
MANUAL

Training Source Level Debugging

Training Source Level Debugging

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Training .. 

 Training Source Level Debugging ... 1

 Load the Application Program .. 5

 The Symbol Database .. 22

 Structure of the Internal Symbol Database 22

 General Information on the Symbol Database 23

 Symbol Browser 24

 Details about a Selected Symbol 29

 Searching in Source Files 31

 Display Variables .. 33

 Watch Window 33

 View Window 35

 Referenced Variables 36

 Local Variables 37

 Stack Frame 38

 Special Display for Arrays 39

 Linked Lists 42

 Change a Variable Value .. 44

 Format Variable .. 47

 Format a Variable using the Format Dialog Box 47

 Format a Variable Using the Command Line 57

 General SETUPs 58

 Variable Monitoring .. 59

 Basics 59

 Preparation 60

 Format Option %E 62

 Var.PROfile Command 64

 Variable Logging .. 66

 SNOOPer Trace 66

 Basics 66

 The Logging Interval 75

 Display Options 77

 Logging of Multiple Variables 80
Training Source Level Debugging | 2©1989-2024 Lauterbach

 Logging in an SMP System 83

 Document the Logging Results 84

 Summary 84

 Script Example 85

 Var.LOG Command 86

 Testing of Functions .. 88

Training Source Level Debugging | 3©1989-2024 Lauterbach

Training Source Level Debugging

Version 06-Jun-2024
Training Source Level Debugging | 4©1989-2024 Lauterbach

Load the Application Program

It is recommended to use the compiler/format specific Data.LOAD command thereby all compiler/format
specific options can be used.

Which actions are performed by TRACE32 when the Data.LOAD command is executed?

• All symbol and debug information already available in TRACE32 is removed.

• The code/data provided by <file> is loaded to the target memory.

• The symbol and debug information provided by <file> is loaded into TRACE32.

• The paths for the HLL source files provided by <file> are loaded into TRACE32.

• A TRACE32 symbol database is generated out of the loaded information.

Data.LOAD <filename> [/<option>] General load command

Data.LOAD.<sub_cmd> <filename> [/<option>] Compiler specific load command
Training Source Level Debugging | 5©1989-2024 Lauterbach

Options that refer to Code/data

The options that refer to code/data are mainly used for the following tasks:

• to verify that code/data is loaded correctly.

• to suppress the loading of code/data if the correct code/data is already in the target.

DIFF Data in the memory is compared against the file, the memory is not
changed.
• FOUND() returns TRUE, when a difference between the file and the

memory is found.
• FOUND() returns FALSE, when no difference between the file and the

memory is found.

NoCODE Symbol and debug information plus source path information gets loaded to
the debugger, but do no code/data is downloaded to the target memory.
Useful if the code/data is already in memory.

Data.LOAD.Elf demo.elf
Data.LOAD.Elf demo.elf /DIFF

IF FOUND()
 PRINT %ERROR "Loading of program failed"

Data.LOAD.Elf demo.elf /NoCODE
Training Source Level Debugging | 6©1989-2024 Lauterbach

Options that Refer to the Symbol and Debug Information

The options that refer to the symbol and debug information are mainly used to relocate the symbol
information.

; relocate all symbols by 2000
symbol.RELOCate.shift 2000

; Load the symbol and debug information from the file t_li_elf.axf and
; relocate all symbols of the section t_li_elf.axf to address 3000
sYmbol.List.SECTion
Data.LOAD.Elf thumble.axf /RELOC t_li_elf.axf AT 3000 /NoCODE

sYmbol.RELOCate.shift <offset> Relocate code and data
symbols by <offset>

Data.LOAD.Elf <file> /RELOC <sector> AT <address> Relocate the specified sector
to the defined address

Data.LOAD.Elf <file> /RELOC <sector> AFTER <sector_other> Relocated the specified
sector after an another sector

sYmbol.List.SECtion List the section information of
the TRACE32 symbol
database
Training Source Level Debugging | 7©1989-2024 Lauterbach

Options that Preserve the Already Available Symbol and Debug Information

NoClear By default, whenever a new Data.LOAD command is started, the already
available symbol and debug information is removed. With this option the
already available symbol and debug information is not removed. This option is
necessary if more than one program is loaded.

More This option speeds up the downloading of large projects consisting of several
programs. This option suppresses the generation of the internal symbol
database when using the Data.LOAD command.

Data.LOAD file1 /More ; load file1 but suppress the
; generation of the internal
; symbol database

Data.LOAD file2 /NoClear /More ; load file2 but don‘t remove the
; already available symbol and
; debug information before
; loading and suppress the
; generation of the internal
; symbol database

Data.LOAD file3 /NoClear /More

.

.

.

Data.LOAD filen /NoClear ; load filen but don’t remove the
; already available symbol and
; debug information before
; loading, this is the last file
; so generate the internal symbol
; database now
Training Source Level Debugging | 8©1989-2024 Lauterbach

Option and Commands to Get the Correct Paths for the HLL Source Files

A video tutorial about the source path correction can be found here:

support.lauterbach.com/kb/articles/displaying-the-source-code

If the Source Listing displays hatched areas instead of the source code information, the source code paths
provided by the loaded program have to be corrected. These corrections become necessary because the
compile environment differs from the debug environment. The graphic below shows a very simple example.

C:

source

demo
sample.c

Compile environment

D:

debug

demo
sample.c

Debug environment
Training Source Level Debugging | 9©1989-2024 Lauterbach

https://support.lauterbach.com/kb/articles/displaying-the-source-code

To inspect the paths for the source code files provided by the loaded program proceed as shown below:

sYmbol.List.SOURCE Display source file details.

The compile paths provided by the loaded program are

error

listed in the source column

 not found in the current debug environment
in the state column indicates that a required file was
Training Source Level Debugging | 10©1989-2024 Lauterbach

TRACE32 provides the following ways to correct the compile paths so they fit the paths in the debug
environment:

Example 1: Provide the source paths directly

+ Quick and easy
+ Recommended for small project
+ Source paths can be corrected without reloading the program

Example 2: Translate compile path to debug path

+ Recommended for large projects
+ Source paths can be corrected without reloading the program
+ Not flexible enough for a generic script

Example 3: Personalized debug paths

+ Recommended for large projects
+ Flexible for generic scripts
+ Requires a fixed location for the script that loads the program

Example 4: Convert cygdrive paths to Window paths

Example 5: Load Elf file with relative paths only
Training Source Level Debugging | 11©1989-2024 Lauterbach

Example 1: Provide the source paths directly

TRACE32 displays a warning when a required source file was not found and the source listing displays
hatched areas instead of the source code information. One way to solve this issue is to directly provide the
correct path for the source file.

1. Open a sYmbol.SPATH.List window.
Training Source Level Debugging | 12©1989-2024 Lauterbach

2. Use the +AddDir … button in the sYmbol.SPATH.List window to open a folder browser. Select
the directory in which the missing source file is located.

The sYmbol.SPATH.List window lists all provided directories.
Training Source Level Debugging | 13©1989-2024 Lauterbach

As soon as the required source file was found, its source code is visible in the Source Listing.

If you want to check if the correct source file was used, proceed as shown below:

sYmbol.SourcePATH.List List source file search information.

sYmbol.SourcePATH.SetDir <directory> Define directory as direct search path.

sYmbol.List.SOURCE Display source file details.

The compile paths provided by the loaded program are
listed in the source column

The path from which a source file was actually loaded is
listed in the file column.
Training Source Level Debugging | 14©1989-2024 Lauterbach

Example 2:Translate compile paths to debug paths

If you have a large project with a lot of subdirectories it is work-intensive to provide all source paths directly.
An easier solution works as follows:

If we take a closer look e.g. to the files msdos.c and aead.c, we can see that the following command can
solve the issue easily.

The invalid part of the source file paths ("\home\user\linux-kernel\linux-3.4") is translated to
the correct part ("C:\T32_ARM\debug\sources").

The sYmbol.SPATH.List window shows this translation.

The source files can now be loaded from the correct location.

sYmbol.SourcePATH.Translate "\home\user\linux-kernel\linux-3.4" \
"C:\T32_ARM\debug\sources"

Path information from the compile environment

Source file directories in the current debug environment
Training Source Level Debugging | 15©1989-2024 Lauterbach

Translate <invalid_part> of source file paths to <correct_part>.

sYmbol.SourcePATH.Translate <invalid_part> <correct_part>

sYmbol.SourcePATH.List List source file search information.

sYmbol.List.SOURCE Display source file details.
Training Source Level Debugging | 16©1989-2024 Lauterbach

Example 3: Personalized debug paths

Translating the compile paths to the debug paths is not flexible enough, if each user has its own debug
environment. The following example shows a generic solution for a personalized debug paths.

For this generic solution it is required that the script that loads the program (here load.cmm) is part of the
project, as shown in the example below.

The idea is now the following:

1. When the program is loaded, the start of the compile path including the project name (here:
control) is stripped by the command:

2. Now the new personalized start of the debug path has to be provided.

The presented solution takes advantage of the fact that TRACE32 includes shortcuts that represent
directories and that these shortcut can be used as path prefixes. The shortcut needed for our solution
is ~~~~ and it represents the directory where the currently running script is located.

~~~~/.. represents exactly the start of all source paths (including the project name) in the debug 
environment. This new start for all source paths can be specified by the following command.

Data.LOAD.<file_format> <file> /StripPART <project_name>

sYmbol.SourcePATH.SetBaseDir ~~~~/.. 

Compile environment Debug environment

C:/Projects D:/home/peter/own

control

interface

start

diagnosis

display

m45_k78.elf

T32_scripts

load.cmm

control

interface

start

diagnosis

display

m45_k78.elf

T32_scripts

load.cmm
Training Source Level Debugging     |    17©1989-2024   Lauterbach                                                        



The script load.cmm has to include the following:

…

; cut the following from the source paths:
; C:/Projects/control
Data.LOAD.Elf ~~~~/../m45_k78.elf /StripPART "control"

; specify new base directory (here d:/home/peter/own/control) 
; for relative paths
; sYmbol.SourcePATH.SetBaseDir ~~~~/..

…

Training Source Level Debugging     |    18©1989-2024   Lauterbach                                                        



Example 4: Convert cygdrive paths to window paths

If the source files are compiled in a cygdrive enviroment, cygdrive paths are provided by the loaded program.

The option /CYGDRIVE advises TRACE32 to convert the cygdrive paths to Windows paths.

Data.LOAD.Elf sieve_pic_thumb_ii_v7.elf

Data.LOAD.Elf sieve_pic_thumb_ii_v7.elf /CYGDRIVE

Data.LOAD.Elf <file> /CYGDRIVE Load .elf file, convert cygdrive paths to Window paths.

sYmbol.List.SOURCE Display source file details.
Training Source Level Debugging     |    19©1989-2024   Lauterbach                                                        



Example 5: Load Elf file with relative paths

If source files are compiled with relative paths, the resulting .elf file contains both, all <relative_path> as well 
as the <compile_directory>. By default TRACE32 performs as follows:

The option /RelPATH advises TRACE32 to not use the <compile_directory>.

TRACE32 is trying to load the source files now relatively to the location of the ELF file.

If this does not work, you can provide the start of the source paths directly:

// Load Elf file, construct source file paths by
// combining <compile_directory><relative_path>
Data.LOAD.Elf C:/T32_ARM/demo/arm/compiler/gnu/sieve.elf

// Load Elf file, provide only all <relative_path> for source files
Data.LOAD.Elf C:/T32_ARM/demo/arm/compiler/gnu/sieve.elf /RelPATH

sYmbol.SourcePATH.SetBaseDir C:\T32_ARM\demo\arm\compiler\gnu

Data.LOAD.Elf <file> /RelPATH Load .elf file with relative paths only.

sYmbol.SourcePATH.SetBaseDir <base_directory> Provide start of source paths directly.

sYmbol.List.SOURCE Display source file details.
Training Source Level Debugging     |    20©1989-2024   Lauterbach                                                        



Loader Options for the Virtual Memory

TRACE32 provides a so-called virtual memory on the host. With the following options the code is loaded into 
this virtual memory.

A detailed description of the use cases for the TRACE32 virtual memory are given in “TRACE32 Virtual 
Memory”  in TRACE32 Glossary, page 54 (glossary.pdf).

VM Load the code/data into the virtual memory.

PlusVM Load the code/data into the target and into the virtual memory.

Data.LOAD.COFF arm.abs /VM ; load code/data from <file> into the
; virtual memory

Data.LOAD.COFF arm.abs /PlusVM ; load code data from <file> into the
; target memory and into the virtual
; memory
Training Source Level Debugging     |    21©1989-2024   Lauterbach                                                        



The Symbol Database

Structure of the Internal Symbol Database

The symbol and debug information loaded with the Data.LOAD command is organized in an internal symbol 
database by TRACE32.

Program

Variable
(static)

Variable
(dynamic)

Function

Module

Global
Variable

Source

Line

Column

Sections

Types
Training Source Level Debugging     |    22©1989-2024   Lauterbach                                                        



General Information on the Symbol Database

sYmbol.STATE Display general information about symbol database
Training Source Level Debugging     |    23©1989-2024   Lauterbach                                                        



Symbol Browser

sYmbol.Browse [<name_pattern> [<type_pattern>]] Browse symbol information

sYmbol.Browse a*

sYmbol.Browse a* struct*

sYmbol.Browse * *struct*
Training Source Level Debugging     |    24©1989-2024   Lauterbach                                                        



Global Browsing

Program

Variable
(static)

Variable
(dynamic)

Function Global
Variable

Module

\\* (all programs)

\\*\* (all modules)

\\*\*\* (all functions, all global variables)

\\*\*\*\* (all local variables)

Global Up Global Down
Training Source Level Debugging     |    25©1989-2024   Lauterbach                                                        



Narrowed Browsing

Select display type

Symbols Display all symbols

Variables Display all variables

Functions Display all functions

Modules Display all modules

If the browsing is narrowed to 
Variables and a function is selected, 
the local variables of the selected
function are displayed
Training Source Level Debugging     |    26©1989-2024   Lauterbach                                                        



´

sYmbol.Browse Browse symbol information

sYmbol.Browse.Function Browse functions

sYmbol.Browse.Var Browse variables

sYmbol.Browse.Modules Browse modules

If the browsing is narrowed to 
Functions and a function is selected, 
the source code of the selected function
is displayed

Browse Modules

Browse Functions

Browse Variable
Training Source Level Debugging     |    27©1989-2024   Lauterbach                                                        



Browsing for a Specific Type

sYmbol.Browse.Var * unsigned int

sYmbol.Browse.Var * *char*

sYmbol.Browse.Var * *char "*"

Display all variables of the type
unsigned int

Display all variables where the type 
name contains the keyword char
(*char*) 

Display all variables where the type 

pointer to char (*char ˝*˝) 
Display all variables of the type 
Training Source Level Debugging     |    28©1989-2024   Lauterbach                                                        



Details about a Selected Symbol
Training Source Level Debugging     |    29©1989-2024   Lauterbach                                                        



sYmbol.INFO Display symbolic address, location, scope and layout of a symbol

Var.INFO Display symbolic address, location, scope and layout of a variable or 
function

Select the variable you are 
interested in 
Training Source Level Debugging     |    30©1989-2024   Lauterbach                                                        



Searching in Source Files

Search a String in the Current Source File

If debug mode HLL is active, the entered string is searched in the current source file.

current source file

Debug Mode HLL is active
Training Source Level Debugging     |    31©1989-2024   Lauterbach                                                        



Search a String in all Source Files

TRACE32 searches in all source files for the defined string.

Enter the string here
Training Source Level Debugging     |    32©1989-2024   Lauterbach                                                        



Display Variables

Watch Window

Adds the selected variable to the top of the Variable Watch window. If no Watch Window exists, a new 
Watch Window is created. 

The selected variable is added to the top 
of the Variable Watch window

Add the variable to the 
Watch Window by using
the Variable pull down
Training Source Level Debugging     |    33©1989-2024   Lauterbach                                                        



Var.Watch [%<format>] [<variable>] Open a watch window and display variable

Var.AddWatch [%<format>] <variable> Add variable to watch window

Drag variable to the 
the Watch Window

Remove the selected variable
from the Watch Window
Training Source Level Debugging     |    34©1989-2024   Lauterbach                                                        



View Window

Opens a new Variable View window for the selected variable.

• If a formula is entered, it is interpreted and the result is displayed.

Var.View [%<format>] <variable> Display variable in a separate window

A new Variable View Window is opened 
to display the selected variable
Training Source Level Debugging     |    35©1989-2024   Lauterbach                                                        



Referenced Variables

Opens a Var.REF window. The variables referenced by the current source line are automatically added to 
this window.

Var.Ref [%<format>] Display the variables referenced by the current code 
line
Training Source Level Debugging     |    36©1989-2024   Lauterbach                                                        



Local Variables

Open a window to display the local variables of the current function.

Var.Local [%<format>] Display local variables
Training Source Level Debugging     |    37©1989-2024   Lauterbach                                                        



Stack Frame

Display a “stack trace” to show the functions´ nesting.

Args Display the arguments.

Local Display the local variables.

Caller Display of the high level language block from which the function 
was called.

Frame.view [%<format>] [/option] Display a ´stack trace´
Training Source Level Debugging     |    38©1989-2024   Lauterbach                                                        



Special Display for Arrays

Graphical Display

Var.DRAW [%<format>] <array> Display the contents of an array graphically

Var.DRAW sinewave
Training Source Level Debugging     |    39©1989-2024   Lauterbach                                                        



Display Array with Indices and Pointers

Var.TABle [%<format>] <array> <index> [ … ] Display an array together with indices and 
pointers

Var.TABle flags i k vpchar i and k are indices,
vpchar is a pointer

Display nth element on 
top of the window

Display first element on 
top of the window

Display last element on 
top of the window
Training Source Level Debugging     |    40©1989-2024   Lauterbach                                                        



Var.FixedTABle [%<format>] <array> <index> [ … ] Display an array together with 
indices and pointers in a fixed 
format

Var.FixedTABle stra2 vpchar

Compress the array
Training Source Level Debugging     |    41©1989-2024   Lauterbach                                                        



Linked Lists

Var.CHAIN [%<format>] <first> <next> [ … ] Display a linked list

Var.CHAIN ast ast.left ast is the first element of the 
linked list,
ast.left provides the pointer to 
the next element

Display the nth element on 
top of the window

Display the first element on 
top of the window

Display the last element on 
top of the window
Training Source Level Debugging     |    42©1989-2024   Lauterbach                                                        



Scan Modes The linked list is permanently scanned to keep it up to date. This 
may reduce the performance of the TRACE32 user interface. 3 
different scan modes are supported

Full The linked list is scanned completely. This may reduce the 
performance of the TRACE32 user interface considerably.

Partial The linked list is only scanned from the record at the top of the 
screen. The influence on the performance of the TRACE32 user 
interface is very small.

Auto This mode provides a compromise between an up to date linked 
list and a fast TRACE32 user interface. For a specific time (20-50 
ms) the list is updated and for the same time user inputs are 
served. The number beside the Auto button is the number of the 
last updated record.

Var.FixedCHAIN [%<format>] <first> <next> [ … ] Display a linked list in a fixed format

Var.FixedCHAIN ast ast.left
Training Source Level Debugging     |    43©1989-2024   Lauterbach                                                        



Change a Variable Value

To change the content of a variable, you can use the Set Value… command from the variable pull-down or 
simply double-click on the variable. In either case, the command Var.set appears in the command line 
together with the name of the variable.

Here are a few examples for the use of the Var.set command:

Var.set mstatic1 = 111609970 ; assign a decimal value to the 
; variable mstatic1

Var.set mstatic1 = k+3 ; add 3 to the content of the 
; variable k and assign the result 
; to the variable mstatic1

Var.set mstatic1 = k+i ; add the contents of the variables
; k and i and assign the result 
; to the variable mstatic1

Var.set flags[3] = 1 ; assign decimal value 1 to the 4th
; element of the array flags 

Var.set ++k ; increment the content of the 
; variable k
Training Source Level Debugging     |    44©1989-2024   Lauterbach                                                        



The command Var.set can also be used to evaluate a high-level language expression. The expression and 
its result are then displayed in the message area.

At this point it should be pointed out again that the Var command group uses as parameter syntax the 
syntax of the used high-level language (usually C/C++). While all other TRACE32 commands must use the 
TRACE32 parameter syntax, which is based on C but has some special features and handles debug 
symbols more like a compiler's linker does. The following table illustrates this:

High-level expression TRACE32 expression

Value of C/C++ Variable 
myvar

myvar Var.VALUE(myvar)

Address of C/C++ 
Variable myvar

&myvar myvar

Size of C/C++ Variable  
myvar

sizeof(myvar) Var.SIZEOF(myvar)

Value of 32-bit word at 
address 0x2000

*((unsigned int*)0x2000) Data.Long(D:0x2000)

Decimal constant 42 42.

5th element of array 
myarray

myarray[5] Var.VALUE(myarray[5])

Data of element val in 
struct mystruct

mystruct.val Var.VALUE(mystruct.val)
Training Source Level Debugging     |    45©1989-2024   Lauterbach                                                        



Here are some examples:

Value of core register R7 \Register(R7) Register(R7)

String containing host 
OS

\VERSION_ENVironment(OS) VERSION.ENVironment(OS)

Value on APB bus 
address 0x4000

\Data_Long((APB:0x4000)) Data.Long(APB:0x4000)

Var.set mstatic2 = mstatic1

Data.Set mstatic2 %Long Var.VALUE(mstatic1)

Var.set mstatic2=*((unsigned int*)0x7000004C)

Data.Set mstatic2 %Long Data.Long(D:0x7000004C)

Var.set mstatic2=\Register(D8)

Data.Set mstatic2 %Long Register(D8)

Var.Set mstatic2++

Data.Set mstatic2 %Long Var.VALUE(mstatic2)+1

; result as a decimal number
Var.PRINT \Data_Long((D:0x7000000C))

; result as a hex number
PRINT Data.Long(D:0x7000000C)
Training Source Level Debugging     |    46©1989-2024   Lauterbach                                                        



Format Variable

Format a Variable using the Format Dialog Box

Select the variable and press 
the right mouse button to open 
the Change Variable Format 
dialog box
Training Source Level Debugging     |    47©1989-2024   Lauterbach                                                        



Radix

• Numeric formats

By default integers are displayed in decimal format and pointers in hex format.

Radix

Decimal All numeric values are displayed in decimal format.

Hex All numeric values are displayed in hex format.

BINary All numeric values are displayed in binary format.

Ascii All numeric values are displayed as ASCII characters.

Select the radix, more than 
one possible

Click to the small dot on 
the left side of the 
variable to display a 
numeric value in different 
formats
Training Source Level Debugging     |    48©1989-2024   Lauterbach                                                        



• Dump

Display the contents of the variable additionally as a hex dump.

• Scaled

Display the variable in the defined scaling
.

sYmbol.AddInfo.Var <var> Scaled <multiplier> <offset> <format> Define a scaling for a 
variable

sYmbol.AddInfo.List List all defined scalings

sYmbol.AddInfo.RESet Reset list

sYmbol.AddInfo.Var vfloat Scaled 1.3 4 " mVolt"

sYmbol.AddInfo.List
Training Source Level Debugging     |    49©1989-2024   Lauterbach                                                        



display

• Index

• Type

Display array with indices

Display variable with 
type information
Training Source Level Debugging     |    50©1989-2024   Lauterbach                                                        



• Location

Display variable 
with location 
information
Training Source Level Debugging     |    51©1989-2024   Lauterbach                                                        



format

• Fixed

Display all numeric values in a fixed format.

• Tree

Use fixed space between the 
numeric elements of an array

Display a structure in a tree 
display
Training Source Level Debugging     |    52©1989-2024   Lauterbach                                                        



pointer

• String/WideString

This format can be used for arrays or pointer to characters. 

String Each character is a byte.

WideString Each character is a word e.g. for some DSPs or unicode.

sYmbol.AddInfo.Var <var> ZSTRING Define variable contents as a zero-terminated 
string

sYmbol.AddInfo.List List all definitions

sYmbol.AddInfo.RESet Reset list

sYmbol.AddInfo.Var cstr1 ZSTRING The contents of cstr1 is a zero-
terminated string

sYmbol.AddInfo.List Display definition list

Display the array as a string
Training Source Level Debugging     |    53©1989-2024   Lauterbach                                                        



Training Source Level Debugging     |    54©1989-2024   Lauterbach                                                        



• sYmbol

• PDUMP

Display a 16 byte hex dump starting at the address where the pointer is pointing to.

Displays the contents of a 
pointer also symbolically
Training Source Level Debugging     |    55©1989-2024   Lauterbach                                                        



other

• SpotLight

Highlight all changed variable elements:
The variable elements changed by the last step are marked 
in dark red. The variable elements changed by the step 
before the last step are marked a little bit lighter. This works 
up to a level of 4.
Training Source Level Debugging     |    56©1989-2024   Lauterbach                                                        



Format a Variable Using the Command Line

• Format definitions are valid for all variables used in the command after the format definition.

• Format definitions can be switched off selectively.

If a variable is formatted using the Change Variable Format dialog box, the 
format information will not be stored when the windows configuration is saved in 
a PRACTICE file.

The format information will be stored only, if the variable was formatted using 
the command line.

Var.View [%<format>] <variable>
Training Source Level Debugging     |    57©1989-2024   Lauterbach                                                        



General SETUPs

SETUP.Var [%<format>…] Change default display format for variables
Training Source Level Debugging     |    58©1989-2024   Lauterbach                                                        



Variable Monitoring

Basics

TRACE32 provides the possibility to monitor variable changes while the program execution is running. 
Monitoring the variable changes is only possible for variables with a fixed address.

Run-time memory access: If the processor architecture in use allows the debugger to read the target‘s 
physical memory while the program execution is running, variables can be monitored without any impact on 
the program execution. For details, refer to “Run-time Memory Access”  in TRACE32 Glossary, page 42 
(glossary.pdf).

StopAndGo mode: If the processor architecture allows the debugger to read the target‘s memory only 
when the program is stopped or if other restrictions don‘t allow the debugger to read the variable while the 
program execution is running, the debugger can be configured to stop the program execution every 100 ms 
in order to read the variable content. For details, refer to “StopAndGo Mode”  in TRACE32 Glossary, page 
52 (glossary.pdf).

The graph is updated every 
100.ms while the program 
execution is running.

The content of the variable is 
updated every 100.ms while the 
program execution is running.
Training Source Level Debugging     |    59©1989-2024   Lauterbach                                                        



Preparation

No preparation is required if run-time memory access (SYStem.MemAccess) is enabled by default.

If run-time memory access is denied (SYStem.MemAccess Denied) by default, please refer to your 
Processor Architecture Manual before you enable it by selecting one of the radio buttons.

SYStem.MemAccess DAP Enable run-time memory access via Debug Access Port (ARM/Cortex 
architecture)
Training Source Level Debugging     |    60©1989-2024   Lauterbach                                                        



If run-time memory access is not supported by the processor architecture in use or if other restriction don‘t 
allow the debugger to read the variable while the program execution is running, you can configure the 
debugger for StopAndGo mode.

SYStem.CpuAccess Enable Allow StopAndGo mode to read variables.

SYStem.CpuAccess Enable is not recommended for complex multicore chips 
that use caches and MMU.
Training Source Level Debugging     |    61©1989-2024   Lauterbach                                                        



Format Option %E

The option %E can be used for most commands that display variables. It advises the debugger to update the 
display for all variables with a fixed address 10 times per second.

Var.View %E fstatic2 vbfield vdouble

Var.DRAW inputA ; Displays the contents of an HLL 
; array graphically

Var.DRAW inputA inputB mixed
Training Source Level Debugging     |    62©1989-2024   Lauterbach                                                        



Processor architectures used in the automotive industry provide the option DUALPORT in the System 
window. If DUALPORT is checked run-time memory access is automatically enabled for all windows that 
display memory (e.g. source listing, memory dumps, variable displays, displays of SFR). The format option 
%E can be omitted in this case.

SYStem.Option.DUALPORT ON
Training Source Level Debugging     |    63©1989-2024   Lauterbach                                                        



Var.PROfile Command

The command Var.Profile allows to monitor numeric variables and display their changes graphically.

Var.PROfile %E fstatic2

Var.PROfile %E vdouble
Training Source Level Debugging     |    64©1989-2024   Lauterbach                                                        



Up to three variable can be superimposed if required. The following color assignment is used: first variable 
value red, second variable value green, third variable value blue.

Var.PROfile %E <variable1> [<variable2> ] [<variable3>]
Training Source Level Debugging     |    65©1989-2024   Lauterbach                                                        



Variable Logging

Variable changes can be logged in the following way:

• SNOOPer trace

• Var.LOG command

SNOOPer Trace

A video tutorial about the SNOOPer trace can be found here:

support.lauterbach.com/kb/articles/trace32-variable-logging-using-the-snooper-trace

Basics

Some processor architectures allow the debugger to read the target‘s physical memory while the program 
execution is running. For details refer to “Run-time Memory Access”  in TRACE32 Glossary, page 42 
(glossary.pdf).

TRACE32 implements the so-called SNOOPer trace based on this feature. Memory content is read 
periodically or as fast as possible and stored with timestamp information into a trace memory. The trace 
memory for the SNOOPer is allocated on the host.
Training Source Level Debugging     |    66©1989-2024   Lauterbach                                                        

https://support.lauterbach.com/kb/articles/trace32-variable-logging-using-the-snooper-trace


First example:

The following steps are required to set up the SNOOPer trace:

3. Open the SNOOPer configuration window.

SNOOPer.state

SNOOPer.Mode Memory Reading memory in the specified Rate is the default 
setting for the SNOOPer trace.
Training Source Level Debugging     |    67©1989-2024   Lauterbach                                                        



4. Specify the SNOOPer size as <number of trace records>.

TRACE32 allocates memory on the host for the requested size.

The SNOOPer size is only limited by the size of RAM on the host. It is recommended to stay far below 
this limit so that sufficient free memory is available for TRACE32 and other applications.

SNOOPer.SIZE <number of records>

SNOOPer.SIZE 500000.
Training Source Level Debugging     |    68©1989-2024   Lauterbach                                                        



5. Specify the variable you are interested in. 

It is best to read variables via the SNOOPer whose sizes are smaller or equal the data bus width of 
the core in use.

To specify the variable:

3.1. Use the select… button in the SNOOPer configuration window to open the SNOOPer.SELect 
dialog.

3.2. Use the List Symbols button in the SNOOPer.SELect dialog to get a list of all variables.

3.3. Select the variable you are interested in.

3.1

3.2

3.3
Training Source Level Debugging     |    69©1989-2024   Lauterbach                                                        



The selected variable is listed in the SELect field of the SNOOPer configuration window.

SNOOPer.SELect Var.RANGE(<variable>)

Var.RANGE(<variable>) This TRACE32 function returns the 
address range used by a variable
Training Source Level Debugging     |    70©1989-2024   Lauterbach                                                        



SNOOPer.Mode StopAndGo

TRACE32 checks/unchecks the StopAndGo checkbox automatically.

OFF The processor architecture in use allows the debugger to read physical 
memory while the program execution is running and this debugger 
feature is enabled.
Training Source Level Debugging     |    71©1989-2024   Lauterbach                                                        



Open the SYStem settings window to check if reading the physical memory while the program 
execution is running can be enabled for your debugger.

If there are beside Denied other selectable radio buttons in the MemAccess field refer to your 
Processor Architecture Manuals before you select one.

ON The processor architecture in use does not allow the debugger to read 
physical memory while the program execution is running or this debugger 
feature is disabled.

If the SNOOPer is working in StopAndGo mode, the program execution is 
stopped in the specified Rate in order to read the variable content. Such 
a stop can take more than 1 ms in the worst case scenario.
Training Source Level Debugging     |    72©1989-2024   Lauterbach                                                        



6. Start the program execution.

7. Stop the program execution. 

Please be aware that the contents of the SNOOPer trace can not be read while recording.

8. Display the result by pushing the List button.

SNOOPer.List
Training Source Level Debugging     |    73©1989-2024   Lauterbach                                                        



Check Mode Changes, if the read variable content should only be stored to the SNOOPer trace when it has 
changed.

SNOOPer.Mode Changes ON
Training Source Level Debugging     |    74©1989-2024   Lauterbach                                                        



The Logging Interval

The time interval (SNOOPer.Rate) at which TRACE32 reads the physical memory at program runtime is set 
to 1.us by default.

The rate at which the debugger can actually read the physical memory is bigger. 

The actual rate might be increased by a higher JTAG clocks (SYStem.JtagClock <frequency>). Please 
refer to your processor/chip manual to find out what the max. JTAG clock can be.

In the example recording below the average time interval is about 85.us. So it is recommended to use the 
SNOOPer only for variables that are changed at a higher rate by the application program.
Training Source Level Debugging     |    75©1989-2024   Lauterbach                                                        



Both, the host and the debugger are no real-time systems, so individual time intervals can be longer then the 
average interval. The longest snooping interval for the current recording is displayed in the max field of the 
SNOOPer.state window.
Training Source Level Debugging     |    76©1989-2024   Lauterbach                                                        



Display Options

In addition to the default SNOOPer.List display various other display options are provided.

SNOOPer.List Var TIme.Back ; list the recorded variable in
; its HLL representation together
; with the time relative to the
; previous record

SNOOPer.List TIme.Back Var Data ; rearrange the column layout so
; it fits your requirements
Training Source Level Debugging     |    77©1989-2024   Lauterbach                                                        



SNOOPer.DRAW.Var %DEFault vdouble ; display the changes of the
; variable over the time as a graph
Training Source Level Debugging     |    78©1989-2024   Lauterbach                                                        



If you are analyzing a variable that maintains a state, the following display options might be useful:

SNOOPer.List Var TIme.Back

; display the statistical distribution of a variable value over the time
; Data advise the command to analyze the recorded data information
; Address informs the command for which address the data 
; should be analyzed
SNOOPer.STATistic.DistriB Data /Filter Address Var.RANGE(flags[3])

; display a time chart of the variable values
SNOOPer.Chart.DistriB Data /Filter Address Var.RANGE(flags[3]) 
Training Source Level Debugging     |    79©1989-2024   Lauterbach                                                        



Logging of Multiple Variables

TRACE32 PowerView allows the logging of up to 16 variables.

If you use the Add button in the SNOOPer.SELect dialog, additional variables that should be read by the 
SNOOPer can be selected.

Please be aware that the time interval at which a single variable can be read by the debugger at program 
run-time is growing with every selected variable.

SNOOPer.SELect Var.RANGE(<variable1>) Var.RANGE(<variable2>) …
Training Source Level Debugging     |    80©1989-2024   Lauterbach                                                        



For the graphical display of variables changes over the time, you can:

• superimpose up to three variables

• establish a time- and zoom-synchronization between the different displays

SNOOPer.DRAW.Var %DEFault plot1 plot2 ; superimpose variables
Training Source Level Debugging     |    81©1989-2024   Lauterbach                                                        



SNOOPer.DRAW.Var %DEFault plot1 /ZoomTrack ; the option ZoomTrack
; establishes time- and 
; zoom-synchronisation
; between display windows

SNOOPer.DRAW.Var %DEFault plot2 /ZoomTrack

Active window

Windows with the option /ZoomTrack are time- and zoom-synchronized to the cursor
in the active window
Training Source Level Debugging     |    82©1989-2024   Lauterbach                                                        



Logging in an SMP System

The SNOOPer can also be used while debugging an SMP system. The debugger can read the shared 
memory as an independent bus master . 
Training Source Level Debugging     |    83©1989-2024   Lauterbach                                                        



Document the Logging Results

Summary

• Only recommended if your processor architecture allows the debugger to read physical memory 
while the program execution is running.

• Recommended for variables whose sizes are smaller or equal to the core data bus width.

• Only recommended for variables that change with a lower frequency then the achievable 
SNOOPer frequency.

• Up to 16 variables can be read while the program execution is running.

• Read values are timestamped and stored in the SNOOPer trace memory. The SNOOPer trace 
size is only limited by the RAM on the host computer.

• SNOOPer trace can not be read while recording.

• Various display options are provided.

PRinTer.FILE snoop_plot1.lst ; specify documentation file name

PRinTer.FileType CSV ; specify Comma-Separated Value as
; output format

WinPrint.SNOOPer.List ; save result of the command
; SNOOPer.List to file
Training Source Level Debugging     |    84©1989-2024   Lauterbach                                                        



Script Example

…

SNOOPer.RESet ; reset the SNOOPer functionality
; to its default settings

SNOOPer.state ; display a SNOOPer configuration
; window

SNOOPer.SIZE 500000. ; specify the size of the SNOOPer
; trace

SNOOPer.Rate 500.us ; specify the SNOOPer sampling rate

SNOOPer.AutoInit ON ; advise TRACE32 to delete the
; contents of the SNOOPer trace 
; whenever the program execution is 
; started with Go or Step

SNOOPer.SELect Var.RANGE(var1) ; specify the variable that should
; be logged by the SNOOPer trace

Go ; start the program execution

WAIT 5.s ; wait 5 seconds

Break ; stop the program execution

SNOOPer.List Var TIme.Back ; display the result as a list

SNOOPer.DRAW.VAR %DEFault var1 ; display the result as a time
; graph

…

Training Source Level Debugging     |    85©1989-2024   Lauterbach                                                        



Var.LOG Command

The command Var.LOG advises TRACE32 PowerView to log the contents of the specified variables to the 
TRACE32 PowerView Message AREA whenever the program execution is stopped. Any variable can be 
logged.

Var.LOG fstatic2 i ast

AREA.view Display TRACE32 PowerView Message Area.

Var.LOG [%<format>] <variable1> … Log specified variables to TRACE32 PowerView 
Message AREA.

Var.LOG End logging.
Training Source Level Debugging     |    86©1989-2024   Lauterbach                                                        



Since the TRACE32 PowerView Message AREA also includes all system and error messages it is 
recommended to use a dedicated AREA for the variable logging.

The following command allow to redirect the area outputs to a file.

AREA.Create <name> Set up an new AREA window.

Please be aware that <name> is case 
sensitive.

AREA.view <name> Display AREA window.

AREA.CLEAR <name> Clear the AREA window.

Var.LOG  [%<format>] <variable1> …/AREA <name> Log the specified variables to the area.

AREA.Create VarLogging

AREA.view VarLogging

Var.LOG fstatic2 i ast /AREA VarLogging

…

Var.LOG

AREA.OPEN <name> <file> Save outputs to area <name> to <file>.

AREA.CLOSE <name> Stop output and close <file>.

AREA.Create VarLogging

AREA.OPEN VarLogging log1.txt

AREA.view VarLogging

Var.LOG fstatic2 i ast /AREA VarLogging

…

Var.LOG

AREA.CLOSE VarLogging

TYPE log1.txt
Training Source Level Debugging     |    87©1989-2024   Lauterbach                                                        



Testing of Functions

Var.set [%<format>] <var> Execute a function in the target

Var.set func5(4,8,17)
Training Source Level Debugging     |    88©1989-2024   Lauterbach                                                        


	Training Source Level Debugging
	Load the Application Program
	The Symbol Database
	Structure of the Internal Symbol Database
	General Information on the Symbol Database
	Symbol Browser
	Details about a Selected Symbol
	Searching in Source Files

	Display Variables
	Watch Window
	View Window
	Referenced Variables
	Local Variables
	Stack Frame
	Special Display for Arrays
	Linked Lists

	Change a Variable Value
	Format Variable
	Format a Variable using the Format Dialog Box
	Format a Variable Using the Command Line
	General SETUPs

	Variable Monitoring
	Basics
	Preparation
	Format Option %E
	Var.PROfile Command

	Variable Logging
	SNOOPer Trace
	Basics
	The Logging Interval
	Display Options
	Logging of Multiple Variables
	Logging in an SMP System
	Document the Logging Results
	Summary
	Script Example

	Var.LOG Command

	Testing of Functions


