LAUTERBACH A

UEFI Awareness Manual BLDK

UEFI Awareness Manual BLDK

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
UEFI AWareness ManUAISccciiiiiemriiiissmnninssssssssisssssss s ssssssmss s ssssssss s sssssssss s essssnss s s snssnsss s snsssnnens r—~
UEFI Awareness Manual BLDK ... 1
L 1= (o 4

O oY = 4
Brief Overview of Documents for New Users 5
Supported Versions 5
L0704} T 11T = Lo o 6
x86 32-Bit 6
x64 64-Bit 6
Hooks & Internals in Intel BLDK 7
== LT == 8
Display of UEFI Resources 8
Symbol Autoloader 9
Autoloader Configuration 9
Scan the UEFI Module Table 10
Display the Autoloader Table 11

Intel BLDK Specific Menu 12
Debugging UEFI Phases of Intel BLDK ... s sssssssss s senans 13
Debugging from Reset Vector 13
SEC Phase 13
PEI Phase 13
DXE Phase 14
BDS Phase 15
Intel BLDK COMMANAS coooiiiiiiiiiisnmmmsee s ss s snsssssssssmsmmse s s s s e s s s s ssmmmmms s s s s e e s s e s s nn s smmmmmnnnssnns 16
EXTension.ConfigTab Display DXE configuration table 16
EXTension.DXEDRiVer Display loaded DXE drivers 16
EXTension.DXEModule Display DXE modules 17
EXTension.FV Display firmware volumes 18
EXTension.HOB Display HOBs 19
EXTension.Option Set awareness options 19
EXTension.PEIModule Display PEI modules 20
EXTension.PEISvc Display PEI services 21
©1989-2024 Lauterbach UEFI Awareness Manual BLDK 2

EXTension.POST Display POST code 21
EXTension.PROTocol Display installed protocols 22
EXTension.UCode Display microcodes 22
Intel BLDK PRACTICE FUNCLIONScooiiiiiiiiiiciiiisesccseessnnsssssssssssssssmmsssss s s s sesssssssssssnsmmsmsssnssnns 23
EXT.DXEDRV.ENTRY() Entry address for DXE driver 23
EXT.DXEDRV.MAGIC() DXE driver magic number 23
EXT.DXEDRV.PATH() Build path for DXE driver 23
EXT.DXEFILE.MACHINE() Machine type for DXE module 24
EXT.DXEFILE.PATH() Build path for DXE module 24
EXT.PEIM.ENTRY/() Entry address for PEI module 24
EXT.PEIM.MAGIC() Magic of PEI module 25
EXT.PEIM.PATH() Build path for PEI module 25
©1989-2024 Lauterbach UEFI Awareness Manual BLDK | 3

UEFI Awareness Manual BLDK

History

Version 06-Jun-2024

28-Aug-18

<X>".

Overview

The title of the manual was changed from “UEFI <x> Debugger” to “UEFI Awareness Manual

A TRACE32 UEF] Debugger for Intel BLDK
File Edit View Var Break Run CPU Misc Trace Perf Cov INTELPCH BLDK Window Help
M+ v B2 TSN eE @ 2
& BLEXT PEIModule 2 & B:EXTHOBDXE [o@]=]
agic name ‘type |baseaddr [entr: build path address [type content
FFFCODES |PeiCore boot |FFFEFF44 |FFFCO1A4 |e:\bIdk\Buil{ |5 3FA12010 |handoff version ER
FFFCEAS8 |PcdPeim boot |FFFCE91C |FFFCEB7C |e:\bldk\Buil bootmode full config
FFFCBDCO |StatusCodePei boot |FFFC8C64 |FFFCBEC4 |e:\bldk\Buil memory top 3FEF0000
FFFCADFO |Peivariable boot |FFFCACIC |FFFCAEFC |e:\bldk\Buil memory bottom |3CAE00D0
FFFCC2CE |[CpuPed boot [FFFCC164 |FFFCC3C4 |cilsrchBuild free memory top [3FA2D000
FFFCEG88 |CapsulePei boot |FFFCES44 |FFFCE7A4 |c:l\src\Build free memory bot |3CEO1718
FFFDO790 [MemoryInitPei boot |FFFDD634 |FFFDO894 |c:'srciBuild end of hob 1ist |3CEO1710
FFFD13E0 |SmmAccessPei boot |FFFD129C |FFFDL4FC |c:\src’\Build
FFFD2663 |PlatformPeim boot |FFFD2538 |FFFD2798 |c:\src\Build 3FA12048 |guid ext |guid: performance protocol,
FFFD8688 |Dxelpl boot |FFFD8558 |FFFDE7ES |e:\bldk\Buil 3FA126A8 |guid ext |guid: EA296D92 0BGI 423C BC 28 33 B4 EO A9 12 65 ,
FFFFDBES |SecCore boot |FFFFD548 |FFFFFBCS [c:l\src\Build 3FA128D0 |guid ext |guid: 9B3ADA4F AESG 4C24 BD EA FO 3B 75 58 AE 50 ,
3FA12C08 |guid ext |guid: SCFDBBCS DEB2 40F3 BE 97 02 30 7C C3 8B 7C ,
) — 3FA12D20 |mem pool
e B:EXT.DXEDRVer = 3FA12D30 |mem pool
3FA12DA8 |guid ext |guid: HT BIST HOB
3?&}&,\10 B;""E&,re EEiESE’.E’.S ?gzozso ';L:”H.jﬁaéﬂﬂd Tro 3FAL2E30 |quid ext |quid: GFSC2B35 FEF4 448D B2 56 E1 1B 19 D6 10 77 ,
3F948810 |PcdDxe 3F8FO000 |3F8F0260 |e:\bldk\Build\Cro| |2 3FAL2EB8 |resource [|type memory-mapped I1/0
3F948190 (CpuloDxe 3FSDA000 |3FSDA260 |e:'\bldk\Build\Cro ase FECE0000
3F955C10 [CpuIo2Dxe 3FEDS000 |3F8DB260 |e:'\b1dk\Build\Cro length 00080000 . . .
3F955690 |ReportStatusCodeRouter |3FEDS000 |3FED5260 |e:\bldk\Build\Cro attributes present initialized uncachable
3F955010 |SectionExtractionDxe 3FSC0000 |3F8CO280 |e:‘\bldk'Build\Cro N . N s
3FBEFA0 [SecurityStubDxe 3F8D3000 |3F8D3260 |e:\bldk\Build\Cro 3FALZEES |cpu size mem: 20, size i/o: 10,
3FSEF530 |CpuArchDxe 3FSBL000 |3FSB1260 |c:'\srchBuild\Crow| 3FA12EF8 |[resource |type: system memory, base: 3CAE0000, length: 03410000,
3FSEEF10 |Metronome 3F8E6000 |3F8B6260 |e:\bldk\
3FBBBAL0 |RuntimeDxe SF8BB000 |3F8B8260 |e:\bldk| s BuEXTFV, (:3FAG5000
3F8BE510 |FaultTolerantWriteDxe |3F899000 |3F899260 |e:'\bldk) frasic Tenath qid
3FBBEB0L0 |ResetSystemRuntimeDxe |3F594000 |3F894260 |c:h\srchg —
3F891B10 |DevicePathDxe 3FEE9000 |3FEE3260 |e:\bldky| [(FAB3000 [00238000 [Firmware file system 2
3F891330 |FvbRuntimeDxe 3F884000 |3F884260 |c:\srchj§ Files: magic e type J—
3F892B90 |DataHubDxe 3F882000 |3F882260 |e:'\bldk) = = FaEs P =
Ry SFABS048 G0002C [G)]
7892510 |NulTMemoryTestxe 3FE30000 |37880260 |e:\b1dK) 3FAB5078 01711C dxe core |DxeCore
I 3FATC198 005684 driver PedDxe
o BEXT.FV DXE [o =] =] 3FAS1E20 001C58 |driver [CpuloDxe
t: magic |s type name
[l EYpEm|lEngth Z I 3FABL&35 [000016 |dxe dej
: pex |PUSH_EFT PCD Protocol END
FrPCO000 [poot [00020000 [Firmware fiTe system 2 - 3FABLE50 [001C04 |pe32 e:\b1dk\Bui1d\CrownBayP1atform\DEBUG_VS2005\TA32\Int
¥ 3FA83454 (000016 |ui CpuloDxe
3FAB346C |0D0000C version
3FAB3478 001798 driver Cpulo2Dxe
3FAB4CLOD 002388 driver Report5StatusCodeRouterRuntimeDx
p 3FABGF93 002C6C driver StatusCodeHandlerRuntimeDxe
3FAB9C08 001BES (0a)
4 1 2
4 11 L3
EXTension.
[ucode][Fv | [PEMModule] [PEISvc |[HOB | [configTab] [DXEDRVer] [DXEModule) pravious
MNP:3FAS63DD \\DxeCore\Tpl\CoreSetInterruptState+0x4 0 |lsystem ready MIX P

The UEFI Awareness for Intel® BLDK contains special extensions to the TRACE32 Debugger. This chapter
describes the additional features, such as additional commands and debugging approaches.

©1989-2024 Lauterbach

UEFI Awareness Manual BLDK

4

Brief Overview of Documents for New Users

Architecture-independent information:

“Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.

“T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

“General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

“Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

“OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

“UEFI Awareness Manuals” (uefi_<x>.pdf): TRACES32 PowerView can be extended for UEFI-
aware debugging. The appropriate UEFI manual informs you how to enable the UEFI-aware
debugging.

Supported Versions

Currently Inte/® BLDK is supported for the following versions:

Intel® BLDK core 2.x on x86 and x64 architectures

Intel® UDK 2010 to 2015

©1989-2024 Lauterbach UEFI Awareness Manual BLDK |

5

Configuration

The UEFI Awareness for Intel® BLDK is configured by loading an extension definition file called “bldk.t32”
from the demo directory with the EXTension.CONFIG command. Additionally, load the “bldk.men” menu file
(see “BLDK specific Menu”) and configure the Symbol Autoloader.

x86 32-Bit

A full configuration for x86 32-bit can look like this (the path prefix ~~ expands to the system directory of
TRACE32.):

; Load the Intel® BLDK Awareness:
EXTension.CONFIG ~~/demo/x86/bootloader/uefi/bldk/bldk.t32

; Load the additional menu:
MENU.ReProgram ~~/demo/x86/bootloader/uefi/bldk/bldk.men

; Configure symbol autoloader:
sYmbol . AutoLOAD.CHECKUEFI "do ~~/demo/x86/bootloader/uefi/bldk/autoload "

See also the example scripts in ~~/demo/x86/bootloader/uefi/bldk

x64 64-Bit

A full configuration for x64 64-bit can look like this (the path prefix ~~ expands to the system directory of
TRACE32.):

; Load the Intel® BLDK Awareness:
EXTension.CONFIG ~~/demo/x64/bootloader/uefi/bldk/bldk.t32

; Load the additional menu:
MENU.ReProgram ~~/demo/x64/bootloader/uefi/bldk/bldk.men

Configure symbol autoloader:
"do ~~/demo/x64/bootloader/uefi/bldk/autoload "

’

sYmbol .AutoLOAD.CHECKUEFI

See also the example scripts in ~~/demo/x64/bootloader/uefi/bldk

©1989-2024 Lauterbach UEFI Awareness Manual BLDK |

Hooks & Internals in Intel BLDK

When using the debug build of the Intel® BLDK (which is recommended), the build system automatically
inserts breakpoints into the images when loading new modules. TRACE32 does not use these breakpoints.
Either remove them from the debug build, or simply continue when halting there.

The UEFI Awareness needs some basic pointers:

. For PEI phase, it needs the address of the boot firmware volume (BootFV). Usually, the UEFI
image holds a pointer to the BootFV at address OxFFFFFFFC. If, for some reason, this pointer is
not available, please ask your system integrator where the BootFV resides. Report this address
to the UEFI Awareness with the command EXTension.Option BOOTFV.

J For DXE phase, it needs the address of the EFI System Table. It uses a global symbol of the
DxeCore to get this address. If the DxeCore symbols are not loaded, or if the symbol is not
available, the UEFI Awareness searches for the system table signature within the current RAM
area. If the system table is found, EXTension.ConfigTab shows its address.

This search may run over address ranges, that are not mapped and that may cause the target
system to crash. In this case, either mask out all memory areas, that should not be touched, with
MAP.DenyAccess, or set the address explicitly with the command EXTension.Option
SYSTABLE. To get the address of the EFI System Table in your running UEFI BIOS, you can also
execute the “mem” command in the EFI Shell (if available).

©1989-2024 Lauterbach UEFI Awareness Manual BLDK | 7

Features

The UEFI Awareness for Intel® BLDK supports the following features.

Display of UEFI Resources

The extension defines new commands to display various kernel resources. Information on the following
UEFI components can be displayed:

I EXTension.POST POST code

SEC phase:

I EXTension.UCode Available microcodes

PEI phase:
EXTension.FV PEI PEI firmware volumes
EXTension.PEIModule PEI modules in FVs
EXTension.HOB PEI PEI HOBs

DXE phase:
EXTension.FV DXE DXE firmware volumes
EXTension.DXEModule DXE modules in FVs
EXTension.DXEDRiVer Loaded DXE drivers
EXTension.HOB DXE DXE HOBs
EXTension.PROTocol DXE Installed DXE protocols
EXTension.ConfigTab DXE configuration table

For a description of the commands, refer to chapter “Intel BLDK Commands”.

Since the x86/x64/Atom architecture does not allow to read memory while the program execution is running,
the information can only be displayed, if the program execution is stopped.

©1989-2024 Lauterbach UEFI Awareness Manual BLDK | 8

Symbol Autoloader

The UEFI code is provided by the boot FLASH, but debugging becomes more comfortable when debug
symbols are available.

TRACE32 contains an “Autoloader”, which can be set up for automatic loading of symbol files. The
Autoloader maintains a list of address ranges, corresponding UEFI components and the appropriate load
command. Whenever the user accesses an address within an address range known to the Autoloader, the
debugger invokes the load associated command. The command is usually a call to a PRACTICE script, that
handles loading the symbol file.

The TRACE32 Autoloader has to be set up. This includes the following steps:
1. Autoloader configuration.
2. Scan of the UEFI module table to the Autoloader table.

3. Display of the Autoloader table.

Autoloader Configuration

The command sYmbol.AutoLOAD.CHECKUEFI </oad_command> specifies the command that is
automatically used by the Autoloader to load the symbol information. Typically the script autoload. cmm
provided by Lauterbach is called.

The command sYmbol.AutoLOAD.CHECKUEFI implicitly also defines the parameters that TRACE32 uses
internally for the Autoloader.

The script is provided in the TRACE32 demo directory:

o 32-bit: ~~/demo/x86 /bootloader/uefi/bldk/autoload.cmm.
o 64-bit: ~~/demo/x64/bootloader/uefi/bldk/autoload.cmm.
Example:

; Configure symbol Autoloader for 32-bit Intel® BLDK
sYmbol . AutoLOAD.CHECKUEFI "DO ~~/demo/x86/bootloader/uefi/bldk/autoload.cmm"

©1989-2024 Lauterbach UEFI Awareness Manual BLDK | 9

Scan the UEFI Module Table

When the Autoloader is configured, the command sYmbol.AutoLOAD.CHECK can be used to scan the
UEFI module table into the Autoloader table and to activate the Autoloader.

Since the UEFI module table is updated by UEFI a re-scan might be necessary.

The point of time at which the UEFI module table is re-scanned can be set very flexibly:

I sYmbol.AutoLOAD.CHECK [ON | OFF | ONGO]

The default setting is sYmbol.AutoLOAD CHECK OFF. With this setting TRACE32 re-scans the UEFI
module table only on request by using the sYmbol.AutoLOAD.CHECK command.

With sYmbol.AutoLOAD.CHECK ON, TRACES32 re-scans the UEFI module table after every single step
and whenever the program execution is stopped. This significantly slows down the speed of TRACE32.

With sYmbol.AutoLOAD.CHECK ONGO, TRACE32 re-scans the UEFI module table whenever the
program execution is stopped.

NOTE: The Autoloader can load the symbol information for the SecCore, the PeiCore, all
PEI modules and the DXE core as soon as the memory mode (e.g. 32-bit protected
mode) used by UEFI is activated.

The Autoloader can only load symbol information for DXE modules that are
already loaded.

©1989-2024 Lauterbach UEFI Awareness Manual BLDK | 10

Display the Autoloader Table

The command “sYmbol.AutoLOAD.List” shows a list of all known address ranges/components and their
symbol load commands.

2 BusYmbol AutoLOAD.List

S Delete All || & Check

address

N:0000000079585000--00000000795B7ASF

N:00000000795B8000--00000000795B90FF
N: 000000007 95BA000--000000007 95887 9F
N: 000000007 95BC000--00000000795BCE3F
N: 000000007 958D000--00000000795BE21F
N:00000000797E3000--00000000797B3ELF
N:00000000797B4000--00000000797B707F
N: 000000007 97B8000--00000000797B897F
N:00000000797E9000--00000000797BA77F
N:00000000797BB000--00000000797BECFF
N:00000000FFF40064--00000000FFF41943
N:00000000FFF41AAC--00000000FFF42E4B
N:00000000FFF42F3C--00000000FFF43238
N:00000000FFF4332C--00000000FFF4368B

name
JpegDecoder
Scriptsave
StatusCodeReport W
RestoreMtrr i
EmuPeiGate

Pchspi1Runtime

Cpulo

Rﬁntime jleten
OemServicesDriver Set
PeiMain Clear
MonoStatusCode

PeiEventLog

PeiEventHandler

i il

{.m

Module address range

Module name

Module status

dyn: (no meaning)
load: symbols for module are loaded

+

4

2 BisYmbol AutoLOAD.List folr®| =)
B Delete All|| & Check

name dyn |load [cmd i
IpegDecoder W ¥ |do ..\..\..\x86-64\autoload " IpegDecoder"” Ox7/CO6F1& 0x2 0x79585000 0x0 -
ScriptSave W do ..\, .\, \x86-64\autoload "ScriptSave" 0x77C08398 0x2 0x79588000 0x0
StatusCodeReport W do ..\..\..\x86-64\autoload "StatusCodeReport" 0x77C08D18 0x2 0x795BA000 Ox0
RestoreMtrr W do ..\..\..\x86-64 autoload "RestoreMtrr" O0x77CAG018 0x2 Ox795BC000 0x0

EmuPeiGate do Y.\ \x86-64\autoload "EmuPeiGate" 0x77CA6398 0x2 Ox7958D000 0x0

0x77803018 0x2 0x797B3000 0x0

PchSpiRuntime W do ..\..%.. \x86-64\autoload PchSpiRuntime” 0x77803918 Ox2 0x797B4000 0x0
Cpulo W do ..\ N \x86-64\autoload "CpuIo" 0x77C04698 0x2 0x797B8000 0x0

Runtime W do ..\..\..\x86-64\autoload "Runtime" Ox77CO4F18& 0x2 0x797B9000 0x0
NemServicesDriver W do ..%\..%\..\x86-64 autoload "OemServicesDriver" 0x77C08918 0x2 0x797BBO00 0x0
PeiMain W W |do LN\ L \x86-64\autoload "PeiMain" OxFFF40048 0x1 OxFFF40064 0x0

onoStatusCode W do ..\..\..\x86-64 autoload "MonoStatusCode" OxFFF41C18 Ox1 OxFFF41AAC 0x0
PeiEventLog W do Y.\ . \x86-64%\autoload "PeiEventLog" OxFFF430B0 Ox1 OxFFF42F3C 0x0
PeiEventHandler W do Yot \x86-64%autoload "PeiEventHandler" OxFFF434A0 O0x1 0xFFF4332C 0x0 -

Load command

Parameters for load command

Autoload context menu

Touch Advise TRACE32 to load the symbols for the selected module now.
Set Mark selected module as loaded.
Clear Delete symbols for the selected module in TRACE32.

©1989-2024 Lauterbach

UEFI Awareness Manual BLDK

11

Intel BLDK Specific Menu

The menu file “bldk.men” allows to add a menu with Intel® BLDK specific menu items. Load this menu with
the MENU.ReProgram command.

You will find a new menu called BLDK.

. Use the PEI submenu to launch windows displaying PEI specific resources.

J Use the DXE submenu to launch windows displaying DXE specific resources.

J The Display POST Code submenu allows to display the current POST (Power On SelfTest) code.

J Load Current Symbols calls a script that tries to find the image header of the code at the
current program counter location. If the header is found, it tries to load the according symbol file.

J Use the Symbol Autoloader submenu to configure the symbol autoloader.
See also chapter “Symbol Autoloader”.

- List Components opens a sYmbol.AutoLOAD.List window showing all components
currently active in the autoloader.

- Check Now! performs a sYmbol.AutoLOAD.CHECK and reloads the autoloader list.

- Set Loader Script allows you to specify the script that is called when a symbol file load is
required. You may also set the automatic autoloader check.

©1989-2024 Lauterbach UEFI Awareness Manual BLDK | 12

Debugging UEFI Phases of Intel BLDK

UEFI runs in several “phases”. It starts with the “Security” (SEC) phase which immediately switches to the
“Pre-EFI Initialization Environment” (PEI) phase. After this phase ended, control is given to the “Driver Exe-
cution Environment” (DXE) phase. Shortly, before the OS is booted, the “Boot Device Selection” (BDS)
phase is running.

Each of this phases needs a different debugging environment. See below for a detailed description of each
phase.

Debugging from Reset Vector

TRACE32 is a JTAG-based debugging tool and, as such, allows the user to start debugging their Atom/x86
system right from the reset vector (normally at BP:0xF000:0xFFFO0). It is possible to walk through the very
first steps of the start-up to detect FLASH problems or faulty reset behavior.

Shortly after reset, the system switches into the SEC phase.

SEC Phase

The Intel® BLDK does not provide symbol information for the SEC phase, so we cannot debug this phase in
source code. However, the debugger has access to the boot firmware volume. During SEC phase, use
EXTenstion.FV PEI to inspect the boot FV.

PEI Phase

NOTE: Debugging within the PEI phase requires access to the boot firmware volume.
The UEFI Awareness tries to find the address of the boot firmware volume
automatically, see Hooks & Internals if this fails.

If you want to debug the PEI phase right from the start, halt the system while in SEC phase. Then load the
symbols of the PEI core module (“PeiCore”) with the symbol autoloader, and go until “PeiCore”:

sYmbol . AutoLOAD.CHECK
sYmbol .AutoLOAD.Touch "PeiCore"
Go PeiCore

©1989-2024 Lauterbach UEFI Awareness Manual BLDK | 13

Intel® BLDK starts the PeiCore several times with different settings. The first time after the SEC phase, code
runs from Flash and data is in internal memory. PeiCore then initializes external RAM and calls itself, starting
PeiCore a second time, now with code in Flash and data in external RAM. Now the PeiCore module will be
copied into RAM for faster execution. Check and touch the module in the symbol autoloader again, to trigger
a reload of the PeiCore symbols, now to RAM address.

Inspect the PEI resources with the menu items in the PEI submenu.

For debugging a dynamic PEI module from its entry point, a special script “go_peimdyn” is available in the
~~/demo directory. Call this script with the name of the PEI module before the module is started. E.g. to
debug the PEI module “PcdPeim”:

DO go_peimdyn PcdPeim

This script sets a breakpoint in the PEI code and waits until the specified PEI module is loaded. Then it sets
a breakpoint onto the module entry point and halts there. You can then start debugging the module from
scratch.

DXE Phase

NOTE: Debugging within the DXE phase requires access to the EFI System Table.
The UEFI Awareness tries to find the address of the system table automatically,
see Hooks & Internals if this fails.

After PEI phase completed, it hands off control to the DXE phase, starting with the DxeCore Module.

To debug the DxeCore right from start, run the PEI until it jumps into the DxeCore (the function
HandOffToDxeCore() is a good place to stop). Load the symbols of “DxeCore” (by executing
sYmbol.AutoLOAD.CHECK and sYmbol.AutoLOAD.TOUCH "DxeCore"). Then set a breakpoint at
“DxeMain”. DxeMain then starts the DXE dispatcher. If you do not want to debug the DxeCore startup,
simply load the symbols of DxeCore after DXE phase came up.

For debugging a DXE driver from its entry point, a special script “go_dxedrv” is available in the ~~/demo
directory. Call this script with the name of the DXE module before the module is started. E.g. to debug the
DXE driver “Metronome”:

DO go_dxedrv Metronome

This script sets a breakpoint in the DXE core code and waits until the specified DXE module is loaded. Then
it sets a breakpoint onto the module entry point and halts there. You can then start debugging the module
from scratch.

©1989-2024 Lauterbach UEFI Awareness Manual BLDK | 14

BDS Phase

Intel® BLDK implements the BDS phase as DXE driver. To debug the BDS phase, debug the “BdsDxe” mod-
ule like shown in “DXE Phase”.

©1989-2024 Lauterbach UEFI Awareness Manual BLDK | 15

Intel BLDK Commands

EXTension.ConfigTab

Display DXE configuration table

Format:

EXTension.ConfigTab

Displays the DXE configuration table.

M

o B:EXT.ConfigTab =n| Wl <
addrezs |[type pointer
debug agent 3FAL5000 L
DXE services 3FAGLACS
HOB Tist 3FA12010
memory type information |3FAG1438
image table 3FABLCED
ACPI 1.0 3F87AQDOD
ACPI 2.0/3.0 3F37A0L4
SMBIOS table 3F194000

EXTension.DXEDRiVer

Display loaded DXE drivers

Format:

EXTension.DXEDRiVer

Displays a table with all DXE drivers that DxeCore already loaded into the system.

o B:EXT.DXEDRiVer =n| Wl <
magic name baszeaddr |entry build path |
3FAZAALD [DxeCore 3FA4ADODD [3FA4DZE0 [e:\bTdk\Build CrownBa .
3F948810 |PcdDxe 3F8FO000 |3FBF0260 |e:\bldk\Build' CrownBa
3F9AB190 |[CpuloDxe 3F8DA0D00 |3FBDAZ60 |e:'\bldk\Build“CrownBa
3F955C10 |[Cpulo2Dxe 3F8DS000 |3F8D8260 |e:'\bldk\Build'CrownBa
3F955690 |ReportStatusCodeRoute |3FBD5000 |3F8D5260 |e:'\bldk'\Build\CrownBa
3F955010 |SectionExtractionDxe |3FSCO000 |3F8C0260 |e:'\bldk'\Build\CrownBa
3FBEFA90 |[SecurityStubDxe 3F8D3000 |[3F8D3260 |e:bldk\Build" CrownBa
3FBEF590 |[CpuArchDxe 3FBE1000 |[3F8B1260 |c:‘\src'Build\CrownBay
3FBBEBF10 |Metronome 3FBEBO00 |3FB8B6260 |e:'\bldk‘\Build CrownBa
3FBEBALD |RuntimeDxe 3FBEB000 |[3F8E8260 |e:'.bldk\Build CrownBa
3FBEB510 |FaultTolerantwriteDxe |3F839000 |3F839260 |e:'\bldk'\Build\CrownBa
3FBEBO10 |ResetSystemRuntimeDxe |3F834000 |3F834260 |c:‘\src\Build\CrownBay
3FB91E10 |DevicePathDxe 3F889000 |[3F889260 |e:'bldk\Build" CrownBa
3F891390 |FvbRuntimeDxe 3F884000 |[3F884260 |c:'\src'\Build\CrownBay
3F892E90 |DataHubDxe 3F882000 |3F882260 |e:'\bldk\Build CrownBa =
4 M 3

You can sort the window to the entries of a column by clicking on the column header.

“magic” is a unique ID, used by the UEFI Awareness to identify a specific driver (address of the EFI debug
image structure).

Right clicking on the “magic” opens a local window. It allows to load the symbols of the selected DXE driver.

©1989-2024 Lauterbach

UEFI Awareness Manual BLDK | 16

EXTension.DXEModule

Display DXE modules

Format:

EXTension.DXEModule

Displays a table with all DXE modules found in the system (firmware volumes or HOBs).

&% B:EXT.DXEModule

(=[O el

magic name baszeaddr |entry build path

3FAB507E |DxeCore 3FAB5094 [3FAB52ZF4 [e:\bTdk\Euild CrownBayPlat .
3FA7C198 |PcdDxe 3FA7CLBC |3FA7C41C |e:'\bldk\Build“CrownBayPlat
3FAB1820 |CpuloDxe 3FAB1854 |3FAB1AB4 |e:\bldk\Build CrownBayPlat
3FAB3478 |[CpuloZDxe 3FAB34AC |3FAB370C |e:\bldk\Build CrownBayPlat
3FAB4C10 |ReportStatusCodeRoute |3FAB4C44 |3FAB4EA4 |e:\bldk\Build\CrownBayPlat
3FABBF98 |StatusCodeHandlerRunt |3FABGFDC |3FAB723C |e:\bldk\Build\CrownBayPlat
3FABELCE |SectionExtractionDxe |3FABE20C |3FABE46C |e:\bldk\Build\CrownBayPlat
3FA05ES |[SecurityStubDxe 3FA9061C |3FA9087C |e:\bldk\Build CrownBayPlat
3FA92090 |[CpuArchDxe 3FA920C4 |3FA92324 |c:\src'\Build\CrownBayPlatf
3FA96590 |CpuMpDxe 3FA96630 |3FA96890 |c:\src'\Build\CrownBayPlatf
3FAAZEES |Metronome 3FAAZEEC |3FAA314C |e:\bldk\Build CrownBayPlat
3FAA41D0D |BdsDxe 3FAAAZ38 |3FAA4498 |c:'\srch\Build\CrownBayPlatf
3FABE1138 |watchdogTimer 3FAB117C |3FAB13DC |e:\bldk\Build CrownBayPlat
3FAE2488 |RuntimeDxe 3FAB24BC [3FAB271C |e:\bl1dk\Build“CrownBayPlat ~
] 1 ¢

You can sort the window to the entries of a column by clicking on the column header.

“magic” is a unique ID, used by the UEFI Awareness to identify a specific module.

The “magic” fields are mouse sensitive. Right-click on them to get a local menu. Double-clicking on them

opens appropriate windows.

©1989-2024 Lauterbach

UEFI Awareness Manual BLDK

17

EXTension.FV

Display firmware volumes

Format:

EXTension.FV [PEI | DXE [<fv_address>]]

Displays a table with the firmware volumes of the PEI or DXE phase.

If an address of a firmware volume is specified, the command displays the contents of this FV.

o BHEXT.FV DXE == =]
type [length quid i
boot [000CO000 [Firmware file system -
hob |00032000 |system nv data FV
hob |00010000 |[firmware file system
hob |00CO0000 |[firmware file system

1 k

oo BHEXT.FV, 0x74377010 = = =)
magic Tength quid
74377010 [00C00000 [Firmware File system
files: magic size type name
1 74377058 000F22 peim SmmReTocPeim
= 74377FB0 |0OF750 dxe core [DxeMain
sect: magic |size vpe name
74377F98 |[DOF724 pe32 X:\Project’\Insyde\Sabinoluefi64'\X64" DxeMain. pdb
743876BC 000014 ui DxeMain
+ 74387600 005FAS peim PpisNeededByDxeCore
4 7438D678 00127C driver
= 7438E8F8 |00089C |driver
sect: magic |size type name
+ 7438E910 |000884 uid def |FCIBCDBO 7D31 49AA 93 6A A4 60 0D 9D DO 83
4 7438F198 001808 river
+ 74390940 0009C8 driver %
4 m

“magic” is a unique ID used by the UEFI Debugger to identify a specific firmware volume or file.

The “magic” fields are mouse sensitive, double clicking on them opens appropriate windows. Right-clicking
on them will show a context menu.

The debugger tries to detect the address of the boot firmware volume automatically. If this fails, specify the
address of the boot FV manually with the EXTension.Option BOOTFV command.

©1989-2024 Lauterbach

UEFI Awareness Manual BLDK

18

EXTension.HOB

Display HOBs

Format:

EXTension.HOB [PEI | DXE]

Displays a table with the hand off blocks of the PEI or DXE phase.

3FA1Z2048 |guid ext
3FA1Z6A8 |guid ext
3FA1ZBD0 |guid ext
3FA12C08 |guid ext
3FA12D20 |mem pool
3FA1ZD30 |mem pool
3FA1ZDAS |guid ext
3FA1ZE30 |guid ext
3FA1ZEBB |resource

IEEEEEEEE

3FA1ZEES |cpu

3FALZEFE |resource
3FALZF28 |resource
3FALZF58 |resource
3FA1ZF88 |resource

NEEEEE

o B:EXT.HOB DXE =n| Wl <
address |[type content
= 3FA12010 |handoff version EN L
bootmode full config
memory top 3FEFOOO0

memo
free
free

end of hob Tist |3CBOL710

guid: performance protocol,

guid: EA296D392 0B69 423C 8C 28 33 B4 EO A9 12 68 ,

guid: 9B3ADA4F AES6 4C24 8D EA FO 3B 75 58 AE 50

guid: BCFDESCS D6E2 40F3 8E 97 02 30 7C C9 8B 7C ,

guid: HT BIST HOB,

guid: 6FBC2E35 FEF4 448D 82 56 E1 1B 19 D6 10 77 ,

type memory-mapped I,/0

base FECE0000

Tlength 00080000

attributes present initialized uncachable

=ize mem: 20, size i/o: 10,

type: system memory, base: 3CAE0000, length: 03410000, at
type: system memory, base: 00000000, length: 000ADQDO, at
type: reserved memory, base: 00040000, Tength: 00060000,
type: system memory, base: 00100000, length: 3C3SE0QQ0D0, at =

ry bottom |3CAEQO0QD
memory top |3FAZDOOO
memory bot |3CBO1718

M 3

The “address” fields are mouse sensitive, double clicking on them opens appropriate windows. Right clicking
on them will show a local menu.

EXTension.Option

Set awareness options

Format:

<option>:

EXTension.Option <option>

BOOTFV <address>
PEIHOBS <address>
SYSTABLE <address>
UCODE <address>

Sets various options to the awareness.

BOOTFV

PEIHOBS

SYSTABLE

UCODE

Set the base address of the boot firmware volume.
Set the base address of the HOB list in PEI phase.
Set the base address of the EFI System Table

Set the base address of the microcode table.

©1989-2024 Lauterbach

UEFI Awareness Manual BLDK

19

EXTension.PEIModule

Display PEI modules

Format:

EXTension.PEIModule

Displays a table with all PEI modules found in the system.

&% B:EXT.PEIModule

(=[O el

I

type |baseaddr [entr build path

boot [FFFEFF44 [FFFCO1A4 [e:ly Build\CrownBayPT

boot |FFFCE91C |FFFCEE7C |e:bldk“Build\CrownBayP1
FFFCBDCO |StatusCodePei boot |FFFCBCE4 |FFFCBEC4 |e:'bldk“Build\CrownBayP1
FFFCADFO |PeiVariable boot |FFFCACSC |FFFCAEFC |e:'bldk“Build\CrownBayP1
FFFCC2CE |[CpuPei boot |FFFCC164 |FFFCC3C4 |c:hsrc’Build“CrownBayPla
FFFCEG88 |CapsulePei boot |FFFCES44 |FFFCE7A4 |c:hsrc’Build“CrownBayPla
FFFDO790 |MemoryInitPei boot |FFFDO&34 |FFFD0O834 |c:‘src'\Build'CrownBayPla
FFFD13E0 |SmmAccessPel boot |FFFD129C |FFFD14FC |c:“src'Build'CrownBayPla
FFFD2668 |PlatformPeim boot |FFFD2538 |FFFD2798 |c:‘src'\Build“CrownBayPla
FFFDE6SE |Dxelpl boot |FFFD8558 |FFFD&7BS |e:\bldk‘\Build\CrownBayP1
FFFFDEES |SecCore boot |FFFFD548 |FFFFFBCE |c:‘src'\Build“CrownBayPla

3

You can sort the window to the entries of a column by clicking on the column header.

“magic” is a unique ID, used by the UEFI Awareness to identify a specific module.

The “magic” fields are mouse sensitive. Right-click on them to get a local menu. Double-clicking on them
opens appropriate windows.

©1989-2024 Lauterbach

UEFI Awareness Manual BLDK

20

EXTension.PEISvc

Display PEI services

Format:

EXTension.PEISvc

Displays a table with all available PEI services.

o BHEXT.PEISve = ==
service address Tabel

Tnstall ppl FFF40D06 [PeiInstallPpi

reinstall ppi FFF40D91 PeiReInsta]qppi

locate ppi FFF40C06 |PeilLocatePpi

notify ppi FFF40DF7 |PeiNotifyPpi

get boot mode FFF40B43 |PeiGetBootMode

set boot mode FFF40B63 |PeiSetBootMode

get hob Tist FFF40A2F |PeiGetHobList

create hob FFF40A42 |PeiCreateHob

ffs find next volume |FFF409CC |PeiFvFindNextVolume

ffs find next file FFF409B5 |PeiFfsFindNextFile E
ffs find section data |FFF40943 |PeiFfsFindSectionData 3
install pei memory FFF406E3 |[PeiInstallPeiMemory

allocate pages FFF40557 |PeiAllocatePages

allocate pool FFF40610 |PeiAllocatePool

copy memory FFF41510 |CopyMem

set memory FFF40638 |PeiCoreSetMem

report status code FFF40514 |PeiReportStatusCode

reset system FFF404E2 |PeiCoreResetSystem

cpu io

pci config

4 m

EXTension.POST

Display POST code

Format:

EXTension.POST

(Only available on x86/x64 targets.)

Displays the Power-On Self-Test code.

o BEEXT.POST [= | & |[=23)

POST code |
89 pei1 enter DXE IPL

4 T b

©1989-2024 Lauterbach

UEFI Awareness Manual BLDK | 21

EXTension.PROTocol Display installed protocols

Format: EXTension.PROTocol

Displays the list of installed DXE protocols.
o BzEXT.PROTocol == 5

magic guid |
- 791BEF93 EfiLoadedImageProtocol L

if: magic ol |base name

791EDF13 |74168BC3 |7415D000 |DxeMain

77CA7918 |77EBEE40 |795BD0O00 |EmuPeiGate
77CA7718 |77FFOE40 |795BCO00 |RestoreMtrr
77CA7518 |78025E40 |795BA000 |StatusCodeReport
77CA7118 |781EBE40 |797BBO00 |OemServicesDriver
77C0O7D18 |781EDE40 |795B8000 |ScriptSave
77CO7B18 |78220E40 |795B5000 |JpegDecoder
77C0O7818 |78232E40 |795B4000 |TgaDecoder
77C07518 |7828CE40 |795B3000 |PcxDecoder
77C07218 |7828DE40 |795B1000 |GifDecoder
77CO5F18 |782AFE40 |797B9000 |Runtime
77C0OSB18 |78325E40 |795AC000
77C05518 |7913BE40 |797BS000 |Cpulo
77C05118 |7917FE40 |795A8000 |Ebc
77802D18 |79180E40 |795A7000 |ActiveBios
77802418 |791A9E40 |797B4000 |PchSpiRuntime
77802618 |77B01E40 |795A6000 |PchSerialGpio
77802318 |77801C40 |797B3000 |SmmControl

=] 791BEE98 EfiloadPeImageProtocol
if: magic protoco
791BDELS |741 90
+ 791BE198 EfiDecompressProtocol
+ 791BED98 EB4CF29C 191F 4EAE 96 E1 F4 64 EC EA EA 0B
+ 791BCE98 9A44198E A4AZ 44E6 BA 1F 39 BE FD AC 89 6F
+ 791BCDI8 EfiSecurityArchProtocol
+ 791BCC98 EfiCpuArchProtocol
+ 791BCE93 EfiMetronomeArchProtocol
+ 791BCA93 EfiTimerArchProtocol =
4 i 3
. . .
EXTension.UCode Display microcodes
Format: EXTension.UCode

Displays the list of available microcodes.

o B:EXT.UCode =n| Wl <
address revision |date cpu 1d Tlags =ize

FFEEECQOO |00O0O00019 |[06/13/2013 |000308AS9 |00000012 |0DO00ZFDO | .o
FFEF1000 |00000010 |02/20/2012 |000306A8 00000012 |0000Z27DO
FFEF3800 |00000004 |11/14/2011 |000306A6 (00000012 |000OLFDO
FFEF5800 |00000007 |09/09/2011 |000306A5 00000012 |000023D0
FFEF7CO0 |00000007 |09/08/2011 |000306A4 00000012 |000023D0
FFEFADOO |00000029 |06/12/2013 |000206A7 00000012 |0000Z27DO
FFEFCS00 |00000028 |09/15/2010 |000206A6 00000012 |0000Z23D0O

4 T b

The debugger tries to detect the address of the microcode list automatically. If this fails, specify the address
of the first microcode manually with the command EXTension.Option UCODE.

©1989-2024 Lauterbach UEFI Awareness Manual BLDK | 22

Intel BLDK PRACTICE Functions

There are special definitions for Intel® BLDK specific PRACTICE functions.

EXT.DXEDRV.ENTRY() Entry address for DXE driver

Syntax: EXT.DXEDRV.ENTRY(<dxedrv_magic>)

Returns the entry address for the specified DXE driver.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

EXT.DXEDRV.MAGIC() DXE driver magic number

Syntax: EXT.DXEDRV.MAGIC(" <dxedrv_name>")

Returns the driver magic number of the specified loaded DXE driver.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

EXT.DXEDRV.PATH() Build path for DXE driver

Syntax: EXT.DXEDRV.PATH(<dxedrv_magic>)

Returns the build path for the specified DXE driver.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

©1989-2024 Lauterbach UEFI Awareness Manual BLDK | 23

EXT.DXEFILE.MACHINE()

Machine type for DXE module

Syntax: EXT.DXEFILE.MACHINE(<file_address>)

Returns the machine type for the specified DXE module.
Parameter Type: Decimal or hex or binary value.
Return Value Type: Hex value.

Return Value and Description:

0 0 = 32-bit
1 1 = 64-bit

EXT.DXEFILE.PATH() Build path for DXE module
Syntax: EXT.DXEFILE.PATH(<file_address>)

Returns the build path for the specified DXE module.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

EXT.PEIM.ENTRY()

Entry address for PElI module

Syntax: EXT.PEIM.ENTRY(<peim_magic>)

Returns the entry address for the specified PEI module.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach

UEFI Awareness Manual BLDK

24

EXT.PEIM.MAGIC() Magic of PEI module

Syntax: EXT.PEIM.MAGIC(" <peim_name>")

Returns the “magic” of the specified PElI module.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

EXT.PEIM.PATH() Build path for PEI module

Syntax: EXT.PEIM.PATH(<peim_magic>)

Returns the build path for the specified PEI module.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

©1989-2024 Lauterbach UEFI Awareness Manual BLDK | 25

	UEFI Awareness Manual BLDK
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	x86 32-Bit
	x64 64-Bit
	Hooks & Internals in Intel BLDK

	Features
	Display of UEFI Resources
	Symbol Autoloader
	Autoloader Configuration
	Scan the UEFI Module Table
	Display the Autoloader Table

	Intel BLDK Specific Menu

	Debugging UEFI Phases of Intel BLDK
	Debugging from Reset Vector
	SEC Phase
	PEI Phase
	DXE Phase
	BDS Phase

	Intel BLDK Commands
	EXTension.ConfigTab Display DXE configuration table
	EXTension.DXEDRiVer Display loaded DXE drivers
	EXTension.DXEModule Display DXE modules
	EXTension.FV Display firmware volumes
	EXTension.HOB Display HOBs
	EXTension.Option Set awareness options
	EXTension.PEIModule Display PEI modules
	EXTension.PEISvc Display PEI services
	EXTension.POST Display POST code
	EXTension.PROTocol Display installed protocols
	EXTension.UCode Display microcodes

	Intel BLDK PRACTICE Functions
	EXT.DXEDRV.ENTRY() Entry address for DXE driver
	EXT.DXEDRV.MAGIC() DXE driver magic number
	EXT.DXEDRV.PATH() Build path for DXE driver
	EXT.DXEFILE.MACHINE() Machine type for DXE module
	EXT.DXEFILE.PATH() Build path for DXE module
	EXT.PEIM.ENTRY() Entry address for PEI module
	EXT.PEIM.MAGIC() Magic of PEI module
	EXT.PEIM.PATH() Build path for PEI module

