LAUTERBACH A

Simulator for Arm and XSCALE

Simulator for Arm and XSCALE

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
TRACE32 Instruction Set SIMulators ... e r—~
Simulator for Arm and XSCALE ... erirrrcerresssssmesrssssssse s rsssssmmeseessssmsesesssssmmsssesssmmssseas 1
0 Yo 11T] T o 5
TRACES32 Simulator License 5
Brief Overview of Documents for New Users 5
Demo and Start-up Scripts 6
Quick Start of the SIMUIAOr ... 7
Peripheral SImulation ... e 9
QLo 10 o L= 4 Lo T {3 T 9
£ O 9
Memory Classes 10
Virtual Terminal 11
Semihosting 11
Coprocessors 12
ARM specific SYStem Commandsccccccemmmmmiiiiiccissssssssecmee s sssssssssssssss s e sessessssssnnnnes 13
SYStem.CPU Select the used CPU 13
SYStem.CONFIG Configure debugger according to target topology 13
SYStem.CONFIG.SMMU Internal use 14
SYStem.Mode Establish the communication with the simulator 15
SYStem.Option.Alignment Enable alignment exceptions 16
SYStem.Option.BigEndian Define byte order (endianness) 16
SYStem.Option.DisMode Define disassembler mode 16
SYStem.Option.DUALPORT Implicitly use run-time memory access 17
SYStem.Option.IMASKASM Disable interrupts while single stepping 17
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 18
SYStem.Option.MACHINESPACES Address extension for guest OSes 19
SYStem.Option. MMUSPACES Separate address spaces by space IDs 20
SYStem.Option.OVERLAY Enable overlay support 21
SYStem.Option.REALTIME Stall the simulator if faster than real processor 21
SYStem.Option.ZoneSPACES Enable symbol management for Arm zones 22
Overview of Debugging with Zones 23
Operation System Support - Defining a Zone-specific OS Awareness 26
©1989-2024 Lauterbach Simulator for Arm and XSCALE 2

SYStem.RESetOut CPU reset command 28
SYStem.state Display SYStem.state window 28
ARM Specific TrOnchip COMMANASccccceriiiimiissmmisinsinsss s s sssss s sess s sasssasanssasans 29
TrOnchip.RESet Reset on-chip trigger settings 29
TrOnchip.Set Set bits in the vector catch register 29
TrOnchip.StepVector Step into exception handler 30
TrOnchip.StepVectorResume Catch exceptions and resume single step 30
TrOnchip.state Display on-chip trigger window 31
CPU specific MMU COMMANASccoviiiminimrininr s s s ssssssssssssssssms s sss s sssasssasasssassns snssnes 32
MMU.DUMP Page wise display of MMU translation table 32
MMU.List Compact display of MMU translation table 36
MMU.SCAN Load MMU table from CPU 38
CPU specific SMMU COMMANAScccmeimmiiiriiiisssssssssemsrenssressssssssssssmssmssesssssssssssssssssnnsmsssnssnes 40
SMMU Hardware system MMU (SMMU) 40
SMMU.ADD Define a new hardware system MMU 50
SMMU.Clear Delete an SMMU 52
SMMU.CixtDescTable List a context descriptor table 52
SMMU.DumpQueue.<queue> Dump entries of a queue 53
SMMU.DumpQueue.CMD Dump cmd queue entries 55
SMMU.DumpQueue.Event Dump event queue entries 56
SMMU.Register Peripheral registers of an SMMU 57
SMMU.Register.ContextBank Display registers of context bank 58
SMMU.Register.Global Display global registers of SMMU 59
SMMU.Register. MMUregs Display MMU specific registers 59
SMMU.Register.S1Context Display stage 1 context descriptor registers 60
SMMU.Register.StreamTbIEntry Display stream table entry registers 60
SMMU.Register.StreamMapRegGrp Display registers of an SMRG 61
SMMU.RESet Delete all SMMU definitions 62
SMMU.SSDtable Display security state determination table 63
SMMU.StreamMapRegGrp Access to stream map table entries 64
SMMU.StreamMapRegGrp.ContextReg Display context bank registers 65
SMMU.StreamMapRegGrp.Dump Page-wise display of SMMU page table 67
SMMU.StreamMapRegGirp.list List page table entries 69
SMMU.StreamTable Display a stream table 70
Display of Global Faults or Global Errors in an SMMU 81
Finding streams which are in a fault / error state 82
SMMU.StreamTblEntry Access to a stream table entry 82
SMMU.StreamTblEntry.Dump Page-wise display of SMMU page table 84
SMMU.StreamTblEntry.list List page table entries 85
SMMU.StreamTblEntry.Register Display STE or CD registers 86
©1989-2024 Lauterbach Simulator for Arm and XSCALE 3

Simulator for Arm and XSCALE

Version 06-Jun-2024

A TRACE32 PowerView ARM
File Edit View Var Break Run CPU Misc Trace Pef Cov ARM940 Window Help
HE ALld e[o eumecs @22
[B::List.auto] EI@
[Mstep |[M Over |[AaDiverge|[¢ Return|[@ up || »Go |[Ml Break |[B¥Mode | Find: arm.c
addr/1ine |code |1abel mnemonic |comment =
char flags[SIZE+1]; i
int sieve() * zieve of erathostenes *=/
678
SR:00002228 |E9204010 zieve: =tmdb ri3!,{r4,r14}
register int i, primz, k;
int anzahl;
682 anzahl = 0;
SR:0000222C |[E3AQLO00 mow ril,#0x0
684 for (1 =0 ; i <= 5IZE ; flags[i++] = TRUE) ;
SR200002230.F 3402000 mow. r2,£0x0 5 0,#0 |
for (1 =0 ; i <= 5IZE ; flags[i++] = TRUE) ; L
SR:00002234 |[E3520012 omp rz,#0x12
S5R:00002238 |DAOOODOGE ble 0x2258 &
ﬂ&:Val.FlamefLocalstallm EI &% B:Var.Watch %SpotLight flags ast EI@
3 Dowr| MArgs [Fllocals [MIcaler | Task: ~ [&] | (65 watch| 6ot view | | [#
-000[[s7eve() » ||#fTags = (1, 1,1,0,1,1,1,1,1,1,1,1,1, 1,1, 1, 1, .
=1 =0 # ast = (word = 0Ox0, count = 12346, left = Ox583C, right = Ox
= primz = 3
k=686
- anzahl = 0 ¥
-001] ma‘[n_ 12345678 [B::Registerview /SpotLight /Stack EI@
Hp = Ox364C T |F W Ro GEAZ 1B 0 5 [otack s
7 _ R1 o RS 0 5P+ DOBCE14E —
while (TRUE) = k2 r2 0 R1O 0 +04 D00DO2IFC 4
I — R3 6 R11 0 +05 40180000
sieve(); R4 1 R12 3 +0C 00000000
—|end of frame B RS 564C R13 OFE4 +10 00000000
RE 0 Rl4 0 +14 00000000
R7 o PC 2230 +15 00000000
SP5R 10 CP5R 80000003 +1C ES9F0034
+20 E59F1034
USR: FIQ: +24 E59F3034 &
4 3
B::|
emulate trigger | [devices |[trace |[Data][wvar J[st [PERF |[s5vstem |[Step |[other | [previow |
| SR:00002230 \\armle\arm\sieve+0x8 |stopped CIC MIX |UP

©1989-2024 Lauterbach

Simulator for Arm and XSCALE |

4

Introduction

This document describes the processor-specific settings and features for the TRACES32 Instruction Set
Simulator for ARM.

All general commands are described in the “PowerView Command Reference” (ide_ref.pdf) and
“General Commands Reference”.

TRACE32 Simulator License

[build 68859 - DVD 02/2016]
The extensive use of the TRACE32 Instruction Set Simulator requires a TRACES32 Simulator License.

For more information, see www.lauterbach.com/sim_license.html.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your debug cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 5

www.lauterbach.com/sim_license.html

To get started with the most important manuals, use the Welcome to TRACE32! dialog (WELCOME.view):

£ Welcome to TRACE32!

(=[O sl

TRACE32 PowerView for ARM [Simulator

Before you can start debugaging, the debug environment needs to be set up.
This setup is usually done by a start-up script. Click "Start with examples” to
search for an example start-up script for your target.

Example scripts can be modified to fit your exact system setup and configuration.

Related manuals

g3 Simulator for ARM and XSCALE
@ Debugger Basics - Training
@ Training Script Language PRACTICE

[Cl show this dialog at start | 2 Heb | [#astart with examples |
Re-open dialog via menu Help -> Welcome to TRACE32

Demo and Start-up Scripts

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts

(*.cmm) and other demo software.

f"] Search for scripts...

(=[O el

| Search " Selection ” Manuals

Example search: OMAP44* Linux
simulator ARM

Fitter

@ None O Chip) Board

- () Fiseac]

Search for newest scripts at https://www.lauterbach.com/scripts.html

[conFiG) [Tree view | [28
Title

LISTCONFIG|

19 demo files found.

Ch1

VxWorks Demo for TRACE3Z 05 Awareress on ARM GLTIES
Linux Demo for TRACE32 05 Awareness on the TRACE3Z S MIEET (ARM32Z6E])
PU and Cache Simulation Example for the ARM346E Using the TRACE3Z

Linux Demo for TRACE3Z 05 Awareness on the TRACE3Z BILTMIEEL (Cortex-A

Script File to load ETE raw data in the TRACE3Z BN

Script File to load ETF raw data in the TRACE3Z SllHE)

RIOT Demo for TRACE32 0S5 Awareness

Dialog for Philips LPCZxxx Vectorred Interrupt Controller Model

Philips LPC2xxx Vectored Interrupt Controller Model Initialization Script
CortexMO+ NVIC Model Initialization Script

Dialog for Philips LPCZxxx Vectorred Interrupt Controller Model

LPC2xxx Timer Initialization Script for TRACE3Z 64-bit

Philips LPC2xxx Vectored Interrupt Controller Model Initialization Script
Timer EOTIETS Model for the LPC2Zxxx (64 bit TRACE3Z)

Timer gy Model for the LPC2Zxxx (32 bit TRACE3Z)

CortexM3 NVIC Nested Vectored Interrupt Controller Model Initialization Script
LPC2xxx Timer Initialization Script for TRACE3Z 32-bit

CortexM0 NVIC Model Initialization Script

CortexM0 NVIC Nested Vectored Interrupt Controller Model Initialization Script

ARM9ZGE]-5
ARM946E*
CORTEX-A5 CORTEX-AS

LPC2=*
LPC2=*
Cortex-M0o+
LPC2*

L
Cortex-M3
LPC2*

Cortex-MO
Cortex-MO

T
TRACE3Z

TRACESZ
TRACESZ
TRACESZ
TRACESZ
TRACESZ
TRACESZ
TRACESZ
TRACESZ
TRACESZ
TRACESZ
TRACESZ
TRACESZ

4 | i

You can also manually navigate in the ~~/demo /arm/ subfolder of the system directory of TRACES32.

©1989-2024 Lauterbach

Simulator for Arm and XSCALE

6

Quick Start of the Simulator

To start the simulator, proceed as follows:

1. Select the device prompt for the Simulator and reset the system.

183 3

RESet

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: : to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting TRACE32.

2. Specify the CPU specific settings.

File Edit Wiew Var Break Run||CPU |[|Misc Trace Pedf Cov Window Help

i

Change Frame r éy Bo:S¥Stem
I CPU Registers ’MDdE
FPU Registers @ Down
«# Peripherals MoDebug
Prepare
429 System Settings... ae
Attach
StandBy
Up (StandBy]
©up
In Target Reset
Reset CPU Registers reset
CPU

Cpu_name

SYStem.CPU <cpu_name>

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 7

3. Enter debug mode.

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed it is possible
to access memory and registers.

4. Load the program.

Data.LOAD.<file_format> <file> ; load program and symbols

See the Data.LOAD command reference for a list of supported file formats. If uncertain about the
required format, try Data.LOAD.auto.

A detailed description of the Data.LOAD command and all available options is given in the reference
guide.

5. Start-up example

A typical start sequence is shown below. This sequence can be written to a PRACTICE script file
(*.cmm, ASCII format) and executed with the command DO <file>.

B:: ; Select the ICD device prompt
WinCLEAR ; Clear all windows
SYStem.CPU <cpu_name> ; Select CPU type
SYStem.Up ; Reset the target and enter

; debug mode
Data.LOAD.<file_ format> <file> ; Load the application
Register.Set pc main ; Set the PC to function main
PER.view ; Show clearly arranged

; peripherals in window *)
List.Mix ; Open source code window *)
Register.view /SpotLight ; Open register window *)
Frame.view /Locals /Caller ; Open the stack frame with

; local variables *)
Var.Watch %Spotlight flags ast ; Open watch window for

; variables *)

*) These commands open windows on the screen. The window position can be specified with the
WinPOS command.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 8

Peripheral Simulation

For more information, see “API for TRACE32 Instruction Set Simulator” (simulator_api.pdf).

Troubleshooting

No information available.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 9

https://support.lauterbach.com/kb

Memory Classes

The following ARM specific memory classes are available.

Memory Class Description
P Program Memory
D Data Memory
SP Supervisor Program Memory (privileged access)
UP User Program Memory (non-privileged access)
SR Supervisor ARM Memory (privileged access)
ST Supervisor Thumb Memory (privileged access)
UR User ARM Memory (non-privileged access)
uT User Thumb Memory (non-privileged access)
User Memory (non-privileged access)
Supervisor Memory (privileged access)
ARM Memory
T Thumb Memory
ICE ICE Breaker Register (debug register; ARM7, ARM9)
C14 Coprocessor 14 Register (debug register; ARM10, ARM11)
Ci15 Coprocessor 15 Register (if implemented)
ETM Embedded Trace Macrocell Registers (if implemented)
VM Virtual Memory (memory on the debug system)
USR Access to Special Memory via User-Defined Access Routines
E Run-time memory access
(see SYStem.CpuAccess and SYStem.MemAccess)

To access a memory class, write the class in front of the address.

Example:

Data.dump ICE:0--3

Normally there is no need to use the following memory classes: P, D, SP, UP, SR, ST, UR, UT, U, S, R, or T.
The memory class is set automatically depending on the setting of SYStem.Option.DisMode.

©1989-2024 Lauterbach

Simulator for Arm and XSCALE

10

Virtual Terminal

The command TERM opens a terminal window which allows to communicate with the ARM core over the
ICEbreaker Debug Communications Channel (DCC). All data received from the comms channel are
displayed and all data inputs to this window are sent to the comms channel. Communication occurs byte
wide or up to four bytes per transfer. The four bytes ASCII mode (DCC4A) does not allow to transfer the byte
00. Each non-zero byte of the 32bit word is a character in this mode. The four byte binary mode (DCC4B)
can be used to transfer non-ASCII 32bit data (e.g. to or from a file). The three bytes mode (DCC3) allows
binary transfers of up to 3 bytes per DCC transfer. The upper byte defines how many bytes are transferred
(0O=one byte, 1= two bytes, 2=three bytes). This is the preferred mode of operation, as it combines arbitrary
length messages with high bandwidth. The TERM.METHOD command selects which mode is used (DCC,
DCC3, DCC4A or DCC4B).

The communication mechanism is described e.g. in the ARM7TDMI data sheet in chapter 9.11. Only three
move to/from coprocessor 14 instructions are necessary.

The TRACE32 ~~/demo/etc/terminal/serial directory contains the file TERM . CMM which demonstrates how
the communication works.

Semihosting

The command TERM.GATE opens a terminal window which allows to support ARM compatible
semihosting. The communication can either be done by stopping the target at the SWI or by using the DCC
interface channel - which provides non-stop operation of the target.

The SWI emulation mode requires to stop the target at the SWI exception vector. On ARM7 this can be done
only with an on-chip or software breakpoint at location 8. On other ARM cores it can be done by enabling the
ICEbreaker breakpoint at the SWI vector (TrOnchip.Set SWI ON). The terminal must be set to the ARMSWI
method (TERM.METHOD ARMSWI). The handling of the SWI is only active when the TERM.GATE window
is existing. An example can be found in ~~/demo/arm/etc/semihosting_arm_emulation/swisoft_<x>.cmm.

The DCC communication mode requires an target agent for the SWI. The communication is done in the
DCC3 method of the TERM command. An example and the source of the SWI agent can be found in
~~/demo/arm/etc/semihosting_arm_dcc/swidcc_arm7_arm9.cmm.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 11

Coprocessors

It is not possible to access coprocessors which are not included in an ARM macrocell from debug mode.
This means all coprocessors which are added to ARM cores by customers cannot be accessed from debug
mode.

The following coprocessors can be accessed if available in the processor:
Coprocessor 14. Please refer to the chapter Virtual Terminal and to your ARM documentation for details.

Coprocessor 15, which allows the control of basic CPU functions. This coprocessor can be accessed with
the access class C15. For the detailed definition of the CP15 registers please refer to the ARM data sheet.
The CP15 registers can also be controlled in the PER window.

The TRACE32 address is composed of the CRn, CRm, op1, op2 fields of the corresponding coprocessor
register command

<MCR|MRC> pl5, <opl>, R4, CRn, CRm, <op2>
BITO-3:CRn, BIT4-7:CRm, BIT8-10:<op2>, BIT12-14:<opl>

is the corresponding TRACES32 address (one nibble for each field)

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 12

ARM specific SYStem Commands

SYStem.CPU Select the used CPU
Format: SYStem.CPU <cpu>
<cpus: ARM7TDMI | ARM740TD | ... (JTAG Debugger ARM7)

ARMOTDMI | ARM920T | ARM940T | ... (JTAG Debugger ARM9)
ARM1020E | ARM1022E | ARM1026EJ | ... (JTAG Debugger ARM10)
ARM1136J | ARM1136JF | ... (JTAG Debugger ARM11)

JANUS2 (JTAG Debugger Janus)

Selects the processor type. If your ASIC is not listed, select the type of the integrated ARM core.

SYStem.CONFIG Configure debugger according to target topology

The SYStem.CONFIG commands have no effect on the simulator. They are only provided to allow the user
to run PRACTICE scripts written for the debugger within the simulator without modifications.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 13

SYStem.CONFIG.SMMU Internal use

Format: SYStem.CONFIG.SMMU <x> <sub_cmd>
<X>: 1...20
<sub_cmd>: Base <base_address>

Type MMU400 | MMU401 | MMU500
Name "<name>"
RESet

For some CPUs with SMMUs, TRACE32 configures the SMMUs parameters automatically after you have
selected a CPU with the SYStem.CPU command.

NOTE: For a manual SMMU configuration, use the SMMU.ADD command.

You can access the automatically configured SMMUs through the CPU menu > SMMU submenu in
TRACES2. The individual SMMU configurations can be viewed in the SYStem.CONFIG.state /COmponent
window.

Run Misc Trace Perf Cov LS1021A Dalvik Window Help

11 | Change Frame 4 Fﬁ(ﬁ & | a 4 &'

{ii} CPU Registers
{li¥ FPU Registers

&8 MMmu v
& o SMMUL Registers
4 Cache *| % SMMUL StreamMapTable
Peripheral
o) Peripherals E- | SMMU2 Registers
& System Settings... % SMMU2 StreamMapTable
In Target Reset " SMMU3 Registers
Reset CPU Registers % SMMU3 StreamMapTable
" SMMU4 Registers
% SMMU4 StreamMapTable

&2 B::SYStem.CONFIG.state /COmponents =n| Wl <
| DebugPort ” Jtag ” MultiTap ” DAP " COmponents
’— Select components to display - v] FUNNEL2
Base DAP:0X800A7000 [wud]
BMC e
ATBSource ETF1 0 [l |2
Base(s) DAP:0x80071000 DAP:0x80073000 (= ——
COREDEBUG B AZ:0x0:0x1200000 [T MMU400
ase :0x0:0 e
Base(s) DAP:0x80070000 DAP:0x80072000 (= b
= Name “INTERC" ()
Base(s) DAP:0x80078000 DAP:0x80079000 &) || —SMMUZ
Base AZ:0x0:0x1280000 [..] Type MMU400 -
Config CortexV1 hd
ETF1 Name PCle E]
Base(s) DAP:0x800A1000 (&) || —SMMU3
Base AZ:0x0:0x1300000 Type
ATBSource FUNNELL (= () v HMU400
== Name eTSEC () .
4 I

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 14

<x> Serial number of the SMMU.
Base Logical or physical base address of the memory-mapped SMMU register
space.
Type Defines the type of the Arm system MMU IP block:
MMU400, MMU401, or MMU500.
Name Assigns a user-defined name to an SMMU.
RESet Resets the configuration of an SMMU specified with <x>.
SYStem.Mode Establish the communication with the simulator
Format: SYStem.Mode <mode>
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down
NoDebug
Go
Up

Default: Down.

Selects the target operating mode.

Down

NoDebug

Go

Up

The CPU is in reset. Debug mode is not active. Default state and state after fatal
errors.

The CPU is running. Debug mode is not active. Debug port is tristate. In this
mode the target should behave as if the debugger is not connected.

The CPU is running. Debug mode is active. After this command the CPU can be
stopped with the break command or if any break condition occurs.

The CPU is not in reset but halted. Debug mode is active. In this mode the CPU
can be started and stopped. This is the most typical way to activate debugging.

©1989-2024 Lauterbach

Simulator for Arm and XSCALE | 15

If the mode Go is selected, this mode will be entered, but the control button in the SYStem.state window
jumps to the mode Up.

SYStem.Option.Alignment Enable alignment exceptions

Format: SYStem.Option.Alignment

Causes the processor to go into a DAbort exception for any unaligned access. Otherwise the data will be
handled according to the ARM core specification.

SYStem.Option.BigEndian Define byte order (endianness)
Format: SYStem.Option.BigEndian [ON | OFF]
Default: OFF.

Selects the byte ordering mechanism. For correct operation the following settings must correspond:

. This option

. The compiler setting (-li or -bi compiler option)
SYStem.Option.DisMode Define disassembler mode
Format: SYStem.Option.DisMode <option>
<option>: AUTO
ACCESS
ARM
THUMB

Default: AUTO.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 16

Specifies the selected disassembler.

AUTO The information provided by the compiler output file is used for the
disassembler selection. If no information is available it has the same
behavior as the option ACCESS.

ACCESS The selected disassembler depends on the T bit in the CPSR or on the
selected access class. (e.g. Data.List SR:0 for ARM mode or
Data.List ST:0 for THUMB mode).

ARM Only the ARM disassembler is used (highest priority).

THUMB Only the THUMB disassembler is used (highest priority).
SYStem.Option.DUALPORT Implicitly use run-time memory access

Format: SYStem.Option.DUALPORT [ON | OFF]

All TRACE32 windows that display memory are updated while the processor is executing code (e.g.
Data.dump, Data.List, PER.view, Var.View). This setting has no effect if SYStem.MemAccess is disabled.

If only selected memory windows should update their content during runtime, leave
SYStem.Option.DUALPORT OFF and use the access class prefix E or the format option %E for the
specific windows.

SYStem.Option.IMASKASM Disable interrupts while single stepping
[SYStem.state window > IMASKASM]|
Format: SYStem.Option.IMASKASM [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After a single step, the interrupt mask bits are
restored to the value before the step.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 17

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

[SYStem.state window > IMASKHLL]

Format: SYStem.Option.IMASKHLL [ON | OFF]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After a single step, the interrupt mask bits are restored
to the value before the step.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 18

SYStem.Option.MACHINESPACES Address extension for guest OSes

Format: SYStem.Option.MACHINESPACES [ON | OFF | HOSTREMAP]

Default: OFF

Enables the TRACES32 support for debugging virtualized systems. Virtualized systems are systems running
under the control of a hypervisor.

After loading a Hypervisor Awareness, TRACE32 is able to access the context of each guest machine. Both
currently active and currently inactive guest machines can be debugged.

ON Addresses are extended with an identifier called machine ID. The
machine ID clearly specifies to which host or guest machine the address
belongs.

The host machine always uses machine ID 0. Guests have a machine ID
larger than 0. TRACE32 currently supports machine IDs up to 30.

The debugger address translation (MMU and TRANSIation command
groups) can be individually configured for each virtual machine.
Individual symbol sets can be loaded for each virtual machine.

OFF The machine ID support is disabled.
HOSTREMAP HOSTREMAP is only relevant for a hypervisor where:
Hypervisor FIASCO . The hypervisor itself uses tasks and

. The tasks behave like virtual machines.

If SYStem.Option.MACHINESPACES is set to HOSTREMAP, then such
hypervisor tasks are assigned space IDs instead of machine IDs,
whereas the real guest machines are assigned machine IDs.

NOTE: This option requires a suitable Hypervisor Awareness which
supports HOSTREMAP. You must also set SYStem.Option.MMUSPACES

to ON.
Machine IDs (0 and > 0)
. On Arm CPUs with hardware virtualization, guest machines are running in the non-secure zone
(N:) and use machine IDs > 0.
. The hypervisor functionality is usually running in the hypervisor zone (H:) and uses machine 1D
0.
. Software running in the secure monitor mode (Z: for Arm32) or EL3 mode (M: for Arm64) is also

using machine ID 0.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 19

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.
Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 20

SYStem.Option.OVERLAY Enable overlay support

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]
Default: OFF.
ON Activates the overlay extension and extends the address scheme of the

debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACES32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes to
the execution area. For using this option, the storage area must be readable
and writable for the debugger.

Example:

SYStem.Option.OVERLAY ON
Data.List 0x2:0x11c4 ; Data.List <overlay_ id>:<address>

SYStem.Option.REALTIME Stall the simulator if faster than real processor

Format: SYStem.Option.REALTIME [ON | OFF]

Default: OFF.

Prevents the simulator from runnig faster than the frequency set with VCO.Frequency (default: 10MHz).

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 21

SYStem.Option.ZoneSPACES Enable symbol management for Arm zones

Format: SYStem.Option.ZoneSPACES [ON | OFF]

Default: OFF.

The SYStem.Option.ZoneSPACES command must be set to ON if an Arm CPU with TrustZone or
VirtualizationExtension is debugged. In these Arm CPUs, the processor has two or more CPU operation

modes called:

J Non-secure mode
J Secure mode

. Hypervisor mode

. 64-bit EL3/Monitor mode (Armv8-A only)

Within TRACE32, these CPU operation modes are referred to as zones.

NOTE: For an explanation of the TRACES32 concept of address spaces (zone spaces,
MMU spaces, and machine spaces), see “TRACE32 Concepts”
(trace32_concepts.pdf).

In each CPU operation mode (zone), the CPU uses separate MMU translation tables for memory accesses
and separate register sets. Consequently, in each zone, different code and data can be visible on the same
logical addresses.

To ease debug-scenarios where the CPU operation mode switches between non-secure, secure or
hypervisor mode, it is helpful to load symbol sets for each used zone.

OFF TRACE32 does not separate symbols by access class. Loading two or more
symbol sets with overlapping address ranges will result in unpredictable
behavior. Loaded symbols are independent of Arm zones.

ON Separate symbol sets can be loaded for each zone, even with
overlapping address ranges. Loaded symbols are specific to one of the
Arm zones - each symbol carries one of the access classes N:, Z:, H: or
M:

For details and examples, see below.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 22

Overview of Debugging with Zones

If SYStem.Option.ZoneSPACES is enabled (ON), TRACE32 enforces any memory address specified in a
TRACE32 command to have an access class which clearly indicates to which zone the memory address
belongs. The following access classes are supported:

N Non-secure mode
Example: Linux user application

z Secure mode
Example: Secure crypto routine

H Hypervisor mode
Example: XEN hypervisor

M 64-bit EL3/Monitor mode
Armv8-A only Example: Trusted boot stage / monitor

If an address specified in a command is not clearly attributed to N: Z:, H: or M:, the access class of the
current PC context is used to complete the addresses’ access class.

Every loaded symbol is attributed to either non-secure (N:), secure (Z:), hypervisor (H:) or EL3/monitor (M:)
zone. If a symbol is referenced by name, the associated access class (N:, Z:, H: or M:) will be used
automatically, so that the memory access is done within the correct CPU mode context. As a result, the
symbol’s logical address will be translated to the physical address with the correct MMU translation table.

NOTE: The loaded symbols and their associated access class can be examined with
command sYmbol.List or sYmbol.Browse or sYmbol.INFO.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 23

Example: Symbols Loading

SYStem.Option.ZoneSPACES ON

; 1. Load the vmlinux symbols for non-secure mode (access classes N:, NP:
; and ND: are used for the symbols) with offset 0x0:
Data.LOAD.El1f vmlinux N:0x0 /NoCODE

; 2. Load the sysmon symbols for secure mode (access classes Z:, ZP: and
; ZD: are used for the symbols) with offset 0xO0:
Data.LOAD.El1f sysmon Z:0x0 /NoCODE

; 3. Load the xen-syms symbols for hypervisor mode (access classes H:,
; HP: and HD: are used for the symbols) but without offset:
Data.LOAD.El1f xen-syms H: /NoCODE

; 4. Load the sieve symbols without specification of a target access

; class and address:

Data.LOAD.El1f sieve /NoCODE

; Assuming that the current CPU mode is non-secure in this example, the
; symbols of sieve will be assigned the access classes N:, NP: and ND:
; during loading.

Example: Symbolic Memory Access

; dump the address on symbol swapper_pg dir which belongs
; to the non-secure symbol set "vmlinux" we have loaded above:

Data.dump swapper_pg dir

; This will automatically use access class N: for the memory access,
; even if the CPU is currently not in non-secure mode.

Example: Deleting Zone-specific Symbols

To delete a complete symbol set belonging to a specific zone, e.g. the non-secure zone, use the following
command to delete all symbols in the specified address range.

sYmbol .Delete N:0x0--Oxffffffff ; non-secure mode (access classes N:)

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 24

Example: Zone-specific Debugger Address Translation Setup

If the option ZoneSPACES is enabled and the debugger address translation is used (TRANSIation
commands), a strict zone separation of the address translations is enforced. Also, common address ranges
created with TRANSIation.COMMON will always be specific for a certain zone.

This script shows how to define separate translations for the zones N: and H:

SYStem.Option.ZoneSPACES ON

Data.LOAD.El1f sysmon Z:0 /NoCODE
Data.LOAD.El1f usermode N:0 /NoCODE /NoClear

; set up address translation for secure mode
TRANSlation.Create Z:0xC0000000++0x0fffffff A:0x10000000

; set up address translation for non-secure mode
TRANSlation.Create N:0xC0000000++0x1fffffff A:0x40000000

; enable address translation and table walk
TRANSlation.ON

; check the complete translation setup
TRANSlation.List

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 25

Operation System Support - Defining a Zone-specific OS Awareness

If the CPU’s virtualization extension is used to virtualize one or more guest systems, the hypervisor always
runs in the CPU’s hypervisor mode (zone H:), and the current guest system (if a ready-to-run guest is
configured at all by the hypervisor) will run in the CPU’s non-secure mode (zone N:).

Often, an operation system (such as a Linux kernel) runs in the context of the guest system.

In such a setup with hypervisor and guest OS, it is possible to load both the hypervisor symbols to H: and all
OS-related symbols to N:

A TRACES32 OS Awareness can be loaded in TRACE32 to support the work with the OS in the guest
system. This is done as follows:

1. Configure the OS Awareness as for a non-virtualized system. See:

“Training Linux Debugging” (training_rtos_linux.pdf)

- TASK.CONFIG command

2. Additionally set the default access class of the OS Awareness to the non-secure zone:

TASK.ACCESS N:

The TRACE32 OS Awareness is now configured to find guest OS kernel symbols in the non-secure

zZone.

NOTE:

This debugger setup, which is based on the option ZoneSPACES, allows work with
only one guest system simultaneously.

If the hypervisor has configured more than one guest, only the guest that is active in
the non-secure CPU mode is visible.

To work with another guest, the system must continue running until an inactive
guest becomes the active guest.

With SYStem.Option.MACHINESPACES enabled, TRACES32 also supports
concurrent debugging of a virtualized system with hypervisor and multiple
guests.

the CPU specific zones N: Z: H: and M: will be extended by machine specific
zones. Each of these zones is identified by a machine ID. Each guest has its
own zone because it uses a separate translation table and a separate register
set.

©1989-2024 Lauterbach

Simulator for Arm and XSCALE | 26

Example: Setup for a Guest OS and a Hypervisor

In this script, the hypervisor is configured to run in zone H: and a Linux kernel with OS Awareness as
current guest OS in zone N:

SYStem.Option.ZoneSPACES ON

; within the 0OS Awareness we need the space ID to separate address spaces
; of different processes / tasks
SYStem.Option.MMUSPACES ON

; here we let the target system boot the hypervisor. The hypervisor will
; set up the guest and boot Linux on the guest system.

; load the hypervisor symbols
Data.LOAD.El1f xen-syms H:0 /NoCODE
Data.LOAD.El1f usermode N:0 /NoCODE /NoClear

; set up the Linux OS Awareness
TASK.CONFIG ~~/demo/arm/kernel/linux/linux-3.x/linux3.t32
MENU.ReProgram ~~/demo/arm/kernel/linux/linux-3.x/linux.men

; instruct the 0OS Awareness to access all OS-related symbols with
; access class N:
TASK.ACCESS N:

; set up the debugger address translation for the guest 0S

; Note that the default address translation in the following command
; defines a translation of the logical kernel addresses range

; N:0xC0000000++0xXFFFFFFF to the intermediate address range

; starting at I:0x40000000

MMU.FORMAT linux swapper_pg_dir N:0xC0000000++0xFFFFFFF I:0x40000000

; define the common address range for the guest kernel symbols
TRANSlation.COMMON N:0xC0000000--0XFFFFFFFF

; enable the address translation and the table walk
TRANSlation.TableWalk ON
TRANSlation.ON

NOTE: If SYStem.Option.MMUSPACES ON is used, all addresses for all zones will
show a space ID (such as N:0x024A:0x00320100), even if the OS Awareness
runs only in one zone (as defined with command TASK.ACCESS).

Any task-related command, such as MMU.List.TaskPageTable <task_name>, will automatically refer to
tasks running in the same zone as the OS Awareness.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 27

SYStem.RESetOut CPU reset command

The command asserts NRESET on the JTAG connector in the TRACE32 In-Circuit Debugger (ICD) but is
ignored by the TRACER32 Instruction Set Simulator. However, the command is allowed in the simulator so
that you can run scripts which have actually been made for the debugger. For more information about the
effect in the debugger, refer to your Processor Architecture Manual (debugger_<arch>.pdf).

SYStem.state Display SYStem.state window

Format: SYStem.state

Displays the SYStem.state window.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 28

ARM Specific TrOnchip Commands

TrOnchip.RESet Reset on-chip trigger settings

Format: TrOnchip.RESet

Resets all TrOnchip settings.

TrOnchip.Set Set bits in the vector catch register
Format: TrOnchip.Set <item>[ON | OFF]
<item>: ARM9, ARM11, Cortex-A/R:

[FIQ | IRQ | DABORT | PABORT | SWI | UNDEF | RESET]

Devices having TrustZone (ARM1176, Cortex-A) additionally:

[NFIQ | NIRQ | NDABORT | NPABORT | NSWI | NUNDEF |

SFIQ | SIRQ | SDABORT | SPABORT | SSWI | SUNDEF | SRESET |
MFIQ | MIRQ | MDABORT | MPABORT | MSWI]

Devices having a Hypervisor mode (e.g. Cortex-A7, -A15) additionally:
[HFIQ | HIRQ | HDABORT | HPABORT | HSWI | HUNDEF | HENTRY]

Cortex-M devices:
[SFERR | HARDERR | INTERR | BUSERR | STATERR | CHKERR |
NOCPERR | MMERR | CORERESET]

ALIGNMENT

Default: DABORT, PABORT, UNDEF, RESET ON, others OFF.

On devices having TrustZone you can specify for most exceptions if the vector catch shall take effect only in
non-secure (N...), secure (S...) or monitor mode (M...), on devices having a Hypervisor mode also in
hypervisor mode (H...).

FIQ, ... Sets/resets the corresponding bits in the vector catch register of the core. If the

HENTRY bit of a vector is set and the corresponding exception occurs, the processor
enters debug state as if there had been a breakpoint set on an instruction fetch
from that exception vector.

SFERR Debug trap on secure fault.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 29

HARDERR

Debug trap on hard fault.

INTERR Debug trap on interrupt/exception service errors. These are a subset of other
faults and catches before BUSERR or HARDERR.

BUSERR Debug trap on normal bus error.

STATERR Debug trap on usage fault state errors.

CHKERR Debug trap on usage fault enabled checking errors.

NOCPERR Debug trap on usage fault access to coprocessor which is not present or
marked as not present in CAR register.

MMERR Debug trap on memory management faults.

CORERESET Reset vector catch. Halt running system if core reset occurs.

StepVector Please see TrOnchip.StepVector.

(deprecated)

ALIGNMENT Stops the program execution on unaligned accesses.

TrOnchip.StepVector Step into exception handler
Format: TrOnchip.StepVector [ON | OFF]
Default: OFF.
ON Step into exception handler.
OFF Step over exception handler.

TrOnchip.StepVectorResume Catch exceptions and resume single step

Format: TrOnchip.StepVector [ON | OFF]

Default: OFF.

When this command is set to ON, the debugger will catch exceptions and resume the single step.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 30

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 31

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table
Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>] [/<option>]

MMU.<table>.dump (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>
Fulltranslation

Displays the contents of the CPU specific MMU translation table.

o If called without parameters, the complete table will be displayed.

. If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display
a page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process or a specific
machine if a space ID and/or a machine ID is given.

PageTable

Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID and/or machine ID: dis-
plays the translation table of the specified process and/or machine
. else, this command displays the table the CPU currently uses for

MMU translation.

KernelPageTable

Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

©1989-2024 Lauterbach

Simulator for Arm and XSCALE | 32

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.

o For information about the first three parameters, see “What to
know about the Task Parameters™ (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

MACHINE
<machine_magic> |
<machine_id> |
<machine_name>

The following options are only available if
SYStem.Option.MACHINESPACES is set to ON.

Dumps a page table of a virtual machine. The MACHINE option applies
to PageTable and KernelPageTable and some <cpu_specific_tables>.

The parameters <machine_magic>, <machine_id> and
<machine_name> are displayed in the TASK.List. MACHINES window.

Fulltranslation

For page tables of guest machines both the intermediate address and the
physical address is displayed in the MMU.DUMP window.

The physical address is derived from a table walk using the guest’s
intermediate page table.

CPU specific Tables for MMU.DUMP <table>

ITLB Displays the contents of the Instruction Translation Lookaside Buffer.

DTLB Displays the contents of the Data Translation Lookaside Buffer.

TLB Displays the contents of the Translation Lookaside Buffer.

TLBO Displays the contents of the Translation Lookaside Buffer 0.

TLBA1 Displays the contents of the Translation Lookaside Buffer 1.

NonSecPageTable Displays the translation table used if the CPU is in non-secure mode and in
privilege level PLO or PL1. This is the table pointed to by MMU registers
TTBRO and TTBR1 in non-secure mode. This option is only visible if the
CPU has the TrustZone and/or Virtualization Extension.
In ARMvS this option is only enabled if Exception levels ELO or EL1 use
AArch32 mode.

SecPageTable Displays the translation table used if the CPU is in secure mode. This is the

table pointed to by MMU registers TTBRO and TTBR1 in secure mode. This
option is only visible if the CPU has the TrustZone Extension.

©1989-2024 Lauterbach

Simulator for Arm and XSCALE | 33

HypPageTable Displays the translation table used by the MMU when the CPU is in HYP
mode. This is the table pointed to by MMU register HTTBR.
This table is only available in CPUs with Virtualization Extension.

IntermedPageTable Displays the translation table used by the MMU for the second stage
translation of a guest machine (intermediate address to physical address).
This is the table pointed to by MMU register VTTBR.

This table is only available in CPUs with Virtualization Extension.

Examples for Page Tables in Virtualized Systems

Example 1:
SYStem.Option.MACHINESPACES ON

I

; <machine_id>
MMU .DUMP . PageTable /MACHINE 2.

9 <machine name>

MMU .DUMP . PageTable /MACHINE "DomO "
Example 2:

SYStem.Option.MACHINESPACES ON

7

8 <machine_name>:::<task_name>
MMU .DUMP . TaskPageTable "Dom0: : : swapper"

your code to load Hypervisor Awareness and define guest machine setup.

your code to load Hypervisor Awareness and define guest machine setup.

©1989-2024 Lauterbach Simulator for Arm and XSCALE |

34

Example 3:

SYStem.Option.MACHINESPACES ON
;your code to load Hypervisor Awareness and define guest machine setup.

;a) dumps the current guest page table of the current machine, showing

9 the intermediate addresses.

g Without the option /Fulltranslation the column "physical" is hidden.
MMU.DUMP. PageTable 0x400000

;b) With the option /Fulltranslation the intermediate addresses

E are translated to physical addresses and shown in column "physical"
MMU .DUMP. PageTable 0x400000 /Fulltranslation

;¢) dumps the current page table of machine 2

; <machine_ id>
MMU.DUMP. PageTable /MACHINE 2. /Fulltranslation
Results for 3 a) and 3 b)
#3 B:MMU.DUMP.PageTable 0x400000 =n| Wl <
logical | intermediate physical zec | d zize permissions |
N 0000 : 00400000--00400FFF I: 11EB000--411EBFFF] ns 00001000 | P:readonly .
N 000 : 00401000--00401FFF I: 11ECO00--411ECFFF] ns 00001000 | P:readonly
N: - 0000 : 00402000--00402FFF I: :411EDOO0--411EDFFF) ns 00001000 | P:readonly ~
e m | ¢
$4 B:MMU.DUMP.PageTable 0x400000 | /Fulltranslation | =n| Wl <
logical | intermediate physical hy=1cal sec | d zize permissions
N:2:::0000:00400000--00400FFF I:2:::411EB000--411EBFFF AH:7F7EBO00--7F7EEFFFQ ns 00001000 | P:readonly
N:2:::0000:00401000--00401FFF I:2:::411ECO00--411ECFFF AH:7F7ECO00--7F7ECFFFR ns 00001000 | P:readonly
N:2:::0000:00402000--00402FFF I:2:::411EDOOO--411EDFFF AH:7F7EDOOO--7F7EDFFFQ ns 00001000 | P:readonly ~
— - ¢

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 35

MMU.List Compact display of MMU translation table
Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
[/<option>]

MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>
Fulltranslation

Lists the address translation of the CPU-specific MMU table.
In contrast to MMU.DUMP, multiple consecutive page table entries with identical page attributes are listed as
a single line, showing the total mapped address range.

J If called without address or range parameters, the complete table will be displayed.

. If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

. If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process or a specific
machine if a space ID and/or a machine ID is given.

PageTable

Lists the entries of an MMU translation table.

. if <range> or <address> have a space ID and/or machine ID: list
the translation table of the specified process and/or machine

. else, this command lists the table the CPU currently uses for MMU
translation.

KernelPageTable

Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

©1989-2024 Lauterbach

Simulator for Arm and XSCALE | 36

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.

o For information about the first three parameters, see “What to
know about the Task Parameters™ (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

<option>

For description of the options, see MMU.DUMP.

CPU specific Tables for MMU.List <table>

NonSecPageTable

Displays the translation table used if the CPU is in non-secure mode and in
privilege level PLO or PL1. This is the table pointed to by MMU registers
TTBRO and TTBR1 in non-secure mode. This option is only visible if the
CPU has the TrustZone and/or Virtualization Extension.

In ARMvS this option is only enabled if Exception levels ELO or EL1 use
AArch32 mode.

SecPageTable

Displays the translation table used if the CPU is in secure mode. This is the
table pointed to by MMU registers TTBRO and TTBR1 in secure mode. This
option is only visible if the CPU has the TrustZone Extension.

HypPageTable

Displays the translation table used by the MMU when the CPU is in HYP
mode. This is the table pointed to by MMU register HTTBR.
This table is only available in CPUs with Virtualization Extension.

IntermedPageTable

Displays the translation table used by the MMU for the second stage
translation of a guest machine (intermediate address to physical address).
This is the table pointed to by MMU register VTTBR.

This table is only available in CPUs with Virtualization Extension.

©1989-2024 Lauterbach

Simulator for Arm and XSCALE | 37

MMU.SCAN Load MMU table from CPU

Format: MMU.SCAN <table> [<range> <address>] [[<option>]
MMU. <table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>
Fulltranslation

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

. If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable

Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.

. if <range> or <address> have a space ID and/or machine ID: loads
the translation table of the specified process and/or machine
o else, this command loads the table the CPU currently uses for

MMU translation.

KernelPageTable

Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the
table of the kernel and copies its address translation into the debugger-
internal static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static
translation table.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manual.
©1989-2024 Lauterbach Simulator for Arm and XSCALE | 38

ALL

Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all

processes and copies the complete address translation into the
debugger-internal static translation table.
See also the appropriate OS Awareness Manual.

<option>

For description of the options, see MMU.DUMP.

CPU specific Table for MMU.SCAN <table>

OEMAddressTable

Loads the OEM Address Table from the CPU to the debugger-internal
translation table.

©1989-2024 Lauterbach

Simulator for Arm and XSCALE

39

CPU specific SMMU Commands

SMMU Hardware system MMU (SMMU)

Using the SMMU command group, you can analyze the current setup of up to 20 system MMU instances.
Selecting a CPU with a built-in SMMU activates the SMMU command group.

SYStem.CPU CortexA53 ;for example, the ‘'‘CortexA53’ CPU is SMMU-capable

SMMU.ADD ... ;you can now define an SMMU, e.g. an SMMU for a
;graphics processing unit (GPU)

Some SoC CPU types have already SMMUs predefined as component, visible in the SYStem.CONFIG
component dialog window.

TRACE32 supports the SMMU types MMU-400, MMU-401 and MMU-500 (based on the Arm SMMU
architecture specification v2, short SMMU-v2) and MMU-600 (based on the Arm SMMU architecture
specification v3, short SMMU-v3).

The TRACE32 SMMU support visualizes most of the configuration settings of an SMMU. These
visualizations include:

. The Stream Table with all Stream Map Register Groups (SMRG, for SMMU-v2) or all Stream
Table Entries (STE, for SMMU-v3)

. Access to both the non-secure and the secure SMMU view
. Tabular overview over principal data of each SMRG or STE listed in the Stream Table such as
- Stream matching register settings (for SMMU-v2)
- Translation context type (stage 1/ stage 2 enabled / bypass / fault)
- The context’s stream world of a SMRG (HYPC and MONC flags) or STE (EL1/EL2/EL3)
- Stage 1/ stage 2 context bank indices (for SMMU-v2)

- The availability of stage1 and stage 2 page tables, their format and the MMU-enable/disableT
state for the stage 1 and/or stage 2 address translation

- VMID and the number of stage 1 Context Descriptors for a STE (for SMMU-v3)
. The stage 1 Context Descriptor Table for a given STE (for SMMU-v3)
. Page table lists or dumps for stage 1 and/or stage 2 address translation contexts
. A quick indication of contexts where a fault has occurred or contexts that are stalled (SMMU-v2)
. A quick indication of the global SMMU fault status
o CMD Queue and Event Queue dumps with filtering options (for SMMU-v3)

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 40

Peripheral register view:

- Global Configuration Registers of the SMMU

- The SMRG / STE Registers

- The Context Bank Registers (SMMU-v2) / Context Descriptor Registers (SMMU-v3)

- MMU-specific Registers such as Performance Measurement Unit Registers, Translation
Control Unit Registers or Translation Buffer Unit Registers (for SMMU-v3)

A good way to familiarize yourself with the SMMU command group is to start with:

The SMMU.ADD command

The SMMU.StreamTable command which offers GUI-based access to almost all SMMU data
The guide Overview - How To

Glossary - SMMU

Arguments in SMMU Commands

The SMMU.StreamTable command and the window of the same name serve as your SMMU command
and control center in TRACES32. The right-click popup menu in the SMMU.StreamTable window allows you
to execute all frequently-used SMMU commands through the user interface TRACE32 PowerView.

The other SMMU commands are designed primarily for use in PRACTICE scripts (*.cmm) and for users
accustomed to working with the command line.

NOTE: The primary table of streams is called Stream Map Table in the SMMU-v2

architecture specification, whereas it is called Stream Table in the SMMU-v3
architecture specification.

To keep the TRACES32 user interface simple, a single unified command,
SMMU.StreamTable, is used to access the table of streams for all supported
SMMU architecture versions.

SMMU.StreamTable replaces the deprecated command
SMMU.StreamMapTable which was used for SMMU-v2 Stream Map Table
access in older TRACE32 versions. However, SMMU.StreamMapTable
remains an accepted command in scripts to preserve backward compatibility.

Overview - How To

This chapter is a brief guide which commands can be used to perform common tasks. The guide is split into
two parts: one for MMU-400, MMU-401 and MMU-500 which follow the SMMU-v2 specification and one for
MMU-600 and newer which follow the SMMU-v3 specification.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 41

MMU-400, MMU-401 and MMU-500:

How To...

GUI action or commands

Define a new SMMU

SMMU.Add

To get the non-secure/secure SMMU view, specify
a non-secure/secure base address.

View the Stream Table with all SMRGs

View the stream configurations and see the
context bank indices of stage 1 and stage 2

SMMU.StreamTable

List or dump stage 1 or stage 2 page tables of a
stream

In SMMU.StreamTable window: use popup
menu or double click on column stage 1
pagetbl. fmt or stage 2 pagetbl. fmt

SMMU.StreamMapRegGrp.list
SMMU.StreamMapRegGrp.Dump

View a stream’s SMRG registers

In SMMU.StreamTable window: use popup
menu or double click on any column of stream
matching or context type

SMMU.StreamMapRegGrp.Register
SMMU.Register.StreamMapRegGrp

View stage 1 or stage 2 context bank registers

In SMMU.StreamTable window: use popup
menu or double click on column stage 1 cbndx
or stage 2 cbndx

SMMU.StreamMapRegGrp.ContextReg
SMMU.Register.ContextBank

View global SMMU registers

In SMMU.StreamTable window: use popup
menu or double click status line

SMMU.Register.Global

View global SMMU fault flags

Fault flags are displayed in the status line at the
bottom of the SMMU.StreamTable window.

Alternatively, open the global SMMU registers with
SMMU.Register.Global and view register
SMMU_GFSR / SMMU_sGFSR (non-sec/sec)

Check if an SMMU stream is in a fault state

Open the SMMU.StreamTable window:
Streams in fault/stall/multi state have red F/S/M
marks in column stage 1 state or stage 2 state

View Security State Determination Table (SSD)

In SMMU.StreamTable window: use popup
menu

SMMU.SSDtable

©1989-2024 Lauterbach

Simulator for Arm and XSCALE | 42

MMU-600 and newer:

How To...

GUI action or commands

Define a new SMMU

SMMU.Add

Use a secure base address.

Default SMMU view is non-secure. Switch to
secure view with option /SECure in most
commands or use check box Show secure
entries in the header of most SMMU windows.

View the Stream Table with all valid STEs

View the stream configuration, VMID, stream
world, stage 2 page table format, number of CDs

SMMU.StreamTable

View the Context Descriptor Table of a STE with a
list of all valid substreams (CDs)

View the ASID, stage 1 page table format and
TTO/TT1 translation enable state of substreams

In SMMU.StreamTable window: use popup
menu or click on the STE’s list CDT button in the
S1 PT fmt column to open the Context Descriptor
Table window.

SMMU.CtxtDescTable

List or dump stage 2 page tables of a STE

In SMMU.StreamTable window: use popup
menu or double click on column S2 PT fmt or
stage 2 pagetbl. fmt

SMMU.StreamTbIEntry.list
SMMU.StreamTbIEntry.Dump

List or dump stage 1 page tables of a STE/CD

If STE has only one CD: use popup menu in
SMMU.StreamTable window or double click on
column S1 PT fmt to view the CD’s page table.

If STE has more than one CD: click on the STE’s
list CDT button in the S1 PT fmt column to open
the Context Descriptor Table window. Here, use
popup menu or double click on column S1 PT fmt.

SMMU.StreamTbIEntry.list
SMMU.StreamTbIEntry.Dump

View a stream’s STE registers

In SMMU.StreamTable window: use popup
menu or double click on column configuration

SMMU.StreamTbIEntry.Register
SMMU.Register.StreamTbIEntry

©1989-2024 Lauterbach

Simulator for Arm and XSCALE | 43

How To...

GUI action or commands

View the stage 1 CD registers for a substream

If STE has only one CD: use popup menu in
SMMU.StreamTable window or double click on
column ASID to view the CD registers.

If STE has more than one CD: click on the STE’s
list CDT button in the S1 PT fmt column to open
the Context Descriptor Table window. Here, use
popup menu or double click on column ASID.

SMMU.Register.S1Context

View global SMMU registers

In SMMU.StreamTable window: use popup
menu or double click status line

SMMU.Register.Global

View global SMMU fault flags

Fault flags are displayed in the status line at the
bottom of the SMMU.StreamTable window.

Alternatively, open the global SMMU registers with
SMMU.Register.Global and view register
SMMU_GERROR / SMMU_S_GERROR

Check if an SMMU stream or substream is in a
fault state

Dump Event Queue entries

In the SMMU.StreamTable or the
SMMU.CtxtDescTable window:

o either use popup menu Dump Queue
Entries - Event Queue to dump all Event
Queue entries

o or, with mouse over STE or CD of
interest, use popup menu Dump
associated Queue Entries - Event
Queue to dump Event Queue entries
filtered by Stream ID and Substream ID

SMMU.DumpQueue.Event

Dump CMD Queue entries

In the SMMU.StreamTable or the
SMMU.CtxtDescTable window:

o either use popup menu Dump Queue
Entries - CMD Queue to dump all CMD
Queue entries

J or, with mouse over STE or CD of
interest, use popup menu Dump
associated Queue Entries - CMD
Queue to dump CMD Queue entries
filtered by Stream ID and Substream 1D

SMMU.DumpQueue.CMD

©1989-2024 Lauterbach

Simulator for Arm and XSCALE | 44

Glossary - SMMU

The following two figures illustrate a few SMMU terms. For explanations of the illustrated SMMU terms and
other important SMMU terms not shown here, see below.

MMU-400, MMU-401 and MMU-500:

Al
1 A || 1
1 | 1
$8 B:SMMU StreamTable myGPU = =R
stream map reg.grp stream matching stage 1 stage 2
wisibility index ref. id| id mask |valid | context type pagetbl. fmt | cbndx | state | pagetbl. fmt | cbndx | state
sec/nsec Ox00 OxDEEL 0x7000 | yes s1 trs1 - s2 trs]l AArched Long | OxDO on | AArchéd Long [Ox01 on | .
sec/nsec Ox0l 0x0000 fault
sec/nsec Ox02 0x0000 fault
sec/nsec Ox03 0x0DBE s1 trsl s2 byp Aarch3z 0x06
sec/nsec Ox04 Ox0B78 s1 trsl 52 trsl AArch3z 0x08 AArch3z
sec/nsec Ox05 0x0000 fault
sec/nsec 0x06 0x024A | 0x7000 | yes on | AArch32
sec/nsec 0x07 O0x0000 O0x0000 no ault
sec/nsec Ox08 0x0000 | Ox0000| no | fault
sec/nsec Ox09 0x0000 | Ox0000| no | fault
sec/nsec Ox0A 0x0000 | Ox0000| no | fault
sec/nsec Ox0B Ox036D | Ox7000 | yes s1 trsl s2 byp
IMH_:nn haca A7cn-nvl_gggggg MULTL PE Sl W
o] [e]
D B

A See stream table.
B Each row stands for a stream map register group (SMRG).
C Index of a translation context bank.

D Data from stream matching registers, see stream matching.

MMU-600 and newer:

[A]
I LAl |
=N Eo

| |
&8 B:SMMU StreamTable myPCIE

[show secure entries

stream id | configuration 52 PT fmt VMID stream world | # sstrms | ASID 51 PT fmt state tth0/1 | address
06BE9743 | s1 trsT - s2 trsT AArch3z 0x0001 | NS-EL1 2 A 19 Tist CDT AZSD:000
06BE974C | abort AZSD:000
06BE974E | s1 trs1 - s2 trsl Aarch3z 0x0006 | NS-EL1 1 0x53B0 Aarch3z on / on AZSD:000
06BE9750 | s1 trs1 - s2 trsl Adrched 0x0005 | NS-EL1 1 OxD83C AArch3z on / on AZSD:000
06BE9754 | 52 translation only AArched 0x0003 AZSD:000
06BE9758 | abort AZSD:000
|_0x0007 | NS-ELL 1 | OxCCBB |
2F49D601 | s1 translation only NS-EL1 2 3 1st CDT AZSD:000
Immu_ﬁnn hasa A7 S0 x GO0 SEM_MST GERENR MST _DRTO II v

[c] [e]
A See stream table.
B Each row stands for a stream table entry (STE).

C Stream configuration and stage 2 context.

D Substream data and either stage 1 context or button to view the STE’s Context Descriptor Table.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 45

Context Descriptor (CD)

MMU-600 and newer only

A data structure in memory containing register fields which describe a stage 1 translation context, including
a pointer to the stage 1 translation table. A CD is identified by its substream ID and by the stream ID of the it
belongs to.

Context Descriptor Table (CDT)

MMU-600 and newer only
A table in memory with one or two levels which holds a number of Context Descriptors. Each Context
Descriptor Table belongs to one Stream Table Entry.

A CDT can be displayed using command SMMU.CtxtDescTable.

Memory Transaction Stream

A stream of memory access transactions sent from a device through the SMMU to the system memory bus.
The stream consists of the address to be accessed and a number of design specific memory attributes such
as the privilege, cacheability, security attributes or other attributes.

The streams carry a stream ID which the SMMU uses to determine a translation context for the memory
transaction stream. As a result, the SMMU may or may not translate the address and/or the memory
attributes of the stream before it is forwarded to the system memory bus.

Queue

MMU-600 and newer only

Data structure consisting of a circular buffer in memory which holds queue entries. Queue entries may hold
commands for the SMMU (in the CMD Queue) or events generated by the SMMU (in the Event Queue).
Queues can be viewed using command SMMU.DumpQueue.

Security State Determination Table (SSD Table)

MMU-400, MMU-401 and MMU-500 only

If the SMMU supports two security states (secure and non-secure) an SSD index qualifies memory
transactions sent to the SMMU. The SSD index is a hardware signal which is used by the SMMU to decide
whether the incoming memory transaction belongs to the secure or the non-secure domain.

The information whether a SSD index belongs to the secure or to the non-secure domain is contained in the
SMMU’s SSD table.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 46

Stream ID

Peripheral devices connected to an SMMU issue memory transaction streams. Every incoming memory
transaction stream carries a Stream Identifier which is used by the SMMU to associate a translation context
to the transaction stream. The streams are stored in the Stream Table of the SMMU.

Stream Map Register Group (SMRG)

MMU-400, MMU-401 and MMU-500 only
A group of SMMU registers determining the translation context for a memory transaction stream. The
Stream Table holds the SMRGs.

Stream Table (ST) / Stream Mapping Table (SMT)

An SMMU table which describes what to do with an incoming memory transaction stream from a peripheral
device. In particular, this table associates an incoming memory transaction stream with a translation context,
using the stream ID of the stream as selector of a translation context.

In MMU-400, MMU-401 and MMU-500 (Arm SMMU-v2 specification based), this table of streams is referred
to as Stream Mapping Table. In MMU-600 and newer (Arm SMMU-v3 specification based), this table of
streams is referred to as Stream Table. The Stream (Mapping) Table is the central table of the SMMU.

. MMU-400, MMU-401 and MMU-500): each Stream Mapping Table entry consists of a group of
registers, called Stream Map Register Group, which describe the translation context. In case an
SMMU supports stream matching, TRACE32 also displays the stream matching registers
associated with an entry’s stream map register group.

J MMU-600 and newer: the stream table is a data structure in memory and consists of Stream
Table Entries which describe the translation context type, the stage 2 translation tables and points
to a Context Descriptor Table which holds stage 1 translation contexts.

A Stream Table can be displayed using command SMMU.StreamTable.

Stream Matching

MMU-400, MMU-401 and MMU-500 only

In an SMMU which supports stream matching, the stream ID of an incoming memory transaction stream
undergoes a matching process to determine which entry of the Stream Table will used to specify the
translation context for the stream.

TRACE32 displays the reference ID and the bit mask used by the SMMU to perform the Stream ID matching
process in the SMMU.StreamTable window.

Stream Table Entry (STE)

MMU-600 and newer only
A data structure in memory describing the translation context for each stream. This data structure register
contains fields which describe the type of context, the stage 2 translation context, including a pointer to the
stage 2 translation table and a pointer to a Context Descriptor Table holding stage 1 contexts. Each STE is
identified by its Stream ID.

Note: for MMU-400, MMU-401 and MMU-500 the entries of the Stream Table are called Stream Map
Register Group.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 47

Substream ID

Peripheral devices connected to an SMMU issue memory transaction streams. Every incoming memory
transaction stream carries a Stream Identifier which is used by the SMMU to associate a translation context
to the transaction stream. The streams are stored in the Stream Table of the SMMU.

Translation Context

A translation context describes the translation process of a incoming memory transaction stream. An
incoming memory transaction stream may undergo a stage 1 address translation and/or a stage 2 address
translation. Further, the memory attributes of the incoming memory transaction stream may be changed. It is
also possible that an incoming memory transaction stream is rendered as fault.

The Stream Table determines which translation context is applied to an incoming memory transaction
stream.

Translation Context Bank (short: Context Bank)

MMU-400, MMU-401 and MMU-500 only

A group of SMMU registers specifying the translation context for an incoming memory transaction stream.
The registers carry largely the same names and contain the same information as the core’s MMU registers
describing the address translation process.

The registers of a translation context bank describe the translation table base address, the memory
attributes to be used during the translation table walk and translation attribute remapping.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 48

Arguments in SMMU Commands

This table provides an overview of frequently-used arguments in SMMU commands. Arguments that are
only used in one SMMU command are described together with that SMMU command.

<name>

User-defined name of an SMMU.
Use the SMMU.ADD command to define an SMMU and its name. This
name will be used to identify an SMMU in all other SMMU commands.

<smrg_index>

Index of a stream map register group, e.g. 0x04. The indices are listed in
the index column of the SMMU.StreamTable.

The <smrg_index> is equivalent to the <stream_id> used in MMU-600
and newer.

Only applicable for MMU-400, MMU-401 and MMU-500.

<cbnadx>

Index of a translation context bank.
Only applicable for MMU-400, MMU-401 and MMU-500.

<stream_id> |
<range>

Index of a StreamTable Entry or a range of Stream Table Entries. The
indices are listed in the index column of the SMMU.StreamTable.

The <stream_id> is equivalent to the <smrg_index> used in MMU-400,
MMU-401 and MMU-500.

Only applicable for MMU-600 and newer.

<substream_id> |
<range>

Index of a Context Descriptor Table Entry or a range of Context
Descriptor Table Entries.
Only applicable for MMU-600 and newer.

<address> | <range>

Logical address or logical address range describing the start address or
the address range to be displayed in the SMMU page table list or dump
windows.

IntermediatePT

Used to switch between stage 1 and stage 2 page table or register view:

. Omit this option to view the translation table entries or registers of
stage 1.

. Include this option to view the translation table entries or registers of
stage 2.

SECure

Used to switch between the non-secure and the secure SMMU content.
. Omit this option to view the non-secure table entries or registers
. Include this option to view the secure table entries or registers
Only applicable for MMU-600 and newer.

©1989-2024 Lauterbach

Simulator for Arm and XSCALE | 49

SMMU.ADD Define a new hardware system MMU

Format: SMMU.ADD "<name>" <smmu_type> <base_address>
<smmu_ MMU400 | MMU401 | MMU500 | MMU600
type>:

Defines a new SMMU (a hardware system MMU). A maximum of 20 SMMUs can be defined.

NOTE: For some CPUs with SMMUs, TRACE32 will automatically configure the SMMU
parameters, so that you can immediately work with the SMMUs and do not
need to manually configure them.

After selecting the CPU type, check one of the following locations in TRACE32
to see if there are any pre-configured SMMUs:

. The CPU menu > SMMU popup menu

. The SYStem.CONFIG.state /COmponents window

Arguments:
<nhame> User-defined name of an SMMU. The name must be unique and can be
max. 9 characters long.

NOTE:

. For the SMMU.ADD command, the name must be quoted.

. For all other SMMU commands, omit the quotation marks from the
name identifying an SMMU. See also PRACTICE script example
below.

<smmu_type> Defines the type of the Arm system MMU IP block:
. SMMUv2 based: MMU400, MMU401 or MMU500
. SMMUv3 based: MMUG600

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 50

<base_address>

Logical or physical base address of the memory-mapped SMMU register
space.

NOTE for MMU400, MMU401, MMU500:
If the SMMU supports two security states (secure and non-secure), not all
SMMU registers are visible from the non-secure domain.

. If you specify a secure address as the SMMU base address, you
will see the secure view of the SMMU.
. If you specify a non-secure address as the SMMU base address,

you will only see the non-secure SMMU view. Secure SMMU regis-
ters will not be visible.
To specify a secure address, precede the base address with an access
class such as AZSD: or ZSD:

Always specify either a secure or a non-secure base address so that the
SMMU security view is clearly determined.

When executing command SMMU.ADD, an access class with ambiguous
security status will be augmented to either secure or non-secure,
according to the current CPU security status and a warning message will
be printed.

Access classes with a distinct security status will be left unchanged, e.g.
the access classes NSD:, NUD:, HD: etc.

NOTE for MMUG600 and newer:

if CPU supports two security states, always specify the SMMU base
address as a secure address (e.g. ZSD: or AZSD:) so that TRACE32 can
access both the secure and non-secure SMMU registers.

Example:

;define a new SMMU named "myGPU" for a graphics processing unit

SMMU.ADD "myGPU"

MMU600 AZSD:0x50000000

;display the stream table of the SMMU named “myGPU”
SMMU . StreamTable myGPU

©1989-2024 Lauterbach

Simulator for Arm and XSCALE | 51

SMMU.Clear Delete an SMMU

Format: SMMU.Clear <name>

Deletes an SMMU definition, which was created with the SMMU.ADD command of TRACE32. The
SMMU.Clear command does not affect your target SMMU.

To delete all SMMU definitions created with the SMMU.ADD command of TRACE32, use SMMU.RESet.

Argument:
<name> For a description of <name>, click here.
Example:

SMMU.Clear myGPU ;deletes the SMMU named myGPU
SMMU.CtxtDescTable List a context descriptor table
MMU-600 and newer only

Format: SMMU.CtxtDescTable <args>

<args>: <name> <stream_id> [<substream_id> | <range>] [[SECure]

Opens a window and lists all valid stage 1 Context Descriptors in the Context Descriptor Table of the
Stream Table Entry specified by <stream_id>. Specify option /SECure to select the secure SMMU view. A
description of the columns is given in this table. The status line of the window shows the global error flags
which are currently set for the SMMU.

If you want to limit the Substream IDs displayed in the window, you can specify a numeric <substream_id>
as lower limit for the displayed SubstreamIDs. Alternatively, you can specify a range as <substream_id> to
set a lower and an upper limit to the displayed Substream IDs.

$8 B:SMMU.CtxtDescTable myPCIE 0x2F49D601 = =R
substream | ASID 51 PT ftmt state tth0/1 | address of context descriptor table entries
0000018E | Ox7ALF AArched on / on AZ5D:00000002005E62C0 A
00000761 | OxADFC Asrched on / on AZ5D:00000002005FDB40
00000708 | OxBBSD Aarch3z on / on AZ5D: 00000002005 FFE00
000009CC | OxEL172 Aarch3z on / on AZ5D:0000000200607300
00000EZ29 | OxCAED Asrched on / on AZSD:0000000200618440
00001029 | OxDC22 Aarch3z on / on AZ5D:0000000200620440
00001103 | Ox12C0 Asrched on / on AZSD:00000002006274C0
00001650 | OxFB45 Aarch3z on / on AZ5D:0000000200639400
000017CC | OxBAGYS Asrched on / on AZSD:000000020063F300
MMU-500 base AZSD:0x60000000 SEM _MSI_GERROR MSI_PRIGQ MSI_EVENTQ MSI_CMDGQ PR W

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 52

Examples:

;define a new SMMU named "myGPU" for a graphics processing unit
SMMU.ADD "myGPU" MMU600 AZSD:0x50000000

;1list the context descriptors of the stream table with Stream ID 0x6B9743
of the SMMU named “myGPU”
SMMU . CtxtDescTable myGPU 0x6B9743

;same as above, but limit the listing to Substream IDs >= 0x1000
SMMU . CtxtDescTable myGPU 0x6B9743 0x1000

;1list the context descriptors of the stream table with secure Stream ID
0x1D73D281 of the SMMU named “myGPU”. List only Substream ID in the range
0x1000--0x1FFF

SMMU . CtxtDescTable myGPU 0x1D73D281 0x1000--0x1FFF /SECure

SMMU.DumpQueue.<queue> Dump entries of a queue
MMU-600 and newer only

Using the SMMU.DumpQueue command group, you can dump entries of SMMU Queues. Analyzing
entries of the Event Queue is important to find error conditions of SMMU streams - in addition to global error
flags of the SMMU.

SMMU.DumpQueue.CMD Dump entries of the Cmd Queue

SMMU.DumpQueue.Event Dump entries of the Event Queue

The commands SMMU.DumpQueue.CMD and SMMU.DumpQueue.Event open a window which shows
all valid entries of the queue in the sequence of their creation.

8 B:SMMU.DumpQueue.Event myPCIE EI@

[show secure entries

index entry type streamID substr.ID | additional qualifiers |
00000008 | IMPDEF_EVENT_OxB 0x06BES743 | Ox00FD94 A
00000009 | C_BAD_SUBSTREAMID Ox00FD94
00000004 | F_ACCESS 0x0017C0
00000008 | F_CFG_CONFLICT 0x0017CE
0000000C | IMPDEF_EVENT_Ox2 0x0017CE
00000000 | IMPDEF_EVENT_OxB 0x0017CE
0000000E | F_TRANSL_FORBIDDEN | Ox0O8BE9752
0000000F | F_CD_FETCH 0x06BES752 | Ox001L7CE
Queue size: 0x1000 Num_entries: 0x2D ProducerId

Ox06BE9743
Ox06BE9752
Ox06BE9752
Ox06BE9752
Ox06BE9752

STAG=0xBBE66 Stall=1l PnU=l InD=1 RnW=0 N5-IPA=0 S1_fault Class=RESERVED I
Reason=0xAAS5EBBG6

InputAddr=0xAAS5BEG6AASSBEGE Rnw=0
0

Reason=0xBB&6 FetchA = _
£ Show associated Stream Table Entry v
i=! Show associated Context Descriptor Entry

%z Ox1CE ConsumerId

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 53

Description of Columns and Status Line

The dump queue windows displays the following columns:

Column Description

index Index of the entry. Entries are dumped in the sequence of their creation.
The oldest entry always carries index 0 in the dump window. This is the
entry pointed to by the queue’s Consumer Index register. The newest
entry has the largest index in the dump window. This is the entry pointed
to by the queue’s Producer Index register.

entry type Decoded type of the queue entry.

secure Indicates the state of the SSec bit in the queue entry. If secure is 1, the
(CMD queue only) entry targets the secure SMMU view, otherwise the non-secure view.
streamlID Shows the content of the entry’s Stream ID field. Blank if the entry has no

Stream ID field.

substr.ID Shows the content of the entry’s Substream ID field.Blank if the entry has
no Substream ID field.

For the CMD queue, UNKNOWN is displayed if the entry has a Substream
ID field but the entry’s SSV (SubStream Valid) bit is 0.

additional qualifiers Depending on the event type, additional event record fields such as
addresses and flags are decoded and printed in this column.
Note: it is not supported to filter entries by additional qualifier fields.

address of entry Displays the physical address of the queue table entry record.

The status line of the window shows the following information:

J the number of entries the queue can hold, i.e. its size
. the number of valid entries it holds currently
. the current producer index
. the current consumer index
J if the queue is full, a message “Queue is FULL" is displayed.
NOTE: Use the popup menu to quickly open SMMU.StreamTable or

SMMU.CtxtDescrTable window. This conveniently allows to view the Stream Table
Entry or Context Descriptor associated with the queue entry underneath the mouse
pointer.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 54

Filter options

As queues can hold a very large number of entries, command SMMU.DumpQueue.<queue> offers filter
options allowing dump only entries satisfying certain criteria. The following filter options are available:

Filter option Description

IQETYPE <qge_type> Dump only queue entries with entry type <qe_type>
The values allowed for <qe_type> are specific to the queue type and the

SMMU type.
/StreamID Dump only entries with a certain Stream ID.
<stream_id> | <stream_id> can either be a single numeric value or a numeric range. If it
<range> is a range, only those queue entries will be dumped if their Stream ID field
falls into the specified range.
/SubStreamID Dump only entries with a certain Substream ID.
<substream_id> | <substream_id> can either be a single numeric value or a numeric range.
<range> If it is a range, only those queue entries will be dumped if their Substream

ID field falls into the specified range.
In event queue, entries where the SSV (SubStream Valid) bit is 0 are not
dumped at all if the /SubStreamlID filter is active.

Note that for sake of Stream ID and/or Substream ID filtering, TRACE32 evaluates the event record fields
StreamID, SubStreamID and SSV regardless of the queue entry type.

SMMU.DumpQueue.CMD Dump cmd queue entries

MMU-600 and newer only

Format: SMMU.DumpQueue.CMD <name> [<entry_idx> | <range>] [[SECure]
[<filter_opts>]

<entry_idx> | Starts the dump with <entry_index> or dumps only entries with index in
<range> <range>
<filter_opts>: [/QETYPE <qe_type>] [/StreamID <stream_id>] [/SubstreamID

<substream_id>]

Opens the SMMU.DumpQueue window and dumps all valid entries of the non-secure or the secure
Cmd Queue. See SMMU.DumpQueue for a description of the dump queue window.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 55

SMMU.DumpQueue.Event Dump event queue entries
MMU-600 and newer only

Format: SMMU.DumpQueue.Event <name> [<entry_idx> | <range>] [[SECure]
[<filter_opts>]

<entry_idx> | Starts the dump with <entry_index> or dumps only entries with index in
<range> <range>
<filter_opts>: [/QETYPE <qe_type>] [/StreamID <stream_id>] [/[SubstreamID

<substream_id>]

Opens the SMMU.DumpQueue window and dumps all valid entries of the non-secure or the secure
Event Queue. See SMMU.DumpQueue for a description of the dump queue window.

Examples:

;define a new SMMU named "myGPU" for a graphics processing unit
SMMU .ADD "myGPU" MMU600 AZSD:0x50000000

;open the event queue dump window for the non-secure SMMU view and dump
all entries
SMMU . DumpQueue . Event myGPU

;open the queue dump window for the secure SMMU view and dump all entries
starting with index 0x200
SMMU . DumpQueue . Event myGPU 0x200 /SECure

;dump only entries of type F_TRANSLATION
SMMU . DumpQueue . Event myGPU /QETYPE F_TRANSLATION

;dump only entries where the Stream ID field is in the range 0x5000--
O0xX5FFF
SMMU . DumpQueue . Event myGPU /StreamID 0x5000--0x5FFF

;dump only entries where the Stream ID field is 0x6BE900 and the
SubStream ID field is in the range 0x140--0x17F
SMMU . DumpQueue . Event myGPU /StreamID 0x6BE900 /SubStreamID 0x140--0x17F

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 56

SMMU.Register Peripheral registers of an SMMU

Using the SMMU.Register command group, you can view and modify the peripheral registers of an SMMU.
The command group provides the following commands:

SMMU.Register.Global Display the global registers of an SMMU

SMMU.Register.ContextBank Display the registers of a context bank
MMU-400, MMU-401 and MMU-500 only.

SMMU.Register.StreamMapRegGrp Display the registers of an SMRG
MMU-400, MMU-401 and MMU-500 only.

SMMU.Register.StreamTableEntry Display the registers of a Stream Table Entry.
MMU-600 and newer only.

SMMU.Register.Stage1Context Display the registers of a Context Descriptor Table
Entry (the stage 1 context of a substream).
MMU-600 and newer only.

Example:

;open the SMMU.Register.StreamMapRegGrp window of SMMU “myGPU” and show
the registers of Stream Table Entry with Stream ID 0x02010A
SMMU.Register.StreamTableEntry myGPU 0x02010A

;highlight changes in orange in any SMMU.Register.* window
SETUP.Var %$SpotLight.on

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 57

SMMU.Register.ContextBank Display registers of context bank

MMU-400, MMU-401 and MMU-500 only

Format: SMMU.Register.ContextBank <name> <cbndx>

Opens the peripheral register window SMMU.Register.ContextBank. This window displays the registers of
the specified context bank. These are listed under the section heading Context Bank Registers.

" B:SMMU Register.ContextBank myGPU 0:0E =n| Wl <
. -
= Mh MYGP - Context Bank Registers Ox0E
ank Att it g
SMMU_CEBARN IRPTNDX 00000000
TYPE Stagel ctxt w. stage? byp
WMID 00000000
I SMMU_CBAZRn 00000001 VAGS 64-bit MONC Non-monitor context =
10 [3

A Register name and content.

B Names of the register bit fields and bit field values.

NOTE: The commands SMMU.Register.ContextBank and
SMMU.StreamMapRegGrp.ContextReg are similar.

The difference between the two commands is:

. The first command expects a <cbndx> as an argument and allows to
view an arbitrary context bank.
. The second command expects an <smrg_index> with an optional Inter-

mediatePT as arguments and displays either a stage 1 or stage 2 con-
text bank associated with the <smrg_index>.

Argument:

<nhame> For a description of <name>, etc., click here.

Example:

SMMU .Register.ContextBank myGPU 0x16

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 58

SMMU.Register.Global Display global registers of SMMU

Format: SMMU.Register.Global <name>

Opens the peripheral register window SMMU.Register.Global. This window displays the global registers of
the specified SMMU. These are listed under the section heading Global Configuration Registers.

 B:SMMU.Register.Global myGPU =n| Wl <

-

= System U 'MYGPU' (MMU5S00) - Global

Default Mon-Secure
Default RACFG Default
Default

Bypass SMMU

0b00O00

Process affected ops
Disabled

Disabled

FG Default

Disable

SMMU_sCRO 00000000

Default mem. attributes

No effect

Disabled

Pass through

Permit stalling

Disable

ELE Disabled

Disabled Disable

Clients use SMMU &

A Register name and content.

B Names of the register bit fields and bit field values.

Argument:

<name> For a description of <name>, click here.

Example:

SMMU .Register.Global myGPU

To display the global registers of an SMMU via the user interface TRACE32 PowerView:

. In the SMMU.StreamTable window, right-click an SMRG, and then select Peripherals > Global
Configuration Registers from the popup menu.

SMMU.Register.MMUregs Display MMU specific registers

MMU-600 and newer only

Format: SMMU.Register.MMUregs <name>

Opens the peripheral register window and shows the MMU specific register blocks which are not part of
the SMMU architectural registers. Examples for MMU specific registers are registers for the SMMU
Translation Control Unit (TCU), Translation Buffer Unit (TBU) and Performance Measurement Unit
(PMU) described in the Arm MMU-600 specification.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 59

SMMU.Register.S1Context Display stage 1 context descriptor registers

MMU-600 and newer only

Format: SMMU.Register.S1Context <args>

<args>: <name> <stream_id> [/SubstreamID <substream_id>] [/[SECure]

Opens the peripheral register window for the SMMU named <name> and displays the registers of a
stage 1 Context Descriptor specified by <stream_id> and <substream_id>.

If the Stream Table Entry specified by <stream_id> has only one Context Descriptor, you can omit option
/SubstreamID <substream _id>. In this case, the Context Descriptor with Substream ID 0 will be displayed.

Specify option /SECure to select the secure SMMU view.

SMMU.Register.StreamTbIEntry Display stream table entry registers
MMU-600 and newer only

Format: SMMU.Register.StreamTbIEntry <args>

<args>: <name> <stream_id> [/[SECure]

Opens the peripheral register window for the SMMU named <name> and displays the registers of the
Stream Table Entry which is specified by <stream_id>.

Specify option /SECure to select the secure SMMU view.

Example:

;define a new SMMU named "myGPU" for a graphics processing unit
SMMU .ADD "myGPU" MMU600 AZSD:0x50000000

;1list the Stream Table Entry with Stream ID 0x6B9743 from the secure
Stream Table of SMMU “myGPU”
SMMU . StreamTable myGPU 0x6B9743 /SECure

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 60

SMMU.Register.StreamMapRegGrp Display registers of an SMRG

MMU-400, MMU-401 and MMU-500 only

Format: SMMU.Register.StreamMapRegGrp <args>
SMMU.StreamMapRegGrp.Register <args> (as an alias)

<args>: <name> <smrg_index>

Opens the peripheral register window SMMU.Register.StreamMapRegGrp. This window displays the
registers of the specified SMRG. These are listed under the gray section heading Stream Map Register

Group.
]!FII
™ B::SMMU.StreamMapRegGrp.Register myGPU 0x06 \ EI@
= System MMU "MYGPU™ - Stream Map Register Group 0x6 A
SMMU_SMRn FOOO0Z4A VALID Include

MASK 00007000
D 00000244

SMMU_S2CRn 0000040C Default INSTCFG Default

Default

Default RACFG Default

Default Mon-Secure

Translation ctxt bank idx

oboooO0 MTCFG Default mem. attributes v

U >

A 0x0D is the <smrg_index> of the selected SMRG.

B Register name and content.
C Names of the register bit fields and bit field values.

Compare also to SMMU.StreamMapRegGrp.ContextReg.

Arguments:
<name> For a description of <name>, etc., click here.
Example:
SMMU . StreamMapRegGrp .Register myGPU 0x06

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 61

To view the registers of an SMRG via the user interface TRACE32 PowerView:

. In the SMMU.StreamTable window, right-click an SMRG, and then select Peripherals > Stream
Mapping Registers from the popup menu.

$8 B:SMMU StreamTable myGPU = =R
stream map reg.grp stream matching stage 1 stage 2
wisibility index ref. id| id mask |valid | context type pagetbl. fmt | cbndx | state | pagetbl. fmt | chndx | state
sec/nsec 0x00 OxDEEL 0x7000 | yes s1 trs1 - s2 trs]l AArched Long | OxDO on | AArchéd Long [Ox01 on | .
sec/nsec 0x01 0x0000 | Ox0000| no | fault
sec/nsec 0x02 0x0000 | Ox0000| no | fault
sec/nsec 0x03 0x0DBE 0x7000 | yes s1 trs1 - s2 byp Adrch32 Shrt | Ox06 | F on
sec/nsec 0x04 Ox0B78 0x7000 | yes s1 trsl - s2 trsl AArch32 Long | Ox08 on | AArch32 Long | Ox09 on
sec/nsec 0x05 0x0000
sec/nsec 0x06 —
sec/nsec 0x07 O0x0000
sec/nsec 0x08 0x0000
sec/nsec 0x09 0x0000
sec/nsec 0x0A 0x0000
sec/nsec Ox0B Ox036D | Ox7000 | yes s1 trsl - v Adrched Long | Ox16 on
MMU-500 base AZS5D:0x50000000 EE SMCE hd
5 >
™ B:SMMU.StreamMapRegGrp.Register myGP\ EI@
=) System MMU "MYGPU - Stream Map Register Groujj Oxé A
SMMU_SMRn FOOO024A VALID Include
MASK 00007000
D 00000244
SMMU_S2CRn 0000040 TRANSIENTCFG Default INSTCFG Default W
£ >

SMMU.RESet Delete all SMMU definitions

Format: SMMU.RESet

Deletes all SMMU definitions created with SMMU.ADD from TRACE32. The SMMU.RESet command does
not affect your target SMMU.

To delete an individual SMMU created with SMMU.ADD, use SMMU.Clear.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 62

SMMU.SSDtable Display security state determination table

MMU-400, MMU-401 and MMU-500 only

Format: SMMU.SSDtable <name> [<start_index>]

Displays the security state determination table (SSD table) as a bit field consisting of s (secure) or ns
(non-secure) entries. If the SMMU has no SSD table defined, you receive an error message in the AREA

window.
IA]
$4 B:SMMU.SSDtable myGPU 0x000B I_k =n| Wl <
SSD index | 00 01 02 03 04 05 06 07 | 08 09 ™M 0B OC 0D OE OF |raw data
0x0000 5 5 5 N5 NsNs 5 nNs 5 5 5% 5 5 5 5 B§ 00 -
0x0010 5 5 ns s S 5 5 5 5 5 5 5 30 00

0x0030
0x0040

Security State Determination Table E
i3t Dump Memory Here ”

1] [B::Data.dump AZSD:0x50004004 /DIALOG /Byte /NoAscii] =n| Wl <

AZSD:0x50003FF4 (#Find...] [Modify...| | [Bvte =] [JE [CTrack @Hex [[Asci

address |0 1 2 3 4 5 6 7 B8 9 A B C D E F
AZSD:0000000050003FFO0 | OO 00 OO0 00 OO0 i 00 00 00 00 00 00 _Nf ==
0d 0

AZS5D:0000000050004000 | B8 00 30 00+68 m— v wu Ul 20 00 00 00

AZS5D:0000000050004010 | 00 00 50 J§! 00 0 00 7E 00 00 AC 00 00 04 00

AZS5D:0000000050004020 | 00 O 58 00 00 00 00 0O 50 00 0O 00 00 00 00

AZ5D:0000000050004030 | 87 O 00 00 00 BO 00 00 0O CO OO 0O OO 0O 00
4

4% 4 [N »

A In the SSD table, the black arrow indicates the <start _index>, here 0x00B
B Right-click to dump the SSD table raw data in memory.

For each SSD index of an incoming memory transaction stream, the SSD table indicates whether
the outgoing memory transaction stream accesses the secure (s) or non-secure (hs) memory
domain.

You may find the SSD table easier to interpret by reducing the width of the SMMU.SSDtable
window. Example for the raw data 0x68 in the SSD table:

#4 B:SMMU.S5Dtable myGPU =n| Wl <
SSD index raw data
0x001F s 00 -~
0x0020 [s 68 P 0x 6 8
0x0021 s 68
0x0022 s 68
0x0023 |Lns 68 Oy 0 1 1 0 100 0 O0=s
0x0024 s 68 _
0x0025 | ns 68 S nsns s ns s s s 1=ns
0x0026 ns 68
0x0027 s 68
0x0028 s 00 -
Jf T 3

C In the Data.dump window, the black arrow indicates the dumped raw data from the SSD table.

D The 1st white column (00 to 07) relates to the 1st raw data column.
The 2nd white column (08 to OF) relates to the 2nd raw data column, etc.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 63

Arguments:

<name> For a description of <name>, click here.

<start_index> Starts the display of the SSD table at the specified SSD index.
See SSD index column in the SMMU.SSDtable window.

Example:

;display the SSD table starting at the SSD index 0x000B
SMMU . SSDtable myGPU 0x000B

To view the SSD table via the user interface TRACE32 PowerView:

. In the SMMU.StreamTable window, right-click any SMRG, and then select Security State
Determination Table (SSD) from the popup menu.

NOTE: The menu item is grayed out if the SMMU does not support the two security
states s (secure) or ns (non-secure).

SMMU.StreamMapRegGrp Access to stream map table entries
MMU-400, MMU-401 and MMU-500 only

The SMMU.StreamMapRegGrp command group allows to view the details of the translation context
associated with stage 1 and/or stage 2 of an SMRG. Every SMRG is identified by its <smrg_index>.

The SMMU.StreamMapRegGrp command group provides the following commands:

SMMU.StreamMapRegGrp.ContextReg Shows the registers of the context bank associated with
the stage 1 and/or stage 2 translation.

SMMU.StreamMapRegGrp.Dump Dumps the page table associated with the stage 1 and/or
stage 2 translation page wise.

SMMU.StreamMapRegGrp.list Lists the page table entries associated with the stage 1
and/or stage 2 translation in a compact format.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 64

SMMU.StreamMapRegGrp.ContextReg Display context bank registers

MMU-400, MMU-401 and MMU-500 only

Format: SMMU.StreamMapRegGrp.ContextReg <args>

<args>: <name> <smrg_index> [[iIntermediatePT]

Opens the peripheral register window SMMU.StreamMapRegGrp.ContextReg, displaying the context
bank registers of stage 1 or stage 2 of the specified <smrg_index>[A]. The context bank index (cbndx) of the
shown context bank registers is printed in the gray section heading Context Bank Registers [C].

The cbndx columns in the SMMU.StreamTable window tell you which context bank is associated with
stage 1 or stage 2: If there is no context bank defined for stage 1 or stage 2, then the respective cbndx cell
is empty. In this case, the peripheral register window SMMU.StreamMapRegGrp.ContextReg does not

open.

#® B:SMMU.StreamMapRegGrp.ContextReg myGPU 0x06 /IntermediatePT @@
Sl System MMU 'MYGPU' - Context Bank Registers 0x0D - .
Context Bank Attribute Registers:
SMMU_CBARR 00000000 IRPTNDX 00000000
TYPE Stage2 ctxt b
£ >

A OxO0A is the <smrg_index> of the selected SMRG.
B The option IntermediatePT is used to display the context bank registers of stage 2.
C 0x15 is the index from the ecbndx column of a stage 2 context bank. See example below.

Compare also to SMMU.StreamMapRegGrp.Register.

NOTE: The commands SMMU.Register.ContextBank and
SMMU.StreamMapRegGrp.ContextReg are similar.

The difference between the two commands is:

. The first command expects a <cbndx> as an argument and allows to
view an arbitrary context bank.
. The second command expects an <smrg_index> with an optional Inter-

mediatePT as arguments and displays either a stage 1 or stage 2 con-
text bank associated with the <smrg_index>.

Arguments:

<name> For a description of <name>, etc., click here.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 65

PRACTICE Script Example and lllustration of the Context Bank Look-up:

SMMU . StreamMapRegGrp.ContextReg myGPU 0x06 /IntermediatePT

= System MMU 'MYGPU' - Context Bank Bgfisters Ox0D

Context Bank Attribute Registeygs:
SMMU_CBARN IRPTNDX

TYPE

B:SMMU StreamMapRegGrp.ContextReg myGPU 0x06 /IntermediatePT | = |[= |3
Ll

£2 B:SMMU StreamTable myGPU

(o8)

stream map reg.arp
wisibility

index

stage 1
pagetbl. fmt | cbhndx

#/ mask |valid | context type state

chndx

sec/nsec

sec/nsec Ox00
sec/nsec Ox0l
sec/nsec Ox02
sec/nsec Ox03
sec/nsec Ox04

0x05

sec/nsec Ox0
sec/nsec Ox0
sec/nsec Ox0
sec/nsec Ox0

MMU=500
5

ves s1 trs1 - s2 trs]l AArched Long | OxDO on
no | fault
no | fault

yes s1 trs1 - s2 byp

ves s1 trsl - s2 trsl

AArch32 shrt | Ox06
AArch32 Long | Ox08

¥
base AZ50:0x50000000 MULTT EE

state

To display the context bank registers via the user interface TRACE32 PowerView:

o In the SMMU.StreamTable window, right-click an SMRG, and then select Peripherals > Context
Bank Registers of Stage 1 or 2 from the popup menu.

©1989-2024 Lauterbach

Simulator for Arm and XSCALE |

66

SMMU.StreamMapRegGrp.Dump Page-wise display of SMMU page table

MMU-400, MMU-401 and MMU-500 only

Format: SMMU.StreamMapRegGrp.Dump <args>

<args>: <name> <smrg_index> [<address> | <range> [<ttb_address>]] [/<option>]

Opens the SMMU.StreamMapRegGrp.Dump window for the specified SMRG, displaying the page table
entries of the SMRG page wise. If no valid translation context is defined, the window displays the error
message “registerset undefined”.

I A !
€8 B:SMMU.StreamMapRegGrp.Dump myGPU 0x0C EI@

ogical tablewalk
: 0000000000000000--0000000000000FFF 0000FS3ECC3IFO000 00008 |=00000000C .

C

C: 0000000000001000--0000000000001FFF 0000F83ECC3F0000[0000%8]=00000000C
C:0000000000002000--0000000000002FFF 0000F83ECC3F0000[0000%8]=00000000C
C:0000000000003000--0000000000003FFF 0000F83ECC3F0000[0000%8]=00000000C
C:0000000000004000--0000000000004FFF 0000F83ECC3F0000[0000%8]=00000000C
C: 0000000000005 000--0000000000005FFF 0000F33ECC3F0000[0000%8]=00000000C ~

4 1 3

A To view the details of the page table walk, scroll to the right-most column of the window.
For a description of the columns in the SMMU.StreamMapRegGrp.Dump window, click here.

Arguments:
<name> For a description of <name>, etc., click here.
<address> | <range> If specified, start the dump with <address> or, alternatively, limit the
dumped address range to address to <range>.
<ttb_address> If specified, <ttb_address> will be used as page table base address. The
other page table parameters are still extracted from the SMRG context.
IntermediatePT Omit this option to view translation table entries of stage 1.
Include this option to view translation table entries of stage 2.
In SMMUSs that support only stage 2 page tables, this option can be
omitted.
Example:

SMMU . StreamMapRegGrp . Dump myGPU 0x0C

To display an SMMU page table page-wise via the user interface TRACE32 PowerView:

J In the SMMU.StreamTable window, right-click an SMRG, and then select from the popup menu:
- Stage 1 Page Table > Dump or
- Stage 2 Page Table > Dump

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 67

Description of Columns

This table describes the columns of the following windows:

J SMMU.StreamMapRegGrp.list / SMMU.StreamTbIEntry.list

SMMU.StreamMapRegGrp.Dump / SMMU.StreamTbIEntry.Dump

$4 B:SMMU StreamMapRegGrp.Dump myGPU 0:0C 0:76784000 =n| Wl <

hy=1cal sec | d zize permissions

I1:0000000033A55000--0000000033A55FFF
I:0000000033A56000--0000000033A56FFF

ogical
100000000767 34000--000000007 67 84FFF
- 0000000076785 000--0000000076785FFF
: 00000000767 86000--00000000767 86FFF
- 0000000076787 000--0000000076787FFF
: 00000000767 83000--00000000767 88FFF
: 00000000767 839000--00000000767 89FFF
: 00000000767 BA000--000000007 67 BAFFF

(alalalalalalal

ns 00001000 [P:readwrite U:noaccess exec
ns 00001000 | P:readwrite U:noaccess exec

-

secure page table)

Column Description

logical Logical page address range

physical Physical page address range

sec Security state of entry (s=secure, ns=non-secure, sns=non-secure entry in

width in bytes and value of table entry)

d Domain

size Size of mapped page in bytes

permissions Access permissions (P=privileged, U=unprivileged, exec=execution
allowed)

glb Global page

shr Shareability (ho=non-shareable, yes=shareable, inn=inner shareable,
out=outer shareable)

pageflags Memory attributes (see Description of the memory attributes.)

tablewalk Only for SMMU.StreamMapRegGrp.Dump:
J Details of table walk for logical page address (one sub column for

each table level, showing the table base address, entry index, entry

©1989-2024 Lauterbach Simulator for Arm and XSCALE

68

SMMU.StreamMapRegGrp.list List page table entries

MMU-400, MMU-401 and MMU-500 only

Format: SMMU.StreamMapRegGrp.list <args>
<args>: <name> <smrg_index> [<address> | <range> [<ttb_address>]] [/Intermedi-
atePT]

Opens the SMMU.StreamMapRegGrp.list window for the specified SMMU, listing the page table entries
of a stream map group. If no valid translation context is defined, the window displays an error message.

$4 B:SMMU StreamMapRegGrp.List myGPU 0:0C =n| Wl <
address d zize permissions glb | shr | pageflags (remapped) |
C : 0000000000000000--0000000076783FFF ~
C : 000000007 67 84000--000000007 67 85FFF 00001000 | P:readwrite U:noaccess exec ves | no I:w-thru/wa Q:reserved
C: 00000000767 86000--0000000076805FFF
C : 000000007 6806000--0000000076807FFF 00001000 | P:readwrite U:noaccess exec ves | no I:w-thru/rwa Q:reserved
C:0000000076808000--FFFF198B6CC91FFF
C:FFFF198B6CC92000--FFFF198B6CC93FFF 00001000 | P:readwrite U:noaccess exec ves | no I:w-thru/ra QO:reserved -
4 1 b

For a description of the columns in the SMMU.StreamMapRegGrp.list window, click here.

Arguments:
<name> For a description of <name>, etc., click here.
<address> | <range> If specified, start the page table list with <address> or, alternatively, limit
the listed address range to address to <range>.
<ttb_address> If specified, <ttb_address> will be used as page table base address. The
other page table parameters are still extracted from the SMRG context.
IntermediatePT Omit this option to view translation table entries of stage 1.
Include this option to view translation table entries of stage 2.
In SMMUSs that support only stage 2 page tables, this option can be
omitted.
Example:

SMMU . StreamMapRegGrp.list myGPU 0x0C

To list the page table entries via the user interface TRACE32 PowerView:

J In the SMMU.StreamTable window, right-click an SMRG, and then select from the popup menu:
- Stage 1 Page Table > List or
- Stage 2 Page Table > List

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 69

SMMU.StreamTable

Display a stream table

[About the Window] [Popup Menu] [Columns] [Values] [Global Faults] [Example]

Format:

<args>:

SMMU.StreamTable <args>

SMMU.StreamMapTable <args> (as an alias)

<name> [[StreamID <value>]
(for MMU-400, MMU-401 and MMU-500)

<name> [<stream_id>] [/[SECure]
(for MMU-600 and newer)

Opens the SMMU.StreamTable window for the SMMU that has the specified <name>. The content and
popup menu depends on the SMMU type for which the SMMU.StreamTable window is opened. The two
variants of the window are described as follows:

MMU-400, MMU-401, MMU-500:
The window lists all Stream Map Register Groups of the secure or non-secure view of the SMMU. The
window provides an overview of the secure or non-secure SMMU configuration.

MHU=500
5

$8 B:SMMU StreamTable myGPU /StreamiD (x324A = =R
stream map reg.grp stream matching stage 1 stage 2
wisibility index ref. id| id mask |valid | context type pagetbl. fmt | cbndx | state | pagetbl. fmt | chndx | state |
sec/nsec Ox03 Ox0DEE 0x7000 | yes =1 trs1 - s2 byp AArch3Z Shrt | OxD6 on ~
sec/nsec 0x04 Ox0B78 0x7000 | yes s1 trsl - s2 trsl AArch32 Long | Ox08 on | AArch32 Long | Ox09 on
sec/nsec 0x05 0x0000 | Ox0000| no | fault
sec/nsec 0x06 Ox024A | Ox7000 | yes | s1 trsl - s2 trsl AArch32 Long | Ox0C on | Afrch32 Long | OxOD on
sec/nsec 0x07 0x0000 | Ox0000| no | fault
sec/nsec 0x08 0x0000 | Ox0000| no | fault
sec/nsec 0x09 0x0000 | Ox0000| no | fault
sec/nsec 0x0A 0x0000 | Ox0000| no | fault
L | - =2 bvp
sec/nsec O0x0C O0x0000 O0x0000 no ault -
sec/nsec 0x0D 0x0000 | Ox0000| no | fault ShonMMUS00-
sec/nsec 0x0000 | 0x0000 | no | fault ||= Stage 1 Page Table
base AZ5D:0x50000000 (= hd

i

Stage 2 Page Table

® Peripherals

Security State Determination Table (550)

A The gray window status bar displays the <smmu_type> and the SMMU <base_address>.
In addition, the window status bar informs you of global faults in the SMMU, if there are any faults.

©1989-2024 Lauterbach

Simulator for Arm and XSCALE | 70

MMU-600 and newer:

The window lists all valid Stream Table Entries of either the secure or the non-secure view of the SMMU. The
security status of the view can be changed using option /SECure or, alternatively, using the Show secure
entries checkbox in the window header.

The Stream ID range displayed can be limited if argument <stream_id> is used. You can either specify a
number as start value or a range.

9748 | s1 trsl - s2 trs

06BES752 | s1 trsl - s2 trs

3753 | bypass
MMU-500 base AZSD:0x60000000

8 B:SMMU StreamTable myPCIE — = =R
[Jshow secure entries B
stream 1d | configuration 52 PT fmt WVMID stream world | # sstrms | ASID S1 PT fmt state ttb0/1 | address
06BE9743 | s1 trsT - s2 trsT AArch3z 0x0001 | NS-EL1 2 A 19 Tist CDT AZSD:000
06BE9746 | 52 translation only Aarch3z 0x0003 AZSD:000
06BE9748 | s1 trs1 - s2 trsl AArched 0x0005 | NS-EL1 1 0x1234 Aarch3z on / on

AArchiz 0x0002 | N5-EL1 2 A19 Show MMU-600...

[

Stage 1 Context Descriptor Table

I

| Stage 2 Page Table | = L

® Peripherals ¥

Dump Queue ¥

Dump associated Queue Entries >

A The gray window status bar displays the <smmu_type> and the SMMU <base_address>.
In addition, the window status bar informs you of global faults in the SMMU, if there are any faults.

B For STEs with more than one substream, click the button list CDT to view the substreams.

Arguments

<name>

For a description of <name>, click here.

StreamlID <value>

(MMU-400, MMU-401
and MMU-500 only)

Only available for SMMUs that support stream ID matching. The StreamID
option highlights all SMRGs in yellow that match the specified stream 1D
<value>. SMRGs highlighted in yellow help you identify incorrect settings
of the stream matching registers.

For <value>, specify the stream ID of an incoming memory transaction
stream.

J The highlighted SMRG indicates which stream map table entry will
be used to translate the incoming memory transaction stream.

J More than one highlighted row indicates a potential, global SMMU
fault called stream match conflict fault.

The stream ID matching algorithm of TRACE32 mimics the SMMU stream
matching on the real hardware.

The reference ID, mask and validity fields of the stream match register are
listed in the ref. id, id mask and valid columns.

<stream_id>

(MMU-600 and newer
only)

Either the start point (if a single number is given) or numeric range (if a
numeric range is given) of Stream IDs that are displayed in the window.

©1989-2024 Lauterbach

Simulator for Arm and XSCALE | 71

Examples

[Back to Top]
MMU-400, MMU-401, MMU-500:
This PRACTICE script example shows how to define an SMMU with the SMMU.ADD command. Then the
script opens the SMMU in the SMMU.StreamTable window, searches for the <stream_id> 0x324A and
highlights the matching SMRG 0x024A in yellow.

;define a new SMMU named "myGPU" for a graphics processing unit
SMMU .ADD "myGPU" MMU500 AZSD:0x50000000

;open the window and highlight the matching SMRG in yellow
SMMU . StreamTable myGPU /StreamID 0x324A

8 B:SMMU StreamTable myGPI /StreamiD 0x324A I = =R
stream map reg.grp stream matching
visibility dindex ref. id| id mask |valid | context type |
sec/nsec Ox04 0x0B78 | Ox7000[yes [sl trsT - s2 trs] ~
sec/nsec fault
sec/nsec IOxOGI I 0x024A| 0x7000 | yes | s1 trsl - s2 trs]
sec/nsec fault
sec/nsec 0x08 0x0000 | Ox0000| no | fault
sec/nsec 0x09 0x0000 | Ox0000| no | fault
sec/nsec 0x0A 0x0000 | Ox0000| no | fault
MMU-500 base AZSD:0x50000000 MULTI PF hd
£ >
NOTE: At first glance, the Stream ID 0x324A does not seem to match the SMRG
0x024A.

However, if you take the ID mask 0x7000 (= Oy0111_0000_0000_0000) into
account, the match is correct.

The row highlighted in yellow in the SMMU.StreamTable window is a correct match for the Stream
ID 0x324A we searched for.

See also function SMMU.StreamID2SMRG() in “General Function Reference” (general_func.pdf).

MMU-600 and newer:
This PRACTICE script example shows how to define an SMMU with the SMMU.ADD command. Then the
script opens the SMMU in the SMMU.StreamTable window starting with Stream 1D 0x10000

;define a new SMMU named "myGPU" for a graphics processing unit
SMMU.ADD "myGPU" MMU600 AZSD:0x50000000

;open the Stream Table window, showing entries starting with
Stream ID 0x10000
SMMU . StreamTable myGPU 0x10000

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 72

About the SMMU.StreamTable Window

[Back to Top]
By right-clicking an entry or double-clicking certain cells of an entry, you can open additional windows to
receive more information about the selected entry.

. Right-clicking opens the Popup Menu.

MMU-400, MMU-401, MMU-500:

. Double-clicking an entry in the columns ref. id, id mask, valid, or context type opens the
SMMU.StreamMapRegGrp.Register window.

. Double-clicking an SMRG in the two columns pagetbl. fmt opens the
SMMU.StreamMapRegGrp.list window, displaying the page table for stage 1 or stage 2.

. Double-clicking an SMRG in the two cbndx columns or the two state columns opens the
SMMU.StreamMapRegGrp.ContextReg window, displaying the context bank registers for
stage 1 or stage 2.

MMU-600 and newer:

. Double-clicking an entry in the columns configuration, VMID, stream world, or # sstrms opens
the SMMU.StreamTbIEntry.Register window showing the stream entry registers.

. Double-clicking an entry in the column S2 PT fmt opens the SMMU.StreamTbIEntry.list window,
displaying the stage 2 page table.
If an entry has only one stage 1 context descriptor:

. Double-clicking valid data in columns ASID or state ttb0/1 opens the SMMU.Register.S1Context
window, displaying the stage 1 context registers.

. Double-clicking valid data in column S1 PT fmt opens the SMMU.StreamTbIEntry.list window,
displaying the stage 1 page table.
If an entry has more than one stage 1 context descriptor:

o Click on the list CDT button in column S1 PT fmt to open the SMMU.CtxtDescTable window,
listing all valid Context Descriptors for the stream entry. The SMMU.CtxtDescTable window
allows to view the registers and stage 1 page tables associated with each Context Descriptor.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 73

Popup Menu: Show MMU-<type>

Show MMU-500...

m g | Ox0C on | AArch32 Long | OxOD on ‘

[

Stage 1 Page Table ¥
AArched Lo

Wil

Stage 2 Page Table » =

£

Peripherals ¥

Security State Determination Table (550)

0x1234 |

Aarch3z on / on

=[]

A Example popup menu for MMU-400, MMU-401 and MMU-500

B Example popup menu for MMU-600 and newer

Show MMU-600...

iEY Stage 1 Context Descriptor Table

i=! Stage 2 Page Table >
® Peripherals ¥
Dump Queue ¥

Dump associated Queue Entries >

il

[Back to Top]

AZSD:000
v

List

. Dump

The entries visible in the popup menus depend on the capabilities of the SMMU such as the capability to
support stage 1 or stage 2 and if the SMMU supports two security states.

The popup menu in the SMMU.StreamTable window provides convenient shortcuts to the following

commands:

MMU-400, MMU-401 and MMU-500:

Popup Menu

Command

Stage 1 Page Table >
Stage 2 Page Table >

()

. List
. Dump

SMMU.StreamMapRegGrp.list
SMMU.StreamMapRegGrp.Dump

Peripherals >

. Global Configuration Registers
. Stream Mapping Registers

Context Bank Registers of Stage 2

. Context Bank Registers of Stage 1 and

SMMU.Register.Global
SMMU.Register.StreamMapRegGrp
SMMU.Register.ContextBank

Security State Determination Table (SSD)

SMMU.SSDtable

©1989-2024 Lauterbach

Simulator for Arm and XSCALE | 74

MMU-600 and newer:

Popup Menu

Command

Stage 1 Context Descriptor Table

SMMU.CtxtDescTable

Stage 1 Page Table >
Stage 2 Page Table >

()

] List
. Dump

o SMMU.StreamTbIEntry.list
o SMMU.StreamTbIEntry.Dump

Peripherals >

Global Configuration Registers

MMU specific Registers

Stream Table Entry Registers

Stage 1 Context Descriptor Registers

SMMU.Register.Global
SMMU.Register.MMU
SMMU.Register.StreamTbIEntry
SMMU.Register.S1Context

Dump Queue >
Dump associated Queue Entries >

. Event Queue
o Cmd Queue

o SMMU.DumpQueue.Event
o SMMU.DumpQueue.CMD

©1989-2024 Lauterbach

Simulator for Arm and XSCALE

75

Description of Columns: SMMU.StreamTable Window

[Back to Top]

MMU-400, MMU-401 and MMU-500:

Column Name

Description

stream map reg.
arp

visibility: The column is only visible if the SMMU supports the two
security states secure and non-secure.

The label sec/nsec indicates that the SMRG is visible to secure and
non-secure accesses.

The label sec only indicates that the SMRG is visible to secure
accesses only.

index: The index numbers start at 0x00 and are incremented by 1 per
SMRG.

stream matching

See description of the columns ref. id, id mask, and valid below.

ref. id,
id mask,
and valid

If the SMMU supports stream matching, then the following columns are
visible: ref. id, id mask, and valid.
Otherwise, these columns are hidden.

context type

Depending on the translation context of a stream mapping register group, the
following values are displayed [Description of Values]:

s2 translation only
s1 trsl - s2 trsl

s1 trsl - s2 fault

s1 trsl - s2 byp
fault (s1 trsl-s2 trsl)
fault (s1 trsl-s2 flt)
fault (s1 trsl-s2 byp)
fault

bypass mode
reserved

HYPC or MONC

stage 1 Displays the page table format of stage 1 or stage 2 [Description of Values]:
pagetbl. fmt J Short descr. (32-bit Arm architecture only)
or J Long descr. (32-bit Arm architecture only)
stage 2 J AArch32 Short (64-bit Arm architecture only)
pagetbl. fmt . AArch32 Long (64-bit Arm architecture only)
J AArch64 Long (64-bit Arm architecture only)
cbndx Displays the context bank index (cbndx) associated with the translation

context of stage 1 or stage 2.

©1989-2024 Lauterbach

Simulator for Arm and XSCALE | 76

Column Name

Description

state

Displays whether the MMU of stage 1 or stage 2 is enabled (ON) or disabled
(OFF) and whether a fault has occurred in a translation context bank:

J F: any single fault

J M: multiple faults

J S: the SMMU is stalled

The letters F, M, and S are highlighted in red in the SMMU.StreamTable
window (example).

The information about the faults is derived from the register
SMMU_CBn_FSR (fault status register of the context bank).

Double-click the respective state cell to open the
SMMU.StreamMapRegGrp.ContextReg window. The register
SMMU_CBn_FSR provides details about the fault.

MMU-600 and newer:

Column Name

Description

configuration

Depending on the translation context of a stream entry, the following values
are displayed [Description of Values]:

i s1 translation only
i s2 translation only
J s1 trsl - s2 trsl

o bypass

. abort

A misconfiguration of the stream entry is indicated by a display of ILLEGAL.

S2 PT fmt Displays the page table format of stage 2 or stage 1:
or . AArch32
S1 PT fmt . AArch64
VMID Displays the VMID of the stream table entry stage 2 registers
stream world Depending of the stream world of a stream entry, the following values are
displayed:
. NS-EL1
. EL2
. EL2-E2H
. EL3
. Secure
J Reserved
sstrms Displays the max. number of stage 1 context descriptors for the stream table
entry, as configured in the S1TCDMAX field
ASID Displays the ASID of a stage 1 context descriptor

©1989-2024 Lauterbach

Simulator for Arm and XSCALE | 77

Column Name Description
S1 PT fmt If only a single context descriptor entry exists in the CDT associated with the
stream table entry, it's stage 1page table format is displayed (AArch32 or
AArch64).
If the CDT contains more than one entry, a button labelled list CDT is
displayed which directly opens the CDT.
state ttb0/1 Displays the state of the stage 1 context tt0 / tt1 translation table disable bits,
where
tt0 refers to the address translation of the lower address range.
tt1 refers to the address translation of the upper address range.
Possible values for: tt0 / tt1
J on means the translation for the tt0 / tt1 address range is enabled
J off means the translation for the tt0 / tt1 address range is disabled
address of stream | Displays table walk details, i.e. the physical addresses of the level 1 and/or
table entries level 2 table entries.
or If the table has only one level, one address is displayed, for a 2-level table two
address of con- addresses are displayed.
text desciptor
table entries

©1989-2024 Lauterbach

Simulator for Arm and XSCALE | 78

Description of Values

[Backto Top]
MMU-400, MMU-401 and MMU-500:

Values in the Column Description

“context type”

s2 translation only Context defines a stage 2 translation only

s1 trsl - s2 trsl Context defines a stage 1 translation, followed by a stage 2
translation (nested translation)

s1 trsl - s2 fault Context defines a stage 1 translation followed by a stage 2 fault

s1 trsl - s2 byp Context defines a stage 1 translation followed by a stage 2 bypass

fault (s1 trsl-s2 trsl) Context defines a stage 1 translation followed by a stage 2
translation, but SMMU has no stage 1 (SMMU configuration fault)

fault (s1 trsl-s2 fit) Context defines a stage 1 translation followed by a stage 2 fault, but
SMMU has no stage 1 (SMMU configuration fault)

fault (s1 trsl-s2 byp) Context defines a stage 1 translation followed by a stage 2 bypassn,
but SMMU has no stage 1 (SMMU configuration fault)

fault Context defines a fault

bypass mode Context defines bypass mode

reserved Context type is improperly defined

HYPC Is displayed on the right-hand side of the column if the context is a

hypervisor context.

MONC Is displayed on the right-hand side of the column if the context is a
monitor context.

Values in the Columns Description
“stage 1 pagetbl. fmt”
“stage 2 pagetbl. fmt”

Short descr. Page table uses the 32-bit short descriptor format
(32-bit targets only)

Long descr. Page table uses the 32-bit long descriptor (LPAE) format
(32-bit targets only)

AArch32 Short Page table uses the 32-bit short descriptor format
(64-bit targets only)

AArch32 Long Page table uses the 32-bit long descriptor (LPAE) format
(64-bit targets only)

AArch64 Long Page table uses the 64-bit long descriptor (LPAE) format
(64-bit targets only)

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 79

MMU-600 and newer:

Values in the Column
“configuration”

Description

s1 translation only

Context defines a stage 1 translation only

s2 translation only

Context defines a stage 2 translation only

s1 trsl - s2 trsl

Context defines a stage 1 translation, followed by a stage 2
translation

bypass

Context defines bypass mode, no translation is performed.

abort

Context defines an abort condition.

ILLEGAL (s1 trsl only)

Misconfiguration of the stream table entry:
stage 1 translation is configured but not supported

ILLEGAL (s2 trsl only)

Misconfiguration of the stream table entry:
stage 2 translation is configured but not supported

ILLEGAL (s1 + s2 trsl)

Misconfiguration of the stream table entry:
stage 1+2 translations are configured but not supported

ILLEGAL (secure+s2 trsl)

Misconfiguration of the stream table entry:
stage 2 translation is configured in a secure stream table entry

©1989-2024 Lauterbach

Simulator for Arm and XSCALE

80

Display of Global Faults or Global Errors in an SMMU

[Back to Top]
Codes in the gray window status bar at the bottom of the SMMU.StreamTable window indicate the current
global fault / global error status of the SMMU:

MMU-400, MMU-401, MMU-500:
These codes for the global faults are MULTI, UUT, PF, EF, CAF, UCIF, UCBF, SMCF, USF, ICF [A].
These flags correspond to the flags of the SMMU_sGFSR register.

To view the descriptions of the global faults, double-click the gray window status bar to open the
SMMU.Register.Global window [A]. Scroll down to the SMMU_sGFSR [B] or the SMMU_GERROR
register. The global faults are described in the column on the right [C].

$8 B:SMMU StreamTable myGPU = =R
stream map reg.grp stream matching stage 1 stage 2
visibility dindex ref. id| id mask |valid | context type pagetbl. fmt | chbndx | state | pagetbl. fmt | chndx | state
sec/nsec 0x00 OxDEEL 0x7000 | yes s1 trs1 - s2 trs]l AArched Long | OxDO on | AArchéd Long [Ox01 on
sec/nsec 0x01 0x0000 | Ox0000| no | fault
sec/nsec 0x02 0x0000 | Ox0000| no | fault
sec/nsec 0x03 0x0DBE 0x7000 | yes s1 trs1 - s2 byp Adrch32 Shrt | Ox06 | F on
sec/nsec 0x04 Ox0B78 0x7000 | yes s1 trsl - s2 trsl AArch32 Long | Ox08 on | AArch32 Long | Ox09 on
sec/nsec 0x05 0x0000 | Ox0000| no | fault
sec/nsec 0x06 0x0244 | Ox7000 | yes s1 trsl - s2 trsl AArch32 Long | Ox0C on | Afrch32 Long | OxOD on
sec/nsec 0x07 0x0000 | Ox0000| no | fault
sec/nsec 0x08 0x0000 | Ox0000| no | fault
sec/nsec 0x09 0x0000 | Ox0000| no | fault
sec/nsec 0x0A 0x0000 | Ox0000| no | fault
sec/nsec Ox0B Ox036D | Ox7000 | yes ! 1 - =2 byp Adrched Long | Ox16 on
MMU-500 base AZSD:0x500 MULTI UUT PE EF CAF UCTIF UCEF SMCE USE ICE hd
5 >
B:SMMU Register.Global myGPU = =R
SMM R7 00000000 MAJOR 1] MINOR a A
0oooo00000000000
BO000LFF MULTI (: Multiple faults occured
Unsupported upstream transaction fault recorded

Permission fault

External fault caused by an external abort
Configuration access fault

Unimplemented context interrupt fault
Unimplemented context bank fault

Stream match conflict fault

Unidentified stream fault

Invalid context fault

A Codes of global faults (for MMU-500 in this screen shot).

B The information about the global faults is derived from the register SMMU_sGFSR (secure global
fault status register).

C Descriptions of the global faults in the SMMU.Register.Global window.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 81

MMU-600 and newer:
These codes for the global errors are SFM, MSI_GERROR, MSI_PRIQ, MSI_EVENTQ, MSI_CMDQ,
PRIQ, EVENTQ, CMDQ [A].

These flags correspond to the flags of the SMMU_GERROR register.

8 B:SMMU StreamTable myPCIE = =R

[Jshow secure entries
stream 1d | configuration 52 PT fmt WVMID stream world | # sstrms | ASID S1 PT fmt state ttb0/1 | address
06BE9743 | s1 trsT - s2 trsT AArch3z 0x0001 | NS-EL1 2 A 19 Tist CDT AZSD:000
06BE974C | abort AZSD:000
06BE974E | s1 trs1 - s2 trsl Aarch3z 0x0006 | NS-EL1 1 0x53B0 Aarch3z on / on AZSD:000
06BE9750 | s1 trs1 - s2 trsl Adrched 0x0005 | NS-EL1 1 OxD83C AArch3z on / on AZSD:000
06BE9754 | 52 translation only AArched 0x0003 AZSD:000
06BE9758 | abort AZSD:000
2F49D600 | s1 trs1 - s2 trsl AArch3z 0x0007 | NS-EL1 1 OxCCEB AArch3z on / on AZSD:000
2F49D601 | s1 translation only NS-EL1 2 A3 Tist CDT AZSD:000

MMU-B500_ base AZSD:DXEDD SEM _MSI_GERROR MSI_PRIQ MSI_EVENTQ MSI_CMDQ PRIQ EVENTQ CMOG hd
B:SMMU Register.Global myPCIE = =R

~

SMMIU_GERROR 000001FD Occurred MSI_GERROR_AET_ERR Occurred ~
Occurred MS ET_ERR Occurred
Occurred T_ERR Occurred
SMMU_GERRORN 00000000 Not occurred R_AET_ERR Not occurred
MSI_PRIO_AET_ERR Not occurred AET_ERR Not occurred
PRIQ_ABT_ERR Not occurred Mot occurred
_GERROR_IRQ _CFGO 0000o00000000000 ADDR 0oooo00000000000
_GERROR_IRQ _CFG1 0ooo000o hd

A Codes of global error flags (for MMU-600 in this screen shot).

B The information about the global error flags set is derived from an XOR operation for the registers
SMMU_GERROR and SMMU_GERRORN.

C Descriptions of the global error flags in the SMMU.Register.Global window.

Finding streams which are in a fault / error state

MMU-400, MMU-401 and MMU-500:
A red letter in a stage 1 cbndx state column or a stage 2 state column of the SMMU.StreamTable window
indicates a fault in a context bank. For descriptions of these faults, see state column.

MMU-600 and

newer:

Use the Event Queue Window SMMU.DumpQueue.Event to view error events.
The command supplies options to filter and view events for a certain <stream_id> and/or <substream_id>
range and it is possible to filter certain event types.

In SMMU.StreamTable or SMMU.CtxtDescTable window, use the popup menu entry Dump associated

Queue Entries to dump queue entries for specific stream entry or context descriptor table entry.

SMMU.StreamTbIEntry

Access to a stream table entry

MMU-600 and newer

only

The SMMU.StreamTbIEntry command group allows to view the details of the translation context associated
with a Stream Table Entry and/or a stage 1 Context Descriptor. Every STE is identified by its <sfream_id>. A
CD is identified by both a <stream_id> and a <substream_id>. In case a stream table entry supports only a
single stage 1 CD the <substream_id> can be omitted.

©1989-2024 Lauterbach

Simulator for Arm and XSCALE |

82

The SMMU.StreamTbIEntry command group provides the following commands:

SMMU.StreamTbIEntry.Register Shows the registers of a STE or a CD.

SMMU.StreamTbIEntry.list Lists the page table associated with stage 1 or stage 2
translation in a compact format.

SMMU.StreamTbIEntry.Dump Dumps the page table entries associated with stage 1 or
stage 2 translation page wise.

The three SMMU.StreamTbIEntry commands feature common options:
. /ISUBstream <substream_id>: apply the command for a CD with the <substream_id>

J ISECure: target the secure SMMU entries with the command

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 83

SMMU.StreamTbIEntry.Dump Page-wise display of SMMU page table

MMU-600 and newer only

Format: SMMU.StreamTableEntry.Dump <args>

<args>: <name> <stream_id> [<address> | <range> [<ttb_address>]] [[SubStreamID
<substream_id>] [/IntermediatePT] [/SECure]

Opens the SMMU.StreamTbIEntry.Dump window for the specified <stream_id>. This window dumps the
page table content page-wise. If you prefer a compact view, use command SMMU.StreamTbIEntry.list

If option /SECure is specified, the command targets the secure SMMU view.
You can dump any stage 1 or the stage 2 page table associated with the STE specified by <stream_id>.
To dump the stage 2 page table of the STE, specify only option /IntermediatePT.

To dump the stage 1 page table defined by a Context Descriptor of the STE, you must additionally specify
the Substream ID of the Context Descriptor using option /SubStreamID <substream_id>.

If no valid translation context is defined, the window displays the error message “registerset undefined”.

For a description of the columns in the SMMU.StreamTableEntry.Dump window, click here.

Arguments:

<name> For a description of <name>, etc., click here.

<stream_id> Defines the STE of which a page table has to be dumped.

<address> | <range> If specified, start the dump with <address> or, alternatively, limit the
dumped address range to address to <range>.

<ttb_address> If specified, <ttb_address> will be used as page table base address. The
other page table parameters are still extracted from the STE and/or CD
context.

/SubStreamID Omit this option to view translation table entries of stage 2.

<substream_id> Include this option to view the stage 1 translation table entries of the Context
Descriptor with substream <substream_id>.
If the STE has only one Context Descriptor, you can omit option
/SubStreamID <substream_id>. In this case, the stage 1 page table of
the Context Descriptor with substream 0 will be displayed. |

IntermediatePT Omit this option to view translation table entries of stage 1.
Include this option to view translation table entries of stage 2.
In SMMUSs that support only stage 2 page tables, this option can be
omitted.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 84

Examples:

;Dump the stage 2 page table of the STE with Stream ID 0x6BE974B for SMMU

A\Y myGPU "
SMMU. StreamTblEntry.Dump myGPU 0x6BE974B /IntermediatePE

;Dump the stage 1 page table of Substream ID 0x2 which belongs to the STE
with Stream ID 0x6BE974B.

SMMU. StreamTblEntry.Dump myGPU 0x6BE974B /SubStreamID 0x2

;As above, but start dumping at address 0x80000000

SMMU . StreamTblEntry.Dump myGPU 0x6BE974B 0x80000000 /SubStreamID 0x2

To display an SMMU page table page-wise via the user interface TRACE32 PowerView, see here.

SMMU.StreamTbIEntry.list List page table entries

MMU-600 and newer only

Format: SMMU.StreamTableEntry.list<args>

<args>: <name> <stream_id> [<address> | <range> [<ttb_address>]] [[SubStreamID
<substream_id>] [/IntermediatePT] [/SECure]

Opens the SMMU.StreamTbIEntry.list window for the specified <stream_id>. This window shows a
compact list of consecutive address ranges in the page table which have a uniform, valid translation.

The syntax and arguments are identical to command SMMU.StreamTbIEntry.Dump and are described
there.

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 85

SMMU.StreamTbIEntry.Register Display STE or CD registers

MMU-600 and newer only

Format: SMMU.Register.StreamTbIEntry <args>

<args>: <name> <stream_id> [/[SubStreamID <substream_id>] [/[SECure]

If specified without option /SubStreamID <substream_id>, this is an alias for command
SMMU.Register.StreamTbIEntry. It opens the peripheral register window for the SMMU named
<name> and displays the registers of the Stream Table Entry which is specified by <stream_id>.

If specified with option /SubStreamID <substream_id>, this command opens the peripheral register
window for the SMMU named <name> and displays the registers of the Context Descriptor with
substream <substream_id>, belonging to the Stream Table Entry with <stream_id>.

If option /SECure is specified, the command targets the secure SMMU view.
Example:

;1list the registers of the Stream Table Entry with Stream ID 0x6B9743
from the secure Stream Table of SMMU “myGPU”
SMMU . StreamTable myGPU 0x6B9743 /SECure

;1list the registers of the Context Descriptor with Substream ID 0x3,
belonging to the secure Stream Table Entry with Stream ID 0x6B9743
SMMU . StreamTable myGPU 0x6B9743 /SubStreamID 0x3 /SECure

©1989-2024 Lauterbach Simulator for Arm and XSCALE | 86

	Simulator for Arm and XSCALE
	Introduction
	TRACE32 Simulator License
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Quick Start of the Simulator
	Peripheral Simulation
	Troubleshooting
	FAQ
	Memory Classes
	Virtual Terminal
	Semihosting
	Coprocessors

	ARM specific SYStem Commands
	SYStem.CPU Select the used CPU
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CONFIG.SMMU Internal use
	SYStem.Mode Establish the communication with the simulator
	SYStem.Option.Alignment Enable alignment exceptions
	SYStem.Option.BigEndian Define byte order (endianness)
	SYStem.Option.DisMode Define disassembler mode
	SYStem.Option.DUALPORT Implicitly use run-time memory access
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MACHINESPACES Address extension for guest OSes
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.REALTIME Stall the simulator if faster than real processor
	SYStem.Option.ZoneSPACES Enable symbol management for Arm zones
	Overview of Debugging with Zones
	Operation System Support - Defining a Zone-specific OS Awareness

	SYStem.RESetOut CPU reset command
	SYStem.state Display SYStem.state window

	ARM Specific TrOnchip Commands
	TrOnchip.RESet Reset on-chip trigger settings
	TrOnchip.Set Set bits in the vector catch register
	TrOnchip.StepVector Step into exception handler
	TrOnchip.StepVectorResume Catch exceptions and resume single step
	TrOnchip.state Display on-chip trigger window

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU

	CPU specific SMMU Commands
	SMMU Hardware system MMU (SMMU)
	SMMU.ADD Define a new hardware system MMU
	SMMU.Clear Delete an SMMU
	SMMU.CtxtDescTable List a context descriptor table
	SMMU.DumpQueue.<queue> Dump entries of a queue
	SMMU.DumpQueue.CMD Dump cmd queue entries
	SMMU.DumpQueue.Event Dump event queue entries
	SMMU.Register Peripheral registers of an SMMU
	SMMU.Register.ContextBank Display registers of context bank
	SMMU.Register.Global Display global registers of SMMU
	SMMU.Register.MMUregs Display MMU specific registers
	SMMU.Register.S1Context Display stage 1 context descriptor registers
	SMMU.Register.StreamTblEntry Display stream table entry registers
	SMMU.Register.StreamMapRegGrp Display registers of an SMRG
	SMMU.RESet Delete all SMMU definitions
	SMMU.SSDtable Display security state determination table
	SMMU.StreamMapRegGrp Access to stream map table entries
	SMMU.StreamMapRegGrp.ContextReg Display context bank registers
	SMMU.StreamMapRegGrp.Dump Page-wise display of SMMU page table
	SMMU.StreamMapRegGrp.list List page table entries
	SMMU.StreamTable Display a stream table
	Display of Global Faults or Global Errors in an SMMU
	Finding streams which are in a fault / error state

	SMMU.StreamTblEntry Access to a stream table entry
	SMMU.StreamTblEntry.Dump Page-wise display of SMMU page table
	SMMU.StreamTblEntry.list List page table entries
	SMMU.StreamTblEntry.Register Display STE or CD registers

