LAUTERBACH A

Training Script Language
PRACTICE

Training Script Language PRACTICE

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES32 TraiNinNg .cicccccceriiiisssrriiiissssiisisssssiassssss s sasssssss s sssssss s sas s sss s easssssssseasssssss sassssnsnsenssssnsnnsansan =
Training Script Language PRACTICEccccciiiiimmrinsssnnnsssssssssssssss s ssmsssssssssmssssssssamssssnns 1
L 1= (o 5
L T U 11 T 5
Ready-t0-RuUn SCIIPScccciiiiiiiiiiiiir s s 5
Related DOCUMENLS ... s e e e e ammmmn e e n e e e e en s 5
Introduction to Script Language PRACTICE ... ssssssss s snnsnes 6
Area of Use 6
Run a Script 7
Create a PRACTICE SCIiPtooiiiiiiiiiiieccccierrinisnsssssssssssscsssns s ss s sssssssssssmssmmsssssssssssssssssssnnnmmssnssnns 9
Convert TRACES2 Settings to a Script 9
Command LOG 14
Command History 15
Script Editor PEDIT 16
Syntax Highlighting 18
Debugging of PRACTICE SCriptcccccciiiiiiiiriiinsr i ssssssss s sssssssss s s sssss s s sssssmss s snssas 19
Debug Environment 20
Display the PRACTICE Stack 24
PRACTICE LANQUAQJE ...coiicemriiiumriismsisssmsiismsssssassissasasssssssssssssasssssasass sasanssassnssassns nssnsssssnssnssnnssnn 25
Program Elements 25
Comments 25
Commands 25
Functions 25
Labels 26

[5 7Y 0 I (00 S o o T 0o | o N 27
Conditional Program Execution 27
Command List 27
Subroutine Calls 32
Command List 32
Example 33
GOTO/JUMPTO 35
Command List 35

©1989-2024 Lauterbach Training Script Language PRACTICE | 2

Example 36

Script Calls 38
Command List 38
Example 38

PRACTICE Macros 39
Declare a Macro 39
Assign Content to a Macro 41
Macro Handling 43
Macros as Strings 45
Macros as Numbers 47
Note for Testing 50
More Complex Data Structures 51

8 Te T o Q=3] o == 52

Run Through Program and Generate a Test Report 52

Check Contents of Addresses 58

Check Contents of Address Range 59

Check the Contents of Variables 62

Record Formatted Variables 63

Record Variable as CSV 64

Test Functions 66

Test Function with Parameter File 67

L 1= 10Tt =T g o L= o T 69
Pass Parameters to a PRACTICE Script or to a Subroutine 69
PARAMETERS/RETURNVALUES vs. ENTRY 77

Operating System Interaction ... ————— 82

Operating System Detection 82

Printing Results 83

Accessing Environment Variables 85

Running a Command 86

File Manipulation 87

Time and Date Functions 91

10 I 0o 13T 13T T 4 Vo £ 92

Output Command 92

Input Command 92

I/0 via the AREA Window 94

Event Control via PRACTICE 96

£ T3 0] 0 (=0 = 1o o T 97

(D TE=TToT e [o oY =10 1T .11 3T 100

Control Positioning 103

Control Properties 105
Enable or Disable a Control 106

©1989-2024 Lauterbach Training Script Language PRACTICE | 3

Collect data from a control 107

Setting a value or state to a control 110
Execute a command 111
File Browsing 113
Icons 115
Dialog Example 116
PRACTICE in a Multi-Core ENVIironmentcccoiiiircecmrresscceressssscessssssmesssssssssesssssssmsssenssas 121
Communication via InterCom 122
Designing Robust PRACTICE SCIIPtScccccccrirrirsmerrssssmrerrsssmserrsssssmsssssssssmsssessssmsssessssnmsssesssas 124
Path Functions and Path Prefixes 125
Host Operating System 127
Debug Hardware 128
Target CPU and Board 129
TRACES2 Version 130
TRACE32 Settings 131
Storing and Retrieving Settings 133
Robust Error Handling 136
Argument Handling 138
Creating a Custom Command 139
Common Pitfalls 140

©1989-2024 Lauterbach Training Script Language PRACTICE | 4

Training Script Language PRACTICE

Version 06-Jun-2024

History

31-Jan-2023 Solaris was removed as supported host OS.

02-Nov-2022 In the chapter ‘Related Documents* has been added.

E-Learning

Videos about the script language PRACTICE can be found here:
support.lauterbach.com/kb/articles/practice-tutorial

Ready-to-Run Scripts

Ready-to-run PRACTICE scripts provided by the Lauterbach experts are published and updated daily here:
https://www.lauterbach.com/scripts.html

Related Documents

. “PowerView User’s Guide” (ide_user.pdf): In the chapters Operands and Operators you will
find everything that you need to know about operands and operators.

©1989-2024 Lauterbach Training Script Language PRACTICE | 5

https://support.lauterbach.com/kb/articles/practice-tutorial
https://www.lauterbach.com/scripts.html

Introduction to Script Language PRACTICE

Area of Use

The main tasks of PRACTICE scripts are:

o To provide the proper start-up sequence for the development tool
. To automate FLASH programming

. To customize the user interface

. To store and reactivate specific TRACE32 settings

. To run automatic tests

The standard extension for PRACTICE scripts is . cmm.

©1989-2024 Lauterbach Training Script Language PRACTICE | 6

Run a Script

Edit View Var Break Run CI
B Edit Script...
f"] Search for Script...
B Open File.. Alg:8:cop0* o2
E Load File... n_/nv| . % hardware » mpcSTxx » mpcST46m_multicore - | 3 | | Search mpc5746m_multicore jo) [
Type File...
4] Dump File... Organize v New folder =~ 0 @
@ .Stc.»pEorﬁ.r.'ria.nd. S . - Favorites A Name Date modified Type Size
E Printer Settings... Bl Desktop &' amp_demo.cmm 17.04.2012 17:51 CMM File 5 KB|
8 Window Print... & Downloads & amp_demo_start_cores.crnm 16.04.2012 20:21 CMM File 2KB
Window Screenshot to File... =] Recent Places
X exit
h— B Desktop -
o Libraries
A amartin
M Computer
& System (C:)
- DVD RW Drive (D:) :
3 SYS MOFST (R a1 1 i
File name: amp_demo.crmm - ’Current (*.cmm) v]
[Open Iv] ’ Cancel]
CD.DO * // "*" opens a file browser for script

ChDir.DO <filename>

DO <filename>

PATH [+] <path_name>

DO memtest

// selection

// TRACE32 first changes to the directory
// where the selected script is located and
// then starts the script

Change to the directory where the script <filename> is located
and start the script.

Start script <filename>.

Define search paths for PRACTICE scripts.

ChDir.DO c:/t32/demo/powerpc/hardware

PATH c:/t32/tests

©1989-2024 Lauterbach

Training Script Language PRACTICE | 7

It is possible to execute a PRACTICE script on startup of TRACES32. For details refer to “Automatic Start-
up Scripts” in PRACTICE Script Language User’'s Guide, page 14 (practice_user.pdf).

©1989-2024 Lauterbach Training Script Language PRACTICE | 8

Create a PRACTICE Script

Convert TRACE32 Settings to a Script

The commands STOre and ClipSTOre generate scripts that allow to reactivate the specified TRACE32
<setting> at any time.

<setting> is in most cases the setup of a command group.

<setting>

SYStem Setting for command group SYStem.
Break Setting for command group Break.
Win TRACES32 window configuration.

©1989-2024 Lauterbach Training Script Language PRACTICE | 9

Create a script to reactivate the current SYStem settings and store it to clipboard

Misc Trace Perf Cov I

Change Frame L4
. 8 CPU Registers
EPU Registers
o Peripherals
éy B::5YStem EI@
Mode MemAccess Option Option Option DisMode
_ Down CPU @ AUTO
") NoDebug ® NEXUS [DUALPORT ") ACCESS
Prepare _ Denied WATCHDOG D FLE
In Target Reset) Go CpuAccess OFF > JVLE
Reset CPU Registers _) Attach _ Enable LPMDebug
_ StandBy @ Denied OFF ~
Up (StandBy) _ Monstop ResetDetection
o up [oFF)| | [_conFic]
CPU BdmClock Vectors
SPC56EC74 4.0MHz - NEXUS
ClipSTOre SYStem
SYSTEM.RESET
SYSTEM.CPU SPC56EC74
SYSTEM.CONFIG.CORENUMBER 2.

SYSTEM.CONFIG.
CORE.ASSIGN 1.
SYSTEM.MEMACCE

CORE 1. 1.

SS NEXUS

SYSTEM.
SYSTEM.
SYSTEM.
SYSTEM.
SYSTEM.
SYSTEM.
SYSTEM.
SYSTEM.
SYSTEM

CPUACCESS DENIED
OPTION.IMASKASM OFF
OPTION.IMASKHLL OFF
BDMCLOCK 4000000 .
CONFIG.TRISTATE OFF
CONFIG.SLAVE OFF
CONFIG.TAPSTATE 7.
CONFIG.TCKLEVEL O.

SYSTEM.CONFIG.
SYSTEM.MODE UP

.CONFIG.DEBUGPORT Analyzer(

CJTAGFLAGS 0x3

©1989-2024 Lauterbach

Training Script Language PRACTICE

10

Create a script to reactivate current Break settings and store it to clipboard

I BBreak List IEI-IEI
[Delete All|[O Disable AJI||QEnabIe Al ®@mit || Lmpl... | store... || S Load... || Eilset...
address es imp]l count i
F:40000F70 Program SOFT func24
F:4000100C [[Program SOFT main'26
F:40001248|Program ONCHIP |0.,/1000. sieve
F:40004030[lwrite ONCHIP vfloat
[
ClipSTOre Break
Break.RESet
Break. Set func24 /Program
Break. Set main\26 /Program
Break. Set sieve /Program /Onchip /COUNT 1000.

Var.Break.Set mstaticl; /Write

The breakpoints are saved at a symbolic level by default.

©1989-2024 Lauterbach Training Script Language PRACTICE | 11

Create a script to reactivate the current window configuration

IW] Help

5 Cascade

= Tile Horizontally
00 Tile Vertically

oo ArrangeIcons

Create Duplicate window
¥ Clear Windows on Page
2 Clear all Windows

E Load Windows from ...

Search mpc5746m_multicore 0

Organize » MNew folder

-

¥ Favorites MName Date modified

B Desktop =] amp_demo.cmm 17.04.201217:51 CMM File
8 Downloads =] amp_demo_start_cores.emm 16042012 20:21 CMM File
5l Recent Places

B Desktop
= Libraries
2 amartin
- Computer
& System (C:)
L3 DVD RW Drive (D:)

S El = window_configuration.crmimy

Save as type: ’Cnnent (*.cmm)

~ Hide Folders

STOre window_configuration.cmm Win /NoDate // TRACE32 creates script
// window_configuration
// to reactivate the
// current window
// configuration

©1989-2024 Lauterbach Training Script Language PRACTICE | 12

B3 g

TOOLBAR ON

STATUSBAR ON

FramePOS 15.625 8.9286 193. 47.
WinPAGE.RESet

WinPAGE.Create P00O
WinCLEAR

WinPOS 0.0 22.214 80. 5. 0. 0. w002
Var.View %SpotLight.on %$E flags %Open vtripplearray

WinPOS 0.0 31.429 80. 8. 5. 0. w003
Frame /Locals /Caller

WinPOS 0.0 0.0 80. 16. 13. 1. W0O0O
WinTABS 10. 10. 25. 62.
List.auto

WinPOS 84.25 0.0 77. 20. 0. 0. w004
Register.view

WinPOS 83.875 24.071 105. 6. 0. 0. W00l
PER , "FlexCAN"

WinPAGE.select P00O

ENDDO
Each PRACTICE script should end with an ENDDO instruction.
O
I ENDDO Return from PRACTICE script.

©1989-2024 Lauterbach Training Script Language PRACTICE

Command LOG

The LOG command allows users to create a record of most of the activities in the TRACE32 PowerView
GUL.

Commands to control the LOG command:

LOG.OPEN <log_file> Create and open a file for the command LOG. The default extension
for LOG files is (. log).

LOG.CLOSE Close the command LOG file.

LOG.OFF Switch off command LOG temporarily.

LOG.ON Switch on command LOG.

LOG.type Display command LOG while recording.

LOG.OPEN my_log.log // Creates and opens the .log file
LOG. type // Displays .log file contents while recording
// Recording

LOG.CLOSE // Closes .log file

Contents of a command log:

B::B::List

B::Go func24

// B::LOG.ON

B::B::PER , "Analog to Digital Converter"

B::B::PER.Set.simple ANC:0xFFE00000 %L (d.l (ANC:0xFFE00000)&~0x40000000) |0x40000000

©1989-2024 Lauterbach Training Script Language PRACTICE | 14

Command History

The command history records only commands entered into the command line.
The default extension for HISTory-files is (. 1og)

I HISTory.type Display the command history

[BuHisTory =0 E=H =
E::L0G.OPEN my_log -
:Go func24

:log. of f

:LOG.ON

:LOG. CLOSE

:log. type

:TYPE my_log. log

21 story. save my_history
wdir

m

mmmmmmmmm

tHISTory 5%
HISTory.SAVE [<file>] Save the command history
HISTory.SIZE [<size>] Define the size of the command history

By default the script autostart.cmm contains the line:

AutoSTOre , HISTory

which automatically saves the command history in your temporary directory when you exit TRACE32 and
recalls the command history when you start TRACE32 again.

AutoSTOre <filename> {<setting>} Store defined settings automatically at the exit of
TRACES2 and reactivate them at the start of TRACE32

©1989-2024 Lauterbach Training Script Language PRACTICE | 15

Script Editor PEDIT

Edit View Var Break Run C
¥ Run Script...

4 Edit Script...

4 Search for Script...

% Open File... =
E Load File.. A B::B::CD,?’ED .
TypeFile.. &3 h <« Systern (C:) » T32_.MPC » demo » training » practice - || Search pra. pel
4] Dump File... — -
|| OCrganize = MNew folder R |
@ Stop Command 2 = E @
b b - MName Date modified ||
iy Printer Settings... W Tavonics
% Window Print... Bl Desktop &' script_conditional_execution_and_functions.cmm 28.10.2014 15:04
Window Screenshot to File... & Downloads | &' script_debugging_basic.crmm 29,07.201513:0
% ot ‘lf_-.l Recent Places £ &' script_macros_and_subroutines.cmm 16.02.2015 09:0
exi
Bl Desktop
4 Libraries
2 amartin
- Computer
a System (C:)
<5 DVD RW Drive (D:)
S 5YS (\OESL2) (F)
¥ VOL_BUSINESS (\OESB) (G:) = | L1 | "
File name: script_debugging_basic.cmm - ’Cunent (*.cmm) v]
I Open |vl ’ Cancel]
CD.PEDIT * // "*" opens a file browser for script
// selection
// TRACE32 first changes to the directory
// where the selected script is located and

ChDir.PEDIT <filename>

PEDIT <filename>

//

then opens the script in a PEDIT window

Change to the directory where the script <filename> is located and
open script in script editor PEDIT.

Open script <filename> in script editor PEDIT.

©1989-2024 Lauterbach

Training Script Language PRACTICE | 16

In addition to a standard editor, PEDIT provides the ability to start or to debug a script.

Save PRACTICE script

Save PRACTICE script with a new name

Close and save PRACTICE script

Close and do not save PRACTICE script

Save and then start PRACTICE script

Start PRACTICE script

_______ Debug PRACTICE script

% B:CDLPEDIT CAT32_MPC\demo'training\practice\script_debugging_basif.crmm [=] @
C@ Save][& Save As...][P Save+Close |[E?quit+Close | T*save+Do ¥ Do M Debug
T — —

; @Title: Simple startup script for Power Architecture

; @Description:

; This script start the target and Toads a simple demo in order to show the
; user how to debug a practice script

m

@Author: LBA
@Copyright: (C) 1989-2014 Lauterbach GmbH, licensed for use with TRACE3Z(R) only

; $Id: script_debugging_basic.cmm 7630 2014-09-18 06:42:217 TbahToul $

; Reset the debugger
RESet
AREA.CLEAR

; Board specific settings
SYStem.DETECT CPU
SYStem.Mode Up

4 3

©1989-2024 Lauterbach Training Script Language PRACTICE | 17

Syntax Highlighting

In TRACE32, the PRACTICE script editor PEDIT provides syntax highlighting, configurable auto-indentation,
multiple undo and redo.

In addition to, or as an alternative to the built-in PRACTICE script editor PEDIT, you can work with an
external editor. To configure syntax highlighting for PRACTICE scripts in an external editor, take these steps:

1. Redirect the call of the TRACE32 editor EDIT to an external editor by using the TRACE32

command

SETUP.EDITEXT.

2. Install the syntax highlighting files provided by Lauterbach for the external editor.

EDIT <filename> Open file with standard TRACES32 editor.
SETUP.EDITEXT ON <command> Advise TRACES2 to use the specified external editor if

the EDIT command is used.

<command> contains the command that TRACE32
sends to your host OS to start the external editor. In this
string the following replacements will be made:

U * will be replaced by the actual file name.

U # will be replaced by the actual line number.

Lauterbach provides syntax highlighting files for some common text editors. Please refer to
~~/demo/practice/syntaxhighlighting for details. ~~ stands for the
<trace32_installation_directory>, whichis c:/T32 by default.

// Instruct TRACE32 to use TextPad when the EDIT command is used
SETUP.EDITEXT ON "C:\Program Files (x86) \TextPad 5\TextPad.exe ""* (§#)"""

Edit View Var Break Run C|

¥ Run Script...

[Edit Script...

] Search for Script...

2 Load File...

Type File...
4] Dump File...

@ Stop Command

E Printer Settings...
8 Window Print...
Window Screenshot to

¥ exit

E‘ TextPad - C:AT32_ MPC\demao\trainingpractice\script_debugging_basic.cmm [=g ﬂ
Datei Bearbeiten Suchen Ansicht Extras Makros Kenfiguration Fenster Hilfe
NEHESRE L BRROCI =2 @Y 4R @ o 7 nkementelleSuche
script_debugging_basic.cmm X
S B e e L R e e e i S =i
; @Title: Simple startup script for Power Architecture -
; @Description:
Thiz script start the target and loads a simple demo in order to show the
uzer how to debug a practice script
; BAuthor: LEBA =
; @Copyright: (C) 1989-2014 Lauterbach GmbH, licensed for use with TRACE32(R) only
; %Id: script_debugging basic.cmm 7630 2014-09-18 06:42:21Z lbahloul %
; Reset the debugger
RESet
ARERA.CLEAR
; Board specific settings
S¥YStem.DETECT CPU
S¥Stem.Mode Up
; Download the code and load the symbols
Data.LOAD.E1f demo.elf -
J b 13

©1989-2024 Lauterbach Training Script Language PRACTICE | 18

Debugging of PRACTICE Script

TRACE32 supports the debugging of PRACTICE scripts.
A short video that provides an introduction into PRACTICE debugging is available on:

support.lauterbach.com/kb/articles/practice-tutorial

©1989-2024 Lauterbach Training Script Language PRACTICE | 19

https://support.lauterbach.com/kb/articles/practice-tutorial

Debug Environment

Use Debug to start the

debugger for the
PRACTICE script

B B:CD.PEDIT GA\Schulung\Inhalt\Englisch\PRACTICE\practice_2015\run_through_code.cmm ==]
| @ save | FsaveAs... || FsaverClose || EfquitrClose || E*save+do | o || Mipebug |
Go main -
WAIT !STATE.RUN() 2.s E
IF STATE.RUN()

Break.direct E
IF Register (PC)==ADDRESS.0FFSET(main)

APPEND test_protocol.txt FORMAT.STRing("System booted successfully",35.," ') FORMAT.STRing(DATE.TI
ELSE
) iQPPEND test_protocol.txt FORMA‘I;r;STR"Inu(”Boot"lnu failed".35.." |) FORMAT.STR"Inu(DATE.TIME().12..'r ¥

4 BawrwePUST (0

‘M Step

L Over & up ¥ Continue || ZIE Stop 8 Skip Macros || [Edit <E Breakpoints .

IF FILE.EXIST(test_protocol.txt™)

DEL "test_protocol.txt"

00 "~~‘demo'powerpcihardware\spc56xx'\spc564bcitarget_setup. cmm"

Go main
WAIT !STATE.RUN() 2.s
IF STATE.RUN()

Break. direct

Explanation of the window header:

WinResist.WinExt.PLIST Display the currently loaded PRACTICE script.

WinResist: PEDIT window is not deleted by
command WIinCLEAR.

WinExt: Detach PEDIT window from the
TRACE32 main window - even if TRACE32 is
operating in MDI window mode.

©1989-2024 Lauterbach Training Script Language PRACTICE | 20

Command line commands:

PSTEP <filename> Start script in PRACTICE debugger.

ChDir.PSTEP <filename> TRACES2 first changes to the directory where
the script is located and then starts the script in
the PRACTICE debugger.

WinResist.WinExt.ChDir.PSTEP <filename>

©1989-2024 Lauterbach Training Script Language PRACTICE | 21

4EF Bowrowe PLIST

M Step ﬁ er & up ¥ Continue || #IEStop || {® Enddo || & skip || {0 Macros|| [Edit B Ereakpomts

IF FILE.EXIST(test_protocol.txt™)

Go main
WAIT !STATE.RUN() 2.s
IF STATE.RUN()

Break. direct

Fl

|: DEL "test_protocol.txt"
)

00 "~~‘demo'powerpcihardware’\spc56xx'\spc564bcitarget_setup. cmm”

Local buttons in PLIST/PSTEP window

Step Single step PRACTICE script (command PSTEP).

Over Run called PRACTICE script or PRACTICE subroutine as a whole
(command PSTEPOVER).

Up End current PRACTICE script or subroutine and return to the caller
(command PSTEPOUT).

Continue Continue the execution of PRACTICE script (command
CONTinue).

Stop Stop the execution of the PRACTICE script (command STOP).

Enddo End the current PRACTICE script. Execution is continued in the
calling PRACTICE script. If no calling script exists, the PRACTICE
script execution is ended (command ENDDO).

Skip Skips the current command or block (command PSKIP)

Macros Display the PRACTICE stack (command PMACRO.list).

Edit Open PRACTICE editor PEDIT to edit the PRACTICE script
(command WinResist.WinExt.PEDIT).

Breakpoints Open a PBREAK.List window to display all PRACTICE
breakpoints.

©1989-2024 Lauterbach

Training Script Language PRACTICE | 22

EF [Buwr.we.PLIST] EI-@
Mstep || Mover || @up || ¥ continue || AFStop |[:MEnddo || EfList |[Cimacros| BfEdit | @Breakpomts]
5 [WAIT !STATE.RUN() 2.s
7 |IF STATE.RUN()
8 |(
|: 9| Break.direct ‘:‘
10 5
| 12[IF Register (PC)==ADDRESS.OFFSET(main =
13 Practice
|: 14| APPEND test_protocol.txt FORMAT.STRit ¥ Go Til sfully”,35.," ")
ié ELSE I Set PC Here -
J 4} . £ Breakpoint... - '
e Toggle breakpoint
| Disable breakpoint
[Edit Here
PRACTICE breakpoint Right-click for PRACTICE
in this line debug-pull-down
PRACTICE debug-pull-down
Goto Till Run PRACTICE script until the selected line (command CONTinue
<line_number>).
Set PC Here Set PRACTICE PC to the selected line.
Breakpoint ... Open PBREAK.Set dialog to configure PRACTICE breakpoint.
Toggle breakpoint Toggle PRACTICE breakpoint.
Disable breakpoint Disable PRACTICE breakpoint (command PBREAK.DISable).
Edit Here Open PRACTICE editor to edit the PRACTICE script. The cursor is
automatically set to the selected line.

©1989-2024 Lauterbach Training Script Language PRACTICE | 23

PRACTICE breakpoints can be set:

J to a specific line of a specified script

. to a specific line in any script (*)
< Bwr.we PEREAK List ===
(O Disable Al @ Enable All | % Delete All|[& Store.. || &2 Load.. |
type line file =
Program | 21. G:Y\SchuTung\EngT1sch\PRACTICE\PRACTICE_SCH\patch. cmm)
Program | 9. E:\Schu'l ungiEnglisch\PRACTICE \PRACTICE_SCH\patch. cmm

Program | 1.

jf| [| +

Display the PRACTICE Stack

Display the PRACTICE-Stack

Fi

[Biwrwe,PLIST] |E=H =R
Mstep || #over || @up || ¥ cContinue || :MEStop || MEnddo || EFList || Cimacros || [EfEdit || iBreakpoints |
28 ELSE
29
30 PRIVATE &result
31 &result=CONVert.HEXTOINT(Var.VALUE (&testfunc))
32 APPEhLR“J'.E_e.S;I.,%[nm”ﬂ-txt“\
FORMAT. STRing("&testfunc failed with &result (&correct_result)",50.," ")\
FORMAT. UnixTime("c" ,DATE. UnixTime() ,DATE. utcoffset ())
35

L% Brwr.we.PMACRO

s @ =]

Mstep || over || @up | ¥ cContinue || :MEStop || MEnddo || FEFList || Cimacros || [EfEdit || Breakpoints |

bTock from Tine 29 to 35
PRIVATE &result = 226.

else at Tine 28

block from line 21 to 37

gosub G:\Schulung'Inhalt\Englisch \PRACTICE\practice_2015_mpc'test_func_param.cmm from Tine 10

block from Tine 9 to 11

if at line 8

block from Tine 6 to 17

while at Tine 5

do G:%\5chulung'Inhalt\Englisch\PRACTICE \practice_2015_mpc'test_func_param.cmm
&correct_result = 56.
&testfunc = func5(22,12,17)

FILE #1 G:‘\Schulung'Inhalt\Englisch\PRACTICE \practice_2015_mpc'func_test.txt
4

The PRACTICE stack displays the program nesting and the PRACTICE macros.

©1989-2024 Lauterbach Training Script Language PRACTICE

24

PRACTICE Language

So far, we have seen that simple scripts can be created that can restore various settings to the current
debug session. PRACTICE provides a lot more capability than this; it is a fully featured language with its own
syntax and advanced features. This section will cover the language syntax, program elements, features and
functions. Examples of PRACTICE scripts can be found in ~~/demo/practice orat

hitps://www.lauterbach.com/scripts.html

Program Elements

Comments

Comments start with // or ; and end with the next line break.

Since the TRACE32 hll expression grammar allows ; to end an hll expression, ; has a special meaning for
the Var command group. Here a few examples.

Var.View flags[3];ast.count;i

Var.Break.Set flags([3]; /Write /VarCONDition (flags[12]==0)

So to be safe it is recommended to use // to start a comment.

Commands

There are three types of commands that can be used in PRACTICE scripts:

. All TRACE32 commands which are also used interactively in the command line
. Commands for flow control and conditional execution of PRACTICE scripts.
. I/O commands

Functions

Functions are used to retrieve information about the state of the target system or the state of the
development tool(s).

Register(<register_name>) Get the content of the specified CPU register.

Var.VALUE(<hll_expression>) Get the contents of an HLL expression.

©1989-2024 Lauterbach Training Script Language PRACTICE | 25

https://www.lauterbach.com/scripts.html

STATE.RUN() Returns true if program is running on the target, returns false
if program execution is stopped.

0OS.PresentWorkingDirectory() Returns the name of the current working directory as a string.

CONVert.CHAR(<value>) Converts an integer value to an ASCII character.

A list of all available functions can be found in the online help:

? Contents
#3 Find
i Tree

@ TRACBE PowerView User Manual

@ ProcessorArchltecture Manual
@ Debugger User Guide

@ Training Manuals L4 /
#3 Demo Scripts

Select functions only

&) Welcome o TRACE| 2 HELP vl =)o e
/
Setu PDF‘u‘lewer = 4t
& p) ? Contents | v Index " F3 Find ” i gfmmand Tree ” M Bookmarks ” o= Print |
Lauterbach Homep
Support Find Index: [¥] use filter: bdmppce;
& About TRACE32... Drall) basic commands O all commands @ functions only
[T] short index file
description file i
| FILE__ [_F:LE_'E,'] -
| LINE_ [__LINE__ ()]
A [Analyzer ()]
A.CONFIG [Analyzer. ._ONF Gc()]
A, CONFIG. ECC Ty, CONFIG.ECCB()]
A, CONFIG. ONFIG.FEC()])
A. CONFIG. HA120 [An q]) . CONFIG. H{\lEU 0
A. CONFIG. HAC [Analy Zﬂr CONFIG.HAC()]
A, CONFIG. PO\'.'ERTR-'i\CE [Ar“a]yzer.CONFZG. PO rllr "'1or e
4 13
Labels

Labels have to be entered in the first column and they end with “”. For more information on labels please
refer to the section on subroutines.

It is recommended to avoid unnecessary blanks. Unnecessary blanks can lead
to a misinterpretation of PRACTICE commands.

©1989-2024 Lauterbach Training Script Language PRACTICE | 26

PRACTICE Flow Control

Conditional Program Execution

Command List

IF <condition> Execute <if_block> if <condition> is true. Execute <else_block>
(otherwise.
<if_block>
) <condition> has to be specified in TRACE32 syntax.
ELSE
(
<else_block>
)

// Script double_if.cmm

PRIVATE &testfunc &correct_result
OPEN #1 "func_test.txt" /READ

WHILE TRUE()
(
READ #1 &testfunc &correct_result
IF "&testfunc"!=""
(
IF Var.VALUE (&testfunc)==&correct_result
(
APPEND "test_protocol.txt"\
FORMAT.STRing ("&testfunc=&correct_result",50.,"' ')\
FORMAT .UnixTime ("c",DATE.UnixTime () ,DATE.utcOffSet ())
)
ELSE
(
PRIVATE &result
&result=CONVert .HEXTOINT (Var.VALUE (&testfunc))
APPEND "test_protocol.txt"\
FORMAT.STRing ("&testfunc failed with &result (&correct_result)",50.,' ')\
FORMAT .UnixTime ("c",DATE.UnixTime () , DATE.utcOffSet ())

)

ELSE

(
CLOSE #1
ENDDO

)

ENDDO

©1989-2024 Lauterbach Training Script Language PRACTICE | 27

If script lines are too long they can be split by adding a space and the '\’ character at the end.

To better understand the scope of PRACTICE macros given later in this training, it is important to know how
TRACE32 maintains information on the PRACTICE stack.

TRACE32 adds a new block-frame to the PRACTICE stack, whenever instructions are blocked by round

brackets.

=k Bawrowe PLIST

(=[O sl

Mstep || #over || @up | ¥cContinue || :iEStop || MEnddo || £EFList |[Cimacros || [EfEdit || iiBreakpoints |

WHILE TRUE()
(

Howos g B N'—‘

e

)
15 ELSE
(

e
LD C9 =~

[PRIVATE &testfunc &correct_result i
OPEN #1 func_test.txt /READ

READ #1 &testfunc &correct_result
IF "&testfunc"!=

IF Var.VALUE(&testfunc)==&correct_result
(

APPEND test_protocol. txth
FORMAT. STR1ng(”&testfunc—&correct result",50.," "%
FORMAT. UnixTime("c",DATE. UnixTime() ,DATE. utcOFFSet())

PRIVATE &result

&result=CONVert.HEXTOINT (Var.VALUE (&testfunc))

APPEND test protoc01 txt)\

FORMAT. STRing("&testfunc failed with &result (&correct_result)",50.," ")\
FORMAT. UnixTime("c" ,DATE. UnixTime() ,DATE. utcoffset ())

0% Bwrwe.PMACRO o= =]

M Step || ¥ Over || @ up |[2# continue|| :FEStop |[:MEEnddo|| EFList |[TEMacrod| [Edit][@Breakpomts]

22)
23|)
24| ELsE
- 25
26| CLOSE #1
27| _ENDDO
L 28|)
L 29)
30 [ENDDO
PLIST
PMACRO.list

bTock from Tine 16 to 22
PRIVATE &result = 226.

else at Tine 15

block from Tine & to 23

if at line 7

block from line 5 to 29

while at Tine 4

do G:\Schulung'Inhalt\Englisch'\PRACTICE\practice_2015_mpc'double_if.cmm
PRIVATE &correct_result = 56.
PRIVATE &testfunc = func5(22,12,17)

FILE #1 G:\Schulung'Inhalt\Englisch\PRACTICE \practice_2015_mpc\func_test.txt

4 3

List PRACTICE script that is currently being executed.
List PRACTICE stack.

©1989-2024 Lauterbach

Training Script Language PRACTICE | 28

Var.IF <hll_condition> Execute <if_block> if <hll_condition> is true. Execute <else_block>
otherwise.
<if_block>
) <hll_condition> has to be written in the syntax of the programming
ELSE language used.
(
<if_block>
)

; Var.IF example
Var.IF (flags[0]==flags[5])
PRINT "Values are equal."

ELSE
PRINT "Values do not match."
ENDDO
WHILE <condition> Execute <block> while <condition> is true.
(
<block> <condition> has to be specified in TRACE32 syntax.
)
Var.WHILE <hll_condition> Execute <block> while <hll_condition> is true.
(
<block> <hll_condition> has to be written in the syntax of the programming
) language used.

©1989-2024 Lauterbach Training Script Language PRACTICE | 29

RePeaT <count> <command> Repeat <command> <count>-times.
RePeaT <count> Repeat <block> <count>-times.
(
<block>
)
RePeaT Repeat the <block> whilst the <condition> evaluates to a
(boolean TRUE.
<block>
)
WHILE <condition>

; Example 1

;Print the character X 100 times
AREA.view

RePeaT 100. PRINT "X"

;Example 2
Var .Break.Set flags /Write //Set a Write breakpoint to array
//flags

;Repeat the following 10 times
;Start the program and wait until the target halts at the breakpoint.
;Then export the contents of array flags to file flags_export.csv in CSV
; format.
RePeaT 10.
(

Go

WAIT !STATE.RUN/ ()

Var .EXPORT "flags_export.csv" flags /Append

©1989-2024 Lauterbach Training Script Language PRACTICE | 30

;Example 3

;Read a line from my_ strings.txt

;Write not-empty lines to file my_ strings_noempty.txt
PRIVATE &CurrentLine &RightLine

OPEN #1 my_ strings.txt /Read

OPEN #2 my_ strings_noempty.txt /Create

AREA.view

RePeaT

(
READ #1 3%LINE &CurrentLine

IF (!FILE.EOFLASTREAD ()&& ("&CurrentLine"!=""))
WRITE #2 "&CurrentLine"
)
WHILE !FILE.EOFLASTREAD()
CLOSE #1
CLOSE #2

©1989-2024 Lauterbach Training Script Language PRACTICE | 31

Subroutine Calls

Command List

GOSUB <label> [<parameter_list>] Call subroutine specified by <label> with an
optional set of paramters..
ENDDO
<label>
(
<block>
RETURN Execute <block>and RETURN to caller.
)
NOTE: Labels must start in the first column of a line and end with a colon. No

preceding white space allowed.

©1989-2024 Lauterbach Training Script Language PRACTICE | 32

Example

// Script test_func_param.cmm
LOCAL &testfunc &correct_result
OPEN #1 func_test.txt /READ

WHILE TRUE ()
(
READ #1 &testfunc &correct_result
IF "&testfunc"!=""
(
GOSUB perform_ test
)
ELSE
(
CLOSE #1
ENDDO
)
)
ENDDO

perform_test:
(
IF Var.VALUE (&testfunc)==&correct_result
(
APPEND test_protocol.txt\
FORMAT.STRing ("&testfunc=&correct_result",50.,"' ')\
FORMAT.UnixTime ("c",DATE.UnixTime () , DATE.utcOffSet ())
)
ELSE
(
PRIVATE &result
&result=CONVert .HEXTOINT (Var.VALUE (&testfunc))
APPEND test_protocol.txt)\
FORMAT.STRing ("&testfunc failed with &result (&correct_result)",50.,' ')\
FORMAT .UnixTime ("c",DATE.UnixTime () ,DATE.utcOffSet ())
)
RETURN

©1989-2024 Lauterbach Training Script Language PRACTICE | 33

TRACES32 adds a new gosub-frame to the PRACTICE stack whenever a subroutine is called.

=F Buwrwe PLIST EI-@

Mstep || #over || @up | ¥continue || :iEStop || MEnddo || £EFlist |[Simacros || BfEdit || 8ZBreakpoints]
1|LoCAL &testfunc &correct_result
3

OPEN #1 func_test.txt /READ
WHILE TRUE()
(

5
r 6
7| READ #1 &testfunc &correct_result
8| IF "&testfunc"!=""
9
|: 10| GOSUB perform_test
11
12 ELSE
13 (
14 CLOSE #1
15 ENDDO
16)
5 17)
18 |ENDDO
perform_test:
r 21 |(

22| IF Var.VALUE(&testfunc)==&correct_result
(

23
i 1. txth
FORMAT. STR'lngE &testfunc=&correct_result",50.," ")%
27

FORMAT. UnixTime("c",DATE. UnixTime() ,DATE. utcOffSet())

28 %LSE
0§ Bawr.we. PMACRO =N Eol
|: Mistep || Eover || @up || Mcontinue || :MEStop || {MEnddo || EFList | Dimacros | BfEdit || ¥ Breakpoints |
|b'|ock from Tine 23 to 27 -
if at line 22

L block from line 21 to 37

gosub G:\Schulung'Inhalt\Englisch \PRACTICE\practice_2015_mpc'test_func_param.cmm from Tine 10

block from Tine 9 to 11

if at line 8

block from line 6 to 17

while at Tine 5§

do G:\Schu'lungl,]\Inha'It\Eng'I'|sch\PRACTICE\pract'|ce 2015_mpchtest_func_param. cmm
&correct_result
&testfunc = func5(14,87,93)

FILE #1 G:\Schulung'Inhalt\Englisch\PRACTICE \practice_2015_mpc'func_test.txt
4

©1989-2024 Lauterbach

Training Script Language PRACTICE |

34

GOTO/JUMPTO

Command List

GOTO <label>

JUMPTO </abel>

Continue PRACTICE script at <label>.

<label> must be part of the currently executing script.

Continue PRACTICE script at <label>.

<label> must be part of a script that is currently located on the
PRACTICE stack. <label> must not be located in a block.

The PRACTICE stack is cleaned up accordingly.

©1989-2024 Lauterbach

Training Script Language PRACTICE

35

Example

// Script test_sequence.cmm

DO target_setup.cmm
DO check_boot.cmm

ENDDO

terminate_script:

(
DIALOG.OK "Script terminated by test failure"
ENDDO

// Script check_boot.cmm
Go main
WAIT !STATE.RUN() 2.s

IF STATE.RUN ()
(

Break.direct

IF Register (PC)==ADDRESS.OFFSET (main)

(
APPEND test_protocol.txt FORMAT.STRing ("System booted successfully",70.,' ') \
FORMAT .UnixTime ("c",DATE.UnixTime () ,DATE.utcOffSet ())

)

ELSE

(
APPEND test_protocol.txt FORMAT.STRing ("Booting failed",70.,' ') \
FORMAT.UnixTime ("c",DATE.UnixTime () , DATE.utcOffSet ())
JUMPTO terminate_script

DIALOG.OK <text> Create a dialog that provides a <text>-message to the user. The script
execution is stopped until the user pushes the OK button in the dialog.

©1989-2024 Lauterbach Training Script Language PRACTICE | 36

D v B s o v v B e bl I v il

W

(Go main

WALT !STATE.RUN() 2.s

5 |IF STATE.RUN()
[? Break.direct
80
10 |IF Register (PC)==ADDRESS.OFFSET(main)
[12 APPEND test_protocol.txt FORMAT.STRing("System booted successfully",70.," ') FORMAT.UnixTime
ii ELSE

15 |(
16| APPEND test_protocol.txt FORMAT.STRing("Booting failed",70.," ') FORMAT.UnixTime("c",DATE.U
TL 18 ()) e — |

e e i v e

|b1ock from Tine 15 to 18 >

else at Tine 14

do G:\SchulungyInhalt\Englisch\PRACTICE \practice_2015_mpc'check_boot.cmm from line 2

do G:\SchulungyInhalt\Englisch\PRACTICE\practice_2015_mpc'test_segquence.cmm

;Estep][gEover [#@up || #¥continue |[AFStop || :MEnddo || EfList | SiMacros || BfEdit | @Breamts]

5 |ENDDO

-\dem6‘powerpc‘hardware\spc56xx\spc564bc\target setup. cmm -
2 00 check_|
// DO check_memory

boot

terminate_script:

9| DIALOG.OK "Script terminated by test tailure”
10 ENDDO
11

[s [over JL_&p_][25 contnwe] lbstop || Beniso | 5

T e — |

|do G:5chuTung'InhaTt \EngTlisch \PRACTICE \practice_2015 mpc\test sequence. cmm -

©1989-2024 Lauterbach

Training Script Language PRACTICE | 37

Script Calls

Command List

DO <script> [<parameter_list>] A script can be started from the command line or
called within a script.
Optional parameters can be passed to the script.

Example

// Script test_sequence.cmm

DO target_setup.cmm
DO check_ boot.cmm

ENDDO

terminate_script:

(
DIALOG.OK "Script terminated by test failure"

ENDDO

0% Bawrwe.PMACRO = -E]

Mistep || Mover || @up || 2 Continue | AFStop |[:MEnddo || EFList |[:Cimacros| BfEdit | @Breakpomts]
[bTock from Tine 15 to 18

else at Tine 14

2

m

do G:\SchulungInhalt\Englisch \PRACTICE\practice_2015_mpc'check_boot.cmm from lin

do G:\Schulung'Inhalt\Englisch\PRACTICE\practice_2015_mpc'test_sequence.cmm

TRACE32 adds a new do-frame to the PRACTICE stack whenever a script is started

©1989-2024 Lauterbach Training Script Language PRACTICE | 38

PRACTICE Macros

Macros are the variables of the script language PRACTICE. They work as placeholders for a sequence of

characters.

Macro names in PRACTICE always start with an ampersand sign (‘&’), followed by a sequence of letters (a-
z, A-Z), numbers (0-9) and the underscore sign ('_’). The first character after the & sign must not be a
number. Macro names are case sensitive, so &a is different from &A.

Declare a Macro

Empty PRACTICE macros can be declared along with their scope by using one of the following PRACTICE

commands:

PRIVATE {<macro>}

LOCAL {<macro>}

GLOBAL {<macro>}

Create PRIVATE macros.

PRIVATE macros are visible in the script, subroutine or block in which
they are created. And they are removed when the script, subroutine or
block ends.

They are visible in nested blocks, but not in called subroutines and
called scripts.

Create LOCAL macros.

LOCAL macros are visible in the script, subroutine or block in which
they are created. And they are removed when the script, subroutine or
block ends.

They are visible in nested blocks, in called subroutines and called
scripts.

Create GLOBAL macros.

GLOBAL macros are visible to all scripts, subroutines and blocks until

they are explicitly removed by the command PMACRO.RESet. They
can only be removed if no script is running.

©1989-2024 Lauterbach

Training Script Language PRACTICE | 39

What happens if a PRACTICE macro is used, but not declared?

// Script test_func_param.cmm
LOCAL &testfunc &correct_result
OPEN #1 "func_test.txt" /READ

WHILE TRUE ()

(
READ #1 &testfunc &correct_result

IF "&testfunc"!=""
(
GOSUB perform_test

)
ELSE
(

CLOSE #1

ENDDO

)
ENDDO

perform_test:
(
IF Var.VALUE (&testfunc)==&correct_result
(
APPEND "test_protocol.txt"\
FORMAT.STRing ("&testfunc=&correct_result",50.,"' ')\
FORMAT.UnixTime ("c",DATE.UnixTime () , DATE.utcOffSet ())
)
ELSE
(
PRIVATE &result
&result=CONVert .HEXTOINT (Var.VALUE (&testfunc))
APPEND "test_protocol.txt"\
FORMAT.STRing ("&testfunc failed with &result (&correct_result)",50.,"' ')\
FORMAT.UnixTime ("c",DATE.UnixTime () , DATE.utcOffSet ())
)
RETURN

The PRACTICE interpreter will implicitly declare a new LOCAL macro when an assignment is done and
cannot find a macro of that name in the current scope.

The command PMACRO.EXPLICIT advises the PRACTICE interpreter to generate an error if a PRACTICE
macro is used in an assignment, but was not declared in advance. It also advises the PRACTICE interpreter
to generate an error if the same macro was intentionally created a second time within its scope.

©1989-2024 Lauterbach Training Script Language PRACTICE | 40

Assign Content to a Macro

// Script

PRIVATE &my_string &my_range &my_var
PRIVATE &my_ number &my_ float &my var_value &my_ expression
PRIVATE &my boolean &my boolean_result

// Assign a string
&my_string="Hello World"
&my_range="0x40004000++0xEtff"
&my_var=Var.STRing (cstrl)

// Assign a numbers

&my_number=100.

s&my_ float=5.667el3
&my_var_value=Var.VALUE (ast.count)
&my_expression=&my_number*&my_var_value

// Assign a boolean
&my_boolean=TRUE ()
&my_boolean_result=STATE.RUN ()

ENDDO

After a content is assigned to a macro, tooltips allows to inspect its current content.

Ba:wrwe PLIST

=N Noh

| step || Wover || @up || #continue || AEStop | MEnddo || Efuist | Dimacros | BfEdit || ZEBreakpoints |

[PRIVATE &my_string &my_range &my_var
PRIVATE &my_number &my_float &my_var_value &my_expression
PRIVATE &my_boolean &my_boolean_result

L P

// strings

&my_string="Hello World"
&my_r ange="0x40004000++0xf "
&my_var=var.STRing(cstrl)

(== N3

//Numbers
11 |&my_number=100.
12 |&my_float=5.667el3

13 |&my_var_value=Var.VALUE(ast.count)
14 m:&my_number *=&my_var_value

'/ B{ &my_expression = 1234600. |

&rmy_| =
18 |&my_boolean_result=STATE. RUN()
20 |[ENDDO

©1989-2024 Lauterbach Training Script Language PRACTICE |

41

The PRACTICE stack provide an overview for all macros.

The keyword PRIVATE is used to identify PRIVATE macros.

% Bawrwe.PMACRO ==
Mstep || Mover || @up |[¥ Continue || AEStop || {MEndde || EFList |[Cemacros| BfEdit | @Breakpomts]

do G:\SchuTung'InhaTt'\En Tﬁsch WPRACTICE\practice_2015_mpcimacro_assignments.cmm
PRIVATE &my_| boo]ean result = FALSE()

PRIVATE &my_boolean = TRUE()

PRIVATE &my_expression = 1234600.

PRIVATE &my_var_value = 0x303A

PRIVATE &my_float = 56.67e+l2

PRIVATE &my_number = 100.

PRIVATE &my_var = Constant String

PRIVATE &my_range = 0x40004000++0xfff

PRIVATE &my_string = Hello World

4 b

Var.STRING(<hll_expression>) Returns a zero-terminated string, if <hll_expression> is a
pointer to character or an array of characters.
Returns a string that represents the variable contents
otherwise.

©1989-2024 Lauterbach Training Script Language PRACTICE | 42

Macro Handling

To better understand the usage of macros, it is the best to look at the way the PRACTICE interpreter
executes a script line.

The PRACTICE interpreter executes a script line by line. Each line is (conceptually) processed in three

steps:

1. All macros are replaced by their corresponding character sequence.
2. All expressions are evaluated.

3. The resulting command is executed.

For the following examples the command PRINT is used.

PRINT {<data>} PRINT specified <data>to TRACE32 message line and to TRACE32
message area.

Example 1

PRIVATE &a

&a="5+4"
PRINT &a

We look at the PRINT &a line. To execute this line, the interpreter will first:

1. Replace all macros with their corresponding character sequences. So:
PRINT &a -> PRINT 5+4
2. Evaluate all expressions
PRINT 5+4 -> PRINT 9
3. Execute the resulting command. So it will execute PRINT 9.
W = Baaren ' | @ | 52| | B 8:PEDIT macro_handlingl E=B EsE)l
B !@Save || ¥ save As... || ¥ save+Close || EFquit+Close | ﬁ’savemal ¥ Do I M Debug
PRIVATE &a "
&a="5+4"
o ~ | [PRINT &a
PR .)
B::
s
frigger [devices H frace H Data H Var H List H FERF H SYStem H Step H Go H Break][other Hprewous
SF:40001318 \\diabc\diabc\sieve+0x70 stopped HLL P

©1989-2024 Lauterbach Training Script Language PRACTICE | 43

Example 2

PRIVATE &a

&a="Hello World"
PRINT &a

This example will generate an error.

"l ElB:AREA = |[E] 52 | | [B:PEDIT GASchulung\Inhalt\Englisch\PRACTICE\ practice_2015_mpcimacro_handling2.cmm = rel=s ||

& & save || save As... || Fsave+Close || EfQuittClose || Fsave+bo || Do || iEDebug |
______ PRIVATE &a r
] | |&a="Hel[lo world"

- | [prINT &a v

)

|« s «

B::B::PRINT Hello World

A symbol not Tourn

[okl][<string>][<range> | [<address>]| <time> | [<range>][<value>][<floar>][<mask> | [<boolean>
SF:40001318 \\diabc\diabc\sieve+0x70 stopped HLL UP

Let’s look at the three steps the interpreter will take to execute the PRINT &a command:

1. Replace all macros with their corresponding character sequences
PRINT &a -> PRINT Hello World

2. Evaluate expressions
PRINT Hello World -> error

3. Execute command, which will not happen because of the error in the second step.

The second step fails because in PRACTICE a single word like Hel1lo (which is not enclosed in double
quotes) refers to a debug symbol, loaded, for example, from an ELF file.

When the PRACTICE interpreter encounters such a debug symbol, the expression evaluation will try to
replace the debug symbol by the address to which the symbol refers. If there is no debug symbol called
Hello (which is likely), the PRACTICE interpreter will output the error message symbol not found.

If by pure accident there are debug symbols called Hello and World the addresses of these symbols will
be printed.

P: [.Jx400012A8D: 0x400040F8

trigger [devices H trace H Data H Var H List

SF:40001318 \\diabc\diabc\sieve+0x70

‘B:

[

This example demonstrates how the pure macro replacement step will basically always work, since you
always can replace a macro by its character sequence; but the result might not make sense.

©1989-2024 Lauterbach Training Script Language PRACTICE | 44

Macros as Strings

Macros are replaced by their character sequence. If you want to explicitly use this character sequence as a
string, then you should enclose the macro in double quotes, for example:

PRIVATE &a

&a="Hello World"

PRINT "&a"
= | B:AREA ['= /=[5 | | B 8:PEDIT 6:Schulung\Inhalt\Englisch\PRACTICE\practice 2015 mpeimacro_handiingd.cmm == [EcE ="
* | [2 save | SFsaveas... | T severclose || [E5Quit=Close | *Savetbo || #Do | M Debug |
PRIVATE_&a -
&a="Hello World"
Hello world -~ || [PRINT "&a"| -
4 m L3 4 ¥
B::
Hello world
trigger [devices I[trace H Data I[Var H List I[PERF H SYStem I[Step H Go I[Break H other I[previous
SF:40001318 \\diabc\diabc\sieve+0x70 stopped HLL UP

To understand what happens it is again best to look at the three steps which are taken to execute the
PRINT "&a" command.

1. Replace the macro by its character sequences
PRINT "&a" -> PRINT "Hello World"

2. Evaluate expressions.
Nothing to do for this example.

3. Execute command.

©1989-2024 Lauterbach Training Script Language PRACTICE | 45

String composing example:

// Script string_example.cmm

PRIVATE &drive &architecture &demo_directory
&drive="C:"
&architecture="MPC"

// PRINT command

PRINT "Directory " "&drive" "\T32_" "&architecture" "\demo"
PRINT "Directory "+"&drive"+"\T32_"+"&architecture"+"\demo"
PRINT "Directory & (drive)\T32_& (architecture)\demo"

// Macro assignment
&demo_directory="&drive"+"\T32_"+"&architecture"+"\demo"

DIR &demo_directory

&demo_directory="& (drive) \T32_& (architecture) \demo"
DIR &demo_directory

// Command parameter
DIR "&(drive)\T32_ & (architecture) \demo"

I DIR <directory> Display a list of files and folders for the specified directory.

©1989-2024 Lauterbach Training Script Language PRACTICE | 46

Macros as Numbers

// Script numbers.cmm

PRIVATE &my_ hex &my_ dec &my_bin
PRIVATE &my_ stringlength &my_ sizeof
PRIVATE &addl &add2

PRIVATE &convertl &convert2

// Hex, decimal, binary by TRACE32 syntax
&my_hex=0x7

&my_dec=22.

&my_bin=0y1110

// Hex, decimal, binary as expression result
&addl=&my_bin+&my hex
&add2=&my_hex+&my_dec

// Hex, decimal, binary as return value
&my_stringlength=STRing.LENgth ("0123456789012345")

&my_sizeof=sYmbol.SIZEOF (sieve)

// Hex, decimal, binary by CONVERT function

&convertl=CONVERT .HEXTOINT (&my_bin)
&convert2=CONVERT .HEXTOINT (&my_hex)

The PRACTICE stack shows the macro values and their radix.

¢ Brwrwe. PMACRO

(o)[& sl

PRIVATE &convert? =

PRIVATE &convertl = 14,
PRIVATE &add2 = 29.

PRIVATE &addl = 0x15

PRIVATE &my_sizeof = OxCO
PRIVATE &my_stringlength = 16.
PRIVATE &my_bin = 0y00001110
PRIVATE &nmy_ dec 22,

PRIVATE &my_hex = Ox7

(¥ step || M over || @up |[2# continue|| :1E Stop | Enddo]| EFList |[:CiMacros|| B4 Edit ”@Breakpomts]

do G:%\Schulung'InhaTt\Englisch PRACTICE_pract'lce 2015_mpcnumbers. cmm

4

1 ¢

STRing.LENgth(<string>)
sYmbol.SIZEOF(<symbol>)

Returns the length of the <string> as a decimal number.

Returns the size occupied by the specified debug <symbol> (e.g.

function, variable, module) as a hex. number.

©1989-2024 Lauterbach

Training Script Language PRACTICE |

47

But if you use a PRACTICE output command, the radix information is removed.

// Script append_example.cmm

PRIVATE &target_id

&target_id="D:0x40004000"

txt"
txt"
txt"
txt"
txt"

DEL "my_append.txt"
APPEND "my_append.

APPEND "my_append.

APPEND "my_append.

APPEND "my_append.

APPEND "my_append.

/...

Results for example in:

"Software tested with:"
"Debug Cable: "

"TRACE32 Version:
"Target Version:

CABLE.SERIAL ()
" VERSION.BUILD()
" Data.Long (&target_id)

BuTYPE my_append.tet

1. of 5.

=) (=) Lamme

Software tested with:

Debug Cable: C11050145079
TRACE32 Version: 65276
Target Version: 38000000

TRACE32 command

I DEL <filename>

TRACES32 functions

CABLE.SERIAL()
VERSION.BUILD()

Delete file specified by <filename>

Returns the first serial number of the plugged debug cable.

Returns build number of TRACE32 software as a decimal number.

©1989-2024 Lauterbach

Training Script Language PRACTICE

48

Since it might be confusing for the reader not to know if a number is decimal or hex, you can proceed as

follows:

// Script append_example_format.cmm

PRIVATE &target_id

&target_id="D:0x40004000"
DEL "my_append.txt"

APPEND
APPEND
APPEND
APPEND
APPEND

"my_append.
"my_append.
"my_append.
"my_append.
"my_append.

txt"
txt"
txt"
txt"
txt"

May result for example in:

"Software tested with:"

"Debug Cable: " FORMAT.

STRING (CABLE.SERIAL(),15.,' ')

"TRACE32 Version: " FORMAT.Decimal(8.,VERSION.BUILD())+"."
"Target Version: Ox"+FORMAT.HEX(8.,Data.Long(&target_id))

B:TYPE G:\Schulung\Inhalt\Englisch\PRACTICE\practice_2015_mpc\my_append.bd

=N Hoh/

1. of 5.

=) (=) v

Debug Cable:
TRACE32 Version: 65276.
Target Version: 0x38000000

Software tested with:

C€11050145079

TRACE32 function

FORMAT.HEX(<width>,<number>)

Formats a numeric expression to a hexadecimal number and

generates an output string with a fixed length of <width> with

leading zeros.

©1989-2024 Lauterbach

Training Script Language PRACTICE

49

Note for Testing

PRACTICE macros are not available in the command line. They are only available when running a script.
But you can proceed as follows to test a macro assignment:

File Edit View Var Break Run CPU Misc Trace Pef Cov MPCSXXX Window Help

(M E A+ pn|E oo suE s @22

0% B:PMACRO.list o[&[]

| Mstep || Wover || @up || M continue || AFStop | MEnddo || Efuist | Dimacros | RfEdit || fEBreakpoints |
&my_version = 65276. -

4

‘B: :|&my_vers1on=FORMAT. DECIMAL (8. ,VERSION. BUILD())+"."

prvios

SF:40001308 \\diabc\diabc\sieve+0x60 stopped (inside line) HLL UP

©1989-2024 Lauterbach Training Script Language PRACTICE | 50

More Complex Data Structures

For all complex data structures TRACE32-internal variables can be used. The following two commands can
be used to declare a TRACE32-internal variable.

Var.NEWGLOBAL <type>\<name> Create a global TRACES32-internal variable
Var.NEWLOCAL <type>\<name> Create a local TRACES32-internal variable

TRACE32-internal variables require that a program is loaded via the Data.LOAD command. All data types
provided by this program can then be used (sYmbol.List.Type).

J TRACE32-internal variables have the same scope as PRACTICE macros (e.g. they are on the
PRACTICE stack).

. TRACES32-internal variables are displayed and modified via the Var command group.

; script newlocal.cmm

LOCAL &my_ symbol
ENTRY &my symbol

Var .NEWLOCAL char[5][40] \typeresult

Var.Assign \typeresult[0]="Symbol does not exist"
Var.Assign \typeresult[l]="Symbol is label"
Var.Assign \typeresult[2]="Symbol is function"
Var.Assign \typeresult[3]="Symbol is variable"
Var.Assign \typeresult[4]="Undefined"

&n=s¥Ymbol .TYPE (&my_symbol)
Var.PRINT %String \typeresult[&n]
ENDDO

Var.Assign %<format> <variable> Modify variable, no log is generated in the message line or in the
AREA window.

sYmbol.TYPE(<symbol>) Returns the basic type of the symbol as a numerical value.

0 = symbol does not exist

1 = plain label without type information

2 = HLL function

3 = HLL variable

other values may be defined in the future

©1989-2024 Lauterbach Training Script Language PRACTICE | 51

Script Examples

Run Through Program and Generate a Test Report

Task of part 1 of the script: Start the target program execution and wait until the program execution is
stopped at the entry of the function main.

// Script run_through_code.cmm
// Part 1

// Prepare debugging
DO "target_setup.cmm"

Go main
WAIT !STATE.RUN() 2.s

IF STATE.RUN()

(
Break

)

The script consists of:

TRACE32 commands
Go <address> Start the program execution.
Program execution should stop when <address> is reached.
Break Stop the program execution.

©1989-2024 Lauterbach Training Script Language PRACTICE | 52

PRACTICE commands

DO <filename> Call PRACTICE script <filename>
WAIT <condition> <time_period> Wait until <condition> becomes true or <time_period>
has expired.
IF <condition> Execute <if_block> when <condition> is true.
(Execute <else_block> when <condition> is false.
<if_block>
) PRACTICE is whitespace sensitive. There must be at least
ELSE one space after a PRACTICE command word.
(
<else_block> <block> has to be set in round brackets. PRACTICE requires
) that round brackets are typed in a separate line.
TRACES32 function
STATE.RUN() Returns TRUE when the program execution is running.

Returns FALSE when the program execution is stopped.

©1989-2024 Lauterbach Training Script Language PRACTICE | 53

Task of part 2 of the script: Check if program execution stopped at entry to function main and generate a
test report.

// Part 2

IF Register (PC)==ADDRESS.OFFSET (main)

(
APPEND "test_protocol.txt" FORMAT.STRing ("System booted successfully",70.,"' ')\
FORMAT .UnixTime ("c",DATE.UnixTime (), 0)

)

ELSE

(
APPEND "test_protocol.txt" FORMAT.STRing ("Booting failed",70.,' ')\
FORMAT .UnixTime ("c",DATE.UnixTime (), 0)
ENDDO

The backslash \ in conjunction with at least one space serves as a line continuation character.

TRACE32 function

Register(<register_name>) Returns the contents of the specified core register as a hex.
number.

Addresses in TRACE32

Why is the following function needed?

ADDRESS .OFFSET (main)

[A TRACE32 PowerView for P

|| File Edit View Var Break Run CPU Misc Trace Perf Cov MPCSXKK Window Help

(M Al+ e |2 o sl s @31 2

E::IF Register(pc)==main

<hoolean>

SF:4000105C \\diabc\diabc\main stopped at breakpoint

compare operator

©1989-2024 Lauterbach Training Script Language PRACTICE | 54

PRINT Register (PC) // print the content of the program

// counter as a hex. number

B::

000105C

trigger [devices][trace][Data][Var][List][other][previous
SF:4000105C \\diabc\diabc\main stopped at breakpoint HLL UP

PRINT main

// print the address of main

i
‘B:

P+ 0x4000105C

trigger [devices][trace][Data][Var][List][other][previous
SF:4000105C \\diabc\diabc\main stopped at breakpoint HLL UP

main is an address and addresses in TRACE32 PowerView consist of:

An access class (here P:) which consists of one or more letters/numbers followed by a colon (:)

. A hex. number (here 0x4000105C) that determines the actual address

PRINT ADDRESS.OFFSET (main)

B::

000105C

trigger [devices][trace][Data][Var][List][other][previous
SF:4000105C \\diabc\diabc\main stopped at breakpoint HLL UP

I ADDRESS.OFFSET(<symbol>) Returns the hex. number part of an address.

©1989-2024 Lauterbach Training Script Language PRACTICE | 55

// Part 2

IF Register (PC)==ADDRESS.OFFSET (main)

(
APPEND "test_protocol.txt" FORMAT.STRing("System booted successfully",70.,' ')\
FORMAT.UnixTime ("c",DATE.UnixTime(),0)

)

ELSE

(
APPEND "test_protocol.txt" FORMAT.STRing("Booting failed",70.,"' ')\
FORMAT.UnixTime ("c",DATE.UnixTime(),0)

ENDDO
)
PRACTICE commands:
APPEND <filename> {<data>} Append data to content of file <filename>.
ENDDO A script ends with its last command or with the ENDDO
command.
TRACES32 functions:
FORMAT.STRing(<string>,<width>,<filling_character>) Formats <string> to the specified
<width>.
If the length of <string> is shorter
the <width>, the <filling_character>
is appended.
DATE.UnixTime() Returns the time in UNIX format

and that is seconds passed since
Jan 1st 1970.

FORMAT.UnixTime("c",DATE.UnixTime(),DATE.utcOffset()) Format Unix time according to ISO
8601

©1989-2024 Lauterbach Training Script Language PRACTICE | 56

Summary

// Prepare debugging
DO "target_setup.cmm"

Go main
WAIT !STATE.RUN() 2.s

IF STATE.RUN ()

(
Break.direct

)

IF Register (PC)==ADDRESS.OFFSET (main)

(
APPEND "test_protocol.txt" FORMAT.STRing ("System booted successfully",70.,"' ')\
FORMAT.UnixTime ("c",DATE.UnixTime () , DATE.utcOffSet ())

)

ELSE

(
APPEND "test_protocol.txt" FORMAT.STRing("Booting failed",70.,' ')\
FORMAT.UnixTime ("c",DATE.UnixTime (), DATE.utcOffSet ())
ENDDO

Results for example in:

B:TYPE G:\SchulunghInhalt\Englisch\PRACTICE\practice_2015_mpc\test_protocol.td EI@
T = =) Errock
System booted successtully 2015-08-12T13:41:06+02:00 =

4 b

©1989-2024 Lauterbach Training Script Language PRACTICE | 57

Check Contents of Addresses

Task of the script: After an appropriate program address e.g. main is reached, you can check if certain
memory addresses are initialized with their correct value.

// Script check_memory_locations.cmm

IF Data.Long(D:0x40004058) !=0x0

(
APPEND "test_protocol.txt"\
FORMAT.STRing ("Initialization of address D:0x40004058 failed",70.,"' ')\
FORMAT .UnixTime ("c",DATE.UnixTime (), DATE.utcOffSet ())

IF Data.Long (ANC:0xC3FDC0C4) !'=0x0

(
APPEND "test_protocol.txt"\
FORMAT.STRing ("Initialization of Global Status Register failed",70.,"' ')\
FORMAT .UnixTime ("c",DATE.UnixTime () ,DATE.utcOffSet ())

Results for example in:

B:TYPE G:\Schulung\Inhalt\Englisch\PRACTICE\practice_2015_mpc\test_protocol.td EI@
L o = =) P rec
Initialization of address D:0x40004058 failed 2015-08-12T14:46:17+02:00 -
TRACE32 function
I Data.Long(<address>) Returns the contents of the specified address as a 32-bit hex. value.

<address> requires an access class.

Data.Long (D:0x40004058) // D: indicates the generic access
// class Data

Data.LONG (ANC: 0xC3FDCO0C4) // ANC: indicates
// physical address (A)
// No Cache (NC)

©1989-2024 Lauterbach Training Script Language PRACTICE | 58

Check Contents of Address Range

Task of the script: After an appropriate program address e.g. main is reached, you can check if a certain
memory range is initialized with their correct values. An easy way to provide the correct values is a binary
file.

// Script check_memory_ range.cmm

Data.LOAD.Binary "range_correct" 0x40004000 /DIFF
IF FOUND()
(
PRIVATE &s
APPEND "test_protocol.txt"\
FORMAT.STRing ("Initialization of 0x40004000--0x4000401F failed ",70.,"' ")\
FORMAT .UnixTime ("c",DATE.UnixTime () ,DATE.utcOffSet ())

&s=TRACK.ADDRESS ()

APPEND "test_protocol.txt"\
FORMAT.STRing ("First difference found at: &s",70.,' ')

Results for example in:

£ MSchulungiInhalt\Engliscl ractice_ _mpchtest_protocol.bd
& B:=TYPE G\Schulung\Inhalt\Englisch'\PRACTICE\practice_2015_mpc\d P | =}
1. of 2. @ E] #3Find... [Track

Initialization of Ox40004000--0x4000401F failed 2015-08-12T15:02:03+02:00 -
First difference found at: Sv:0x40004014

4

TRACE32 command
Data.LOAD.Binary <filename> <address> [DIFF Compare memory content at <address>
with contents of <filename> and provide
the result by the following TRACE32
functions:
FOUND()
TRACK.ADDRESS()
TRACES32 functions
FOUND() Returns TRUE if a difference was found.
TRACK.ADDRESS() Returns the address of the first difference.

©1989-2024 Lauterbach Training Script Language PRACTICE | 59

PRACTICE command

PRIVATE {<macro>} Creates a private PRACTICE macro.

PRACTICE macros start with & to make them different from variables
from the program under debug.

Private PRACTICE macros are only visible inside the declaring block
and are erased when the block ends.

In this example, the declaring block contains the instructions between
the round brackets.

©1989-2024 Lauterbach Training Script Language PRACTICE | 60

To inspect all differences in detail the following script can be helpful.

// Script check _memory range_details.cmm

Data.LOAD.Binary "range_correct" VM:0x40004000
Data.Dump VM:0x40004000++0x1f /SpotLight
SCREEN.display

Data.COPY 0x40004000++0x1f VM:0x40004000

Results for example in:

144 B:Data.Dump VM:0x40004000++0x1f /SpotLight /NoAscii = | B[]
address | 0 4 8 C

VM:40004000 [»38000000 30604000 382B/FF8 3DA04001

VM:40004010 | 39ADC0O10 00099999 38424B70 38000000

4 [m| »

TRACE32 commands

Data.LOAD.Binary <filename> VM:<address> Load the contents of <filename> to <address> in
the TRACES2 virtual memory. The TRACE32
Virtual Memory is memory on the host computer
which can be displayed and modified with the same
commands as real target memory.

Data.dump VM:<address_range> ISpotLight Display the contents of the TRACE32 Virtual
Memory for the specified <address_range>.

The option SpotLight advises TRACE32 to mark
changed memory locations if the window is
displayed in TRACES32 PowerView.

Data.COPY <address_range> VM:<address> Copy the content of <address_range> to the
TRACES32 Virtual Memory.

PRACTICE commands

If PRACTICE scripts are executed, the screen is only updated after a PRINT command.

I SCREEN.display Advise TRACE32 to update the screen now.

©1989-2024 Lauterbach Training Script Language PRACTICE | 61

Check the Contents of Variables

Task of the script: After an appropriate program address e.g. main is reached, you can check if certain
variables are initialized with their correct value.

// Script check_var.cmm

Var.IF stra2[1][0] .pastruct5[0]!=0.

(
APPEND "test_protocol.txt"\
FORMAT.STRing ("Initialization of stra2[1][0].pastruct5[0] failed",70.,' ')\
FORMAT .UnixTime ("c",DATE.UnixTime () ,DATE.utcOffSet ())

APPEND "test_protocol.txt" "stra2[1l][0].pastruct5[0]= "\
%$Decimal Var.Value(stra2[1][0] .pastruct5([0])

My result for example in:

B:TYPE G:\Schulung\Inhalt\Englisch\PRACTICE\practice_2015_mpc\test_protocol.bd EI@
1. of 2. Z| xz 4] Find... | Track
Initialization of straZ[1][0].pastruct5[0] failed 2015-08-12T15:47:37+02:00 .

straz[1][0].pastruct5[0]= 77

4 m

PRACTICE command
Var.IF <hll_condition> Execute <block> when the condition written in the
(programming language used is true (C, C++, ...)
<block>
)
PRACTICE function
Var.VALUE(<hll_expression>) Returns the contents of the variable/variable component

specified by <hll_expression> as a hex. number.

©1989-2024 Lauterbach Training Script Language PRACTICE

62

Record Formatted Variables

Task of script: Write the content of various variables to a file. Use the same formatting as Var.View

command.

// Script record_var.cmm

PRinTer.FileType ASCIIE
PRinTer .OPEN "test_var.lst"

WinPos ,,,,.,0

WinPrint.Var.View %$String cstrl

WinPos ,,,.,.,0
WinPrint.Var.View %Open str2

WinPos ,,,,.,0
WinPrint.Var.View vfloat

PRinTer .CLOSE

B:TYPE G:\Schulung\Inhalt\Englisch\PRACTICE\practice_2015_mpchtest_var.Ist

=N NCh/

1. of 6. | #3 Find...
cstrl = "Constant Stringl”
str2 = (
word = 0x0,
count = 0,
name = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
vfloat = 1.6
TRACE32 commands

PRinTer.FileType <format>
PRinTer.Open <filename>
PRinTer.CLOSE
WinPrint.<command>

WinPos ,,,,,0

Close open output file.

Specify output <format> for output file.

Open file <filename> for outputs.

Redirect the <command> output to the specified file.

By the default the TRACE32 <command> and its output is redirected
to the specified file.

With this special WinPOS command only the <command> output is
redirected to the specified file.

©1989-2024 Lauterbach

Training Script Language PRACTICE

63

Record Variable as CSV

Task of the script: Write the contents of the variable vbfield to a file whenever the program execution stops
at the specified breakpoint. Use CSV as output format.

// Script test_var_vbfield.cmm

Break.RESet
Var.Break.Set vbfield /Write

REPEAT 10.
(
Go
WAIT !STATE.RUN() 2.s
IF STATE.RUN()
(
Break
ENDDO

)
Var .EXPORT "vbfield export.csv" vbfield /Append

Results for example in:

B:TYPE G:\SchulungiInhalt\Englisch\PRACTICE\practice_2015_mpcivbfield_export.csv EI@

1. of 20.)| ez #1 Find... [Track

"B::Var.EXPORT" ,"vbf1eld_export.csv”,"vbf1eld"," /Append”
"vbfield",1,1,1,1,1,1,1,1,1,1,1,3,65535
"B::Var.EXPORT","vbfield_export.csv","vbfield"," /Append"”
"vbfield",1,1,1,1,1,1,1,1,1,1,1,1,65535
”B::Var.EXPORT”,”vbf1e1d_export csv", "vbfield"," /Append"
"vybfield",1,1,1,1,1,1,1,1,1,1,1,1,1

"B::Var. EXPORT” "vbfield_export.csv","vbfield"," /Append"”
"vbfield",1,1, l,l,l 1,1,1,1,1,1,1,1

"B::Var. EXPORT” ”vbf1e1d_export csv", "vbfield"," /Append"
"vybfield",1,3,1,1,1,1,1,1,1,1,1,1,1

"B::Var. EXPORT” ”vbf1e1d_export csv” "vbfield","/Append"”
"vbfield",1 ,?,l,l,l,l,l,l 1,1,1,

"B::Var. EXPORT” ”vbf1e1d_export csv", "vbfield"," /Append"”
”\.-'b‘F‘Ie-ld”,1,3,?,12?,1,1,1,1 1,1,1,1,1

"B::Var.EXPORT" ”vbf1e1d_export csv” "vbfield","/Append"”

"vbfield",1,3,7,127,255,1,1,1,1,1,1,1,1

"B::Var. EXPORT” ”vbf1e1d_export csv', "bfiel ", " Append"”
"vbfield",1,3,7,127,255,32767,1,1,1,1,1,1,1
”B::Var.EXPORT”,”vbfie]d_export csv', "vbfield"," /Append"
"vbfield",1,3,7,127,255,32767,1,1,1,1,1,1,1

PRACTICE command

// Use expression of your programming language (C, C++, ...) to specify write breakpoint
Var.Break.Set <hll_expression> /Write

/I Since the number of write breakpoints is limited, it is recommended to reset the current breakpoint
// settings
Break.RESet

// Append content of variables as CSV (Comma-Separated Values) to file <filename>
Var.EXPORT <filename> [{% <format>}] {<variable>} [Append

©1989-2024 Lauterbach Training Script Language PRACTICE | 64

;Example 1
RePeaT 100. PRINT "X"

;Example 2

RePeaT 50.

(
PRINT %CONTinue "*"
WAIT 100.ms

;Example 3

LOCAL &code

AREA.Create AQ000 , 2100.
AREA.view A000

OPEN #1 "~~/t32.men" /Read

RePeaT

(
READ #1 SLINE &code
PRINT "&code"

)

WHILE EOF ()==FALSE()

CLOSE #1

;Print X 100 times

;Print a * at the end of
;the previous line then
;wait 100 ms. Do this 50
;times.

;Change the number of
;lines in the AREA window
;to 2100

;Read until the end of
;file

©1989-2024 Lauterbach

Training Script Language PRACTICE | 65

Test Functions

Task of the script: Test functions with specified parameters and generate a test protocol.

// Script test_function.cmm
PRIVATE &result

&resul t=FORMAT.Decimal (8., Var.VALUE (func5(2,6,9)))

APPEND "test_protocol.txt" \

FORMAT.STRing ("func5(2,6,9) tested with result &result",70.,' ') \
FORMAT.UnixTime ("c",DATE.UnixTime () , DATE.utcOffSet ())

&resul t=FORMAT.Decimal (8.,Var.VALUE (func5(14,87,93)))

APPEND "test_protocol.txt" \

FORMAT.STRing ("func5(14,87,93) tested with result &result",70.,' ') \
FORMAT.UnixTime ("c",DATE.UnixTime () ,DATE.utcOffSet ())

&result=FORMAT .Decimal (8., Var.VALUE (func5(44,44,44)))

APPEND "test_protocol.txt" \

FORMAT.STRing ("func5(44,44,44) tested with result &result",70.,' ') \
FORMAT.UnixTime ("c",DATE.UnixTime () ,DATE.utcOffSet ())

Results for example in:

B:TYPE G:\Schulung\Inhalt\Englisch\PRACTICE\practice_2015_mpc\test_protocol.tdt EI@
1. of 3. = = #3Find... | Track
func5(2,6,9) tested with result 56. 2015-08-12T16:07:57+02:00
func5(14,87,93) tested with result 8105. 2015-08-12T16:07:58+02:00
func5(44,44,44) tested with result 1980. 2015-08-12T16:07:58+02:00
PRACTICE function
FORMAT.Decimal(<width>,<value>) Formats a numeric expression to a decimal number

and generates an output string with a fixed length of
<width> with leading spaces.

Numeric expressions which need more characters than
<width> for their loss-free representation aren’t cut.

Var.VALUE(<function_call>) Returns the return value of called function as hex.
number.

©1989-2024 Lauterbach Training Script Language PRACTICE | 66

Test Function with Parameter File

Task of script: Test functions, but provide function name, parameters and expected result by a parameter
file. Generate a test protocol.

// Script test_func_param.cmm
LOCAL &testfunc &correct_result
OPEN #1 "func_test.txt" /READ

WHILE TRUE ()
(
READ #1 &testfunc &correct_result
IF "&testfunc"!=""
(
GOSUB perform_test
)
ELSE
(
CLOSE #1
ENDDO
)
)
ENDDO

perform_test:
(
IF Var.VALUE (&testfunc)==&correct_result
(
APPEND "test_protocol.txt"\
FORMAT.STRing ("&testfunc=&correct_result",50.,"' ')\
FORMAT.UnixTime ("c",DATE.UnixTime () , DATE.utcOffSet ())
)
ELSE
(
PRIVATE &result
&result=CONVert .HEXTOINT (Var.VALUE (&testfunc))
APPEND "test_protocol.txt"\
FORMAT.STRing ("&testfunc failed with &result (&correct_result)",50.,' ')\
FORMAT .UnixTime ("c",DATE.UnixTime () , DATE.utcOffSet ())
)
RETURN

Example for a parameter file.

func5(22,12,17) 56.
func5(14,87,93) 8105.
funcb5(44,44,44) 1980.

©1989-2024 Lauterbach Training Script Language PRACTICE | 67

Results for example in:

func5(14,87,93)=8105.
func5(44,44,44)=1980.

B:TYPE G:\Schulung\Inhalt\Englisch\PRACTICE\practice_2015_mpc\test_protocol.tdt EI@
1. of 3. = | [x| | #Find.. | Track
func5(22,12,17) failed with 226. (56.) 2015-08-11T15:38:55+02:00

2015-08-11T15:38:55+02:00
2015-08-11T15:38:56+02:00

PRACTICE command

GOSUB </abel>

RETURN
LOCAL <macro>

WHILE <condition>
(

<block>

)

CLOSE #<buffer_number>

TRACE32 function

READ #<buffer_number> {<macro>}

Call a subroutine. The start of the subroutine is identified by </abel>.

Labels must start in the first column of a line and end with a colon. No

preceding white space allowed.

Subroutines are usually located after the ENDDO statement.
Return from subroutine.

Creates a local PRACTICE macro.

Local PRACTICE macros are visible inside the declaring block, in all

called scripts and in all called subroutines.

They are erased when the declaring block ends. The declaring block

here is the script itself.

Execute <block> as long as <condition> is true.

OPEN #<buffer_number> <filename> /[Read Open file <filename> for reading. The file is

referenced by its #<buffer_number> by the
following commands.

Read next line from file referenced by
#<buffer_number> into PRACTICE macros.

Space serves as parameter separators.

Close file referenced by #<buffer_number>.

I CONVert.HEXTOINT(<number>) Convert <number> to a decimal number.

©1989-2024 Lauterbach

Training Script Language PRACTICE

68

Parameter Passing

Pass Parameters to a PRACTICE Script or to a Subroutine

®_B::wr.PMACRO

M Step E_E Eontinu% B Stop || S Enddo || =]

|do g:\hhypractice\training\PRactice_schiiotext.cnm PRINT "Please enter the address" from lina

do G:\hb\Practice\training\PRACTICE_SCH\modular .cnm

v
£ »

I ENTRY <patrlist>

The ENTRY command can be used to

. Pass parameters to a PRACTICE script or to a subroutine

To return a value from a subroutine

©1989-2024 Lauterbach Training Script Language PRACTICE | 69

Example 1: Pass parameters to a PRACTICE script

; PRACTICE script patch.cmm
; DO patch.cmm 0x1000++0xff 0x01 OxOa

ENTRY &address_range &data_old &data_new

IF "&address_range"==""

(
PRINT "Address range parameter 1is missing"
ENDDO

IF "&data_old"==""

(
PRINT "Old data parameter is missing"
ENDDO

IF "&data_new"==""

(
PRINT "New data parameter i1s missing"
ENDDO

Data.Find &address_range &data_old

IF FOUND ()

(
Data.Set TRACK.ADDRESS () &data_new
Data.Print TRACK.ADDRESS ()
DIALOG.OK "Patch done"

)

ELSE
DIALOG.OK "Patch failed"

ENDDO

©1989-2024 Lauterbach Training Script Language PRACTICE | 70

TRACE32 commands

Data.FIND <address_range> <data> Search for <data> in the specified <address_range>.
TRACES2 functions served:
FOUND()
TRACK.ADDRESS()

FOUND() Returns a boolean value to denote the results of the last
DATA.FIND command.

I TRACK.ADDRESS() Returns the address of the last successful search.

Example 2: Pass parameters to a subroutine and get back the return value

; PRACTICE script param.cmm

— GOSUB test sieve++0x20 0x01

ENTRY &found -

PRINT "Data found at address " &found
ENDDO

test:

. ENTRY &address_range &data
Data.Find &address_range &data
&result=ADDRESS.OFFSET (TRACK.ADDRESS ())
RETURN &result

Pass parameter to subroutine

anjeA uinjal ayj yoeq 195

©1989-2024 Lauterbach Training Script Language PRACTICE | 71

Example 3: Pass arguments as a single parameter to a subroutine and get back the return value

; PRACTICE script param.cmm

— GOSUB test sieve++0x20 0x01

ENTRY &found -

PRINT "Data found at address " &found
ENDDO

test:

— ENTRY %LINE &values

Data.Find &values

&resul t=ADDRESS.OFFSET (TRACK.ADDRESS ())
RETURN &result

Pass parameter to subroutine

anjeA uinjal ayj yoeq 1oH

Alternatively, the function PARAMETERS can be used to read parameters passed to a script or subroutine
and, if the macros do not already exist in the current scope, assign them to automatically created PRIVATE
macros. The parameters must be enclosed in quotation marks (*).

Example 4: Pass arguments using PARAMETERS to a subroutine and get back the return value

; PRACTICE script param.cmm

— GOSUB test "sieve++0x20" "0x01"

ENTRY &found -

PRINT "Data found at address " &found
ENDDO

test:

. PARAMETERS &address_range &data
Data.Find &address_range &data
&result=ADDRESS.OFFSET (TRACK.ADDRESS ())
RETURN &result

Pass parameters to subroutine

anjeA uinjal ayj yoeq 109

©1989-2024 Lauterbach Training Script Language PRACTICE | 72

Example 5: Passing arguments via the command line. If the values for &data_old and &data_new are not
provided default values are assigned.

; PRACTICE script patch_not_all.cmm
; Call with:
; DO patch_not_all.cmm "<address_range>" "<data_old>" "<data_new>"

PARAMETERS &address_range &data_old &data_new
IF "&data_old"==""

&data_o0l1ld=0x00

IF "&data_new"==""

&data_new=0xFF

DATA.Find &address_range &data_old

IF FOUND ()

(
Data.Set TRACK.ADDRESS () &data_new
Data.Print TRACK.ADDRESS ()
DIALOG.OK "Patch Done"

)

ELSE

(
DIALOG.OK "Patch Failed."

)
ENDDO

Passing parameters into scripts like this means that the user must know the order in which each parameter
must be specified. A more flexible approach is to use the function STRing.SCANAndEXxtract().

STRing.SCANAndEXxtract(" <source>", "<search>", "<default>") The <source> string is
searched for the pattern
<search> and if it is found the
character sequence after and
up to the next blank space is
assigned to the PRACTICE
macro. If the <search> string
is not found the value
<default> is assigned
instead.

©1989-2024 Lauterbach Training Script Language PRACTICE | 73

;Call this script with:
; do arg_test.cmm ADDRESS=<address> DATA=<data> COUNT=<count>

;Read all command line arguments as a single line
ENTRY %$LINE &p

;Open an AREA window and clear it for displaying the results
AREA.view
AREA .CLEAR

;If the ADDRESS argument is not provided, print a usage message
IF STRing.SCAN("&p", "ADDRESS=",0)==-
(

GOSUB print_args

;Extract the arguments into the correct PRACTICE variables, returning the
;default value if the user does not specify something.

&addr=STRing.SCANAndExtract (STRING.UPpeR("&p"), "ADDRESS=", "0x12000")
&dvalue=STRing.SCANAndExtract (STRING.UPpeR ("&p") , "DATA=", "0x00")
&count=STRing.SCANAndExtract (STRING.UPpeR("&p") , "COUNT=", "5.")

PRINT "Extracted Arguments:"
PRINT "ADDRESS = &addr"
PRINT "DATA &dvalue™
PRINT "COUNT = &count"
ENDDO

print_args:
PRINT "Usage:"
PRINT
PRINT "do arg_test.cmm ADDRESS=<address> DATA=<data> COUNT=<count>"
PRINT "Where:"

PRINT " <address> is the address to write <data> to."
PRINT " <count> is the number of times to write the <data> value."
PRINT
PRINT "Script will complete using default values."
PRINT
RETURN
I STRing.UPpeR(<string>) Returns <string> in upper case.

©1989-2024 Lauterbach Training Script Language PRACTICE | 74

Example 6: Call a subroutine to verify a checksum for a given range.

PRACTICE script checksum.cmm

PRIVATE &result

AREA.view
AREA .CLEAR
DATA.LOAD.BINARY checksum.bin 0x40000000

GOSUB verify checksum "O0x9DFF4B6A" "0x40000000++0x2fff"
RETURNVALUES &result

IF &result

PRINT %COLOR.GREEN "First checksum verification passed"
ELSE

PRINT %COLOR.RED "First checksum verification failed"
WAIT 1.s

; Modify memory
Data.Set 0x40000100 %Long 0x12345678

GOSUB verify checksum "O0x9DFF4B6A" "0x40000000++0x2fff"
RETURNVALUES &result

IF &result

PRINT %COLOR.GREEN "Second checksum verification passed"
ELSE

PRINT %COLOR.RED "Second checksum verification failed"

ENDDO

verify checksum:
(
PRIVATE &result
PARAMETERS &expected checksum &address_range

Data.SUM &address_range /CRC32
&result=(Data.SUM()==&expected_checksum)
RETURN "&result"

PRIVATE macros that are out scope are printed in gray in the PRACTICE stack.

A% Brwrwe. PMACRO = | &3]

Mstep || Mover || @up || ¥continue || AEStop || :MEEnddo || EFuist | EMacros| RfEdit || ZEBreakpoints |

gosub G:\SchuTung\Inhalt\Englisch\PRACTICE \practice_2015_mpc'checksum. cmm "Ox9DFF4BGA™ "0x40000000++0x2FFF™ from line 7
PRIVATE &address_range = 0x30000000++0x2fff

PRIVATE &expected_checksum = 0x9DFF4B6A

PRIVATE &result = TRUE()

do G:\Schulung\Inhalt\Englisch\PRACTICE\practice 2015_mpc'\checksum. cnm
PRIVATE &result =

©1989-2024 Lauterbach Training Script Language PRACTICE

TRACE32 commands

AREA.view
AREA.CLEAR
Data.Set <address> <value>

Data.SUM <address_range>/CRC32

PRACTICE command

| PRINT %COLOR.<color> {<data>}

TRACE32 function

| Data.SUM()

Display TRACE32 message area.
Clear TRACE32 message area.
Write <value>to <address>.

Calculate CRC32 checksum for specified
<address_range>.

Print the specified data in the specified color to the
TRACES32 message area.

Returns checksum calculated by the Data.SUM
command as hex. number.

©1989-2024 Lauterbach

Training Script Language PRACTICE

76

PARAMETERS/RETURNVALUES vs. ENTRY

Using the PRACTICE commands PARAMETERS/RETURNVALUES solve the following issues known for
the ENTRY command.

1. Called script/subroutine may unintentionally overwrite LOCAL macros of the caller(s), if
the macros used with the ENTRY command are not explicitly created.

// Script entry_ issuel.cmm

AREA.view
AREA .CLEAR

LOCAL &x
&x=0x25

PRINT "Value of &"+"x before subroutine level 1
GOSUB levell 0x55

PRINT "Value of &"+"x after subroutine level 1 = " &x
ENDDO

levell:

(
ENTRY &x
RETURN

£ Brwrwe PMACRO |E=H E=l 5|

MWstep || #Bover || #up || “Mcontinue || AFstop || :EEnddo || sFiist |[Macres || BfEdit || faiBreakpoints |
block from Tine 17 to 20 N

gosub G:\Schulung\Inhalt\Englisch\PRACTICE\practice_2015_mpchentry_issuel.cmm 0x55 from line 9

do G:\Schulung\Inhalt\Englisch\PRACTICE\practice_2015_mpc'entry_issuel.cmm
&x = 0x55

do G:\Schulung'Inhalt\Englisch\PRACTICE\practice_2015_mpcentry_issuel.cmm

= | BuAREA view =0 =R
alue of &x before subroutine Tevel 1 = 25

alue of &x after subroutine level 1 = 55 -
4 [F

©1989-2024 Lauterbach Training Script Language PRACTICE | 77

// Script entry_issuel_params.cmm

AREA.view
AREA .CLEAR

LOCAL &x
&x=0x25

PRINT

GOSUB

PRINT

"Value

levell

of &"+"x before subroutine level 1

n OX55 n

1l
I
»

"Value of &"+"x after subroutine level 1

ENDDO

levell:

(
PARAMETERS &x
RETURN

Notice that the LOCAL macros of the caller(s) are out of scope for the PARAMETERS command. So

a new PRIVATE macro &x is created.

4% Bawr.we PMACRO

=)

Mistep || #®over || @up | “continue || #EStop || :MEnddo || EFList || TEMacros | REfEdit || ZFBreakpoints |

bTock from Tine 17 to 20
PRIVATE &x = 0x55

gosub G:\Schulung\Inhalt\Englisch\PRACTICE \practice_2015_mpcientry_issuel_params.cmm "0x55" from line 9

do G:\Schulung\Inhalt\Englisch\PRACTICE\practice_2015_mpchentry_issuel_params.cmm
&x = 0x25

4 3

>

= | BuAREA view =0 =R
alue of &x before subroutine Tevel 1 = 25

alue of &x after subroutine level 1 = 25 -
e [pre—rTT— r

©1989-2024 Lauterbach

Training Script Language PRACTICE

78

2. Whitespace as parameter delimiter.

The ENTRY command regards whitespace as a parameter delimiter. If one of the parameters for the
called script/subroutine is a string containing whitespaces and it is not quoted, the script is stopped by
an error, because not enough macros are provided to take all parameters.

// Script entry_issue2.cmm
PRIVATE &x &y &z

&x="My entry issue"

&y="77.

&z=TRUE ()

GOSUB levell &x &y &=z

ENDDO

levell:
(

PRIVATE &r &s &t
ENTRY &r &s &t
RETURN

Edit

ew Var Bresk Run CPU Misc Trace Perf Cov MPCSXXX Window Help

(M A deern E2R T DuNMEE B2

£ Bzwr.we PMACRO

[Mstep || Hover || @up || Hcontinue || :iEstop || Menddo || Eist || Zmacros | Bfedit || Esreakpoints |
PRIVATE &t = 1ssue 15

PRIVATE &s = entry
PRIVATE &r = My

gosub G:\Schulung\Inhalt\Englisch\PRACTICE\practice_2015_mpchentry_issueZ.cmm My entry issue 77. TRUE() from line 6

7

do G:\Schulung'\Inhalt\Englisch\PRACTICE\practice_2015_mpc\entry_issue2.cmm
PRIVATE &z = TRUE()

PRIVATE &y
PRIVATE &x

My entry issue

B::B::ENTRY My entry issue 77. TRUE()

SF:40001C5C stopped HLL up

©1989-2024 Lauterbach Training Script Language PRACTICE | 79

3. The quote issue.

If the string containing whitespaces is quoted, the quotes become part of the string if the ENTRY

command is used.

// Script entry_issue3.cmm

PRIVATE &x &y &z
&x="My entry issue"
&y="77.

&z=TRUE ()

GOSUB levell "&x" &y &z

ENDDO

levell:

(
PRIVATE &r &s &t
ENTRY &r &s &t

&r=&1 // Removes quotes from string
RETURN
)
Buwr.we PLIST EI@
M step | ¥ over || @ up (29 Continue|[21 Stop | (M Enddol| EFList |[$CiMacos|| BF Edit][22 Breakpoints|

1 |PRIVATE &x &y &z -

2 [&x="My entry issue"

3 |&y=77"

4 |&z=TRUE()

6 [GOSUE Tevell "&x" &y &z

& |ENDDO

Tevell:
12
13 PRIVATE &r &s &t
14 ENTRY &r &s &t
15 &r=&r
|_ 16 RETURN

17 -

iEK)

¥ Bawrwe. PMACRO =0 =R

M: Step][W Over][& Up][¥ Continue][:IF Stop][:W Enddo][4EFList][@Macms][%Edit][<1 Breakpoints

bTock from Tine 12 to 17
PRIVATE &t = TRUE()

PRIVATE & = "My entry i1ssue

Macro contains string (with quotes)

gosub G:\Schulung\Inhalt\Englisch\PRACTICE \practice_2015_mpcientry_issue3.cmm "My entry issue" 77. TRUE() from line &

PRIVATE &
PRIVATE &x = My

do G:\Schulung\Inhalt\Englisch\PRACTICE\practice_2015_mpchentry_issue3.cmm
PRIVATE &z = TRUE(

ey === 1 Macro contains string (no quotes)

4

// Trick to remove of the quotes
&r=&r

©1989-2024 Lauterbach

Training Script Language PRACTICE

80

The PARAMETERS command solves both issues.

// Script entry_ issue3_params.cmm

PRIVATE &x &y &z
&xX="My entry issue"
&y="77.

&z=TRUE ()

GOSUB levell "&x" "&y" "&z"

ENDDO

levell:

(
PARAMETERS &r &s &t
RETURN

4EF nwrwe PLIST EI-@
Mstep || M over || @ up |[2¥ Continuel| 1E Stop |[:M Enddo]| £EFList |[CiMacos|| B Edit][@Ereakpomts]
1 |PRIVATE &x &y &z
2 [&x="My entry issue"
3 |ay=77.
4 |&z=TRUE()
6 |GOSUB Tevell "&x" "&y" "&z"
8 |ENDDO
Tevell:
12 |
[13| PARAMS &r &s &t
14 RETURN
L 15)
.. T .

% swrwe PMACRO

Lo = s

[Msiep || Mover || @up || 2 Continue || itEstop |[#MEnddo || ZEList |[#iMacros || BfEdit || :iBreskpoints |

Tock from Tine 12 to 15
PRIVATE & = TRUE()

PRIVATE &s = 77.

PRIVATE & = My entry issue

gosub G:\Schulung\Inhalt\Englisch\PRACTICE\practice_ 2015 mpchentry_issue3_params.cmm "My entry issue"

[

"TRUEQ)" from Tine &

do G: \Schu'lung\Inha'lt\Eng'l1sch\PP.ACTICE\pract1ce 2015_mpchentry_issue3_params. cmm
PRIVATE &z =

PRIVATE &y = 77

PRIVATE &x = .y entry issue

4

©1989-2024 Lauterbach Training Script Language PRACTICE | 81

Operating System Interaction

PRACTICE can interact with the Operating System on the host computer. A well written PRACTICE script
can hide the differences in underlying Operating System and present a unified experience to the user.

Operating System Detection

Sometimes differences in the underlying host Operating System require the PRACTICE script to be a bit
more flexible in order to be truly portable. The function OS.VERSION(0) can be used to detect the host
Operating System.

;Printout host OS

IF OS.VERSION(0)>=0x50
PRINT "Unkown OS"

ELSE IF OS.VERSION(0)>=0x40
PRINT "Mac 0OS X"

ELSE IF OS.VERSION(0)>=0x30
PRINT "HP-UX"

ELSE IF OS.VERSION(0)>=0x10
PRINT "Linux"

ELSE
PRINT "MS Windows"

ENDDO

;Open a serial terminal - host dependent code
TERM.RESet
IF OS.VERSION(0)<0x10 ;MS Windows
(
TERM.METHOD COM COM1 9600. 8 NONE 1STOP NONE
)
ELSE ; Linux?
(
TERM.METHOD COM /dev/ttyS0 9600. 8 NONE 1STOP NONE
)
TERM.SCROLL ON
TERM.view
ENDDO

©1989-2024 Lauterbach Training Script Language PRACTICE | 82

Printing Results

Results can be sent to the system clipboard, a file or a connected printer. Physical printers must be
configured correctly in the TRACES32 configuration file (usually ~~/config. t32), although Windows users
will not need to do anything here.

To print results:
1. Select a printer using PRinTer.select (for manual selection via GUI), PRinTer.FILE.

2. Optionally format the output: PRinTer.FileType | PRinTer.ClipBoard / PRinTer.SIZE
/PRinTer.OFFSET

3. Open a connection to the printer with PRinTer.OPEN. Use PRinTer.EXPORT to generate CSV
data.

4. Re-direct the output from the command to the chosen printer using WinPrint.<command>

5. Close the printer connection with PRinTer.CLOSE

For a more detailed explanation of the commands and options, refer to “PRinTer” in PowerView Command
Reference, page 261 (ide_ref.pdf).

; Example 1 - save a memory dump to a file
LOCAL &file

; Get a temporary file from the 0OS
&file=0S.TMPFILE ()

PRinTer .FILE "&file"
PRinTer.FileType ASCIIE
WinPrint.Data.dump 0x2200--0x22FF
&file="&file"+".1lst"

; Display the results

TYPE "&file"

ENDDO

©1989-2024 Lauterbach Training Script Language PRACTICE | 83

; Example 2 - Save two memory dumps as CSV files for viewing in Excel
LOCAL &file
&file=0S.TMPFILE ()

; Adding a numerical suffix to the file name will allow

; PRinTer .EXPORT to automatically increment the filename

; each time it i1s used. Otherwise it over-writes the existing file.
&file="&file"+"-1"

PRinTer .EXPORT.default "&file"

WinPrint.Data.dump 0x2200--0x22FF /Word
WinPrint.Data.dump 0x2300--0x23FF /Byte

&file="&file"+".lst"

TYPE "&file"
&file=STRing.Replace("&file","-1.1st","-2.1st",0)
TYPE "&file"

ENDDO

; Example 3 - Save the same memory dump as ASCII and CSV to
; the same file

LOCAL &file

&file=0S.TMPFILE ()

; Set format to CSV initially
PRinTer.FileType CSV
PRinTer .OPEN "&file"

WinPrint.Data.dump 0x2200--0x22FF /Word

; Close the file, set the format to ASCIIE, then re-open the
; file to append new data

PRinTer .CLOSE

PRinTer.FileType ASCIIE

PRinTer.OPEN "&file" /Append

WinPrint.Data.dump 0x2200--0x22FF /Word
PRinTer .CLOSE
&file="&file"+".lst"

TYPE "&file"
ENDDO

©1989-2024 Lauterbach Training Script Language PRACTICE

84

Accessing Environment Variables

Environment variables can be accessed from a PRACTICE script by using the function
OS.ENV("<env_var>"). The value of the variable is returned and can be assigned to a PRACTICE macro.

; This example will only work on a Windows host

LOCAL &username
&username=0S.ENV ("USERNAME ")

AREA.view
PRINT "Hello, &username"
ENDDO

A more extensive example which will run on Windows, Linux or MacOS can be found at
~~/demo/practice/my_environment . cmm.

©1989-2024 Lauterbach Training Script Language PRACTICE | 85

Running a Command

The OS.* family of commands can be used to launch programs on the host Operating System from within a
PRACTICE scripts. A brief overview is given here but more information can be found at “OS” in PowerView
Command Reference, page 241 (ide_ref.pdf).

0S.Area <cmdline>

0S.Command <cmdline>

0S.Hidden <cmdline>

0OS.screen <cmdline>

0S.Window <cmdline>

Execute a command on the host. The results will be displayed
in the AREA window. the script will block until the command
has completed.

Execute multiple commands on the host (use host native
piping). PRACTICE macros can be inserted into the
command line. On Windows hosts, the first argument must be
the command interpreter (CMD.EXE). On Windows hosts the
PRACTICE script does not block. On other hosts use '&’ to
force non-blocking behavior.

Execute a command; the output is discarded. PRACTICE
script blocks until the command completes.

Open a host shell and execute the command line. This is non-
blocking.

Execute a host command and all output will be re-directed to a
new TRACE32 window. This is non-interactive and the
PRACTICE script blocks until the command has completed.

; List all *.cmm files in the current AREA window

; For Windows hosts

OS.Area dir *.cmm

; For Linux/MacOS hosts
0OS.Area ls -1 *.cmm

; List all *.cmm files in a new TRACE32 window (OS.Window)
; For Windows hosts

O0S.Window dir *.cmm

; For Linux/MacOS hosts

O0S.Window 1ls -1 *.cmm

; List all *.cmm files to a file in the user’s home directory
; For Windows hosts

O0S.Command CMD /C dir *.cmm > %USERPROFILE%/tmpfile.lst

; For Linux/MacOS hosts

OS.Command 1ls -1 *.cmm > SHOME/tmpfile.lst

©1989-2024 Lauterbach Training Script Language PRACTICE

86

File Manipulation

A PRACTICE script can manipulate files in the host Operating System file system (display, copy, delete,
etc.). A number of commands are available and it is recommended to use these instead of the underlying
Operating Systems’ native commands to make scripts more portable. More information can be found at
“File and Folder Operations” in PowerView User's Guide, page 77 (ide_user.pdf).

In addition, PRACTICE supports 9 file handles (#1 through #9) that are used to open, close, read and write

files.
. Open file
I OPEN #<buffer> <filename> | Read | Write | Create | Binary
. Close file
I CLOSE #<buffer>
J Read data from an open file
I READ #<buffer> [%LINE] <parlist>
J Write data to an open file

I WRITE #<buffer> <parlist>

; Assume file "file.txt" contains
; Hello and Welcome

; Read each word

LOCAL &argl &arg2 &arg3 &line
OPEN #1 "file.txt" /Read
READ #1 &argl &arg2 &arg3
CLOSE #1

; Print them in reverse order
AREA.view
PRINT "&arg3 &arg2 &argl"

; Read the entire line
OPEN #1 "file.txt" /Read
READ #1 %LINE &line

CLOSE #1
PRINT "Line Reads: &line"
ENDDO

©1989-2024 Lauterbach Training Script Language PRACTICE | 87

Data can be written using WRITE or WRITEB (for binary data).

; Example of writing text data to a file in different styles
LOCAL &fname &sname &file

DIALOG.view
(
HEADER "Write Test"
POS 0. 0. 30. 4.
BOX "Please Enter your details"
POS 1. 1. 10. 1.
TEXT "First name:"
POS 1. 2. 10. 1.
TEXT "Last name:"
POS 12. 1. 17. 1.

F: DEFEDIT "" ""
POS 12. 2. 17. 1.
S . EDIT nn nn

POS 24. 4. 6. 1.
DEFBUTTON "OK" "CONTinue"
)
STOP
&fname=DIALOG.STRING (F)
&sname=DIALOG.STRING(S)
DIALOG.END

&file=0S.TMPFILE ()

OPEN #1 "&file" /CREATE

; Write first line

WRITE #1 "File saved for &fname &sname"

; Write second line which should be identical to the first
WRITE #1 "File saved for "+"&fname"+" "+"&sname"

; Write third line which will be identical to the other two

; The %CONTinue allows the current line to be on the same line as the
; previous write.

WRITE #1 "File saved for " "&fname"

WRITE #1 %CONTinue " " "&sname"

; Close the file
CLOSE #1

TYPE &file

ENDDO

©1989-2024 Lauterbach Training Script Language PRACTICE | 88

; Example of writing binary data to a file
LOCAL &file

&file=0S.TMPFILE ()

OPEN #2 "&file" /Binary /Create

WRITEB #2 0x48 0x65 0x6C 0x6C Ox6F
WRITEB #2 0x20 0x57 O0x6F 0x72 0x6C 0x64
CLOSE #2

TYPE &file
ENDDO

©1989-2024 Lauterbach Training Script Language PRACTICE | 89

These techniques can be combined with the printing to a file method from earlier to extract and parse
information from a target system. The example below shows how to build a list of all the running threads in a
FreeRTOS based system and display them in a custom dialog.

LOCAL &tasklist &tmpfile &line &tmpline &tfile
&tasklist=""

&tmpfile=0S.TMPFILE ()

&line=""

; Print task list window contents to a temporary file
PRinTer.FILE "&tmpfile"

PRinTer.FileType ASCIIE

WinPrint.TASK.TaskList

&tfile="&tmpfile"+".lst"

OPEN #1 "&tfile"

; Read first two lines and throw them away
; These are the header and column titles
READ #1 %LINE &line

READ #1 %LINE &line

WHILE !FILE.EOF (1)

(
READ #1 %LINE &line
IF "&line"!=""

; Extract only the task name part of the line
&tmpline=STRing.MID("&line",10.,16.)
&tasklist="&tasklist"+"&tmpline"+","

)
CLOSE #1
DIALOG.view
(
HEADER "FreeRTOS Task List"
POS 0. 1. 25. 10.
TSK: LISTBOX "" "'
POS 12. 12. 10. 1.
DEFBUTTON "Close" "CONTinue"
)
DIALOG.Set TSK "" "&tasklist"
STOP

DIALOG.END
ENDDO

©1989-2024 Lauterbach Training Script Language PRACTICE | 90

Time and Date Functions

The date and time can be retrieved using the DATE.DATE() and DATE.TIME() functions respectively. More
information about date and time functions can be found at “DATE Functions” in PowerView Function
Reference, page 37 (ide_func.pdf).

AREA.view

PRINT DATE.DATE ()
PRINT DATE.TIME ()
ENDDO

These can be used to add timestamps to reports or log files or to include the time and date in log file names.

LOCAL &date &time &d &m &y &logfile
&date=DATE.DATE ()

&time=DATE.TIME ()

&d=DATE.DAY ()

&m=DATE .MONTH ()

&y=DATE.YEAR ()

; Remove ‘.’ and ‘:’ characters
&d=STRing.Replace("&d",".","",0
&m=STRing.Replace("&m",".", " ",
&y=STRing.Replace("&y",".","",
&time=STRing.Replace("&time",":","

)
0)
0)
_",0)

; Create logfile name
&logfile="log_ "+"&d"+"_"+"&m"+"_"+"&y"+"_"+"&time"+".log"

; Check to see if logdir is valid or not.
; If not, create it.
IF !OS.DIR("logdir™")

MKDIR "logdir"

PRINT "Creating new log file: &logfile"
OPEN #1 "logdir/&logfile" /Create
WRITE #1 "LOG File created on &date at &time"

CLOSE #1

TYPE "logdir/&logfile"
ENDDO

©1989-2024 Lauterbach Training Script Language PRACTICE | 91

/0 Commands

Output Command

PRINT <format> <parlist>

DIALOG.OK <message>

PRINT "FLASH programmed successfully"

PRINT %ERROR "FLASH programming failed"

DIALOG.OK "Patch done"

! E Patch done
L

Input Command

ENTER <parlist> Window based input

INKEY [<par>] Input command (character)
DIALOG.YESNO <message> Create a standard dialog
DIALOG:.File <message> Read a file name via a dialog

©1989-2024 Lauterbach Training Script Language PRACTICE | 92

INKEY ; Wait for any key

INKEY &key ; Wait for any key, key
; code 1is assigned to
&key

; PRACTICE script dialog.cmm
DIALOG.YESNO "Continue with hardware test?"

1] E Continue with hardware test?
L

ENTRY &result

IF &result

(
PRINT "Test started"

DO test2
)
ELSE

PRINT "Test aborted"
ENDDO

DIALOG.File *sre
ENTRY &filename

Data.LOAD.S3record &filename

ENDDO

©1989-2024 Lauterbach Training Script Language PRACTICE | 93

I/0 via the AREA Window

An I/O window is needed for PRACTICE inputs and outputs. This is handled by an AREA window.

To open and assigh an AREA window:

1. Create an AREA window

I AREA.Create [<area> |
2. Select an AREA window for PRACTICE I/O.
I AREA.Select [<area>]

3. Select the screen position of the AREA window. This command is used here, because it allows

you to assign a name to an AREA window. This is useful, if you want to delete this window after
the 1/0O procedure.

WinPOS [<pos>] [<size>] [<scale>] [<window_name>] [<state>]
[<header>]

4. Display AREA window

I AREA.view [<area>]

To remove AREA window:

1. Resets the AREA window settings to the default settings: the message area (AREA A000) is
used for error and system messages. No other AREA window is active.

I AREA.RESet

2. Delete a specific window.

I WinCLEAR [<pagename> | <windowname> | TOP]

©1989-2024 Lauterbach Training Script Language PRACTICE | 94

; PRACTICE file iowindow.cmm

AREA.Create IO-AREA
AREA.Select IO-AREA

WinPOS

rrorororr IOl

AREA.view IO-AREA

PRINT "Please enter the address"
PRINT "Address="

ENTER &a

PRINT " "

PRINT "Entered address=" &a
WAIT 2.s

AREA.RESet

WinCLEAR IO1

ENDDO

©1989-2024 Lauterbach

Training Script Language PRACTICE

95

Event Control via PRACTICE

ON ERROR <command> Perform commands on PRACTICE runtime error

ON SYSUP <command> Perform commands when the communication between debugger
and CPU is established

ON POWERUP <command> Perform commands on target power on

ON ERROR GOTO

(
DIALOG.OK "Abortion by error!"
ENDDO (0!=0)

ON POWERUP GOTO startup

IF ! (STATE.POWER())
STOP

startup:
SYStem.CPU TC1796
WAIT 0.5s
SYStem.UP

ENDDO

©1989-2024 Lauterbach Training Script Language PRACTICE | 96

Simple Dialogs

TRACE32 provides a number of simple dialogs which can be used to inform the user of something or to
prompt them to make a simple choice.

DIALOG.MESSAGE " <text>" Creates a standard dialog box with an information icon
and the user text displayed. The dialog closes when the
user clicks the OK button.

DIALOG.OK " <text>" Creates a standard dialog box with an exclamation icon
and the user provided text. The dialog closes when the
user clicks the OK button.

DIALOG.YESNO " <fext>" Creates a standard dialog box with a question mark
icon and the user provided text. The user is presented
with two buttons. Clicking YES returns a TRUE value to
the script whilst clicking NO returns a FALSE value to
the script. Either button will close the dialog.

DIALOG.MESSAGE "This message is irrelevant"

T32 PowerPC X
o This message is irrelevant

DIALOG.OK "Test Succeeded!"

T32 PowerPC *

| TestSucceeded!

©1989-2024 Lauterbach Training Script Language PRACTICE | 97

LOCAL &result
DIALOG.YESNO "Program the FLASH?"
ENTRY &result
if &result
GOSUB prog_flash
ENDDO

T32 PowerPC

o Program the FLASH?

Text can be split across multiple lines in these simple dialogs. The list below shows the methods of achieving
this.

DIALOG.OK "Hello"+CONVert.CHAR (0x0OD)+"World!™"
DIALOG.OK "Hello"+CONVert.CHAR (0xO0A)+"World!"
DIALOG.OK "Hello"+CONVert.CHAR (0xOAOD) +"World!"

DIALOG.OK "Hello" "World"

T32 PowerPC *

Hello
World!

Three of these use the CONVert.CHAR() function to insert carriage return (0x0D, ' \r ') and/or line feed
(0x0a, '\n"') characters into the string. The fourth version simply presents two strings and TRACES32 will
put one per line.

©1989-2024 Lauterbach Training Script Language PRACTICE | 98

Using the technique for splitting PRACTICE lines can help break up dialogs into something more readable.

DIALOG.OK "Please switch ON in the following sequence:" \
"1l) Switch on TRACE32 hardware, " \
"2) Switch on the target board."

T32 PowerPC *

Please switch ON in the following sequence:
1) Switch on TRACE32 hardware.
2) Switch on the target board.

©1989-2024 Lauterbach Training Script Language PRACTICE | 99

Dialog Programming

Complex dialogs can be created in PRACTICE scripts. These allow users to develop custom interfaces for
their scripts. Dialogs can be created in one of two ways. The first requires putting the dialog code into a
separate file with a .dlg extension and calling it with the DIALOG.view command.

DIALOG.view <filename> Creates a dialog based upon the code in the dialog file,
<filename>.

; File basicdialog.dlg

POS 1. 1. 10.
TEXT "A Basic Dialog"

; File dialogscript.cmm
DIALOG.view basicdialog.dlg
SCREEN.WAIT //update screen
WAIT 3.s

DIALOG. END

ENDDO

The second method includes the dialog code within the script itself.

; Example code to create a simple dialog
DIALOG.view
(
POS 1. 1. 10.
TEXT "A Basic Dialog"
)
SCREEN.WAIT //update screen
WAIT 3.s
DIALOG. END
ENDDO

Both examples produce the same result. Dialogs automatically size themselves to encompass all of the
controls placed within it.

A= | & s

A Basic Dizlog

I DIALOG.END Closes the currently active dialog window.

©1989-2024 Lauterbach Training Script Language PRACTICE | 100

By default dialog windows are contained within the parent window of TRACES32 unless you have specified a

non-MDI style interface. Dialogs can be created as free-floating windows by using the WinExt command.

I WinExt.<command>

; Example of non-MDI dialog

WinExt .DIALOG

(
TEXT "Hello"
BUTTON "Close"

)

STOP

DIALOG.END

ENDDO

Aoy [=] & |l

Basic Dialog
Close

components trace D

By using the PRACTICE command STOP in this example, the dialog becomes modal. The script will
wait until the user (or the script) continues execution. This CONTinue comes when the command
associated with the BUTTON control is executed. This is activated when the user clicks the button.

Adding the prefix WinResist will cause the dialog to remain displayed after a call to WinCLEAR.
Multiple command prefixes can be applied to each dialog.

7

; operation.

WinResist .WinExt .DIALOG

(
TEXT "Hello"
BUTTON "Close"
)
STOP
DIALOG. END
ENDDO

"CONTINUE"

"CONTinue"

Pre-command for creating an external window.

Example of non-MDI dialog which will persist through a WinCLEAR

©1989-2024 Lauterbach

Training Script Language PRACTICE

101

A dialog can be resized using the WinRESIZE command. This can be performed dynamically and allows for

hidden opti

WiInRESIZE [<width>] [<height>] [<windowname>]

ons.

WinExt .DIALOG

(

)

; Set
WinRE
STOP
DIALO
ENDDO

HEADER "Hidden Option"
POS 0. 0. 20. 4.
BOX ""
POS 1. 1. 15. 1.
TEXT "Please select an
POS 1. 2. 8. 1.
CHOOSEBOX "Option A" ""
POS 9. 2. 8. 1.
CHOOSEBOX "Option B" ""
POS 22. 2. 8. 1.
CHOOSEBOX "Option C" ™"
POS 5. 4. 7. 1.
BUTTON "Options>>"
(

WinRESIZE 32. 5.
)
POS 22. 4. 8. 1.
BUTTON "<<Options"
(

WinRESIZE 20. 5.

dialog’s initial size
SIZE 20. 5.

G.END

option"

Resizes the open window that has the
name <windowname>. If no name is
specified, the top most window is resized.
A <windowname> can be created with the
WinPOS or NAME commands.

©1989-2024 Lauterbach

Training Script Language PRACTICE | 102

A Hidden ... [= | & |3 A Hidden Option = =R

Please select an option Please select an option
O option A O Option B (O option A D Option B (O option C
Options=> Options>> <<0Options

A Click "Options>>" to expand the dialog

B Dialog shown expanded. Click "<<Options" to shrink the dialog.

Control Positioning

Control placement starts at (0, 0) which is the top left of the dialog. The default size is 9 units wide and 1 unit
high. After a control is placed the next position is calculated by advancing the Y co-ordinate by one and
keeping the same X co-ordinate. The size defaults to the same size as the last placed control. To override

the size and position of the next control to be placed, use the POS command.

POS [<x>] [<y>] [<width>] [<height>] Defines the size and position of the next control to be
placed on a dialog window.

<x> 0 - 16383.5 units. Can be specified in 0.5 unit increments.
<y> 0 - 8191.75 units. Can be specified in 0.25 unit increments.
<width> 0 - 16383.5 units. Can be specified in 0.5 unit increments.
<height> 0 - 8191.75 units. Can be specified in 0.25 unit increments.

, The value of the previous POS argument is used. In the example here
the previous value for the <width> is preserved.
; <xX> <y> <width> <height>
POS 3. 7. , 2.

<no_argument> The value of the previous POS argument is used, starting from right to
left. In the example below, the values for <width> and <height> will be
taken from the previous POS command.
; <x> <y> <width> <height>
POS 3. 7.

The examples above have a period "." after the numbers in the arguments to POS. This instructs TRACE32
to treat these as decimal numbers.

©1989-2024 Lauterbach Training Script Language PRACTICE | 103

Controls with text in them will attempt to fit the text to the size of the control.

DIALOG.view

(
POS 1. 1. 5. 1.
BUTTON "Hello and Welcome!"
POS 1. 3. 15. 1.
BUTTON "Hello and Welcome!"
POS 10. 5. 6. 1.
BUTTON "Close" "CONTinue"

)

STOP

DIALOG. END

ENDDO

ADi. [o[& |5
o and Weloo
Hello and Welcome!

Close

©1989-2024 Lauterbach

Training Script Language PRACTICE

104

Control Properties

Some dialog controls must be associated with a PRACTICE label. This provides some extra capabilities:
. PRACTICE script can enable or disable the control.

. The PRACTICE script can extract user input or control state information via the label.

J The PRACTICE script can set a value into the control by using the label.

o The PRACTICE script can set the control’s state.

o If a control has a command block associated with it, this can be executed.

©1989-2024 Lauterbach Training Script Language PRACTICE | 105

Enable or Disable a Control

DIALOG.Enable </abel> Enable the control which is associated with </abel>.
DIALOG.Disable </abel> Disable the control which is associated with </label>.
DIALOG

(
POS 1. 1. 10. 1.
CBl: CHECKBOX "Enable"
(
IF DIALOG.BOOLEAN (CB1)
DIALOG.Enable T1
ELSE
DIALOG.Disable T1
)
POS 1. 2. 10. 1.
T1: EDIT "" "*"
)

;Set starting state for controls after the DIALOG command but before

;the STOP.
DIALOG.DISABLE T1
STOP
ENDDO
A= =] A= =]
[JEnable [Enable

[]

A When the dialog opens the CHECKBOX is enabled and the EDIT control is not.
B Clicking the CHECKBOX will enable the EDIT control.

DIALOG.BOOLEAN(<label>) Returns the boolean value of the dialog control
associated with <label>.

©1989-2024 Lauterbach Training Script Language PRACTICE | 106

Collect data from a control

Information from a control is made available to the PRACTICE script through the label associated with that
control. The method of extraction is to use the DIALOG.STRing() function.

DIALOG.STRing(<label>)

DIALOG.STRing2(<label>)

LOCAL &userInput

DIALOG.view
(

POS 1. 1. 10. 1.

TXT: EDIT "" ""

POS 1. 2. 10. 1.
BUTTON "OK" "CONTinue"

)

STOP
&userInput=DIALOG.STRing (TXT)
AREA.view
PRINT "User entered: &userInput"
ENDDO

= | BiAREA oo s

"~
User entered: Hello v
< >

Returns the data from the dialog control associated
with <label>.

Retrieves the complete list of values from a list dialog
control: LISTBOX, MLISTBOX, DLISTBOX,
COMBOBOX, etc. Returned values are in
comma-separated string.

©1989-2024 Lauterbach

Training Script Language PRACTICE | 107

LOCAL &toppings &ordered
DIALOG.view
(&
HEADER "Dialog.string2 () Example"
POS 1. 1. 15. 10.
BOX "Select Toppings"
POS 2. 2. 13. 1.
CBl: CHECKBOX "Ham"
(
GOSUB check_item "Ham"
)
CB2: CHECKBOX "Pepperoni"
(
GOSUB check_item "Pepperoni"
)
CB3: CHECKBOX "Olives"
(
GOSUB check_item "Olives"
)
CB4: CHECKBOX "Mushrooms"
(
GOSUB check_item "Mushrooms"
)
CB5: CHECKBOX "Pineapple"
(
GOSUB check_item "Pineapple"
)
CB6: CHECKBOX "Onion"
(
GOSUB check_item "Onion"
)
CB7: CHECKBOX "Sweetcorn"
(
GOSUB check_item "Sweetcorn"
)
CB8: CHECKBOX "Jalapenos"
(
GOSUB check_item "Jalapenos"
)
POS 18. 1.5 13. 9.
TOP: MLISTBOX "" "'
POS 26. 12. 8. 1.
DEFBUTTON "Order" "CONTinue"

STOP

©1989-2024 Lauterbach

Training Script Language PRACTICE

108

&ordered=DIALOG.STRing2 (TOP)
DIALOG.OK "You ordered: &ordered"
DIALOG. END

ENDDO

check_item:
ENTRY &newitem

&newitem=&newitem ;Remove any extra quotes
IF "&toppings"=="" ;Is this the first item to be added to the list
&toppings="&newitem"
ELSE
&toppings="&toppings"+", "+"&newitem"
DIALOG.Set TOP "" "&toppings"
RETURN
"Avicssing0bempe (S @) 32 PowerhC X
Select Toppings Ham | You ordered: Ham,Pepperoni,Pineapple
[/ Ham Pepperoni
[Pepperoni Pineapple
[olives
[IMushrooms
[Pineapple
[Jonion
[sweetcorn
[alapenos

©1989-2024 Lauterbach Training Script Language PRACTICE | 109

Setting a value or state to a control

Controls that can be associated with a label can be set or have data entered into them using the

DIALOG.Set command.

I DIALOG.Set </abel> <value>

DIALOG.view

(
POS 1. 1. 5. 1.

T1l: DYNTEXT "Hello"
POS 1. 2. 15. 1.
Cl: CHECKBOX "Checkbox" ""

POS 10. 5. 6. 1.
BUTTON "Toggle"
(
IF DIALOG.BOOLEAN (C1)
(
DIALOG.Set T1 "Hello"
DIALOG.Set Cl FALSE()

)

ELSE

(
DIALOG.Set T1 "World"
DIALOG.Set Cl1l TRUE()

)

)
DIALOG.Disable C1

STOP
DIALOG.END
ENDDO

A o || B || ER

Hello

Checkbox

Toggle

Set the <value> to the control associated with </abel>.

Abi.[=] & =]

World

Checkbox

Toggle

©1989-2024 Lauterbach

Training Script Language PRACTICE

110

Execute a command

It is possible to execute the command or block associated with any other control. This is done using the

DIALOG.EXecute command.

DIALOG.EXecute </abel>

DIALOG.view

(
POS 1. 1. 10.

T1l: DYNTEXT "Placeholder"

POS 1. 2. 10.

T2: DYNTEXT "Placeholder"

POS 15. 1. 9.

Bl: BUTTON "Set Text 1"

(

DIALOG.Set T1

)
POS 15. 3. 9.

B2: BUTTON "Set Text 2"

(

DIALOG.Set T2

)
POS 15. 5. 9.

B3: BUTTON "Set both"

(

DIALOG.EXecute Bl
DIALOG.EXecute B2

STOP
DIALOG.END
ENDDO

Execute the command of the control which is
associated with <label>.

©1989-2024 Lauterbach

Training Script Language PRACTICE

111

Placeholder Set Text 1

Set Text 2

A

Hello
Il World

©1989-2024 Lauterbach

Training Script Language PRACTICE

112

File Browsing

PRACTICE provides several commands for file and directory browsing. There are two broad categories:
those that return a value like a subroutine and those that can set the returned value to a label.

DIALOG.DIR <directory_name> Creates a dialog box to choose a directory name.
<directory_name> must contain wildcard characters.

DIALOG:File <file> Creates a file chooser dialog box. <file> must contain
wildcard characters. The file must exist and the user
must have read access to the file. The file name
returned contains the full path.

DIALOG.File.SAVE <file> Creates a file chooser dialog box. <file> must contain
wildcard characters. The file need not exist but the user
must have permissions to create the file in the selected
directory. The file name returned contains the full path.

LOCAL &filename

DIALOG.File.open *.cmm

ENTRY %LINE &filename ;Use ENTRY to obtain result from
;DIALOG.FILE. Added %LINE option in
;case the file name had spaces in it.

PRINT "&filename selected."

;To extract just the file name
PRINT "File name is "+0S.FILE.NAME (&filename)

;To extract the path information
PRINT "Path details are "+0OS.FILE.PATH (&filename)
ENDDO

The above example also uses the OS.FILE.NAME() and OS.FILE.PATH() functions to extract the file name
and file path respectively.

©1989-2024 Lauterbach Training Script Language PRACTICE | 113

DIALOG.SetDIR </abel> <dir_path>

DIALOG.SetFile </abel> <file_name>

DIALOG.SetFile.SAVE </abel> <file_name>

LOCAL &fname
DIALOG.view
(

POS 1. 1. 25. 1.
FILE: EDIT "" "M

POS 30. 1. 5. 1.

Creates a dialog box to choose a directory name.
<dir_path> must contain wildcard characters.
The result is placed into the <label>.

Creates a file chooser dialog box. <file_name>
must contain wildcard characters. The file must
exist and the user must have read access to the
file. The result will be placed into the EDIT control
associated with </label>.

Creates a file chooser dialog box. <file_name>
must contain wildcard characters. The file need
not exist but the user must have permissions to
create the file in the selected directory. The result
will be placed into the EDIT control associated
with <label>.

B: BUTTON "..." "DIALOG.SetFile FILE *"

POS 30. 3. 5. 1
BUTTON "OK" "CONTinue"
)
STOP
&fname=DIALOG.STRing (FILE)
DIALOG. END
PRINT "File - &fname"
ENDDO

The DIALOG.SetFile command has been attached to the BUTTON. Commands can be attached to some
controls. If the command is a single line it can be enclosed in quotes (). If the command is more complex it

can be a PRACTICE block (enclosed in parentheses).

©1989-2024 Lauterbach

Training Script Language PRACTICE | 114

Ilcons

TRACE32 has a number of built-in icons which can be used in dialog or menu programming. These are

added by using the syntax [:<icon_name>] in the text part of a control.

DIALOG.view
(

POS 1. 1. 8.
BUTTON "[:profile]Profile"

)
STOP
ENDDO

A list of internal icons can be displayed. Select the icon and the name is displayed.

Misc Trace Pef Cov PPC4lx Window Help

&\ko Oscillator

& Frequency Counter
& Pulse Generatar
& Pulse Generatar 2
@ Runtime

[Load Map
e Memory Map

Flash Programmin
g g

“ Choose Colors...
éb Interface Config...

Japanese Menu

74 Edit bitmap template

| Display internal icon library

i t. w02 ~|s (2= 2B 2|eaxo|a]ua]m]z]a&l.]r
oM @ &= vl o R | @O ® E| M + | & 0 & | B I
=5 n w2z I O#F| | E|| @ e 2 E e | 8 — @ D

& 85 X mm @722 R H 4B e A& QA AT & & | =B
Y H @ A BT B x & ;& B | W @R E w Mmoo QL AR s MY m
v | wl & | (2 (x|nlgfe AlwiEm = Mix o LlEolslE s

A By & B H| v &= B @] K @K [B| a2 Q| H

2| m| A el @ « = & oy LT 5 @ A~ R W
W 2B e | o - |[B A S RS R+ I + ~ = & =T

of |7 || ff | & m| /) %~ (R | F | MW+ P R E (e MM E e & B

R @ o 8| & H 3 F @ 2 A E DL D 2 ¢~ on s
Icon name: W

©1989-2024 Lauterbach Training Script Language PRACTICE | 115

Dialog Example

A complete list of dialog controls can be found in “PowerView Command Reference” (ide_ref.pdf). In this
section we will examine a few of them in the context of a complex example. The full version of this script can
be found in ~~/demo/practice/dialogs/dialog_example_generic.cmm

First, declare some local macros to be used in the script. Some of them are given default values. Some lines
have been split using the "\" character to make the script more readable here. Some assignments, like
&instr are made using multiple assignments to build up a longer value.

LOCAL &bond &batman &captain &bondsel &captainsel &batmansel &expand \
&progress &instr &myname

&bond="Sean Connery,George Lazenby,Roger Moore, Timothy Dalton, "
&bond="&bond"+"Pierce Brosnan,Daniel Craig"

&batman="Adam West,Michael Keaton,Val Kilmer,George Clooney, "
&batman="&batman"+"Christian Bale,Ben Affleck"
&captain="Jonathon Archer,James Kirk,Jean-Luc Picard, "
&captain="&captain"+"Benjamin Sisko,Katherine Janeway"

&expand=0.
&progress=0.

&instr="Instructions for USE"+CONVert.CHAR(10.)

&instr="&instr"+"============="+CONVert.CHAR (10.)
&instr="&instr"+"1l) Enter your name. We will not send you spam"
&instr="&instr"+" e-mail ;-)"+CONVert.CHAR(10.)

&instr="&instr"+"2) Select an option in the ""Options"" pane." \
+CONVert.CHAR(10.)

&instr="&instr"+"3) Double-click to select an item from the list." \

+CONVert.CHAR(10.)
&instr="&instr"+"4) Once an item from each category has been"
&instr="&instr"+" selected, click ""OK""."+CONVert.CHAR(10.)

Display the dialog. The characters "s+" after the opening parenthesis allow for runtime macro substitution
into the dialog controls. The code below will create a header and add a text line and edit field to the dialog.

DIALOG.view
(&+
HEADER "Dialog Example"
POS 1. 0. 20. 1.
TEXT "Please enter your name:"
POS 22. 0. 24. 1.
MYNAME: DEFEDIT "" ""

The next few lines add a box and a group of radio buttons (CHOOSEBOXes) into the box pane. Each
CHOOSEBOX is part of the same group. The label name takes the form <group>.<member>and TRACE32
ensures that only one member of each group can be selected at any one time. Each CHOOSEBOX has a
command associated with it which will be executed when the user selects that control.

©1989-2024 Lauterbach Training Script Language PRACTICE | 116

The command has the characters "s-" after the opening parenthesis to disable macro substitution during
the execution of the command. This prevents a double substitution taking place on the macros used in the
command. Each command block checks to see if a selection for that group has already been made. If it
hasn’t the list is displayed. If a selection has already been made the list of items is displayed and the
selected one highlighted. This is done with the two forms of the DIALOG.Set command.

POS 1. 1. 20. 5.
BOX "Options"
POS 2. 2. 15. 1.
O.BOND: CHOOSEBOX "James Bond"
(&-
IF "&bondsel"==""
DIALOG.Set SEL "" "&bond"
ELSE
DIALOG.Set SEL "&bondsel" "&bond"
)
O.BMAN: CHOOSEBOX "Batman"
(&-
IF "&batmansel"==""
DIALOG.Set SEL "" "&batman"
ELSE
DIALOG.Set SEL "&batmansel" "&batman"
)
O.CAPN: CHOOSEBOX "Star Trek"
(&=
IF "&captainsel"==""
DIALOG.Set SEL "" "&captain"
ELSE
DIALOG.Set SEL "&captainsel" "&captain"

Here is the code that draws the list and initially populates it with the sbond list. When an item in the list is
double-clicked by the user the command is executed and, again, macro substitution is temporarily disabled.
The current member of the CHOOSEBOX group is determined and the macro for the selection from that
group is updated. Then one of the CHECKBOXes is checked to indicate that a selection for that group has
been made. A macro containing the percentage completion is updated and this is used to update the
progress bar. Once progress exceed 99% the OK button on the dialog is enabled, using DIALOG.Enable.

©1989-2024 Lauterbach Training Script Language PRACTICE | 117

POS 22. 1.5 25. 4.
SEL: LISTBOX "&bond"
(&=

IF DIALOG.BOOLEAN (O.BOND)

(
&bondsel=DIALOG.STRing (SEL)
DIALOG.Set B_SEL "ON"

)

ELSE IF DIALOG.BOOLEAN (O.BMAN)

(
&batmansel=DIALOG.STRing (SEL)
DIALOG.Set BM_SEL "ON"

)

ELSE

(
&captainsel=DIALOG.STRing (SEL)
DIALOG.Set C_SEL "ON"

)

&progress=&progress+34.

DIALOG.Set PBAR &progress

IF &progress>99.
DIALOG.Enable BOK

This excerpt draws a box with three CHECKBOXes and a progress bar in it. The CHECKBOX controls will
be disabled and only updated via the script to prevent un-wanted user interaction.

POS 1. 6. 45. 3.
BOX "Selection made"
POS 2. 7. 12. 1.

B_SEL: CHECKBOX "Bond Selected" ""
POS 18. 7. 12. 1.

BM_SEL: CHECKBOX "Batman Selected" ""
POS 32. 7. 12. 1.

C_SEL: CHECKBOX "Captain Selected" ""
POS 1. 9. 45. 3.
BOX "Progress"
POS 2. 10. 43. 1.

PBAR: BAR

©1989-2024 Lauterbach Training Script Language PRACTICE | 118

Here, a TREEBUTTON is used to expand or reduce the size of the dialog. This allows for a set of hidden
instructions to be made visible.

POS 1. 12. 1. 1.
TB1: TREEBUTTON ""
(&=
IF &expand==
(
WinRESIZE 48. 18.
&expand=1
DIALOG.Set TB1 "ON"
)
ELSE
(
WinRESIZE 48. 13.
&expand=0
DIALOG.Set TB1 "OFF"

This code adds a TEXTBUTTON next to the TREEBUTTON providing the user with a larger area to click.
The TEXTBUTTON uses DIALOG.EXecute to execute the command of the TREEBUTTON.

POS 2. 12. 10. 1.
TEXTBUTTON "Instructions"
(

DIALOG.EXecute TB1
)

This code draws a button with the text “OK” and which will execute the command CONTinue when clicked
by the user. It then creates an INFOTEXT control which will display the text stored in macro &instr. The

other options to INFOTEXT configure the border style, font and background color. The closing parenthesis
indicates the end of the dialog controls.

POS 40. 12. 8. 1.

BOK: BUTTON "OK" "CONTinue"
POS 1. 13.5 46. 4.
INFO: INFOTEXT "&instr" STICKER SUNKEN Variablel 7.

©1989-2024 Lauterbach Training Script Language PRACTICE | 119

After the end of the dialog controls, there are some statements that set the initial state of some of the
controls. The CHECKBOX controls are disabled. The initial member of the group of CHOOSEBOXes is set.
The dialog is resized to hide the INFOTEXT control and the final OK button is disabled.

DIALOG.Set O.BOND
DIALOG.Disable B_SEL
DIALOG.Disable BM_SEL
DIALOG.Disable C_SEL
WinRESIZE 48. 13.
DIALOG.Disable BOK
STOP

The user’s name is extracted from the EDIT control and a message box is displayed showing their choices.
When the user closes the message box (DIALOG.OK), the dialog itself will be closed and the script will
terminate.

&myname=DIALOG.STRing (MYNAME)

DIALOG.OK "Thanks &myname. Your selections were:" "" "Favorite James Bond
is &bondsel" \

"Favorite Batman is &batmansel" "Favorite Captain is &captainsel"
DIALOG. END

ENDDO

©1989-2024 Lauterbach Training Script Language PRACTICE | 120

PRACTICE in a Multi-Core Environment

PRACTICE scripts need some modification to function effectively in a modern multicore debug environment.
This section contains advice and guidance on how to achieve this. Where the target is configured for
Symmetric Multi-Processing (SMP), a single instance of TRACE32 PowerView is used to control all cores. In
this case many PRACTICE commands add an option /CORE <n> option to indicate that the command
should be run with reference to a particular core or cores. This section will focus now on Asymmetric Multi-
Processing (AMP) systems where multiple instances of TRACE PowerView are used to control
heterogenous cores.

For simple multicore debug sessions it may be sufficient to have one instance of TRACE32 PowerView
configure the main core and then launch a second instance which would attach to and configure the other
debug session. Such a system might look like the examples below.

;Script for core 1

SYStem.CPU XXX ;Set correct CPU type
SYStem.Up

Data.LOAD.El1f myprog.elf

; Let core 1 run until it has initialised core 2
Go.direct core_2_release
WAIT !STATE.RUN ()

; Launch a second instance of TRACE32 with a custom config file and
; start-up script
0OS.screen t32mxxx —-c config_core2.t32 -s start_up_script-core2.cmm

ENDDO

; script for core 2
SYStem.CPU xxx

SYStem.Mode Attach
Break.direct

WAIT !STATE.RUN/()
Data.LOAD.E1f * “myprog.elf”
ENDDO

Some systems require a more flexible approach, especially where communication between instances of
PowerView is required.

©1989-2024 Lauterbach Training Script Language PRACTICE | 121

Communication via InterCom

TRACE32 PowerView implements a communication system called INTERCOM which allows instances to
communicate with each other via UDP. More information about this can be found at “InterCom” in
PowerView Command Reference, page 181 (ide_ref.pdf). This requires a small modification to the
configuration file (normally ~~/config. t32) file to enable. A modified file is shown below with the
changes highlighted.

PBI=
USB
CORE=1

IC=NETASSIST
PORT=20001

The PORT= indicates that this instance of TRACE32 PowerView will listen for incoming requests on this UDP
port. The ports must be unique.

A separate configuration file is needed for each instance of TRACE32 with a unique CORE= and PORT=
identifier. Alternatively, a single generic configuration file may be used and the values passed in via the
command line, for example:

IC=NETASSIST
PORT=${1}

PBI=
${2}
CORE=${3}
${4}

Start with:

T32<exe> -c <config file> <port> <connection> <core> <node name>
t32mppc -c config.t32 20001 USB 1 NODE=t32ppcl
t32mtpu -c config.t32 20002 USB 2 NODE=t32tpul

©1989-2024 Lauterbach Training Script Language PRACTICE | 122

Below is an example of launching other instances from a PRACTICE script.

PRIVATE &t32path &t32mppc &t32mtpu
;Get TRACE32 executable directory
&t32path=0S.PresentExecutableDirectory ()

; Create macros for executables
&t32mppc="&t32path/t32mppc"
&t32mtpu="&t32path/t32mtpu"

; Launch other instances
OS.screen "&t32mppc" -c ~~/config.t32 20002 USB 2 NODE=2nd_PPC_core

OS.screen "&t32mtpu" -c ~~/config.t32 20003 USB 3 NODE=eTPU_core

ENDDO

The main script can wait until the other instances are available by using the InterCom.WAIT command. The

example above would be extended like this.

Extension of previous script

I

OS.screen "&t32mppc" -c ~~/config.t32 20002 USB 2 NODE=2nd_PPC_core

OS.screen "&t32mtpu" -c ~~/config.t32 20003 USB 3 NODE=eTPU_core

INTERCOM.WAIT localhost:20002
INTERCOM.WAIT localhost:20003

ENDDO

Now that all instances are synchronised, commands can be issued to each instance. This can be done

using the InterCom.execute command and can be wrapped in a PRACTICE macro to make the script more

readable.

; Using INTERCOM.execute

SYStem.CPU e200z6

INTERCOM. execute localhost:20002 SYStem.CPU e200z6
INTERCOM. execute localhost:20003 SYStem.CPU e200z2

; Using a macro

LOCAL &core2 &core3
&core2="INTERCOM.execute localhost:20002"
&core3="INTERCOM.execute localhost:20003"
SYStem.CPU e200z6

&core2 SYStem.CPU e200z6

&core3 SYStem.CPU e200z2

©1989-2024 Lauterbach Training Script Language PRACTICE

123

Designing Robust PRACTICE Scripts

A script may run on the PC of the person who developed it but it may not run as well (or at all) on the PC of a
colleague or a customer. This section will help you to design PRACTICE scripts that will be more robust and
more portable.

There are several things to take into consideration when designing a robust PRACTICE script.

. Host PCs may have different directory structures.

. Host PCs may be running different Operating Systems.

J Different debug hardware may be used.

. The script may be run with a different target board or processor.

. Differences in TRACE32 versions.

J Differences in TRACE32 settings.

©1989-2024 Lauterbach Training Script Language PRACTICE | 124

Path Functions and Path Prefixes

Scripts should avoid hard coding any paths; users will likely have their own PCs set out to their own tastes.
Network drives may also be mapped to different letters.

This example will only work if the ELF file is located in the current working directory.

; This will only work if the ELF file is located in the current directory
Data.LOAD.El1lf "myprog.elf"

This example will work only if the ELF file is located in this path. It will not work on a colleague’s PC who has
stored the project in C: \users\barry\Project_1\.

This will fail if the ELF file is located somewhere else.
But it will leave the current working directory unchanged.
ELF file path "C:\users\rico\project_Il\out\myprog.elf"

’
’

’

PRIVATE &pwd

&PWD=0S . PresentWorkingDirectory ()
ChDir "C:\users\rico\Project_1l\out"
Data.LOAD.El1lf "myprog.elf"

ChDir "&pwd"

I 0OS.PresentWorkingDirectory() Returns the name of the working directory as a string.

An alternative approach would use relative directory paths. TRACES32 provides a number of functions or
built-in path prefixes. For example:

; lst example uses OS.PresentPracticeDirectory() to get the current
; script’s directory

PRIVATE &ppd

&ppd=0S.PresentPracticeDirectory ()

Data.LOAD.El1f "&ppd/myprog.elf"

; 2nd approach uses built in shortcut "~~~~" instead.
Data.LOAD.El1f "~~~~/myprog.elf"
0OS.PresentPracticeDirectory() Returns the name of the directory where the current

PRACTICE script is located as a string.
~~~~/ 1is the TRACES32 path prefix equivalent.

©1989-2024 Lauterbach Training Script Language PRACTICE | 125



If the script is located in the same directory as the ELF file, the above examples will work. If the ELF file is in
a sub-directory, this can also be made to work.

lst example uses OS.PresentPracticeDirectory() to get the current
; script’s directory

PRIVATE &ppd

&ppd=0S.PresentPracticeDirectory ()

Data.LOAD.El1f "&ppd/out/myprog.elf"

’

; 2nd approach uses built in shortcut "~~~~" instead.
Data.LOAD.El1f "~~~~/out/myprog.elf"

Users could always be presented with a file chooser to browse for the ELF file to be loaded.

Data.LOAD.E1f "*.elf"

The script could be called with the top level directory for the project as an argument.

; Call script as:
; DO load_script.cmm C:\user\rico\project
PARAMETERS &basedir

Data.LOAD.E1f "&basedir/out/myprog.elf"

A better version would be to check if the file exists and prompt the user to browse for it if it is not where
expected.

PRIVATE &ppd &file

&ppd=0S.PresentPracticeDirectory ()

&file="&ppd"+" /myprog.elf"

IF OS.FILE("&file")==TRUE()
Data.LOAD.E1f "&file"

ELSE

(
&file="&ppd"+"/out/myprog.elf"

IF OS.FILE("&file")==TRUE()
Data.LOAD.E1f "&file"
ELSE

Data.LOAD.E1f "*.elf"

I OS.FILE(<filename>) Returns TRUE if the file exists.

A complete list of all path prefixes is provided in “Path Prefixes” in PowerView User’s Guide, page 51
(ide_user.pdf).

©1989-2024 Lauterbach Training Script Language PRACTICE | 126



Host Operating System

There will be differences between host Operating Systems. Scripts should be written in such a way as to
remove the impact of these differences from the user.

If a script uses a forward slash (*/") in a path name, TRACE32 will automatically use the correct slash for the
underlying host Operating System.

Data.LOAD.El1f "~~~~\myprog.elf" ; Not Portable - Windows only!

Data.LOAD.El1f "~~~~/myprog.elf" ; Portable - Host 0OS Independent

Use the TRACES32 built-in commands for file system manipulation. These will automatically be resolved to
the correct commands for the host Operating System. A full list of these commands an be found in See “File
and Folder Operations” in PowerView User’s Guide, page 77 (ide_user.pdf) but include:

REN <filename> Rename file.
COPY <source> <destination> Copy file.
MKDIR <path> Create directory.
RMDIR <path> Delete directory.
ZIP <source> [<destination>] Compress files.
The built-in macro "~~" which resolves to the TRACE32 system directory can be used to overcome

differences in host Operating Systems.

; Will only work on Windows host with default installation
COPY C:\t32\config.t32 C:\t32\config-usb.t32

;Will only work on Linux or MacOS with default installation
COPY /opt/t32/config.t32 /opt/t32/config-usb.t32

;Will work anywhere regardless of installation directories
COPY "~~/config.t32" "~~/config-usb.t32"

Different Operating Systems use different line termination sequences.
. Windows uses CR + LF
. Linux and MacOS use LF

©1989-2024 Lauterbach Training Script Language PRACTICE | 127



TRACE32 uses LF to denote an end of line when reading a file. The following code will read a file on any
host11

LOCAL &text

OPEN #1 "~~~~/log.txt"
READ #2 SLINE &text
WHILE !EOF ()

(

PRINT "&text"

READ #2 SLINE &text
)
CLOSE #2

When TRACE32 writes a file, it uses the correct end of line sequence for the current host Operating System.
Scripts can be made to write portable files by using this trick.

OPEN #2 "~~~~/log.txt" /Create

WRITE #2 %String "Hello" %Ascii 0x0A
WRITE #2 %String "World" %Ascii 0x0A
CLOSE #2

The function OS.VERSION(0) can be used to determine the host operating system. Using this allows scripts
to adapt to underlying fundamental differences. An example can be found on page RICO.

Debug Hardware

A script may need to adapt depending upon the debug hardware that is used. Some scripts may not be
appropriate for certain hardware. The script should check and then inform the user before quitting. A number
of functions exist for TRACES32 hardware detection and more information can be found in “General
Function Reference” (general_func.pdf). A few are listed below. Each returns TRUE if the relevant
hardware is detected.

. AUTOFOCUS()

. hardware.COMBIPROBE()

. hardware.POWERDEBUG()
J hardware.POWERTRACEZ2()
. INTERFACE.SIM()

©1989-2024 Lauterbach Training Script Language PRACTICE | 128



IF INTERFACE.SIM()
(
DIALOG.OK "Simulator mode not supported by this script." \
"Press 'OK’ to exit the script."
ENDDO

IF !AUTOFOCUS ()
(
DIALOG.OK "Autofocus pre-processor required." \
"Please connect correct hardware." \
"Press 'OK’ to exit the script."
ENDDO
)

;Rest of the script goes here

Target CPU and Board

The function CPUFAMILY() will return the name of the family. Any core which can be debugged with the
same t32m* executable is part of the family. Each family will have its own set of unique functions.

IF CPUFAMILY ()=="ARM"

(
IF CABLE.TWOWIRE ()
SYStem.CONFIG SWD

The function CPU() will return the value of the processor selected by the user in the SYStem.state window.

©1989-2024 Lauterbach Training Script Language PRACTICE | 129



The JTAG ID code of the nth device in the scan chain can be obtained by using the IDCODE(<n>) function.

LOCAL &device

SYStem.RESet

SYStem.CPU ARM7TDMI // Default CPU
SYStem.DETECT IDCode
&device=IDCODE (0) &Ox0fff£ffff

IF &device==0x0B95C02F // TI OMAP4430 (PandaBoard)
(
SYStem.CPU OMAP4430APP1
SYStem.CONFIG CTIBASE 0xd4148000
SYStem.Mode Up
)
ELSE IF &device==0x049220DD // Altera Excalibur
(
SYStem.CPU EPXA
SYStem.Mode Up
Data.Set C15:00000001 %LE %Long 0x0178 // disable Instruction Cache
)
ELSE
(
PRINT %ERROR "Don't know device 0x" %$Hex &device
ENDDO

Some CPUs do not support byte addressable memory; the smallest addressable unit may be 16, 24 or 32
bits. The script below provides a means of determining this value.

LOCAL &width
Data.Set VM:0 %Byte 0 1 2 3 4 5 6 7 8

&width=Data.Byte (VM:1)
PRINT "Width of one address is " %Decimal &width ". byte(s)"

TRACE32 Version

A script should never assume which TRACE32 PowerView features are available to it; it always a good idea
to check. The two main functions for this are:

VERSION.BUILD() Returns the build number of TRACES32. Features up to this
build may be included in this version.

VERSION.BUILD.BASE() Returns the base build number for this instance of TRACE32
PowerView. All features of this build will be included.

©1989-2024 Lauterbach Training Script Language PRACTICE | 130



The diagram here explains the relationship between the two different build numbers.

TRACE32 Build Numbers
2010/08  2010/11 2011/03 2011/06 2011/11 <— date
25598. 23724. 30457. 32911. <«— build number

Déevelopment Branch
| = >

R.2010.11

Release Branc

R.2010.11.000028724

VERSION.BUILD.BASE() ==
VERSION.BUILD() == 28724.

$.2011.03.000028724
VERSION.BUILD.BASE() == 28724.
VERSION.BUILD() == 28724.

IF VERSION.BUILD()<56572.

(
DIALOG.OK "This script requires TRACE32 build greater than 56572."
ENDDO

TRACE32 Settings

TRACES2 is highly customizable and a script should make no assumptions about how a user has their
software configured.

Scripts should not assume a default radix as this is a CONTinue option and users will set it according to their
own preference.

Data.Set D:10 %Byte 42

; Will write 0x42 to address 0x10 if the radix is set to hex
; Will write 0x2A to address O0x0A if the radix is set to decimal

A script should always enforce the radix that it wishes to use to avoid such confusion.

Data.Set D:0x10 %Byte 0x42 ; Force hex values
Data.Set D:10. %$Byte 42. ; Force decimal values

©1989-2024 Lauterbach Training Script Language PRACTICE | 131



It is strongly recommended that scripts format any PRACTICE macros before printing them to make the
values un-ambiguous to users. Some examples are shown below.

LOCAL &var &text

&var=0x42+23.

&text="The result is O0x"+FORMAT.HEX (0, &var)
PRINT "&text"

LOCAL &var
&var=0x42+23.
PRINT "The result i1s Ox"+FORMAT.HEX (0, &var)

LOCAL &var
&var=0x42+23.
PRINT "The result is Ox" %Hex &var

Three formatting functions exist: FORMAT.HEX(), FORMAT.Decimal() and FORMAT.BIN().

©1989-2024 Lauterbach Training Script Language PRACTICE | 132



Storing and Retrieving Settings

If a script intends to make use of breakpoints or will open more than a single window, it may be a good idea
to store the users’ current settings and then restore them after the script has completed its work This can be
done using the STOre command.

PRIVATE &bpfile &winfile

; Store user's Breakpoints and Windows away so we can retrieve them
; later. Get temporary files from the host 0OS

&bpfile=0S.TMPFILE ()

Swinfile=0S.TMPFILE ()

; We'll need to manually add the ".CMM" extension
&bpfile="&bpfile"+".cmm"
swinfile="&winfile"+".cmm"

; Store Breakpoints to temporary file
STOre "&bpfile" Break.direct

; Now clear all the existing Breakpoints
Break.Delete /ALL

; Store Windowss to temporary file
STOre "&winfile" Windows

; Now clear all the existing Windows
WinCLEAR

; Run the rest of the script here

; Restore the user’s breakpoints and windows
DO "&bpfile"

DO "&winfile"

ENDDO

©1989-2024 Lauterbach Training Script Language PRACTICE | 133



If the script needs to open any additional windows to display some results it would be unwise to assume that
the script user has a display of a certain size or resolution. Absolute window positioning and sizing may not
produce a readable display. The WinPOS command can take percentages as well as absolute values as its
arguments. Windows could be positioned and sized as a percentage of the current size of the TRACE32

window.

WinCLEAR

WinPOS 0% 0% 40% 50%

List.auto

WinPOS 40% 0% 60% 50%
Analyzer.Chart.sYmbol

WinPOS
Analyzer.Li

st

0% 50% 50% 50%

WinPOS 50% 50% 50% 50%
Analyzer.PROfileChart.sYmbol

ENDDO

/A TRACE32 PowerView for ARM - [m] x
File Edit View Ver Break Run CPU Misc Trace Pef Cov Window Help
O E e e I
i Bulist (=== | A B:achart.symbol (= =]==]
M Step | B Over | A(Diverge| 4 Retum @ Up » Go || 10 Break | %Mode |6 | || J2setup... | fifGous... | 32 Gorfie... | 3 Goto... | (3 Goto...|| #4Find... | «0pIn | +0e0ut|| E¥ Full
addr /1ine |code |Tabel |mnemoni c |comment 1= ‘ -14,000ms -12. 000ms -10.000ms -8.000ms  -§.000ms -4.000ms -2.000ms o.|
= " address | L | | | L
int sieve() = sieve of erathost (other) & =
678 |{ ESQUE”'EEE\ L L N A P L L L O I P I | 11
2228,|-9°04010  sieve: stmdl ri3l,{r4,ria}
register 'mt 1, primz, k; a
int anzal HCDSEE \ I\I I\I nm III III III III III III I\I Ll I\I LT T L T O L T T R T T T L LT T
AEEEEEEEEEEE N EEEEEEEEEEEEEEEEN
682 anzahl = 03
SR:0000222C |E3A01000 mov r1,#0x0 IR O O |
684 for (i=0 ; i <= SIZE ; flags[ i++ ] = TRUE ) ; 1.1 [ IR R R A R A R \ \ \ I I Eenr
SR:00002230 |E3402000 v 2, 20x0 L | L L U U U I L
. . - N L L | U O O U I I A I I I I\ I L
'Fm" (i=0; 1 <= SIZE ; flags[ i++ ] = TRUE ) ; | nrira LU U O O I A [
SR:00002234 01 cmp r2,#0x12 [ 1 Frrerretd | OO VO O O O I A | rrirereld
SR:00002238 E-EIEIEIEIEIF I:r e 0x2258 i LU O L0V N O S S O O A VO U O I A O O O
SR:0000223C |EADDOOOG 0x225C | I O I | U O A A
h L o L O N h
4 Bualist = [B ][ 8 | H B:aprofilechart.symbol | = |
L. || Goto...|| #iFind... || Adchart | EProfie | EMPS | # More | X Less Esetu... || §ifGoups... || 22 Config... | A Goto...|| #3Find... | @ In |[»0«out| @Ful| S1n | cou|| ElFull| Fine ||Coarse
record rup adress lcycle |data |symbol tiback | 10.000us Il (other) B _esquare B _fp_mult_common o
- . |-15.000ms =10.000ms -£.000ms 0.
-000010 R= DﬂDDlFSE fetch E3500000 \\armle\arm\funcd0+0x30 0.100us ratio _
emp -
-000009 R.DﬂDDlFSC fetch 14000008 \\armle\arm\funcd0+0x34 0.100us v -
£80.0
-000008 R:00001F60 fetch EADD001E \\armle\arm\funcd0+0x38 0.100us -~ v
b 0% i
000007 | | R:00001FD4 fetch E28DD018 \\armle\arm\funca0+0xac 0.100us §0.0 [ ! ‘ | ~
583 b \ Iy
add r13,r13,20x18 | |‘ ‘ \‘ ! \"l I\ | | ,‘ll‘
-000006 R:00001FD8 'Fetch EBBDB030 \\arm]e\arm\funca0+0xB0O 0.100us ‘ | | \ | N
Tdmia  r131,{r4 0.0 [ f ‘ M
-000005 D:00000FED r'd Inhg D0BCH14E 0.100us ‘
-000004 D:00000FE4 rd-Tong 0000564C 0.100us |
-000003 D:00000FES rd-Tong 000021F8 0.100us 20.0
-000002 R:000021F8 fetch E1200070 \\armle\arm\main+0x200 0.100us
breakpoint
|-000001 R:000021F8 fetch EBO0000A \\armle\arm\main+0x200 0.100us v 0.0 L
|é: i 15
components| | trace Data Var List PERF sYStem Step Go Break | | sYmbol Frame | | Register FPU MMX MU~ | [TRANSabon | [ CACHE other previows
5R:00002228 \\armie\armisieve stopped T MX P

An alternative approach would be to determine the local screen resolution and open a pre-configured
set of windows which match the current screen size. An example of how to do this has been provided in
~~/demo/practice/screen_size.cmm Which attempts to extract the screen resolution from the

©1989-2024 Lauterbach

Training Script Language PRACTICE |

134



host OS. An example use case would look like this.

PRIVATE &scrw &scrh

; Call the script which will return the values for screen width and
; screen height

DO ~~/demo/practice/screen_size.cmm

RETURNVALUES &scrw &scrh

; the returned values can be printed like this
PRINT "Screen Width = &scrw"
PRINT "Screen Height = &scrh"

; This handy little trick for PRACTICE will convert the ’‘string’ macro
; into a ’‘numerical’ macro so it can be used in a test
&scrw="& (scrw) "

IF &scrw<1280.
(
PRINT "Loading Small screen layout."
; Here, either call a script with windows optimized for a
; small screen or GOSUB to a routine which will open the correct window
; layout
)
ELSE
(
PRINT "Loading Large screen layout."
; Call correct script or GOSUB to routine which opens windows for a
; higher resolution screen.

ENDDO

©1989-2024 Lauterbach Training Script Language PRACTICE | 135



Robust Error Handling

If a PRACTICE script encounters an error it will halt at the line that produced the error. Using the command
SETUP.WARNSTOP it is possible to also configure a PRACTICE script to halt on a command that merely
produces a warning. More advanced error handling can be used in scripts so that they can recover more
gracefully should something fail. This relies on the event driven features of PRACTICE and in it's simplest
form looks like the example here. The script will keep running even though an error will be produced.

; Enable error handler
ON ERROR CONTinue

; Execute a command that will fail
Data.LOAD.E1f "non_existent file.elf"

; Restore previous error handler
ON ERROR inherit
ENDDO

The callto ON ERROR inherit will restore the previous error handler; error handlers may be stacked. A
better error handler might look like this.

; Enable error handler
ON ERROR GOSUB

(
Tell the user that the file wasn’t loaded and ask them to browse

; for its correct location.
PRINT "File not found."
Data.LOAD.E1f *

RETURN

; Execute a command that will fail
Data.LOAD.El1f "non_existent_ file.elf"

; Restore previous error handler
ON ERROR inherit
ENDDO

©1989-2024 Lauterbach Training Script Language PRACTICE | 136



Since build 72159 it is possible to check after each command whether or not an error occurred. This allows
PRACTICE script developers to work in a more traditional style. To prevent the script from halting, this
should be combined with the error handler described previously.

IF VERSION.BUILD()<72159.

(
DIALOG.OK "Your version of TRACE32 is too old to run this script."
ENDDO

ON ERROR CONTinue

; label to return to for re-try
start_here:

; Clear any existing errors
ERROR.RESet
Data.LOAD.El1lf "myprog.elf"
; Check if there was an error
IF ERROR.OCCURRED ()
(
; Try to determine what the error was and fix it
IF ERROR.ID()=="#FILE_ERRNFD"
(
PRINT "File not found"
Data.LOAD.E1f *
)
IF ERROR.ID()=="#emu_errpwrf"
(
DIALOG.OK "Please apply power to the target then click 'OK'"
GOTO start_here
)
; Finally, an unexpected error. Report it to the user.
IF ERROR.ID()!=""
(
DIALOG.OK "Error occurred : " ERROR.ID()

ENDDO

©1989-2024 Lauterbach Training Script Language PRACTICE | 137



Argument Handling

Designing a script to be re-useable requires that some thought is given to checking argument values passed
in by the user. The script cannot assume that the arguments it gets will always be correct. Using
STRing.SCANAnNdEXxtract() can ensure that argument order does not matter but does not enforce the
contents of an argument. PRACTICE macros can always be treated as strings and something like the

I sNum sub-routine below can check that a macro only contains a numerical value in either decimal or hex
format.

; Example sub routine for checking a macro is numeric only
LOCAL &argl &arg2 &ret

&argl=25.

&arg2="Hello"

GOSUB IsNum "&argl"
RETURNVALUES &ret
PRINT "&ret" ; Prints TRUE ()

GOSUB IsNum "&arg2"
RETURNVALUES &ret
PRINT "&ret" ; Prints FALSE()

ENDDO

IsNum:
PARAMETERS &txt
LOCAL &ret &len &1 &char &hex
&ret=TRUE ()

&len=STRing.LENgth ("&txt")

IF STRing.ComPare (STRing.LoWeR ("&txt"), "0Ox*")==TRUE ()
( ; Possibly a hex number
&i=2.
&hex=TRUE ()
)
ELSE
( ; Assume a decimal number
&1=0.
&hex=TRUE ()

RePeaT (&len-&1i)

(
&char=STRing.MID(STRing.LoWeR ("&txt") , &1i,1)

IF &hex==TRUE () &&STRing.FIND("0123456789.abcdef", "&char")==FALSE ()
&ret=FALSE ()

ELSE IF STRing.FIND("0123456789.", "&char")==FALSE ()
&ret=FALSE ()

&i=&1+1

)
RETURN "&ret"

©1989-2024 Lauterbach Training Script Language PRACTICE | 138



Creating a Custom Command

It is possible to create a custom command in TRACE32. This is done by using the command GLOBALON .

GLOBALON CoMmanD <name> DO <script>

The command <name:> is created but is restricted to a maximum of 9 characters. In the example script
below, call it without arguments to register the command, call it with a single argument of "REMOVE" to
remove the command.

PARAMETERS &test &testfile &count

IF "&test"==""

(
; No arguments so register the command
; Command name is limited to 9 characters
LOCAL &this_script
&this_script=0S.PresentPracticeFile()
GLOBALON CoMmanD TESTRUN DO "&this_ script"

)

ELSE IF "&test"=="REMOVE"

(
; Use this to remove the global command
GLOBALON CoMmanD TESTRUN

)

ELSE

(
RePeaT &count

(
GOSUB &test "&testfile"

)
ENDDO

testl:

PARAMETERS &tf

PRINT "Running testl with data file (&tf)"
RETURN

test2:

PARAMETERS &tf

PRINT "Running test2 with data file (&tf)"
RETURN

©1989-2024 Lauterbach Training Script Language PRACTICE | 139



Once the command has been registered it can be accessed form the TRACE32 command line or from
within another script, for example.

; Call the script with no arguments to register the command
DO custom_command.cmm

; Use the command to run the test cases
TESTRUN "testl" "testdatal.txt" "O0x10"
TESTRUN "test2" "testdata2.txt" "0x03"

; Call the script again to remove the command

DO custom_command.cmm "REMOVE"
ENDDO

Common Pitfalls

This final section focuses on some of the common mistakes that can be made in PRACTICE scripts.

Try not to use blocking commands unless you are debugging your script. Commands like STOP and ENTER
will stop the script from executing but will give the user no indication that the script has halted or is awaiting
further input. It is a better idea to use a dialog instead.

Watch for white space. It is required after an IF or WHILE command but should not appear in expressions.

; INCORRECT example
IF (&1<5.)

; CORRECT examples
IF (&1<5.)
IF &i<5.

; INCORRECT expression
& = (5. + 8. * 2 ) / (3 + &1 )

; CORRECT expression
&x=(5.+48.%2.)/(3/+&1)

©1989-2024 Lauterbach Training Script Language PRACTICE | 140



Functions should not appear in filenames.

; INCORRECT example
Data.LOAD.El1f STRing.TRIM("&dir")+"/myprog.elf"

; CORRECT example

&dir=STRing.TRIM("&dir")
Data.LOAD.El1f "&dir/myprog.elf"

Always use the correct declaration of PRACTICE macros. Review the difference between LOCAL and
PRIVATE.

Always assume that the default radix is not what you require. Force your macros to the correct radix. For
example, use 0x10 or 16. but never 10 on it's own.

Use the built-in commands for TRACES32 directories instead of hard coding paths to scripts or files.

Use TRACE32 built-in commands for host OS file manipulation (copy, change directory, delte, etc.). This
makes the script portable across different host Operating Systems.

©1989-2024 Lauterbach Training Script Language PRACTICE | 141



	Training Script Language PRACTICE
	History
	E-Learning
	Ready-to-Run Scripts
	Related Documents
	Introduction to Script Language PRACTICE
	Area of Use
	Run a Script

	Create a PRACTICE Script
	Convert TRACE32 Settings to a Script
	Command LOG
	Command History
	Script Editor PEDIT
	Syntax Highlighting

	Debugging of PRACTICE Script
	Debug Environment
	Display the PRACTICE Stack

	PRACTICE Language
	Program Elements
	Comments
	Commands
	Functions
	Labels


	PRACTICE Flow Control
	Conditional Program Execution
	Command List

	Subroutine Calls
	Command List
	Example

	GOTO/JUMPTO
	Command List
	Example

	Script Calls
	Command List
	Example

	PRACTICE Macros
	Declare a Macro
	Assign Content to a Macro
	Macro Handling
	Macros as Strings
	Macros as Numbers
	Note for Testing
	More Complex Data Structures


	Script Examples
	Run Through Program and Generate a Test Report
	Check Contents of Addresses
	Check Contents of Address Range
	Check the Contents of Variables
	Record Formatted Variables
	Record Variable as CSV
	Test Functions
	Test Function with Parameter File

	Parameter Passing
	Pass Parameters to a PRACTICE Script or to a Subroutine
	PARAMETERS/RETURNVALUES vs. ENTRY

	Operating System Interaction
	Operating System Detection
	Printing Results
	Accessing Environment Variables
	Running a Command
	File Manipulation
	Time and Date Functions

	I/O Commands
	Output Command
	Input Command
	I/O via the AREA Window
	Event Control via PRACTICE

	Simple Dialogs
	Dialog Programming
	Control Positioning
	Control Properties
	Enable or Disable a Control
	Collect data from a control
	Setting a value or state to a control
	Execute a command

	File Browsing
	Icons
	Dialog Example

	PRACTICE in a Multi-Core Environment
	Communication via InterCom

	Designing Robust PRACTICE Scripts
	Path Functions and Path Prefixes
	Host Operating System
	Debug Hardware
	Target CPU and Board
	TRACE32 Version
	TRACE32 Settings
	Storing and Retrieving Settings

	Robust Error Handling
	Argument Handling
	Creating a Custom Command
	Common Pitfalls



