
MANUAL                                                       

Training AURIX Tracing



Training AURIX Tracing

TRACE32 Online Help  

TRACE32 Directory  

TRACE32 Index  

TRACE32 Training  ............................................................................................................................ 

   Training AURIX Tracing  ................................................................................................................ 

      Training AURIX Tracing  ............................................................................................................. 1

         History  ...................................................................................................................................... 6

         Basic Knowledge  ..................................................................................................................... 7

            Protocol Description 7

            Source for the Recorded Trace Information 14

               Onchip Trace Buffer (EMEM) 14

               Trace Buffer in TRACE32 PowerTrace 18

         Trace Configuration within TRACE32  ................................................................................... 21

            Onchip Trace Configuration 21

               Steps 21

               Examples 30

               AMP Setup 32

            Off-chip Trace Configuration 34

               Auto-Configuration 34

               Restrictions 36

            Trace Sources and Their Messages 37

               Cores as Trace Source 37

               System Peripheral Bus as Trace Source 39

               Shared Resource Interconnect as Trace Source 40

            Message Display in TRACE32 43

               Tracing of a Single Core 44

               Tracing of AMP Systems 45

               Tracing of SMP Systems 52

            FIFOFULL 53

               Diagnosis 54

         Displaying the Trace Contents  ............................................................................................... 55

            Sources of Information for the Trace Display 55

            Influencing Factors on the Trace Information 56

            TRACE32 Trace Configuration Window 57

               Mode Setting 57

               States of the Trace 65

               The AutoInit Command 66
Training AURIX Tracing     |    2©1989-2024   Lauterbach                                                        



               AMP- Joint/Exclusive Settings 67

            Basic Display Commands 70

               Default Listing 70

               Basic Formatting 77

               Correlating the Trace Listing with the Source Listing 78

               AMP - Correlate to a Trace Listing in another TRACE32 Instance 79

            Browsing through the Trace Buffer 82

            Find a Specific Event 83

            Post Mortem Trace Analysis (PowerTrace only) 84

            Belated Trace Analysis 86

               Save the Trace Information to an ASCII File 87

               Postprocessing with TRACE32 Instruction Set Simulator 88

         Trace Control by Filter and Trigger - Overview  .................................................................... 93

            Marker 94

            Filter 94

            Trigger 94

            Available Resources 94

         Filter and Trigger - Single-Core and AMP  ............................................................................. 95

            WATCH Marker 95

            TraceEnable Filter 98

            TraceData Filter 112

            TraceON/TraceOFF Filter 114

            Trace Trigger (Onchip Trace Only) 118

         Filter and Trigger - SMP Systems  .......................................................................................... 124

            WATCH Marker 124

            TraceEnable Filter 128

            TraceData Filter 144

            TraceON/TraceOFF Filter 146

            Trace Trigger (Onchip Trace Only) 150

         OS-Aware Tracing - Single-Core and AMP  ........................................................................... 157

            Activate the TRACE32 OS Awareness (Supported OS) 157

            Exporting the Task Switches 159

            Exporting Task Services 163

            Exporting ISR2 (OSEK Interrupt Service Routines) 167

            Exporting Task Switches and ISR2 171

            Exporting Task Switches and all Instructions 173

               Statistic Analysis of Interrupts 173

               Statistic Analysis of Interrupts and Tasks 174

               Statistic Analysis of Interrupts in Tasks 175

            Belated Trace Analysis (OS) 176

            Enable an OS-aware Tracing (Not-Supported OS) 177

         OS-Aware Tracing - SMP Systems  ........................................................................................ 178
Training AURIX Tracing     |    3©1989-2024   Lauterbach                                                        



            Activate the TRACE32 OS Awareness (Supported OS) 178

            Exporting the Task Switches 180

            Exporting Task Services 187

            Exporting ISR2 (OSEK Interrupt Service Routines) 193

            Exporting Task Switches and ISR2 199

            Exporting Task Switches and all Instructions 201

               Statistic Analysis of Interrupts 201

               Statistic Analysis of Interrupts and Tasks 202

               Statistic Analysis of Interrupts in Tasks 203

            Belated Trace Analysis (OS) 204

         Function Run-Time Analysis - Basic Concept  ...................................................................... 205

            Software under Analysis (no OS or OS) 205

            Flat vs. Nesting Analysis 205

               Basic Knowledge about Flat Analysis 206

               Basic Knowledge about Nesting Analysis 207

               Summary 209

         Flat Function-Runtime Analysis - Single-Core and AMP  ..................................................... 210

            Optimum MCDS Configuration (No OS) 210

            Optimum MCDS Configuration (OS) 211

            Function Timing Diagram (no TASK Information) 212

            Function Timing Diagram (TASK information) 213

            Numeric Analysis 216

         Flat Function-Runtime Analysis for SMP  .............................................................................. 218

            Optimum MCDS Configuration (OS) 219

            Function Timing Diagram (no TASK Information) 220

            Function Timing Diagram (TASK Information) 222

            Numeric Analysis 224

         Nesting Function Run-Time Analysis - Single  ...................................................................... 227

            Restrictions 227

            Optimum MCDS Configuration (No OS) 228

            Optimum MCDS Configuration (OS) 229

            Numerical Nesting Analysis for all Software 231

               Statistics Items 231

               Additional Statistics Items for OS 239

            More Nesting Analysis Commands 243

         Nesting Function Run-Time Analysis for SMP  ..................................................................... 248

            Optimum MCDS Configuration (OS) 248

            Numerical Nesting Analysis for OS 251

               Statistics Items 251

            More Nesting Analysis Commands 261

         Trace-based Code Coverage  .................................................................................................. 264
Training AURIX Tracing     |    4©1989-2024   Lauterbach                                                        



            General SetUp 264

               Single-Core and AMP Systems 264

               SMP Systems 265
Training AURIX Tracing     |    5©1989-2024   Lauterbach                                                        



Training AURIX Tracing

Version 06-Jun-2024

History

31-Aug-22 The MCDS command group and the MCDS.state window have been fully redesigned. Parts 
of this training are therefore outdated. This applies to the TriCore AURIX TC2x, TC3x and 
TC4x.

15-Feb-13 Initial version.
Training AURIX Tracing     |    6©1989-2024   Lauterbach                                                        



Basic Knowledge

Protocol Description

The MCDS (Multi Core Debug Solution) included in the ED device allows to generate trace information. 

The following message types are generated:

• Instruction Pointer Call Messages (ptrace)

Instruction Pointer Call Messages are generated for all taken direct and indirect branches, 
interrupts and traps. They include:

- take-off address (branch source address)

- landing address (branch destination address)

- number of bytes executed since the last Instruction Pointer Call Message

- source-ID information 
(the AURIX can generate Instruction Pointer Call Messages for up to 2 cores)

Support for the Continuous Compact Function Trace (CFT) is currently under construction.

For some trace analysis features (e.g. nesting function run-time analysis) it might be beneficial to 
differentiate between taken branches and interrupts/traps.
Training AURIX Tracing     |    7©1989-2024   Lauterbach                                                        



Auto-detection of Interrupt Vector Table (default)

TRACE32 reads the contents of the BIV (Interrupt Vector Table Pointer) register and regards the following 
address space as interrupt vector table:

• BIV[0]==0: <contents_of_biv>++(255. * 32. byte)

• BIV[0]==1: <contents_of_biv>++(255. * 16. byte)

If the landing address (branch destination address) of an Instruction Pointer Call Messages is the 
address of an interrupt vector, TRACE32 indicates an interrupt in the trace recording.

Example

BIV == 0xa00f0000 results in an Interrupt Vector Table within the following address range: 
0xa00f0000++0x1fdf

Further options for the exception decoding are described in “Exception Decoding” (mcds_user.pdf).
Training AURIX Tracing     |    8©1989-2024   Lauterbach                                                        



Auto-detection of Trap Vector Table (default)

TRACE32 reads the contents of the BTV (Trap Vector Table Pointer) register and regards the following 
address space as trap vector table:

• <contents_of_btv>++(8. * 32. Byte)

If the landing address (branch destination address) of an Instruction Pointer Call Messages is a trap 
vector TRACE32 indicates a trap in the trace recording.

Further options for the trap decoding are described in “Exception Decoding” (mcds_user.pdf).
Training AURIX Tracing     |    9©1989-2024   Lauterbach                                                        



• Instruction Pointer Messages (ptrace)

Instruction Pointer Messages can be generated between the branches if required.
Training AURIX Tracing     |    10©1989-2024   Lauterbach                                                        



• Write Data Trace Messages 

Write Data Trace Messages can be generated for

- core write accesses

- transactions on the bus system

They include:

- data write address

- data write value

- source-ID information

Source-ID information: Write Data Trace Messages can be generated by up to 2 cores, by the 
SPB (System Peripheral Bus) and by the SRI (Shared Resource Interconnect)

Currently write cycles can not be assigned to its executing instruction. This is why wr-data is 
printed in red.

; BusMaster indicates the source of the bus transaction
Trace.List DEFault BusMaster

Write Data Trace Message generated by a core write access

Write Data Trace Message generated by SRI transfer
Training AURIX Tracing     |    11©1989-2024   Lauterbach                                                        



• Read Data Trace Messages 

Read Data Trace Messages can be generated for

- core read accesses

- transactions on the bus system

They include:

- data read address

- data read value (transactions on the bus system only)

- source-ID information

Source-ID information: Read Data Trace Messages can be generated by up to 2 cores, by the 
SPB (System Peripheral Bus) and by the SRI (Shared Resource Interconnect)

Currently read cycles can not be assigned to its executing instruction. This is why rd-data is 
printed in red.

; BusMaster indicates the source of the bus transaction
Trace.List DEFault BusMaster

Read Data Trace Message generated by a core read access (data read address only)

Read Data Trace Message generated by SRI transfer (data read address and data read value)
Training AURIX Tracing     |    12©1989-2024   Lauterbach                                                        



• Timestamp Messages

The MCDS trace infrastructure generates trace messages that provide the number of MCDS 
clocks needed by a set of instructions. If the MCDS clock is known, TRACE32 calculates time out 
of this information.

Timestamp calculated out of the ticks (number of MCDS clocks) needed
by a set of instructions
Training AURIX Tracing     |    13©1989-2024   Lauterbach                                                        



Source for the Recorded Trace Information

Onchip Trace Buffer (EMEM)

If TRACE32 is started 

• when a TriCore debugger is connected

• and if the debug communication to an AURIX ED device is established

the source for the trace information is the so-called Onchip trace (Trace.METHOD Onchip).
Training AURIX Tracing     |    14©1989-2024   Lauterbach                                                        



Please be aware that tracing with the Onchip trace requires an TriCore-MCDS license in the debug cable. 
This can be checked as follows:
Training AURIX Tracing     |    15©1989-2024   Lauterbach                                                        



The setting Trace.METHOD Onchip has the following impacts:

1. Trace is an alias for Onchip.

2. All commands from the Trace menu apply to the trace information stored in the Onchip trace 
buffer.

3. All Trace commands from the Perf menu apply to the trace information stored in the Onchip trace 
buffer.

Trace.List ; Trace.List means
; Onchip.List

Trace.Mode Fifo ; Trace.Mode Fifo means
; Onchip.Mode Fifo
Training AURIX Tracing     |    16©1989-2024   Lauterbach                                                        



4. Display Trace in the Variable pull-down applies to the trace information stored in the Onchip 
trace buffer.

5. TRACE32 is advised to use the trace information stored to the Onchip trace buffer as source for 
the trace evaluations for the following command groups:

COVerage.<sub_cmd> Trace-based code coverage

ISTAT.<sub_cmd> Detailed instruction analysis

MIPS.<sub_cmd> MIPS analysis

BMC.<sub_cmd> Synthesize instruction flow with recorded benchmark counter 
information
Training AURIX Tracing     |    17©1989-2024   Lauterbach                                                        



Trace Buffer in TRACE32 PowerTrace

If TRACE32 is started 

• when a PowerTrace hardware and a PREPROCESSOR SERIAL is connected

the source for the trace information is the so-called Analyzer (Trace.METHOD Analyzer).

The setting Trace.METHOD Analyzer has the following impacts:

1. Trace is an alias for Analyzer.

Trace.List ; Trace.List means
; Analyzer.List

Trace.Mode Fifo ; Trace.Mode Fifo means
; Analyzer.Mode Fifo
Training AURIX Tracing     |    18©1989-2024   Lauterbach                                                        



2. All commands from the Trace menu apply to the trace information stored in the trace memory of 
the PowerTrace hardware (Analyzer).

3. All Trace commands from the Perf menu apply to the trace information stored in the trace 
memory of the PowerTrace hardware (Analyzer).

4. Display Trace in the Variable pull-down applies to the trace information stored in the trace 
memory of the PowerTrace hardware (Analyzer).
Training AURIX Tracing     |    19©1989-2024   Lauterbach                                                        



5. TRACE32 is advised to use the trace information recorded to the trace memory of the 
PowerTrace hardware (Analyzer) as source for the trace evaluations for the following command 
groups:

COVerage.<sub_cm> Trace-based code coverage

ISTAT.<sub_cmd> Detailed instruction analysis

MIPS.<sub_cmd> MIPS analysis

BMC.<sub_cmd> Synthesize instruction flow with recorded benchmark counter 
information
Training AURIX Tracing     |    20©1989-2024   Lauterbach                                                        



Trace Configuration within TRACE32

Onchip Trace Configuration

Steps

Using the onchip trace might require the following setup:

1. Specify the size of the onchip trace buffer.

2. Enable Timestamp Messages (chip timestamp).

1. Specify the size of the onchip trace buffer

TRACE32 will use the complete available emulation memory (EMEM) provided by the ED device as 
onchip trace buffer if not specified otherwise. 

If you want to use part of the emulation memory for other purposes e.g. calibration this has to be configured 
before the communication between the debugger and the core(s) is established by SYStem.Up.

The following commands are available to specify the size of the onchip trace buffer.

If a third-party tool or the application has already allocated its part of the EMEM, the following command can 
detect which part of the EMEM can be used as trace buffer. Please be aware that the result of 
MCDS.TraceBuffer DETECT always requires a sanity check.

MCDS.TraceBuffer SIZE <size> Specify the trace buffer <size>.

MCDS.TraceBuffer UpperGAP <size> Specify <size> of upper gap in EMEM that can 
not be used as onchip trace buffer.

MCDS.TraceBuffer LowerGAP <size> Specify <size> of lower gap in EMEM that can 
not be used as onchip trace buffer.

MCDS.TraceBuffer DETECT Auto-detect EMEM configuration
Training AURIX Tracing     |    21©1989-2024   Lauterbach                                                        



The following 5 uses cases will show you how the size of the onchip trace buffer is configured.

Use case 1: First calibration memory then trace buffer

E.g. tile 0 and 1 are used by the calibration tool, the rest of the EMEM can be used as onchip trace buffer.

MCDS.TraceBuffer SIZE 896.KB ; size of trace buffer
; 1024 KByte - (2 * 64 KByte)

; the lower gap is automatically 
; calculated by TRACE32

Onchip trace buffer 1024 KByte EMEM
1

64 KByte per tile

0

Training AURIX Tracing     |    22©1989-2024   Lauterbach                                                        



Use case 2: First trace buffer then calibration memory

E.g. tile 13 to 15 are used by the calibration tool, the rest of the EMEM can be used as onchip trace buffer.

MCDS.TraceBuffer UpperGAP 192.KB ; size of upper gap
; 3 * 64 KByte

; the size of the onchip trace
; buffer is automatically
; calculated by TRACE32

Onchip trace buffer
1413 15

1024 KByte EMEM
64 KByte per tile
Training AURIX Tracing     |    23©1989-2024   Lauterbach                                                        



Use case 3: Calibration memory in the middle of EMEM, trace buffer after the calibration memory

E.g. tile 4 and 5 are used by the calibration tool, the rest of the EMEM can be used as onchip trace buffer. 
Since the trace buffer has to be mapped continuously tile 0-3 can not be used.

MCDS.TraceBuffer SIZE 640.KB ; size of trace buffer
; 1024 KByte - (6 * 64 KByte)

; the lower gap is automatically 
; calculated by TRACE32

Onchip trace buffer
54

1024 KByte EMEM
64 KByte per tile
Training AURIX Tracing     |    24©1989-2024   Lauterbach                                                        



Use case 4: Calibration memory in the middle of EMEM, trace buffer before the calibration memory

E.g. tile 10 and 11 are used by the calibration tool, the rest of the EMEM can be used as onchip trace buffer. 
Since the trace buffer has to be mapped continuously tile 12 to 15 can not be used.

MCDS.TraceBuffer UpperGAP 384.KB ; size of upper gap
; 6 * 64 KByte

; the size of the onchip trace
; buffer is automatically
; calculated by TRACE32

Onchip trace buffer 1110
1024 KByte EMEM
64 KByte per tile
Training AURIX Tracing     |    25©1989-2024   Lauterbach                                                        



Use case 5: First calibration memory then trace buffer then application memory

E.g. tile 0 and 1 are used by the calibration tool, tile 13 to 15 are used by the application. The rest of the 
EMEM can be used as onchip trace buffer.

MCDS.TraceBuffer SIZE 704.KB ; size of trace buffer
; 1024 KByte - (5 * 64 KByte)

MCDS.TraceBuffer LowerGAP 128.KB ; size of the lower gap
; 2 * 64 KByte

Onchip trace buffer 1024 KByte EMEM
1

64 KByte per tile

0 1413 15
Training AURIX Tracing     |    26©1989-2024   Lauterbach                                                        



2. Enable MCDS timestamp messages

The Timestamp Messages are disabled by default. 

Enabling the time information requires the following steps:

2.1. Inform TRACE32 about the system clocks (mainly oscillator clock frequency) and enable all 
derived calculations. One of the derived calculations is f(mcds). Since Timestamp Messages provide 
the number of MCDS clocks needed by a set of executed instructions 1/f(mcds) can be used to 
calculate time information.

2.2. Enable Timestamp Messages.

A more complex configuration is required if you use a free-running clock.

NOTE: Please be aware that there a constraints for the CPU clock, the Backbone Bus 
clock and the MCDS clock. For details refer to your AURIX manual.
Training AURIX Tracing     |    27©1989-2024   Lauterbach                                                        



2.1. Inform TRACE32 about the system clocks (mainly oscillator clock frequency) and enable all 
derived calculations. 

Please be aware that calculating the time out of the MCDS clock fails, if the pll change during the trace 
recording.

CLOCK.state Display the system clocks configuration/calculation window.

CLOCK.OSCillator <frequency> Specify your board oscillator frequency, if it differs from 
the default setting.

CLOCK.ON Declare system clocks as valid.

NOTE: The system clock and its derived calculations are valid for all cores in a chip. The 
TRACE32 Resource Management ensures that the settings are consistent 
between the different TRACE32 instances of an AMP system (joint settings).

f(mcds) is needed to 
calculate time information
Training AURIX Tracing     |    28©1989-2024   Lauterbach                                                        



Please be aware that f(mcds) and f(cpux) can be set via TRACE32 commands, e.g. for the post mortem 
trace analysis (PowerTrace only).

2.1. Enable Timestamp Messages.

MCDS.CLOCK.Frequency.McdsClock <frequency> Specify f(mcds).

Trace.CLOCK <freq>

Trace.CLOCK <freq0> <freq1> … (SMP tracing only)

Specify f(cpu).

Specify f(cpu0), f(cpu1), f(cpu2).

MCDS.TimeStamp ON Ticks (number of MCDS clock cycles) are enabled.
Training AURIX Tracing     |    29©1989-2024   Lauterbach                                                        



Examples

Example 1

Example 2

; use complete emulation memory
; (EMEM) provided by ED device as
; onchip trace buffer

SYStem.Up

;…

CLOCK.ON ; declare settings of system clocks
; as valid
; your board oscillator frequency
; is 20.MHz

; this setting provides f(mcds) to
; TRACE32

MCDS.TimeStamp ON ; enable Timestamp Messages
; (ticks)

; use complete emulation memory
; (EMEM) provided by ED device as
; onchip trace buffer

SYStem.Up

;…

CLOCK.state ; display system clocks
; configuration and calculation 
; window

CLOCK.OSCillator 30.MHz ; your board oscillator frequency
; is 30.MHz

CLOCK.ON ; declare settings of system clocks
; as valid

; this setting provides f(mcds) to
; TRACE32

MCDS.TimeStamp ON ; enable Timestamp Messages
; (ticks)
Training AURIX Tracing     |    30©1989-2024   Lauterbach                                                        



Example 3

MCDS.TraceBuffer SIZE 640.KB ; size of trace buffer
; 1024 KByte - (6 * 64 KByte)

;…

SYStem.Up

;…

CLOCK.ON ; declare settings of system clocks
; as valid
; your board oscillator frequency
; is 20.MHz

; this setting provides f(mcds) to
; TRACE32

MCDS.TimeStamp ON ; enable Timestamp Messages
; (ticks)
Training AURIX Tracing     |    31©1989-2024   Lauterbach                                                        



AMP Setup

Please be aware that Trace.METHOD Onchip is only set for the first TRACE32 instance.
Training AURIX Tracing     |    32©1989-2024   Lauterbach                                                        



For all other TRACE32 instances Trace METHOD ART (Advanced Register Trace) is selected.

It is recommended to set Trace.METHOD Onchip for all other TRACE32 instances:

Trace.METHOD Onchip ; select Trace.METHOD Onchip
Training AURIX Tracing     |    33©1989-2024   Lauterbach                                                        



Off-chip Trace Configuration

Auto-Configuration

When the communication between the debugger and the core(s) is established by SYStem.Up channel 
training is performed for the Aurora GigaBit Trace.

Tile 0 of the EMEM is used as internal buffer (FIFO) for the Aurora GigaBit Trace 
Training AURIX Tracing     |    34©1989-2024   Lauterbach                                                        



Analyzer (off-chip tracing) is automatically selected by TRACE32 
Training AURIX Tracing     |    35©1989-2024   Lauterbach                                                        



Restrictions

When the program execution is stopped, it may happen that the trace information is not completely flushed. 
TRACE32 can detect that, but it can not trigger flushing. This is a known AGBT bug.

Trace information on the last executed instructions might be lost.
Training AURIX Tracing     |    36©1989-2024   Lauterbach                                                        



Trace Sources and Their Messages

Cores as Trace Source

A core can generate the following trace messages

MCDS.state ; display MCDS configuration 
; window

Core 

Instruction Pointer Call Messages
MCDS.SOURCE.Set CpuMux<n>.Program ON

Write Data Trace Messages
MCDS.SOURCE.Set CpuMux<n>.WriteAddr ON
MCDS.SOURCE.Set CpuMux<n>.WriteData ON

Read Data Trace Messages
MCDS.SOURCE.Set CpuMux<n>.ReadAddr ON

MCDS.SOURCE.Set CpuMux<n>.PTMode FlowTrace

Instruction Pointer Call Messages + Instruction Pointer Messages
MCDS.SOURCE.Set CpuMux<n>.Program ON
MCDS.SOURCE.Set CpuMux<n>.PTMode SyncTrace
Training AURIX Tracing     |    37©1989-2024   Lauterbach                                                        



The command MCDS.SOURCE.DEFault applies to the settings marked in the picture below:

MCDS.SOURCE.DEFault ; reset the message configuration
; to its default setting
Training AURIX Tracing     |    38©1989-2024   Lauterbach                                                        



System Peripheral Bus as Trace Source

The following trace messages are generated for the System Peripheral Bus

SPB 

Write Data Trace Messages
MCDS.SOURCE.Set SPB.WriteAddr ON
MCDS.SOURCE.Set SPB.WriteData ON

Read Data Trace Messages
MCDS.SOURCE.Set SPB.ReadAddr ON
MCDS.SOURCE.Set SPB.ReadData ON
Training AURIX Tracing     |    39©1989-2024   Lauterbach                                                        



Shared Resource Interconnect as Trace Source

Due to bandwidth issues it is not possible to generated trace messages for all transfers on the SRI. 

Trace messages can be generated for transfers to two selected slaves.
Training AURIX Tracing     |    40©1989-2024   Lauterbach                                                        



; Select PMI of CPU1 as first SRIslave

; This selection enables MCDS to generate trace messages for all
; transfers to the PMI of core 1
MCDS.SOURCE.Set SRI.1.SLAVE CPU1_PMI 
Training AURIX Tracing     |    41©1989-2024   Lauterbach                                                        



For each SRI slave the following messages can be generated:

SRI

Write Data Trace Messages
MCDS.SOURCE.Set SRI.<m>.WriteAddr ON
MCDS.SOURCE.Set SRI.<m>.WriteData ON

Read Data Trace Messages
MCDS.SOURCE.Set SRI.<m>.ReadAddr ON
MCDS.SOURCE.Set SRI.<m>.ReadData ON

slave 
Training AURIX Tracing     |    42©1989-2024   Lauterbach                                                        



Message Display in TRACE32

In general, the following applies: 

• A TRACE32 instance displays trace information for all the cores it controls.

• Trace information generated by the SPB/SRI is always displayed in all TRACE32 instances that 
are started to debug the TriCore cores of the AURIX chip.
Training AURIX Tracing     |    43©1989-2024   Lauterbach                                                        



Tracing of a Single Core

A TRACE32 instance controls one TriCore core (TC 1.6.1 CPU0 here).

• Please make sure that you have selected the core that is controlled by the TRACE32 instance in 
the MCDS window. For example:

All trace messages enabled for the selected core and SPB/SRI are displayed in the TRACE32 Trace Listing.

MCDS.SOURCE.Set CpuMux0.Core TriCore0
Training AURIX Tracing     |    44©1989-2024   Lauterbach                                                        



Tracing of AMP Systems

Three TRACE32 instances are started, each TRACE32 instance controls one TC 1.6.1 core. 

Since MCDS can generated trace information only for 2 cores, you have to configure the trace multiplexers.

Each TRACE32 instance has its own MCDS window.

; configuration command for trace multiplexer CpuMux0
MCDS.SOURCE.Set CpuMux0.Core TriCore0 | TriCore1 | TriCore2

; configuration command for trace multiplexer CpuMux1
MCDS.SOURCE.Set CpuMux1.Core TriCore1 | TriCore2 | OTGM
Training AURIX Tracing     |    45©1989-2024   Lauterbach                                                        



Since more than one TRACE32 instance can configure MCDS (single source) the following rules apply:

1. Joint settings

The TRACE32 Resource Management maintains consistency between the TRACE32 instances.

MCDS reset

On-chip/off-chip trace configuration

Timestamp configuration

MCDS.RESet

MCDS.TraceBuffer.SIZE <size>

MCDS.TraceBuffer.LowerGAP <size>

MCDS.TraceBuffer.UpperGAP <size>

MCDS.PortSIZE <lanes>

MCDS.PortSPEED <speed>

MCDS.TimeStamp OFF | ON
Training AURIX Tracing     |    46©1989-2024   Lauterbach                                                        



Configuration of the trace multiplexers

MCDS.SOURCE.Set CpuMux0.Core TriCore0 | TriCore1 | TriCore2

MCDS.SOURCE.Set CpuMux1.Core TriCore1 | TriCore2 | OTGM

MCDS.SOURCE.Set SRI.1|2.SLAVE <slave>
Training AURIX Tracing     |    47©1989-2024   Lauterbach                                                        



2. Exclusive settings

These settings can be done by each TRACE32 instance individually.

Connect/disconnect core from MCDS

Enabling/disabling of trace messages

MCDS.ON

MCDS.OFF

MCDS.SOURCE.Set CpuMux0.<source> ON | OFF

MCDS.SOURCE.Set CpuMux1.<source> ON | OFF

MCDS.SOURCE.Set SPB.<source> ON | OFF

MCDS.SOURCE.Set SRI 1.<source> ON | OFF

MCDS.SOURCE.Set SRI 2.<source> ON | OFF
Training AURIX Tracing     |    48©1989-2024   Lauterbach                                                        



Example

MCDS settings for TC 1.6.1 CPU0

All trace messages enabled for TriCore0 and all SPB/SRI trace messages enabled in any TRACE32 
instance are displayed in the TRACE32 Trace Listing.
Training AURIX Tracing     |    49©1989-2024   Lauterbach                                                        



MCDS setting for TC 1.6.1 CPU1

All trace messages enabled for TriCore1 and all SPB/SRI trace messages enabled in any TRACE32 
instance are displayed in the TRACE32 Trace Listing.
Training AURIX Tracing     |    50©1989-2024   Lauterbach                                                        



MCDS setting for TC 1.6.1 CPU2

All SPB/SRI trace messages enabled in any TRACE32 instance are displayed in the TRACE32 Trace 
Listing.
Training AURIX Tracing     |    51©1989-2024   Lauterbach                                                        



Tracing of SMP Systems

A TRACE32 instance controls all TriCore cores.

Since MCDS can generated trace information only for 2 cores, you have to configure the trace multiplexers.

One MCDS window is provided to control the message generation for all cores.

All trace messages enabled for the selected cores and SPB/SRI trace messages are displayed in the 
TRACE32 Trace Listing.

; configuration command for trace multiplexer CpuMux0
MCDS.SOURCE.Set CpuMux0.Core TriCore0 | TriCore1 | TriCore2

; configuration command for trace multiplexer CpuMux1
MCDS.SOURCE.Set CpuMux1.Core TriCore1 | TriCore2 | OTGM
Training AURIX Tracing     |    52©1989-2024   Lauterbach                                                        



FIFOFULL

TARGET FIFO OVERFLOW, PROGRAM FLOW LOST occurs, when more trace information is generated 
than can be transferred into the EMEM.
Training AURIX Tracing     |    53©1989-2024   Lauterbach                                                        



Diagnosis

In order to get an immediate display of the trace contents TRACE32 uploads only the currently displayed 
section from the trace buffer to the host.

To check the number of FIFOFULLs it is recommended to upload the complete trace contents to the host by 
the command: Trace.FLOWPROCESS.

The complete number of FIFOFULL can be displayed by:

The single FIFOFULLs can be found in the trace:

PRINT %Decimal Trace.FLOW.FIFOFULL()
Training AURIX Tracing     |    54©1989-2024   Lauterbach                                                        



Displaying the Trace Contents

Sources of Information for the Trace Display

In order to provide an intuitive trace display the following sources of information are merged:

• The trace information recorded.

• The program code from the target memory read via the JTAG/DAP interface.

• The symbol and debug information already loaded to TRACE32.
 

Symbol and debug
information loaded

to TRACE32

Recorded trace 
information

Uploaded from
the source of

trace information

Program code from
target memory

Read via 
JTAG/DAP
interface
Training AURIX Tracing     |    55©1989-2024   Lauterbach                                                        



Influencing Factors on the Trace Information

The main influencing factor on the trace information is the MCDS. It specifies what type of trace messages is 
generated for the user. 

Basic settings for trace messages were introduced in “Trace Sources and Their Messages”, page 37.

More advanced settings are described later in “Trace Control by Filter and Trigger - Overview”, page 93.

Another important influencing factor are the settings in the TRACE32 Trace Configuration window. It 
specifies how much trace information can be recorded and when the trace recording is stopped.
Training AURIX Tracing     |    56©1989-2024   Lauterbach                                                        



TRACE32 Trace Configuration Window

Mode Setting

The Mode settings in the Trace Configuration window specify how much trace information can be recorded 
and when the trace recording is stopped.

The following modes are provided:

• Fifo, Stack, Leash Mode: allow to record as much trace records as indicated in the SIZE field of 
the Trace Configuration window.

Onchip trace buffer (EMEM)

Trace memory of PowerTrace hardware
Training AURIX Tracing     |    57©1989-2024   Lauterbach                                                        



• STREAM Mode (PowerTrace hardware only): STREAM mode specifies that the trace 
information is immediately streamed to a file on the host computer. Peak loads at the trace port 
are intercepted by the trace memory of the PowerTrace, which can be considered as a large 
FIFO. 

STREAM mode allows a trace memory of several Tera Frames.

STREAM mode required a 64-bit host computer and a 64-bit TRACE32 executable to handle the 
large trace record numbers.
Training AURIX Tracing     |    58©1989-2024   Lauterbach                                                        



Fifo Mode

Trace.Mode Fifo ; default mode

; when the trace memory is full
; the newest trace information will
; overwrite the oldest one

; the trace memory contains all 
; information generated until the
; program execution stopped

In Fifo mode negative record numbers are used. The last record gets the smallest negative number.
Training AURIX Tracing     |    59©1989-2024   Lauterbach                                                        



Stack Mode

Trace.Mode Stack ; when the trace memory is full
; the trace recording is stopped

; the trace memory contains all 
; information generated directly
; after the start of the program 
; execution

The trace recording is
.stopped as soon as

the trace memory is 
full (OFF state) 

Green running in the Debug field 
indicates that program execution is running 

OFF in the Trace field 
indicates that the trace 
recording is switched off 
Training AURIX Tracing     |    60©1989-2024   Lauterbach                                                        



Since the trace recording starts with the program execution and stops when the trace memory is full,
positive record numbers are used in Stack mode. The first record in the trace gets the smallest
positive number.
Training AURIX Tracing     |    61©1989-2024   Lauterbach                                                        



Leash Mode

Trace.Mode Leash ; when the trace memory is nearly 
; full the program execution is
; stopped

; Leash mode uses the same record
; numbering scheme as Stack mode

The program execution is stopped as soon as
the trace buffer is nearly full. 
 
Since stopping the program execution when the trace
buffer is nearly full requires some logic/time, used is 
smaller then the maximum SIZE. 
Training AURIX Tracing     |    62©1989-2024   Lauterbach                                                        



STREAM Mode (PowerTrace hardware only)

The trace information is immediately streamed to a file on the host computer after it was placed into the trace 
memory. This procedure extends the size of the trace memory up to several T Frames.

STREAM mode required a 64-bit host computer and a 64-bit TRACE32 executable to handle the large trace 
record numbers.

By default the streaming file is placed into the TRACE32 temp. directory 
(OS.PresentTemporaryDirectory()).

The command Trace.STREAMFILE <file> allows to specific a different name and location for the streaming 
file.

TRACE32 stops the streaming when less then the 1 GByte free memory is left on the drive by default.

The command Trace.STREAMFileLimit <+/- limit in bytes> allows a user-defined free memory limitation.

Please be aware that the streaming file is deleted as soon as you de-select the STREAM mode or when you 
exit TRACE32.

Trace.STREAMFILE d:\temp\mystream.t32 ; specify the location for
; your streaming file

Trace.STREAMFileLimit 5000000000. ; streaming file is limited to 
; 5 GByte

Trace.STREAMFileLimit -5000000000. ; streaming is stopped when less
; the 5 GByte free memory is left
; on the drive
Training AURIX Tracing     |    63©1989-2024   Lauterbach                                                        



STREAM mode can only be used if the average data rate at the trace port does not exceed the maximum 
transmission rate of the host interface in use. Peak loads at the trace port are intercepted by the trace 
memory within the PowerTrace, which can be considered to be operating as a large FIFO.

Trace.Mode STREAM ; trace information is immediately
; streamed to a file on the host
; computer

; STREAM mode uses the same record
; numbering scheme as Stack mode

used graphically: number of records buffered by the trace memory in the PowerTrace 

used numerically: Number of records saved to streaming file 

STREAM mode can
generate very large 
record numbers
Training AURIX Tracing     |    64©1989-2024   Lauterbach                                                        



States of the Trace

The trace buffer can either record trace information or allows the read-out for information display.

States of the Trace

DISable The trace is disabled.

OFF The trace is not recording. The trace contents can be displayed.

Arm The trace is recording. The trace contents can not be displayed.
Training AURIX Tracing     |    65©1989-2024   Lauterbach                                                        



The AutoInit Command

Init Button Clear the trace memory. All other settings in the Trace 
Configuration window remain valid.

AutoInit CheckBox ON: The trace memory is cleared whenever the program execution 
is started (Go, Step).

Please be aware that the onchip trace memory always start 
recording at the lowest address. As a result the AutoInit option is 
not required.
Training AURIX Tracing     |    66©1989-2024   Lauterbach                                                        



AMP- Joint/Exclusive Settings

Each TRACE32 instance has its own Trace Configuration window.

Since more the on TRACE32 instance can configure the trace (single source) the following rules apply:

1. Joint settings

The TRACE32 Resource Management maintains consistency between the TRACE32 instances.

Selection of the trace sink
 

For the AURIX all cores can either use the on-chip trace or off-chip trace. Therefore, either the trace method 
Onchip or the trace method Analyzer has to be selected in all TRACE32 instances. As soon as an 
inconsistent selection is done in a TRACE32 instance, the TRACE32 Resource Management disables the 
traces in the other TRACE32 instances.

Trace.METHOD Analyzer

Trace.METHOD Onchip
Training AURIX Tracing     |    67©1989-2024   Lauterbach                                                        



Trace state

Trace reset/init

Trace size

Trace mode

Trigger delay

Trace.OFF

Trace.Arm

Trace.RESet

Trace.Init

Trace.SIZE <size>

Trace.Mode Fifo | Stack | Leash | STREAM

Trace.TDelay <delay>
Training AURIX Tracing     |    68©1989-2024   Lauterbach                                                        



2. Exclusive settings

These settings can be done by each TRACE32 instance individually.

Trace method

All TRACE32 software trace methods have their own resources in their TRACE32 instance.

Trace disable

Trace AutoArm and AutoInit

Access to source code/definition of the core clock

Trace.Mode ART | LOGGER | SNOOPer | FDX

Trace.DISable

Trace.AutoArm [ON | OFF]

Trace.AutoInit [ON | OFF]

Trace.ACCESS <access>

Trace.CLOCK <core_clock>
Training AURIX Tracing     |    69©1989-2024   Lauterbach                                                        



Basic Display Commands

Default Listing
Training AURIX Tracing     |    70©1989-2024   Lauterbach                                                        



Core-generated Trace Information

ptrace: Instruction Pointer Call Message/Instruction Pointer Message with timestamp

Conditional
branch

not taken

Conditional
branch taken

(pastel)

rd-data: Read Data Trace Message with timestamp (read-address only)

wr-data: Write Data Trace Message with timestamp 
Training AURIX Tracing     |    71©1989-2024   Lauterbach                                                        



The trace information for all cores is displayed by default in the Trace.List window if you are working with an 
SMP system. The column run and the coloring of the trace information are used for core indication.

Trace.List /CORE<n> The commands allows a per core display
Training AURIX Tracing     |    72©1989-2024   Lauterbach                                                        



SPB-/SRI-generated Trace Information

Trace.List DEFault BusMaster
Training AURIX Tracing     |    73©1989-2024   Lauterbach                                                        



Time Information

Off-chip trace: Please be aware that the AURIX chip buffers a bigger number of trace messages before 
they are sent out together via the serial interface. Since the TRACE32 timestamps the trace information 
when it is saved into the trace memory of the PowerTrace, the timestamps are imprecise and not suitable 
especially to measure the runtime of short program sections.

If exact timestamps are important for your trace analysis, you have to enable Timestamp Messages. Please 
refer to “2. Enable MCDS timestamp messages”, page 27 for details.

Enabling the Timestamp Messages has the caveat that the display of the trace information might need 
some time because TRACE32 has to process the trace information always from the start of the trace 
recording. As long as TRACE32 processes the trace information “Tracking” is displayed.

A big timestamp
indicates the 
point when the
serial trace 
started to stream
trace information
Training AURIX Tracing     |    74©1989-2024   Lauterbach                                                        



TIme.BACK Time relative to the previous record (left arrow in red)

TIme.FORE Time relative to the next record (right arrow in green).

TIme.ZERO Timestamp Messages enabled:
Time relative to the first record in the trace (zero point)

PowerTrace/PREPROCESSOR SERIAL with Timestamp 
Messages disabled:
Time relative to the TRACE32 global zero point

The TRACE32 global zero point is established when the 
communication between the debugger and the master core is 
established by SYStem.Up.

Trace.List TIme.BACK TIme.FORE TIme.ZERO DEFault
Training AURIX Tracing     |    75©1989-2024   Lauterbach                                                        



Information on the executed instructions is only generated on branches by default. The timestamps per 
instruction become more detailed, if Instruction Pointer Messages are enabled.

But this reduces tracing time, since more trace packets are generated (about four times less).

MCDS.SOURCE.Set CpuMux<n>.PTMode SyncTrace
Training AURIX Tracing     |    76©1989-2024   Lauterbach                                                        



Basic Formatting

The More button works vice versa.

1. time Less Suppress the display of the ptrace information (ptrace).

2. time Less Suppress the display of the assembly code.

3. time Less Suppress the data access information (e.g. wr-data cycles).

1.

2.

3.
Training AURIX Tracing     |    77©1989-2024   Lauterbach                                                        



Correlating the Trace Listing with the Source Listing

Tracking between the Trace Listing and the Source Listing is based on the program address.

Active Window

All windows opened with
the /Track option follow the
cursor movements in the 
active window
Training AURIX Tracing     |    78©1989-2024   Lauterbach                                                        



AMP - Correlate to a Trace Listing in another TRACE32 Instance

In an AMP configuration each TRACE32 instance displays the trace information for the core it controls. 
In order to analyze the interaction of the cores it is possible to establish a Time Tracking between the 
trace information in the different TRACE32 instances. Time Tracking between TRACE32 instances is 
established via the SYnch.XTrack command. If the start/stop synchronization for the cores is already 
established, establishing the Time Tracking is very simple.

MasterGo/MasterBreak
SlaveGo/SlaveBreak
are used to establish the
start/stop synchronization
in an AMP set-up
Training AURIX Tracing     |    79©1989-2024   Lauterbach                                                        



The following additionally settings are required to establish a Time Tracking between two or more 
TRACE32 instances:

Tracking points are:

SYnch.XTrack {<intercom_name>} Establish time synchronization to another TRACE32 
instance

; in TRACE32 instance for TC 1.6 CPU0
SYnch.XTrack localhost:10001 localhost:10002

; in TRACE32 instance for TC 1.6 CPU1
SYnch.XTrack localhost:10000 localhost:10002

; in TRACE32 instance for TC 1.6 CPU2
SYnch.XTrack localhost:10000 localhost:10001

Off-chip trace
Timestamp Messages disabled

TRACE32 global zero time

On-chip trace
Timestamp Messages disabled

Record number

Timestamp Messages enabled AURIX zero time: Time relative to the first record in the trace
Training AURIX Tracing     |    80©1989-2024   Lauterbach                                                        



Trace.List %TimeFixed TIme.ZERO DEFault /Track

Time tracking between the Trace Listings of two TRACE32 instances
Training AURIX Tracing     |    81©1989-2024   Lauterbach                                                        



Browsing through the Trace Buffer

Pg  Scroll page up.

Pg  Scroll page down.

Ctrl - Pg  Go to the first record sampled in the trace buffer.

Ctrl - Pg  Go to the last record sampled in the trace buffer.
Training AURIX Tracing     |    82©1989-2024   Lauterbach                                                        



Find a Specific Event

Example: Find a specific symbol address.

A more detail description on how to find specific events in the trace is given in “Application Note for 
Trace.Find” (app_trace_find.pdf).
Training AURIX Tracing     |    83©1989-2024   Lauterbach                                                        



Post Mortem Trace Analysis (PowerTrace only)

Trace decompression and display requires by default, that the program code is read from the target memory 
via JTAG/DAP. If the communication to the target is lost (system down) an alternative way to read the 
program code can be provided.
Training AURIX Tracing     |    84©1989-2024   Lauterbach                                                        



In order to decompress and display trace information after the communication to the target is lost proceed as 
follows:

1. Load the program code to the TRACE32 Virtual Memory.

2. Advise TRACE32 to read program code from TRACE32 Virtual Memory.

Data.LOAD.Elf triboard-tc275_sieve_intmem.elf /VM

Trace.ACCESS VM 
Training AURIX Tracing     |    85©1989-2024   Lauterbach                                                        



Belated Trace Analysis

There are several ways for a belated trace analysis:

1. Save a part of the trace contents into an ASCII file and analyze this trace contents by reading.

2. Save the trace contents in a compact format into a file. Load the trace contents at a subsequent 
date into a TRACE32 Instruction Set Simulator and analyze it there. 
Training AURIX Tracing     |    86©1989-2024   Lauterbach                                                        



Save the Trace Information to an ASCII File

Saving a part of the trace contents to an ASCII file requires the following steps:

1. Select Printer Settings … in the File menu to specify the file name and the output format.

2. It only makes sense to save a part of the trace contents into an ASCII-file. Use the record 
numbers to specify the trace part you are interested in.

TRACE32 provides the command prefix WinPrint. to redirect the result of a display command into a 
file.

3. Use an ASCII editor to display the result.

PRinTer.FileType ASCIIE ; specify output format
; here enhanced ASCII

PRinTer.FILE testrun1.lst ; specify the file name

; save the trace record range (-8976.)--(-2418.) into the 
; specified file
WinPrint.Trace.List (-8976.)--(-2418.)
Training AURIX Tracing     |    87©1989-2024   Lauterbach                                                        



Postprocessing with TRACE32 Instruction Set Simulator

1. Save the contents of the trace memory into a file.

The default extension for the trace file is .ad.

Trace.SAVE testrun1.ad
Training AURIX Tracing     |    88©1989-2024   Lauterbach                                                        



2. Start a TRACE32 Instruction Set Simulator (PBI=SIM).
 

Training AURIX Tracing     |    89©1989-2024   Lauterbach                                                        



3. Select your target CPU within the simulator.

4. If you are debugging an SMP system, inform the simulator which cores form the SMP 
system.

5. Then establish the communication between TRACE32 and the simulator.

CORE.ASSIGN 1. 2. 3.
Training AURIX Tracing     |    90©1989-2024   Lauterbach                                                        



6. Load the trace file.

Trace.LOAD testrun1
Training AURIX Tracing     |    91©1989-2024   Lauterbach                                                        



7. Display the trace contents.

8. Load symbol and debug information if you need it.

The TRACE32 Instruction Set Simulator provides the same trace display and analysis commands as the 
TRACE32 debugger.

Data.LOAD.Elf triboard-tc275_sieve_intmem.elf /NoCODE

LOAD indicates that the source for the trace information is the loaded file. 
Training AURIX Tracing     |    92©1989-2024   Lauterbach                                                        



Trace Control by Filter and Trigger - Overview

The action field in the Break.Set dialog provides Marker, Filter and Trigger.

Marker, filter and trigger get a blue breakpoint indicator within TRACE32.

Marker, Filter
Trigger
Training AURIX Tracing     |    93©1989-2024   Lauterbach                                                        



Marker

WATCH is a so-called marker. It is used to indicate the occurrence of an event in the trace display.

Filter

A Processor Observation Block is the hardware within MCDS that generates trace messages out of the 
activities of a core. Filters are used to advise the Processor Observation Block to reduce the generation of 
trace messages to the information of interest. Please be aware, that Filters have no effect on the Bus 
Observation Blocks (SPB/SRI).

Filters are TraceEnable, TraceData, TraceOn and TraceOFF.

Trigger

TraceTrigger is a so-called trigger. Triggers are used to advise MCDS to stop the generation of trace 
messages.

Available Resources

The MCDS provides complex qualification- and trigger mechanism. TRACE32 uses these mechanisms as 
effectively as possible. Due to the complexity of the qualification and trigger mechanisms it is not possible to 
provide detailed numbers for the available resources.
Training AURIX Tracing     |    94©1989-2024   Lauterbach                                                        



Filter and Trigger - Single-Core and AMP

Fundamental behavior for AMP systems:

• Filters and Triggers are programmed for the core that is controlled by the TRACE32 instance.

• Filter advise the Processor Observation Block of the core controlled by the TRACE32 instance to 
generated the trace information of interest.

• Marker/Trigger advise the Processor Observation Block of the core controlled by the TRACE32 
instance to indicate the occurrence of an event.

WATCH Marker

Advise Processor Observation Block to indicate the occurrence of an event.

Example: Indicate that 0x0 was written to the variable flags[3].

• Core under debug: TC 1.6.1 CPU0.

• Event of interest: Write of 0x0 to variable flags[3].

• Requested messages: Instruction Pointer Call Messages, Timestamp Messages.

1. Configure the trace multiplexer.

; enable TC 1.6.1 CPU0 as trace source
MCDS.SOURCE.Set CpuMux0.Core TriCore0
Training AURIX Tracing     |    95©1989-2024   Lauterbach                                                        



2. Specify the event.

3. Configure which trace messages are generated.

4. Start and stop the program execution.

 Var.Break.Set flags[3] /Write /DATA.Byte 0x0 /WATCH

MCDS.TimeStamp ON ; enable Timestamp Messages

CLOCK.ON

MCDS.SOURCE.Set CpuMux0.Program ON ; enable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU0
Training AURIX Tracing     |    96©1989-2024   Lauterbach                                                        



5. Display the result.

It might be necessary to search for the result.
Training AURIX Tracing     |    97©1989-2024   Lauterbach                                                        



TraceEnable Filter

Advise the Processor Observation Block to generate trace messages for the enabled SOURCEs 
when the specified event is true. 

Example 1: Restrict the generated trace information to the entries to the function sieve.

• Core under debug: TC 1.6.1 CPU0.

• Event of interest: Entry to function sieve.

• Requested messages: Instruction Pointer Call Messages, Timestamp Messages.

1. Configure the trace multiplexer.

; enable TC 1.6.1 CPU0 as trace source
MCDS.SOURCE.Set CpuMux0.Core TriCore0
Training AURIX Tracing     |    98©1989-2024   Lauterbach                                                        



2. Specify the event.
.

3. Configure which trace messages are generated while the event is true.

Break.Set   sieve /Program /TraceEnable

MCDS.TimeStamp ON ; enable Timestamp Messages

CLOCK.ON

MCDS.SOURCE.Set CpuMux0.Program ON ; enable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU0
Training AURIX Tracing     |    99©1989-2024   Lauterbach                                                        



4. Start the program execution and stop it.

5. Display the result.

The trace contains only small code sections generated for the entries to the function sieve 
(TRACE ENABLE).

The following Trace.STATistic command calculates the time intervals for a program address event. The 
program address event is here the entry to the function sieve:

Trace.STATistic.AddressDIStance sieve
Training AURIX Tracing     |    100©1989-2024   Lauterbach                                                        



Example 2: Restrict the generated trace information to the entries to the function sieve and the exits from 
the function sieve.

• Core under debug: TC 1.6.1 CPU0.

• Events of interest: Entry to function sieve and exit of function sieve

• Requested messages: Instruction Pointer Call Messages, Timestamp Messages.

1. Configure the trace multiplexer.

; enable TC 1.6.1 CPU0 as trace source
MCDS.SOURCE.Set CpuMux0.Core TriCore0
Training AURIX Tracing     |    101©1989-2024   Lauterbach                                                        



2. Specify the events.
.

sYmbol.EXIT(<symbol>) Returns the exit address of the specified function

Break.Set   sieve /Program /TraceEnable

Break.Set   sYmbol.EXIT(sieve) /Program /TraceEnable
Training AURIX Tracing     |    102©1989-2024   Lauterbach                                                        



3. Configure which trace messages are generated while the events are true.

4. Start the program execution and stop it.

MCDS.TimeStamp ON ; enable Timestamp Messages

CLOCK.ON

MCDS.SOURCE.Set CpuMux0.Program ON ; enable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU0
Training AURIX Tracing     |    103©1989-2024   Lauterbach                                                        



5. Display the result.

The trace contains only small code sections generated for the entries to the function sieve 
(TRACE ENABLE) and for the exits of the function sieve (TRACE ENABLE).

The following Trace.STATistic command calculates the time intervals between two program address events 
A and B. The entry to the function sieve is A in this example, the exit from the function is B.

Trace.STATistic.AddressDURation sieve sYmbol.EXIT(sieve)
Training AURIX Tracing     |    104©1989-2024   Lauterbach                                                        



Example 3: Restrict the generated trace information to write accesses to the variable flags[3].

• Core under debug: TC 1.6.1 CPU0.

• Event of interest: Write access to variable flags[3].

• Requested messages: Write Data Trace Messages, Timestamp Messages.

1. Configure the trace multiplexer.

; enable TC 1.6.1 CPU0 as trace source
MCDS.SOURCE.Set CpuMux0.Core TriCore0
Training AURIX Tracing     |    105©1989-2024   Lauterbach                                                        



2. Specify the events.
.

Var.Break.Set flags[3] /Write /TraceEnable
Training AURIX Tracing     |    106©1989-2024   Lauterbach                                                        



3. Configure which trace messages are generated while the event is true.

4. Start the program execution and stop it.

MCDS.TimeStamp ON ; enable Timestamp Messages

CLOCK.ON

MCDS.SOURCE.Set CpuMux0.Program OFF ; disable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux0.WriteAddr ON ; enable Write Data Trace
; Messages for TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux0.WriteData ON
Training AURIX Tracing     |    107©1989-2024   Lauterbach                                                        



5. Display the result.

The trace contains only information on the write accesses to the variable flags[3].
Training AURIX Tracing     |    108©1989-2024   Lauterbach                                                        



The Variable pull-down provides various way to analyze the variable contents over the time.

; open a window to display the variable
Var.View flags[3]

Display the value changes of a variable graphically
Trace.Chart.DistriB Data /Filter Address Var.RANGE(<var>)
Training AURIX Tracing     |    109©1989-2024   Lauterbach                                                        



Display variable contents over the time numerically 
Trace.Chart.VarState /Filter Address Var.RANGE(<var>)

Var.RANGE(<var>) Returns the address range in which the content of a variable is 
stored.
Training AURIX Tracing     |    110©1989-2024   Lauterbach                                                        



Display variable contents over the time graphically 
Trace.DRAW.Var %DEFault <var>
Training AURIX Tracing     |    111©1989-2024   Lauterbach                                                        



TraceData Filter

Advise the Processor Observation Block to generate trace messages for the instruction flow and for 
the specified events. 

Example: Generate trace information for the complete instruction flow and for all write accesses to flags[12].

• Core under debug: TC 1.6.1 CPU0.

• Event of interest: Write access to flags[12].

• Requested Messages: Timestamp Messages.

1. Configure the trace multiplexer.

Motivation: The TraceData filter is of great importance for the nesting function run-time analysis 
if an operating system is used.

; enable TC 1.6.1 CPU0 as trace source
MCDS.SOURCE.Set CpuMux0.Core TriCore0
Training AURIX Tracing     |    112©1989-2024   Lauterbach                                                        



2. Specify the event.
.

3. TRACE32 PowerView takes care of the trace message generation.

4. Start the program execution and stop it.

5. Display the result.

The trace contains the complete program flow and all write accesses to the variable flags[12].

Var.Break.Set flags[12] /Write /TraceData
Training AURIX Tracing     |    113©1989-2024   Lauterbach                                                        



TraceON/TraceOFF Filter

TraceON: Advise the Processor Observation Block to start the generation of trace messages for the 
enabled SOURCEs.

TraceOFF: Advise the Processor Observation Block to stop the generation of trace messages.

Example: Restrict the generation of trace messages to the function func2.

• Core under debug: TC 1.6.1 CPU0.

• Events of interest: Entry to function func2, exit of function func2

• Requested Messages: Instruction Pointer Call Messages, Write Data Trace Messages, Read 
Data Trace Messages, Timestamp Messages.

1. Configure the trace multiplexer.

MCDS.SOURCE.Set CpuMux0.Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source
Training AURIX Tracing     |    114©1989-2024   Lauterbach                                                        



2. Specify the events.

 Break.Set   func2 /Program /TraceON
 Break.Set   sYmbol.EXIT(func2) /Program /TraceOFF
Training AURIX Tracing     |    115©1989-2024   Lauterbach                                                        



3. Configure which trace messages are generated when the message generation is active 
(after TraceON event).

4. Start and stop the program execution.

MCDS.TimeStamp ON ; enable Timestamp Messages

CLOCK.ON

MCDS.SOURCE.Set CpuMux0.Program ON ; enable Instruction 
; Pointer Call Messages for 
; TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux0.ReadAddr ON ; enable Read Data Trace
; Messages for TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux0.WriteAddr ON
MCDS.SOURCE.Set CpuMux0.WriteData ON

; enable Write Data Trace
; Messages for TC 1.6.1 CPU0
Training AURIX Tracing     |    116©1989-2024   Lauterbach                                                        



5. Display the result.

TRACE ENABLE indicates the start of the message generation after the TraceON event occurred. It 
might be necessary to search for it.

Trace message generation is started after the TraceON event occurred. As a result the event itself is 
not visible in the trace.
Training AURIX Tracing     |    117©1989-2024   Lauterbach                                                        



Trace Trigger (Onchip Trace Only)

Advise the Processor Observation Block to end the message generation at the specified event.

Example 1: Stop the trace recording when 0x0 was written to the variable flags[3].

• Core under debug: TC 1.6.1 CPU0.

• Event of interest: Write of 0x0 to variable flags[3].

• Requested Messages: Instruction Pointer Call Messages, Write Data Trace Messages, 
Timestamp Messages.

1. Configure the trace multiplexer.

; enable TC 1.6.1 CPU0 as trace source
MCDS.SOURCE.Set CpuMux0.Core TriCore0
Training AURIX Tracing     |    118©1989-2024   Lauterbach                                                        



2. Specify the event.

3. Configure which trace messages are generated until the trigger event occurs.

S

 Var.Break.Set flags[3] /Write /DATA.Byte 0x0 /TraceTrigger

MCDS.TimeStamp ON ; enable Timestamp Messages

CLOCK.ON

MCDS.SOURCE.Set CpuMux0.Program ON ; enable Instruction 
; Pointer Call Messages for 
; TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux0.WriteAddr ON
MCDS.SOURCE.Set CpuMux0.WriteData ON

; enable Write Data Trace
; Messages for TC 1.6.1 CPU0
Training AURIX Tracing     |    119©1989-2024   Lauterbach                                                        



4. Start the program execution.

5. Display the result.

MCDS ends the generation of trace messages and flushes all internal buffer when the specified event 
occurs. TRACE32 automatically generates a watchpoint TraceTrigger message when the trigger 
event occurs. This helps you to find the actual trigger event in the trace.

State of the
program execution

State of the
trace recording

(running) (Arm = recording)

State of the
trace recording
(OFF = break by trigger,
recording is stopped)
Training AURIX Tracing     |    120©1989-2024   Lauterbach                                                        



Example 2: Stop the trace recording after another 10% of the trace memory was filled when 0x0 was written 
to the variable flags[3].

• Core under debug: TC 1.6.1 CPU0.

• Event of interest: Write of 0x0 to variable flags[3].

• Requested Messages: Instruction Pointer Call Messages, Write Data Trace Messages, 
Timestamp Messages.

1. to 3. as in example 1.

4. Specific the delay.

Trace.TDelay 10%
Training AURIX Tracing     |    121©1989-2024   Lauterbach                                                        



5. Start the program execution.

State of the
program execution

State of the
trace recording

(running) (Arm = recording)

State of the
trace recording
(BRK = delay counter elapsed,
recording is stopped)

State of the
trace recording
(TRG = trigger occurred,
delay counter started)
Training AURIX Tracing     |    122©1989-2024   Lauterbach                                                        



6. Display the result.
Training AURIX Tracing     |    123©1989-2024   Lauterbach                                                        



Filter and Trigger - SMP Systems

Fundamental behavior for SMP systems:

• Filters and Triggers are programmed for all cores that are connected to the trace multiplexer.

• Filters advise the Processor Observation Blocks of the connected cores to generated the trace 
information of interest.

• Marker/Trigger advise the Processor Observation Blocks of the connected cores to indicate the 
occurrence of an event.

WATCH Marker

Advise Processor Observation Blocks of all cores to indicate the occurrence of an event.

Example: Indicate that 0x0 was written to the variable flags[3].

• System under debug: SMP system with 3 TriCore cores.

• Cores connected to the trace multiplexer: TC 1.6.1 CPU0 and TC 1.6.1 CPU1.

• Event of interest: Write of 0x0 to variable flags[3]

• Requested trace messages: Instruction Pointer Call Messages for both cores, Timestamp 
Messages.
Training AURIX Tracing     |    124©1989-2024   Lauterbach                                                        



1. Configure the trace multiplexer.

MCDS.SOURCE.Set CpuMux0.Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source

MCDS.SOURCE.Set CpuMux1.Core TriCore1 ; enable TC 1.6.1 CPU1 as
; trace source
Training AURIX Tracing     |    125©1989-2024   Lauterbach                                                        



2. Specify the event.

3. Configure which trace messages are generated.

S

 Var.Break.Set flags[3] /Write /DATA.Byte 0x0 /WATCH

MCDS.TimeStamp ON ; enable Timestamp Messages

CLOCK.ON

MCDS.SOURCE.Set CpuMux0.Program ON ; enable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux1.Program ON ; enable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU1
Training AURIX Tracing     |    126©1989-2024   Lauterbach                                                        



4. Start and stop the program execution.

5. Display the result.

It might be necessary to search for the result.
Training AURIX Tracing     |    127©1989-2024   Lauterbach                                                        



TraceEnable Filter

Advise the Processor Observation Block to generate trace messages for the enabled SOURCEs 
when the specified event is true. 

Example 1: Restrict the generated trace information to the entries to the function sieve.

• System under debug: SMP system with 3 TriCore cores.

• Cores connected to the trace multiplexer: TC 1.6.1 CPU0 and TC 1.6.1 CPU1.

• Event of interest: Entry to function sieve.

• Requested trace messages: Instruction Pointer Call Messages for both cores, Timestamp 
Messages.

1.

MCDS.SOURCE.Set CpuMux0.Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source

MCDS.SOURCE.Set CpuMux1.Core TriCore1 ; enable TC 1.6.1 CPU1 as
; trace source
Training AURIX Tracing     |    128©1989-2024   Lauterbach                                                        



2. Specify the event.
.

3. Configure which trace messages are generated while the event is true.

Break.Set   sieve /Program /TraceEnable

MCDS.TimeStamp ON ; enable Timestamp Messages

CLOCK.ON

MCDS.SOURCE.Set CpuMux0.Program ON ; enable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux1.Program ON ; enable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU1
Training AURIX Tracing     |    129©1989-2024   Lauterbach                                                        



4. Start the program execution and stop it.

5. Display the result.

The trace contains only small code sections generated for the entries to the function sieve 
(TRACE ENABLE).
Training AURIX Tracing     |    130©1989-2024   Lauterbach                                                        



The following Trace.STATistic command calculates the time intervals for a program address event. The 
program address event is here the entry to the function sieve. The core information is discarded for this 
calculation.

If you need the result per core, use the following command:

Trace.STATistic.AddressDIStance sieve [/JoinCORE]

Trace.STATistic.AddressDIStance sieve /CORE 0
Training AURIX Tracing     |    131©1989-2024   Lauterbach                                                        



Example 2: Restrict the generated trace information to the entries to the function sieve and the exits from 
the function sieve.

• System under debug: SMP system with 3 TriCore cores.

• Cores connected to the trace multiplexer: TC 1.6.1 CPU0 and TC 1.6.1 CPU1.

• Event of interest: Entry to function sieve and exit of function sieve.

• Requested trace messages: Instruction Pointer Call Messages for both cores, Timestamp 
Messages.

1. Configure the trace multiplexer.

MCDS.SOURCE.Set CpuMux0.Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source

MCDS.SOURCE.Set CpuMux1.Core TriCore1 ; enable TC 1.6.1 CPU1 as
; trace source
Training AURIX Tracing     |    132©1989-2024   Lauterbach                                                        



2. Specify the events.
.

sYmbol.EXIT(<symbol>) Returns the exit address of the specified function

Break.Set   sieve /Program /TraceEnable

Break.Set   sYmbol.EXIT(sieve) /Program /TraceEnable
Training AURIX Tracing     |    133©1989-2024   Lauterbach                                                        



3. Configure which trace messages are generated while the events are true.

4. Start the program execution and stop it.

MCDS.TimeStamp ON ; enable Timestamp Messages

CLOCK.ON

MCDS.SOURCE.Set CpuMux0.Program ON ; enable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux1.Program ON ; enable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU1
Training AURIX Tracing     |    134©1989-2024   Lauterbach                                                        



5. Display the result.

The trace contains only small code sections generated for the entries to the function sieve 
(TRACE ENABLE) and for the exits of the function sieve (TRACE ENABLE).
Training AURIX Tracing     |    135©1989-2024   Lauterbach                                                        



The following Trace.STATistic command calculates the time intervals between two program address events 
A and B. The entry to the function sieve is A in this example, the exit from the function is B. The core 
information is discarded for this calculation.

If you need the result per core, use the following command:

Trace.STATistic.AddressDURation sieve sYmbol.EXIT(sieve) [/JoinCORE])

Trace.STATistic.AddressDURation sieve sYmbol.EXIT(sieve) /CORE 0
Training AURIX Tracing     |    136©1989-2024   Lauterbach                                                        



Example 3: Restrict the generated trace information to write accesses to the variable flags[3].

• System under debug: SMP system with 3 TriCore cores.

• Cores connected to the trace multiplexer: TC 1.6.1 CPU0 and TC 1.6.1 CPU1.

• Event of interest: Write access to variable flags[3].

• Requested trace messages: Write Data Trace Messages for both cores, Timestamp Messages.

1. Configure the trace multiplexer.

MCDS.SOURCE.Set CpuMux0.Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source

MCDS.SOURCE.Set CpuMux1.Core TriCore1 ; enable TC 1.6.1 CPU1 as
; trace source
Training AURIX Tracing     |    137©1989-2024   Lauterbach                                                        



2. Specify the events.
.

Var.Break.Set flags[3] /Write /TraceEnable
Training AURIX Tracing     |    138©1989-2024   Lauterbach                                                        



3. Configure which trace messages are generated while the event is true.

4. Start the program execution and stop it.

MCDS.TimeStamp ON ; enable Timestamps 
Messages

CLOCK.ON

MCDS.SOURCE.Set CpuMux0.Program OFF ; disable Instruction 
; Pointer Call Messages for 
; TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux1.Program OFF ; disable Instruction 
; Pointer Call Messages for 
; TC 1.6.1 CPU1

MCDS.SOURCE.Set CpuMux0.WriteAddr ON ; enable Write Data Trace
; Messages for TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux0.WriteData ON

MCDS.SOURCE.Set CpuMux1.WriteAddr ON ; enable Write Data Trace
; Messages for TC 1.6.1 CPU1

MCDS.SOURCE.Set CpuMux1.WriteData ON
Training AURIX Tracing     |    139©1989-2024   Lauterbach                                                        



5. Display the result.

The trace contains only write accesses to the variable flags[3].
Training AURIX Tracing     |    140©1989-2024   Lauterbach                                                        



The Variable pull-down provides various way to analyze the variable contents over the time.

; open a window to display the variable
Var.View flags[3]

Display the value changes of a variable graphically - split the result per core
Trace.Chart.DistriB Data /Filter Address Var.RANGE(<var>) [/SplitCORE]

Var.RANGE(<var>) Returns the address range in which the content of a variable is stored.

Display the value changes of a variable graphically - ignore core information
Trace.Chart.DistriB Data /Filter Address Var.RANGE(<var>) /JoinCORE
Training AURIX Tracing     |    141©1989-2024   Lauterbach                                                        



Display variable contents over the time numerically - the core information is discarded
Trace.Chart.VarState /Filter Address Var.RANGE(<var>) [/JoinCORE]

Display variable contents over the time numerically - the core information is discarded
Trace.Chart.VarState /Filter Address Var.RANGE(<var>) /CORE <n>
Training AURIX Tracing     |    142©1989-2024   Lauterbach                                                        



Display variable contents over the time graphically - the core information is discarded
Trace.DRAW.Var %DEFault <var> [/JoinCORE]

Display variable contents over the time graphically - the core information is discarded
Trace.DRAW.Var %DEFault <var> /CORE <n>
Training AURIX Tracing     |    143©1989-2024   Lauterbach                                                        



TraceData Filter

Advise the Processor Observation Block to generate trace messages for the instruction flow and for 
the specified events. 

Example: Generate trace information for the complete program flow and for all write accesses to flags[12].

• System under debug: SMP system with 3 TriCore cores.

• Cores connected to the trace multiplexer: TC 1.6.1 CPU0 and TC 1.6.1 CPU1.

• Event of interest: Write access to variable flags[12].

• Requested trace messages: Timestamp Messages.

1. Configure the trace multiplexer.

NOTE: The TraceData filter is of great importance for the nesting function run-time analysis 
if an operating system is used.

MCDS.SOURCE.Set CpuMux0.Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source

MCDS.SOURCE.Set CpuMux1.Core TriCore1 ; enable TC 1.6.1 CPU1 as
; trace source
Training AURIX Tracing     |    144©1989-2024   Lauterbach                                                        



2. Specify the event.
.

3. TRACE32 takes care of the message generation.

4. Start the program execution and stop it.

5. Display the result.

The trace contains the complete program flow and all write accesses to the variable flags[12].

Var.Break.Set flags[12] /Write /TraceData
Training AURIX Tracing     |    145©1989-2024   Lauterbach                                                        



TraceON/TraceOFF Filter

TraceON: Advise the Processor Observation Blocks to start the generation of trace messages for 
the enabled SOURCEs at the specified event.

TraceOFF: Advise the Processor Observation Blocks to stop the generation of trace messages at 
the specified event.

Example: Restrict the generation of trace messages to the function sieve1.

• System under debug: SMP system with 3 TriCore cores.

• Cores connected to the trace multiplexer: TC 1.6.1 CPU0 and TC 1.6.1 CPU1.

• Event of interest: Entry to function sieve1 and exit of function sieve1.

• Requested trace messages: Instruction Pointer Call Messages, Write Data Trace Messages, 
Read Data Trace Messages, Timestamp Messages.

1. Configure the trace multiplexer.

MCDS.SOURCE.Set CpuMux0.Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source

MCDS.SOURCE.Set CpuMux1.Core TriCore1 ; enable TC 1.6.1 CPU1 as
; trace source
Training AURIX Tracing     |    146©1989-2024   Lauterbach                                                        



2. Specify the events.

 Break.Set   sieve1 /Program /TraceON
 Break.Set   sYmbol.EXIT(sieve1) /Program /TraceOFF
Training AURIX Tracing     |    147©1989-2024   Lauterbach                                                        



3. Configure which messages are generated when the message generation is active (after 
TraceON event).

4. Start and stop the program execution.

MCDS.TimeStamp ON ; enable Timestamp Messages

CLOCK.ON

MCDS.SOURCE.Set CpuMux0.Program ON ; enable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux0.ReadAddr ON ; enable Read Data Trace
; Messages for TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux0.WriteAddr ON
MCDS.SOURCE.Set CpuMux0.WriteData ON

; enable Write Data Trace
; Messages for TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux1.Program ON ; enable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU1

MCDS.SOURCE.Set CpuMux1.ReadAddr ON ; enable Read Data Trace
; Messages for TC 1.6.1 CPU1

MCDS.SOURCE.Set CpuMux1.WriteAddr ON
MCDS.SOURCE.Set CpuMux1.WriteData ON

; enable Write Data Trace
; Messages for TC 1.6.1 CPU1
Training AURIX Tracing     |    148©1989-2024   Lauterbach                                                        



5. Display the result.

TRACE ENABLE indicates the start of the message generation after the TraceON event occurred. It 
might be necessary to search for it.

Trace message generation is started after the TraceON event occurred. As a result this event is not 
visible in the trace.
Training AURIX Tracing     |    149©1989-2024   Lauterbach                                                        



Trace Trigger (Onchip Trace Only)

Advise the Processor Observation Blocks to end the message generation at the specified event.

Example 1: Stop the trace recording when 161. was written to the variable flagsc[8].

• System under debug: SMP system with 3 TriCore cores.

• Cores connected to the trace multiplexer: TC 1.6.1 CPU0 and TC 1.6.1 CPU1.

• Event of interest: Write of 161. to variable flagsc[8].

• Requested trace messages: Instruction Pointer Call Messages, Write Data Trace Messages, 
Timestamp Messages.

1. Configure the trace multiplexer.

MCDS.SOURCE CpuMux0 Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source

MCDS.SOURCE CpuMux1 Core TriCore1 ; enable TC 1.6.1 CPU1 as
; trace source
Training AURIX Tracing     |    150©1989-2024   Lauterbach                                                        



2. Specify the event.

 Var.Break.Set flagsc[8] /Write /DATA.Byte 0xA1 /TraceTrigger
Training AURIX Tracing     |    151©1989-2024   Lauterbach                                                        



3. Configure which trace messages are generated until the trigger event occurs.

S

MCDS.TimeStamp ON ; enable Timestamp Messages

CLOCK.ON

MCDS.SOURCE CpuMux0 Program ON ; enable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU0

MCDS.SOURCE CpuMux0 WriteAddr ON
MCDS.SOURCE CpuMux0 WriteData ON

; enable Write Data Trace
; Messages for TC 1.6.1 CPU0

MCDS.SOURCE CpuMux1 Program ON ; enable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU1

MCDS.SOURCE CpuMux1 WriteAddr ON
MCDS.SOURCE CpuMux1 WriteData ON

; enable Write Data Trace
; Messages for TC 1.6.1 CPU1
Training AURIX Tracing     |    152©1989-2024   Lauterbach                                                        



4. Start the program execution.

5. Display the result.

MCDS ends the generation of trace messages and flushes all internal buffer when the specified event 
occurs. TRACE32 automatically generates a watchpoint TraceTrigger message when the trigger 
event occurs. This helps you to find the actual trigger event in the trace.

State of the
program execution

State of the
trace recording

(running) (Arm = recording)

State of the
trace recording
(OFF = break by trigger,
recording is stopped)
Training AURIX Tracing     |    153©1989-2024   Lauterbach                                                        



Example 2: Stop the trace recording after another 10% of the trace memory was filled when 161. was 
written to the variable flagsc[8].

• System under debug: SMP system with 3 TriCore cores.

• Cores connected to the trace multiplexer: TC 1.6.1 CPU0 and TC 1.6.1 CPU1.

• Event of interest: Write of 161. to variable flagsc[8].

• Requested trace messages: Instruction Pointer Call Messages, Write Data Trace Messages, 
Timestamp Messages.

1. to 3. as in example 1.

4. Specific the delay.

Trace.TDelay 10%
Training AURIX Tracing     |    154©1989-2024   Lauterbach                                                        



5. Start the program execution.

State of the
program execution

State of the
trace recording

(running) (Arm = recording)

State of the
trace recording
(BRK = delay counter elapsed,
recording is stopped)

State of the
trace recording
(TRG = trigger occurred,
delay counter started)
Training AURIX Tracing     |    155©1989-2024   Lauterbach                                                        



6. Display the result.

A TraceTrigger watchpoint indicates the occurrence of the TraceTrigger event.
Training AURIX Tracing     |    156©1989-2024   Lauterbach                                                        



OS-Aware Tracing - Single-Core and AMP

Activate the TRACE32 OS Awareness (Supported OS)

AMP Systems: Since each core is controlled by a separate operating system, the OS Awareness has to be 
activated separately for each TRACE32 instance.

Since most users use an OSEK operating system this is taken as an example here. Setup command:

Loading the ORTI file results in the following:

• Symbolic debugging of the OSEK OS is possible. Debug commands are provided via an ORTI 
menu.

• The Trace menu is extended for OS-aware trace display.

TASK.ORTI <orti_file> Load the ORTI file
Training AURIX Tracing     |    157©1989-2024   Lauterbach                                                        



• The Perf menu is extended for OS-aware profiling.

• The manual of the OS Awareness for OSEK/ORTI is added to the Help menu.

• The name of the current task is displayed in the Task field of the TRACE32 state line.
Training AURIX Tracing     |    158©1989-2024   Lauterbach                                                        



Exporting the Task Switches

Each operating system has a variable that contains the information which task is currently running. This 
variable can hold a task ID, a pointer to the task control block or something else that is unique for each task.

MCDS can be configured to generate a Write Data Trace Message when a write access to this variable 
occurs.

The address of this variable is provided by the TRACE32 function TASK.CONFIG(magic).

Example: Advise the Processor Observation Block to generate trace messages only on task switches.

• Core under debug: TC 1.6.1 CPU0.

• Event of interest: Write access to TASK.CONFIG(magic)

• Requested Messages: Write Data Trace Messages, Timestamp Messages.

1. Configure the trace multiplexer.

PRINT TASK.CONFIG(magic) ; print the address that holds
; the task identifier

MCDS.SOURCE.Set CpuMux0.Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source
Training AURIX Tracing     |    159©1989-2024   Lauterbach                                                        



2. Specify the event.

3. Configure which trace messages are generated.

Break.Set TASK.CONFIG(magic) /Write /TraceEnable

MCDS.TimeStamp ON ; enable Timestamp Messages

CLOCK.ON

MCDS.SOURCE.Set CpuMux0.Program OFF ; disable Instruction 
; Pointer Call Messages for 
; TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux0.WriteAddr ON ; enable Write Data Trace
; Messages for TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux0.WriteData ON
Training AURIX Tracing     |    160©1989-2024   Lauterbach                                                        



4. Start and stop the program execution to fill the trace buffer.

5. Display the result.

The following two commands perform a statistical analysis of the task switches:

Trace.STATistic.TASK Numeric analysis of task run-times.

Trace information recorded before the first task switch is assigned to (unknown).
Training AURIX Tracing     |    161©1989-2024   Lauterbach                                                        



Trace.Chart.TASK Time-chart of tasks.
Training AURIX Tracing     |    162©1989-2024   Lauterbach                                                        



Exporting Task Services

The ORTI file may also provide means to analyze the time in task service routines.

TASK.CONFIG(magic_service) is the name of the TRACE32 function that is used for this purpose.

Example: Advise the Processor Observation Block to generate trace messages only on write accesses to 
the service table.

• Core under debug: TC 1.6.1 CPU0.

• Event of interest: Write access to TASK.CONFIG(magic_service)

• Requested Messages: Write Data Trace Messages, Timestamp Messages.

1. Configure the trace multiplexer.

PRINT TASK.CONFIG(magic_service) ; print the address that holds
; the service table 

MCDS.SOURCE.Set CpuMux0.Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source
Training AURIX Tracing     |    163©1989-2024   Lauterbach                                                        



2. Specify the event.

3. Configure which trace messages are generated.

Break.Set TASK.CONFIG(magic_service) /Write /TraceEnable

MCDS.TimeStamp ON ; enable Timestamp Messages

CLOCK.ON

MCDS.SOURCE.Set CpuMux0.Program OFF ; disable Instruction 
; Pointer Call Messages for 
; TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux0.WriteAddr ON ; enable Write Data Trace
; Messages for TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux0.WriteData ON
Training AURIX Tracing     |    164©1989-2024   Lauterbach                                                        



4. Start and stop the program execution to fill the trace buffer.

5. Display the result.

The following two commands perform a statistical analysis of the time in task service routines:

Trace.STATistic.TASKSRV Numeric analysis of task services.

(unknown) represents the time in which the core is not in an OSEK service routine
Training AURIX Tracing     |    165©1989-2024   Lauterbach                                                        



Trace.Chart.TASKSRV Time-chart of task services.
Training AURIX Tracing     |    166©1989-2024   Lauterbach                                                        



Exporting ISR2 (OSEK Interrupt Service Routines)

The ORTI file may also provide means to analyze the time in interrupt service routines.

TASK.CONFIG(magic_isr2) is the name of the TRACE32 function that is used for this purpose.

Example: Advise the Processor Observation Block to generate trace messages only on write accesses to 
the interrupt service table.

• Core under debug: TC 1.6.1 CPU0.

• Event of interest: Write access to TASK.CONFIG(magic_isr2)

• Requested Messages: Write Data Trace Messages, Timestamp Messages.

1. Configure the trace multiplexer.

PRINT TASK.CONFIG(magic_isr2) ; print the address that holds
; the interrupt service table 

MCDS.SOURCE.Set CpuMux0.Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source
Training AURIX Tracing     |    167©1989-2024   Lauterbach                                                        



2. Specify the event.

3. Configure which trace messages are generated.

Break.Set TASK.CONFIG(magic_isr2) /Write /TraceEnable

MCDS.TimeStamp ON ; enable Timestamp Messages

CLOCK.ON

MCDS.SOURCE.Set CpuMux0.Program OFF ; disable Instruction 
; Pointer Call Messages for 
; TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux0.WriteAddr ON ; enable Write Data Trace
; Messages for TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux0.WriteData ON
Training AURIX Tracing     |    168©1989-2024   Lauterbach                                                        



4. Start and stop the program execution to fill the trace buffer.

5. Display the result.

The following two commands perform a statistical analysis of the time in interrupt service routines:

Trace.STATistic.TASKINTR Numeric analysis of ISR2s.
Training AURIX Tracing     |    169©1989-2024   Lauterbach                                                        



Trace.Chart.TASKINTR Time-chart of ISR2s.
Training AURIX Tracing     |    170©1989-2024   Lauterbach                                                        



Exporting Task Switches and ISR2 

The following commands allow to perform a statistical analysis of the OSEK interrupt service routines related 
to the active tasks, if you export task switch and ISR2 information.

Trace.STATistic.TASKVSINTR Task-related statistic on interrupt service routines 

ISR2 information that was generated before the first task information is assigned to the @(unknown) task  
Training AURIX Tracing     |    171©1989-2024   Lauterbach                                                        



Trace.Chart.TASKVSINTR Time-chart on task related interrupt service routines
Training AURIX Tracing     |    172©1989-2024   Lauterbach                                                        



Exporting Task Switches and all Instructions

General setup:

Statistic Analysis of Interrupts

Break.Set TASK.CONFIG(magic) /Write /TraceData

; advise TRACE32 to regard the time between interrupt entry
; and exit as function
Trace.STATistic.InterruptIsFunction ON

Trace.Chart.INTERRUPT Interrupt time chart

Trace.STATistic.INTERRUPT Interrupt statistic
Training AURIX Tracing     |    173©1989-2024   Lauterbach                                                        



Statistic Analysis of Interrupts and Tasks

Trace.Chart.TASKORINTERRUPT Time chart of interrupts and tasks

Trace.STATistic.TASKORINTERRUPT Statistic of interrupts and tasks
Training AURIX Tracing     |    174©1989-2024   Lauterbach                                                        



Statistic Analysis of Interrupts in Tasks

Trace.Chart.TASKVSINTERRUPT Time chart interrupts, task-related

Trace.STATistic.TASKVSINTERRUPT Statistic of interrupts, task-related
Training AURIX Tracing     |    175©1989-2024   Lauterbach                                                        



Belated Trace Analysis (OS)

The TRACE32 Instruction Set Simulator can be used for a belated OS-aware trace evaluation. To set up the 
TRACE32 Instruction Set Simulator for belated OS-aware trace evaluation proceed as follows:

1. Save the trace information for the belated evaluation to a file.

2. Set up the TRACE32 Instruction Set Simulator for a belated OS-aware trace evaluation (here 
OSEK on a TC277TE):

Trace.SAVE belated__orti.ad

SYStem.CPU TC277TE ; select the target CPU

SYStem.Up ; establish the
; communication between
; TRACE32 and the TRACE32
; Instruction Set 
; Simulator

Trace.LOAD belated_orti.ad ; load the trace file

Data.Load.Elf my_app.out ; load the symbol and 
; debug information

TASK.ORTI my_orti.ort ; load the ORTI file

Trace.List List.TASK DEFault ; display the trace
; listing
Training AURIX Tracing     |    176©1989-2024   Lauterbach                                                        



Enable an OS-aware Tracing (Not-Supported OS)

If you use an OS that is not supported by Lauterbach you can use the “simple” awareness to configure your 
debugger for OS-aware tracing.

Current information on the “simple” awareness can be found in ~~/demo/kernel/simple/readme.txt.

Each operating system has a variable that contains the information which task is currently running. This 
variable can hold a task ID, a pointer to the task control block or something else that is unique for each task.

Use the following command to inform TRACE32 about this variable:

If current_thread is the name of your variable the command would be as follows:

The OS-aware debugging is easier to perform, if you assign names to your tasks.

TASK.CONFIG ~~/demo/kernel/simple/simple.t32 <var> Var.SIZEOF(<var>)

TASK.CONFIG ~~/demo/kernel/simple/simple current_thread \ 
Var.SIZEOF(current_thread)

TASK.NAME.Set <task_id> <name> Specify a name for your task

TASK.NAME.view Display all specified names

TASK.NAME.Set 0x58D68 "My_Task 1"
Training AURIX Tracing     |    177©1989-2024   Lauterbach                                                        



OS-Aware Tracing - SMP Systems

All cores are controlled by an SMP operating system.

Activate the TRACE32 OS Awareness (Supported OS)

Since most users use an OSEK operating system this is taken as an example here. Setup command:

Loading the ORTI file results in the following:

• Symbolic debugging of the OSEK OS is possible. Debug commands are provided via an ORTI 
menu.

• The Trace menu is extended for OS-aware trace display.

TASK.ORTI <orti_file> Load the ORTI file
Training AURIX Tracing     |    178©1989-2024   Lauterbach                                                        



• The Perf menu is extended for OS-aware profiling.
T

• The manual of the OS Awareness for OSEK/ORTI is added to the Help menu.

• The name of the current task is displayed in the Task field of the TRACE32 state line.
Training AURIX Tracing     |    179©1989-2024   Lauterbach                                                        



Exporting the Task Switches

An SMP operating system has one variable per core that contains the information which task is currently 
running. This variable can hold a task ID, a pointer to the task control block or something else that is unique 
for each task.

MCDS can be configured to generate Write Data Trace Messages when a write accesses to these variables 
occur.

The addresses of these variables are provided by the TRACE32 functions TASK.CONFIG(magic[<core>]).

Example: Advise the Processor Observation Blocks to generate trace messages only on task switches.

• System under debug: SMP system with 3 TriCore cores.

• Cores under debug: TC 1.6.1 CPU0 and TC 1.6.1 CPU1.

• Event of interest: Write accesses to TASK.CONFIG(magic[0]) and TASK.CONFIG(magic[1]).

• Requested Messages: Write Data Trace Messages, Timestamp Messages.

PRINT TASK.CONFIG(magic[0]) ; print the address that holds
; the task identifier for
; TC 1.6.1 CPU0

PRINT TASK.CONFIG(magic[1]) ; print the address that holds
; the task identifier for
; TC 1.6.1 CPU1

PRINT TASK.CONFIG(magic[2]) ; print the address that holds
; the task identifier for
; TC 1.6.1 CPU2
Training AURIX Tracing     |    180©1989-2024   Lauterbach                                                        



1. Configure the trace multiplexer.

MCDS.SOURCE.Set CpuMux0.Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source

MCDS.SOURCE.Set CpuMux1.Core TriCore1 ; enable TC 1.6.1 CPU1 as
; trace source
Training AURIX Tracing     |    181©1989-2024   Lauterbach                                                        



2. Specify the events.

Break.Set TASK.CONFIG(magic[0]) /Write /TraceEnable

Break.Set TASK.CONFIG(magic[1]) /Write /TraceEnable
Training AURIX Tracing     |    182©1989-2024   Lauterbach                                                        



3. Configure which trace messages are generated.

4. Start the program execution and stop it.

MCDS.TimeStamp ON ; enable Timestamp Messages

CLOCK.ON

MCDS.SOURCE.Set CpuMux0.Program OFF ; disable Instruction 
; Pointer Call Messages for 
; TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux1.Program OFF ; disable Instruction 
; Pointer Call Messages for 
; TC 1.6.1 CPU1

MCDS.SOURCE.Set CpuMux0.WriteAddr ON ; enable Write Data Trace
; Messages for TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux0.WriteData ON

MCDS.SOURCE.Set CpuMux1.WriteAddr ON ; enable Write Data Trace
; Messages for TC 1.6.1 CPU1

MCDS.SOURCE.Set CpuMux1.WriteData ON
Training AURIX Tracing     |    183©1989-2024   Lauterbach                                                        



5. Display the result.
Training AURIX Tracing     |    184©1989-2024   Lauterbach                                                        



The following two commands perform a statistical analysis of the task switches:

Trace information recorded before the first task switch is assigned to (unknown). 

Since no trace information is recorded for TC 1.6.1 CPU2, it stays (unknown) for the total recording time.

Trace.STATistic.TASK [/SplitCORE] Numeric task run-time analysis - split the result per core

Trace.STATistic.TASK [/MergeCORE] Numeric task run-time analysis - merge the results of all 
cores
Training AURIX Tracing     |    185©1989-2024   Lauterbach                                                        



Trace.Chart.TASK [/SplitCORE] Time-chart of tasks - split the result per core
Training AURIX Tracing     |    186©1989-2024   Lauterbach                                                        



Exporting Task Services

The ORTI file may also provide means to analyze the time in task service routines.

TASK.CONFIG(magic_service[<core>]) is the name of the TRACE32 function that is used for this purpose.

Example: Advise the Processor Observation Blocks to generate trace messages only on write accesses to 
the service tables.

• System under debug: SMP system with 3 TriCore cores.

• Cores under debug: TC 1.6.1 CPU0 and TC 1.6.1 CPU1.

• Event of interest: Write accesses to TASK.CONFIG(magic_service[0]) and 
TASK.CONFIG(magic_service[1]).

• Requested Messages: Write Data Trace Messages, Timestamp Messages.

PRINT TASK.CONFIG(magic_service[0]) ; print the address that holds
; the task service table for
; TC 1.6.1 CPU0

PRINT TASK.CONFIG(magic_service[1]) ; print the address that holds
; the task service table for
; TC 1.6.1 CPU1

PRINT TASK.CONFIG(magic_service[2]) ; print the address that holds
; the task service table for
; TC 1.6.1 CPU2
Training AURIX Tracing     |    187©1989-2024   Lauterbach                                                        



1. Configure the trace multiplexer.

MCDS.SOURCE.Set CpuMux0.Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source

MCDS.SOURCE.Set CpuMux1.Core TriCore1 ; enable TC 1.6.1 CPU1 as
; trace source
Training AURIX Tracing     |    188©1989-2024   Lauterbach                                                        



2. Specify the events.

Break.Set TASK.CONFIG(magic_service[0]) /Write /TraceEnable

Break.Set TASK.CONFIG(magic_service[1]) /Write /TraceEnable
Training AURIX Tracing     |    189©1989-2024   Lauterbach                                                        



3. Configure which trace messages are generated.

4. Start the program execution and stop it.

MCDS.TimeStamp ON ; enable Timestamp Messages

CLOCK.ON

MCDS.SOURCE.Set CpuMux0.Program 
OFF

; disable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux1.Program 
OFF

; disable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU1

MCDS.SOURCE.Set CpuMux0.WriteAddr 
ON

; enable Write Data Trace
; Messages for TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux0.WriteData 
ON

MCDS.SOURCE.Set CpuMux1.WriteAddr 
ON

; enable Write Data Trace
; Messages for TC 1.6.1 CPU1

MCDS.SOURCE.Set CpuMux1.WriteData 
ON
Training AURIX Tracing     |    190©1989-2024   Lauterbach                                                        



5. Display the result.

The following two commands perform a statistical analysis of the time in task service routines:

Trace.STATistic.TASKSRV [/SplitCORE] Numeric analysis of task services - split the 
result per core.

(unknown) represents the time in which the core is not in an OSEK service routine
Training AURIX Tracing     |    191©1989-2024   Lauterbach                                                        



Trace.Chart.TASKSRV [/SplitCORE] Time-chart of task services - split the result per 
core.
Training AURIX Tracing     |    192©1989-2024   Lauterbach                                                        



Exporting ISR2 (OSEK Interrupt Service Routines)

The ORTI file may also provide means to analyze the time in interrupt service routines.

TASK.CONFIG(magic_isr2[<core>]) is the name of the TRACE32 function that is used for this purpose.

Example: Advise the Processor Observation Blocks to generate trace messages only on write accesses to 
the interrupt service tables.

• System under debug: SMP system with 3 TriCore cores.

• Cores under debug: TC 1.6.1 CPU0 and TC 1.6.1 CPU1.

• Event of interest: Write accesses to TASK.CONFIG(magic_isr2[0]) and 
TASK.CONFIG(magic_isr2[1]).

• Requested Messages: Write Data Trace Messages, Timestamp Messages.

PRINT TASK.CONFIG(magic_isr2[0]) ; print the address that holds
; the interrupt service table 
; for TC 1.6.1 CPU0

PRINT TASK.CONFIG(magic_isr2[1]) ; print the address that holds
; the interrupt service table 
; for TC 1.6.1 CPU1

PRINT TASK.CONFIG(magic_isr2[2]) ; print the address that holds
; the interrupt service table 
; for TC 1.6.1 CPU2
Training AURIX Tracing     |    193©1989-2024   Lauterbach                                                        



1. Configure the trace multiplexer.

MCDS.SOURCE.Set CpuMux0 Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source

MCDS.SOURCE.Set CpuMux1 Core TriCore1 ; enable TC 1.6.1 CPU1 as
; trace source
Training AURIX Tracing     |    194©1989-2024   Lauterbach                                                        



2. Specify the events.

Break.Set TASK.CONFIG(magic_service[0]) /Write /TraceEnable

Break.Set TASK.CONFIG(magic_service[1]) /Write /TraceEnable
Training AURIX Tracing     |    195©1989-2024   Lauterbach                                                        



3. Configure which trace messages are generated.

4. Start the program execution and stop it.

MCDS.TimeStamp ON ; enable Timestamp Messages

CLOCK.ON

MCDS.SOURCE.Set CpuMux0.Program OFF ; disable Instruction 
; Pointer Call Messages for 
; TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux1.Program OFF ; disable Instruction 
; Pointer Call Messages for 
; TC 1.6.1 CPU1

MCDS.SOURCE.Set CpuMux0.WriteAddr ON ; enable Write Data Trace
; Messages for TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux0.WriteData ON

MCDS.SOURCE.Set CpuMux1.WriteAddr ON ; enable Write Data Trace
; Messages for TC 1.6.1 CPU1

MCDS.SOURCE.Set CpuMux1.WriteData ON
Training AURIX Tracing     |    196©1989-2024   Lauterbach                                                        



5. Display the result.

The following two commands perform a statistical analysis of the time in interrupt service routines:

Trace.STATistic.TASKINTR [/SplitCORE] Numeric analysis of ISR2s - split the result per 
core.
Training AURIX Tracing     |    197©1989-2024   Lauterbach                                                        



Trace.Chart.TASKINTR [/SplitCORE] Time-chart of ISR2s - split the result per core.
Training AURIX Tracing     |    198©1989-2024   Lauterbach                                                        



Exporting Task Switches and ISR2 

The following commands allow to perform a statistical analysis of the OSEK interrupt service routines related 
to the active tasks, if you export task switch and ISR2 information.

Trace.STATistic.TASKVSINTR [/SplitCORE] Task-related statistic on interrupt service routines 
- split the result per core 

ISR2 information that was generated before the first task information is assigned to the @(unknown) task  
Training AURIX Tracing     |    199©1989-2024   Lauterbach                                                        



Trace.Chart.TASKVSINTR [/SplitCORE] Time-chart on task related interrupt service 
routines - split the result per core
Training AURIX Tracing     |    200©1989-2024   Lauterbach                                                        



Exporting Task Switches and all Instructions

General setup:

Statistic Analysis of Interrupts

Break.Set TASK.CONFIG(magic[0]) /Write /TraceData
Break.Set TASK.CONFIG(magic[1]) /Write /TraceData
; Break.Set TASK.CONFIG(magic[2]) /Write /TraceData

; advise TRACE32 to regard the time between interrupt entry
; and exit as function
Trace.STATistic.InterruptIsFunction ON

Trace.Chart.INTERRUPT [/SplitCORE] Interrupt time chart - split the result per core

Trace.STATistic.INTERRUPT [/SplitCORE] Interrupt statistic - split the result per core
Training AURIX Tracing     |    201©1989-2024   Lauterbach                                                        



Statistic Analysis of Interrupts and Tasks

Trace.Chart.TASKORINTERRUPT [/SplitCORE] Time chart of interrupts and tasks - split 
the result per core

Trace.STATistic.TASKORINTERRUPT [/SplitCORE] Statistic of interrupts and tasks - split the 
result per core
Training AURIX Tracing     |    202©1989-2024   Lauterbach                                                        



Statistic Analysis of Interrupts in Tasks

Trace.Chart.TASKVSINTERRUPT Time chart interrupts, task-related

Trace.STATistic.TASKVSINTERRUPT Statistic of interrupts, task-related
Training AURIX Tracing     |    203©1989-2024   Lauterbach                                                        



Belated Trace Analysis (OS)

The TRACE32 Instruction Set Simulator can be used for a belated OS-aware trace evaluation. To set up the 
TRACE32 Instruction Set Simulator for belated OS-aware trace evaluation proceed as follows:

1. Save the trace information for the belated evaluation to a file.

2. Set up the TRACE32 Instruction Set Simulator for a belated OS-aware trace evaluation (here 
OSEK on a TC277TE):

Trace.SAVE belated__orti.ad

SYStem.CPU TC277TE ; select the target CPU

CORE.ASSIGN 1. 2. 3. ; configure the SMP
; system

SYStem.Up ; establish the
; communication between
; TRACE32 and the TRACE32
; Instruction Set 
; Simulator

Trace.LOAD belated_orti.ad ; load the trace file

Data.Load.Elf my_app.out ; load the symbol and 
; debug information

TASK.ORTI my_orti.ort ; load the ORTI file

Trace.List List.TASK DEFault ; display the trace
; listing
Training AURIX Tracing     |    204©1989-2024   Lauterbach                                                        



Function Run-Time Analysis - Basic Concept

Software under Analysis (no OS or OS)

For the use of the function run-time analysis it is helpful to differentiate between two types of application 
software:

1. Software without operating system (abbreviation: no OS)

2. Software with an operating system (abbreviation: OS) 

Flat vs. Nesting Analysis

TRACE32 provides two methods to analyze function run-times:

• Flat analysis

• Nesting analysis
Training AURIX Tracing     |    205©1989-2024   Lauterbach                                                        



Basic Knowledge about Flat Analysis

The flat function run-time analysis bases on the symbolic instruction addresses of the trace entries. The time 
spent by an instruction is assigned to the corresponding function/symbol region.

min shortest time continuously in the address range of the 
function/symbol region

max longest time continuously in the address range of the 
function/symbol region

main

func1

func2

func1
func3

func1

main

func1

func3

func1

main

maxmin

Entry of func1 Entry of func1

Exit of func1 Exit of func1
Training AURIX Tracing     |    206©1989-2024   Lauterbach                                                        



Basic Knowledge about Nesting Analysis

The function nesting analysis analyses only high-level language functions.
Training AURIX Tracing     |    207©1989-2024   Lauterbach                                                        



In order to display a nesting function run-time analysis TRACE32 analyzes the structure of the program 
execution by processing the trace information. The focus is put on the transition between functions (see 
picture above). The following events are of interest:

1. Function entries

2. Function exits

3. Entries to interrupt service routines 

4. Exits of interrupt service routines

5. Entries to TRAP handlers

6. Exits of TRAP handlers

min shortest time within the function including all subfunctions and traps

max longest time within the function including all subfunctions and traps

func1

func2

interrupt_service1

main

func1

func2

func1

func3

func1

main

func1
func3

func1

main

Entry of func1 Entry of func1

Exit of func1 Exit of func1

max min
Training AURIX Tracing     |    208©1989-2024   Lauterbach                                                        



Summary

The nesting analysis provides more details on the structure and the timing of the program run, but it is much 
more sensitive than the flat analysis.
Training AURIX Tracing     |    209©1989-2024   Lauterbach                                                        



Flat Function-Runtime Analysis - Single-Core and AMP

It is recommended to reduce the trace information generated by MCDS to the required minimum. 

• To make best use of the available trace memory.

Optimum MCDS Configuration (No OS)

Flat function run-time analysis does not require any data information if no OS is used. That’s why it is 
recommended to disable the generation of Write and Read Data Trace Messages.

Since the serial off-chip trace provides imprecise timestamps Timestamp Messages have to be enabled for 
any run-time measurement.

MCDS.SOURCE CpuMux0 Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source

MCDS.TimeStamp ON ; enable Timestamp Messages 

CLOCK.ON

MCDS.SOURCE CpuMux0 Program ON ; enable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU0
Training AURIX Tracing     |    210©1989-2024   Lauterbach                                                        



Optimum MCDS Configuration (OS)

Your function time chart can include task information if you advise MCDS to export the instruction flow and 
task switches. For details refer to the chapter “OS-Aware Tracing - Single-Core and AMP”, page 157 of 
this training. 

Function time chart with task information:

Command to advise MCDS to export the instruction flow and task switches.

Since the serial off-chip trace provides imprecise timestamps Timestamp Messages have to be enabled for 
any run-time measurement.

Trace.Chart.sYmbol /TASK "High0"

Break.Set TASK.CONFIG(magic) /Write /TraceData

CLOCK.ON

MCDS.TimeStamp ON
Training AURIX Tracing     |    211©1989-2024   Lauterbach                                                        



Function Timing Diagram (no TASK Information)

TRACE32 PowerView provides a timing diagram which shows when the program counter was in which 
function/symbol range.

Trace.Chart.sYmbol Display function time chart (no OS)

Trace.Chart.sYmbol [/MergeTASK] Display function time chart (OS but task 
information is not of interest)

Pushing the Chart button in the Trace.List window 
opens a Trace.Chart.sYmbol window 
Training AURIX Tracing     |    212©1989-2024   Lauterbach                                                        



Function Timing Diagram (TASK information)

Trace.Chart.sYmbol /SplitTASK Display function time chart including task 
information (OS only)

@<task_name> Task name information

@(unknown) • Function was running before the OS was started

• Function was recorded before first task switch information 
was recorded

(root)@(unknown) No trace information available.
Training AURIX Tracing     |    213©1989-2024   Lauterbach                                                        



Trace.Chart.sYmbol /TASK <name> Display function time chart for specified task 
(OS only)
Training AURIX Tracing     |    214©1989-2024   Lauterbach                                                        



Did you know?

If Window in the Sort visible field is switched ON in the Chart Config dialog, the functions that are active at 
the selected point of time are visualized in the scope of the Trace.Chart.sYmbol window. This is helpful 
especially if you scroll horizontally.

Switch Window
on
Training AURIX Tracing     |    215©1989-2024   Lauterbach                                                        



Numeric Analysis

Analog to the timing diagram there is also a numerical analysis.

survey

item number of recorded functions/symbol regions

total time period recorded by the trace

samples total number of recorded changes of functions/symbol regions
(instruction flow continuously in the address range of a 
function/symbol region)

function details

address function/symbol region name

(other) program sections that can not be assigned to a 
function/symbol region

total time period in the function/symbol region during the recorded time 
period

min shortest time continuously in the address range of the 
function/symbol region

max longest time continuously in the address range of the 
function/symbol region

avr average time continuously in the address range of the 
function/symbol region (calculated by total/count)
Training AURIX Tracing     |    216©1989-2024   Lauterbach                                                        



count number of new entries (start address executed) into the address 
range of the function/symbol region 

ratio ratio of time in the function/symbol region with regards to the total 
time period recorded

Trace.STATistic.sYmbol Flat function run-time analysis
- numerical display

Trace.STATistic.sYmbol [/MergeTASK] Flat function run-time analysis (OS but task 
information is not of interest)
- numerical display

Trace.STATistic.sYmbol /SplitTASK Flat function run-time analysis including task 
information (OS only)
- numerical display

Trace.STATistic.sYmbol /TASK <name> Flat function run-time analysis for specified task 
(OS only)
- numerical display

Pushing the Config button provides the possibility to specify a different 
column layout and a different sorting criterion for the address column.
By default the functions/symbol regions are sorted by their recording order.
Training AURIX Tracing     |    217©1989-2024   Lauterbach                                                        



Flat Function-Runtime Analysis for SMP

It is recommended to reduce the trace information generated by MCDS to the required minimum.

• To make best use of the available trace memory.
Training AURIX Tracing     |    218©1989-2024   Lauterbach                                                        



Optimum MCDS Configuration (OS)

Your function time chart can include task information if you advise MCDS to export the instruction flow and 
task switches. For details refer to the chapter “OS-Aware Tracing - SMP Systems”, page 178 of this 
training. 

Since the serial off-chip trace provides imprecise timestamps Timestamp Messages have to be enabled for 
any run-time measurement.

S

Commands to advise MCDS to export the instruction flow and task switches:

MCDS.SOURCE.Set CpuMux0.Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source

MCDS.SOURCE.Set CpuMux1.Core TriCore1 ; enable TC 1.6.1 CPU1 as
; trace source

MCDS.TimeStamp ON ; enable Timestamp Messages 

CLOCK.ON

Break.Set TASK.CONFIG(magic[0]) /Write /TraceData

Break.Set TASK.CONFIG(magic[1]) /Write /TraceData

; Break.Set TASK.CONFIG(magic[2]) /Write /TraceData
Training AURIX Tracing     |    219©1989-2024   Lauterbach                                                        



Function Timing Diagram (no TASK Information)

TRACE32 PowerView provides a timing diagram which shows when the program counter was in which 
function/symbol range.

Flat function run-time analysis 

• graphical display

• split the result per core

• sort results per core and the per recording order

• no task information

Trace.Chart.sYmbol [/SplitCore /MergeTASK /Sort CoreTogether]

Pushing the Chart button in the Trace.List window 
opens a Trace.Chart.sYmbol window 
Training AURIX Tracing     |    220©1989-2024   Lauterbach                                                        



Since no trace information is recorded for TC 1.6.1 CPU2 (other):2 is active for the complete recording time.

Flat function run-time analysis 

• graphical display

• split the result per core

• sort results by recording order

• no task information

Trace.Chart.sYmbol [/SplitCore /MergeTASK] /Sort CoreSeparated

Trace.Chart.sYmbol [/MergeTASK] /MergeCore Flat function run-time analysis
- graphical display
- merge the results of all cores
- no task information
Training AURIX Tracing     |    221©1989-2024   Lauterbach                                                        



Function Timing Diagram (TASK Information)

Flat function run-time analysis 

• graphical display

• split the result per core

• task information

• sort results by recording order

Flat function run-time analysis 

• graphical display

• merge the results of all cores

• task information

Trace.Chart.sYmbol [/SplitCore] /SplitTASK /Sort CoreSeparated

Trace.Chart.sYmbol /MergeCore /SplitTASK
Training AURIX Tracing     |    222©1989-2024   Lauterbach                                                        



Did you know?

If Window in the Sort visible field is switched ON in the Chart Config window, the functions that are active 
at the selected point of time are visualized in the scope of the Trace.Chart.sYmbol window. This is helpful 
especially if you scroll horizontally.

Switch Window
on
Training AURIX Tracing     |    223©1989-2024   Lauterbach                                                        



Numeric Analysis

Analog to the timing diagram there is also a numerical analysis.

survey

item number of recorded functions/symbol regions

total time period recorded by the trace

samples total number of recorded changes of functions/symbol regions
(instruction flow continuously in the address range of a 
function/symbol region)

function details

address function/symbol region name (here per core)

(other) program sections that can not be assigned to a 
function/symbol region

total time period in the function/symbol region during the recorded time 
period

min shortest time continuously in the address range of the 
function/symbol region

max longest time continuously in the address range of the 
function/symbol region

avr average time continuously in the address range of the 
function/symbol region (calculated by total/count)
Training AURIX Tracing     |    224©1989-2024   Lauterbach                                                        



count number of new entries (start address executed) into the address 
range of the function/symbol region 

ratio ratio of time in the function/symbol region with regards to the total 
time period recorded

Trace.STATistic.sYmbol [/SplitCORE /Sort CoreTogether] Flat function run-time analysis
- numeric display
- split the result per core
- sort results per core and then per 
recording order
- no task information

Pushing the Config button provides the possibility to specify a different 
column layout and a different sorting criterion for the address column.
By default the functions/symbol regions are sorted by their recording order.
Training AURIX Tracing     |    225©1989-2024   Lauterbach                                                        



Further Commands

Trace.STATistic.sYmbol [/SplitCORE] /Sort CoreSeparated Flat function run-time analysis
- numeric display
- split the result per core
- sort results per recording order
- no task information

Trace.STATistic.sYmbol /MergeCORE Flat function run-time analysis
- numeric display
- merge the results of all cores
- no task information
Training AURIX Tracing     |    226©1989-2024   Lauterbach                                                        



Nesting Function Run-Time Analysis - Single

The following applies to single core and AMP applications.

Restrictions

1. The nesting analysis analyses only high-level language functions.

2. The nesting function run-time analysis expects common ways to enter/exit functions.

3. The nesting analysis is sensitive with regards to FIFOFULLs.
Training AURIX Tracing     |    227©1989-2024   Lauterbach                                                        



Optimum MCDS Configuration (No OS)

Nesting function run-time analysis does not require any data information if no OS is used. That’s why it is 
recommended to disable the generation of Write Data and Read Data Trace Messages.

Since the serial off-chip trace provides imprecise timestamps Timestamp Messages have to be enabled for 
any run-time measurement.

MCDS.SOURCE.Set CpuMux0.Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source

MCDS.TimeStamp ON ; enable Timestamp Messages 

CLOCK.ON

MCDS.SOURCE.Set CpuMux0.Program ON ; enable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU0

; default setting since 2015-01
Trace.STATistic.INTERRUPTISFUNCTION 
Training AURIX Tracing     |    228©1989-2024   Lauterbach                                                        



Optimum MCDS Configuration (OS)

TRACE32 PowerView builds up a separate call tree for each task/process.

In order to hook a function entry/exit into the correct call tree, TRACE32 PowerView needs to know which 
task was running when the entry/exit occurred.

The standard way to get information on the current task is to advise the MCDS to generate trace messages 
for the instruction flow and the task switches. For details refer to the “OS-Aware Tracing - Single-Core and 
AMP”  in Training AURIX Tracing, page 157 (training_aurix_trace.pdf).

Trace.STATistic.TREE /TASK "High0"
Training AURIX Tracing     |    229©1989-2024   Lauterbach                                                        



Advise the Processor Observation Block to generate trace messages for the complete instruction flow and 
for the task switches.

Filter settings

Since the serial off-chip trace provides imprecise timestamps Timestamp Messages have to be enabled for 
any run-time measurement.

MCDS.SOURCE.Set CpuMux0.Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source

MCDS.TimeStamp ON ; enable Timestamp Messages 

CLOCK.ON

; default setting since 2015-01
Trace.STATistic.InterruptIsFunction 
Training AURIX Tracing     |    230©1989-2024   Lauterbach                                                        



Numerical Nesting Analysis for all Software

Statistics Items

Trace.STATistic.Func Nesting function run-time analysis 
- numeric display

survey

funcs: <number> number of functions in the trace

total: <time> total measurement time

intr: <time> total time in interrupt service routines

survey
Training AURIX Tracing     |    231©1989-2024   Lauterbach                                                        



survey (issue indication)

stopped: <time> The analyzed trace recording contains program stops. <time> 
indicates the total time the program execution was stopped.

<number> problems The nested analysis contains problems. Please contact 
support@lauterbach.com.

<number> workarounds The nested analysis contains issues, but TRACE32 found solutions 
for them. It is recommended to perform a sanity check on the 
proposed solutions.

stack overflow at 
<record>

The nested analysis exceeds the nesting level 200. It is highly likely 
that the function exit for an often called function is missing. The 
command Trace.STATistic.TREE can help you to identify the 
function. If you need further help please contact 
support@lauterbach.com.

stack underflow at 
<record>

The nested analysis exceeds the nesting level 200. It is highly likely 
that the function entry for an often executed function is missing. The 
command Trace.STATistic.TREE can help you to identify the 
function. If you need further help please contact 
support@lauterbach.com.
Training AURIX Tracing     |    232©1989-2024   Lauterbach                                                        



• HLL function

• (root) 

The function nesting is regarded as tree, root is the root of the function nesting.

• Interrupt (branch to an address of an interrupt vector)

columns

range (NAME) function name, sorted by their recording order as default
Training AURIX Tracing     |    233©1989-2024   Lauterbach                                                        



columns (cont.)

total total time within the function

min shortest time between function entry and exit, time spent in interrupt 
service routines is excluded

No min time is displayed if a function exit was never executed.

max longest time between function entry and exit, time spent in interrupt 
service routines is excluded

avr average time between function entry and exit, time spent in interrupt 
service routines is excluded
Training AURIX Tracing     |    234©1989-2024   Lauterbach                                                        



If function entries or exits are missing, this is displayed in the following format: 

<times within the function >. (<number of missing function entries>/<number of missing function exits>).

Interpretation examples: 

1. 2. (2/0): 2 times within the function, 2 function entries missing.

2. 4. (0/3): 4 times within the function, 3 function exits missing.

3. 11. (1/1): 11 times within the function, 1 function entry and 1 function exit is missing.

columns (cont.)

count number of times within the function

If the number of missing function entries or exits is higher the 1 the analysis 
performed by the command Trace.STATistic.Func might fail due to nesting 
problems. A detailed view to the trace contents is recommended. 

columns (cont.)

intern%
(InternalRatio, 
InternalBAR.LOG)

ratio of time within the function without subfunctions, TRAP 
handlers, interrupts
Training AURIX Tracing     |    235©1989-2024   Lauterbach                                                        



columns (cont.) - times only in function

Internal total time between function entry and exit without called sub-functions, 
TRAP handlers, interrupt service routines

IAVeRage average time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines

IMIN shortest time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines

IMAX longest time spent in the function between function entry and exit without 
called sub-functions, TRAP handlers, interrupt service routines

InternalRatio <Internal time of function>/<Total measurement time> as a numeric 
value.

InternalBAR <Internal time of function>/<Total measurement time> graphically.

Pushing the Config… button allows to display additional columns
Training AURIX Tracing     |    236©1989-2024   Lauterbach                                                        



columns (cont.) - times in sub-functions and TRAP handlers

External total time spent within called sub-functions/TRAP handlers

EAVeRage average time spent within called sub-functions/TRAP handlers

EMIN shortest time spent within called sub-functions/TRAP handlers

EMAX longest time spent within called sub-functions/TRAP handlers

columns (cont.) - interrupt times

ExternalINTR total time the function was interrupted

ExternalINTRMAX max. time one function pass was interrupted

INTRCount number of interrupts that occurred during the function run-time
Training AURIX Tracing     |    237©1989-2024   Lauterbach                                                        



The following graphic give an overview how times are calculated:

Entry to func1

func2

TRAP1

func3

interrupt 1

Exit of func1

To
ta

l o
f 

(r
o

o
t)

Start of measurement

End of measurement

To
ta

l o
f 

fu
n

c1

In
te

rn
al

 o
f 

fu
n

c1

E
xt

er
n

al
 o

f 
fu

n
c1

E
xt

er
n

al
IN

T
R

 o
f 

fu
n

c1

Entry to func1

Exit of func1

Exit of func1

Entry to func1
Training AURIX Tracing     |    238©1989-2024   Lauterbach                                                        



Additional Statistics Items for OS

Function per Task

• HLL function

HLL function “SUP_SpiTransmit” running in task “High0”

• Root of call tree for task “High0”

Trace.STATistic.Func /TASK <task_magic> | <task_id> | <task_name>

Trace.STATistic.Func /TASK "High0"
Training AURIX Tracing     |    239©1989-2024   Lauterbach                                                        



Interrupt Functions

Interrupt are assigned to the @interrupt task.

The unknown Task

All function recorded before the first task switch record are assigned to the unknown task.
Training AURIX Tracing     |    240©1989-2024   Lauterbach                                                        



columns - task/thread related information

TASKCount number of tasks that interrupt the function

ExternalTASK total time in other tasks

ExternalTASKMAX max. time 1 function pass was interrupted by a task
Training AURIX Tracing     |    241©1989-2024   Lauterbach                                                        



Entry to func1 in TASK1

func2 in TASK1

TASK2

func2 in TASK1

func3 in TASK1

TRAP1 in TASK1

func4 in TASK1

TASK3

func4 in TASK1

interrupt1 in TASK1

Exit of func1 in TASK1

To
ta

l o
f 

(r
o

o
t)

@
ro

o
t

Start of measurement

First entry to TASK1

Last exit of TASK1

To
ta

l o
f 

(r
o

o
t)

@
TA

S
K

1

In
te

rn
al

 o
f 

fu
n

c1
@

TA
S

K
1

E
xt

er
n

al
 o

f 
fu

n
c1

@
TA

S
K

1

E
xt

er
n

al
IN

T
R

 o
f 

fu
n

c1
@

TA
S

K
1

E
xt

er
n

al
TA

S
K

 o
f 

fu
n

c1
@

TA
S

K
1

First task switch recorded to trace

To
ta

l o
f 

fu
n

c1
@

TA
S

K
1

Entry to func1 in TASK1

Exit of func1 in TASK1
Training AURIX Tracing     |    242©1989-2024   Lauterbach                                                        



More Nesting Analysis Commands

Look and Feel (No OS)

Look and Feel (OS)

Trace.Chart.Func Nesting function run-time analysis
- graphical display
Training AURIX Tracing     |    243©1989-2024   Lauterbach                                                        



Look and Feel (No OS)

Trace.STATistic.TREE Nesting function run-time analysis 
- tree display
Training AURIX Tracing     |    244©1989-2024   Lauterbach                                                        



Look and Feel (OS)

It is also possible to get a task/process-specific tree.

Trace.STATistic.TREE /TASK "High0"
Training AURIX Tracing     |    245©1989-2024   Lauterbach                                                        



Look and Feel (No OS)

Trace.STATistic.LINKage <address> Nesting function run-time analysis 
- linkage analysis
Training AURIX Tracing     |    246©1989-2024   Lauterbach                                                        



Look and Feel (OS)
Training AURIX Tracing     |    247©1989-2024   Lauterbach                                                        



Nesting Function Run-Time Analysis for SMP

It is recommended to reduce the trace information generated by MCDS to the required minimum. 

• To make best use of the available trace memory.

Optimum MCDS Configuration (OS)

Connect the cores of interest to the trace multiplexer

Since the serial off-chip trace provides imprecise timestamps Timestamp Messages have to be enabled for 
any run-time measurement.

S

MCDS.SOURCE.Set CpuMux0.Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source

MCDS.SOURCE.Set CpuMux1.Core TriCore1 ; enable TC 1.6.1 CPU1 as
; trace source

MCDS.TimeStamp ON ; enable Timestamp Messages 

CLOCK.ON
Training AURIX Tracing     |    248©1989-2024   Lauterbach                                                        



TRACE32 PowerView builds up a separate call tree for each task/process.

In order to hook a function entry/exit into the correct call tree, TRACE32 PowerView needs to know which 
task was running when the entry/exit occurred.

The standard way to get information on the current task is to advise the MCDS to generate trace messages 
for the instruction flow and the task switches. For details refer to the “OS-Aware Tracing - SMP Systems”  
in Training AURIX Tracing, page 178 (training_aurix_trace.pdf).

Trace.STATistic.TREE /TASK "High0"
Training AURIX Tracing     |    249©1989-2024   Lauterbach                                                        



In order to do the optimum setting for the nesting analysis advise the Processor Observation Blocks to 
generate trace messages for the complete instruction flow and for the task switches.

Filter settings

Set filter for TC1.6.1 CPU0:

Set filter for TC1.6.1 CPU1:

; default setting since 2015-01
Trace.STATistic.InterruptIsFunction 
Training AURIX Tracing     |    250©1989-2024   Lauterbach                                                        



Numerical Nesting Analysis for OS

Statistics Items

Trace.STATistic.Func Nesting function run-time analysis 
- numeric display
- core information is discarded except for @(unknown) and 
@(interrupt)

survey

funcs: <number> number of functions in the trace

total: <time> total measurement time

intr: <time> total time in interrupt service routines

survey
Training AURIX Tracing     |    251©1989-2024   Lauterbach                                                        



survey (issue indication)

stopped: <time> The analyzed trace recording contains program stops. <time> 
indicates the total time the program execution was stopped.

<number> problems The nested analysis contains problems. Please contact 
support@lauterbach.com.

<number> workarounds The nested analysis contains issues, but TRACE32 found solutions 
for them. It is recommended to perform a sanity check on the 
proposed solutions.

stack overflow at 
<record>

The nested analysis exceeds the nesting level 200. It is highly likely 
that the function exit for an often called function is missing. The 
command Trace.STATistic.TREE can help you to identify the 
function. If you need further help please contact 
support@lauterbach.com.

stack underflow at 
<record>

The nested analysis exceeds the nesting level 200. It is highly likely 
that the function entry for an often executed function is missing. The 
command Trace.STATistic.TREE can help you to identify the 
function. If you need further help please contact 
support@lauterbach.com.
Training AURIX Tracing     |    252©1989-2024   Lauterbach                                                        



• HLL function

HLL function “Os_longjmp” running in task “Low1”

• Root of call tree for task “High0”

The function nesting is regarded as tree, “root@High0” is the root of the call tree for the task 
“High0”.

columns

range (NAME) function name, sorted by their recording order as default
Training AURIX Tracing     |    253©1989-2024   Lauterbach                                                        



Please be aware that no core information is provided for tasks and their functions.

Trace.STATistic.Func /TASK <task_magic> | <itask_d> | <task_name>

Trace.STATistic.Func /TASK "High0"
Training AURIX Tracing     |    254©1989-2024   Lauterbach                                                        



Interrupt Functions

Interrupt are assigned to the @(interrupt) task. Core information is provided for the @(interrupt) task.

Interrupt (branch to an address of an interrupt vector).

The unknown Task

All function recorded before the first task switch recorded are assigned to the @(unknown) task. Core 
information is provided for the @(unknown) task.

Since no trace information is recorded for TC 1.6.1 CPU2 total of (root)@(unknown):2 is equal to the 
complete recording time.
Training AURIX Tracing     |    255©1989-2024   Lauterbach                                                        



columns (cont.)

total total time within the function

min shortest time between function entry and exit, time spent in interrupt 
service routines is excluded

No min time is displayed if a function exit was never executed.

max longest time between function entry and exit, time spent in interrupt 
service routines is excluded

avr average time between function entry and exit, time spent in interrupt 
service routines is excluded
Training AURIX Tracing     |    256©1989-2024   Lauterbach                                                        



If function entries or exits are missing, this is displayed in the following format:

<times within the function >. (<number of missing function entries>/<number of missing function exits>).

Interpretation examples:

1. 2. (2/0): 2 times within the function, 2 function entries missing

2. 4. (0/3): 4 times within the function, 3 function exits missing

3. 11. (1/1): 11 times within the function, 1 function entry and 1 function exit is missing.

columns (cont.)

count number of times within the function

If the number of missing function entries or exits is higher the 1 the analysis 
performed by the command Trace.STATistic.Func might fail due to nesting 
problems. A detailed view to the trace contents is recommended. 

columns (cont.)

intern%
(InternalRatio, 
InternalBAR.LOG)

ratio of time within the function without subfunctions, TRAP 
handlers, interrupts
Training AURIX Tracing     |    257©1989-2024   Lauterbach                                                        



columns (cont.) - times only in function

Internal total time between function entry and exit without called sub-functions, 
TRAP handlers, interrupt service routines

IAVeRage average time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines

IMIN shortest time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines

IMAX longest time spent in the function between function entry and exit without 
called sub-functions, TRAP handlers, interrupt service routines

InternalRatio <Internal time of function>/<Total measurement time> as a numeric 
value.

InternalBAR <Internal time of function>/<Total measurement time> graphically.

Pushing the Config… button allows to display additional columns
Training AURIX Tracing     |    258©1989-2024   Lauterbach                                                        



columns (cont.) - times in sub-functions and TRAP handlers

External total time spent within called sub-functions/TRAP handlers

EAVeRage average time spent within called sub-functions/TRAP handlers

EMIN shortest time spent within called sub-functions/TRAP handlers

EMAX longest time spent within called sub-functions/TRAP handlers

columns (cont.) - interrupt times

ExternalINTR total time the function was interrupted

ExternalINTRMAX max. time one function pass was interrupted

INTRCount number of interrupts that occurred during the function run-time
Training AURIX Tracing     |    259©1989-2024   Lauterbach                                                        



columns - task/thread related information

TASKCount number of tasks that interrupt the function/task

ExternalTASK total time in other tasks

ExternalTASKMAX max. time 1 function/task pass was interrupted by a task
Training AURIX Tracing     |    260©1989-2024   Lauterbach                                                        



More Nesting Analysis Commands

Look and Feel (OS)

Trace.Chart.Func Nesting function run-time analysis
- graphical display
Training AURIX Tracing     |    261©1989-2024   Lauterbach                                                        



Look and Feel (OS)

It is also possible to get a task/process-specific tree.

Trace.STATistic.TREE Nesting function run-time analysis 
- tree display

Trace.STATistic.TREE /TASK "High0"
Training AURIX Tracing     |    262©1989-2024   Lauterbach                                                        



Look and Feel (OS)

Trace.STATistic.LINKage <address> Nesting function run-time analysis 
- linkage analysis
Training AURIX Tracing     |    263©1989-2024   Lauterbach                                                        



Trace-based Code Coverage

The manual “Application Note for Trace-Based Code Coverage” (app_code_coverage.pdf) gives a 
detailed introduction to the trace-based code coverage. However, the manual does not contain details about 
the architecture-specific setups. Here is an overview of the setups for TriCoreTM AURIXTM.

General SetUp

Single-Core and AMP Systems

The core under debug has to be configured for the trace multiplexer.

Instruction Pointer Call Messages are sufficient for Trace-based Code Coverage. Time information is not 
required.

Since each core in a AMP system executes an independent task, Trace-based Code Coverage has to be 
performed per core.

MCDS.SOURCE.Set CpuMux0.Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source

MCDS.SOURCE.Set CpuMux0.Program ON ; enable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU0
Training AURIX Tracing     |    264©1989-2024   Lauterbach                                                        



SMP Systems

Up to two cores can be configured for the trace multiplexer. 

Instruction Pointer Call Messages are sufficient for Trace-based Code Coverage. Time information is not 
required.

Since the core information is discarded for the Trace-based Code Coverage, the same procedure can be 
used as for single-core/AMP systems.

MCDS.SOURCE.Set CpuMux0.Core TriCore0 ; enable TC 1.6.1 CPU0 as
; trace source

MCDS.SOURCE.Set CpuMux1.Core TriCore1 ; enable TC 1.6.1 CPU1 as
; trace source

MCDS.SOURCE.Set CpuMux0.Program ON ; enable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU0

MCDS.SOURCE.Set CpuMux1.Program ON ; enable Instruction Pointer
; Call Messages for 
; TC 1.6.1 CPU1
Training AURIX Tracing     |    265©1989-2024   Lauterbach                                                        


	Training AURIX Tracing
	History
	Basic Knowledge
	Protocol Description
	Source for the Recorded Trace Information
	Onchip Trace Buffer (EMEM)
	Trace Buffer in TRACE32 PowerTrace


	Trace Configuration within TRACE32
	Onchip Trace Configuration
	Steps
	Examples
	AMP Setup

	Off-chip Trace Configuration
	Auto-Configuration
	Restrictions

	Trace Sources and Their Messages
	Cores as Trace Source
	System Peripheral Bus as Trace Source
	Shared Resource Interconnect as Trace Source

	Message Display in TRACE32
	Tracing of a Single Core
	Tracing of AMP Systems
	Tracing of SMP Systems

	FIFOFULL
	Diagnosis


	Displaying the Trace Contents
	Sources of Information for the Trace Display
	Influencing Factors on the Trace Information
	TRACE32 Trace Configuration Window
	Mode Setting
	States of the Trace
	The AutoInit Command
	AMP- Joint/Exclusive Settings

	Basic Display Commands
	Default Listing
	Basic Formatting
	Correlating the Trace Listing with the Source Listing
	AMP - Correlate to a Trace Listing in another TRACE32 Instance

	Browsing through the Trace Buffer
	Find a Specific Event
	Post Mortem Trace Analysis (PowerTrace only)
	Belated Trace Analysis
	Save the Trace Information to an ASCII File
	Postprocessing with TRACE32 Instruction Set Simulator


	Trace Control by Filter and Trigger - Overview
	Marker
	Filter
	Trigger
	Available Resources

	Filter and Trigger - Single-Core and AMP
	WATCH Marker
	TraceEnable Filter
	TraceData Filter
	TraceON/TraceOFF Filter
	Trace Trigger (Onchip Trace Only)

	Filter and Trigger - SMP Systems
	WATCH Marker
	TraceEnable Filter
	TraceData Filter
	TraceON/TraceOFF Filter
	Trace Trigger (Onchip Trace Only)

	OS-Aware Tracing - Single-Core and AMP
	Activate the TRACE32 OS Awareness (Supported OS)
	Exporting the Task Switches
	Exporting Task Services
	Exporting ISR2 (OSEK Interrupt Service Routines)
	Exporting Task Switches and ISR2
	Exporting Task Switches and all Instructions
	Statistic Analysis of Interrupts
	Statistic Analysis of Interrupts and Tasks
	Statistic Analysis of Interrupts in Tasks

	Belated Trace Analysis (OS)
	Enable an OS-aware Tracing (Not-Supported OS)

	OS-Aware Tracing - SMP Systems
	Activate the TRACE32 OS Awareness (Supported OS)
	Exporting the Task Switches
	Exporting Task Services
	Exporting ISR2 (OSEK Interrupt Service Routines)
	Exporting Task Switches and ISR2
	Exporting Task Switches and all Instructions
	Statistic Analysis of Interrupts
	Statistic Analysis of Interrupts and Tasks
	Statistic Analysis of Interrupts in Tasks

	Belated Trace Analysis (OS)

	Function Run-Time Analysis - Basic Concept
	Software under Analysis (no OS or OS)
	Flat vs. Nesting Analysis
	Basic Knowledge about Flat Analysis
	Basic Knowledge about Nesting Analysis
	Summary


	Flat Function-Runtime Analysis - Single-Core and AMP
	Optimum MCDS Configuration (No OS)
	Optimum MCDS Configuration (OS)
	Function Timing Diagram (no TASK Information)
	Function Timing Diagram (TASK information)
	Numeric Analysis

	Flat Function-Runtime Analysis for SMP
	Optimum MCDS Configuration (OS)
	Function Timing Diagram (no TASK Information)
	Function Timing Diagram (TASK Information)
	Numeric Analysis

	Nesting Function Run-Time Analysis - Single
	Restrictions
	Optimum MCDS Configuration (No OS)
	Optimum MCDS Configuration (OS)
	Numerical Nesting Analysis for all Software
	Statistics Items
	Additional Statistics Items for OS

	More Nesting Analysis Commands

	Nesting Function Run-Time Analysis for SMP
	Optimum MCDS Configuration (OS)
	Numerical Nesting Analysis for OS
	Statistics Items

	More Nesting Analysis Commands

	Trace-based Code Coverage
	General SetUp
	Single-Core and AMP Systems
	SMP Systems




