
MANUAL

UEFI Awareness Manual BLDK

UEFI Awareness Manual BLDK

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 UEFI Awareness Manuals ... 

 UEFI Awareness Manual BLDK ... 1

 History .. 4

 Overview .. 4

 Brief Overview of Documents for New Users 5

 Supported Versions 5

 Configuration ... 6

 x86 32-Bit 6

 x64 64-Bit 6

 Hooks & Internals in Intel BLDK 7

 Features ... 8

 Display of UEFI Resources 8

 Symbol Autoloader 9

 Autoloader Configuration 9

 Scan the UEFI Module Table 10

 Display the Autoloader Table 11

 Intel BLDK Specific Menu 12

 Debugging UEFI Phases of Intel BLDK ... 13

 Debugging from Reset Vector 13

 SEC Phase 13

 PEI Phase 13

 DXE Phase 14

 BDS Phase 15

 Intel BLDK Commands ... 16

 EXTension.ConfigTab Display DXE configuration table 16

 EXTension.DXEDRiVer Display loaded DXE drivers 16

 EXTension.DXEModule Display DXE modules 17

 EXTension.FV Display firmware volumes 18

 EXTension.HOB Display HOBs 19

 EXTension.Option Set awareness options 19

 EXTension.PEIModule Display PEI modules 20

 EXTension.PEISvc Display PEI services 21
UEFI Awareness Manual BLDK | 2©1989-2024 Lauterbach

 EXTension.POST Display POST code 21

 EXTension.PROTocol Display installed protocols 22

 EXTension.UCode Display microcodes 22

 Intel BLDK PRACTICE Functions .. 23

 EXT.DXEDRV.ENTRY() Entry address for DXE driver 23

 EXT.DXEDRV.MAGIC() DXE driver magic number 23

 EXT.DXEDRV.PATH() Build path for DXE driver 23

 EXT.DXEFILE.MACHINE() Machine type for DXE module 24

 EXT.DXEFILE.PATH() Build path for DXE module 24

 EXT.PEIM.ENTRY() Entry address for PEI module 24

 EXT.PEIM.MAGIC() Magic of PEI module 25

 EXT.PEIM.PATH() Build path for PEI module 25
UEFI Awareness Manual BLDK | 3©1989-2024 Lauterbach

UEFI Awareness Manual BLDK

Version 06-Jun-2024

History

28-Aug-18 The title of the manual was changed from “UEFI <x> Debugger” to “UEFI Awareness Manual
<x>”.

Overview

The UEFI Awareness for Intel® BLDK contains special extensions to the TRACE32 Debugger. This chapter
describes the additional features, such as additional commands and debugging approaches.
UEFI Awareness Manual BLDK | 4©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

• “UEFI Awareness Manuals” (uefi_<x>.pdf): TRACE32 PowerView can be extended for UEFI-
aware debugging. The appropriate UEFI manual informs you how to enable the UEFI-aware
debugging.

Supported Versions

Currently Intel® BLDK is supported for the following versions:

• Intel® BLDK core 2.x on x86 and x64 architectures

• Intel® UDK 2010 to 2015
UEFI Awareness Manual BLDK | 5©1989-2024 Lauterbach

Configuration

The UEFI Awareness for Intel® BLDK is configured by loading an extension definition file called “bldk.t32”
from the demo directory with the EXTension.CONFIG command. Additionally, load the “bldk.men” menu file
(see “BLDK specific Menu”) and configure the Symbol Autoloader.

x86 32-Bit

A full configuration for x86 32-bit can look like this (the path prefix ~~ expands to the system directory of
TRACE32.):

See also the example scripts in ~~/demo/x86/bootloader/uefi/bldk

x64 64-Bit

A full configuration for x64 64-bit can look like this (the path prefix ~~ expands to the system directory of
TRACE32.):

See also the example scripts in ~~/demo/x64/bootloader/uefi/bldk

; Load the Intel® BLDK Awareness:
EXTension.CONFIG ~~/demo/x86/bootloader/uefi/bldk/bldk.t32

; Load the additional menu:
MENU.ReProgram ~~/demo/x86/bootloader/uefi/bldk/bldk.men

; Configure symbol autoloader:
sYmbol.AutoLOAD.CHECKUEFI "do ~~/demo/x86/bootloader/uefi/bldk/autoload "

; Load the Intel® BLDK Awareness:
EXTension.CONFIG ~~/demo/x64/bootloader/uefi/bldk/bldk.t32

; Load the additional menu:
MENU.ReProgram ~~/demo/x64/bootloader/uefi/bldk/bldk.men

; Configure symbol autoloader:
sYmbol.AutoLOAD.CHECKUEFI "do ~~/demo/x64/bootloader/uefi/bldk/autoload "
UEFI Awareness Manual BLDK | 6©1989-2024 Lauterbach

Hooks & Internals in Intel BLDK

When using the debug build of the Intel® BLDK (which is recommended), the build system automatically
inserts breakpoints into the images when loading new modules. TRACE32 does not use these breakpoints.
Either remove them from the debug build, or simply continue when halting there.

The UEFI Awareness needs some basic pointers:

• For PEI phase, it needs the address of the boot firmware volume (BootFV). Usually, the UEFI
image holds a pointer to the BootFV at address 0xFFFFFFFC. If, for some reason, this pointer is
not available, please ask your system integrator where the BootFV resides. Report this address
to the UEFI Awareness with the command EXTension.Option BOOTFV.

• For DXE phase, it needs the address of the EFI System Table. It uses a global symbol of the
DxeCore to get this address. If the DxeCore symbols are not loaded, or if the symbol is not
available, the UEFI Awareness searches for the system table signature within the current RAM
area. If the system table is found, EXTension.ConfigTab shows its address.
This search may run over address ranges, that are not mapped and that may cause the target
system to crash. In this case, either mask out all memory areas, that should not be touched, with
MAP.DenyAccess, or set the address explicitly with the command EXTension.Option
SYSTABLE. To get the address of the EFI System Table in your running UEFI BIOS, you can also
execute the “mem” command in the EFI Shell (if available).
UEFI Awareness Manual BLDK | 7©1989-2024 Lauterbach

Features

The UEFI Awareness for Intel® BLDK supports the following features.

Display of UEFI Resources

The extension defines new commands to display various kernel resources. Information on the following
UEFI components can be displayed:

SEC phase:

PEI phase:

DXE phase:

For a description of the commands, refer to chapter “Intel BLDK Commands”.

Since the x86/x64/Atom architecture does not allow to read memory while the program execution is running,
the information can only be displayed, if the program execution is stopped.

EXTension.POST POST code

EXTension.UCode Available microcodes

EXTension.FV PEI PEI firmware volumes

EXTension.PEIModule PEI modules in FVs

EXTension.HOB PEI PEI HOBs

EXTension.FV DXE DXE firmware volumes

EXTension.DXEModule DXE modules in FVs

EXTension.DXEDRiVer Loaded DXE drivers

EXTension.HOB DXE DXE HOBs

EXTension.PROTocol DXE Installed DXE protocols

EXTension.ConfigTab DXE configuration table
UEFI Awareness Manual BLDK | 8©1989-2024 Lauterbach

Symbol Autoloader

The UEFI code is provided by the boot FLASH, but debugging becomes more comfortable when debug
symbols are available.

TRACE32 contains an “Autoloader”, which can be set up for automatic loading of symbol files. The
Autoloader maintains a list of address ranges, corresponding UEFI components and the appropriate load
command. Whenever the user accesses an address within an address range known to the Autoloader, the
debugger invokes the load associated command. The command is usually a call to a PRACTICE script, that
handles loading the symbol file.

The TRACE32 Autoloader has to be set up. This includes the following steps:

1. Autoloader configuration.

2. Scan of the UEFI module table to the Autoloader table.

3. Display of the Autoloader table.

Autoloader Configuration

The command sYmbol.AutoLOAD.CHECKUEFI <load_command> specifies the command that is
automatically used by the Autoloader to load the symbol information. Typically the script autoload.cmm
provided by Lauterbach is called.

The command sYmbol.AutoLOAD.CHECKUEFI implicitly also defines the parameters that TRACE32 uses
internally for the Autoloader.

The script is provided in the TRACE32 demo directory:

• 32-bit: ~~/demo/x86/bootloader/uefi/bldk/autoload.cmm.

• 64-bit: ~~/demo/x64/bootloader/uefi/bldk/autoload.cmm.

Example:

; Configure symbol Autoloader for 32-bit Intel® BLDK
sYmbol.AutoLOAD.CHECKUEFI "DO ~~/demo/x86/bootloader/uefi/bldk/autoload.cmm"
UEFI Awareness Manual BLDK | 9©1989-2024 Lauterbach

Scan the UEFI Module Table

When the Autoloader is configured, the command sYmbol.AutoLOAD.CHECK can be used to scan the
UEFI module table into the Autoloader table and to activate the Autoloader.

Since the UEFI module table is updated by UEFI a re-scan might be necessary.

The point of time at which the UEFI module table is re-scanned can be set very flexibly:

The default setting is sYmbol.AutoLOAD CHECK OFF. With this setting TRACE32 re-scans the UEFI
module table only on request by using the sYmbol.AutoLOAD.CHECK command.

With sYmbol.AutoLOAD.CHECK ON, TRACE32 re-scans the UEFI module table after every single step
and whenever the program execution is stopped. This significantly slows down the speed of TRACE32.

With sYmbol.AutoLOAD.CHECK ONGO, TRACE32 re-scans the UEFI module table whenever the
program execution is stopped.

sYmbol.AutoLOAD.CHECK [ON | OFF | ONGO]

NOTE: The Autoloader can load the symbol information for the SecCore, the PeiCore, all
PEI modules and the DXE core as soon as the memory mode (e.g. 32-bit protected
mode) used by UEFI is activated.

The Autoloader can only load symbol information for DXE modules that are
already loaded.
UEFI Awareness Manual BLDK | 10©1989-2024 Lauterbach

Display the Autoloader Table

The command “sYmbol.AutoLOAD.List” shows a list of all known address ranges/components and their
symbol load commands.

Autoload context menu

Touch Advise TRACE32 to load the symbols for the selected module now.

Set Mark selected module as loaded.

Clear Delete symbols for the selected module in TRACE32.

Module address range Module name Module status
dyn: (no meaning)
load: symbols for module are loaded

Load command Parameters for load command
UEFI Awareness Manual BLDK | 11©1989-2024 Lauterbach

Intel BLDK Specific Menu

The menu file “bldk.men” allows to add a menu with Intel® BLDK specific menu items. Load this menu with
the MENU.ReProgram command.

You will find a new menu called BLDK.

• Use the PEI submenu to launch windows displaying PEI specific resources.

• Use the DXE submenu to launch windows displaying DXE specific resources.

• The Display POST Code submenu allows to display the current POST (Power On SelfTest) code.

• Load Current Symbols calls a script that tries to find the image header of the code at the
current program counter location. If the header is found, it tries to load the according symbol file.

• Use the Symbol Autoloader submenu to configure the symbol autoloader.
See also chapter “Symbol Autoloader”.

- List Components opens a sYmbol.AutoLOAD.List window showing all components
currently active in the autoloader.

- Check Now! performs a sYmbol.AutoLOAD.CHECK and reloads the autoloader list.

- Set Loader Script allows you to specify the script that is called when a symbol file load is
required. You may also set the automatic autoloader check.
UEFI Awareness Manual BLDK | 12©1989-2024 Lauterbach

Debugging UEFI Phases of Intel BLDK

UEFI runs in several “phases”. It starts with the “Security” (SEC) phase which immediately switches to the
“Pre-EFI Initialization Environment” (PEI) phase. After this phase ended, control is given to the “Driver Exe-
cution Environment” (DXE) phase. Shortly, before the OS is booted, the “Boot Device Selection” (BDS)
phase is running.

Each of this phases needs a different debugging environment. See below for a detailed description of each
phase.

Debugging from Reset Vector

TRACE32 is a JTAG-based debugging tool and, as such, allows the user to start debugging their Atom/x86
system right from the reset vector (normally at BP:0xF000:0xFFF0). It is possible to walk through the very
first steps of the start-up to detect FLASH problems or faulty reset behavior.

Shortly after reset, the system switches into the SEC phase.

SEC Phase

The Intel® BLDK does not provide symbol information for the SEC phase, so we cannot debug this phase in
source code. However, the debugger has access to the boot firmware volume. During SEC phase, use
EXTenstion.FV PEI to inspect the boot FV.

PEI Phase

If you want to debug the PEI phase right from the start, halt the system while in SEC phase. Then load the
symbols of the PEI core module (“PeiCore”) with the symbol autoloader, and go until “PeiCore”:

NOTE: Debugging within the PEI phase requires access to the boot firmware volume.
The UEFI Awareness tries to find the address of the boot firmware volume
automatically, see Hooks & Internals if this fails.

sYmbol.AutoLOAD.CHECK
sYmbol.AutoLOAD.Touch "PeiCore"
Go PeiCore
UEFI Awareness Manual BLDK | 13©1989-2024 Lauterbach

Intel® BLDK starts the PeiCore several times with different settings. The first time after the SEC phase, code
runs from Flash and data is in internal memory. PeiCore then initializes external RAM and calls itself, starting
PeiCore a second time, now with code in Flash and data in external RAM. Now the PeiCore module will be
copied into RAM for faster execution. Check and touch the module in the symbol autoloader again, to trigger
a reload of the PeiCore symbols, now to RAM address.

Inspect the PEI resources with the menu items in the PEI submenu.

For debugging a dynamic PEI module from its entry point, a special script “go_peimdyn” is available in the
~~/demo directory. Call this script with the name of the PEI module before the module is started. E.g. to
debug the PEI module “PcdPeim”:

This script sets a breakpoint in the PEI code and waits until the specified PEI module is loaded. Then it sets
a breakpoint onto the module entry point and halts there. You can then start debugging the module from
scratch.

DXE Phase

After PEI phase completed, it hands off control to the DXE phase, starting with the DxeCore Module.

To debug the DxeCore right from start, run the PEI until it jumps into the DxeCore (the function
HandOffToDxeCore() is a good place to stop). Load the symbols of “DxeCore” (by executing
sYmbol.AutoLOAD.CHECK and sYmbol.AutoLOAD.TOUCH "DxeCore"). Then set a breakpoint at
“DxeMain”. DxeMain then starts the DXE dispatcher. If you do not want to debug the DxeCore startup,
simply load the symbols of DxeCore after DXE phase came up.

For debugging a DXE driver from its entry point, a special script “go_dxedrv” is available in the ~~/demo
directory. Call this script with the name of the DXE module before the module is started. E.g. to debug the
DXE driver “Metronome”:

This script sets a breakpoint in the DXE core code and waits until the specified DXE module is loaded. Then
it sets a breakpoint onto the module entry point and halts there. You can then start debugging the module
from scratch.

DO go_peimdyn PcdPeim

NOTE: Debugging within the DXE phase requires access to the EFI System Table.
The UEFI Awareness tries to find the address of the system table automatically,
see Hooks & Internals if this fails.

DO go_dxedrv Metronome
UEFI Awareness Manual BLDK | 14©1989-2024 Lauterbach

BDS Phase

Intel® BLDK implements the BDS phase as DXE driver. To debug the BDS phase, debug the “BdsDxe” mod-
ule like shown in “DXE Phase”.
UEFI Awareness Manual BLDK | 15©1989-2024 Lauterbach

Intel BLDK Commands

EXTension.ConfigTab Display DXE configuration table

Displays the DXE configuration table.

EXTension.DXEDRiVer Display loaded DXE drivers

Displays a table with all DXE drivers that DxeCore already loaded into the system.

You can sort the window to the entries of a column by clicking on the column header.

“magic” is a unique ID, used by the UEFI Awareness to identify a specific driver (address of the EFI debug
image structure).

Right clicking on the “magic” opens a local window. It allows to load the symbols of the selected DXE driver.

Format: EXTension.ConfigTab

Format: EXTension.DXEDRiVer
UEFI Awareness Manual BLDK | 16©1989-2024 Lauterbach

EXTension.DXEModule Display DXE modules

Displays a table with all DXE modules found in the system (firmware volumes or HOBs).

You can sort the window to the entries of a column by clicking on the column header.

“magic” is a unique ID, used by the UEFI Awareness to identify a specific module.

The “magic” fields are mouse sensitive. Right-click on them to get a local menu. Double-clicking on them
opens appropriate windows.

Format: EXTension.DXEModule
UEFI Awareness Manual BLDK | 17©1989-2024 Lauterbach

EXTension.FV Display firmware volumes

Displays a table with the firmware volumes of the PEI or DXE phase.

If an address of a firmware volume is specified, the command displays the contents of this FV.

“magic” is a unique ID used by the UEFI Debugger to identify a specific firmware volume or file.

The “magic” fields are mouse sensitive, double clicking on them opens appropriate windows. Right-clicking
on them will show a context menu.

The debugger tries to detect the address of the boot firmware volume automatically. If this fails, specify the
address of the boot FV manually with the EXTension.Option BOOTFV command.

Format: EXTension.FV [PEI | DXE [<fv_address>]]
UEFI Awareness Manual BLDK | 18©1989-2024 Lauterbach

EXTension.HOB Display HOBs

Displays a table with the hand off blocks of the PEI or DXE phase.

The “address” fields are mouse sensitive, double clicking on them opens appropriate windows. Right clicking
on them will show a local menu.

EXTension.Option Set awareness options

Sets various options to the awareness.

Format: EXTension.HOB [PEI | DXE]

Format: EXTension.Option <option>

<option>: BOOTFV <address>
PEIHOBS <address>
SYSTABLE <address>
UCODE <address>

BOOTFV Set the base address of the boot firmware volume.

PEIHOBS Set the base address of the HOB list in PEI phase.

SYSTABLE Set the base address of the EFI System Table

UCODE Set the base address of the microcode table.
UEFI Awareness Manual BLDK | 19©1989-2024 Lauterbach

EXTension.PEIModule Display PEI modules

Displays a table with all PEI modules found in the system.

You can sort the window to the entries of a column by clicking on the column header.

“magic” is a unique ID, used by the UEFI Awareness to identify a specific module.

The “magic” fields are mouse sensitive. Right-click on them to get a local menu. Double-clicking on them
opens appropriate windows.

Format: EXTension.PEIModule
UEFI Awareness Manual BLDK | 20©1989-2024 Lauterbach

EXTension.PEISvc Display PEI services

Displays a table with all available PEI services.

EXTension.POST Display POST code

(Only available on x86/x64 targets.)

Displays the Power-On Self-Test code.

Format: EXTension.PEISvc

Format: EXTension.POST
UEFI Awareness Manual BLDK | 21©1989-2024 Lauterbach

EXTension.PROTocol Display installed protocols

Displays the list of installed DXE protocols.

EXTension.UCode Display microcodes

Displays the list of available microcodes.

The debugger tries to detect the address of the microcode list automatically. If this fails, specify the address
of the first microcode manually with the command EXTension.Option UCODE.

Format: EXTension.PROTocol

Format: EXTension.UCode
UEFI Awareness Manual BLDK | 22©1989-2024 Lauterbach

Intel BLDK PRACTICE Functions

There are special definitions for Intel® BLDK specific PRACTICE functions.

EXT.DXEDRV.ENTRY() Entry address for DXE driver

Returns the entry address for the specified DXE driver.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

EXT.DXEDRV.MAGIC() DXE driver magic number

Returns the driver magic number of the specified loaded DXE driver.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

EXT.DXEDRV.PATH() Build path for DXE driver

Returns the build path for the specified DXE driver.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

Syntax: EXT.DXEDRV.ENTRY(<dxedrv_magic>)

Syntax: EXT.DXEDRV.MAGIC("<dxedrv_name>")

Syntax: EXT.DXEDRV.PATH(<dxedrv_magic>)
UEFI Awareness Manual BLDK | 23©1989-2024 Lauterbach

EXT.DXEFILE.MACHINE() Machine type for DXE module

Returns the machine type for the specified DXE module.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Return Value and Description:

EXT.DXEFILE.PATH() Build path for DXE module

Returns the build path for the specified DXE module.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

EXT.PEIM.ENTRY() Entry address for PEI module

Returns the entry address for the specified PEI module.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Syntax: EXT.DXEFILE.MACHINE(<file_address>)

 0 0 = 32-bit

 1 1 = 64-bit

Syntax: EXT.DXEFILE.PATH(<file_address>)

Syntax: EXT.PEIM.ENTRY(<peim_magic>)
UEFI Awareness Manual BLDK | 24©1989-2024 Lauterbach

EXT.PEIM.MAGIC() Magic of PEI module

Returns the “magic” of the specified PEI module.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

EXT.PEIM.PATH() Build path for PEI module

Returns the build path for the specified PEI module.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

Syntax: EXT.PEIM.MAGIC("<peim_name>")

Syntax: EXT.PEIM.PATH(<peim_magic>)
UEFI Awareness Manual BLDK | 25©1989-2024 Lauterbach

	UEFI Awareness Manual BLDK
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	x86 32-Bit
	x64 64-Bit
	Hooks & Internals in Intel BLDK

	Features
	Display of UEFI Resources
	Symbol Autoloader
	Autoloader Configuration
	Scan the UEFI Module Table
	Display the Autoloader Table

	Intel BLDK Specific Menu

	Debugging UEFI Phases of Intel BLDK
	Debugging from Reset Vector
	SEC Phase
	PEI Phase
	DXE Phase
	BDS Phase

	Intel BLDK Commands
	EXTension.ConfigTab Display DXE configuration table
	EXTension.DXEDRiVer Display loaded DXE drivers
	EXTension.DXEModule Display DXE modules
	EXTension.FV Display firmware volumes
	EXTension.HOB Display HOBs
	EXTension.Option Set awareness options
	EXTension.PEIModule Display PEI modules
	EXTension.PEISvc Display PEI services
	EXTension.POST Display POST code
	EXTension.PROTocol Display installed protocols
	EXTension.UCode Display microcodes

	Intel BLDK PRACTICE Functions
	EXT.DXEDRV.ENTRY() Entry address for DXE driver
	EXT.DXEDRV.MAGIC() DXE driver magic number
	EXT.DXEDRV.PATH() Build path for DXE driver
	EXT.DXEFILE.MACHINE() Machine type for DXE module
	EXT.DXEFILE.PATH() Build path for DXE module
	EXT.PEIM.ENTRY() Entry address for PEI module
	EXT.PEIM.MAGIC() Magic of PEI module
	EXT.PEIM.PATH() Build path for PEI module

