
MANUAL

API for TRACE32
Instruction Set Simulator

API for TRACE32 Instruction Set Simulator

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 TRACE32 Instruction Set Simulators .. 

 API for TRACE32 Instruction Set Simulator .. 1

 Overview .. 3

 Peripheral Simulation Model .. 7

 Standard function 7

 Registers 11

 Timers 14

 Stall 15

 Ports 16

 Terminals 18

 Communication 19

 Files 19

 Deprecated functions 21

 Practical script commands ... 22

 Peripheral model example .. 26

 Environment 26

 Source code listing 29

 Initialization scripts 38
API for TRACE32 Instruction Set Simulator | 2©1989-2024 Lauterbach

API for TRACE32 Instruction Set Simulator

Version 06-Jun-2024

This document describes the implementation process and the basic use of peripheral simulation model in
TRACE32.

Overview

PSM - Peripheral Simulation Model contains functions and registers of corresponding physical modules
supported by MCU. It is additional program (overlay) for simulated core. To complete the tasks, core
operates on registers located in physical memory of MCU. PSM is a software overlay for memory area
occupied by peripheral module. For an accurate simulation of microprocessor’s unit, interaction between a
core and peripherals module is required. PSM provides functions responsible for interaction between core
and other modules. PSM is able to simulate any module which significantly increases functionality of the
entire simulation environment.

The processor retrieves and sends data from / to memory shared with other MCU modules, hence the need
to simulate not only the processor core, but also cooperative modules.

Simulation of microprocessor’s system without the module requires manual setting of the appropriate bits in
registers of peripheral module (important for proper software operation). For proper registers' configuration
to which a processor sends / receives data, user have to perform time-consuming work with a
documentation. Bits in a registers are frequently modified with an each clock cycle.
API for TRACE32 Instruction Set Simulator | 3©1989-2024 Lauterbach

By Peripheral Simulation Models complicated settings are done automatically. Software takes over the role
of an interaction between model and simulator and between other modules. Using PSM increases possibility
of checking a software functionality in implemented microprocessor’s system. An important feature of this
solution is to eliminate a human error factor in process of modifying registers contents while working with
documentation.

Simulation without Peripheral Simulation Models. Simulation with Peripheral Simulation Models.

Ports are used for communication between models, processor simulator and user. Currently there are over
512 ports. Ports are the primary communication interface provided by TRACE32.

PSM is stored in a DLL. The functions and resources of the DLL can be used directly by TRACE32. The DLL
is not an independent program. Libraries are dynamically imported into the memory at the time specified by
a programmer (mostly when actually needed), hence a definition of dynamically linked library. DLL files are
often used in programs as plug-ins.

The module contained in a DLL can be loaded using the appropriate command in TRACE32
API for TRACE32 Instruction Set Simulator | 4©1989-2024 Lauterbach

Simulation process:

Microprocessor’s system is often simulated by executing sequence of steps and observing the program's
response. In simulated system are some operations CPU performs itself, such as arithmetic-logic
operations, copying, etc. Those operations do not need to cooperate with other modules and program may
be continued. Nevertheless when it comes to cooperation between CPU and other modules (most cases) it
is necessary to ensure adequate interaction in a simulator. PSM performs its functions (data change in
registers, interruption send, decrementation, etc.) and after those functions are completed, program is
continued until the very end.
API for TRACE32 Instruction Set Simulator | 5©1989-2024 Lauterbach

For better understanding of simulation operating rules it is advised to remember that the simulation is a
virtual representation of real processes and takes place in computer memory. TRACE32 simulation
environment allows to simulate any system. TRACE32 reserves area of memory for a simulated system and
in this area simulator performs operations. All performed operations and created variables are stored in
TRACE32 memory.

TR
A
C
E3
2

O
pe

ra
tio

n
S

Y
S

TE
M

Core simulator

Peripherals
Simulation models

Interrupt
Controller

TIMER
UART
PWM
USB
* * *
* * *

TRACE32 environment
API for TRACE32 Instruction Set Simulator | 6©1989-2024 Lauterbach

Peripheral Simulation Model

This section describes: functions frequently used in the model, operations on the registers, communication
in the simulation, IO operations and the basic commands in a initialization script.

Standard function

Callback functions are used to handle events such as reset, exit from TRACE32, GO,BREAK, timers,
changes on ports lines and changes of the registers’ contents in model memory (see the file simul.h). These
functions are called when registered events are performed, so it is required to initialize them in a SIMUL_Init
function. The memory allocation for our variables should be done inside SIMUL_Init function (do not use
global variables). Allocation is done with SIMUL_Alloc function.

Event handler functions:

1. Event reset callback function.

Register callback function to handle simulation model reset.

2. Event read callback function.

Register callback function to handle register events in simulation model. Function responsible for reading
register (separately for each of registers).

3. Event write callback function.

Register callback function to handle register events in simulation model. Function responsible for writing to
register (separately for each of registers).

SIMUL_RegisterResetCallback(simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private);

SIMUL_RegisterBusReadCallback(simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private, int bustype, simulWord *
paddressFrom, simulWord * paddressTo);

SIMUL_RegisterBusWriteCallback(simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private, int bustype, simulWord *
paddressFrom, simulWord * paddressTo);
API for TRACE32 Instruction Set Simulator | 7©1989-2024 Lauterbach

4. Event port change callback function.

Register callback function to handle port changes in simulation model.

5. Event command callback function.

Register callback function to handle a commands in TRACE32 environment. This function returns
SIMUL_COMMAND_OK or SIMUL_COMMAND_FAIL.

6. Event exit from TRACE32 callback function.

Register callback function to handle exit from a model in TRACE32 environment. This function returns
SIMUL_EXIT_OK.

7. Event GO callback function.

Register callback function to handle GO command in TRACE32 environment. This function returns
SIMUL_GO_OK.

8. Event Terminal callback function.

Register callback function to handle terminal in TRACE32 environment.

SIMUL_RegisterPortChangeCallback(simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private, int offset, int width);

SIMUL_RegisterCommandCallback(simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private);

SIMULAPI SIMUL_RegisterExitCallback(simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private);

SIMULAPI SIMUL_RegisterGoCallback(simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private);

SIMUL_RegisterTerminalCallback(simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private, int id);
API for TRACE32 Instruction Set Simulator | 8©1989-2024 Lauterbach

9. Event break callback function.

Register callback function to handle BREAK command in TRACE32 environment. This function returns
SIMUL_BREAK_OK.

10. Reallocation (changes) register address function.

Register callback function to handle addresses changes in simulation model registers in TRACE32
environment.

11. Register timer function.

Register callback function to handle timers in a simulation model in TRACE32 environment.

Explanation of terms appearing in the functions:

Please note that the maximum number of ports (width) for a single registration is 32, to declare other ports
offset variable have to be changed.

The model can be loaded with parameters (types and kinds of parameters can be defined by the user), e.g.
base module address, number of interrupts in INTC etc.

SIMULAPI SIMUL_RegisterBreakCallback(simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private);

SIMUL_RelocateBusCallback(simulProcessor processor, void * callbackid, int
bustype, simulWord * paddressFrom, simulWord * paddressTo);

SIMUL_RegisterTimerCallback(simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private);

func Function that supports an event

private Global variable of our model

bustype Variable of the structure of CBS

offset Port from which the start

width Amount of ports

paddressFrom Start address of register

paddressTo End address (paddressFrom + regsize)
API for TRACE32 Instruction Set Simulator | 9©1989-2024 Lauterbach

Access to this data can be obtained through the structure simulCallbackStruct*cbs in an initialization
function.

The exact description of structure is in ‘simul.h’ file.

There are standard functions which are designed to handle the model. For example, display of warning
messages, memory allocation, etc.Standard functions:

1.Formated displaying.

Function used to display text message in TRACE32 environment.

2. Displaying warnings in TRACE32 command line.

Function used to display warnings in TRACE32 environment.

3. Stopping simulation in TRACE32.

Function used to stop simulation in TRACE32 environment.

4. Updated data TRACE32.

Function used to update data in TRACE32 environment.

cbs-> x.init.argc Indicated the number of parameters (value “1” means no
parameters)

cbs-> x.init.argpbustype[1] Indicates the type of bus. Value of that variable should
stored in the main structure as a bustype variable (for future use)

cbs-> x.init.argpport [x] stores parameters of int type

cbs-> x.init.argp [x] stores parameters of char* type

SIMUL_Printf(simulProcessor processor, const char *format, ...);

SIMUL_Warning(simulProcessor processor, const char *format, ...);

SIMUL_Stop(simulProcessor processor);

SIMUL_Update(simulProcessor processor, int flags);
API for TRACE32 Instruction Set Simulator | 10©1989-2024 Lauterbach

5. Allocation of memory for variables.

Function used to allocate memory in TRACE32, for variables used in a simulation model.

6. Deallocate memory for variables.

Function used to free memory in TRACE32 environment.

7. Get current endian (Little = 0).

Function used to get a current endian settings used in a simulation model.

Registers

Model should simulate all types of registers:

For each register, there should be two functions (depending on register access type). One responsible for
reading and one for writing a certain area of memory (register). These functions should be in Simul_Init
function in ‘model_name’.c file (these are callback functions).

SIMUL_Alloc(simulProcessor processor, int size);

SIMUL_Free(simulProcessor processor, void * ptr);

SIMUL_GetEndianess(simulProcessor processor);

RO read only register

R/W read write register

W write register

RC read clear by 0 register

R1C read clear by 1 register

R/W read write register
API for TRACE32 Instruction Set Simulator | 11©1989-2024 Lauterbach

For each function that supports register (memory) designer can determine what kind of access type is being
executed by TRACE32, whether it is being read by peripheral file or being accessed by CPU. According to
values in the variable cbs->x.bus.cycletype:

Register type 'RO' is simulated by not executing callback function responsible for writing. The register type
'W' is simulated by not executing callback function responsible for reading, while other registers are
simulated in similarly way according to privileges.

Functions operating on registers in model:

1. Read memory function.

Function used to read memory from specified area in TRACE32 environment.

2. Write memory function.

Function used to write memory to specified area in TRACE32 environment.

3. Insert function (smaller word to a greater word). Such as 8-bit to 32-bit.

Function used to insert a smaller word in the greater word.

4. Extract function (smaller word from a greater word). Such as 8-bit from 32-bit.

SIMUL_MEMORY_HIDDEN Access peripheral file or simulation bus

SIMUL_MEMORY_DATA CPU access through instructions such as load

SIMUL_MEMORY_FETCH CPU load opcode

SIMUL_MEMORY_DMA DMA

SIMUL_ReadMemory(simulProcessor processor, int bustype, simulWord *
paddress, int width, int cycletype, simulWord * pdata);

SIMUL_WriteMemory(simulProcessor processor, int bustype, simulWord *
paddress, int width, int cycletype, simulWord * pdata);

SIMUL_InsertWord(simulProcessor processor, simulWord * ptarget, int
wordwidth, simulWord * paddress, int width, simulWord * pdata);

SIMUL_ExtractWord(simulProcessor processor, simulWord * psource, int
wordwidth, simulWord * paddress, int width, simulWord * pdata);
API for TRACE32 Instruction Set Simulator | 12©1989-2024 Lauterbach

Function used to extract a smaller width word from a greater width word.

5. Data save function.

Function used to save a value of specified word.

6. Data load function.

Function used to load a value from specified word.

Explanation of terms appearing in the functions:

In supported registers functions it is required to set a cbs-> x.bus.clocks variable which is responsible for
number of cycles of access to these functions.

The cbs.x.bus->address variable stores address of read or write. The access type is stored in
cbs.x.bus>width variable - it is possible to write an 8, 16-bit or 32-bit register. To avoid misunderstandings it
is recommended to write a functions to handle hazardous situations, or use SIMUL_InsertWord /
SIMUL_ExtractWord when these registers are supported. Write / read data are transmitted in
cbs.x.bus>data variable.

At the end function returns SIMUL_MEMORY_OK.

SIMUL_SaveWord(simulProcessor processor, void * ptarget, int width,
simulWord * pdata);

SIMUL_LoadWord(simulProcessor processor, void * psource, int width,
simulWord * pdata);

bustype type of bus

paddress address

width width in bits

wordwidth width of the object on which operations are executed

cycletype access type, eg hidden

pdata data to write / read

ptarget target to save

psource source to load
API for TRACE32 Instruction Set Simulator | 13©1989-2024 Lauterbach

Timers

Timers are used to measure time and are calculated relative to TRACE32. Each timer used in a model have
to be registered in the initialization function (Simul_Init). Timer needs to be started using SIMUL_StartTimer
function and can be stopped using SIMUL_StopTimer function. It is also possible to retrieve a current
simulation time etc.

Functions operating on timers:

1. Start timer function. Function used to start selected timer in the simulation model.

2. Stop timer function. Function used to stop selected timer in the simulation model.

3. Stop all timers function. Function used to stop all timers in the simulation model..

4. Read the time since the start of the simulation.

5. Read number of clock cycles since the start of the simulation.

6. Read the frequency of the specified clock.

7. Set clock frequency function

8. Reads the time for one clock cycle.

SIMUL_StartTimer(simulProcessor processor, void * timerid, int mode,
simulTime * ptime);

SIMUL_StopTimer(simulProcessor processor, void * timerid);

SIMUL_StopAllTimer(simulProcessor processor);

SIMUL_GetTime(simulProcessor processor, simulTime * ptime);

SIMUL_GetClock(simulProcessor processor, int clockid, simulTime * pclock);

SIMUL_GetClockFrequency(simulProcessor processor, int clockid, simulWord64
* pfrequency);

SIMUL_SetClockFrequency(simulProcessor processor, int clockid, simulWord64
* pfrequency);

SIMUL_GetClockCycle(simulProcessor processor, int clockid, simulTime *
ptime);
API for TRACE32 Instruction Set Simulator | 14©1989-2024 Lauterbach

9. Sets the time for one clock cycle.

Explanation of terms appearing in the functions:

Timer mode depending on ‘mode’ variable:

For example, if a mode is set on (SIMUL_TIMER_REPEAT | SIMUL_TIMER_CLOCKS) then simulator calls
a timer with each step (depends on how many cycles equal one step on simulator such as ARM = 3).

Stall

The stall function can be used to stall the core (prevent instruction fetch/execution) for a certain time.

SIMUL_SetClockCycle(simulProcessor processor, int clockid, simulTime *
ptime);

timerid timer identifier

mode timer mode

ptime pointer to time variable (in picoseconds)

pclock pointer to variable to receive clock number

func function responsible for timer operation

clockid clock identifier

pfrequency pointer to frequency variable (in Hz / cycle per second)

SIMUL_TIMER_ABS ptime specifies absolute time calculated from the beginning of
simulation

SIMUL_TIMER_REL ptime specifies the number of clock cycles from now

SIMUL_TIMER_SINGLE single call

SIMUL_TIMER_REPEAT call at specific timer

SIMUL_TIMER_CLOCKS clock is increased with each step of simulator

SIMUL_Stall(simulProcessor processor, int mode, simulTime * ptime);
API for TRACE32 Instruction Set Simulator | 15©1989-2024 Lauterbach

Explanation of terms appearing in the functions:

The meaning of ‘ptime’ depends on ‘mode’ variable:

Ports

The ports serve as communication between different models and also between models and a simulator.

To set port value in TRACE32:

Currently, there are 512 general-purpose ports and 8 (-1 to -8) special ports dedicated for communication
with simulator. To use ports in model designer has to register callback functions in Simul_Init in
‘model_name’.c file.

Number of ports used in specific function is defined by setting width variable. By using two variables from
cbs structure (cbs-> x.port.newdata and cbs-> x.port.olddata) we can find out whether there is change
and on which port. For more than one port, use function to determine which port has changed its value.

Functions operating on ports:

mode timer mode

ptime defines set / returns value

SIMUL_STALL_ABS ptime specifies absolute time calculated from the beginning of
simulation

SIMUL_STALL_REL ptime specifies the number of clock cycles from now

SIMUL_STALL_CLOCKS clock is increased with each step of simulator

port.set p.0 high sets value ‘1’ on port 0.

port.set p.0 low sets value ‘0’ on port 0.
API for TRACE32 Instruction Set Simulator | 16©1989-2024 Lauterbach

1. Set value port function.

2. Get value port function.

3. Port change function.

Explanation of terms appearing in the functions:

At the end function returns SIMUL_PORT_OK.

SIMUL_SetPort(simulProcessor processor, int offset, int width, simulWord *
pdata);

SIMUL_GetPort(simulProcessor processor, int offset, int width, simulWord *
pdata);

SIMUL_RegisterPortChangeCallback(simulProcessor processor,
simulCallbackFunctionPtr func, simulPtr private, int offset, int width);

offset port number

width number of ports

pdata set /get value

func function that supports an event

private variable output model
API for TRACE32 Instruction Set Simulator | 17©1989-2024 Lauterbach

Terminals

Terminal is used to display data, thus it is possible to simulate the graphic driver or similar device displaying
information in a dedicated window.

Functions operating on terminal:

1. Current state function.

2. Read data function.

3. Write characters function.

Explanation of terms appearing in the functions:

Terminal state is returned by following value.

SIMUL_StateTerminal(simulProcessor processor, int id);

SIMUL_ReadTerminal(simulProcessor processor, int id);

SIMUL_WriteTerminal(simulProcessor processor, int id, int ch);

id terminal ID

private model variable

ch character to write on terminal

SIMUL_STATE_RXREADY Terminal ready to read

SIMUL_STATE_TXREADY Terminal ready to write

SIMUL_STATE_NOTEXISTING There is no terminal
API for TRACE32 Instruction Set Simulator | 18©1989-2024 Lauterbach

Communication

Basic interface used for communication consists of general-purpose ports (0 to 511), dedicated ports lines -
1 (reset), -2 (interruption), -3 (NMI) [exact names can be found in Ports section in simul.h file] and registered
callback functions.

Model should report an interrupt event to simulator using a dedicated port. For interrupt handling in a
simulator (only for Interrupt Controller), please write appropriate functions. (if does not exist). Interrupt
processing should be confirmed by clearing a dedicated line. All accesses to memory (peripherals,
registers) have to be made through access type SIMUL_MEMORY_DATA, unless they are special
sequence of read / write, implemented in the target system through bus. In that case
SIMUL_MEMORY_HIDDEN access type should be used. Functions operating on normal type of access is
already written in a simulator. However for special type of access new function have to be written, bearing in
mind here that there are no variables associated with CTS.

Files

In PSM it is possible to operate on files, without using functions provided by standard header files. It is
important because TRACE32 acts on many platforms and operating systems. Therefore, functions defined
in simul.h file are used to let TRACE32 support various platforms and systems.

Functions operating on files:

1. Open file function.

2. Close file function.

3. Read file function.

SIMUL_OpenFile(simulProcessor processor, const char * filename, int mode);

SIMUL_CloseFile(simulProcessor processor, void * file);

SIMUL_ReadFile(simulProcessor processor, void * file, void * pdata,
int length);
API for TRACE32 Instruction Set Simulator | 19©1989-2024 Lauterbach

4. Write file function.

5. Read line from file function.

6. Write line to file function.

7. Set file position (returns position after operation).

Explanation of terms appearing in the functions:

Mode variable has following values for OpenFile:

SIMUL_WriteFile(simulProcessor processor, void * file, void * pdata,
int length);

SIMUL_ReadlineFile(simulProcessor processor, void * file, void * pdata,
int length);

SIMUL_WritelineFile(simulProcessor processor, void * file, void * pdata);

SIMUL_SeekFile(simulProcessor processor, void * file, long pos, int mode);

filename Name of file

file File ID

mode Access mode

length Length of write / read data

pdata Data pointer

pos Position to set

SIMUL_FILE_READ Read a file

SIMUL_FILE_WRITE Write a file
API for TRACE32 Instruction Set Simulator | 20©1989-2024 Lauterbach

Mode variable has following values for SeekFile:

Deprecated functions

Below functions are deprecated and shall not be used in new implementations. The functions are kept as
part of the interface to maintain backwards compatibility.

SIMUL_FILE_CREATE Create a file)

SIMUL_FILE_APPEND Adding to a file

SIMUL_FILE_BINARY Binary file

SIMUL_FILE_ASCII ASCII file

SIMUL_FILE_SEEKABS Setting position in relation to the beginning of file

SIMUL_FILE_SEEKREL Setting position in relation to the current position in file

SIMUL_FILE_SEEKEND Setting position in relation to the end of file

SIMUL_CreateSharedResource(simulProcessor processor, int size);

SIMUL_ReadSharedResource(simulProcessor processor, int offset, int len,
void * pdata);

SIMUL_WriteSharedResource(simulProcessor processor, int offset, int len,
void * pdata);
API for TRACE32 Instruction Set Simulator | 21©1989-2024 Lauterbach

Practical script commands

To properly support the model in TRACE32 and easier usage model by other people, initscript should be
created. Task of initialization scripts is prepare model to work with a simulator as if the initialization has been
performed by MCU procedure in TRACE32.

Initscripts are created in files with the extension *.CMM.

Commands used in initialization script for Peripheral simulation model (more details see General
Commands Reference Guide):

1. Start command and End command.

Command "DO" begin the script, and command "ENDDO" inform of the completion.

2. CPU select command.

Specify the exact CPU type used on your target. This is required to get the matching PER file and other CPU
specific settings (e.g. predefined settings for on-chip FLASH).

3. Port name set command.

Gives name of selected port. All ports used in system have to be listed.

DO Start script

ENDDO End of script

Format: SYSTEM.CPU <cpu>

<cpu>: C64X, ARM7TDMI, ARM9E, C6455,...

Format: NAME.SET port.<number> <port_name>

<number>: -8,-7,...511,512.

<port_
name>:

interrupt, timer, model,...
API for TRACE32 Instruction Set Simulator | 22©1989-2024 Lauterbach

4. Deletes the specified model from TRACE32 memory command.

Selected simulation model is removed from TRACE32 memory. Command without specified model, clears
all simulation models from TRACE32 memory.

5. Loads the specified model to TRACE32 memory command.

Selected simulation model is loaded into TRACE32 memory. If the model has parameters, then have to be
provided. In other action model can be unpredictable.

6. System up command.

After this command all libraries are initialized.

7. Performs an operation on the address command.

Data.Assemble is used to replace the code at memory <address> with the assembler instruction specified
by <mnemonic>; <mnemonic> describes the instruction with respect to the CPU-mnemonic.

Format: SIM.UNLOAD <path to model_name.dll>

<path to
model_name
.dll>:

arm_timer.dll, vic_lpc.dll,...

Format: SIM.LOAD <model_name.dll> [parameters]

<path
dll>:

../model/arm_timer.dll, c:/vic_lpc.dll,...

[parameter
s]:

"timer" "cpu"

Format: SYSTEM.UP

Format: DATA.ASSEMBLE [<address>] <mnemonic>

<address>: 0xff000000, 0xbc80a000,...

<mnemonic>
:

nop, subs, str, move,...
API for TRACE32 Instruction Set Simulator | 23©1989-2024 Lauterbach

8. Displaying instruction window command.

Display format (in assembler, mixed or HLL) is selected dynamically, depending on the current debug mode.
If no address is specified, the window tracks to the value of the program counter. The window is only
scrolled, if the bar moves outside of a predefined subwindow.

9. Displays memory area in a window command.

If a single address is selected this address will define the windows' initial position only. Scrolling makes other
memory contents visible. When selecting an address range only the defined data range can be dumped.
Range definition is useful whenever the addresses following are read protected (e.g., in the case of I/O) or
more than one page will be printed. This command allows to preview the memory area. The area is
updated every step. When a window is displayed reading is made with each step.

10. Sets a value in the specified register command.

This command sets a given value into the selected register. The register names different for each processor
architecture.

11. Set a breakpoint at address command.

Command useful for observing system behavior in certain program spots. Without parameters the
command opens a dialog window for setting breakpoints.

Format: DATA.LIST

Format: DATA.DUMP <range>

<range>: 0x0--0xff,0xffff8000--0xffff90a0,...

Format: REGISTER.SET <register> <value>

<
register>:

r0, r1, pc,...

<value>: 0x4,20,1,0xf,0,...

Format: BREAK.SET <address>

<address>: 0xff000000, 0xbc80a000,...
API for TRACE32 Instruction Set Simulator | 24©1989-2024 Lauterbach

 12. Sets a value with a specified width, at the selected address command.

This command allows to set the memory area value. For example, registers are reset from selected area
simultaneously or overwritten any other value.

13. Opens the specified PER file command.

Command opens PER file under the specified location. The peripherals of integrated microcontrollers can
be displayed and manipulated with the command PER. The command offers a free configurable window for
displaying memory or i/o structures. So it is possible to display the state of peripheral chips or memory
based structures very comfortably.

14. Introduce program code into the simulator command.

This command creates a window for editing and assembling a short assembler program. Without a specified
filename the file T32.ASM is generated. If the Compile button is used, syntax errors and undefined labels will
be detected. The resulting program will be assembled for the specified address and saved to memory. The
labels entered will be added to the symbol list.

Format: DATA.SET <address> <width> <value>

<address>: 0xff000000, 0xbc80a000,...

<width>: %byte,%word,%long,...

<value>: 0x4,20,1,0xf,0,...

Format: PER <path_to_per_file>

<path_to_
per_file>:

../per/c64.per, C:/arm/per/ARM9.per,...

Format: DATA.PROGRAM <address> <path_to_asm_file>

<address>: 0xff000000, 0xbc80a000,...

<path_to_
per_file>:

../program.asm, C:/code/program.asm,...
API for TRACE32 Instruction Set Simulator | 25©1989-2024 Lauterbach

Peripheral model example

Practical example of timer simulating model is designed to show the whole process of programming,
implementation and maintenance.

Environment

Follow these steps:

In Visual Studio create ‘New Project’ by choosing File -> New -> Project....

In a “New Project” window, select Win32 -> Win32 Console Application

In ‘Name’ field, enter the name of new model (in this case is a “timer”).

In ‘Location’ field, enter model location (in this case is a “C:\timer”).

Click Ok button to proceed.

In “Win32 Application Wizard” window, click on ‘Application Settings’ then select DLL as ‘Application type’
and click Finish button.
API for TRACE32 Instruction Set Simulator | 26©1989-2024 Lauterbach

Once our programming environment is ready, we need to create a files structure of our model. The project
consists of 4 source files: simul.h, simul.c and created by us files “model_name”.c and “model_name”.def
API for TRACE32 Instruction Set Simulator | 27©1989-2024 Lauterbach

To ‘Source Files’ add: simul.c, ‘model_name’.c and ‘model_name’.def (Module Definition File). To Header
files add: simul.h. Content ‘model_name’.def file should look like this:

LIBRARY simple_port

DESCRIPTION 'TRACE32 Hardware Simulation Model'

EXPORTS SIMUL_Interface
API for TRACE32 Instruction Set Simulator | 28©1989-2024 Lauterbach

After adding all required files structure should look like this:

Source code listing

First what designer need to do, is to include a “simul.h” library, which contains all necessary functions. For
better readability of the code, registers offsets should be defined as “short_name”_OFFSET. Base address
should be also defined as “module_name”_BASE. “NUM_OF_REGS” definition specifies a number of
registers in the module.

Example:

“Timer 0 module” -> TIMER0_BASE

“Control register” -> CTR_OFFSET

#include “simul.h”

#define NUM_OF_REGS 5
#define COUNT_OFFSET 0x0000
#define CTR_OFFSET 0x0004
#define SVAL_OFFSET 0x0008
#define EVAL_OFFSET 0x000c
#define IR_OFFSET 0x0010
#define TIMER0_BASE 0xFF000000
API for TRACE32 Instruction Set Simulator | 29©1989-2024 Lauterbach

Type definition of 32 bits width register

Function declaration used to link registers offsets with module base address. Inside there are previously
defined registries offsets. SimulWord32 specifies variables type.

Function declaration used to write values in selected register. Variables have to be related to the module
registers.

typedef struct
{

simulWord32 count, ctr, sval, eval, ir;
}
Regs;

typedef struct
{

simulWord32 startaddress;
int bustype,reset,work,intport,chport;
Regs regs;
simulTime ctimestamp;
void * ptimer;

}
Timer;

static simulWord32 regs_offset[NUM_OF_REGS] = {
COUNT_OFFSET, CTR_OFFSET, SVAL_OFFSET, EVAL_OFFSET, IR_OFFSET

};

void * regwrite_func[NUM_OF_REGS] = {
COUNT_Write, CTR_Write, SVAL_Write, EVAL_Write, IR_Write

};
API for TRACE32 Instruction Set Simulator | 30©1989-2024 Lauterbach

Function declaration used to read values from selected register. Variables have to be related to the module
registers.

Registers initialization function. Each register is linked to module base address by "for" loop and calls two
callback functions. First one is responsible for writing and second one is responsible for reading registers
values.

Write function for a particular register. This function have to be attributed to each register of access type as
WRITE or READ/WRITE.

void * regread_func[NUM_OF_REGS] = {
COUNT_Read, CTR_Read, SVAL_Read, EVAL_Read, IR_Read

};

static void Regs_Init(simulProcessor processor, Timer * timer)
{

simulWord from, to;
int i;

for (i = 0; i < NUM_OF_REGS; i++)
{

from = timer->startaddress + regs_offset[i];
to = from + 3;

SIMUL_RegisterBusWriteCallback(processor, regwrite_func[i],
(simulPtr) timer, timer->bustype, &from, &to);

SIMUL_RegisterBusReadCallback(processor, regread_func[i],
(simulPtr) timer, timer->bustype, &from, &to);

}
}

static int SIMULAPI COUNT_Write(simulProcessor processor, simulCallback-
Struct * cbs, simulPtr private)
{

Timer * timer = (Timer*) private;
SIMUL_InsertWord(processor, &timer->regs.count, 32, &cbs->x.bus.address,
cbs->x.bus.width, &cbs->x.bus.data);
 return SIMUL_MEMORY_OK;
}

API for TRACE32 Instruction Set Simulator | 31©1989-2024 Lauterbach

Read function for a particular registry. This function have to be attributed to each register of access type as
READ or READ/WRITE.

Note: If register is visible in TRACE32 window, then function is called with each step.

In write function, you can place a direct function of the register handle i.e. operations on the register are
performed at the same cycle as at write to it. All operations are performed on variable such as “reg” and a
result is assigned to the register.

Function returns "SIMUL_MEMORY_OK".

Timer handle function. The operations are executed with each step. Inside this function is implemented:
increment / decrement value of the register, bit masks, ect.

static int SIMULAPI COUNT_Read(simulProcessor processor, simulCallback-
Struct * cbs, simulPtr private)
{

Timer * timer = (Timer*) private;
SIMUL_ExtractWord(processor, &timer->regs.count, 32, &cbs->x.bus.address,
cbs->x.bus.width, &cbs->x.bus.data);
 return SIMUL_MEMORY_OK;
}

/* CTR (Control Register) */

static int SIMULAPI CTR_Write(simulProcessor processor, simulCallbackStruct
* cbs, simulPtr private)
{

Timer * timer = (Timer*) private;
simulWord32 reg;
SIMUL_InsertWord(processor, ®, 32, &cbs->x.bus.address,
cbs->x.bus.width, &cbs->x.bus.data);

if (reg & 0x2) /* Timer reset */
{ timer->regs.count = 0x0;

reg = 0x0;
timer->regs.sval = 0x0;
timer->regs.eval = 0x0;

}
if (((reg & 0x70)==0x20)||((reg & 0x70)==0x60))
{ timer->work=1;
}
timer->regs.ctr = reg & 0xffffffff;
return SIMUL_MEMORY_OK;

}

API for TRACE32 Instruction Set Simulator | 32©1989-2024 Lauterbach

For example, in place of stars may be located functions corresponding to the various modes of timer. By
setting the corresponding bits in Control register, different operating modes are selected.

Function returns "SIMUL_TIMER_OK".

/* --- IntReq timer --- */

int SIMULAPI IntReqTimer(simulProcessor processor, simulCallbackStruct *
cbs, simulPtr private)
{

Timer * timer = (Timer*) private;
simulWord data;

if (timer->regs.ctr & 0x1) /* Timer enabled */
{

timer->regs.count++;
}
switch ((timer->regs.ctr >> 4) & 0x7)
{
case 0x0:

*
*
*

break;
*
*
*
*

}

return SIMUL_TIMER_OK;
}

API for TRACE32 Instruction Set Simulator | 33©1989-2024 Lauterbach

Ports are used for communication between models. Each port has its own number and may take a state of 0
or 1. Port -2 enables interruption of processor. To enable interruption, set ‘1’ on port, so then after a
fulfillment of a condition, port will be on ‘1’.

In Intport variable stores interruption port number.

After interrupt handling is completed, exit from interrupt have to be done by clearing a state of port
responsible for it.

if ((timer->regs.ir))
{

data = 1;
SIMUL_SetPort(processor, timer->intport, 1, &data);

}

/* IR (IR Register) */

timer->regs.ir &= ~(reg & 0xff);
if (!timer->regs.ir) /* deassert interrupt */
{

simulWord data = 0;
SIMUL_SetPort(processor, timer->intport, 1, &data);

}

API for TRACE32 Instruction Set Simulator | 34©1989-2024 Lauterbach

Function responsible for a timer reset is called after model initialized. Because TIMER_Reset function is
called after initialization, simulation timer (not timer PSM) can be started by SIMUL_StartTimer function.
Depending on module needs, different controls flags can be used.

Presented timer model uses two flags SIMUL_TIMER_REPEAT and SIMUL_TIMER_CLOCKS.
SIMUL_GetClock function returns number of clock cycles since the beginning of the simulation, increasing
on each step.

Function returns "SIMUL_RESET_OK".

static int SIMULAPI TIMER_Reset(simulProcessor processor,
simulCallbackStruct * cbs, simulPtr private)
{

Timer * timer = (Timer*) private;
simulTime time,nowtime;
memset(&timer->regs, 0x00, sizeof(timer->regs));
timer->reset = 0;

SIMUL_GetClock(processor, 0, &nowtime);
time =1;
SIMUL_StartTimer(processor, timer->ptimer,
SIMUL_TIMER_REPEAT | SIMUL_TIMER_CLOCKS, &time);

return SIMUL_RESET_OK;
}

API for TRACE32 Instruction Set Simulator | 35©1989-2024 Lauterbach

The most important in simulation module is initialization function. Is called only once at the very
beginning. All callback function here are placed. In presented timer model,
SIMUL_RegisterResetCallback function responsible for a timer reset and Regs_Init function
responsible for events handling in the registers, have been called. There are also declarations of
variables. Because there are no global variables in a model, function SIMUL_Alloc is used.

Function returns "SIMUL_INIT_OK".

int SIMULAPI SIMUL_Init(simulProcessor processor,
simulCallbackStruct * cbs)
{

Timer * timer;
int i;
strcpy(cbs->x.init.modelname, __DATE__ " Timer Model");
timer = (Timer*) SIMUL_Alloc(processor, sizeof(Timer));

timer->bustype = 0;
timer->intport = -2;
timer->startaddress = TIMER0_BASE;

Regs_Init(processor, timer);

SIMUL_RegisterResetCallback(processor, TIMER_Reset, (simulPtr) timer);
timer->ptimer = SIMUL_RegisterTimerCallback(processor, IntReqTimer,

(simulPtr) timer);
TIMER_Reset(processor, cbs, timer);

return SIMUL_INIT_OK;
}

API for TRACE32 Instruction Set Simulator | 36©1989-2024 Lauterbach

Each model can be called with parameters. Correct handling of model parameters must be ensured. The "i"
variable specifies the number of checked parameters (depending on needs of simulation model). Presented
timer is set (by default) to base address stored in TIMER0_BASE variable (under condition that as a first
parameter is "timer" string), but if necessary it can be overwritten with any other value. Second parameter is
the number of port (responsible for interrupt). By default value is stored in variable and is equal "-2" but if
necessary it can be overwritten with any other value. Function at the end calls warning function, which is
designed to notify module parameters.

for (i = 1; i <= cbs->x.init.argc - 1; i++)
{

if (i == 1)
{

if (strstr(cbs->x.init.argp[1], "timer") != NULL)
timer->startaddress = TIMER0_BASE;

else
timer->startaddress = cbs->x.init.argpport[1];

continue;
}

else if (i == 2)
{

if (strstr(cbs->x.init.argp[2], "cpu") != NULL)
timer->intport = SIMUL_PORT_INTERRUPT;

else if (strstr(cbs->x.init.argp[2], "noport") == NULL)
timer->intport = cbs->x.init.argpport[2];

continue;
}

SIMUL_Warning(processor, "usage parameters: [<base address|name>
<interrupt port>]");

return SIMUL_INIT_FAIL;
}

API for TRACE32 Instruction Set Simulator | 37©1989-2024 Lauterbach

Initialization scripts

Following script provides settings for TRACE32 environment. The script contains a set of commands to run
timer with initial settings such as work mode, initial and final value of incremented register, interrupt options,
etc. The script also contains commands for opening and distribution of appropriate windows in TRACE32.

The script should look like this:

Header of script contains such data as module name, developer, major functions, etc.

SIM.UNLOAD command is used to clean the memory configuration for a simulation model. After SIM.LOAD
command should be a path to DLL library that contains implemented module.

This sequence allows to set model in infinite loop, after 3 steps.

; --
; 'TIMER' Model Initialization Script
, DATA (NICK)
;
; A brief comment on the specific characteristics (ports) [not required]
; --

; --- Timer initialization script ---

sim.unload

sim.load ../timer/Debug/timer.dll "timer" "cpu"
per ../per/timer.per

SYStem.Up

d.l

; --- processor infinite loop ---
d.a 0x0 nop
d.a 0x4 nop
d.a 0x8 b $ - 8; infinite loop
API for TRACE32 Instruction Set Simulator | 38©1989-2024 Lauterbach

When interrupt event occurred, interrupt have to be handled and exit. At the time of interrupt event, program
jumps to 0x18 address where is procedure to clear interrupt. In next step program return to an infinite loop.

Configuration for ARM core. Set program counter to 0x0 value. The register r0 holds value to be entered in
the “interrupt register”. The register r1 holds timer base address.

Configure timer registers. Set timer to appropriate operating mode determines the initial and final value
(depending on the mode) and begins counting.

For better visibility, set windows position in TRACE32. The easiest way to do it is deploy windows as
intended and then save the settings by clicking on the bookmark Window / Store Windows to.... Initialized
model has a preview of all functions.

; --- interrupt service routine ---
d.a 0x18 str r0, [r1, #0x10]; clear interupt flag
d.a 0x1c subs pc, r14, #4; return from interrupt

; --- ARM core configuration ---
r.s pc 0x0; set program counter to 0x0
r.s r0 0x1; value to write to register
r.s r1 0xff000000; base address of Timer

; --- Timer configuration ---
d.s d:0xff000004 %l 0x59; timer enable,loop,from sval to eval
d.s d:0xff000008 %l 0x00; start value
d.s d:0xff00000c %l 0x20; end value
r.s I 0; enable interrupts
b.s 0x18; set breakpoint on beginning of interrupt
API for TRACE32 Instruction Set Simulator | 39©1989-2024 Lauterbach

Windows position settings can be copy to the initialization script.

B::

 TOOLBAR ON
 STATUSBAR ON
 WINPAGE.RESET

 WINCLEAR
 WINPOS 0.0 19.154 70. 4. 15. 1. W001
 d.dump 0xff000000--0xff00000f

 WINPOS 0.0 0.0 56. 14. 15. 1. W002
 WINTABS 10. 10. 25. 62.
 d.l

 WINPOS 58.857 12.077 47. 13. 0. 0. W000
 per ../per/timer.per

 WINPOS 60.143 0.23077 46. 9. 0. 0. W003
 r

 WINPAGE.SELECT P000

enddo
API for TRACE32 Instruction Set Simulator | 40©1989-2024 Lauterbach

	API for TRACE32 Instruction Set Simulator
	Overview
	Peripheral Simulation Model
	Standard function
	Registers
	Timers
	Stall
	Ports
	Terminals
	Communication
	Files
	Deprecated functions

	Practical script commands
	Peripheral model example
	Environment
	Source code listing
	Initialization scripts

