

J Low (medium) impact to code size by additional LOGGER instrumentation.

. Medium impact with regards to the timing behavior.

J Sufficient free target memory required for trace buffer implementation and some spare

computing time for buffer handling.
. Simple TRACE32 trace setup, established LOGGER command group.
J No extra TRACE32 tool or TRACES32 trace license required.

The “Application Note for the LOGGER Trace” (app_logger.pdf) provides an introduction to the use of the
logger trace.

TRACE32 FDX Trace

Message generation: The trace message for the event-of-interest is generated by the FDX trace
instrumentation in the target application when a write access to the ARTI trace variables occurs.

Trace sink: Target memory, the FDX trace instrumentation writes the trace message to a small trace buffer
that is located in the target memory. The FDX host application ensures that the data is transferred from the
small target trace buffer to a large trace buffer on host computer while the program execution is running.

There are two implementations available: one for SMP and one for single-core. The SMP variant uses
spinlocks, thus adding some time overhead compared to the single-core variant.

J Suitable for all cores (that do not provide a core trace logic, but enable runtime-memory access),
timestamp resource such as timer, counter required on the target.

. Low (medium) impact to code size by additional FDX instrumentation.

. Medium impact with regards to the timing behavior.

. Some free target memory (typically 4K bytes) required for trace buffer implementation and some

spare computing time for buffer handling.
J Complex TRACER32 trace setup, FDX host application has to be established.

J (Almost) unlimited trace time, because the host computer, on which the trace information is
permanently transferred, allows very large trace buffers.

J No extra TRACE32 tool or TRACE32 trace license required.

The “Application Note for FDX” (app_fdx.pdf) provides an introduction to the use of the FDX trace.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 11

Vendor Specifics

Elektrobit

Elektrobit provides two different OS versions: AutoCore OS and SafetyOS (aka MikroOS).
Please use the appropriate ARTI binding (eb_autocore or eb_microos).

With AutoCore OS, you may need to adjust the ORTI file, see the readme. txt file.

With SafetyOS, the ORTI file needs to be converted with a special script. See the readme. txt
file.

ETAS

With ETAS RTA-OS, there are two different ARTI bindings, depending whether the application is
multicore or single core. Please use the appropriate one.

Vector

For Vector's DaVinci Configurator and MICROSAR OS, there's a special “Vector-Lauterbach-
Timing-Bundle” available in ~~/demo/env/vector/rte_profiling. Please use this bundle
for the ARTI profiling.

FreeRTOS

There is also an ARTI binding for FreeRTOS available. You need to configure FreeRTOS to
include the OS tracing hooks. See the readme. txt file.
FreeRTOS doesn't provide an RTE, so there is no RTE/runnable tracing available.

SafeRTOS

There is also an ARTI binding for SafeRTOS available. SafeRTOS doesn't provide OS hooks. A
python script patches the SafeRTOS kernel sources to include the ARTI Hooks. See the
readme. txt file.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 12

Object Detection

In order to decode and analyze the recorded trace, TRACE32 has to map the recorded ARTI trace IDs to the
actual AUTOSAR object (task “SchMComTask”, runnable start “Rte_Runnable_200ms”, etc.). By AUTOSAR
specification, the ARTI ARXML description contains the mapping between the AUTOSAR objects and their
ARTI trace IDs. Unfortunately, as of today (July 2023), the ARTI description is not yet created by the stack
vendors. Thus the ARTI tracelD mapping needs to come from another source.

. Tasks

The task ID in the ARTI trace is directly mapped to the index of the task within the ORTI file. This
means, when using ARTI, you always need to also load the accompanying up-to-date ORTI file.
With some OSes, the build system does not directly create an “ARTI matching” ORTI file. In this
case, the ORTI file needs to be preprocessed, see Vendor Specifics above. Remember that
matching the ORTI file with the ARTI hooks is currently just a workaround for the missing ARTI
description.

. ISR2s

The ID for category 2 ISRs in the ARTI hooks is related to the index of the ISR2 in the ORTI file.
For this, the ISR2s must be listed in the ORTI file in a special, defined way. Sometimes the ORTI
file needs to be preprocessed after its creation to meet this need. See Vendor Specifics above.

o Interrupts

Depending on the core architecture and the trace protocol, TRACES32 can identify interrupts (or
category 1 ISRs) in the instruction trace recording. Some architectures provide extra interrupt
notifications, on others the interrupts are detected by the access to the exception vector table.
For this, however, the entire program flow would need to be recorded. A “pure” ARTI trace does
not include this information.

If category 1 ISRs are traced with the according ARTI hooks, the ID provided to the hook will
serve as ISR1 ARTI trace ID. No further translation (e.g. interrupt name) is possible, as ISR1s
names are listed nowhere.

. Runnables

When creating the VFB Tracing functions that contain the ARTI hooks for runnables, additionally
a script rte_runnable. cmm is generated. This script contains the declarations of the runnables
and their ARTI trace IDs. Execute this script in TRACES32 to announce the ID-to-runnable
mapping and to be able to identify the runnables in the further analysis.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 13

Timing Parameters

Trace recordings for ARTI profiling must always contain a timestamp for each event-of-interest. After

recording a trace of runnables, tasks and/or ISRs, a set of timing parameters can be evaluated. These
parameters include absolute run-times, minimum/maximum run-times, cyclic event measurement etc. For a
list of available parameters, please refer to Trace.STATistic -> “Parameters” (general_ref_t.pdf) and
Trace.STATistic.TASKState.

AUTOSAR defines its own set of parameters in the “Timing Analysis and Design” specification
(AUTOSAR_FO_TR_TimingAnalysis.pdf). The chapter “AUTOSAR Classic Platform Operating System”
therein provides the following parameters and their descriptions:

ID Abr. Name Description

1 IPT initial pending time from activation to start

2 CET core execution time execution time not including any preemptions or

(computation time) “waiting” time

3 GET gross execution time time including all preemptions and “waiting” time

execution

4 RT response time from activation to termination

5 DL dead line max. allowed response time

6 DT delta time from start to start (“measured period”)

7 PER period from activation to activation (period not as
measured but as configured)

8 ST slack time “remaining” run-time: from termination to
activation (tasks) or start (interrupts)

9 NST net slack time “potential additional” run-time: the ST minus all
CET blocks of any task or ISRs with higher priority
during the ST

10 JIT jitter deviation of delta time from period (not shown in
the figure below)

1 PRE preemption time time a task is preempted by higher priority task(s)
(not shown in the figure below)

12 CPU CPU load fraction of CPU time spent nonidle (usually
reported in percent) (not shown in the figure
below)

©1989-2024 Lauterbach

Application Note Profiling on AUTOSAR CP with ARTI | 14

An overview of the timing parameters can be found in the following diagram:

prio j\
Task A N B
Task B Il N R
Task C H B R
IPT
CETI CET2 CET3
PRE
GET
RT
DL
NST1 NST2
ST
PER
DT

-+

CET =CET1 + CET2 + CET3 NST =NST1 + NST2

Depending on the recorded events and the available trace data, TRACE32 is able to evaluate these events,
too. Some of the Trace.STATistic commands allow the display of these parameters (by using the /ARTI
option) or directly accept the AUTOSAR timing parameter as item. See the next chapter for details.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 15

Overview of TRACE32 Command Structure

This chapter gives an overview of useful TRACE32 commands when working with AUTOSAR systems. It
may also serve as a quick reference guide. For a detailed description of the individual commands see the
general reference guides.

TASK.ARTI

The TASK.ARTI command group mainly manages the import of AUTOSAR ARXML files. The Arti module
of AUTOSAR exports information about used task, runnables, hooks, and also some information about the

internals of the OS to be able to perform a sophisticated debugging, tracing and profiling on systems running
AUTOSAR Classic Platform. It is intended to replace and extend the outdated ORTI format.

TRACE32 is ready to import the ARTI information in ARXML format. Unfortunately, as of today (July 2023),
no OS/RTE vendor creates ARTI ARXML data. This means, the TASK.ARTI command is there only for
future use.

TASK.ORTI

The TASK.ORTI command group handles all information that comes with the ORTI file. ORTI is a
debugging and tracing standard for OSEK OS based systems. It allows to view OS related information (e.g.
tasks, alarms, etc.) and allows real-time tracing of tasks. See “OS Awareness Manual OSEK/ORTI”
(rtos_orti.pdf) for detailed information. All known AUTOSAR stacks that provide an AUTOSAR OS are able
to create an ORTI file when generating the OS.

Note, that ORTI does not support any RTE features. In particular, ORTI does not know anything about
runnables.

To evaluate traced events, the debugger needs to know about the mapping of the ART]I trace ID to the
AUTOSAR object (see above chapter “Object Detection”, page 13). As long as the ARTI ARXML
description is not available, information about tasks and ISR2s is taken out of the ORTI file. So ensure to
have the ORTI file loaded any time using AUTOSAR related features.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 16

TASK.List

The TASK.List command group lists objects that are relevant for profiling.

TASK.List.tasks

This command shows all tasks that are known to the TRACES32 debugger. The debugger uses
this table when creating reports (charts, statistics, exports) out of the trace. The task list is

populated by the information from the ORTI file.

% BuTASK.

List.tasks

(o8)

00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000009
0000000A
00000006
0000000C
00000000
0000000E
0000000F
00000000

magic name 1d
00000001 [Rte_Event_Task

traceid

core

Rte_Event_Task_SlaveCore
Rte_Time_Task_SlaveCore
BswCommunication_Task
TrpInternalTriggers
Init_Task_Cored
Init_Task_Corel
SchMDiagStateTask_20ms
BswTask_slaveCore
SchMComTask_10ms
SchMComTask_100ms
SchMComTask_5ms 11.
TrpCycTicRunnables
TrpEventHandlers 13.
SimCyclicRunnables 14.
NO_THREAD

W00~ R O

<

. TASK.List. RUNNABLES

This command shows all runnables known to the TRACES32 debugger, with their addresses and
their IDs. The debugger uses this table when creating reports (charts, statistics, exports)
the trace. The runnables have to be declared to the debugger with the command
TASK.Create.RUNNABLE. Usually the vendor binding provided with the hook implementation

contain a python script, that creates a PRACTICE script rte_runnable. cmm with all necessary
runnable declarations during the RTE generation phase.

out of

% B:TASK List RUNNABLES = =R
address [function 1d name start stop |
B0043E4E [Rte_RunnabTe_PostProcessor_ActionHandler 1. [PostProcessor_ActionHandler B80043E4E (80043664
B0043B7A |Rte_Runnable_PostProcessor_DriveActuator 2. |PostProcessor_DriveActuator B0043B7A |BO043B30
B0043BAG |Rte_Runnable_PostProcessor_PostProcessin 3. |PostProcessor_PostProcessing B0043BAG [BO043BBC
80043932 [Rte_Runnable_Adjustment_AdjustData_Start 4. |Adjustment_AdjustData 80043932 |B0043948
B004395E [Rte_Runnable_Adjustment_SendData_Start 5. |Adjustment_SendData B8004395E 80043976
B0043AF6 |Rte_Runnable_Filter_FilterData_Start 6. |Filter_FilterData 8004 3AF6 |80043B0C
B0043B22 |Rte_Runnable_Filter_ReadSensor_Start 7. |Filter_ReadSensor 80043622 |80043B38
B0043BD2 |Rte_Runnable_SimAPSubscriber_hpProcessin 8. |5imAPSubscriber_hpProcessing 80043ED2 |B0043BES
B0043BFE |Rte_Runnable_SimActuator_ConsumeActuator 9. |SimActuator_ConsumeActuatorData B80043EFE |80043C16
B0043C2C |Rte_Runnable_SimSensor_UpdateSensorData_ 10. |SimSensor_UpdateSensorData B0043C2C |BO043C44
B004349C |Rte_Runnable_ComM_RE_RequestComMode_Star 11. |RE_RequestComMode B80043A9C |B0043AE4
B00439E8 |Rte_Runnable_ComM_RE_GetCurrentComMode_5S 12. |RE_GetCurrentComMode 800439E8 |800439FE
80043414 |Rte_Runnable_ComM_RE_GetMaxComMode_Start 13. |RE_GetMaxComMode 80043414 |80043A2C
80043442 |Rte_Runnable_ComM_RE_GetRequestedComMode 14. |RE_GetRequestedComMode 80043442 |BO043A58
8004 3A6E |Rte_Runnable_ComM_RE_Main_0_Start 15. |RE_Main_0 B0043A6E |BO043A86
B0043ACA |Rte_Runnable_DevelopmentErrorTracer_RE_R 16. |DevelopmentErrorTracer_RE_ReportError |80043ACA (80043AEQ
B004398C |Rte_Runnable_BswM_0sApplication_Core0_RE 17. |0sApplication_Core0_RES_MainFunction B8004398C |B0043944
B00439BA |Rte_Runnable_BswM_0OsApplication_Corel_RE 18. |0sApplication_Corel RES_MainFunction 800439B4A |B00439D2
£ >

©1989-2024 Lauterbach

Application Note Profiling on AUTOSAR CP with ARTI

| 17

Trace.List

Trace.List shows the contents of the recorded trace. In case of an ARTI trace, by default it shows the raw
data emitted to the trace by the instrumentation. The keyword ARTT will show an additional column in the
Trace.List window that shows the decoded ARTI object details. Use Trace.List ARTI DEFault to display the
decoded trace together with the recorded data. Please note that the decoding will only take place on trace
data that contain ARTI data (e.g. ARTI specific variables like arti_os_trace). Records that do not belong
to the ART]I trace (e.g. additional program flow trace) will be empty in the ARTI column.

1 BiiTrace.List ARTI DEFault =N =R =
B Setup.. | 28 Config..| (3 Gote.. | #3Find.. | MdChart | B Profile | MIPS & More Y Less

record |arti run |address cycle data symbol ti.back i
-00000148 |[PostProcessor_DriveActuator; runnablestop; corel D:AFEQQOOS wr-sri 00000000 .phartiLarti_rte_trace 0.373us ~
-00000141 [TrpInternalTriggers; WAITING; cored D:AFEOQO00 wi i 00045200 .rp\arti‘arti_os_trace 1.013us
-00000133 |TrpEventHandlers; ACTIVATED; corel D:AFEOD000 wr-sri 000D3000 .rphartilarti_os_trace 0.593us =
-00000125 [TrpEventHandlers; RUNNING; coreQ D:AFEQQOOD wi 000D8100 .rphartidarti_os_trace 0.833us w
-00000118 |[Adjustment_AdjustData; runnablestart; cored D:AFEQQOO8 wi 00000400 .phartitarti_rte_trace 0.453us
-00000109 [Adjustment_AdjustData; runnablestop; coreQ D:AFEQQDOS wi 00000000 .phartitarti_rte_trace 0.273us e
-00000102 [TrpEventHandlers; SUSPENDED; corel D:AFEOQOO0 wi 000D3500 .rph\arti‘arti_os_trace 1.260us
-00000092 |TrpCounterIsr; RUNNING; corel D:AFEQQOOD wi 000F9000 .rphartitarti_os_trace 151.947us
-00000084 (TrpCounterIsr; INACTIVE; corel D:AFEOOOOD w 000F9100 .rphartiharti_os_trace 1.687us
-00000075 |TrpCounterIsr; RUNNING; corel D:AFEQOOOD wi 000F3000 .rph\artiarti_os_trace 653.380us
-00000067 |TrpCounterIsr; INACTIVE; coreQ D:AFEQQOQOOQ wi 000F9100 .rphartiharti_os_trace 1.473us
-0000005 8 |Os_Counter_STMO_TO; RUNNING; cored D:AFEQQQQQ wi 00109000 .rp\artiharti_os_trace 152.253us
-00000050 [TrpCyclicRunnables; ACTIVATED; cored D:AFEOQO00 wi 000C3000 .rp\artilarti_os_trace 4.347us
-00000041 [0s_Counter _STMO_TO; INACTIVE; cored D:AFEOOOOD w 00109100 .rp\arti‘arti_os_trace 6.273us
-00000033 [TrpCyclicRunnables; RUNNING; corel D:AFEOOOOD wi 000C8100 .rphartidarti_os_trace 0.700us
-00000025 [Adjustment_SendData; runnablestart; core0 D:AFEQQOO8 wi 00000500 .phartitarti_rte_trace 0.353us
-00000017 [Adjustment_SendData; runnablestop; coreQ D:AFEQQODO8 wi 00000000 .phartitarti_rte_trace 0.273us
-00000010 |[Filter_ReadSensor; runnablestart; cored D:AFEQQOOS wi 00000700 .phartiiarti_rte_trace 0.060us w

The screenshot was recorded for a TriCore AURIX and will look slightly different for other core architectures.

Trace.Chart

The Trace.Chart command group opens up timing chart windows for various ARTI objects. You can display
the timing of task run times, task states, interrupts, runnables aso. Chart windows give a quick overview on
the timing behavior. You can link several chart windows together with the /Track option.

e B:Trace.Chart. TASK EI@

/B Setup... | iif Groups...| 3% Config..| (3 Goto.. | [} Goto.. | F3Find.. | «OrIn | »04 Out | [Full

—832.850ms —-B832. B00ms —832.750ms
range R | 1 1 I
Cunknown) : DR] . .]]]] A
NO_THREAD : O K¢/ - . n e D N . . . I
SimCyclicRunnables . . u L .

TrpInternalTriggers
TrpEventHandlers
TrpCyclicRunnables
SchMComTask_10ms
SchMComTask_5ms
SchMDiagStateTask_20ms
SchMComTask_100ms
(unknown)
BswTask_SlaveCore
NO_THREAD

< > <

The following chapters will give more details on the usage of Trace.Chart with tasks, ISR2s and runnables.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 18

Trace.ProfileChart

The command group Trace.PROfileChart shows in a color chart how much time an ARTI object (e.g. a
task) has consumed within fixed time intervals. It is especially useful to give a quick overview of how much

CPU load a specific portion of the code or object has consumed.

H B:Trace. PROfileChart. TASK /JoinCORE = =R
/B Setup... | {if Groups...| 3% Config.. | [} Goto.. | F3Find.. | «rIn | 0+Out EMFull| S In | Out| [FFull| Fine | Coarse
10.000us |l Cunknown) | NO_THREAD M 5imCyclicRunnables]l TrpInternalTriggers
_ |oos -1.132850000s -1.132800000s5 -1.132750000s
ratio L L L
100.0

> <lm > |

See the chapter CPU Load Measurement below how to use this command in AUTOSAR environments.

Trace.STATistic

The Trace.STATistic command group provides tables with statistic evaluations of the timing of the individual
ARTI objects. It is meant to work on various timing parameters, including those mentioned in chapter
“Timing Parameters”, page 14. You will gain minimum, maximum and average times. When exporting the
Trace.STATistic windows to a CSV file, it could be used to execute and check timing in Cl (Continuous
Integration) environments.

| B:Trace.5TATistic. TASKState run.count run.max run.min ratio bar /SplitCORE EI
B Setup... | {if Groups... | 38 Config..| (3 Goto.. | =|Detailed | s Chart
tasks: 15. total: 1.466s |
task |count.run |max.run min.run ratio% [1% |
(unknown) < C 1. 3.715us 3.713us [<0.001% [+ ~
TrpCyclicRunnable: 1493, 6.273us 4.073us 0.413% |+
SimCyclicRunnable 1478. 5.780us 2.620us 0.268% |+
TrpInternalTrigger 1475. 9.047us 1.360us 0.290% |+
TrpEventHandler 751. 4.000us 1.880us 0.097% |+
SchMComTask_10m 155. 21.180us 16.587us 0.177% |+
SchMComTask_5m 298. 8.233us 6.000us | 0.121% |+
SchMDiagStateTask_20m: TS5 37.547us 35.327us 0.176% |+
SchMComTask_100ms : C 16. 23.720us 21.313us 0.022% |+
Cunknown) : 1 1. 13.008ms | 13.008ms 0.887% |+
BswTask_SlaveCore:l 73. 35.773us | 29.873us | 0.149% |+ v
1< >

The following chapters will give more details on the usage of Trace.STATistic with tasks, ISR2s and
runnables.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 19

Trace.PROfileSTATistic

The Trace.PROfileSTATistic command group shows a table with timing parameters evaluated within fixed
time intervals. This allows to detect peaks or trends of parameters over the recording time. It is especially
useful to measure the CPU load in fixed time slots.

2 BTrace, PROFileSTATIstic, TASK /t =N = ==
& setup... ||jif Groups..|| 3% Config..| (3 Goto.. | (3 Goto.. | F3Find.. | =|Detailed | s Chart | B Profile
items: 17. total: 1.468s samples: 0.

address [32.882ms | -32.872ms | -32.862ms | -32.852ms | -32.842ms | -32.832ms | -32.822ms | -32.812ms | -32.802ms | -32.792ms

Cunknown 0. 000us 0.000us 0.000us 0. 000us 0.000us 0. 000us 0.000us 0.000us 0. 000us 0.000us | .
NO_THREAD 10. 000us 7.593us 0.000us 0. 880us 0.567us 1.400us 1.073us 3.273us 0.480us 0.000us
SimCyclicRunnables 0. 000us 0.000us 0.000us 0. 000us 0.000us 0. 000us 0.000us 2.673us 0. 000us 0.000us
TrplInternalTriggers 0. 000us 0.000us 0.000us 0. 000us 0.000us 0. 000us 0.000us 3.827us 0.000us 0.000us
TrpEventHandlers 0. 000us 0. 000us 0. 000us 0. 000us 0. 000us 0. 000us 0. 000us 0.227us 1.667us 0. 000us
TrpCyclicRunnables 0. 000us 0.000us 0.000us 0.000us 0.000us 0. 000us 4,247us 0.000us 0.000us 0.000us
SchMComTask_10ms 0. 000us 0.000us 0.000us 0. 000us 9.433us 7.180us 0.000us 0.000us 0. 000us 0.000us
SchMComTask_5ms 0. 000us 0.000us 0.000us 0. 000us 0.000us 1.420us 4. 680us 0.000us 0.000us 0.000us
SchMDiagStateTask_20ms 0. 000us 0. 000us 0. 000us 0. 000us 0.000us 0. 000us 0. 000us 0. 000us 7.853us 10.000us
SchMComTask_100ms 0. 000us 2.407us 10.000us 9.120us 0.000us 0. 000us 0.000us 0.000us 0. 000us 0.000us
(unknown) 0. 000us 0. 000us 0. 000us 0. 000us 0.000us 0. 000us 0. 000us 0. 000us 0. 000us 0. 000us
BswTask_slaveCore 0. 000us 2.293us 10.000us 10. 000us 7.587us 0. 000us 0.000us 0.000us 0. 000us 0.000us

NO_THREAD 10. 000us 7.707us 0.000us 0. 000us 2.413us 10. 000us 10.000us 10.000us 10. 000us 10.000us | ¥
€ >

See the chapter CPU Load Measurement below how to use this command in AUTOSAR environments.

DURation Analysis

The duration analysis evaluates and shows the time distribution between two events. It is especially useful to
display the distribution of execution times, be it tasks or runnables.

= BuTrace. STATistic RUNMNABLEDURation Rte_Runnable_PostProcessor_ActionHandler_Start EI@
& Setup... iy Chart 21 Zoom = Zoom & Ful
samples: 22. avr: 1.777us min: 1.753us max: 1.907us
total: 1.466s 1in: 39.100us out: 1.466s ratio: 0.002%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 1.740us 0. 0. 000%
1.760us 7. | 31.818%
1.780us 0. 0. 000%
1. 800us 14. | 63.636%
1.820us 0. 0. 000%
1. 840us 0. 0. 000%
1. 860us 0. 0. 000%
1.880us 0. 0. 000%
1.900us 0. 0. 000%
1.920us 1. 4, 545% | —
> 0. 0. 000%
11 £ >

The following chapters will give more details on the usage of the duration analysis with tasks and runnables,
introducing the commands Trace.STATistic. RUNNABLEDURation and
Trace.STATistic.TASKStateDURation.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 20

DIStance Analysis

The command Trace.STATistic.DIStance evaluates and shows the time distribution between the
occurrences of a single event.

= BuTrace.STATistic.DISTance /Filter TASK "TrpCyclicRunnables” EI@
& Setup... iy Chart 21 Zoom = Zoom & Ful
samples: B1771. avr: 17.904us min: 0.000us max: 1.060ms
total: 1.468s 1in: 1.464s out: 4.229ms ratio: 99.712%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 0. 000us 0. 0. 000%
200. 000us B80307. | 98.209%
400. 000us 0. 0. 000%
&00. 000us 0. 0. 000%
800. 000us 0. 0. 000%
1. 000ms 1171. 1.432% |—
1. 200ms 293, 0.358% |+
> 0. 0. 000%

See the chapter Jitter Measurement below how to use this command to measure jitters in AUTOSAR
environments.

SMP Options

With multicore systems (SMP) there are several options for time evaluation:

SplitCORE

With the option /SplitCORE the time for each core is calculated and displayed separately. In
AUTOSAR Classic Platform the execution of runnables or tasks is strictly bound to a specific
core, so this option is useful to explicitly see what happens on each core.

MergeCORE

Using the /MergeCORE option, the time is calculated for each core, but the display summarizes
the results of all cores for each item. Executable entities in AUTOSAR classic platform usually do
not run on different cores, so this option usually is not needed here. It may be useful for functions
that are used cross-core.

JoinCORE

The /JoinCORE option causes the analysis to ignore the core. This option is useful to measure
timings of individual events that may happen on different cores. It is not useful to measure run-
times that may overlap on the cores.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 21

GROUP

The GROUP command group is mainly used for two purposes: marking and merging. GROUP allows to

group address ranges (such as functions or modules) or tasks.

111 B:GROUP.List

(o] 8)

2% Reset || (O Disable All| @ Enable A1|| O Hide All|| @ Show All gStore...

gLoad... {if Create... |{jf Create Task

roup enable hide |merge |color |taskgroup |

= rte” vy YELLOW .
"Rte_Event_Task” ¥ YELLOW -
"Rte_Event_Task_SlaveCore” v YELLOW -
"Rte_Time_Task_SlaveCore” v YELLOW -

= "idle” " -
"NO_THREAD" + -

1 “other” " RED

You can assign a color to a specific group. Whenever a window shows portions of the group (e.g. a List

window showing the code of a function that belongs to a group), the scale area at the left will show this color
as a bar. This allows identifying quickly, to which group your currently looking at. E.g. you could group a set
of functions and/or runnables together into a group that represents your AUTOSAR SWC.

(void)ret_Read;

B

S

Std_ReturnType ret_Read;

} /* FUNC(void, RTE_CODE) SW

read sensor data from RTE

=1 [BuList.auto] EI@
M Step | M Over | Ay Dnerge | ¢ Retun ¢ Up B Go | Il Break % Mode &f | t.

line [source |
53] |} /* FUNC(void, RTE_CODE) SWC_Filter_FilterData (void) * "

JFUNC(void, RTE_CODE) SWC_Filter_ReadSensor (void)

ret_Read = Rte_Read_RawSensorData_SensorData(&readSensorData);
send sensor data to RTE and trigger receivers

Rte_IrviWrite_ReadSensor_IRV_SensorData(readSensorData);

Rte_IrTrigger_ReadSensor_InternalTriggeringPoint_FilterDatai);

ilter_ReadSensor (void) *

More important for the use case of profiling is the possibility of merging group members in trace analysis
windows. This gives a better overview of your system, if you have hundreds (or thousands) of objects to

watch for. You may also hide all groups that are not of interest, and concentrate on the one you're
responsible for. It also gives the possibility to assign all background and idle tasks to an “idle group”,
calculating the CPU load used by all other tasks. See chapter CPU Load Measurement below.

= BuTrace STATistic. TASK total ratio bar EI@
B Setup... | {if Groups... | 3% Config... | =|Detailed | | Nesting | ¢ Chart | Profile
tasks: 12. total: 1.748s
range [total ratio¥% [1% 2% 5% 10% 20%
Cunknown) O 1.700us [<0.001% [+ ~
group "idle” 1.721s 98.421%
group “sim" 4.708ms 0.269% |+
group "trp” 14.103ms 0. B06% |+
group “schm” 8.780ms 0.502% |+
Cunknown) 7.006ms 0.400% |+
group "bsw" 2.635ms 0.150% |+
group “idle” 1.739s 99, 448% W
£ >

©1989-2024 Lauterbach

Application Note Profiling on AUTOSAR CP with ARTI

22

BMC

The BMC command group allows access to on-chip performance monitoring capabilities. Sometimes they
are called “benchmark counters” or “performance counters”. The capabilities of the BMC command group
heavily depends on the CPU architecture and the built-in features. In this application note, benchmark
counters are only covered by the chapter “CPU Load Measurement”, page 34.

Trace.EXPORT

You may want to import the results of the timing analysis done in TRACES32 into external tools that are able
to do further analysis or formatting. E.g. you may use the data of a task utilization to create a pie chart in
your favorite spreadsheet application.

TRACE32 provides several ways of exporting data, the easiest (and most flexible) one being the
PRinTer.FILE command with the CSV format. Together with the WinPrint prefix, this command allows to
export any command into a CSV table. The exported CSV table then can be imported in any application that
understands CSV.

For systems running AUTOSAR Classic Platform, the command group Trace.EXPORT is available to
interpret and export the recorded ARTI trace to various formats. These exports are dedicated for external
timing analysis tools that allow e.g. scheduling analysis and requirement tracing.

Details about the different exports that are of interest for AUTOSAR are mentioned in the below Export
chapter.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 23

Task Runtime Analysis

The ARTI instrumentation together with the appropriate tracing method records all task state changes. The
task states in the ARTI recording follow the task state machines defined in the AUTOSAR OS specification.
The chapter ‘ARTI Hook Macros’ therein defines a standard state machine and an enhanced state
machine.

Standard state machine:

) R
WV Nﬁ:inate

unning
/

Preempt ‘ Start Suspended
|

\

Release _ 4,,-/"4ivate
= Ready

Enhanced state machine:

Waitin
Preempted | <Preempt
Wait

REM
ﬂninate
e

Activated Suspended

Activate

Which state machine is used depends on the ARTI implementation. The ARTI implementation, in turn,
depends on the OS and which hooks the OS provides. TRACES32 is able to decode both implementations,
but, of course, only analyzes and provides those task states, that are encoded in the standard or enhanced
model.

You can check with Trace.List ARTI DEFault, if the trace contains appropriate ARTI records, and if those
are decoded correctly.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 24

Please note: the commands Trace.Chart.TASK and Trace.STATistic.TASK are not suitable for task
runtime analysis with ARTI. Those commands only evaluate the Running state, ignoring all others. E.g. the
min/max/avg times state, how long a task was in a running state, not the time from activation to termination.
Those commands, however, may be used in calculations where only the Running state is of interest, e.g.
when calculating the CPU load.

Trace.Chart. TASKState

The command Trace.Chart.TASKState draws a timing chart with all tasks and their timeline of the states.
The states are encoded as follows:

state line graphics
running solid black bar -
ready, released, preempted medium blue bar —
activated green line
waiting two thin red lines —
suspended thin grey line
unknown no line
! BiTrace.Chart TASKState /SplitCORE = =R
/B Setup... | iif Groups...| 3% Config..| (3 Goto.. | [} Goto.. | F3Find.. | «OrIn | »04 Out | [Full
-7.000ms -6.980ms -6.960ms -6.940ms -6.920ms -6.900ms
range iy 1 1 1 1 1 1 |
Cunknown) : 08 -
Init_Task_Core0:0f[
Rte_Event_Task:0gy
NO_THREAD: 0} L
SchMComTask_100ms
SchMDiagStateTask_20ms
SchMComTask_10ms]
SchMComTask_5ms S =
TrpInternalTriggers:Of = - = 5 5 2 -
TrpCyclicRunnables:0f -]
SimCyclicRunnables: 0k —
TrpEventHandlers —
(unknown)
Init_Task_Corel:l{
Rte_Event_Task_SlaveCore:lj
BswTask_SlaveCore: | fi— e : : : : : — R
J<im > < >

At the beginning of the trace, the states of the tasks are unknown. Only with the first appearance of a state
transition of a task the TRACES32 debugger knows about the subsequent state.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 25

Trace.STATistic.TASKState

The command Trace.STATistic. TASKState opens a table with all tasks and timing parameters based on
the timeline of the task states. The parameters are listed with their maximum, minimum, average run time
together with a ratio how much CPU time the task consumed.

Without any parameter, the command will show timing parameters as defined by TRACE32. However,
AUTOSAR defines a different set of timing parameters (see chapter “Timing Parameters”, page 14).
Adding the option /ARTI to the command will open a statistic evaluation based on the most interesting
AUTOSAR parameters. The option /AlIARTI lists all available items with ARTI. You can also pick the items of
interest to show only those, e.g. IPT.MAX PER.MIN CET.AVeRage.

= | BrTrace. STATistic. TASKState ARTI /SplitCORE (=N~
B setup... | i Groups...| & Config..|| (3 Goto.. | &) Detailed| il Chart
tasks: 20. . total: 1.997s
task [total.ipt |max.ipt |avr.ipt |total.cet |max.cet |avr.cet [total.get |max.get |avr.get [total.rt |max.rt avr.rt ‘total.st
Cunknown) = = = 9.360us | 9.360us| 9.360Us = = = = = = = .
Init_Task_CoreQ 9. 360us 9.360us 9. 360us 48.893us 48.893us 48.893us 56.913us 56.913us 56.913us 66.273us 66.273us 66.273us 1.997s
Rte_Event Task 49.400us 49.400us 49.400us 31.740us 31.740us 31.740us - - - - - - -
NO_THREAD - - 4.572ms 17.467us 1.50lus 4.572ms 17.467us 1.501us 4.572ms 17.467us 1.50lus 1.992s

SchMComTask_100ms 277.740us 13.960us 13.887us | 435.960us 47.080us 21.798us | 437.980us 47.080us 21.899us | 715.71%us 61.000us 35.786us 1.986s

SchMDiagStateTask_20ms 5.732ms | 100.060us 57.322us 5.711lms 2.069ms 57.107us 5.743ms 2.085ms 57.430us 11.475ms 2.101ms | 114.752us 1.976s
SchMComTask_10ms 1.598ms 12.293us 8.029us 3.507ms 21.180us 17.825us 3.530ms 23.200us 17.737us 5.127ms 35.347us 25.766us 1.982s
SchMComTask_5ms 1.041ms 6.213us 2.616us 2.426ms 8.233us 6.09%4us 2.442ms 10.233us 6.135us 3.483ms 14.660us 8.751us 1.983s
TrpInternalTriggers 1.180us 1.180us 1.180us 5.622ms 7.953us 2.882us - - - - - - -
TrpCyclicRunnables 21.440ms 92.833us 11.089us 8.015ms 6.253us 4.138us 8.090ms 8.360us 4.176us 29.530ms 97.153us 15.245us 1.907s
SimCyclicRunnables 1.608ms 0.840us 0.830us 5.194ms 5.140us 2.681lus 5.223ms 7.267us 2.696us 6.831lms 8.093us 3.526us 1.930s

TrpEventHandlers:0 | 826.775us | 0.867us | 0.837us | 1.880ms| 3.987us| 1.903us| 1.887ms| 6.093us | 1.909us | 2.713ms| 6.927us| 2.746us| 1.934s
Cunknown) - - - 8.020us | 8.020us| B8.020us

Init_Task _Corel 5.640us 5.640us 5.640us 67.233us 67.233us 67.233us 67.233us 67.233us 67.233us 72.873us 72.873us 72.873us 1.997s
Rte_Event Task_SlaveCore 57.720us 57.720us 57.720us 64.413us 42.053us 32.207us - - - - - - -
BswTask_SlaveCore 242.812us 2.700us 2.428us 2.989ms 31.427us 29.89%4us 2.989ms 31.427us 29.89%us 3.232ms 34.127us 32.322us 1.984s ¥
< >

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 26

Trace.STATistic.TASKStateDURation

The command Trace.STATistic. TASKStateDURation takes a task and a timing parameter and displays the

time duration of this parameter for the given task. See chapter “Timing Parameters”, page 14, for the

available parameters.

; list the different time spans of the initial pending time in a flat manner
Trace.STATistic.TASKStateDURation “OsTask RteTask_10ms” IPT /FLAT

Useful parameters are:

Parameter Measurement

IPT duration from activation to start

DT duration from start to start

PER duration from activation to activation
CET core execution time duration

GET gross execution time duration

= | BuTrace.STATistic, TaskStateDURation "TrpCyclicRunnables” IPT /FLAT EI@
& Setup... i Chart @I Zoom Iil Zoom |§| Full
samples: 1937. avr: 11.06%us min: 6.287us max: 92.833us
total: 1.997s in: 21.440ms out: 1.976s ratio: 1.073%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 0. 000us 0. 0. 000%
10.000us 1549. | 79.969%
20.000us 188. 9.705%
30.000us 6. 0.309% |+
40. 000us 0. 4., G46% |—
50.000us 85. 4, 358% |e——
&0. 000us 0. 0. 000%
70.000us 16. 0.826% |+
80. 000us 2. 0.103% |+
90. 000us 0. 0. 000%
> 1. 0.051% |+

©1989-2024 Lauterbach

Application Note Profiling on AUTOSAR CP with ARTI

27

Runnable Runtime Analysis

If the ARTI instrumentation also includes the RTE (see chapter “RTE Hooks”, page 7), then the entries and
exits of the instrumented runnables will be recorded. This allows an evaluation of the timing of runnables.

You can check with Trace.List ARTI DEFault, if the trace contains appropriate ARTI records, and if those
are decoded correctly.

Trace.Chart.Runnable

The command Trace.Chart.RUNNABLE draws a timing chart with all instrumented runnables and their
timeline.

*f BTrace.Chart RUNNABLE /SplitCORE [-E]

& Setup... | jif Groups...| 38 Config..| Y Goto.. | 1 Goto.. | #3Find.. || «OvIn || »0¢Out| B3 Full
Sms -908.930ms -908.985ms -908. 980ms -908.975ms -908.970ms
rangeRy| 1 1 1 1 1 1
Rte_RunnabTe_Adjustment_SendData: 4
Rte_Runnable_FiTlter_ReadSensor
Rte_Runnable_SimAPSubscriber_hpProcessing: 0y
Rte_Runnable_SimActuator_ConsumeActuatorData: (s
Rte_Runnable_SimSensor_UpdateSensorData: 0
Rte_Runnable_Filter_FilterData:0gy
Rte_Runnable_Adjustment_AdjustData: 03y
Rte_Runnable_PostProcessor_ActionHandler
Rte_Runnable_PostProcessor_PostProcessing
Rte_Runnable_PostProcessor_DriveActuator

<m > <

At the beginning of the trace, it is unknown, which (or even if a) runnable is running. Only with the first
appearance of an entry or exit of a runnable the debugger knows about the timing.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 28

Trace.STATistic. RUNNABLE

The command Trace.STATistic. RUNNABLE opens a table with all instrumented runnables and timing

parameters based on the timeline of the runnables. The parameters are listed with their maximum,
minimum, average run time together with a ratio how much CPU time the runnable consumed.

| BuTrace.STATistic. RUNNABLE /SplitCORE

(o8)

B Setup... | {if Groups... | 3% Config... | =|Detailed | | Nesting | ¢ Chart | Profile
funcs: 10. total: 13.979s
range [total min max avr count intern® 1% |
Rte_RunnabTe_Adjustment_SendData 509.461us 0. 260us 2.580us 0.263us 1937 0.003% [+
Rte_Runnable_Filter_ReadSensor 4. 211ms 2.140us 4.567us 2.174us 1937 0.030% |+
Rte_Runnable_SimAPSubscriber_hpProcessing 638.947us 0.293us 2.673us 0.330us 1937 0.004% |+
Rte_Runnable_SimActuator_ConsumeActuatorData 486.917us 0.247us 0.367us 0.251us 1937 0.003% |+
Rte_Runnable_SimSensor_UpdateSensorData 602.130us 0.273us 2.627us 0.311lus 1937 0.004% |+
Rte_Runnable_Filter_FilterData 2.406ms 0.233us 7.927us 1.242us 1937 0.017% [+
Rte_Runnable_Adjustment_AdjustData 237.133us 0. 240us 0.253us 0. 240us 988. 0.001% |+
Rte_Runnable_PostProcessor_ActionHandler 47.973us 1.753us 1.933us 1.777us 27. <0.001% |+
Rte_Runnable_PostProcessor_PostProcessing 53.100us 1.953us 2.100us 1.967us 27. <0.001% |+
Rte_Runnable_PostProcessor_DriveActuator 10. 360us 0.373us 0.407us 0.384us 27. <0.001% |+
£ >

Trace.STATistic. RUNNABLEDURation <runnablestart>

The command Trace.STATistic. RUNNABLEDURation takes the start address of the runnable VFB tracing
hook as parameter and displays the time duration of the given runnable. Check with
TASK.List. RUNNABLES for the exact naming of your runnable.

; list the different time spans of the runtime of runnable MyRunnable
MyRunnable.Trace.STATistic.RUNNABLEDURation MyRunnable

= BuTrace. STATistic RUNMNABLEDURation Rte_Runnable_PostProcessor_ActionHandler_Start EI@
& Setup... iy Chart 21 Zoom = Zoom & Ful
samples: 22. avr: 1.777us min: 1.753us max: 1.907us
total: 1.466s 1in: 39.100us out: 1.466s ratio: 0.002%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 1.740us 0. 0. 000%
1.760us 7. | 31.818%
1.780us 0. 0. 000%
1. 800us 14. | 63.636%
1.820us 0. 0. 000%
1. 840us 0. 0. 000%
1. 860us 0. 0. 000%
1.880us 0. 0. 000%
1.900us 0. 0. 000%
1.920us 1. 4, 545% | —
> 0. 0. 000%
11 £ >

©1989-2024 Lauterbach

Application Note Profiling on AUTOSAR CP with ARTI

29

ISR2 Runtime Analysis

If the ARTI instrumentation includes tracing of category 2 ISRs (ISR2), all entries and exits of ISR2s are
recorded. This allows an evaluation of the timing of ISR2s.

The Trace command group uses a different naming for ISR2s. Please note the term “interrupt” therein refers
to ISR1s, while the term “INTR” or “TASKINTR” refers to ISR2s.

ISR2s are very implementation specific. While ARTI includes a clear definition and interface for ISR2s, some
OSes internally do not make a clear distinction between tasks and ISR2s. In this case usually the ORTI file
needs a modification to better separate ISR2s from tasks, in addition a proper ARTI hook implementation
must be used. See also chapters “Vendor Specifics”, page 12, “Object Detection”, page 13 and
“TASK.ORTI”, page 16.

You can check with Trace.List ARTI DEFault, if the trace contains appropriate ARTI records, and if those
are decoded correctly.

Trace.Chart.TASKINTR

The command Trace.Chart. TASKINTR draws a timing chart with all ISR2s and their timeline.
#il BrTrace.Chart. TASKINTR [s

/B Setup... | 3% Config.. | () Goto.. | F3Find.. | g Chart | «OrIn || 04 Out | [Full
—-46.000ms —44,000ms —-42.000ms —40.000ms -38.000ms
range | 1 1 I 1 1 I
Cunknown)

TrpCounterIsr <J i i i i i

NO_ISR: 0K

At the beginning of the trace, it is unknown, if an ISR2 is active. Only with the first appearance of an entry or
exit of an ISR2, the debugger knows about the timing.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 30

Trace.STATistic.TASKINTR

The command Trace.STATistic. TASKINTR opens a table with all ISR2s and timing parameters based on
the timeline of the ISR2s. The parameters are listed with their maximum, minimum, average run time
together with a ratio how much CPU time the ISR2 consumed.

= | BiiTrace STATistic TASKINTR =
B Setup... | {if Groups... | 3% Config... | =|Detailed | | Nesting | ¢ Chart | Profile
intrs: 8. total: 1.997s
range [total min max avr count ratio¥ [1% 2% 5% 10% 20% 50%
Cunknown) 1.007ms 1.007ms 1.007ms 1.007ms 1. 0.050% [+
TrplounterIsr 20.961ms 3.713us 22.713us 10.502us 1996. 1.049% [»
NO_ISR 1.975s 977.273us | 996.813us | 989.498us 1996. 98. 900% |

Trace.Chart. TASKORINTRState

The command Trace.Chart. TASKORINTRState displays the timeline of both, ISR2s and task states, side-
by-side. This allows a quick overview if and when an ISR2 interrupted a task.

! BTrace.Chart. TASKORINTRState /SplitCORE [s
/B Setup... | iif Groups...| 3% Config..| (3 Goto.. | [} Goto.. | F3Find.. | «OrIn | »04 Out | [Full
-1.589000000s -1.588980000s
range [y I
TrpInternalTriggers:0f = - I = A
TrpCyclicRunnables: 0} .
SimCyclicRunnables: 0} - I = =
TrpEventHandlers: 0§ - - = =
TrpCounterIsr: Of|l— | — - - e
J<im > < >

Trace.STATistic. TASKORINTRState

The command Trace.STATistic. TASKORINTRState opens a table with both, ISR2s and task states, and
displays the timing parameters based on the timeline of the ISR2s and tasks. It is basically a merge of
Trace.STATistic. TASKState and Trace.STATistic.TASKINTR. It allows to analyze ISR2s and tasks both
together in one single table.

= BuTrace STATistic, TASKORINTRState run.count run.max run.avr run.min ratio bar /SplitCORE EI@
&Setup... iii Groups... =8 Config..| [} Goto.. | =|Detailed | % Chart
tasks: 21. total: 1.997s
task |count.run |max.run avr.run min. run ratio® [1% 2% |
TrpInternalTriggers 1951. 7.953us 2.882us 1.400us 0.281% [+ A
TrpCyclicRunnables 1974. 6.253us 4.138us 4.073us 0.401% |+
SimCyclicRunnables 1951. 5.140us 2.681lus 2.620us 0.260% |+
TrpEventHandlers 991. 3.987us 1.903us 1.880us 0.094% |+
TrplounterIsr 1997. 22.713us 10.502us 3.713us 1.049% [» b
£ >

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 31

Interrupt Runtime Analysis

Tracing of interrupt routines (aka category 1 ISRs, aka ISR1s) is very architecture specific and not (yet)
handled by this application note.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 32

Spinlock Analysis

ARTI allows to trace spinlocks, if the OS supports the appropriate hooks. The Spinlock analysis is currently
not (yet) coverd by this application note.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 33

CPU Load Measurement

By measuring the task run times you can also compute the CPU load by calculating, how many time shares
the CPU does “nothing”, runs in an idle loop, and/or runs in an idle task.

Please note that the CPU load is always related to a time span, and can change over time. If, for example,
the trace covers 10 seconds, the overall CPU load will simply say, how much time within these 10 seconds
the CPU was active. But this does not mean, that the CPU never was overloaded. In this scenario, a CPU
load of 50% could mean, in the worse case, that it had 100% load in the first 5 seconds and 0% load in the
second 5 seconds. On the other hand, if you take the time slot too small, e.g. smaller than the run-time of a
runnable, you will always see slots with a CPU load of 100% (executing the runnable). But that's, of course,
not the CPU load you're interested in. At the end it is very important to check the overall CPU load against
loads measured with wisely set time slots.

Grouping the Idle Tasks

To measure the CPU load, or, in turn, the idle time, the debugger needs to know, which tasks count as "idle".
If no task is running at all, the ORTI specification defines a dummy task named "NO_TASK" to be set to
running. Systems may include an own idle task, or background tasks that should also be counted as "idle".
To be able to calculate the idle time, group all idle tasks together into an "idle" group, using the
GROUP.CreateTASK command, e.g.:

GROUP.CreateTASK "idle" "NO_TASK" "myIdleTask" "myBackgroundTask"

For a visual effect when analyzing the idle time later, you may colorize the group against all other tasks:

GROUP.COLOR “idle” NONE
GROUP.COLOR “other” RED

To add up the times when in idle time and when not in idle time, use the GROUP.Merge command:

GROUP.Merge “idle”
GROUP.Merge “other”

The time spent in “other” then relates to the CPU load.

The merging of the group members applies to all Trace windows. If you want to switch back to see the timing
of the individual members, cancel the merging with:

GROUP.SEParate “idle”
GROUP.SEParate “other”

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 34

The GROUP.List window gives you a dialog where you can set all these items interactively.
111 B::Group.List EI@

2% Reset | O Disable 2| @ Enable All O Hide All | @ Show All gStore... gLoad... {if Create... | §jf Create Task
enable hide |merge |color |taskgroup |

roup

idle”
"NO_THREAD"
| "other" RED

CPU Load Overview

After grouping and merging the idle tasks, you can get a quick overview of the CPU load within the recorded
trace. Trace.STATistic.TASK now shows the absolute time spent within the “idle” and “other” tasks, as well
as their ratio in CPU run time. The overall CPU load is hereby simply the ratio of the “other” group.

= | BxTrace STATistic. TASK =xEER==
& Setup... | §if Groups...| B8 Config... | = |Detailed || fFi Nesting | ol Chart | I Profile
tasks: 10. total: 1.458s

1% 2% 5% 10% 20% 50% 100

range total min max avr count ratio
group idle 1.435s 0.427us 1.002ms | 254, 23%us 5646, 98.421% |
I| 23.014ms

<>

group "other™ 1.827us 39, 660us 4,077us 5645, 1.577% |m— |

To get a quick overview of the CPU load over time, use the command Trace.PROfileChart.TASK with the
option /JoinCORE. This command will provide a colorized chart showing how much percentage the CPU
load was within fixed time intervals. The /JoinCORE option sums up the CPU load of all cores. If you set the
colors of the group as mentioned in chapter “Grouping the Idle Tasks”, page 34, you'll see the CPU load in
red, while the idle time is white. To further elaborate the timing within the time intervals, see the next chapter

CPU Load in Time Slots.

K B::Trace PROfileChart. TASK /JoinCORE = o =]
& Setup... | jif Groups... 38 Config... | [} Goto.. | #iFind.. | «In 0+Out EHFull| Sin | S 0ut| EFull| Fine | Coarse
10.000us [l Cunknown) B oroup “other” group "idle"
. -6.500ms -6.000ms -5.500ms -5.000ms -4.500ms

ratio I ! ! I I |

100.0 ~

80.0 W

-~
60.0
40.0
20.0

0.0 hd

deim > < >

CPU Load in Time Slots

If the traced system has fixed time slots, it is useful to measure the CPU load within these slots. You can
quickly identify time slots that do not fulfil the requirements on CPU load. To measure the CPU load in fixed
time slots, merge the groups as mentioned in chapter “Grouping the Idle Tasks”, page 34. Open statistic
evaluation of task with the interval of the time slot to list all slots with the ratio of the CPU load. E.g:

Trace.PROfileSTATistic.TASK /Interval 10.ms /Ratio

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 35

If you identified a time slot that exceeds your limits, open a Trace.List ARTI DEFault /Track window and
click on the item in the table. The trace listing will scroll to the record in the trace that caused this calculation,
and you can further analyze why the CPU load was so high within this time interval.

% B:Trace. PROFileSTATistic TASK /InterVal 10.ms /Ratio = =R
B Setup... | {if Groups...| 3% Config..| (3 Goto.. | [} Goto.. | F3Find.. | =|Detailed | ¢ Chart | B Profile
items: 10. total: 1.461s samples: 0.
address |170. 828ms |-160. 828ms |-150. 828ms [-140. 828ms |-130. 828ms |-120. 828ms |-110. 828ms |-100. 828ms | -90. 828ms | -80. §28ms
group “other™ 1.754% 1.335% 1.948% 1.334% 1.757% 1.336% 1.881% 1.475% 1.756% 1.336%
group "other™ 0.298% 0. 000% 0.298% 0. 000% 0.298% 0. 000% 0.298% 0. 000% 0.298% 0. 000%
group "idle” 98.245% 98. 664% 98.051% 98.665% 98.242% 98.663% 98.118% 98.524% 98. 244% 98.663%

group "idle” 99.701% | 100.000% 99.701% | 100.000% 99.701% | 100.000% 99.701% | 100.000% 99.701% | 100.000%

< >

CPU Load by Benchmark Counters

On some architectures, depending on the built-in chip capabilities, it is possible to calculate the CPU load by
benchmark counters (command group BMC). This is useful if no trace hardware is available.

To use the benchmark counters on TriCore TC3xx, you need a full MCDS implementation (MCDSlight or
miniMCDS is not sufficient). The counters will work on executed instructions, not on time ticks. This means,
you can calculate the CPU load on the number of executed instructions, but not on “real” timing. As the
execution time of a instruction is not fixed but depends on the action, the measured value is not accurate in
timing. Due to limitations in MCDS, you can measure only one core, and you can only specify one task as
“idle” task. The demo directory for the ARTI instrumentation also contains a script
cpu_load_te3xx_bme.cmm that calculates the CPU load based on benchmark counters.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 36

Jitter Measurement

Jitter is the deviation of the actual measured event to the true periodicity. It is the time between the
theoretical periodic event time and the actual time the event happened. The deviation can happen due to
higher priority events (e.g. interrupts) or even deviating clock signals.

In AUTOSAR, the timing parameter “JIT” is defined as the “deviation of delta time from period”, i.e. the
difference of the start-to-start time to the activation-to-activation time.

Jitter is best measured with the Trace.STATistic.DIStance command. Use the /Filter option to select a
specific task, event, and/or core.

Jitter on Tasks

If you just want to measure the jitter of task run times (delta time, DT) use the command
Trace.STATistic.DIStance /Filter Task <task>

= BuTrace.STATistic.DISTance /Filter TASK "TrpCyclicRunnables” EI@
& Setup... iy Chart 21 Zoom = Zoom & Ful
samples: B1771. avr: 17.904us min: 0.000us max: 1.060ms
total: 1.468s 1in: 1.464s out: 4.229ms ratio: 99.712%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 0. 000us 0. 0. 000%
200. 000us B80307. | 98.209%
400. 000us 0. 0. 000%
&00. 000us 0. 0. 000%
800. 000us 0. 0. 000%
1. 000ms 1171. 1.432% |—
1. 200ms 293, 0.358% |+
> 0. 0. 000%

For measuring other events, you have to filter directly on the encoded ARTI data. The encoding of the traced
data is:

arti_os_trace = (task_id << 16) | 0x8000 | (event_id << 8) | core_id

E.g if you want to measure the jitter of the event “Terminate” (ID 5) of task with ID “2” on core 1, use:

Trace.STATistic.DIStance /Filter sYmbol arti_os_trace /Filter Data /0x00028501

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 37

You can ignore fields, e.g. to ignore the core in this example, use 0x000285xx.

= | B::Trace.STATistic.DISTance /Filter sYmbol arti_os_trace /Filter Data Ox000E85xx EI@
& Setup... i Chart @I Zoom Iil Zoom |§| Full
samples: 1458. avr: 1.000ms min: 935.453us max: 1.065ms
total: 1.461s 1in: 1.458s out: 2.823ms ratio: 99.806%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 930.000us 0. 0. 000%
940. 000us 14. 0. 960% |+
950. 000us 1. 0.068% |+
960. 000us 6. 0.411% |+
970. 000us 58. 3. 97 8% |e—
980. 000us 67. 4,595% | n—
990. 000us 125. 8.573%
1. 000ms 548. | 37.585%
1.010ms 352. | 24.142%
1.020ms 141. 9.670%
1.030ms 67. 4,595% | n—
1. 040ms 58 3.978%
1.050ms 3 0.411% |+
1. 060ms 1. 0.068% |+
1.070ms 14. 0. 960% |+
1.080ms o 0. 000%
1.090ms o 0. 000%
> o 0. 000%

It is intended to provide a script and dialog for the encoding of tasks and events, however, this is currently not
yet available.

Jitter on Runnables

The Jitter on Runnables measures the deviation of the actual periodicity of the runnables (start-to-start). Use
Trace.STATistic.DIStance with a filter encoding the ARTI data of the runnable event. The encoding of the
traced data is:

arti_rte_trace = (runnable id << 8) | core_id

E.g if you want to measure the jitter of the runnable with ID “4” on core 1, use:

Trace.STATistic.DIStance /Filter sYmbol arti_rte_ trace /Filter Data /0x00000401

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 38

You can ignore fields, e.g. to ignore the core in this example, use 0x000004xx.

| BiiTrace. STATistic.DISTance /Filter smbol arti_rte_trace /Filter Data 0x000005xx = =R
& Setup.. | [l Chart 21 Zoom = Zoom & Ful
samples: 1458. avr: 1.000ms min: 935.507us max: 1.065ms
total: 1.461s 1in: 1.458s out: 2.822ms ratio: 99.806%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 930.000us 0. 0. 000%
940. 000us 15. 1.028% |
950. 000us 0. 0. 000%
960. 000us 6. 0.411% |+
970. 000us 57. 3.909% |————————
980. 000us [4., 663% |—————
990. 000us 139, 9.533%
1. 000ms 544, | 37.311%
1.010ms 341. | 23.388%
1.020ms 142, 9.739%
1.030ms [4., 663% |—————
1.040ms 57 3.909%
1.050ms 3 0.411% |+
1. 060ms 1. 0.068% |+
1.070ms 14. 0. 960% |+
1.080ms o 0. 000%
1.090ms o 0. 000%
> o 0. 000%

It is intended to provide a script and dialog for the encoding of runnables, however, this is currently not yet
available.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 39

Export

If you want to post-process the traced data, there are various ways to export both, the trace and the statistic
evaluations.

CSV Export

Remember, that every window in TRACES32 can be exported to a image or a textual representation. Use the
PRinTer.FILE command to specify the file name and the file format of the destination. The following
command with the WinPrint prefix will then save its contents into this file using the specified format. E.qg. if
you want to export all ARTI timing parameters into a CSV file named artistats. csv, use the commands:

PRinTer.FILe artistats.csv CSV
WinPrint.Trace.STATistic.TASKState A11ARTI

) artistats.csv - Editor = O *

Datei Bearbeiten Format Ansicht Hilfe

"B::Trace.5TATistic.TASKState AL1ARTI™ -
"tasks: 15 total: 1.458"

"task", "total.und”, "min.und", "max.und", "avr.und", "count .und", "total.ipt™, "min.ipt", "max.ipt", "avr.ipt", "count.
"TrpCyclicRunnables™, ,0.00e-6,0.00e-6,0.00e-6,0.00e-6,1,16.152-3,6.28e-6,71.26e-6,11.07e-6,1459,6.03e-3,4.07e-
"SimCyclicRunnables™,,14.6%9¢-6,14.69%=-6,14.6%9e-6,0.0le-6,1,1.21e-3,0.82e-6,0.93e-6,0.83e-6,1459,3.91e-3,2.62e-
"TrpInternalTriggers”™,,19.41e-6,19.41e-6,15.41e-6,19.41e-6,1,0.00e-6,0.00e-6,0.00e-6,0.00e-6,0,4.23e-3,1.24ec-6
nTrpEventHandlers",,1.0le-3,1.01e-3,1.01e-3,1.37e-6,1,621.51e-6,0.83e-6,0.84e-6,0.83e-6,743,1.41e-3,1.8%-6,4.
"SchMComTask 10ms",,3.00e-3,3.00=-3,3.00e-3,20.57e-6,1,1.16=-3,0.82e-6,12.18=—€,7.96=-6,146,2.58e-3,16.582-§, 2
"SchMComTask 5ms",,3.02e-3,3.02e-3,3.02e-3,10.37e-6,1,762.36=-6,0.82e-6,4.462—6,2.61e-6,292,1.78e-3,6.00=-6, 8.
"SchMComTask 100ms",,13.00e-3,13.00e-3,13.00=-3,866.97e-6,1,208.67—6,13.892-6,13.92e-6,13.91e-6,15,325.12e-6,

"ScnMDiagStateTask 20ms",,13.00e-3,13.00e-3,13.00e-3,178.20e-6,1,4.25e-3,53.31e-6,76.30e-6,58.282-6,73,2.59e-3
"BswTask_SlaveCore",,13.0le-3,13.0le-3,13.01e-3,178.32e-6,1,178.46e-6,2.41e—6,3.992-6,2.44e-6,73,2.158e-3,29.86 v
£ >

Zeile 4, Spalte 1 100% Windows (CRLF) UTF-8

Trace.EXPORT.TASKEVENTS (deprecated)

TRACE32 includes a proprietary export format for instrumented task tracing.
Trace.EXPORT.TASKEVENTS is able to detect, decode and export this format. The “TASKEVENTS”
format is still available only for backward-compatibility, for new projects please use the ARTI format.

Trace.EXPORT.ARTI

The recorded ARTI trace can be exported into a well-defined CSV format using the Trace.EXPORT.ARTI
command. The exported file is a trace file in a textual CSV format, containing all decoded ARTI information,
especially the task state changes and runnable start/stop events. Several timing analysis tools are able to
import this format, please contact the tool vendor or Lauterbach for more information about tool compatibility.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 40

Please note that ARTI specifies two different task state machines: a “standard” and an “enhanced” state

machine (see chapter “Task Runtime Analysis”, page 24). Depending on which state machine the ARTI

implementation uses, specify the appropriate option /STanDard or /ENHanced to the export command.

1 artitrace.csv - Editor - O

Datei Bearbeiten Format Ansicht Hilfe
B e g g g s g g e g e s]

Task events trace file

#
#
trace_tool: TRACE32Z for TriCore, Software Version: N.2023.05.000159637
trace_date: Mon May 22 16:54:55 2023

trace_program: C:\workspace'demo\output\bin\TC39X¥ trp.elf

trace_os: AutosarCs

trace_duration: 1.458464073s

#

#

time (ns); okject; event; core number
BRI I I RIINIIIINININININININIIIIIIINIIIIAIARARARARANY
+0; TrpCyclicRunnakles; ACTIVATED:; O
+7853; Os_Counter STMO_TO; INACTIVE; O
+8726; TrpCyclicRunnakles; RUNNING; 0
; Adjustment_SendData; runnablestart; 0
; Adjustment_SendData; runnablestop; O
; Filter ReadSensor; runnablestart; 0
73; Filter ReadSensor; runnablestop; 0
; TrpCyclicRunnakles; SUSPENDED; 0
; SimCyclicRunnakles; ACTIVATED:; 0
; S5imCyclicRunnables; RUNNING; 0

Zeile 8, Spalte 22 100% Windows (CRLF) UTF-8

*

Ll

Trace.EXPORT.MDF

The recorded ARTI trace can be exported into an MDF file as specified by the “ASAM Run-Time Interface
Base Standard” (ASAM ARTI BS). The exported file is a binary file containing all decoded ARTI information,
especially the task state changes and runnable start/stop events. Timing analysis tools that conform to this

standard are able to import this file. Exported traces can become rather big, use the /ZIP option to reduce

the file size.

©1989-2024 Lauterbach

Application Note Profiling on AUTOSAR CP with ARTI

41

Please note that ARTI specifies two different task state machines: a “standard” and an “enhanced” state
machine (see chapter “Task Runtime Analysis”, page 24). Depending on which state machine the ARTI
implementation uses, specify the appropriate option /STanDard or /ENHanced to the export command.

{adh Vector MDF Validator . m] X

File Search MNavigate View 7
B0 P AQIRE e |®eBRIR
artitrace mf4

E] ID Block [MDF 4.10] A]armrace mf4\Header Block‘\Data Group 1\Channel Group 1\artiTrace Data‘eventParameter\Conversion\Text Block <<
=--[2) Header Block
=0 éa Veto Dt Hock Name Type Description Value Bytes Eor Message
- [2) File History 1 {ci=0) %z this LINK Start Address D11A8 0
= Data Group 1 ~id DWORD Block Identfication HATX 4
B-E3 Channel Group 1 i reserved DWORD Reserved 1] 4
i [Z Meta Data Block . length QWORD Block Length 39 8
-2 Ted Block A link _court QWORD Number of ks in link .. 0 8
B Source Information [l tx_data CHAR Text Fte_Fvent_Task 15
(- Ay timestamp
- Ry atiTraceData < N
[Text Block -
Hex View
(- B Source Information - — bas
B-Ay instanceName [Bytes of node 'Text Block':
#% InstmceFammcter, 0x23 0x23 0x54 0x53 0x00 0=00 0x00 0x00
(5~ Ay evertName 0227 0200 0=00 0=00 0x00 0=00 0x=00 0x00
E-#y eventParameter 0x00 0x00 0x00 0x00 0x00 0x00 O0x00 0x00
- [2] Text Block 0%52 0x74 OxE5 OxSF 0x45 0x76 OxeS OxEE
257 Conversion 0x74 0x5F 0x54 Ox€l 0x73 0x€B 0x00
- Text Block
Text Block
Text Block
Text Block A

Ready

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 42

TIMEX

TIMEX is an AUTOSAR specification that allows to define timing events, event chains and especially timing
constraints in an AUTSAR XML format. This allows tools to evaluate the measured times against
requirements. While TRACES32 is able to measure some of the TIMEX artifacts (like “execution time
constraints”), it does not import TIMEX descriptions. Especially TRACE32 does not do any requirement
analysis.

To use TRACER32 for requirement analysis on TIMEX, perform the ARTI tracing as mentioned in this
document. Export the trace either with Trace.EXPORT.ARTI or Trace.EXPORT.MDF (see chapters above).
Use your favorite timing requirement analysis tool to import the TIMEX file and the exported trace.

TRACES2 can be easily automated and scripted, including all the functionality described in this document.
So you can even include such a requirement analysis in your CI/CT environment.

©1989-2024 Lauterbach Application Note Profiling on AUTOSAR CP with ARTI | 43

	Application Note Profiling on AUTOSAR CP with ARTI
	History
	About this manual
	Introduction
	Related Documentation
	Using ARTI Hooks
	Hook Macros
	OS Hooks
	RTE Hooks

	Instrumentation
	Trace Methods
	Data Trace
	TRACE32 LOGGER Trace
	TRACE32 FDX Trace

	Vendor Specifics

	Object Detection

	Timing Parameters
	Overview of TRACE32 Command Structure
	TASK.ARTI
	TASK.ORTI
	TASK.List
	Trace.List
	Trace.Chart
	Trace.ProfileChart
	Trace.STATistic
	Trace.PROfileSTATistic
	DURation Analysis
	DIStance Analysis
	SMP Options
	GROUP
	BMC
	Trace.EXPORT

	Task Runtime Analysis
	Trace.Chart.TASKState
	Trace.STATistic.TASKState
	Trace.STATistic.TASKStateDURation

	Runnable Runtime Analysis
	Trace.Chart.Runnable
	Trace.STATistic.RUNNABLE
	Trace.STATistic.RUNNABLEDURation <runnablestart>

	ISR2 Runtime Analysis
	Trace.Chart.TASKINTR
	Trace.STATistic.TASKINTR
	Trace.Chart.TASKORINTRState
	Trace.STATistic.TASKORINTRState

	Interrupt Runtime Analysis
	Spinlock Analysis
	CPU Load Measurement
	Grouping the Idle Tasks
	CPU Load Overview
	CPU Load in Time Slots
	CPU Load by Benchmark Counters

	Jitter Measurement
	Jitter on Tasks
	Jitter on Runnables

	Export
	CSV Export
	Trace.EXPORT.TASKEVENTS (deprecated)
	Trace.EXPORT.ARTI
	Trace.EXPORT.MDF

	TIMEX

