LAUTERBACH A

Trace Tutorial

Trace Tutorial

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 Debugger Getting Startedccccccccvcmmrnicicmnnnniceennn
Trace TUtorialccccceermiiimeer s

L 1= (o
About the Tutorialccccceeciiiiii e ———

What is Trace?cceececciiiimeemesiiiiissssssssrsenssssseerssnsssssssernnes

Trace Use Cases

Trace Methods ... s
Simulator DemOccccciiiiemiiiiir i ————
Trace Configurationccccciiiiecsrininss e
Trace Recordingccccviicvmrninismnninsssss s s s ssssanes

Displaying the Trace Resultsccccoomiiimmmmmnnssmmnnnnssneenn

Trace List

Displaying Function Run-Times
Graphical Charts
Numerical Statistics and Function Tree
Duration Analysis
Distance Analysis

Variable Display

Track Option

Searching Trace Results ...

Trace Save and Loadccceeeeeeciiiimimmesiinreesssessnesesssssssseennes

©1989-2024 Lauterbach

Trace Tutorial

2

Trace Tutorial

Version 06-Jun-2024

History
18-Jun-21 New manual.
About the Tutorial

This tutorial is an introduction to the trace functionality in TRACES32. It shows how to perform a trace
recording and how to display the recorded trace information.

For simplicity, we use in this tutorial a TRACES32 Instruction Set Simulator, which offers a full trace
simulation. The steps and features described in this document are however valid for all TRACES2 products
with trace support.

The tutorial assumes that the TRACES32 software is already installed. Please refer to “TRACE32
Installation Guide” (installation.pdf) for information about the installation process.

Please refer to “Debugger Tutorial” (debugger_tutorial.pdf) for an introduction to debugging in TRACE32
PowerView.

What is Trace?

Trace is the continuous recording of runtime information for later analysis. In this tutorial, we use the term
trace synonymously with core trace. A core trace generates information about program execution on a core,
i.e. program flow and data trace. The TRACES32 Instruction Set Simulator used in this tutorial supports a full
trace simulation including the full program flow as well as all read and write data accesses to the memory. A
real core may not support all types of trace information. Please refer to your Processor Architecture
Manual for more information.

©1989-2024 Lauterbach Trace Tutorial | 3

Trace Use Cases

Trace is mainly used in the following cases:

1. Understand the program execution in detail in order to find complex runtime errors more quickly.
2 Analysis of the code performance of the target code

3. Verification of real-time requirements

4 Code-coverage measurements

©1989-2024 Lauterbach Trace Tutorial | 4

Trace Methods

TRACE32 supports various trace methods. The trace method can be selected in the Trace configuration
window, which can be opened from the menu Trace > Configuration...

& BiTrace (=N HoR >
METHOD
Onchip @ Analyzer () CAnalyzer (_HAnalyzer (_Integrator (! Probe Probe OlLA

O ART O LOGGER () SNOOPer O FDX (O NONE

If a trace method is not supported by the current hardware/software setup, it is greyed out in the trace
configuration window. NONE means that no trace method is selected.

We use in this tutorial the trace method Analyzer. Please refer to the description of the command
Trace.METHOD for more information about the different trace methods.

©1989-2024 Lauterbach Trace Tutorial | 5

Simulator Demo

We use in this tutorial a TRACES32 Simulator for Arm. The described steps are however valid for the
TRACE32 Simulator for other core architectures.

To load a demo on the simulator, follow these steps:

1. Start the script search dialog from the menu File > Search for scripts...
2. Enter in the search field “compiler demo”
$1 Search for scripts... =N =R)
Search Selection Manuals

Example search: CortexAS? Flash

| compiler demo V| % | $#Search | 25 demo files found.
Filter
@ None O chip O Board

Search for newest scripts at https://wwaw.lauterbach.com/scripts.html

& CONFIG | | % Treeview | | 3% LISTCONFIG

Title Chip Board i
Load the Position Independent Sieve 0 - - ”
Load the Position Independent STM stimulus code - -

GNU C Example on a Mistral Board OMAP3530 Mistral

Load the Position Independent Midi [EME - -
Code Coverage Example

GNU C Example for FLASH E;Ml EPXALD STM32F

GNU C Example for SRAM ARMI20T ARMIEGE-S E

Load the Position Independent ITM stimulus Code - - v
3. Select a demo from the list with a double click, a PSTEP window will appear. Press the

“Continue” button.

EF [Bwr.CD.PSTEP "C:\T32\demo\arm\compiler\anu\dema sram.cmm"] EI@
MEStep || BE Over & up I ¥ Continue I AFStop | ‘W Enddo | G Skip | :CfMacros | [B Edit <12 Breakpoints

33 |LOCAL ¶m
34 |ENTRY %LINE ¶m
35 |¶m=STRing. LowWeR("¶m")

37 [WinCLEAR

38 |[AREA.CLEAR

39 |SYStem. RESet

40 [Break.RESet

41 [TRANS]ation. RESet

42 |s¥mbol. RESet

43 [MAP.RESet b4

We will use here the demo “GNU C Example for SRAM”.

©1989-2024 Lauterbach Trace Tutorial | 6

Trace Configuration

In order to set up the trace, follow these steps:

1. Open the menu Trace > Configuration... The trace method Analyzer [A] should be selected per

default. If this is not the case, select this trace method

Trace Perf Cov Window Help

2 & LITTTITIRIT 5 | e & B::Trace EI@
[& CTS Settings...] METHOD
ETM Settings... Onchip @ Analyzer () CAnalyzer (_HAnalyzer (_Integrator (! Probe Probe OlLA
Iriigermalog"' , OART OL0GGER O snoorer OFDX (O NONE
151
t Chart ’ state used ACCESS
g Save trace data... () DISable ’7 auto o
g Load reference data... ® OFF 0.
Reset O Arm SIZE CLOCK
Ortrigger [131072. || ||
O break
SPY Mode de
@ Fifo = SLAVE
commands O stack
’ @ Init O Leash
& SnapShot STREAM
£ List FIPE
[AutoArm RTS
[Autolnit

2. Clear the contents of the trace buffer by pressing the Init button [B].

3. Select the trace operation mode [C].

In mode Fifo, new trace records will overwrite older records. The trace buffer includes thus always the

last trace cycles before stopping the recording.

In Mode Stack, the recording is stopped if the trace buffer is full. The trace buffer always includes in

this case the first cycles after starting the recording.

Mode Leash is similar to mode Stack, the program execution is however stopped when the trace

buffer is nearly full.

TRACES2 supports other trace modes. Some of these modes depend on the core architecture.
Please refer to the documentation of the command Trace.Mode for more information.

We will keep here the default trace mode selection, which is Fifo.

The SIZE field [D] indicates the size of the trace buffer. As we are using a TRACE32 Simulator,
the trace buffer is reserved by the TRACES32 PowerView application on the host. It is thus
possible to increase the size of this buffer. If a TRACES32 trace hardware is used with a real chip,
the size of the trace buffer is limited by the size of the memory available on the trace tool.

In order to have a longer trace recording, we will set the trace buffer size to 10000000.

©1989-2024 Lauterbach

Trace Tutorial | 7

The same configuration steps can be performed using the following PRACTICE script:

Trace
Trace
Trace
Trace

.METHOD Analyzer
.Init

.Mode Fifo

.SIZE 10000000.

Trace Recording

Press the Go button to start the program execution.

File Edit View

>|ﬁ.A.|¢.f¢\|Z|u|r;°._a|?k?|

Jh TRACE32 PowerView for ARM 1[SIM @]

Var Break Run CPU Misc Trace Perf Cov ARMY Window Help

(EHwE eS| @2

=Y dodd

=i BuList.auto

[o][E]
M Step ® Over || A Diverge ¢ Return ¢ up » Go Il Break | % Mode &= t- Find: sieve.c
addr/Tine |source |
Ll
void (*monHook) (void) __attribute__ ((section (".data"))) = 0;

The trace recording is automatically started with the program execution. The state in the Trace window
changes from OFF to Arm [A]. The used field displays the fill state of the trace buffer [B].

& B::Trace EI@
METHOD
Onchip @ Analyzer () CAnalyzer (_HAnalyzer (_Integrator (! Probe Probe OlLA
. RT O LoGGER (O SNOOPer O FDX O NONE
state used ACCESS
() NTSxhla - auto ~
O oFF 10000000.
® Arm SIZE CLOCK
O'trigger 10000000. || ||
O break
SPY Mode Mode
® Fifo [sLave
commands (O stack
@ Init O Leash
& SnapShot STREAM
i FIPE
AutoArm RTS
[AutoInit ‘1!I
C|

In order to stop the trace recording, stop the program execution with the Break button. The state in the trace

window changes to OFF.

©1989-2024 Lauterbach

Trace Tutorial

Jh TRACE32 PowerView for ARM 1[SIM @]
File Edit View Var Break Run CPU Misc Trace Perf Cov ARMS Window Help
o T ric ey
= Bulist.auto EI@
M Step M Over || A Diverge | ¢ Return ¢ up b Go I 11 Break I ¥ Mode &t Find: sieve.c
addr/1ine |source i
void (*monHook) (void) __attribute__ ((section (".data"))) = 0; "

The trace recording is automatically started and stopped when starting and stopping the program execution
because of the AutoArm [C] setting in the Trace window, which is per default enabled. The trace recording

can also be started/stopped manually while the program execution is running using the radio buttons Arm
and OFF of the Trace window [A].

©1989-2024 Lauterbach Trace Tutorial | 9

Displaying the Trace Results

TRACE32 offers different view for displaying the trace results. This document shows some examples.

Please note that the trace results can only be displayed if the trace state in the Trace window is OFF. It is not
possible to display the trace results while recording.

The caption of a TRACE32 window includes the TRACE32 command that can be executed in the TRACE32
command line or in a PRACTICE script to open this window, e.g. here Trace.List

Trace List

Tacedlist | oo s
B setup... || 42 config...| 11 Goto... | #3Find... | i Chart | EProfile | i MIPS & Mare Y Less
record run |address cycle |data ti.back i
str r2,[r3 ~
-00000040 D:00007FCC wr-Tong 15643BC7 ‘\\sieve'sieve'wvlong 0.100us 2
-00000039 T:000006E8 fetch 0423 Y\sieve'\sieve'\func2d+0x40 0.100us :
223 for (regvar = 0; regvar ; regvar++ ~
151 r3,r4,#0x10
-00000038 T:000006EA fetch OCLE ‘sieve'sieve'\func2d+0x42 0.100us v
B::Trace.List
[ok] <record= <recordrangs> <tim

A list view of the trace results can be opened from the menu Trace > List > Default. The same window can
be opened from the Trace configuration window by pressing the List button.

Trace Perf Cov ARMS Window Help &B::Trace EI@
& Configuration... Ia% @ 2 2| METHOD .
| & CTS Settings... Onchip @ Analyzer () CAnalyzer (_HAnalyzer (_Integrator (! Probe IProk
ETM Settings... OarT OLoGGER O snOOPer O FDX
Trigger Dialog...
fe [> Default state used ACCESS
Pl Chart s| o oan O Dpisable - e v
g Save trace data... ? Tracking with Source (® OFF 10000000,
g Load reference data... & List Context Tracking System) Arm SIFE CLOCK
Ortrigger [10000000. || ||
— O break
SPY Maode Maode
@® Fifo M sLavE
commands O stack
@ Init O Leash
€ SnapShot STREAM
FIPE
1] AutoArm RTS
[Autolnit
v
< >
Trace Tutorial | 10

©1989-2024 Lauterbach

The Trace.List window displays the recorded trace packets together with the corresponding assembler and

source code.

4 BuTrace.List EI@
&2 setup... | f& Config...| 11 Goto... | #3Find... | i Chart | EProfile | i MIPS & Mare Y Less
record run |address cycle |data symbaol ti.back
-02791017 [T:0000137A Tetch FI1E sTeve'ysievewmaln+0xD6 0.100us
713 funczb(); =
o 0x588 =
-02791016 T:000005B8 fetch B590 Y\sieve'sieve'\func2b 0.100us ¥
- "~
void func2b(void)
192 i
push {r4,r7,r14}
-02791015 D:00007FAC wr- long 40000000 ‘\sieve'sieve'stral+0xA8 0.100us
-02791014 D:00007FB0 wr-long 00007FCO ‘\\sieve\sieve'stral+0xAC 0.100us
02791013 D:00007FB4 wr-Tong 0000137D \\sieve\sieve\stral+0xB0 0.100us
-02791012 : T:000005BA fetch ~ BO&3 \\s1eue\s1eue\Func2b+0x2 0.100us
sub sp,#0x0C
-02791011 y T:OOOOOSBC fetch AFOD Yh\sieve'\sieve'\func2b+0x4 0.100us
add r7,sp,#0x0
-02791010 T:OOOOOSBE fetch —BU \\s1eue\s1eue\Func2b+0x6 0.100us
long autovar; Tong stack variable
register long regvar; : 1Jrg register variable *
196 autovar = regvar = mstaticl;
ldr r3,0x5F0
-02791009 D:000005F0 rd- Tong 000067CO ‘\\sieve'sieve\func2b+0x38 0.100us
-02791008 T:000005C0 fetch 681C \\s1eue\s1eue\Func2b+0x8 0.100us v

In our case, trace packets are program fetches (cycle fetch) or data accesses (e.g. wr-long and rd-long for
32bit write and read accesses). Each trace packet has a record number displayed in the record column. The
record number is a negative index for Fifo mode.

As we are using a Simulator, each assembly instruction has an own trace packet. This is not the case with a
real hardware trace.

The displayed information can be reduced using the Less button. By pressing Less three times, only the

high-level source code is displayed. This can be reverted using the More button.

1 BuTrace.List EI@
&2 setup... | f& Config...| 11 Goto... | #3Find... | i Chart | EProfile | i MIPS & Mare Y Less
record ti.back
187 [for [regvar = 0; regvar < (char) 5 ; regvar++) 1.700us A
188 vchar += regvar*autovar; 0. 600us =
187 [for (regvar = 0; regvar < (char) 5 ; regvar++) 1.700us ¥
188 vchar += regvar*autovar; 0.600us ~
187 [for (regvar = 0; regvar < (char) 5 ; regvar++) 1.700us
188 vchar += regvar*autovar; 0. 600us
187 [for (regvar = 0; regvar < (char) 5 ; regvar++) 1.700us
188 r vchar += regvar*autovar; 0. 600us
187 for (regvar = 0; regvar < (char) 5 ; regvar++) 1.700us
189 i 0. 600us
713 r funczb(); 0. 800us
void func2b(void)
192 i 0.200us
Tong autovar; * Tlong stack variable *
register long regvar; * long register variable *

196 autovar = regvar = mstaticl; 0. 600us
197 autovar++; 0.600us v

A double click on a line with an assembly instruction or high-level source code opens a List window showing
the corresponding line in the code.

©1989-2024 Lauterbach

Trace Tutorial

11

& Setup... & Config...| () Goto... | F3Find... | M Chart | B Profile | B MIPS & Mare Y Less

record ti.back
187 for [regvar = 0; regvar < (char) 5 ; regvar++) 1.700us
188 vchar += regvar*autovar; 0. 600us

; regvar++ .7 Double
click
M Step M Over || A Diverge | ¢ Return ¢ up b Go Il Break | % Mode &= t- Find:
addr/1line |source i
187 for [regvar = 0; regvar < (char) 5 ; regvar++) ~
188 | vchar += regvar*autovar;
189 |+
void func2b(void)
192 |{
Tong autovar; /* long stack variable */
register long regvar; /* long register variable */
196 autovar = regvar = mstaticl;
197 autovar++;

Using the TRACES32 menu Trace > List > Tracing with Source, you get a Trace.List and a List /Track
window. When doing a simple click on a line in the Trace.List window, the List window will automatically
display the corresponding code line.

-

Trace [=[E]=]
&Setup &Com’g 1 Goto... | #iFind... | # Chart | B Profile | B MIPS & Mare Y Less
record run |address - cycle |data symbaol ti.back
str rl,
-09261609 D:00007FAB wr- Tong 40400000 ‘\sieve'sieve'stral+OxAd 0.100us
-09261608 T:000007D2 Fetch 4B0C “Vsieve'sieve'\ funce+0x0A 0.100us)
47 v Simple
r r3,0x804 .
09261607 n-NNNANRNA rd-Tona ONNNET20 Y hciaua'siaua'FfuncfiOvir N 1000 click
09261+ Ne:pataList £ Mrack E==E=E =<
-09261 |)| Step ® Over || A Diverge | ¢ Return ¢ up b Go Il Break | % Mode &= t- Find: |:
_ addr/1ine |source
0251 242 return a+b¥c; A~
243 |}
F'Ioat funcé(float a, float b)
246 {
248 viloat = -1.0;
249 vfloat = 10.0;
250 vfloat = 1.6;
252 return a*b; v

The timing information (see ti.back column) is generated in this case by the TRACE32 Instruction Set
Simulator. With a real core trace, timestamps are either generated by the TRACES2 trace hardware or by
the onchip trace module.

©1989-2024 Lauterbach Trace Tutorial | 12

Displaying Function Run-Times

TRACE32 supports nested and flat function run-time analysis based on the trace results. Please refer to the
video “Flat vs. Nesting Function Runtime Analysis” for an introduction to function run-time analysis in
TRACE32:

support.lauterbach.com/kb/articles/trace-based-profiling

Graphical Charts

By selecting the menu Trace > Chart > Symbols, you can get a graphical chart that shows the distribution
of program execution time at different symbols. The displayed results are based on a flat analysis:

e Bi:Trace.Chart.sYmbol EI@
J2 Setup... || fif Groups... | 38 Config... | (¥ Goto... | (3 Goto... | #3Find... | «In |»0«Out | & Full
-510. 860ms -510. 840ms -510.820ms -510.800ms -510.780ms
addressfy| | | | | | |
(other) &¥ -

__ieee754_rem_pioZ M
| _aeabi_d2iz_from_thumb i
__aeabi_d2izqH
| aeabi_i2d_from_thumb ¥
__aeabi_i2dH .
| _aeabi_dmul_from_thumb &)))) . .) |)
__aeabi_dmul & - _ I) | . | -
| _aeabi_dsub_from_thumb ¥ _
__aeabi_dsubfp
sinky
__kernel_cosH
| _aeabi_dmul_from_thumb i
| _aeabi_dadd_from_thumb i
| _aeabi_dsub_from_thumb i . . | | |
func_singy | | |
|__aeabi_dadd_from_thumb & | N) 1 | I |] | A |
| _aeabi_ddiv_from_thumb ¥
__aeabi_ddivi¥ _ |
|__aeabi_dmul_from_thumb ¥ |) |)) I . | [| v

__adddf35(mm N e I | N

The corresponding nesting analysis can be displayed using the menu Perf > Function Runtime > Show as
Timing.

=% B:Trace. CHART.FUNC EI@

J2 Setup... || fif Groups... | 38 Config... | (¥ Goto... | (3 Goto... | #3Find... | «In |»0«Out | & Full
5.500ms -615.000ms -614.500ms -614.000ms -613.500ms -613.000ms -612.5
nge 4y 1 1 - 1 1 i
supstiww o mm om0 F W
encodely|
(root) Hk—
sievely
test_cond_instriy A L Al il
func2@yl U 0l (IR o
funclyl 00 N R e TR

1 1

t

LTI Tor TN (N (N N Y) O 01—
funczbRl NI | . . U (N IR . DM e R
funcZewy [/, =m | < =m | A @ Em .
funcz2dmy 0 0 0 b L0 o

init_linked list¢/m | = =™ = ®| = n
funcdl 0 0 b]
func3el 10 0 0 1 | 1
funcSEl 100 0 e e
funce| L0 b
func7@| 1 . I

The In and Out buttons can be used to zoom in/out. Alternatively, you can select a position in the window
and then use the mouse wheel to zoom in/out.

©1989-2024 Lauterbach Trace Tutorial | 13

https://support.lauterbach.com/kb/articles/trace-based-profiling

Numerical Statistics and Function Tree

The menu entry Perf > Function Runtime >Show Numerical displays numerical statistics for each function
with various information as total run-time, minimum, maximum and average run-times, ratio, and number of

function calls.

= | BiTrace. STATistic. FUNC = =R
J2 Setup... || iif Groups... | 38 Config... | (3 Goto... | =|Detailed | fE{Nesting | % Chart
funcs: 36. total: 1.000s
range [total min max avr count intern¥® [1% 2% 5% '
subst | 44.506ms 2.600us 3.300us 3.200us 13909. 4. 4505 |m— ~
encode | 136. 855ms 98.400us 98.400us 98.400us 1391. 9.234%
(root) 1.000s - 1.000s - -| 9.855%
sieve 83.321ms 59.900us 59.900us 59.900us 1391. 8.332%
test_cond_instr 11.267ms 3.300us 4. 800us 4.050us 2782, 1.126% |m
func2 31.019ms 22.300us 22.300us 22.300us 1391. 2.142% |—
funcl 22.386ms 2.300us 2.300us 2.300us 9733. 2. 238% |——
func2a| 20.865ms 15.000us 15.000us 15.000us 1391. 2.086% |e———
funcZb 15.162ms 10.900us 10.900us 10.900us 1391. 1.516% |emm—
func2c | 195.675ms | 138.600us | 142. B00us | 140.672us 1391. | 19.567%
func2d 25. 866ms 18. 600us 18. 600us 18. 600us 1391. 2. 5865 |m— v
< >

Further display options can be selected by doing a right mouse click on a specific function.

"

|

Linkage

Parents

Children

Duration Analysis
Findall Duration
Distance Analysis

Findall Distance

here ¥

= | BiTrace. STATistic. FUNC = =R
B Setup... | {if Groups... | 2% Config...| (3 Goto... | E|Detailed| i MNesting & Chart
funcs: 36. total: 1.000s
range [total min max avr count intern¥® [1% 2% 5% '
L506ms | 2.600us [3.300us 4 50% | e— ”
85 e 9. %
Statistic 000s 9.855%
b 900us 8.332%
test_cond_instr Lt st 800us 1.126% |m
func2 List Last 300us 2.142% | we—
funcl List Extr 300us 2. 238Y | —
func2a iR 000us 2. 086% |m—
func2b Goto Extreme 900us 1. 516% |wm—
func2c 800us 19. 567%
func2d Bookmark Extreme 600us 7. GREY | e— v

Parents [A] displays for example a caller tree for the selected function. By doing a right mouse click on func1
and selecting Parents, we see the run-times of the functions func2 and func9, which have called func1 in the

trace recording.

= | B:iTrace, STAT.Parent TREE T:0x4BC = =R
J2 Setup... || iif Groups... | 38 Config... | (3 Goto... | =|Detailed | fE{Nesting | % Chart
funcs: 5. total: 22.386ms
range [tree total min max avr total¥% |1% 2% 5%
funcl |2 funcl 22.386ms 2.300us 2.300us 2.300us [100.000%
func2 (-2 func2 9. 598ms 2.300us 2.300us 2.300us | 42.B74%
(root) L— (root) 9.598ms 2.300us 2.300us 2.300us | 42.874%
funcd |—= func9 12.788ms 2.300us 2.300us 2.300us | 57.125%
(root) L— (root) 12.788ms 2.300us 2.300us 2.300us | 57.125%
< >

©1989-2024 Lauterbach

Trace Tutorial

14

Children [B] displays the run-times of the functions called by the selected function, for example here the

function subst called by the function encode.

| BiTrace, STAT.Child TREE T:0x1194 = =R
J2 Setup... || iif Groups... | 38 Config... | (3 Goto... | =|Detailed | fE{Nesting | % Chart
funcs: 2. total: 136.855ms
range [tree total min max avr inter' |
encode |2 encode 136.855ms | 98.400us [98.400us | 98.400us | 67.4
subst |— subst 44, 506ms 2.600us 3. 300us 3.200us | 32.5
< >

A function call tree view of all function recorded in the trace can be displayed using the menu entries Perf >
Function Runtime > Show as Tree or Perf > Function Runtime > Show Detailed Tree.

= | BiTrace. STATistic. TREE = =R
J2 Setup... || iif Groups... | 38 Config... | (3 Goto... | =|Detailed | fE{Nesting | % Chart
funcs: 40. total: 1.000s
range [tree total min max avr i
(root) [= (root) 1.000s - 1.000s - A~
encode |[—= encode 136.855ms | 98.400us | 98.400us | 98.400us
subst L— subst 44, 506ms 2.600us 3. 300us 3.200us
sieve |[— sieve 83.321ms | 59.900us | 59.900us | 59.900us
test_cond_instr |[— test_cond_instr 11.267ms 3. 300us 4.800us 4.050us
func2 |—2 func2 31.019ms | 22.300us | 22.300us | 22.300us
funcl — funcl 9. 598ms 2.300us 2.300us 2.300us
func2a |[— func2a 20.865ms | 15.000us | 15.000us | 15.000us
func2b |[— func2b 15.162ms | 10.900us | 10.900us | 10.900us
func2c |[— func2c 195.675ms | 138.600us | 142, 800us | 140.672us
func2d |[— func2d 25.866ms | 18.600us | 18.600us | 18.600us
imit_linked_list |[— init_linked_Tist 95.215ms | 68.500us | 68.500us | 68.500us
funcd |— funcd 11. 815ms 8. 500us 8. 500us 8. 500us
func3 |[— func3 1.668ms 1.200us 1.200us 1.200us
funcs [— funcs 4.448ms 3. 200us 3. 200us 3. 200us
funcé [[— funcé 9.730ms 7.000us 7.000us 7.000us v
< >

Duration Analysis

By doing a right mouse click on a function in the numerical statistics window (Trace.STATistic.Func) then

selecting Duration Analysis, you get an analysis of the function run-times between function entry and exit
including the time spent in called subroutines, e.g. here for the function subst (P:0x114C corresponds to the
start address of the subst function):

= | BiiTrace STAT.FuncDURation P:0x114C = =R
B setup...| Iyl Chart | © Zoom 1 Zoom Bl Full
samples: 13909.(1) avr: 3.200us min: 2.600us max: 3. 300us
total: 1.000s in: 44.506ms out: 955.4%ms ratio: 4.450%

up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 2.600us 0. 0.000%

2.650us 1391. | 10.001%

2.700us 0. 0.000%

2.750us 0. 0.000%

2.800us 0. 0.000%

2.850us 0. 0.000%

2.900us 0. 0.000%

2.950us 0. 0.000%

3. 000us 0. 0.000%

3.050us 0. 0.000%

3.100us 0. 0.000%

3.150us 0. 0.000%

3. 200us 0. 0.000%

3. 250us 4172, | 29.997%

3. 300us 0. 0.000%

3. 350us 8345. | 60.001%

3.400us 0. 0.000%
> 0. 0.000%

The time interval can be changed using the Zoom buttons.

©1989-2024 Lauterbach

Trace Tutorial

15

Distance Analysis

By doing a right mouse click on a function in the numerical statistics window (Trace.STATistic.Func) then
selecting Distance Analysis, you can get run-times between two consecutive calls of the selected function,
e.g. here for the function subst (P:0x114C corresponds to the start address of the subst function):

= | BiTrace STATAddressDIStance P:0x114C = =R
B setup...| Iyl Chart | © Zoom 1 Zoom Bl Full
samples: 13907. avr: 71.8B3us min: 8.700us max: 636.400us
total: 1.000s in: 999.672ms out: 328.000us ratio: 99.967%
up to |count ratio 1% 2% 5% 10% 20% 50% 100
< 0.000us 0. 0.000%
50.000us 12517. | 90.005%
100. 000us 0. 0.000%
150.000us 0. 0.000%
200.000us 0. 0.000%
250.000us 0. 0.000%
300.000us 0. 0.000%
350.000us 0. 0.000%
400.000us 0. 0.000%
450.000us 0. 0.000%
500.000us 0. 0.000%
550.000us 0. 0.000%
600. 000us 0. 0.000%
650. 000us 1390. 9.99%4%
700.000us 0. 0.000%
750.000us 0. 0.000%
800. 000us 0. 0.000%
> 0. 0.000%

©1989-2024 Lauterbach

Trace Tutorial

16

Variable Display

The Trace.ListVar command allows to list recorded variables in the trace. If the command is used without
parameters all recorded variables are displayed:

Trace.ListVar

&%/ B:Trace.ListVar EI@
B setup...| 11 Goto... | FiFind... | 4o Draw
1895263 |run |address cycle |data var ti.back i
-09999990 D:00007FA4 rd-Tong 00000001 strall8].word = Oxl 0.200us A
-09999988 D:00007F9C rd-long 00006754 stral[7].right = Ox6754 0.200us 2
-09999983 D:00007FA3 rd-byte 6F 0.500us =
-09999981 D:00006755 wr-byte 6F x1[1] = 111 0.200us ¥
-09999979 D:00007FA4 rd-Tlong 00000001 strall[8].word = Oxl 0.200us ~
-09999976 D:00007FA4 wr-Tong 00000002 stral[8].word = Ox2 0.300us w
You can optionally add one or multiple variables as parameters.
Example: display all accesses to the variables plot1 and plot2
Trace.ListVar %$DEFault plotl plot2
&R BuTrace ListVar %DEFault plot1 plot2 EI@
B setup...| 11 Goto... | FiFind... | 4o Draw
4173 |run |address cycle |data var ti.back i
-09998147 D:0000672C rd-word DOE4 plotl = -12060 ~
-09998136 D:0000672C wr-word D120 plotl = -12000 1.100us _
-09998121 D:000067CC wr-word 61A8 plot2 = 25000 1.500us =
-09990973 D:0000672C rd-word D120 plotl = -12000 714.800us “
-09990962 D:0000672C wr-word D15C plotl = -11940 1.100us ~
-09990947 D:000067CC wr-word 61A8 plot2 = 25000 1.500us w

The Draw button can then be used to plot the displayed variables graphically against time. This corresponds
to the following TRACE32 command:

Trace.DRAW.Var $DEFault plotl plot2

4o BTrace. DRAW.Var %DEFault plot1 plot2 = =R
2 Setup...|| 3 Goto... | #3Find... | fwChart |« In | M4 Out| @Full| S In | 2 out | E Full
W ‘sievesieve'\plotl M ‘sieve\sieve\plot2

000s -800.000ms -600.000ms -400.000ms -200.000ms 0.0

| | | | I

"~

20000.))) =

W

0. - : / ~

-20000. : : : : : : . : : v

Please refer for more information about the Trace.DRAW command to “Application Note for
Trace.DRAW” (app_trace_draw.pdf).

©1989-2024 Lauterbach Trace Tutorial | 17

Track Option

The /Track options allows to track windows that display the trace results. You just need to add the /Track
option after the command that opens a trace window, e.g.

Trace.List /Track

The cursor will then follow the movement in other trace windows, e.g. Trace.Chart.Func. Default is time
tracking. If no time information is available, tracking to record number is performed.

TRACES32 windows that displays the trace results graphically, e.g. Trace.Chart.Func, additionally accept

the /ZoomTrack option. If the tracking is performed with another graphical window, the same zoom factor is
used in this case.

Trace.Chart.Func /ZoomTrack

©1989-2024 Lauterbach Trace Tutorial | 18

Searching Trace Results

The Find button allows to search for specific information in the trace results.

Exampile 1: find the first call of function func2

1.
2.

Enter “func2” under address / expression

Select Program under cycle

Press the Find First button. The next entries to func2 in the trace can then be found using the

Next button

j-j Trace Find

Expert Cycle Group Changes Signal
address [expression

|func2

Cycle Data

| Program v| | |
Find First Find Mext Find All Find Here

CHLL

Clear

Direction

Oup
® Down

Find Up

Find Down

Cancel

Example 2: Find all write accesses to the variable mstatic1 with the value 0x0

1.

2
3.
4

Enter “mstatic1” under address / expression

Select Write under cycle
Enter 0x0 under Data

Press the Find All button

#1 Trace Find

Expert Cycle Group Changes Signal
address [expression

[mstatict

Cycle Data

[write “| || [oxo

Find First Find Mext Find All Find Here

CHLL

Clear

Direction

Oup
® Down

Find Up

Find Down

Cancel

Bu:Trace.List EI@
&2 setup...| & Config...| 11 Goto... | #iFind... | i Chart | B Profile | HiMIFS & Mare Y Less
record run |address - - oyeiedata symbaol ti.back
str r2,[r3 ~
-00000040 D:00007FCC wr-Tong 15643BC7 ‘\\sieve'sieve'wvlong 0.100us 2
-00000039 T:000006E8 fetch 0423 Y\sieve'\sieve'\func2d+0x40 0.100us :
223 for (regvar = 0; regvar =« 51 ; regvar++) ~
151 r3,r4,#0x10
-00000038 T:000006EA fetch OCLE ‘sieve'sieve'\func2d+0x42 0.100us v

Please refer to “Application Note for Trace.Find” (app_trace_find.pdf) for more information about
Trace.Find.

©1989-2024 Lauterbach

Trace Tutorial

19

Trace Save and Load

The recorded trace can be stored in a file using the command Trace.SAVE, e.g.

Trace.SAVE file.ad

The saved file can then be loaded in TRACE32 PowerView using the command Trace.LOAD

Trace.LOAD file.ad

The TRACE32 trace display windows will show in this case a LOAD message in the low left corner

i1 BuTrace.List EI@

&2 setup... | f& Config...| 11 Goto... | #3Find... | i Chart | EProfile | i MIPS & Mare Y Less
record run |address - - cycle |data symbaol ti.back i
str r2,[r3 ~
-00000040 D:00007FCC wr-Tlong 15643BC7 ‘\\sieve\sieve'wlong 0.100us 2
-00000039 T:000006E8 fetch 0423 Y\sieve'\sieve'\func2d+0x40 0.100us :
223 For‘ :: regvar = 0; regvar < 51 ; regvar++) ~

1s1 3,r4,#0x10

-00000038 T: OOOOOGEA fetch 0C1B ‘sieve'sieve'\func2d+0x42 0.100us v

Please note that TRACES32 additionally allows to export/import the trace results in different formats. Refer to
the documentation of the command groups Trace.EXPORT and Trace.IMPORT for more information.

©1989-2024 Lauterbach Trace Tutorial | 20

	Trace Tutorial
	History
	About the Tutorial
	What is Trace?
	Trace Use Cases

	Trace Methods
	Simulator Demo
	Trace Configuration
	Trace Recording
	Displaying the Trace Results
	Trace List
	Displaying Function Run-Times
	Graphical Charts
	Numerical Statistics and Function Tree
	Duration Analysis
	Distance Analysis

	Variable Display
	Track Option

	Searching Trace Results
	Trace Save and Load

