
MANUAL

API for Auxiliary Processing Unit

API for Auxiliary Processing Unit

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 Misc .. 

 API for Auxiliary Processing Unit ... 1

 Introduction ... 4

 Release Information 4

 Features 5

 Requirements 5

 Infineon Cerberus IO Client 5

 Files 6

 Conventions 6

 Programmer’s Guide ... 7

 Basic Concept 7

 Callback Functions 8

 Access to Main Core Debugger 9

 Generic Configuration 9

 Output Functions 9

 Interface Functions 9

 APU Callback Structures 10

 APU Context 10

 APU Library .. 11

 APU API Files 11

 Building the Library 11

 Loading the Library 12

 Writing a new Library 12

 Basic Setup 13

 Implementation of the Callback Functions 14

 Fine Tuning 14

 Symbol Information 14

 APU Commands .. 15

 APU Library Functions ... 16

 APU Entry Functions 16

 APU_Interface 16

 APU_Init 16
API for Auxiliary Processing Unit | 2©1989-2024 Lauterbach

 Generic Configuration Functions 17

 APU_DefineEndianness 17

 APU_DefineMemory 17

 APU_DefineSoftbreak (optional) 19

 APU_Printf 19

 APU_Warning 20

 APU_GetSymbol 20

 Callback Register Functions 21

 APU_RegisterBreakCallback 21

 APU_RegisterBreakpointCallback (optional) 21

 APU_RegisterCommandCallback (optional) 22

 APU_RegisterDisassemblerCallback 23

 APU_RegisterAssemblerCallback 23

 APU_RegisterExitCallback (optional) 24

 APU_RegisterGetStateCallback 24

 APU_RegisterGoCallback 25

 APU_RegisterMemoryReadCallback 25

 APU_RegisterMemoryWriteCallback 26

 APU_RegisterResetCallback (optional) 26

 APU_RegisterStepCallback 27

 APU_RegisterTranslateCallback (optional) 27

 Memory and Target Access Functions 28

 APU_GetState 28

 APU_ReadMemory 29

 APU_WriteMemory 30

 APU_ExecuteCommand 30

 APU Callback Structures .. 31

 Breakpoint Callback Structure 31

 Global Callback Structure 32

 Disassembler Callback Structure 33

 Assembler Callback Structure 35

 GetState Callback Structure 36

 Memory Callback Structure 37

 Parameter Callback Structure 38

 Translate Callback Structure 39

 Version Control ... 40
API for Auxiliary Processing Unit | 3©1989-2024 Lauterbach

API for Auxiliary Processing Unit

Version 06-Jun-2024

Introduction

This is the APU API Developer’s Guide, intended for programmers developing a Sub Core Debugger. The
API is also used to extend the built in disassembler and assembler for certain architectures (to support
custom instructions).

It is not for someone who is just using the APU Debugger. Refer to’APU’ in “General Commands
Reference Guide A” (general_ref_a.pdf) instead.

In addition to the Main Core (CPU), some architectures optionally have one or more Sub Cores or Co-
Processors, also called Auxiliary Processing Units (APUs) which are normally supported by LAUTERBACH.
For example, most TriCore CPUs have the PCP as Sub Core, PowerPC and ColdFire may have one or two
eTPUs and Star12X has the XGate. These Sub Cores are already supported by LAUTERBACH.

But for some reason the Sub Core may not be supported by the LAUTERBACH debugger although
debugging is necessary. In these cases the CPU manufacturer or the user has the opportunity to write their
own debugger which integrates into the LAUTERBACH debugging environment and benefits of its features.

Therefor the PowerView software contains an interface for integrating such an APU debugger via an external
dynamically linked library, e.g. a Windows DLL or Linux sa. This PowerView interface is called APU API.

The APU API is built as a C/C++ library with a C function interface to the controlling application.

The term APU is a synonym for the Sub Core to be supported by the APU API.

Release Information

2007-01-02: On-chip breakpoints implemented, several bug fixes including HLL output in APU.List Window.

2006-11-26: Documentation started, first customers are already using the APU API.
API for Auxiliary Processing Unit | 4©1989-2024 Lauterbach

Features

• Displaying code memory (disassembled and/ or HLL)

• Displaying data memory

• Accessing memory and registers (read and write)

• Go, Break and Single Step

• On-chip- and Software breakpoint support

• Address translation

• Loading symbols from object files

• Execution of PRACTICE commands in PowerView

• Defining own debugger commands

The libraries can be build for all platforms for which the Main Core Debugger is supported.

Requirements

The main requirement for an APU debugger is that there is already a debugger available for the Main Core.
Consider you want to support the Data Mover of your preferred DSP, there must be a debugger for this DSP
available from LAUTERBACH (for this DSP derivative to be exactly).

All APU debug registers and all APU memories have to be implemented in a memory accessible for the
Main Core Debugger.

Infineon Cerberus IO Client

Some semiconductor companies have a standard debug port which is used in all of their chips.

As an example, Infineon uses the Cerberus as standard Debug Port for most of it’s devices, e.g. XC16x,
XC2000, TriCore and many others. So it is possible to address every memory and register via the system
bus. In this special case the Cerberus IO Client can be regarded as the Main Core, and the effective core
can be supported via the APU API.

For this, use the TriCore (32 bit architecture) or the C16x debugger (16 bit architecture) as Main Core
Debugger. Select either Cerberus or Cerberus2 as CPU, this depends on the version of the Cerberus IO
Client.

NOTE: Currently only 32 bit architectures are supported. Contact LAUTERBACH for more information.
API for Auxiliary Processing Unit | 5©1989-2024 Lauterbach

Files

The APU API header- and implementation files and an example implementation can be found in the
TRACE32 installation directory.

Conventions

As convention, the following terms are being used:

• Main Core

This is the host core or host core architecture which is required.

• Sub Core or APU

The core where the new debugger is written for.

• APU Debugger or Sub Core Debugger

The part of the debugger software within the library.

• APU API

The interface between the APU Debugger and PowerView. PowerView is the software (GUI) with
the Main Core Debugger provided by LAUTERBACH.

~~/demo/apu/t32apu.h
~~/demo/apu/t32apu.c

Header file.
Implementation for library.

~~/demo/apu/example_apu/ Example implementation for the Infineon PCP
Coprocessor.

~~/demo/apu/example_apudisass/ Example for an APU implementing assembler
and disassembler commands.

~~/demo/apu/example_virtualapu/ Example that can be used with any target or in
an instruction set simulator. The subcore is
simulated within the APU debugger.

~~/demo/apu/example_address_translation/ As above, but using a more complex setup with
non-byte-addressed memories, address
translation and user access.

~~/demo/apu/arm_corelink_dma_330_disass/ Functional disassembler for the Arm CoreLink
330 DMA controller.
API for Auxiliary Processing Unit | 6©1989-2024 Lauterbach

Programmer’s Guide

Basic Concept

All functionalities of the debugger are implemented in the external library which is linked to PowerView at
runtime.

The user accesses the APU debugger by issuing the APU commands which are very similar to the well
known debugger commands. E.g. for opening a Data.List window, the user issues APU.List instead.

Some of the low-level functionalities of each APU command is redirected to the APU library. E.g. for the
APU.List window the disassembler integrated in the APU library is called for disassembling the opcodes.
Data and debug information (e.g. about the Sub Core state) is stored within Callback Structures.

The library itself can make calls to the Main Core Debugger e.g. to read or write Main Core memory. It is also
possible to execute arbitrary PRACTICE commands or to print error or warning messages.

TRACE32 PowerViewAPU Library Callback Functions

Call

Result

Call

Result

other Functions

Call

Memory/ Target Access Functions
API for Auxiliary Processing Unit | 7©1989-2024 Lauterbach

Callback Functions

For implementing the debug features, PowerView has to perform APU specific code which is outsourced to
the APU library. When needed, it is called by PowerView.

The following APU functionalities are implemented by Callback Functions:

• SYStem.Up of Main Core Debugger

• Get state (e.g. Running, Stopped or Idle)

• Step, Go and Break

• Memory read, write and translation

• Disassembler

• On-chip breakpoint set and delete

• Library specific commands

• APU unloading

Each function is registered by using the Callback Register Functions. Not all functionalities have to be
implemented in the APU library. In this case they are not registered.

All Callback Functions have the same parameters passed:

proprietary can be used by the developer for any purpose.

All Callback Functions have the same return codes:

apuContext context Reserved for future use.

apuCallbackStruct *cbs Callback structure for data and information exchange with
PowerView.

apuPtr *proprietary Pointer to a proprietary set of data.

APU_OK Callback Function exited successfully.

APU_FAIL Callback Function failed.
API for Auxiliary Processing Unit | 8©1989-2024 Lauterbach

Access to Main Core Debugger

In some cases the APU library needs access to some Main Core Debugger functions:

• Getting state of Main Core

• Accessing Main Core memory (read or write)

• Executing PowerView commands

See Memory and Target Access Functions for more information on how to use this functions.

Generic Configuration

PowerView needs to know information on the APU under debug:

• APU endianness for handling the byte order

e.g. Litte Endian or Big Endian

• Memory Classes for implementing memory spaces

e.g. Program and Data memory (Harvard Architecture)

• Software breakpoints

to inform PowerView which Opcode implements the Software breakpoint

The APU endianness and at least Memory Class P (for Program Code) have to be defined.

See Generic Configuration Functions for more information on how to set up APU configuration for
PowerView.

Output Functions

The Generic Configuring Functions also provide functions for status or error output. The output is directed
to the AREA window.

Interface Functions

The Interface Functions provide the setup of the API after it is loaded.

Directly after loading, PowerView calls APU_Interface() for internal setup. From this, APU_Init() is
called for APU specific setup. APU_Init()has to be provided by the APU specific code and is not included
in the basic library functions.
API for Auxiliary Processing Unit | 9©1989-2024 Lauterbach

APU_Init()implements the following tasks:

• Processing of optional API parameters

• Setting up APU specific parameters as APU endianness, Memory Classes and Software
breakpoints

• Registering the Callback functions

• Sub Core specific setup (optional)

APU Callback Structures

The Callback Structures are used to pass information and data from PowerView to the Callback Functions
and vice versa. Each Callback Function has its own Callback Structure defined which is passed by the
Global Callback Structure:

APU Context

The APU context is reserved for future use.

typedef struct {
int type; /* type of referenced Callback Structure x */
union {

/* reference to Callback Structure */
…

} x;
} apuCallbackStruct;

/* Callback Structures referenced by global Callback Structure */
typedef struct { … } apuMemoryCallbackStruct;
typedef struct { … } apuGetstateCallbackStruct;
typedef struct { … } apuDisassemblerCallbackStruct;
…

API for Auxiliary Processing Unit | 10©1989-2024 Lauterbach

APU Library

APU API Files

The API consists of one C source files and one C header file:

• t32apu.h

This file contains the basic types and includes, and it handles the interface to the PowerView
software.

• t32apu.c

Handles the calls from PowerView and passes them to the user implemented functions.

Building the Library

Whenever a part of the application uses the API, the header file "t32apu.h" must be included. The
corresponding C/C++ source file must contain the line

quite at the beginning of the source.

When compiling and linking the application, the API files must be handled as normal source components of
the application. Compilation could look like this:

assuming, that the application is coded in a file called "mydebugger.c" and your C compiler is called "cc".
The linker run is then invoked with

assuming the linker name is "cc" and the object extension is "o".

#include "t32.h"

cc -c t32apu.c

cc -c mydebugger.c

cc -o mydebugger t32apu.o mydebugger.o
API for Auxiliary Processing Unit | 11©1989-2024 Lauterbach

Loading the Library

Set up PowerView as for debugging the main core.

Then the external library is loaded into PowerView:

Optionally any number of arguments may be passed to the DLL.

Writing a new Library

This section will help guide you through the first steps writing your first APU debugger library.

See also demoapu.c for an example.

APU.LOAD mydebugger.dll
API for Auxiliary Processing Unit | 12©1989-2024 Lauterbach

Basic Setup

The first function ever called is APU_Init on loading the APU Library. So this is the first function that has to
be filled with life:

• Give the APU Debugger a name and add the compile date:

• Next, define the endianness:

• It is required to define at least Sub Core memory class P, but normally you should also define D:

In this example the access- and display width for D is 32 bit, the widths for P is 16 bit.

• As last step the mandatory Callback Functions have to be registered:

Here the disassembler registers with a minimum instruction length of 2 and a maximum
instruction length of 4.

Note that the Translate Callback Function is required for some basic functions as breakpoints
and should be implemented as soon as possible.

strcpy(cbs->x.init.modelname, __DATE__ " APU Demo");

APU_DefineEndianness(context, APU_ENDIANNESS_LITTLE);

APU_DefineMemory(context, 0, "D", 4, 4);

APU_DefineMemory(context, 1, "P", 2, 2);

APU_RegisterGetStateCallback(context, GetStateDemo, 0);

APU_RegisterMemoryReadCallback(context, ReadDemoMemory, 0);

APU_RegisterMemoryWriteCallback(context, WriteDemoMemory, 0);

APU_RegisterDisassemblerCallback(context, DisassembleDemo, 0, 2, 4);

APU_RegisterGoCallback(context, GoDemo, 0);

APU_RegisterBreakCallback(context, BreakDemo, 0);

APU_RegisterStepCallback(context, StepDemo, 0);
API for Auxiliary Processing Unit | 13©1989-2024 Lauterbach

Implementation of the Callback Functions

The Callback functions are now registered but not yet existing. As first step it is required to create every
Callback Function that is registered with a minimum (empty) functionality.

Now the Callback Functions have to be filled with life. There are several concepts how to do this, but the
most important tasks are:

• Determining the Sub Core state (GetState Callback Function)

When the Sub Core is running, the memory access Callback Functions are never called (no
matter of the Main Core state). So it is not possible to perform any other action. If it is difficult to
determine the Sub Core state at this point of time, a temporary workaround may be to return
APU_STATE_STOPPED all the time.

• Implementing Sub Core data display

As soon as possible the memory read- and write Callback Functions will have to be
implemented. Although more advanced features as memory mapping or MMU support may be
omitted at this point of time, it is strongly required to test this functionality very intensive.

The next steps might be to implement the basic debugging features:

• Disassembler Callback Function

• Step, Go and Break Callback Functions

• Software- and on-chip breakpoints

Fine Tuning

The fine tuning usually is the last step, but you may want or need to do some parts at an earlier stage.

• Initializing the Sub Core on System.Mode Up of the Main Core (Reset Callback Function)

• Recognition of special Sub Core states

• Exit Callback Function for safe exit on unload

Symbol Information

In most cases the code for the Sub Core is included in the Main Core object file. The Main Core sets up the
Sub Core and loads code and data to its memory.

In most cases the object file maps the symbol information to the address space of the Sub Core. The
Translate Callback Function defines how the Sub Core address space is mapped to the Main Core
address space, so TRACE32 PowerView can map the symbol information from Main Core to Sub Core and
vice versa.

However it might be necessary to provide manually created symbol information. In this case the Local
Symbol Files from “General Commands Reference Guide D” (general_ref_d.pdf) might be a suitable
solution.
API for Auxiliary Processing Unit | 14©1989-2024 Lauterbach

APU Commands

This is just an overview of the most important APU commands. See ’APU’ in “General Commands
Reference Guide A” (general_ref_a.pdf) for detailed information.

APU.Break.direct Program break

APU.Break.Set Set breakpoint

APU.command Send command to APU library

APU.Data.dump Memory dump

APU.Go Real-time execution

APU.List Symbolic display

APU.LOAD Load APU library

APU.Register Show APU register window

APU.RESet Reset APU core

APU.Step Single-stepping

APU.View Display peripherals
API for Auxiliary Processing Unit | 15©1989-2024 Lauterbach

APU Library Functions

APU Entry Functions

APU_Interface

This function is called once from PowerView directly after loading the APU library. The callback structure
contains a pointer to the arguments passed with APU.LOAD.

This function is provided by LAUTERBACH and normally there is no need to make any changes.

APU_Init() is called at the end of this function.

APU_Init

This function is called from APU_Interface(). This function is not supplied by LAUTERBACH and has to be
implemented by the developer for registering the callback functions and setting up the APU debugger.

Prototype: int APUAPI APU_Interface(
apuContext context,
apuCallbackStruct *cbs

)

context APU context.

*cbs Callback structure.

Prototype: int APUAPI APU_Init(
apuContext context,
apuCallbackStruct *cbs

)

context APU context.

*cbs Callback structure.
API for Auxiliary Processing Unit | 16©1989-2024 Lauterbach

Generic Configuration Functions

APU_DefineEndianness

PowerView needs to know how to assemble the bytes for non-8 bit values. The following endiannesses are
possible:

APU_DefineMemory

Prototype: void APUAPI APU_DefineEndianness(
apuContext context,
int endianness

)

context APU context.

endianness Define the target endianness.

APU_ENIDANESS_LITTL
E

Little Endian mode.

APU_ENIDANESS_BIG Big Endian mode.

Prototype: void APUAPI APU_DefineMemory(
apuContext context,
int id,
const char *name,
int width,
int flags

)

API for Auxiliary Processing Unit | 17©1989-2024 Lauterbach

Define the memory classes.

Each memory class represents either a logical or physical independent memory and has it’s own ID. At least
memory class P for code with id=1 is mandatory.

The access width tells the Main Core Debugger which access width to use for accessing the target memory.
There may be restrictions for certain memory regions. The access width also defines the address unit that is
exposed to the user. Note that addresses passed through the APU API are always byte addresses.

The display width defines the default width for displaying data in a window.

The following names are used by the debugger:

context APU context.

id ID of memory class.
IDs should start at 0 and should be continuous. The maximum allowable ID is
15.

*name Name of memory class.
Names should consist of 1 to 3 letters, no numbers allowed.

width Memory access width in bytes.

flags Default display width in bytes.

"D" Used for accesses to the D: access class for APU-related operations.

"P" Used for accesses to the P: access class for APU-related operations.

"USR" Used for accesses to the USR: access class, even for commands that do not
normally access the APU. If a loaded APU defines this memory, it has
precedence over a Data.USRACCESS external access algorithm.
API for Auxiliary Processing Unit | 18©1989-2024 Lauterbach

APU_DefineSoftbreak (optional)

Define the opcode used for a software breakpoint.

APU_Printf

Print an information message (e.g. status message) into the PowerView AREA window.

Prototype: void APUAPI APU_DefineSoftbreak(
apuContext context,
int width,
const unsigned char *data

)

context APU context.

width Software breakpoint opcode width (in bytes).

*data Software breakpoint opcode.

Prototype: void APUAPI APU_Printf(
apuContext context,
const char *format,
…

)

context APU context.

*format, … printf() compliant format string.
API for Auxiliary Processing Unit | 19©1989-2024 Lauterbach

APU_Warning

Print a warning message into the PowerView AREA window.

APU_GetSymbol

Resolve a symbolic name. The return value is APU_OK when the name could be resolved. The address is
returned via padddress and pflags.

Prototype: void APUAPI APU_Warning(
apuContext context,
const char *format,
…

)

context APU context.

*format, … printf() compliant format string.

Prototype: int APUAPI APU_GetSymbol(
apuContext context,
const char *name,
apuWord * paddress,
int * pflags

)

context APU context.

*name Symbol name that needs to be resolved.

*paddress Address of the symbol.

*pflags Extra address flags.
API for Auxiliary Processing Unit | 20©1989-2024 Lauterbach

Callback Register Functions

APU_RegisterBreakCallback

Register the function func as Break Callback Function which is called from the APU.Break command.

When called the Callback Function stops the real-time execution of the APU.

APU_RegisterBreakpointCallback (optional)

Prototype: void *APUAPI APU_RegisterBreakCallback(
apuContext context,
apuCallbackFunctionPtr func,
apuPtr proprietary

)

context APU context.

func Function which handles the callback.

proprietary Pointer to proprietary data structure.

Prototype: void *APUAPI APU_RegisterBreakpointCallback(
apuContext context,
apuCallbackFunctionPtr func,
apuPtr proprietary,
int bptypes

)

context APU context.

func Function which handles the callback.

proprietary Pointer to proprietary data structure.

bptypes Breakpoint types available for the Sub Core.
API for Auxiliary Processing Unit | 21©1989-2024 Lauterbach

Register the function func as Breakpoint Callback Function for handling on-chip breakpoints.

bptypes tells PowerView what types of on-chip breakpoints are available for the Sub Core. It is currently
not possible to set on-chip breakpoints on read or write data.

APU_RegisterCommandCallback (optional)

Register the function func as Command Callback Function for the APU.command command.

When APU.command is called in PowerView, all its parameters are passed to the Command Callback
Function which processes the parameters. Usually this is used to extend the APU API with extra commands
and options (e.g. APU.SYStem.Options). Note that all parameters are parsed by the PowerView command
line parser for formal correctness.

APU_BPTYPE_PROGRAM Code breakpoints.

APU_BPTYPE_READ Data breakpoints on read access (address).

APU_BPTYPE_WRITE Data breakpoints on write access (address).

Prototype: void *APUAPI APU_RegisterCommandCallback(
apuContext context,
apuCallbackFunctionPtr func,
apuPtr proprietary

)

context APU context.

func Function which handles the callback.

proprietary Pointer to proprietary data structure.
API for Auxiliary Processing Unit | 22©1989-2024 Lauterbach

APU_RegisterDisassemblerCallback

Register the function func as Disassembler Callback Function which is called from the Data.List window
for decoding opcodes. This API can also be used by some architectures to implement a disassembler for
custom instructions.

APU_RegisterAssemblerCallback

Register the function func as Assembler Callback Function which is called from the Data.Assemble
command for coding mnemonics. This API can also be used by some architectures to implement an
assembler for custom instructions.

Prototype: void *APUAPI APU_RegisterDisassemblerCallback(
apuContext context,
apuCallbackFunctionPtr func,
apuPtr proprietary,
int mininstlen,
int maxinstlen,

)

context APU context.

func Function which handles the callback.

proprietary Pointer to proprietary data structure.

mininstlen Minimum instruction length (in bytes) an APU opcode can have.

maxinstlen Maximum instruction length (in bytes) an APU opcode can have.

Prototype: void *APUAPI APU_RegisterAssemblerCallback(
apuContext context,
apuCallbackFunctionPtr func,
apuPtr proprietary

)

context APU context.

func Function which handles the callback.

proprietary Pointer to proprietary data structure.
API for Auxiliary Processing Unit | 23©1989-2024 Lauterbach

APU_RegisterExitCallback (optional)

Register the function func as Exit Callback Function which is called from the APU.RESet command.

This gives the APU library the opportunity to quit safely: Close all files, free allocated memory, unload other
libraries, … .

APU_RegisterGetStateCallback

Register the function func as GetState Callback Function for evaluating the current state of the APU:
Running, stopped or idle. In case the state is stopped, the current PC is also read.

Note that the GetState Callback function is continuously called by PowerView (for changing the interval see
SETUP.URATE).

Prototype: void *APUAPI APU_RegisterResetCallback(
apuContext context,
apuCallbackFunctionPtr func,
apuPtr proprietary

)

context APU context.

func Function which handles the callback.

proprietary Pointer to proprietary data structure.

Prototype: void *APUAPI APU_RegisterGetStateCallback(
apuContext context,
apuCallbackFunctionPtr func,
apuPtr proprietary

)

context APU context.

func Function which handles the callback.

proprietary Pointer to proprietary data structure.
API for Auxiliary Processing Unit | 24©1989-2024 Lauterbach

APU_RegisterGoCallback

Register the function func as Go Callback Function which is called from the APU.Go command.

When called the function starts the real-time execution of the APU.

APU_RegisterMemoryReadCallback

Register the function func as Read Memory Callback Function which is used for reading APU memory.

The memory read function is also responsible for any memory mapping and/or MMU functionality as long as
the Sub Core implements such features.

Prototype: void *APUAPI APU_RegisterGoCallback(
apuContext context,
apuCallbackFunctionPtr func,
apuPtr proprietary

)

context APU context.

func Function which handles the callback.

proprietary Pointer to proprietary data structure.

Prototype: void *APUAPI APU_RegisterMemoryReadCallback(
apuContext context,
apuCallbackFunctionPtr func,
apuPtr proprietary

)

context APU context.

func Function which handles the callback.

proprietary Pointer to proprietary data structure.
API for Auxiliary Processing Unit | 25©1989-2024 Lauterbach

APU_RegisterMemoryWriteCallback

Register the function func as Write Memory Callback Function which is used for writing APU memory.

The memory read function is also responsible for any memory mapping and/or MMU functionality as long as
the Sub Core implements such features.

APU_RegisterResetCallback (optional)

Register the function func as Reset Callback Function which is called after every SYStem.Up in the Main
Core Debugger. This means that the Main Core has been taken out of reset and was initialized.

The APU library can now initialize and set up the Sub Core for debugging. Note that for SYStem.Mode
Down no Callback Function is called.

Prototype: void *APUAPI APU_RegisterMemoryWriteCallback(
apuContext context,
apuCallbackFunctionPtr func,
apuPtr proprietary

)

context APU context.

func Function which handles the callback.

proprietary Pointer to proprietary data structure.

Prototype: void *APUAPI APU_RegisterResetCallback(
apuContext context,
apuCallbackFunctionPtr func,
apuPtr proprietary

)

context APU context.

func Function which handles the callback.

proprietary Pointer to proprietary data structure.
API for Auxiliary Processing Unit | 26©1989-2024 Lauterbach

APU_RegisterStepCallback

Register the function func as Step Callback Function which is called from the APU.Step command.

When called the function performs a single step in assembler mode.

APU_RegisterTranslateCallback (optional)

Register the function func as Translate Callback Function.

The Translate Callback is called when PowerView needs to know which Sub Core memory address
corresponds to which Main Core memory address and vice versa. It is mainly needed for correct symbol and
HLL displaying.

Prototype: void *APUAPI APU_RegisterStepCallback(
apuContext context,
apuCallbackFunctionPtr func,
apuPtr proprietary

)

context APU context.

func Function which handles the callback.

proprietary Pointer to proprietary data structure.

Prototype: void *APUAPI APU_RegisterTranslateCallback(
apuContext context,
apuCallbackFunctionPtr func,
apuPtr proprietary

)

context APU context.

func Function which handles the callback.

proprietary Pointer to proprietary data structure.
API for Auxiliary Processing Unit | 27©1989-2024 Lauterbach

Memory and Target Access Functions

APU_GetState

Get the state of the Main Core.

It can be in one of the following values states:

Prototype: void *APUAPI APU_GetState(
apuContext context,
int *pstate

)

context APU context.

*pstate Main Core target state.

APU_STATE_STOPPED The Main Core is not executing code.

APU_STATE_RUNNING The Main Core is currently executing code.

APU_STATE_IDLE The Main Core is in idle state.
API for Auxiliary Processing Unit | 28©1989-2024 Lauterbach

APU_ReadMemory

Read memory from the Main Core address space.

The following memory classes are valid for all main core architectures:

Access to virtual memory or user memory is only required in very rare cases.

Prototype: void *APUAPI APU_ReadMemory(
apuContext context,
apuWord address,
int flags,
unsigned char *pdata,
int size,
int width

)

context APU context.

address Start address to read from.

flags Main Core memory class to read from.

*pdata Buffer for read data in APU endianness.

size Length of read data in bytes.

width Access width in bytes.

T32_MEMORY_ACCESS_DATA Logical data memory.

T32_MEMORY_ACCESS_PROGRAM Logical program memory.

T32_MEMORY_ACCESS_USR User-specified memory (normally not required).

T32_MEMORY_ACCESS_VM Virtual memory (normally not required).

T32_MEMORY_ATTR_DUALPORT Modifier for run-time access.
API for Auxiliary Processing Unit | 29©1989-2024 Lauterbach

APU_WriteMemory

Write memory via Main Core Debugger.

See APU_ReadMemory for more information.

APU_ExecuteCommand

Execute command within PowerView.

This can be used to obtain information from the Main Core Debugger or to control it.

Prototype: void *APUAPI APU_WriteMemory(
apuContext context,
apuWord address,
int flags,
unsigned char *pdata,
int size,
int width

)

context APU context.

address Start address to write to.

flags Main Core memory class to write to.

*pdata Buffer for write data in APU endianness.

size Length of write data in bytes.

width Access width in bytes.

Prototype: void *APUAPI APU_ExecuteCommand(
apuContext context,
char *cmdline

)

context APU context.

*cmdline Command to execute from PowerView.
API for Auxiliary Processing Unit | 30©1989-2024 Lauterbach

APU Callback Structures

Breakpoint Callback Structure

PowerView supports on-chip breakpoints either on a single address or on an address range. In case of a
single address, address and addressto are equal. If the Sub Core does not support on-chip breakpoints
on address ranges, the APU Debugger has to shrink down the range to a single address.

The APU API currently supports the following on-chip breakpoint types, which may also be combined. There
is no support for on-chip breakpoints on data values.

When a new on-chip breakpoint is requested to be set, bpid is set to 0 by PowerView. The APU Debugger
checks if the on-chip breakpoint can be set. If so, the on-chip breakpoint is programmed and bpid > 0 is
assigned and returned to PowerView. When an on-chip breakpoint is requested to be deleted, the respective
bpid is passed.

If an on-chip breakpoint can not be set this is indicated with bpid=0.

Prototype: typedef struct {
apuWord address;
apuWord addressto;
int flags;
int bptype;
int bpid;

} apuBreakpointCallbackStruct;

context APU context.

address Breakpoint start address.

addressto Breakpoint end address.

flags Memory class.

bptype Type of breakpoint (program, data read or data write).

bpid Breakpoint ID.

APU_BPTYPE_PROGRAM Program breakpoints in code

APU_BPTYPE_READ Data breakpoint on read access (data address)

APU_BPTYPE_WRITE Data breakpoint on write access (data address)
API for Auxiliary Processing Unit | 31©1989-2024 Lauterbach

Note that it is currently not possible to use software breakpoints and on-chip breakpoints for code
simultaneously.

Global Callback Structure

The Unified Callback Structure is passed to every Callback Function when called. Any information or data to
be exchanged between PowerView and the Callback Function is placed here.

Prototype: typedef struct {
int type;
union {

apuParamCallbackStruct init;
apuParamCallbackStruct command;
apuMemoryCallbackStruct memory;
apuDisassemblerCallbackStruct dis;
apuAssemblerCallbackStruct ass;
apuGetstateCallbackStruct state;
apuTranslateCallbackStruct translate;
apuBreakpointCallbackStruct breakpoint;

} x;
} apuCallbackStruct;

type Callback type.

x Pointer to the Callback Structure of the current Callback Function.
API for Auxiliary Processing Unit | 32©1989-2024 Lauterbach

type can have the following values:

Disassembler Callback Structure

Value of type Valid member
of x

Registered using

APU_CALLBACK_BREAK none APU_RegisterBreakCallback()

APU_CALLBACK_BREAKPOINT breakpoint APU_RegisterBreakpointCallback()

APU_CALLBACK_COMMAND command APU_RegisterCommandCallback()

APU_CALLBACK_DISASSEMBLER dis APU_RegisterDisassemblerCallback()

APU_CALLBACK_ASSEMBLER ass APU_RegisterAssemblerCallback()

APU_CALLBACK_EXIT none APU_RegisterExitCallback()

APU_CALLBACK_GETSTATE state APU_RegisterGetStateCallback()

APU_CALLBACK_GO none APU_RegisterGoCallback()

APU_CALLBACK_INIT init used for APU_Init() / APU_Interface()

APU_CALLBACK_MEMORYREAD memory APU_RegisterMemoryReadCallback()

APU_CALLBACK_MEMORYWRITE memory APU_RegisterWriteCallback()

APU_CALLBACK_RESET none APU_RegisterResetCallback()

APU_CALLBACK_STEP none APU_RegisterStepCallback()

APU_CALLBACK_TRANSLATE translate APU_RegisterTranslateCallback()

Prototype: typedef struct {
apuWord address;
int flags;
unsigned char *data;
char *mnemo;
char *comment;
int instlen;
int jumpflag;
apuWord jumptarget;

} apuDisassemblerCallbackStruct;
API for Auxiliary Processing Unit | 33©1989-2024 Lauterbach

The Disassembler Callback function obtains the address and the memory class of the opcode to
disassemble. Additionally the opcode at this address is passed.

The disassembler returns the decoded mnemonic of the opcode and optionally a comment. It also returns
the length of the decoded instruction in instlength. This is especially necessary for Sub Cores with
variable instruction length.

Only in case the decoded instruction is a jump, the jumpflag has to be set to indicate the type of the jump.
If the jump is a direct jump, jumptarget has to be provided. The following table shows the possible jump
flags:

If the instruction was disassembled successfully, the callback returns with APU_OK, otherwise (e.g.
undefined opcodes) with APU_FAIL.

address Address of instruction in memory.

flags Memory class of instruction.

*data Memory content starting at given address.

*mnemo Disassembled mnemonic.

*comment Optional comment (not part of the mnemonic).

instlen Length of decoded instruction in bytes.

jumpflag Type of jump.

jumptarget Specifies the jump target if direct jump instruction.

APU_JMPFLG_DIRECT Unconditional jump with direct target.

APU_JMPFLG_DIRECTCOND Conditional jump with direct target.

APU_JMPFLG_INDIRECT Unconditional jump with indirect target.

APU_JMPFLG_INDIRECTCOND Conditional jump with indirect target.
API for Auxiliary Processing Unit | 34©1989-2024 Lauterbach

Assembler Callback Structure

The Assembler Callback function obtains the address and the memory class of the place to assemble.
Additionally the command line and information if the command line is complete is passed.

The assembler returns the coded opcodes and length and the length of the input string that was parsed. In
error cases it can produce an error message for the user that points directly to the error position. Returning
without the mnemolen field set means that the assembler was NOT processing the mnemonics and the
“regular” assembler should try parsing it.

If the instruction was assembled successfully, the callback returns with APU_OK, otherwise (e.g. undefined
mnemonics) with APU_FAIL.

Prototype: typedef struct {
apuWord address;
int flags;
int complete;
const char * mnemo;
unsigned char *data;
int instlen;
int mnemolen;
char * errormessage;
int errorpos;

} apuAssemblerCallbackStruct;

address Address of instruction in memory.

flags Memory class of instruction.

complete Set when the input string is complete (otherwise the command is being typed).

*mnemo Input string for the assembler.

*data Resulting code from the assembler.

instlen Length of coded instruction in bytes (or zero if this mnemonic is not handled).

mnemolen Length of the mnemonic (returned by the assembler). A new instruction may
start here.

*errormes-
sage

Error message. Set when the assember wishes to throw an error message. The
error message should begin with “!#” to be treated as a text message.

errorpos Relative position of the error in the mnemo string.
API for Auxiliary Processing Unit | 35©1989-2024 Lauterbach

GetState Callback Structure

The Sub Core state can have the following values:

In case Program Counter can not be read when the target is running is does not need to be provided.

In case the target is running in a special state (e.g. Power Save, Suspend, …), the string provided via text
is shown in the status field next to running. state must be APU_STATE_RUNNING for this.

Prototype: typedef struct {
apuWord pc;
int state;
char *text;

} apuGetstateCallbackStruct;

pc Current program counter.

state Current Sub Core state.

*text Special state.

APU_STATE_STOPPED The Sub Core is not executing code,

APU_STATE_RUNNING The Sub Core is currently executing code.

APU_STATE_IDLE The Sub Core is in Idle state.
API for Auxiliary Processing Unit | 36©1989-2024 Lauterbach

Memory Callback Structure

The Memory Callback Structure is the same for read and write accesses.

Prototype: typedef struct {
apuWord address;
int flags;
int length;
int width;
unsigned char *data;

} apuMemoryCallbackStruct;

address Start address.

flags Sub Core memory class.

length Access length in bytes.

width Access width in bytes.

*data Pointer to container for read or write data.
API for Auxiliary Processing Unit | 37©1989-2024 Lauterbach

Parameter Callback Structure

The version information is set by the APU API. modelname is the name of the Sub Core Debugger and is
chosen by the developer. It is recommended to add the compile time also.

The first argument to APU.command is interpreted as a keyword. All remaining arguments are interpreted
as expressions. Type and result of the expression is passed in the argp* fields. If the result is integral
(argptype[i] is one of APU_PARAM_TYPE_BOOL, APU_PARAM_TYPE_INT,
APU_PARAM_TYPE_ADDRESS), the fields argpint[i], argpword[i], argpword32[i], argpword64[i],
argpaddress[i], argpaddress32[i] and argpaddress64[i] all contain the same value, possibly truncated
if the value is too big for the respective type. For ranges (APU_PARAM_TYPE_INTRANGE,
APU_PARAM_TYPE_ADDRESSRANGE), argpwordupper32[i], argpwordupper64[i],
argpaddressupper[i], argpaddressupper32[i] and argpaddressupper64[i] all contain the upper
noninclusive bound of the range. For APU_PARAM_TYPE_STRING, argpstring[i] contains the result of
the expression.

Prototype: typedef struct {
 int version;
 char * modelname;
 char * commandline;
 int argc;
 char ** argp;
 int * argpint;
 apuWord * argpword;
 apuWord32 * argpword32;
 apuWord64 * argpword64;
 apuWord * argpaddress;
 apuWord32 * argpaddress32;
 apuWord64 * argpaddress64;
 apuWord * argpwordupper;
 apuWord32 * argpwordupper32;
 apuWord64 * argpwordupper64;
 apuWord * argpaddressupper;
 apuWord32 * argpaddressupper32;
 apuWord64 * argpaddressupper64;
 char ** argpstring;
 int * argptype;
} apuParamCallbackStruct;

version APU version of TRACE32 executable.

*modelname Name of the Sub Core Debugger.

*commandline Pointer to APU.LOAD command and all arguments.

argc Number of arguments passed to library.

argp* See below
API for Auxiliary Processing Unit | 38©1989-2024 Lauterbach

For any type, argp[i] contains the expression that was given by the user before evaluation.

Note that argpstring and argptype are only available if version is at least 2.

For an example of how to interpret the command line arguments, see DumpParameters() in
~~/demo/apu/example_virtualapu/example_virtualapu.c.

Translate Callback Structure

The direction flag indicates the direction of the address translation:

Prototype: typedef struct {
apuWord address;
int flags;
int direction;

} apuTranslateCallbackStruct;

address Address to translate.

flags Memory Class.

direction Translate direction.

APU_TRANSLATE_TO_MAINCORE Translate from Sub Core to Main Core address space.

APU_TRANSLATE_TO_SUBCORE Translate from Main Core to Sub Core address space.
API for Auxiliary Processing Unit | 39©1989-2024 Lauterbach

Version Control

Document version control:

Version Date Change

0.1 2007-01-08 More description added, on-chip breakpoints added.

0.0 2006-11-08 Documentation started.
API for Auxiliary Processing Unit | 40©1989-2024 Lauterbach

	API for Auxiliary Processing Unit
	Introduction
	Release Information
	Features
	Requirements
	Infineon Cerberus IO Client

	Files
	Conventions

	Programmer’s Guide
	Basic Concept
	Callback Functions
	Access to Main Core Debugger
	Generic Configuration
	Output Functions
	Interface Functions
	APU Callback Structures
	APU Context

	APU Library
	APU API Files
	Building the Library
	Loading the Library
	Writing a new Library
	Basic Setup
	Implementation of the Callback Functions
	Fine Tuning

	Symbol Information

	APU Commands
	APU Library Functions
	APU Entry Functions
	APU_Interface
	APU_Init

	Generic Configuration Functions
	APU_DefineEndianness
	APU_DefineMemory
	APU_DefineSoftbreak (optional)
	APU_Printf
	APU_Warning
	APU_GetSymbol

	Callback Register Functions
	APU_RegisterBreakCallback
	APU_RegisterBreakpointCallback (optional)
	APU_RegisterCommandCallback (optional)
	APU_RegisterDisassemblerCallback
	APU_RegisterAssemblerCallback
	APU_RegisterExitCallback (optional)
	APU_RegisterGetStateCallback
	APU_RegisterGoCallback
	APU_RegisterMemoryReadCallback
	APU_RegisterMemoryWriteCallback
	APU_RegisterResetCallback (optional)
	APU_RegisterStepCallback
	APU_RegisterTranslateCallback (optional)

	Memory and Target Access Functions
	APU_GetState
	APU_ReadMemory
	APU_WriteMemory
	APU_ExecuteCommand

	APU Callback Structures
	Breakpoint Callback Structure
	Global Callback Structure
	Disassembler Callback Structure
	Assembler Callback Structure
	GetState Callback Structure
	Memory Callback Structure
	Parameter Callback Structure
	Translate Callback Structure

	Version Control

