LAUTERBACH A

API for TRACE32
Instruction Set Simulator

API for TRACE32 Instruction Set Simulator

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES2 DOCUMENTS .ccuuiiieeiireesiirensisssssssisnsssssessssssssssrsssssssnsssssssssssssssssessssssnsssssnsssssanssssnnsssssnssssnnnns r—
TRACES32 Instruction Set SIMUulatorscciiiiiiieeciiiiirese s s s s nnssssnees =
API for TRACE32 Instruction Set Simulator ... s s assssssens 1
OVEIVIBW ..ireeiiireessirsnssirsesssssnsssransssssansssssnssssensssssansssssnsssssnsssssansssssnsssssnsssssansssssnssssensssssnnsssnnnnns 3
Peripheral Simulation Model ... e smm s s e s as 7
Standard function 7
Registers 11

Timers 14

Stall 15

Ports 16
Terminals 18
Communication 19

Files 19
Deprecated functions 21
Practical script cOommands ... e 22
Peripheral model eXample ... 26
Environment 26
Source code listing 29
Initialization scripts 38
©1989-2024 Lauterbach API for TRACES3?2 Instruction Set Simulator | 2

API for TRACE32 Instruction Set Simulator

Version 06-Jun-2024

This document describes the implementation process and the basic use of peripheral simulation model in
TRACE32.

Overview

PSM - Peripheral Simulation Model contains functions and registers of corresponding physical modules
supported by MCU. It is additional program (overlay) for simulated core. To complete the tasks, core
operates on registers located in physical memory of MCU. PSM is a software overlay for memory area
occupied by peripheral module. For an accurate simulation of microprocessor’s unit, interaction between a
core and peripherals module is required. PSM provides functions responsible for interaction between core
and other modules. PSM is able to simulate any module which significantly increases functionality of the
entire simulation environment.

Interrupt
CPU

H LCD

Controller

The processor retrieves and sends data from / to memory shared with other MCU modules, hence the need
to simulate not only the processor core, but also cooperative modules.

Simulation of microprocessor’s system without the module requires manual setting of the appropriate bits in
registers of peripheral module (important for proper software operation). For proper registers' configuration
to which a processor sends / receives data, user have to perform time-consuming work with a
documentation. Bits in a registers are frequently modified with an each clock cycle.

©1989-2024 Lauterbach API for TRACER3?2 Instruction Set Simulator | 3

By Peripheral Simulation Models complicated settings are done automatically. Software takes over the role
of an interaction between model and simulator and between other modules. Using PSM increases possibility
of checking a software functionality in implemented microprocessor’s system. An important feature of this
solution is to eliminate a human error factor in process of modifying registers contents while working with
documentation.

Simulation without Peripheral Simulation Models. Simulation with Peripheral Simulation Models.

" Peripheral
\- module memory
Peripheral Simulation
Module

Peripheral
module memory

X

Ports are used for communication between models, processor simulator and user. Currently there are over
512 ports. Ports are the primary communication interface provided by TRACE32.

PSM is stored in a DLL. The functions and resources of the DLL can be used directly by TRACE32. The DLL
is not an independent program. Libraries are dynamically imported into the memory at the time specified by
a programmer (mostly when actually needed), hence a definition of dynamically linked library. DLL files are
often used in programs as plug-ins.

The module contained in a DLL can be loaded using the appropriate command in TRACE32

©1989-2024 Lauterbach API| for TRACERS2 Instruction Set Simulator | 4

PSM
Creation

Compiling
PSM DLL

PSM loaded
from DLL
in TRACE32

TRACE32
Preparation

SIMULATION

Simulation process:

Microprocessor’s system is often simulated by executing sequence of steps and observing the program's
response. In simulated system are some operations CPU performs itself, such as arithmetic-logic
operations, copying, etc. Those operations do not need to cooperate with other modules and program may
be continued. Nevertheless when it comes to cooperation between CPU and other modules (most cases) it
is necessary to ensure adequate interaction in a simulator. PSM performs its functions (data change in
registers, interruption send, decrementation, etc.) and after those functions are completed, program is
continued until the very end.

(START |

v

TRACE32

r

Load PSM
from DLL

|

cooperate
with modules

?

PSM
makes changes

©1989-2024 Lauterbach

API for TRACE32 Instruction Set Simulator | 5

For better understanding of simulation operating rules it is advised to remember that the simulation is a
virtual representation of real processes and takes place in computer memory. TRACES32 simulation
environment allows to simulate any system. TRACES32 reserves area of memory for a simulated system and
in this area simulator performs operations. All performed operations and created variables are stored in
TRACE32 memory.

Core simulator

Peripherals
Simulation models

TIMER
UART
PWM
USB

* %k %

* % %

Interrupt
Controller

TRACE32 A

TRACE32 environment

©1989-2024 Lauterbach API for TRACES3?2 Instruction Set Simulator | 6

Peripheral Simulation Model

This section describes: functions frequently used in the model, operations on the registers, communication
in the simulation, IO operations and the basic commands in a initialization script.

Standard function

Callback functions are used to handle events such as reset, exit from TRACE32, GO,BREAK, timers,
changes on ports lines and changes of the registers’ contents in model memory (see the file simul.h). These
functions are called when registered events are performed, so it is required to initialize them in a SIMUL_Init
function. The memory allocation for our variables should be done inside SIMUL _Init function (do not use
global variables). Allocation is done with SIMUL_Alloc function.

Event handler functions:

1. Event reset callback function.

SIMUL_RegisterResetCallback (simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private) ;

Register callback function to handle simulation model reset.
2. Event read callback function.

SIMUL_RegisterBusReadCallback (simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private, int bustype, simulWord *
paddressFrom, simulWord * paddressTo) ;

Register callback function to handle register events in simulation model. Function responsible for reading
register (separately for each of registers).

3. Event write callback function.

SIMUL_RegisterBusWriteCallback (simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private, int bustype, simulWord *
paddressFrom, simulWord * paddressTo) ;

Register callback function to handle register events in simulation model. Function responsible for writing to
register (separately for each of registers).

©1989-2024 Lauterbach API for TRACER3?2 Instruction Set Simulator | 7

4. Event port change callback function.
SIMUL_RegisterPortChangeCallback (simulProcessor processor,
int width) ;

simulCallbackFunctionPtr func, simulPtr private, int offset,

Register callback function to handle port changes in simulation model.

5. Event command callback function.

SIMUL_RegisterCommandCallback (simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private) ;

Register callback function to handle a commands in TRACES32 environment. This function returns
SIMUL_COMMAND_OK or SIMUL_COMMAND_FAIL.

6. Event exit from TRACES32 callback function.
SIMULAPI SIMUL_RegisterExitCallback (simulProcessor processor,

simulCallbackFunctionPtr func, simulPtr private) ;

Register callback function to handle exit from a model in TRACE32 environment. This function returns
SIMUL_EXIT_OK.

7. Event GO callback function.
SIMULAPI SIMUL_RegisterGoCallback (simulProcessor processor,

simulCallbackFunctionPtr func, simulPtr private) ;

Register callback function to handle GO command in TRACES32 environment. This function returns
SIMUL_GO_OK.

8. Event Terminal callback function.

SIMUL_RegisterTerminalCallback (simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private, int id);

Register callback function to handle terminal in TRACES32 environment.

©1989-2024 Lauterbach API for TRACE32 Instruction Set Simulator

9. Event break callback function.

SIMULAPI SIMUL_RegisterBreakCallback (simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private) ;

Register callback function to handle BREAK command in TRACES32 environment. This function returns
SIMUL_BREAK_OK.

10. Reallocation (changes) register address function.

SIMUL_RelocateBusCallback (simulProcessor processor, void * callbackid, int
bustype, simulWord * paddressFrom, simulWord * paddressTo) ;

Register callback function to handle addresses changes in simulation model registers in TRACE32
environment.

11. Register timer function.

SIMUL_RegisterTimerCallback (simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private) ;

Register callback function to handle timers in a simulation model in TRACE32 environment.

Explanation of terms appearing in the functions:

func Function that supports an event

private Global variable of our model

bustype Variable of the structure of CBS

offset Port from which the start

width Amount of ports

paddressFrom Start address of register

paddressTo End address (paddressFrom + regsize)

Please note that the maximum number of ports (width) for a single registration is 32, to declare other ports
offset variable have to be changed.

The model can be loaded with parameters (types and kinds of parameters can be defined by the user), e.g.

base module address, number of interrupts in INTC etc.

©1989-2024 Lauterbach API for TRACE32 Instruction Set Simulator |

9

Access to this data can be obtained through the structure simulCallbackStruct*cbs in an initialization

function.

cbs-> x.init.argc

Indicated the number of parameters (value “1” means no
parameters)

cbs-> x.init.argpbustype[1]

Indicates the type of bus. Value of that variable should
stored in the main structure as a bustype variable (for future use)

cbs-> x.init.argpport [x]

stores parameters of int type

cbs-> x.init.argp [x]

stores parameters of char* type

The exact description of structure is in ‘simul.h’ file.

There are standard functions which are designed to handle the model. For example, display of warning
messages, memory allocation, etc.Standard functions:

1.Formated displaying.

SIMUL_Printf (simulProcessor processor, const char *format, ...);

Function used to display text message in TRACE32 environment.

2. Displaying warnings in TRACE32 command line.

SIMUL_Warning (simulProcessor processor, const char *format, ...);

Function used to display warnings in TRACES32 environment.

3. Stopping simulation in TRACE32.

SIMUL_Stop (simulProcessor processor) ;

Function used to stop simulation in TRACE32 environment.

4. Updated data TRACE32.

SIMUL_Update (simulProcessor processor, int flags) ;

Function used to update data in TRACES32 environment.

©1989-2024 Lauterbach

API for TRACE32 Instruction Set Simulator |

10

5. Allocation of memory for variables.

SIMUL_Alloc (simulProcessor processor, int size);

Function used to allocate memory in TRACES32, for variables used in a simulation model.
6. Deallocate memory for variables.

SIMUL_Free (simulProcessor processor, void * ptr);

Function used to free memory in TRACE32 environment.
7. Get current endian (Little = 0).

SIMUL_GetEndianess (simulProcessor processor) ;

Function used to get a current endian settings used in a simulation model.

Registers

Model should simulate all types of registers:

RO read only register

R/W read write register

w write register

RC read clear by 0 register
R1C read clear by 1 register
R/W read write register

For each register, there should be two functions (depending on register access type). One responsible for
reading and one for writing a certain area of memory (register). These functions should be in Simul_Init
function in ‘model_name’.c file (these are callback functions).

©1989-2024 Lauterbach API for TRACES?2 Instruction Set Simulator | 11

For each function that supports register (memory) designer can determine what kind of access type is being
executed by TRACES32, whether it is being read by peripheral file or being accessed by CPU. According to

values in the variable cbs->x.bus.cycletype:

SIMUL_MEMORY_HIDDEN Access peripheral file or simulation bus
SIMUL_MEMORY_DATA CPU access through instructions such as load
SIMUL_MEMORY_FETCH CPU load opcode

SIMUL_MEMORY_DMA DMA

Register type ‘RO’ is simulated by not executing callback function responsible for writing. The register type
‘W' is simulated by not executing callback function responsible for reading, while other registers are
simulated in similarly way according to privileges.

Functions operating on registers in model:
1. Read memory function.

SIMUL_ReadMemory (simulProcessor processor, int bustype, simulWord *
paddress, int width, int cycletype, simulWord * pdata) ;

Function used to read memory from specified area in TRACES32 environment.

2. Write memory function.

SIMUL_WriteMemory (simulProcessor processor, int bustype, simulWord *
paddress, int width, int cycletype, simulWord * pdata) ;

Function used to write memory to specified area in TRACE32 environment.
3. Insert function (smaller word to a greater word). Such as 8-bit to 32-bit.

SIMUL_InsertWord(simulProcessor processor, simulWord * ptarget, int
wordwidth, simulWord * paddress, int width, simulWord * pdata) ;

Function used to insert a smaller word in the greater word.
4. Extract function (smaller word from a greater word). Such as 8-bit from 32-bit.

SIMUL_ExtractWord (simulProcessor processor, simulWord * psource, int
wordwidth, simulWord * paddress, int width, simulWord * pdata) ;

©1989-2024 Lauterbach API for TRACES?2 Instruction Set Simulator | 12

Function used to extract a smaller width word from a greater width word.

5. Data save function.
SIMUL_SaveWord (simulProcessor processor, void * ptarget, int width,

simulWord * pdata) ;

Function used to save a value of specified word.

6. Data load function.
SIMUL_LoadWord (simulProcessor processor, void * psource, int width,

simulWord * pdata) ;

Function used to load a value from specified word.

Explanation of terms appearing in the functions:

bustype type of bus

paddress address

width width in bits

wordwidth width of the object on which operations are executed
cycletype access type, eg hidden

pdata data to write / read

ptarget target to save

psource source to load

In supported registers functions it is required to set a cbs-> x.bus.clocks variable which is responsible for
number of cycles of access to these functions.

The cbs.x.bus->address variable stores address of read or write. The access type is stored in
cbs.x.bus>width variable - it is possible to write an 8, 16-bit or 32-bit register. To avoid misunderstandings it
is recommended to write a functions to handle hazardous situations, or use SIMUL _InsertWord /
SIMUL_ExtractWord when these registers are supported. Write / read data are transmitted in
cbs.x.bus>data variable.

At the end function returns SIMUL_MEMORY_OK.

©1989-2024 Lauterbach API for TRACES?2 Instruction Set Simulator | 13

Timers

Timers are used to measure time and are calculated relative to TRACE32. Each timer used in a model have
to be registered in the initialization function (Simul_Init). Timer needs to be started using SIMUL _StartTimer
function and can be stopped using SIMUL_StopTimer function. It is also possible to retrieve a current
simulation time etc.

Functions operating on timers:
1. Start timer function. Function used to start selected timer in the simulation model.

SIMUL_StartTimer (simulProcessor processor, void * timerid, int mode,
simulTime * ptime) ;

2. Stop timer function. Function used to stop selected timer in the simulation model.

SIMUL_StopTimer (simulProcessor processor, void * timerid) ;

3. Stop all timers function. Function used to stop all timers in the simulation model..

SIMUL_StopAllTimer (simulProcessor pProcessor) ;

4. Read the time since the start of the simulation.

SIMUL_GetTime (simulProcessor processor, simulTime * ptime) ;

5. Read number of clock cycles since the start of the simulation.

SIMUL_GetClock (simulProcessor processor, int clockid, simulTime * pclock) ;

6. Read the frequency of the specified clock.

SIMUL_GetClockFrequency (simulProcessor processor, int clockid, simulWord64
* pfrequency) ;

7. Set clock frequency function

SIMUL_SetClockFrequency (simulProcessor processor, int clockid, simulWordé64
* pfrequency) ;

8. Reads the time for one clock cycle.

SIMUL_GetClockCycle (simulProcessor processor, int clockid, simulTime *
ptime) ;

©1989-2024 Lauterbach API for TRACES2 Instruction Set Simulator | 14

9. Sets the time for one clock cycle.

SIMUL_SetClockCycle (simulProcessor processor, int clockid, simulTime *
ptime) ;

Explanation of terms appearing in the functions:

timerid timer identifier

mode timer mode

ptime pointer to time variable (in picoseconds)

pclock pointer to variable to receive clock number

func function responsible for timer operation

clockid clock identifier

pfrequency pointer to frequency variable (in Hz / cycle per second)

Timer mode depending on ‘mode’ variable:

SIMUL_TIMER_ABS ptime specifies absolute time calculated from the beginning of
simulation
SIMUL_TIMER_REL ptime specifies the number of clock cycles from now

SIMUL_TIMER_SINGLE single call

SIMUL_TIMER_REPEAT call at specific timer

SIMUL_TIMER_CLOCKS clock is increased with each step of simulator

For example, if a mode is set on (SIMUL_TIMER_REPEAT | SIMUL_TIMER_CLOCKS) then simulator calls
a timer with each step (depends on how many cycles equal one step on simulator such as ARM = 3).

Stall

The stall function can be used to stall the core (prevent instruction fetch/execution) for a certain time.

SIMUL_Stall (simulProcessor processor, int mode, simulTime * ptime) ;

©1989-2024 Lauterbach API for TRACES?2 Instruction Set Simulator | 15

Explanation of terms appearing in the functions:

mode

timer mode

ptime

defines set / returns value

The meaning of ‘ptime’ depends on ‘mode’ variable:

SIMUL_STALL_ABS

ptime specifies absolute time calculated from the beginning of
simulation

SIMUL_STALL_REL

ptime specifies the number of clock cycles from now

SIMUL_STALL_CLOCKS clock is increased with each step of simulator

Ports

The ports serve as communication between different models and also between models and a simulator.

To set port value in TRACE32:

port.set p.0 high

sets value ‘1’ on port 0.

port.set p.0 low

sets value ‘0’ on port 0.

Currently, there are 512 general-purpose ports and 8 (-1 to -8) special ports dedicated for communication
with simulator. To use ports in model designer has to register callback functions in Simul_Init in

‘model_name’.c file.

Number of ports used in specific function is defined by setting width variable. By using two variables from
cbs structure (cbs-> x.port.newdata and cbs-> x.port.olddata) we can find out whether there is change
and on which port. For more than one port, use function to determine which port has changed its value.

Functions operating on ports:

©1989-2024 Lauterbach

API for TRACE32 Instruction Set Simulator |

16

1. Set value port function.

SIMUL_SetPort (simulProcessor processor, int offset, int width, simulWord *
pdata) ;

2. Get value port function.

SIMUL_GetPort (simulProcessor processor, int offset, int width, simulWord *
pdata) ;

3. Port change function.

SIMUL_RegisterPortChangeCallback (simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private, int offset, int width) ;

Explanation of terms appearing in the functions:

offset port number

width number of ports

pdata set /get value

func function that supports an event
private variable output model

At the end function returns SIMUL_PORT_OK.

©1989-2024 Lauterbach API for TRACES2 Instruction Set Simulator | 17

Terminals

Terminal is used to display data, thus it is possible to simulate the graphic driver or similar device displaying
information in a dedicated window.

Functions operating on terminal:

1. Current state function.

SIMUL_StateTerminal (simulProcessor processor, int id);

2. Read data function.

SIMUL_ReadTerminal (simulProcessor processor, int id);

3. Write characters function.

SIMUL_WriteTerminal (simulProcessor processor, int id, int ch);

Explanation of terms appearing in the functions:

id terminal ID
private model variable
ch character to write on terminal

Terminal state is returned by following value.

SIMUL_STATE_RXREADY Terminal ready to read
SIMUL_STATE_TXREADY Terminal ready to write
SIMUL_STATE_NOTEXISTING There is no terminal

©1989-2024 Lauterbach

API for TRACE32 Instruction Set Simulator

18

Communication

Basic interface used for communication consists of general-purpose ports (0 to 511), dedicated ports lines -
1 (reset), -2 (interruption), -3 (NMI) [exact names can be found in Ports section in simul.h file] and registered
callback functions.

Model should report an interrupt event to simulator using a dedicated port. For interrupt handling in a
simulator (only for Interrupt Controller), please write appropriate functions. (if does not exist). Interrupt
processing should be confirmed by clearing a dedicated line. All accesses to memory (peripherals,
registers) have to be made through access type SIMUL_MEMORY_DATA, unless they are special
sequence of read / write, implemented in the target system through bus. In that case
SIMUL_MEMORY_HIDDEN access type should be used. Functions operating on normal type of access is
already written in a simulator. However for special type of access new function have to be written, bearing in
mind here that there are no variables associated with CTS.

Files

In PSM it is possible to operate on files, without using functions provided by standard header files. It is
important because TRACE32 acts on many platforms and operating systems. Therefore, functions defined
in simul.h file are used to let TRACES32 support various platforms and systems.

Functions operating on files:

1. Open file function.

SIMUL_OpenFile(simulProcessor processor, const char * filename, int mode) ;

2. Close file function.

SIMUL_CloseFile(simulProcessor processor, void * file);

3. Read file function.

SIMUL_ReadFile (simulProcessor processor, void * file, void * pdata,
int length) ;

©1989-2024 Lauterbach API for TRACES?2 Instruction Set Simulator | 19

4. Write file function.

SIMUL_WriteFile (simulProcessor processor, void * file, void * pdata,
int length) ;

5. Read line from file function.

SIMUL_ReadlineFile(simulProcessor processor, void * file, void * pdata,
int length) ;

6. Write line to file function.

SIMUL_WritelineFile(simulProcessor processor, void * file, void * pdata);

7. Set file position (returns position after operation).

SIMUL_SeekFile (simulProcessor processor, void * file, long pos, int mode) ;

Explanation of terms appearing in the functions:

filename Name of file

file File ID

mode Access mode

length Length of write / read data
pdata Data pointer

pos Position to set

Mode variable has following values for OpenFile:

SIMUL_FILE_READ Read a file

SIMUL_FILE_WRITE Write a file

©1989-2024 Lauterbach API for TRACES?2 Instruction Set Simulator |

20

SIMUL_FILE_CREATE Create afile)

SIMUL_FILE_APPEND Adding to a file
SIMUL_FILE_BINARY Binary file
SIMUL_FILE_ASCII ASCII file

Mode variable has following values for SeekFile:

SIMUL_FILE_SEEKABS Setting position in relation to the beginning of file
SIMUL_FILE_SEEKREL Setting position in relation to the current position in file
SIMUL_FILE_SEEKEND Setting position in relation to the end of file

Deprecated functions

Below functions are deprecated and shall not be used in new implementations. The functions are kept as
part of the interface to maintain backwards compatibility.

SIMUL_CreateSharedResource (simulProcessor processor, int size);

SIMUL_ReadSharedResource (simulProcessor processor, int offset, int len,
void * pdata) ;

SIMUL_WriteSharedResource (simulProcessor processor, int offset, int len,
void * pdata) ;

©1989-2024 Lauterbach API for TRACERS?2 Instruction Set Simulator | 21

Practical script commands

To properly support the model in TRACE32 and easier usage model by other people, initscript should be
created. Task of initialization scripts is prepare model to work with a simulator as if the initialization has been
performed by MCU procedure in TRACES32.

Initscripts are created in files with the extension *.CMM.

Commands used in initialization script for Peripheral simulation model (more details see General
Commands Reference Guide):

1. Start command and End command.

DO Start script

ENDDO End of script

Command "DQO" begin the script, and command "ENDDQO" inform of the completion.

2. CPU select command.

Format: SYSTEM.CPU <cpu>

<cpu>: C64X, ARM7TDMI, ARMOYE, C6455,...

Specify the exact CPU type used on your target. This is required to get the matching PER file and other CPU
specific settings (e.g. predefined settings for on-chip FLASH).

3. Port name set command.

Format : NAME.SET port.<number> <port_name>
<number>: -8,-7,...511,512.

<port_ interrupt, timer, model, ...
name> :

Gives name of selected port. All ports used in system have to be listed.

©1989-2024 Lauterbach API for TRACES?2 Instruction Set Simulator | 22

4. Deletes the specified model from TRACE32 memory command.

Format : SIM.UNLOAD <path to model_name.dll>
<path to arm timer.dll, vic_ lpec.dll, ...
model_ name

.dll>:

Selected simulation model is removed from TRACE32 memory. Command without specified model, clears
all simulation models from TRACE32 memory.

5. Loads the specified model to TRACE32 memory command.

Format : SIM.LOAD <model name.dll> [parameters]
<path ../model/arm timer.dll, c:/vic_lpc.dll,...
dll>:

[parameter "timer" "cpu"

s]:

Selected simulation model is loaded into TRACE32 memory. If the model has parameters, then have to be
provided. In other action model can be unpredictable.

6. System up command.

Format: SYSTEM.UP

After this command all libraries are initialized.

7. Performs an operation on the address command.

Format : DATA.ASSEMBLE [<address>] <mnemonic>
<address>: 0x£f£f000000, 0xbc80a000,...
<mnemonic> nop, subs, str, move, ...

Data.Assemble is used to replace the code at memory <address> with the assembler instruction specified
by <mnemonic>; <mnemonic> describes the instruction with respect to the CPU-mnemonic.

©1989-2024 Lauterbach API for TRACES?2 Instruction Set Simulator | 23

8. Displaying instruction window command.

Format: DATA.LIST

Display format (in assembler, mixed or HLL) is selected dynamically, depending on the current debug mode.
If no address is specified, the window tracks to the value of the program counter. The window is only
scrolled, if the bar moves outside of a predefined subwindow.

9. Displays memory area in a window command.

Format : DATA.DUMP <range>

<range>: 0x0--0xff, Oxff££f8000--0x£ff££90a0, ...

If a single address is selected this address will define the windows' initial position only. Scrolling makes other
memory contents visible. When selecting an address range only the defined data range can be dumped.
Range definition is useful whenever the addresses following are read protected (e.qg., in the case of I/O) or
more than one page will be printed. This command allows to preview the memory area. The area is
updated every step. When a window is displayed reading is made with each step.

10. Sets a value in the specified register command.

Format : REGISTER.SET <register> <value>
< r0, rl, pc,...

register>:

<value>: 0x4,20,1,0xf,0,...

This command sets a given value into the selected register. The register names different for each processor
architecture.

11. Set a breakpoint at address command.

Format: BREAK.SET <address>

<address>: 0xf£000000, 0xbc80a000,...

Command useful for observing system behavior in certain program spots. Without parameters the
command opens a dialog window for setting breakpoints.

©1989-2024 Lauterbach API for TRACERS?2 Instruction Set Simulator | 24

12. Sets a value with a specified width, at the selected address command.

Format : DATA.SET <address> <width> <value>
<address>: 0xf£000000, 0xbc80a000, ...
<width>: %byte, %word, %long, .. .

<value>: 0x4,20,1,0xf,0,...

This command allows to set the memory area value. For example, registers are reset from selected area
simultaneously or overwritten any other value.

13. Opens the specified PER file command.

Format : PER <path to_per file>

<path_to_ ../per/c64.per, C:/arm/per/ARM9.per, ...
per_file>:

Command opens PER file under the specified location. The peripherals of integrated microcontrollers can
be displayed and manipulated with the command PER. The command offers a free configurable window for
displaying memory or i/o structures. So it is possible to display the state of peripheral chips or memory
based structures very comfortably.

14. Introduce program code into the simulator command.

Format : DATA.PROGRAM <address> <path to_asm file>
<address>: 0x£f£000000, 0xbc80a000, ...

<path_to_ ../program.asm, C:/code/program.asm, ...
per_file>:

This command creates a window for editing and assembling a short assembler program. Without a specified
filename the file T32.ASM is generated. If the Compile button is used, syntax errors and undefined labels will
be detected. The resulting program will be assembled for the specified address and saved to memory. The
labels entered will be added to the symbol list.

©1989-2024 Lauterbach API for TRACERS?2 Instruction Set Simulator | 25

Peripheral model example

Practical example of timer simulating model is designed to show the whole process of programming,

implementation and maintenance.

Environment

Follow these steps:

In Visual Studio create ‘New Project’ by choosing File -> New -> Project....

In a “New Project” window, select Win32 -> Win32 Console Application

Hew Project E]E]
Froject types: Templates: @E=
= Vs CH+ wisual Studio mstalled templates
ST
Win3E
General
My Templakes
[lsearch Online Tamplates.
A praject for creating a Win32 console applcation
Mame: <Enter_name
Location: i v Browse, ..
Salutian: Create new Saldtion | [Z]create drectory for solltion
Sohtion Marme: <Enter_nama >
o [cancel

In ‘Name’ field, enter the name of new model (in this case is a “timer”).

In ‘Location’ field, enter model location (in this case is a “C:\timer”).

Click Ok button to proceed.

In “Win32 Application Wizard” window, click on ‘Application Settings’ then select DLL as ‘Application type’

and click Finish button.

| 26

©1989-2024 Lauterbach API for TRACES?2 Instruction Set Simulator

Win32 Application Wizard - Timer model

Welcome to the Win32 Application Wizard

These are the current project settings:
» Console application

Click Finish from any window bo accept the current settings.

Overview
Application Settings

After you creste the project, see the project's readme. bt file for information
about the project features and files that are generabed.

[THests | [Firish

) (Cconcel]

Win32 Application Wizard - Timer model

Application Settings

Application bype:
() Windows application
() Console application
[O]TN
() Static library
Addtional options:
[Emeky profect
[Export symbols
Erecompiled header

Orverview
Applcation Settings

Add comman header files For:
Can
O

Firsh | [concel]

Once our programming environment is ready, we need to create a files structure of our model. The project

consists of 4 source files: simul.h, simul.c and created by us files “model_name”.c and “model_name”.def

©1989-2024 Lauterbach

API for TRACE32 Instruction Set Simulator

27

@9 timer - Microsoft Visual C++ [design] - timer.c

File Edit Wiew

Ready

Project Build Debug Tools Window Help
@ - Tj - =& ﬁ é{; p Debug ~ [ptimestamp - ’v’
simul.c kimer.c | simul.by
2 RRED =
g‘ [&A Solution 'timer' (1 project)
g =l = timer
= (5] References
£
= aHader Files add » |ﬁ:| £dd New Ttem,..
simul.by
[Resource Fil & Cut 7] Add Existing Ttem...
Copy ""_| Mew Folder
Add Class...
¥ Remoye ‘g AddResource...
Rename
Properties

To ‘Source Files’ add: simul.c, ‘model_name’.c and ‘model_name’.def (Module Definition File). To Header
files add: simul.h. Content ‘model_name’.def file should look like this:

LIBRARY

DESCRIPTION

EXPORTS

simple_port
'TRACE32 Hardware Simulation Model'

SIMUL_Interface

=
{ Debug =l W crccft sl Shocke 53 ko
L werson: sl Shace 203

DMk e ok Ukbore Herssems Pamec o

= o= er
= bempert Sefreentis | == s Shucke Sohton Usst Do
=] 1w ke
— = [—ier
E A il Bl T prect
2= sarn b= B
A

MNarz:

P¥ Flpjs Wik Uhdins Hasdia Fooo i
thner Py gl

=| spwtofntionFi m Bk

=k ks

)

src

©1989-2024 Lauterbach

API for TRACE32 Instruction Set Simulator

28

After adding all required files structure should look like this:

#% Microsoft Development Environment [design] - timer.c

File Edit Miew Project Build Debug Tools Window Help
-t = p Debug v ptimestamp = »
simul.c kimer.c | simul. b

| B0 -]

% :
(5] References

-1~ =3 Source Files
&9 simul.c
@ timer.c
timer, def

=l 3 Header Files
simul.by

(2 Resource Files

®0g|oo L >§

-
4 3

Ready

Source code listing

First what designer need to do, is to include a “simul.h” library, which contains all necessary functions. For
better readability of the code, registers offsets should be defined as “short_name”_OFFSET. Base address
should be also defined as “module_name”_BASE. “NUM_OF_REGS” definition specifies a number of
registers in the module.

Example:

“Timer 0 module” -> TIMERO_BASE

“Control register” -> CTR_OFFSET

#include “simul.h”

#define NUM OF REGS 5

#define COUNT OFFSET 0x0000
#define CTR OFFSET 0x0004
#define SVAL OFFSET 0x0008
#define EVAL OFFSET 0x000c
#define IR OFFSET 0x0010
#define TIMERO BASE 0xFF000000

©1989-2024 Lauterbach API for TRACERS?2 Instruction Set Simulator | 29

Type definition of 32 bits width register

typedef struct
{

simulWord32 count, ctr, sval, eval, ir;

Regs;

typedef struct
{

simulWord32 startaddress;

int bustype, reset,work, intport, chport;
Regs regs;
simulTime ctimestamp;
void * ptimer;
}
Timer;

Function declaration used to link registers offsets with module base address. Inside there are previously
defined registries offsets. SimulWord32 specifies variables type.

static simulWord32 regs offset [NUM OF REGS] = {
COUNT OFFSET, CTR OFFSET, SVAL OFFSET, EVAL OFFSET, IR OFFSET
}i

Function declaration used to write values in selected register. Variables have to be related to the module
registers.

void * regwrite func[NUM OF REGS] = {
COUNT Write, CTR Write, SVAL Write, EVAL Write, IR Write
i

©1989-2024 Lauterbach API for TRACES2 Instruction Set Simulator | 30

Function declaration used to read values from selected register. Variables have to be related to the module
registers.

void * regread func[NUM OF REGS] = ({
COUNT Read, CTR Read, SVAL Read, EVAL Read, IR Read
b

Registers initialization function. Each register is linked to module base address by "for" loop and calls two
callback functions. First one is responsible for writing and second one is responsible for reading registers
values.

static void Regs Init (simulProcessor processor, Timer * timer)
{
simulWord from, to;

int 1i;

for (i = 0; i < NUM OF REGS; i++)

{
from = timer->startaddress + regs offset[i];
to = from + 3;

SIMUL RegisterBusWriteCallback (processor, regwrite func[i],
(simulPtr) timer, timer->bustype, &from, &to);

SIMUL RegisterBusReadCallback (processor, regread funcl[i],
(simulPtr) timer, timer->bustype, &from, &to);

}

Write function for a particular register. This function have to be attributed to each register of access type as
WRITE or READ/WRITE.

static int SIMULAPI COUNT Write (simulProcessor processor, simulCallback-
Struct * cbs, simulPtr private)
{
Timer * timer = (Timer*) private;
SIMUL InsertWord(processor, &timer->regs.count, 32, &cbs->x.bus.address,
cbs->x.bus.width, &cbs->x.bus.data):;
return SIMUL MEMORY OK;

©1989-2024 Lauterbach API for TRACERS?2 Instruction Set Simulator | 31

Read function for a particular registry. This function have to be attributed to each register of access type as
READ or READ/WRITE.

Note: If register is visible in TRACES32 window, then function is called with each step.

static int SIMULAPI COUNT Read(simulProcessor processor, simulCallback-
Struct * cbs, simulPtr private)
{
Timer * timer = (Timer*) private;
SIMUL ExtractWord(processor, &timer->regs.count, 32, &cbs->x.bus.address,
cbs->x.bus.width, &cbs->x.bus.data);
return SIMUL MEMORY OK;

In write function, you can place a direct function of the register handle i.e. operations on the register are
performed at the same cycle as at write to it. All operations are performed on variable such as “reg” and a
result is assigned to the register.

/* CTR (Control Register) */

static int SIMULAPI CTR Write (simulProcessor processor, simulCallbackStruct
* cbs, simulPtr private)

{

Timer * timer

= (Timer*) private;
simulWord32 reg;
SIMUL InsertWord (processor, ®, 32, &cbs->x.bus.address,

cbs->x.bus.width, &cbs->x.bus.data);

if (reg & 0x2) /* Timer reset */
{ timer->regs.count = 0x0;
reg = 0x0;
timer->regs.sval = 0x0;
timer->regs.eval = 0x0;
}
if (((reg & 0x70)==0x20) || ((reg & 0x70)==0x60))
{ timer->work=1;

}

timer->regs.ctr = reg & Oxffffffff;
return SIMUL MEMORY OK;

Function returns "SIMUL_MEMORY_OK".

Timer handle function. The operations are executed with each step. Inside this function is implemented:
increment / decrement value of the register, bit masks, ect.

©1989-2024 Lauterbach API for TRACES?2 Instruction Set Simulator | 32

For example, in place of stars may be located functions corresponding to the various modes of timer. By
setting the corresponding bits in Control register, different operating modes are selected.

/* ——— IntReq timer --- */

int SIMULAPI IntReqTimer (simulProcessor processor, simulCallbackStruct *
cbs, simulPtr private)
{

Timer * timer = (Timer*) private;

simulWord data;

if (timer->regs.ctr & 0x1) /* Timer enabled */
{

timer->regs.count++;

}
switch ((timer->regs.ctr >> 4) & 0x7)

{

case 0x0:

*
*

*

break;

return SIMUL TIMER OK;

Function returns "SIMUL_TIMER_OK".

©1989-2024 Lauterbach API for TRACERS2 Instruction Set Simulator | 33

Ports are used for communication between models. Each port has its own number and may take a state of 0
or 1. Port -2 enables interruption of processor. To enable interruption, set ‘1’ on port, so then after a
fulfillment of a condition, port will be on ‘1.

In Intport variable stores interruption port number.

if ((timer->regs.ir))
{
data = 1;
SIMUL SetPort (processor, timer->intport, 1, &data);

After interrupt handling is completed, exit from interrupt have to be done by clearing a state of port
responsible for it.

/* IR (IR Register) */

timer->regs.ir &= ~(reg & 0xff);
if (!timer->regs.ir) /* deassert interrupt */
{
simulWord data = 0;
SIMUL SetPort (processor, timer->intport, 1, &data);

©1989-2024 Lauterbach API for TRACES2 Instruction Set Simulator | 34

Function responsible for a timer reset is called after model initialized. Because TIMER_Reset function is
called after initialization, simulation timer (not timer PSM) can be started by SIMUL _StartTimer function.
Depending on module needs, different controls flags can be used.

Presented timer model uses two flags SIMUL_TIMER_REPEAT and SIMUL_TIMER_CLOCKS.
SIMUL_GetClock function returns number of clock cycles since the beginning of the simulation, increasing
on each step.

static int SIMULAPI TIMER Reset (simulProcessor processor,
simulCallbackStruct * cbs, simulPtr private)
{

Timer * timer = (Timer*) private;

simulTime time,nowtime;

memset (&timer->regs, 0x00, sizeof (timer->regs));

timer->reset = 0;

SIMUL GetClock (processor, 0, &nowtime);
time =1;

SIMUL StartTimer (processor, timer->ptimer,

SIMUL TIMER REPEAT | SIMUL TIMER CLOCKS, &time);

return SIMUL RESET OK;

Function returns "SIMUL_RESET_OK".

©1989-2024 Lauterbach API for TRACES2 Instruction Set Simulator | 35

The most important in simulation module is initialization function. Is called only once at the very
beginning. All callback function here are placed. In presented timer model,
SIMUL_RegisterResetCallback function responsible for a timer reset and Regs_Init function
responsible for events handling in the registers, have been called. There are also declarations of
variables. Because there are no global variables in a model, function SIMUL_Alloc is used.

int SIMULAPI SIMUL Init(simulProcessor processor,
simulCallbackStruct * cbs)
{

Timer * timer;

int 1i;

strcpy (cbs->x.init.modelname, @ DATE " Timer Model");
timer = (Timer*) SIMUL Alloc (processor, sizeof (Timer));
timer->bustype = 0;

timer->intport = =-2;

timer->startaddress TIMERO BASE;

Regs Init (processor, timer);

SIMUL RegisterResetCallback (processor, TIMER Reset, (simulPtr) timer);

timer->ptimer = SIMUL RegisterTimerCallback (processor, IntReqTimer,
(simulPtr) timer);

TIMER Reset (processor, cbs, timer);

return SIMUL INIT OK;

Function returns "SIMUL_INIT_OK".

©1989-2024 Lauterbach API for TRACES2 Instruction Set Simulator | 36

Each model can be called with parameters. Correct handling of model parameters must be ensured. The "i"
variable specifies the number of checked parameters (depending on needs of simulation model). Presented
timer is set (by default) to base address stored in TIMERO_BASE variable (under condition that as a first
parameter is "timer" string), but if necessary it can be overwritten with any other value. Second parameter is
the number of port (responsible for interrupt). By default value is stored in variable and is equal "-2" but if
necessary it can be overwritten with any other value. Function at the end calls warning function, which is
designed to notify module parameters.

for (1 = 1; i <= cbs->x.init.argc - 1; i++)
{
if (1 == 1)
{
if (strstr(cbs->x.init.argp[l], "timer") != NULL)
timer->startaddress = TIMERO BASE;
else
timer->startaddress = cbs->x.init.argpport[l];

continue;

else 1if (i == 2)

{

if (strstr(cbs->x.init.argp[2], "cpu") != NULL)
timer->intport = SIMUL PORT INTERRUPT;

else if (strstr(cbs->x.init.argpl[2], "noport") == NULL)
timer->intport = cbs->x.init.argpport[2];

continue;

SIMUL Warning (processor, "usage parameters: [<base address|name>
<interrupt port>]");
return SIMUL INIT FATIL;

©1989-2024 Lauterbach API for TRACES2 Instruction Set Simulator | 37

Initialization scripts

Following script provides settings for TRACE32 environment. The script contains a set of commands to run
timer with initial settings such as work mode, initial and final value of incremented register, interrupt options,
etc. The script also contains commands for opening and distribution of appropriate windows in TRACE32.

The script should look like this:

Header of script contains such data as module name, developer, major functions, etc.

; 'TIMER' Model Initialization Script
, DATA (NICK)

A brief comment on the specific characteristics (ports) [not required]

’

SIM.UNLOAD command is used to clean the memory configuration for a simulation model. After SIM.LOAD
command should be a path to DLL library that contains implemented module.

; ——— Timer initialization script ---

sim.unload

sim.load ../timer/Debug/timer.dll "timer" "cpu"

per ../per/timer.per
SYStem.Up
d.1l

This sequence allows to set model in infinite loop, after 3 steps.

; ———- processor infinite loop ---
d.a 0x0 nop

d.a 0x4 nop

d.a 0x8 b $ - 8; infinite loop

©1989-2024 Lauterbach API for TRACES?2 Instruction Set Simulator | 38

When interrupt event occurred, interrupt have to be handled and exit. At the time of interrupt event, program
jumps to 0x18 address where is procedure to clear interrupt. In next step program return to an infinite loop.

; ——- 1lnterrupt service routine ---
d.a 0x18 str r0, [rl, #0x10]; clear interupt flag
d.a Oxlc subs pc, rl4d, #4; return from interrupt

Configuration for ARM core. Set program counter to 0x0 value. The register r0 holds value to be entered in
the “interrupt register”. The register r1 holds timer base address.

--- ARM core configuration ---

.8 pc 0x0; set program counter to 0x0
.s r0 0x1; value to write to register
.s rl 0xff000000; base address of Timer

B B R~

Configure timer registers. Set timer to appropriate operating mode determines the initial and final value
(depending on the mode) and begins counting.

--- Timer configuration ---

d:0xf£f000004 %1 0x59; timer enable,loop,from sval to eval
d:0x££000008 %1 0x00; start value

:0xf£f00000c %1 0x20; end value

I 0; enable interrupts

0x18; set breakpoint on beginning of interrupt

o8 9 Q-
n n nn o
Q

For better visibility, set windows position in TRACE32. The easiest way to do it is deploy windows as
intended and then save the settings by clicking on the bookmark Window / Store Windows to.... Initialized
model has a preview of all functions.

/ TRACE32
Fie Edt View Var Bresk Run CPU Misc Trace Perf Cov RUGLENE Help
HE +&¢ » 10 2 W = 8 By Cascade
§ = Tile Horizontaly
______________ L 0 mie vertically
Bp | ean ArTaNge Icons
adqr,-‘l'ine code

SR 00000004
SR :00000008]|:/

Create Duplcate window
¥ Clear Windows on Page

SR :0000000C
SR:00000010
SR:00000014
SR:00000018
5R:0000001¢C
SR:00000020
SR:00000024
SR:00000028
SR:0000002¢
SR :00000030 |00000000

|

© n17345)

©1989-2024 Lauterbach API for TRACERS?2 Instruction Set Simulator | 39

Windows position settings can be copy to the initialization script.

B::

TOOLBAR ON

STATUSBAR ON

WINPAGE.RESET

WINCLEAR

WINPOS 0.0 19.154 70. 4. 15. 1. w001
d.dump 0xff000000--0xf£f00000f

WINPOS 0.0 0.0 56. 14. 15. 1. w002
WINTABS 10. 10. 25. 62.

d.1l

WINPOS 58.857 12.077 47. 13. 0. 0. w000
per ../per/timer.per

WINPOS 60.143 0.23077 46. 9. 0. 0. w003
r

WINPAGE.SELECT P000

enddo

File Edit “iew WYar Break Run CPU Misc Trace Peff Cov Window Help

MKk +¢¢ Pl 2 2R & Sum sas @28 t4 D5 LR %

1 R
FFO0OO0

0
0
o
0 R
1]
o
o
1]

U
.¥D
L1
LH0:10]
LT 14, #0x4
ro,r0

0
SR: (N ula] r Ny
SR :0000002C (000000 ndeq r0,r0,r0 AL
SR :00000030 |000000 ro,ro,ro COUNT 00000013
£ (TR 00000009 TIM_REACH Reached
Enabled

£ To EVAL end value
Enabled
Mo interrupt
Ho reset
Enabled

0 4 01234567
00000013 0000000 503 bt
00000000 00000020 RESE_MEN

WAL 00000000
Q0000020
Qooooooo

) (_va) PeRr J(svsien J[Step J[b [rwims]

stopped MiX P

©1989-2024 Lauterbach API for TRACES32 Instruction Set Simulator | 40

	API for TRACE32 Instruction Set Simulator
	Overview
	Peripheral Simulation Model
	Standard function
	Registers
	Timers
	Stall
	Ports
	Terminals
	Communication
	Files
	Deprecated functions

	Practical script commands
	Peripheral model example
	Environment
	Source code listing
	Initialization scripts

