
MANUAL

OS Awareness Manual
Windows CE4/CE5

OS Awareness Manual Windows CE4/CE5

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manuals for Windows .. 

 OS Awareness Manual Windows CE4/CE5 ... 1

 History ... 5

 Overview ... 5

 Terminology 5

 Brief Overview of Documents for New Users 5

 Supported Versions 6

 Configuration .. 7

 Manual Configuration 7

 Automatic Configuration 8

 Quick Configuration Guide 8

 Hooks & Internals in Windows CE 9

 Features .. 10

 Display of Kernel Resources 10

 Task Stack Coverage 10

 Task Context Display 11

 MMU Support 12

 Windows CE MMU Basics 12

 Space IDs 12

 MMU Declaration 13

 Scanning System and Processes 15

 Symbol Autoloader 16

 Dynamic Task Performance Measurement 17

 Task Runtime Statistics 17

 Task State Analysis 19

 Function Runtime Statistics 20

 Windows CE specific Menu 21

 Debugging Windows CE Kernel and User Processes .. 23

 Windows CE Kernel 23

 Downloading the Kernel 23

 Debugging the Kernel Startup 24
OS Awareness Manual Windows CE4/CE5 | 2©1989-2024 Lauterbach

 Debugging the Kernel 25

 User Processes 27

 Debugging the Process 27

 Debugging DLLs 28

 Trapping Unhandled Exceptions 30

 Windows CE Commands ... 31

 TASK.DLL Display libraries 31

 TASK.Event Display events 31

 TASK.MMU.SCAN Scan process MMU space 32

 TASK.MODule Display libraries 33

 TASK.Mutex Display mutexes 33

 TASK.Option Set awareness options 34

 TASK.Process Display processes 34

 TASK.ROM.FILE Display built-in files 35

 TASK.ROM.MODule Display built-in modules 35

 TASK.Semaphore Display semaphores 35

 TASK.sYmbol Process/DLL symbol management 36

 TASK.sYmbol.DELete Unload process symbols and MMU 36

 TASK.sYmbol.DELeteDLL Unload DLL symbols and MMU 37

 TASK.sYmbol.LOAD Load process symbols and MMU 37

 TASK.sYmbol.LOADDLL Load DLL symbols and MMU 39

 TASK.sYmbol.Option Set symbol management options 40

 TASK.Thread Display threads 42

 TASK.Watch Watch processes 43

 TASK.Watch.ADD Add process to watch list 43

 TASK.Watch.DELete Remove process from watch list 43

 TASK.Watch.DISable Disable watch system 45

 TASK.Watch.DISableBP Disable process creation breakpoints 45

 TASK.Watch.ENable Enable watch system 45

 TASK.Watch.ENableBP Enable process creation breakpoints 46

 TASK.Watch.Option Set watch system options 46

 TASK.Watch.View Show watched processes 47

 TASK.WatchDLL Watch DLLs 50

 TASK.WatchDLL.ADD Add DLL to watch list 50

 TASK.WatchDLL.DELete Remove DLL from watch list 50

 TASK.WatchDLL.DISable Disable DLL watch system 51

 TASK.WatchDLL.DISableBP Disable DLL creation breakpoints 51

 TASK.WatchDLL.ENableBP Enable DLL creation breakpoints 52

 TASK.WatchDLL.ENable Enable DLL watch system 52

 TASK.WatchDLL.Option Set DLL watch system options 52

 TASK.WatchDLL.View Show watched DLLs 53

 Windows CE PRACTICE Functions .. 55

 TASK.CONFIG() OS Awareness configuration information 55
OS Awareness Manual Windows CE4/CE5 | 3©1989-2024 Lauterbach

 TASK.CURRENT() ‘vmbase’ address of process 55

 TASK.DLL.CODEADDR() Address of code segment 55

 TASK.DLL.DATAADDR() Address of data segment 56

 TASK.LOG2PHYS() Convert virtual address to physical address 56

 TASK.PROC.CODEADDR() Address of code segment 56

 TASK.PROC.DATAADDR() Address of data segment 57

 TASK.PROC.SPACEID() Space ID of process 57

 TASK.ROM.ADDR() Section address of ROM module 57

 TASK.Y.O() Symbol option parameters 58
OS Awareness Manual Windows CE4/CE5 | 4©1989-2024 Lauterbach

OS Awareness Manual Windows CE4/CE5

Version 06-Jun-2024

History

04-Feb-21 Removing legacy command TASK.TASKState.

Overview

The OS Awareness for Windows CE contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

Terminology

Windows CE uses the terms “processes” and “threads”. If not otherwise specified, the TRACE32 term “task”
corresponds to Windows CE threads.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.
OS Awareness Manual Windows CE4/CE5 | 5©1989-2024 Lauterbach

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently Windows CE is supported for the following versions:

• Windows CE 4.0, 4.1, 4.2 and 5.0 on ARM, MIPS, SH4 and XScale.
OS Awareness Manual Windows CE4/CE5 | 6©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “wince.t32” (directory
“~~/demo/<processor>/kernel/wince”). It contains all necessary extensions.

Automatic configuration tries to locate the Windows CE internal automatically. For this purpose all symbol
tables must be loaded and accessible at any time the OS Awareness is used.

If a system symbol is not available or if another address should be used for a specific system variable then
the corresponding argument must be set manually with the appropriate address. In this case, use the
manual configuration, which can require some additional arguments.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

Manual Configuration

It is highly recommended to use the Automatic Configuration.

Only, if your Windows CE build doesn’t use standard symbols, you may try to use the manual configuration:

See Hooks & Internals for details on the used symbols.

Format: TASK.CONFIG wince <magic_address> <oem_address_tab>

<magic_address> Specifies the address, where the OS Awareness finds the current running
thread. This is found in kernel internal structures and calculated automati-
cally. Set it to “0”.

<oem_address_tab> This argument defines the start address of the OEM address translation
table. The symbols “OEMAddressTable” (used by Windows CE 4.x) and
“g_oalAddressTable” (used by Windows CE 5.x) are searched
automatically. Set this parameter only, if you use different symbols for this
table; set it to “0” otherwise.
OS Awareness Manual Windows CE4/CE5 | 7©1989-2024 Lauterbach

Automatic Configuration

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

If a system symbol is not available, or if another address should be used for a specific system variable, then
the corresponding argument must be set manually with the appropriate address (see Manual
Configuration).

Note that you have to use the Debug Build of your platform to get all necessary symbols.

See Hooks & Internals for details on the used symbols.

See also the example “~~/demo/<processor>/kernel/wince/<version>/<board>/wince.cmm”.

Quick Configuration Guide

To access all features of the OS Awareness you should follow the following roadmap:

1. Carefully read the PRACTICE demo start-up script
(~~/demo/<processor>/kernel/wince/<version>/<board>/wince.cmm).

2. Make a copy of the PRACTICE script file “wince.cmm”. Modify the file according to your
application.

3. Run the modified version in your application. This should allow you to display the kernel
resources and use the trace functions (if available).

Now you can access the Windows CE extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

Format: TASK.CONFIG wince
OS Awareness Manual Windows CE4/CE5 | 8©1989-2024 Lauterbach

Hooks & Internals in Windows CE

No hooks are used in the kernel.

For retrieving the kernel data structures, the OS Awareness uses global kernel symbols and structure
definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used.

Use the debug build of your platform. The Windows CE files “nk.exe” and “nk.pdb” contain the necessary
symbols. Ensure that the symbols of “nk.exe” are loaded (see example script).

To get the kernel address translation, the OS Awareness searches for the symbols
“OEMAddressTranslation” (CE 4.x) or “g_oalAddressTranslation” (CE 5.x). If none of these
symbols is available, use the Manual Configuration.
OS Awareness Manual Windows CE4/CE5 | 9©1989-2024 Lauterbach

Features

The OS Awareness for Windows CE supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
Windows CE components can be displayed:

For a detailed description of each command, refer to chapter “Windows CE Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

TASK.Process Processes

TASK.Thread Threads

TASK.MODule, TASK.DLL Libraries (DLLs)

TASK.Event Events

TASK.Mutex Mutexes

TASK.Semaphore Semaphores

TASK.ROM.MODule Built-in modules

TASK.ROM.FILE Built-in files
OS Awareness Manual Windows CE4/CE5 | 10©1989-2024 Lauterbach

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

If you’d like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

Frame.TASK [<task>] Display task context.

Frame /Task <task> Display call stack of a task.
OS Awareness Manual Windows CE4/CE5 | 11©1989-2024 Lauterbach

MMU Support

To provide full debugging possibilities, the Debugger has to know, how virtual addresses are translated to
physical addresses and vice versa. All MMU commands refer to this necessity.

Windows CE MMU Basics

Windows CE divides the 32bit virtual address range into several areas.

The kernel address space covers the address range 0x80000000--0xFFFFFFFF.

All processes run in the same virtual address range, that is 0x0--0x01FFFFFF. If a process switch occurs,
the MMU of the CPU is reprogrammed, so that this address range points to the current running process.

Additionally, the processes are mapped to higher addresses somewhere in between 0x04000000--
0x7FFFFFFF, but this is not relevant for debugging.

DLLs are mapped, depending on their type. If they are private, they are mapped into the virtual address
range of the owning process. If they are common to all processes, they are mapped into the address range
0x02000000--0x03FFFFFF.

Space IDs

Processes of Windows CE may reside virtually on the same address. To distinguish those addresses, the
Debugger uses an additional space ID that specifies to which virtual memory space the address refers. The
command SYStem.Option.MMUSPACES ON enables the additional space ID. For all processes using the
kernel address space and for the kernel itself, the space ID is zero. For processes using their own address
space, the space ID equaled the process ID.

You may scan the whole system for space IDs using the command TRANSlation.ScanID. Use
TRANSlation.ListID to get a list of all recognized space IDs.

The function task.proc.spaceid(“<process>”) returns the space ID for a given process. If the space ID is
not equal to zero, load the symbols of a process to this space ID:

See also chapter “User Processes”.

LOCAL &spaceid
&spaceid=task.proc.spaceid("myProcess")
Data.LOAD.EXE myProcess.exe &spaceid:0 /NoCODE /NoClear
OS Awareness Manual Windows CE4/CE5 | 12©1989-2024 Lauterbach

MMU Declaration

To access the virtual and physical addresses correctly, the debugger needs to know the format of the MMU
tables in the target.

The following command is used to declare the basic format of MMU tables:

<format> Options for ARM:

<format> Options for PowerPC:

MMU.FORMAT <format> [<base_address> [<logical_kernel_address_range>
 <physical_kernel_address>]]

Define MMU
table structure

<format> Description

STD Standard format defined by the CPU

TINY MMU format using a tiny page size of only 1024 bytes

WINCE5 Format used by Windows CE5

<format> Description

STD Standard format defined by the CPU
OS Awareness Manual Windows CE4/CE5 | 13©1989-2024 Lauterbach

<format> Options for RISC-V:

<format> Options for x86:

<format> Description

STD Automatic detection of the page table format from the SATP register.

SV32 32-bit page table format (for SV32 targets only)

SV32X4 Stage 2 (G-stage) 32-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV39 39-bit page table format (for SV64 targets only)

SV39X4 Stage 2 (G-stage) 39-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV48 48-bit page table format (for SV64 targets only)

SV48X4 Stage 2 (G-stage) 48-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV57 57-bit page table format (for SV64 targets only)

SV57X4 Stage 2 (G-stage) 57-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

<format> Description

EPT Extended page table format (type autodetected)

EPT4L Extended page table format (4-level page table)

EPT5L Extended page table format (5-level page table)

P32 32-bit format with 2 page table levels

PAE Format with 3 page table levels

PAE64 64-bit format with 4 page table levels

PAE64L5 64-bit format with 5 page table levels

STD Automatic detection of the page table format used by the CPU
OS Awareness Manual Windows CE4/CE5 | 14©1989-2024 Lauterbach

<base_address>

<base_address> specifies the base address of the kernel translation table.
Specify OEMAddressTable

<logical_kernel_address_range>

<logical_kernel_address_range> specifies the virtual to physical address translation of the kernel address
range. Currently not necessary.

<physical_kernel_address>

<physical_kernel_address> specifies the physical start address of the kernel. Currently not necessary.

The kernel code, which resides in the kernel space, can be accessed by any process, regardless of the
current space ID. Additionally the common DLLs can be accessed by any process with the same address
translation. Use the command TRANSlation.COMMON to define the complete address ranges, that are
addressed by the kernel and common DLLs.

And don’t forget to switch on the debugger’s MMU translation with TRANSlation.ON

Example:

Please see also the sample scripts in the ~~/demo directory.

Scanning System and Processes

The command MMU.SCAN only scans the contents of the current processor MMU settings.

To scan the address translation of a specific process, use the command TASK.MMU.SCAN <space_id>.
This command scans the space ID of the specified process.

TRANSlation.List shows the debugger’s address translation table for all scanned space IDs.

See also chapter “Debugging Windows CE Kernel and User Processes”.

MMU.FORMAT WINCE5 OEMAdressTable
TRANSlation.COMMON 0x02000000--0x03ffffff 0x80000000--0xffffffff
TRANSlation.ON
OS Awareness Manual Windows CE4/CE5 | 15©1989-2024 Lauterbach

Symbol Autoloader

The OS Awareness for Windows CE contains an autoloader, which automatically loads symbol files. The
autoloader maintains a list of address ranges, corresponding Windows CE components and the appropriate
load command. Whenever the user accesses an address within an address range specified in the
autoloader, the debugger invokes the appropriate command. The command is usually a call to a PRACTICE
script that loads the symbol file to the appropriate addresses.

The command sYmbol.AutoLOAD.List shows a list of all known address ranges/components and their
symbol load commands.

The autoloader can be configured to react only on processes, ROM modules, or libraries (see also
TASK.sYmbol.Option AutoLoad). It is recommended to set only those components you are interested in,
because this decreases the time of the autoloader checks highly.

The autoloader reads the target’s tables for the chosen components and fills the autoloader list with the
components found on the target. All necessary information, such as load addresses and space IDs, are
retrieved from kernel-internal information.

If an address is accessed that is covered by the autoloader list, the autoloader calls <action> and appends
the load addresses and the space ID of the component to the action. Usually, <action> is a call to a
PRACTICE script that handles the parameters and loads the symbols. Please see the example script
“autoload.cmm” in the ~~/demo directory.

The point in time when the component information is retrieved from the target can be set:

sYmbol.AutoLOAD.CHECKWINCE "<action>"

<action> Action to take for symbol load, e.g. "DO autoload"

sYmbol.AutoLOAD.CHECK [ON | OFF]

(no argument) A single sYmbol.AutoLOAD.CHECK command refreshes the information
about the target.

ON The debugger automatically reads the information on every go/halt or
step cycle. This significantly slows down the debugger’s speed.

OFF no automatic update of the autoloader table will be done, you have to
manually trigger the information read when necessary. To accomplish
that, execute the sYmbol.AutoLOAD.CHECK command without
arguments.

NOTE: The autoloader covers only components that are already started. Components that
are not in the current process, module or library table are not covered.
OS Awareness Manual Windows CE4/CE5 | 16©1989-2024 Lauterbach

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records
OS Awareness Manual Windows CE4/CE5 | 17©1989-2024 Lauterbach

On ARM architectures, the ContextID register can be used to allow a detailed performance analysis on
Windows CE threads. Set the upper 24 bit of the ContextID register with the ID of the thread, i.e.
“(thread.dwThrdId << 8)”.

The Windows CE awareness needs to be informed about the changed format of the context ID:

TASK.Option THRCTX ON

To implement the above context ID setting, either patch armtrap.S or implement OEMReschedule:

1) Patching armtrap.S:

in _SetCPUASID, after "LEAF_ENTRY _SetCPUASID", change the lines:

to:

2) implement OEMReschedule():

in the OAL layer, implement the OAL function OEMReschedule() that writes
 (dwThrdId<<8)
to the ContextID register.

ldr r12, =KData ; (r12) = ptr to KDataStruct
ldr r1, [r0, #ThProc] ; (r1) = ptr to thread's current process
ldr r2, [r12, #CeLogStatus] ; (r2) = KInfoTable[KINX_CELOGSTATUS]

ldr r12, =KData ; (r12) = ptr to KDataStruct
ldr r1, [r0, #ThProc] ; (r1) = ptr to thread's current process
ldr r2, [r0, #ThHandle] ; (r2) = thread handle
mov r2, r2, lsl #8 ; (r2) = thread context ID
ldrb r0, [r1, #PrcID] ; (r0) = pCurProc->procnum
orr r2, r2, r0 ; (r2) = thread context ID + PID
mcr p15, 0, r2, c13, c0, 1 ; write ContextID register
ldr r2, [r12, #CeLogStatus] ; (r2) = KInfoTable[KINX_CELOGSTATUS]
OS Awareness Manual Windows CE4/CE5 | 18©1989-2024 Lauterbach

Task State Analysis

NOTE: This feature is only available, if your debugger equipment is able to trace memory data accesses
(flow trace is not sufficient).

The time different threads are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically. This feature is implemented by recording all accesses to the status
words of all threads. Additionally the accesses to the current thread pointer (=magic) are traced.

To do a selective recording on thread states, the following PRACTICE commands can be used:

To evaluate the contents of the trace buffer, use these commands:

All kernel activities up to the thread switch are added to the calling thread. The start of the recording time,
when the calculation doesn’t know, which thread is running, is calculated as “(root)”.

; Mark the magic location with an Alpha breakpoint
Break.Set task.config(magic)++(task.config(magicsize)-1) /Alpha

; Program the Analyzer to record task state transitions
Analyzer.ReProgram
(

Sample.Enable if AlphaBreak&&Write
)

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state time chart
OS Awareness Manual Windows CE4/CE5 | 19©1989-2024 Lauterbach

Function Runtime Statistics

NOTE: This feature is only available, if your debugger equipment is able to trace memory data accesses
(flow trace is not sufficient).

All function related statistic and time chart evaluations can be used with thread specific information. The
function timings will be calculated dependent on the thread, that called this function. To do this, additionally
to the function entries and exits, the thread switches must be recorded.

To do a selective recording on thread related function runtimes, the following PRACTICE commands can be
used:

To evaluate the contents of the trace buffer, use these commands:

All kernel activities up to the thread switch are added to the calling thread. The start of the recording time,
when the calculation doesn’t know, which thread is running, is calculated as “(root)”.

; Mark the magic location with an Alpha breakpoint
Break.Set task.config(magic)++(task.config(magicsize)-1) /Alpha

; Mark the function entries/exits with Alpha/Beta breakpoints
Break.SetFunc

; Program the Analyzer to record function entries/exits
; and task switches
Analyzer.ReProgram
(

Sample.Enable if AlphaBreak||BetaBreak
Mark.A if AlphaBreak
Mark.B if BetaBreak

)

Trace.List List.TASK FUNC Display function nesting

Trace.STATistic.TASKFunc Display function runtime statistic

Trace.STATistic.TASKTREE Display functions as call tree

Trace.Chart.TASKFunc Display function time chart
OS Awareness Manual Windows CE4/CE5 | 20©1989-2024 Lauterbach

Windows CE specific Menu

The menu file “wince.men” contains a menu with Windows CE specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called Windows CE.

• The Display menu items launch the kernel resource display windows.
See chapter “Display of Kernel Resources”.

• Process Debugging refers to actions related to process based debugging.
See also chapter “Debugging the Process”.

- Use Load Symbols and Delete Symbols to load rsp. delete the symbols of a specific process.
You may select a symbol file on the host with the Browse button. See also TASK.sYmbol.

- Watch Processes opens a process watch window or adds or removes processes from the
process watch window. Specify a process name. See TASK.Watch for details.

- Scan Process MMU Pages... scans the MMU pages of the specified process.
See also chapter “Scanning System and Processes”.

• DLL Debugging refers to actions related to library based debugging.
See also chapter “Debugging DLLs”.

- Use Load Symbols... and Delete Symbols... to load rsp. delete the symbols of a specific
library. Please specify the library name and the process name that uses this library. You may
select a symbol file on the host with the Browse button. See also TASK.sYmbol.

- Watch DLLs opens a DLL watch window or adds or removes DLLs from the DLL watch
window. Specify a DLL name. See TASK.WatchDLL for details.

- Scan Process MMU Pages... scans the MMU pages of the specified process. Specify the
name of the process that uses the library you want to debug.
See also chapter “Scanning System and Processes”.

• Use the Autoloader submenu to configure the symbol autoloader.
See also chapter “Symbol Autoloader”.

- List Components opens a sYmbol.AutoLOAD.List window showing all components currently
active in the autoloader.

- Check Now! performs a sYmbol.AutoLOAD.CHECK and reloads the autoloader list.

- Set Loader Script... allows you to specify the script that is called when a symbol file load is
required. You may also set the automatic autoloader check.

- Use Set Components Checked... to specify, which Windows CE components should be
managed by the autoloader. See also TASK.sYmbol.Option AutoLOAD.

• The Stack Coverage submenu starts and resets the Windows CE specific stack coverage and
provides an easy way to add or remove threads from the stack coverage window.
See also chapter “Task Stack Coverage”.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended.

- In the List submenu, you can choose if you want a trace list window to show only task
OS Awareness Manual Windows CE4/CE5 | 21©1989-2024 Lauterbach

switches (if any) or task switches together with the default display.

• The Perf menu contains additional submenus for task runtime statistics, task-related function
runtime statistics or statistics on task states, if a trace is available.
See also chapter “Task Runtime Statistics”.
OS Awareness Manual Windows CE4/CE5 | 22©1989-2024 Lauterbach

Debugging Windows CE Kernel and User Processes

Windows CE runs on virtual address spaces. The kernel uses a static address translation, usually starting
from virtual address 0x80000000 mapped to the physical start address of the RAM. Each user process gets
its own user address space when loaded, usually starting from virtual 0x0, mapped to any physical RAM
area, that is currently free. Due to this address translations, debugging the Windows CE kernel and the user
processes requires some settings to the Debugger.

To distinguish those different memory mappings, TRACE32 uses “space IDs”, defining individual address
translations for each ID. The kernel itself is attached to the space ID zero. Each process that has its own
memory space gets a space ID that is equal to its process ID.

See also chapter “MMU Support”.

Windows CE Kernel

The Windows CE make process can generate different outputs (usually binary file called “nk.nb0”). For
downloading the Windows CE kernel, you may choose whatever format you prefer. However, the Windows
CE awareness needs several kernel symbols, that are stored in the files “nk.exe” and “nk.pdb”. Preserve
those files.

Downloading the Kernel

If you start the Windows CE kernel from Flash, or if you download the kernel via Ethernet, do this as you are
doing it without debugging.

If you want to download the Windows CE image using the debugger, you may use “nk.bin” (linked
executable) or “nk.nb0” (absolute binary). If you use the binary, you have to specify, to which address to
download it. The Windows CE kernel image is usually located at the physical start address of the RAM (Note
that an eventual boot loader may be overwritten).

Examples:

or:

When downloading the kernel via the debugger, remember to set startup options, that the kernel may
require, before booting the kernel.

Data.LOAD.EXE nk.bin ; loads the image to the linked addresses

Data.LOAD.Binary nk.nb0 0x0 ; loads the binary to address 0x0
OS Awareness Manual Windows CE4/CE5 | 23©1989-2024 Lauterbach

Debugging the Kernel Startup

The kernel image starts with MMU switched off, i.e. the processor operates on physical addresses. However,
all symbols of the nk.exe file are virtual addresses. If you want to debug this (tiny) startup sequence, you
have to load and relocate the symbols. Relocate the “.text” segment to the physical start address of your
kernel.

• Downloading the kernel via debugger:

Download the kernel image and separately download the kernel symbols with relocation:

After downloading, set your PC to the physical start address, and you’re ready to debug.

• Downloading the kernel via Ethernet:

Just load the symbols into the debugger before the image is downloaded by the boot monitor:

Then, set an on-chip(!) breakpoint to the physical start address of the kernel (software breakpoints
won’t work, as they would be overwritten by the kernel download):

Now let the boot monitor download and start the Windows CE image. It will halt on the start address,
ready to debug. Delete the breakpoint when hit.

As soon as the processor MMU is switched on, you have to reload the symbol to its virtual addresses. See
the next chapter on how to debug the kernel in the virtual address space.

Data.LOAD.EXE nk.bin
Data.LOAD.EXE nk.exe /NoCODE /RELOC .text AT 0x81000

Data.LOAD.EXE nk.exe /NoCODE /RELOC .text AT 0x81000

Break.Set 0x81000 /Onchip
OS Awareness Manual Windows CE4/CE5 | 24©1989-2024 Lauterbach

Debugging the Kernel

For debugging the kernel itself, and for using the Windows CE awareness, you have to load the virtual
addressed symbols of the kernel into the debugger. The files “nk.exe” and “nk.pdb”, which reside in your
build directory, contain all kernel symbols with virtual addresses.

The symbols have to be relocated to the target’s address configuration. The build process generates a log
file called <project>.plg in your project directory. This log file contains all necessary information.

Retrieving the relocation information manually:

To extract the addresses of nk.exe, use the DOS “find” command:

find /i “nk.exe” myproject.plg

Relocate the .text segment and the .pdata segment as given. Relocate the .KDATA segment and the
.data segment NOT to the first given address, but to the address given after "FILLER->". E.g., if the
output of the find command gives:

---------- PCA1.PLG
No imports for nk.exe
nk.exe .text 98381000 282624 282624 282492 o32_rva=00001000
nk.exe .pdata 983c6000 8192 8192 8104 o32_rva=00066000
nk.exe .KDATA 98939000 0 0 40960 FILLER->82090000
nk.exe .data 9884792c 1556 1556 86060 FILLER->8209a000
nk.exe E32 98fdaf8c 108 FILLER
nk.exe O32 98671fa0 96 FILLER
nk.exe FileName 9863bff8 7 FILLER

Then load the kernel symbols with the command (all in one line):

Using a script for generating the load command automatically:

The demo directory contains a simple script file called “nk.cmm” to extract the relocation information and
automatically generate the load command, stored in a file called “loadnk.cmm”. You may use this script then
to load the kernel symbols:

Data.LOAD.EXE nk.exe /NoCODE /RELOC .text AT 0x98381000 /RELOC .pdata AT
0x983c6000 /RELOC .KDATA AT 0x82090000 /RELOC .data AT 0x8209a000

do nk myproject

do loadnk

; scans "myproject.plg” and generates
; "loadnk.cmm”
; actually loads and relocates "nk.exe"
OS Awareness Manual Windows CE4/CE5 | 25©1989-2024 Lauterbach

Kernel MMU Settings:

The kernel address space (0x80000000 to 0xffffffff) and the XIP DLL address space (0x20000000 to
0x3fffffff) are visible to all processes, so specify the address ranges to be common to all space IDs:

And switch on the debugger MMU translation:

TRANSlation.COMMON 0x20000000--0x3fffffff 0x80000000--0xffffffff

TRANSlation.ON
OS Awareness Manual Windows CE4/CE5 | 26©1989-2024 Lauterbach

User Processes

Each user process in Windows CE gets its own virtual memory space, each usually starting at address zero.
To distinguish the different memory spaces, the debugger assigns a “space ID”, which is equal to the
process ID. Using this space ID, it is possible to address a unique memory location, even if several
processes use the same virtual address.

Note that at every time the Windows CE awareness is used, it needs the kernel symbols. Please see the
chapters above on how to load them. Hence, load all process symbols with the option /NoClear to
preserve the kernel symbols.

Debugging the Process

To correlate the symbols of a user process with the virtual addresses of this process, it is necessary to load
the symbols into this space ID and to scan the process’ MMU settings.

Manually Load Process Symbols:

For example, if you’ve got a process called “hello” with the process ID 12. (the dot specifies a decimal
number!):

The space ID of a process may also be calculated by using the PRACTICE function
task.proc.spaceid() (see chapter “Windows CE PRACTICE Functions”).

Additionally, you have to scan the MMU translation table of this process:

It is possible to scan the translation tables of all processes at once. On some processors, and depending on
your number of active processes, this may take a very long time. In this case use the scanning of single
processes, mentioned above. Scanning all processes:

Automatically Load Process Symbols:

If a process name is unique, and if the symbol files are accessible at the standard search paths, you can use
an automatic load command

This command loads the symbols of “hello.exe” and scans the MMU of the process “hello”. See
TASK.sYmbol.LOAD for more information.

Data.LOAD.EXE hello.exe 12.:0 /NoCODE /NoClear

TASK.MMU.SCAN 12. ; scan MMU of process ID 12

TASK.MMU.SCAN ; scan MMU entries of all processes

TASK.sYmbol.LOAD "hello" ; load symbols and scan MMU
OS Awareness Manual Windows CE4/CE5 | 27©1989-2024 Lauterbach

Using the Symbol Autoloader:

If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be
automatically loaded when accessing an address inside the process. You can also force the loading of the
symbols of a process with

Debugging a Process From Scratch, Using a Script:

If you want to debug your process right from the beginning (at “main()” or “WinMain()”), you have to load the
symbols before starting the process. This is a tricky thing because you have to know the process ID, which is
assigned first at the process start-up. Set a breakpoint into the process start handler of Windows CE, when
the process is already loaded but not yet started. The function MDCreateMainThread1() or
LoadSwitch() (if available) may serve as a good point. When the breakpoint is hit, check if the process is
already loaded. If so, extract the process ID, scan the process’ MMU and load the symbols. Windows CE
loads the code first, if it is accessed by the CPU. So you’re not able to set a software breakpoint yet into the
process, because it will be overwritten by the swapper, when it loads actually the code. Instead, set an on-
chip breakpoint to the main() routine of the process. As soon as the process is started, the code will be
loaded and the breakpoint will be hit. Now you’re able to set software breakpoints. See the script
“app_debug.cmm” in the ~~/demo directory, how to do this.

When finished debugging with a process, or if restarting the process, you have to delete the symbols and
restart the application debugging. Delete the symbols with:

If the autoloader is configured:

Debugging a Process From Scratch, with Automatic Detection:

The TASK.Watch command group implements the above script as an automatic handler and keeps track of
a process launch and the availability of the process symbols. See TASK.Watch.View for details.

Debugging DLLs

If the process uses DLLs, Windows CE loads them dynamically to the process. The process itself contains
no symbols of the libraries. If you want to debug those libraries, you have to load the corresponding symbols
into the debugger.

Manual Load:

Open a TASK.DLL window. Load the symbols and relocate the “.text” segment to the base address and the
“.data” segment to the “rw base” address of the DLL. E.g., if the window contains the line:

sYmbol.AutoLOAD.CHECK
sYmbol.AutoLOAD.TOUCH "hello"

sYmbol.Delete \\hello

sYmbol.AutoLOAD.CLEAR "hello"
OS Awareness Manual Windows CE4/CE5 | 28©1989-2024 Lauterbach

magic name in_use base entry rw_base referenced_by
83C8B500 coredll.dll 127. 03F71000 03F74AAC 01FFF000 0. 1. 2. 3.

Then load the appropriate DLL with the command (all in one line):

D.LOAD.EXE coredll.dll /NoCODE /NoClear /RELOC .text AT 0x03F71000 /RELOC
.data AT 0x01FFF000

Automatic Load:

If the files are in the standard search path, the command:

tries to automatically load and relocate the appropriate DLL. It additionally sets the debugger MMU to allow
access to the DLL, even if it is not paged in. See TASK.sYmbol.LOADDLL for details.

Using the Symbol Autoloader:

If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be
automatically loaded when accessing an address inside the library. You can also force the loading of the
symbols of a library with

Debugging a DLL From Scratch, with Automatic Detection:

The TASK.WatchDLL command group implements an automatic handler and keeps track of a DLL launch
and the availability of the DLL symbols. See TASK.WatchDLL.View for details.

TASK.sYmbol.LOADDLL "coredll"

sYmbol.AutoLOAD.CHECK
sYmbol.AutoLOAD.TOUCH "mylib.dll"
OS Awareness Manual Windows CE4/CE5 | 29©1989-2024 Lauterbach

Trapping Unhandled Exceptions

An “unhandled exception” happens, if the code tries to access a memory location that cannot be mapped in
an appropriate way. E.g. if a process tries to write to a read-only area, or if the kernel tries to read from a
non-existent address. An unhandled exception is detected inside the kernel, if the mapping of page fails. If
so, the kernel (usually) prints out an error message with “DumpFrame()”.

To trap unhandled exceptions, set a breakpoint onto the label “DumpFrame”. When halted there, execute
one single HLL step to set up local variables, then use “Var.Local” to display the local variables of
“DumpFrame()”. This function is called with five parameters:

• “pth” points to the thread that caused the exception;

• “pCtx” points to a structure containing the complete register set at the location, where the fault
occurred.

• “id” contains the exception ID that happened;

• “addr” contains the faulty address;

• “level” indicates the exception level.

When halted at “DumpFrame”, you may load the temporary register set of TRACE32 with these values:

Use Data.List, Var.Local etc. then to analyze the fault.

For some architectures, an example script called “exception.cmm” is prepared for this. Check the
appropriate demo directory.

As soon as debugging is continued (e.g. “Step”, “Go”, ...), the original register settings at “DumpFrame” are
restored.

; adapt this script to your processor registers

 ; read all register values
 &r0=v.value(pctx.R0)
 &r1=v.value(pctx.R1)
 ; continue for all registers
 &sr=v.value(pctx.Cpsr)
 &pc=v.value(pctx.Pc)

 ; write all register values into temporary register set
 Register.Set R0 &r0 /Task Temporary
 Register.Set R1 &r1 /Task Temporary
 ; continue for all registers
 Register.Set SR &sr /Task Temporary
 Register.Set PC &pc /Task Temporary
OS Awareness Manual Windows CE4/CE5 | 30©1989-2024 Lauterbach

Windows CE Commands

TASK.DLL Display libraries

Alias for TASK.MODule. See there.

TASK.Event Display events

Display a table with all created synchronization objects of type “event”.

Format: TASK.DLL

Format: TASK.Event
OS Awareness Manual Windows CE4/CE5 | 31©1989-2024 Lauterbach

TASK.MMU.SCAN Scan process MMU space

Scans the target MMU of the space ID, specified by the given process, and sets the Debugger MMU
appropriately, to cover the physical to logical address translation of this specific process.

The command walks through all page tables which are defined for the memory spaces of the process and
prepares the Debugger MMU to hold the physical to logical address translation of this process. This is
needed to provide full HLL support. If a process was loaded dynamically, you must set the Debugger MMU
to this process, otherwise the Debugger won’t know where the physical image of the process is placed.

Space IDs must be enabled (SYStem.Option.MMU ON) to successfully execute this command.

Example:

See also MMU Support.

Format: TASK.MMU.SCAN [<process>]

<process> Specify a process magic, ID or name.
If no argument is specified, the command scans all current processes.

; scan the memory space of the process "hello"
TASK.MMU.SCAN "hello"
OS Awareness Manual Windows CE4/CE5 | 32©1989-2024 Lauterbach

TASK.MODule Display libraries

Displays a table with all loaded modules (DLLs) of Windows CE.

“magic” is a unique ID, used by the OS Awareness to identify a specific module (address of the module
structure).
“base” and “rw base” specify the code and data address of the module.
“entry” is the DLL entry point.
“referenced by” lists all process IDs, that loaded this module.

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.Mutex Display mutexes

Display a table with all created synchronization objects of type “mutex”.

Format: TASK.MODULE

Format: TASK.Mutex
OS Awareness Manual Windows CE4/CE5 | 33©1989-2024 Lauterbach

TASK.Option Set awareness options

Set various options to the awareness.

TASK.Process Display processes

Displays the process table of Windows CE or detailed information about one specific process.

Without any arguments, a table with all created processes will be shown.
Specify a process name, ID or magic number to display detailed information on that process.

“magic” is a unique ID, used by the OS Awareness to identify a specific process (address of the process
structure).

The fields “magic”, “main thread”, “thread magic” and “entry function” are mouse sensitive, double clicking
on them opens appropriate windows. Right clicking on them will show a local menu.

Format: TASK.Option <option>

<option>: THRCTX [ON | OFF]

THRCTX Set the context ID type, that is recorded with the real-time trace (e.g.
ETM).
If set to on, the context ID in the trace contains thread switch detection.
See Task Runtime Statistics.

Format: TASK.Process [<process>]
OS Awareness Manual Windows CE4/CE5 | 34©1989-2024 Lauterbach

TASK.ROM.FILE Display built-in files

Displays a table with all files that are built-in into the Windows CE image.

TASK.ROM.MODule Display built-in modules

Displays a table with all modules that are built-in into the Windows CE image.

TASK.Semaphore Display semaphores

Display a table with all created synchronization objects of type “semaphore”.

Format: TASK.ROM.FILE

Format: TASK.ROM.MODule

Format: TASK.Semaphore
OS Awareness Manual Windows CE4/CE5 | 35©1989-2024 Lauterbach

TASK.sYmbol Process/DLL symbol management

The TASK.sYmbol command group helps to load and unload symbols and MMU settings of a given process
or DLL. In particular the commands are:

TASK.sYmbol.DELete Unload process symbols and MMU

When debugging of a process is finished, or if the process exited, you should remove loaded process
symbols and MMU entries. Otherwise the remaining entries may interfere with further debugging.
This command deletes the symbols of the specified process and deletes its MMU entries.

Example:

When deleting the above loaded symbols with the command:

the debugger will internally execute the commands:

TASK.sYmbol.LOAD Load process symbols and MMU

TASK.sYmbol.DELete Unload process symbols and MMU

TASK.sYmbol.LOADDLL Load DLL symbols and MMU

TASK.sYmbol.DELeteDLL Unload DLL symbols and MMU

TASK.sYmbol.Option Set symbol management options

Format: TASK.sYmbol.DELete <process>

<process> Specify the process name or path (in quotes) or magic to unload the
symbols of this process.

TASK.sYmbol.LOAD "ping"

TRANSlation.Delete 6.:0--0xffffffff
sYmbol.Delete \\pingTASK.sYmbol.LOAD "ping"
OS Awareness Manual Windows CE4/CE5 | 36©1989-2024 Lauterbach

TASK.sYmbol.DELeteDLL Unload DLL symbols and MMU

When debugging of a DLL is finished, you should remove loaded DLL symbols and MMU entries.
This command deletes the symbols of the specified DLL and deletes its MMU entries.

Example:

When deleting the above loaded symbols with the command:

the debugger will internally execute the commands:

TASK.sYmbol.LOAD Load process symbols and MMU

Specify the process name or path (in quotes) or magic to load the symbols of this process.

In order to debug a user process, the debugger needs the symbols of this process, and the process specific
MMU settings (see chapter “Debugging User Processes”).
This command retrieves the appropriate space ID, loads the .exe and .pdb file of an existing process and
reads its MMU entries. Note that this command works only with processes that are already loaded in
Windows CE (i.e. processes that show up in the TASK.Process window).

Example: If the TASK.Process window shows the entry:

Format: TASK.sYmbol.DELeteDLL <dll>

<dll> Specify the DLL name or path (in quotes) or magic to unload the symbols of
this DLL.

TASK.sYmbol.DELeteDLL "coredll"

TRANSlation.Delete 0:0x03F71000 …
sYmbol.Delete \\coredll

Format: TASK.sYmbol.LOAD <process>

magic____|id_|handle__|name___|#thr|prio|main_thread|
820A4E38*| 6.|839A7002|ping | 1.|251.|83BA6964
OS Awareness Manual Windows CE4/CE5 | 37©1989-2024 Lauterbach

the command:

will internally execute the commands:

If the symbol file is not within the current directory, specify the path to the .exe file. E.g.:

Loads the .exe/.pdb files “C:\mypath\ping.exe” of the process “ping”. Note that the process name must equal
to the filename of the .exe file.

The command used to load the symbols can be customized with TASK.sYmbol.Option LOADCMD.

TASK.sYmbol.LOAD "ping"

TASK.MMU.SCAN 6.
Data.LOAD.EXE ping.exe 6.:0 /NoCODE /NoClear

TASK.sYmbol.LOAD "C:\mypath\ping.exe"
OS Awareness Manual Windows CE4/CE5 | 38©1989-2024 Lauterbach

TASK.sYmbol.LOADDLL Load DLL symbols and MMU

In order to debug a DLL, the debugger needs the symbols of this DLL, and the DLL specific MMU settings
(see chapter “Debugging DLLs”, page 28).
This command retrieves the appropriate load addresses, loads the .dll and .pdb file of an existing DLL and
reads configures the debugger MMU. Note that this command works only with DLLs, that are already loaded
in Windows CE (i.e. DLLs that show up in the TASK.DLL window).

Example:

If the TASK.DLL window shows the entry:

the command:

will internally execute the commands:

If the symbol file is not within the current directory, specify the path to the .dll file. E.g.:

Loads the .dll/.pdb files “C:\mypath\coredll.dll” of the DLL “coredll”. Note that the DLL name must equal to
the filename of the .dll file.

The command used to load the symbols can be customized with TASK.sYmbol.Option LOADDCMD.

Format: TASK.sYmbol.LOADDLL <dll>

<dll> Specify the DLL name or path (in quotes) or magic to load the symbols of
this DLL.

magic____|name_______|in_use|base____|entry____|rw_base__|referenced_by|
83C8B500 |coredll.dll|127. |03F71000|03F74AAC |01FFF000 |0. 1. 2. 3.

TASK.sYmbol.LOADDLL "coredll"

TRANSlation.Create 0:0x03F71000 …
Data.LOAD.EXE coredll.dll /NoCODE /NoClear /RELOC .text AT 0x03F71000 /

RELOC .data AT 0x01FFF000

TASK.sYmbol.LOAD "C:\mypath\coredll.dll"
OS Awareness Manual Windows CE4/CE5 | 39©1989-2024 Lauterbach

TASK.sYmbol.Option Set symbol management options

Set various options to the symbol management.

LOADCMD:
This setting is only active, if the symbol autoloader for processes is off.

TASK.sYmbol.LOAD uses a default load command to load the symbol file of the process. This loading
command can be customized using this option with the command enclosed in quotes. Two parameters are
passed to the command in a fixed order:
%s name of the process
%x space ID of the process.

Examples:

LOADDCMD:
This setting is only active, if the symbol autoloader for DLLs is off.

TASK.sYmbol.LOADDLL uses a default load command to load the symbol file of the DLL. This loading
command can be customized using this option with the command enclosed in quotes. Three parameters
are passed to the command in a fixed order:
%s name of the DLL
%x code address of the DLL
%x data address of the DLL.

Example:

MMUSCAN:
This option controls, if the symbol loading mechanisms of TASK.sYmbol scan the MMU page tables of the
loaded components, too. When using TRANSlation.TableWalk, then switch this off.

AutoLoad:

Format: TASK.sYmbol.Option <option>

<option>: LOADCMD <command>
LOADDCMD <command>
MMUSCAN [ON | OFF]
AutoLoad <option>

TASK.sYmbol.Option LOADCMD "Data.LOAD.EXE %s.exe 0x%x:0 /NoCODE /NoClear"

TASK.sYmbol.Option LOADCMD "do myloadscript %s 0x%x"

TASK.sYmbol.Option LOADCMD "Data.LOAD.EXE %s.dll 0:0
 /NoCODE /NoClear /RELOC .text AT %x /RELOC .data AT %x"
OS Awareness Manual Windows CE4/CE5 | 40©1989-2024 Lauterbach

This option controls, which components are checked and managed by the symbol autoloader:

The options are set *additionally*, not removing previous settings.

Example:

Process check processes

Library check libraries

RomMod check ROM modules

ALL check processes, libraries and ROM modules

NoProcess don’t check processes

NoLibrary don’t check libraries

NoRomMod don’t check modules

NONE check nothing.

; check processes and ROM modules
TASK.sYmbol.Option AutoLoad Process
TASK.sYmbol.Option AutoLoad RomMod
OS Awareness Manual Windows CE4/CE5 | 41©1989-2024 Lauterbach

TASK.Thread Display threads

Displays the thread table of Windows CE or detailed information about one specific thread.

Without any arguments, a table with all created threads will be shown.
Specify a thread magic number to display detailed information on that thread.

“magic” is a unique ID, used by the OS Awareness to identify a specific thread (address of the thread
structure).

The fields “magic” and the address fields are mouse sensitive. Double-clicking on them opens appropriate
windows. Right clicking on them will show a local menu.

Pressing the “context” button (if available) changes the register context to this task. “current” resets it to the
current context. See “Task Context Display”.

Format: TASK.Thread [<thread>]
OS Awareness Manual Windows CE4/CE5 | 42©1989-2024 Lauterbach

TASK.Watch Watch processes

The TASK.Watch command group build a watch system that watches your Windows CE target for specified
processes. It loads and unloads process symbols automatically. Additionally it covers process creation and
may stop watched processes at their entry points.

In particular the watch commands are:

TASK.Watch.ADD Add process to watch list

Adds a process to the watch list.

Please see TASK.Watch.View for details.

TASK.Watch.DELete Remove process from watch list

Removes a process from the watch list.

TASK.Watch.View Activate watch system and show watched processes

TASK.Watch.ADD Add process to watch list

TASK.Watch.DELete Remove process from watch list

TASK.Watch.DISable Disable watch system

TASK.Watch.ENable Enable watch system

TASK.Watch.DISableBP Disable process creation breakpoints

TASK.Watch.ENableBP Enable process creation breakpoints

TASK.Watch.Option Set watch system options

Format: TASK.Watch.ADD <process>

<process> Specify the process name (in quotes) or magic.

Format: TASK.Watch.DELete <process>

<process> Specify the process name (in quotes) or magic.
OS Awareness Manual Windows CE4/CE5 | 43©1989-2024 Lauterbach

Please see TASK.Watch.View for details.
OS Awareness Manual Windows CE4/CE5 | 44©1989-2024 Lauterbach

TASK.Watch.DISable Disable watch system

Disables the complete watch system. The watched processes list is no longer checked against the target
and is not updated. You’ll see the TASK.Watch.View window grayed out.

This feature is useful if you want to keep process symbols in the debugger, even if the process terminated.

TASK.Watch.DISableBP Disable process creation breakpoints

Prevents the debugger from setting breakpoints for the detection of process creation. After executing this
command, the target will run in real time. However, the watch system can no longer detect process creation.
Automatic loading of process symbols will still work.
This feature is useful if you’d like to use limited breakpoints for other purposes.

Please see TASK.Watch.View for details.

TASK.Watch.ENable Enable watch system

Enables the previously disabled watch system. It enables the automatic loading of process symbols as well
as the detection of process creation.

Please see TASK.Watch.View for details.

Format: TASK.Watch.DISable

Format: TASK.Watch.DISableBP

Format: TASK.Watch.ENable
OS Awareness Manual Windows CE4/CE5 | 45©1989-2024 Lauterbach

TASK.Watch.ENableBP Enable process creation breakpoints

Enables the previously disabled breakpoints for detection of process creation.

Please see TASK.Watch.View for details.

TASK.Watch.Option Set watch system options

Set various options to the watch system.

Please see TASK.Watch.View for details.

Format: TASK.Watch.ENable

Format: TASK.Watch.Option <option>

<option>: BreakOptC <option>
BreakOptM <option>

BreakOptC Set the option in double quotes, which is used to set the breakpoint on
the process creation handler. The default option is “/Onchip”.
Example:
TASK.Watch.Option BreakOptC "/SOFT"

BreakOptM Set the option in double quotes, which is used to set the breakpoint on
the main entry point of the process. The default option is “/Onchip”.
Example:
TASK.Watch.Option BreakOptC "/Hard"

NOTE: The actual code of the process may not yet be loaded. Thus,
setting Software breakpoints is not recommended.
OS Awareness Manual Windows CE4/CE5 | 46©1989-2024 Lauterbach

TASK.Watch.View Show watched processes

Activates the watch system for processes and shows a table of the watched processes.

Description of Columns in the TASK.Watch.View Window

Format: TASK.Watch.View [<process>]

NOTE: This feature may affect the real-time behavior of the target application!
Please see below for details.

<process> Specify a process name for the initial process to be watched.

process The name of the process to be watched.

spaceid The current space ID (= process ID) of the watched process.
If grayed, the debugger is currently not able to determine the space ID of the
process (e.g. the target is running).

state The current watch state of the process.
If grayed, the debugger is currently not able to determine the watch state.
no process: The debugger couldn’t find the process in the current Windows CE
process list.
no symbols: The debugger found the process and loaded the MMU settings of
the process but couldn’t load the symbols of the process (most likely because
the corresponding .exe and .pdb files were missing).
loaded: The debugger found the process and loaded the process’s MMU
settings and symbols.

entry The process entry point, which is either main() or WinMain().
If grayed, the debugger is currently not able to detect the entry point or is unable
to set the process entry breakpoint (e.g. because it is disabled with
TASK.Watch.DISableBP).
OS Awareness Manual Windows CE4/CE5 | 47©1989-2024 Lauterbach

The watch system for processes is able to automatically load and unload the symbols of a process and its
MMU settings, depending on their state in the target. Additionally, the watch system can detect the creation
of a process and halts the process at its entry point.

The watch system for processes is active as long as the TASK.Watch.View window is open or iconized. As
soon as this window is closed, the watch system will be deactivated.

Automatic Loading and Unloading of Process Symbols

In order to detect the current processes, the debugger must have full access to the target, i.e. the target
application must be stopped (with one exception, see below for creation of processes). As long as the target
runs in real time, the watch system is not able to get the current process list, and the display will be grayed
out (inactive).

If the target is halted (either by hitting a breakpoint, or by halting it manually), the watch system starts its
work. For each of the processes in the watch list, it determines the state of this process in the target.

If a process is active on the target, which was previously not found there, the watch system scans its MMU
entries and loads the appropriate symbol files. In fact, it executes TASK.sYmbol.LOAD for the new process.

If a watched process was previously loaded but is no longer found on the Windows CE process list, the
watch system unloads the symbols and removes the MMU settings from the debugger MMU table. The
watch system executes TASK.sYmbol.DELete for this process.

If the process was previously loaded and is now found with another space ID (e.g. if the process terminated
and started again), the watch system first removes the process symbols and reloads them to the appropriate
space ID.

You can disable the loading / unloading of process symbols with the command TASK.Watch.DISable.

Detection of Process Creation

To halt a process at its main entry point, the watch system can detect the process creation and set the
appropriate breakpoints.

To detect the process creation, the watch system sets a breakpoint on a kernel function that is called upon
creation of processes. Every time the breakpoint is hit, the debugger checks if a watched process is started.
If not, it simply resumes the target application. If the debugger detects the start of a newly created (and

TASK.Watch.ADD Adds processes to the watch list.

TASK.Watch.DELete Removes processes from the watch list.
OS Awareness Manual Windows CE4/CE5 | 48©1989-2024 Lauterbach

watched) process, it sets a breakpoint onto the main entry point of the process (either main() or
WinMain()) and resumes the target application. A short while after this, the main breakpoint will hit and
halt the target at the entry point of the process. The process is now ready to be debugged.

If you don’t want the watch system to set breakpoints, you can disable them with the command
TASK.Watch.DISableBP. Of course, detection of process creation won’t work then.

NOTE: By default, this feature uses one permanent on-chip breakpoint and one temporary
on-chip breakpoint when a process is created. Please ensure that at least those
two on-chip breakpoints are available when using this feature. Use
TASK.Watch.Option to change the nature of the breakpoints.

Upon every process creation, the target application is halted for a short time and
resumed after searching for the watched processes. This impacts the real-time
behavior of your target.
OS Awareness Manual Windows CE4/CE5 | 49©1989-2024 Lauterbach

TASK.WatchDLL Watch DLLs

The TASK.WatchDLL command group build a watch system that watches your Windows CE target for
specified DLLs. It loads and unloads DLL symbols automatically. Additionally it covers DLL creation and may
stop watched DLLs at their entry points.

In particular the watch commands are:

TASK.WatchDLL.ADD Add DLL to watch list

Specify the DLL name (in quotes) or magic to add this DLL to the watched DLLs list.

Please see TASK.WatchDLL.View for details.

TASK.WatchDLL.DELete Remove DLL from watch list

Specify the DLL name (in quotes) or magic to remove this DLL from the watched DLLs list.

Please see TASK.WatchDLL.View for details.

TASK.WatchDLL.View Activate watch system and show watched DLLs

TASK.WatchDLL.ADD Add DLL to watch list

TASK.WatchDLL.DELete Remove DLL from watch list

TASK.WatchDLL.DISable Disable watch system for DLLs

TASK.WatchDLL.ENable Enable watch system for DLLs

TASK.WatchDLL.DISableBP Disable DLL creation breakpoints

TASK.WatchDLL.ENableBP Enable DLL creation breakpoints

TASK.WatchDLL.Option Set DLL watch system options

Format: TASK.WatchDLL.ADD <dll>

Format: TASK.WatchDLL.DELete <dll>
OS Awareness Manual Windows CE4/CE5 | 50©1989-2024 Lauterbach

TASK.WatchDLL.DISable Disable DLL watch system

Disables the complete watch system. The watched DLLs list is no longer checked against the target and is
not updated. You’ll see the TASK.WatchDLL.View window grayed out.

This feature is useful if you want to keep DLL symbols in the debugger, even if the DLL terminated.

TASK.WatchDLL.DISableBP Disable DLL creation breakpoints

Prevents the debugger from setting breakpoints for the detection of DLL creation. After executing this
command, the target will run in real time. However, the watch system can no longer detect DLL creation.
Automatic loading of DLL symbols will still work.

This feature is useful if you’d like to use limited breakpoints for other purposes.

Please see TASK.WatchDLL.View for details.

Format: TASK.WatchDLL.DISable

Format: TASK.WatchDLL.DISableBP
OS Awareness Manual Windows CE4/CE5 | 51©1989-2024 Lauterbach

TASK.WatchDLL.ENableBP Enable DLL creation breakpoints

Enables the previously disabled breakpoints for detection of DLL creation.

Please see TASK.WatchDLL.View for details.

TASK.WatchDLL.ENable Enable DLL watch system

Enables the previously disabled watch system. It enables the automatic loading of DLL symbols as well as
the detection of DLL creation.

Please see TASK.WatchDLL.View for details.

TASK.WatchDLL.Option Set DLL watch system options

Set various options to the watch system.

Please see TASK.WatchDLL.View for details.

Format: TASK.WatchDLL.ENable

Format: TASK.WatchDLL.ENable

Format: TASK.WatchDLL.Option <option>

<option>: BreakOptC <option>
BreakOptM <option>

BreakOptC Set the option in double quotes, which is used to set the breakpoint on
the DLL creation handler. The default option is “/Onchip”.
Example: TASK.WatchDLL.Option BreakOptC "/SOFT"

BreakOptM Set the option in double quotes, which is used to set the breakpoint on
the main entry point of the DLL. The default option is “/Onchip”.
Example: TASK.WatchDLL.Option BreakOptC "/Hard"

NOTE: The actual code of the DLL may not yet be loaded. Thus, setting
Software breakpoints is not recommended.
OS Awareness Manual Windows CE4/CE5 | 52©1989-2024 Lauterbach

TASK.WatchDLL.View Show watched DLLs

Activates the watch system for DLLs and shows a table of the watched DLLs.

Description of Columns in the TASK.WatchDLL.View Window

The watch system for DLLs is able to automatically load and unload the symbols of a DLL and its MMU
settings, depending on their state in the target. Additionally, the watch system can detect the creation of a
DLL and halts the DLL at its entry point.

The watch system for DLLs is active, as long as the TASK.WatchDLL.View window is open or iconized. As
soon as this window is closed, the watch system will be deactivated.

Format: TASK.WatchDLL.View [<dll>]

NOTE: This feature may affect the real-time behavior of the target application!
Please see below for details.

<process> Specify a DLL name for the initial DLL to be watched.

dll The name of the DLL to be watched.

state The current watch state of the DLL.
If grayed, the debugger is currently not able to determine the watch state.
no dll: The debugger couldn’t find the DLL in the current Windows CE DLL list.
no symbols: The debugger found the DLL and loaded the MMU settings of the
DLL but couldn’t load the symbols of the DLL (most likely because the
corresponding .dll and .pdb files were missing).
loaded: The debugger found the DLL and loaded the DLL’s MMU settings and
symbols.

entry The DLL entry point, which is usually DllMain().
If grayed, the debugger is currently not able to detect the entry point or is unable
to set the DLL entry breakpoint (e.g. because it is disabled with
TASK.Watch.DISableBP).

TASK.WatchDLL.ADD Add DLLs to the watch list

TASK.WatchDLL.DELete Remove DLLs from the watch list.
OS Awareness Manual Windows CE4/CE5 | 53©1989-2024 Lauterbach

Automatic Loading and Unloading of DLL Symbols

In order to detect the current DLL, the debugger must have full access to the target, i.e. the target application
must be stopped (with one exception, see below for creation of DLLs). As long as the target runs in real time,
the watch system is not able to get the current DLL list, and the display will be grayed out (inactive).

If the target is halted (either by hitting a breakpoint, or by halting it manually), the watch system starts its
work. For each of the DLL in the watch list, it determines the state of this DLL in the target.

If a DLL is active on the target, which was previously not found there, the watch system scans its MMU
entries and loads the appropriate symbol files. In fact, it executes TASK.sYmbol.LOADDLL for the new
DLL.

If a watched DLL was previously loaded, but is no longer found on the Windows CE DLL list, the watch
system unloads the symbols and removes the MMU settings from the debugger MMU table. The watch
system executes TASK.sYmbol.DELeteDLL for this DLL.

If the DLL was previously loaded, and is now found on another address (e.g. if the DLL terminated and
started again), the watch system first removes the DLL symbols and reloads them to the appropriate
address.

You can disable the loading / unloading of DLL symbols with the command TASK.WatchDLL.DISable.

Detection of DLL Creation

To halt a DLL at its main entry point, the watch system can detect the DLL creation and set the appropriate
breakpoints.

To detect the DLL creation, the watch system sets a breakpoint on a kernel function that is called upon
creation of DLLs. Every time the breakpoint is hit, the debugger checks if a watched DLL is started. If not, it
simply resumes the target application. If the debugger detects the start of a newly created (and watched)
DLL, it sets a breakpoint onto the main entry point of the DLL (DllMain()) and resumes the target
application. A short while after this, the main breakpoint will hit and halt the target at the entry point of the
DLL. The DLL is now ready to be debugged.

If you don’t want the watch system to set breakpoints, you can disable them with the command
TASK.WatchDLL.DISableBP. Of course, detection of DLL creation won’t work then.

NOTE: By default, this feature uses one permanent on-chip breakpoint and one temporary
on-chip breakpoint when a DLL is created. Please ensure that at least those two
on-chip breakpoints are available when using this feature. Use
TASK.WatchDLL.Option to change the nature of the breakpoints.

Upon every DLL creation, the target application is halted for a short time and
resumed after searching for the watched DLLs. This impacts the real-time
behavior of your target.
OS Awareness Manual Windows CE4/CE5 | 54©1989-2024 Lauterbach

Windows CE PRACTICE Functions

There are special definitions for Windows CE specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

TASK.CURRENT() ‘vmbase’ address of process

Returns the vmbase address of the current process (0 for kernel).

Parameter Type: String (without quotation marks).

Return Value Type: Hex value.

TASK.DLL.CODEADDR() Address of code segment

Returns the address of the code segment of the specified DLL.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

Syntax: TASK.CONFIG(magic | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Syntax: TASK.CURRENT(vmbase)

Syntax: TASK.DLL.CODEADDR("<dll_name>")
OS Awareness Manual Windows CE4/CE5 | 55©1989-2024 Lauterbach

TASK.DLL.DATAADDR() Address of data segment

Returns the address of the data segment of the specified DLL.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.LOG2PHYS() Convert virtual address to physical address

Convert virtual address of given process to physical address.

Parameter and Description:

Return Value Type: Hex value.

TASK.PROC.CODEADDR() Address of code segment

Returns the address of the code segment of the specified process.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

Syntax: TASK.DLL.DATAADDR("<dll_name>")

Syntax: TASK.LOG2PHYS(<logical_address>,<process_magic>)

<logical_address> Parameter Type: Decimal or hex or binary value.

<process_magic> Parameter Type: Decimal or hex or binary value.

Syntax: TASK.PROC.CODEADDR("<process_name>")
OS Awareness Manual Windows CE4/CE5 | 56©1989-2024 Lauterbach

TASK.PROC.DATAADDR() Address of data segment

Returns the address of the data segment of the specified process.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.SPACEID() Space ID of process

Returns the debugger MMU space ID of the specified process.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.ROM.ADDR() Section address of ROM module

Find section address of the given ROM modules.

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.PROC.DATAADDR("<process_name>")

Syntax: TASK.PROC.SPACEID("<process_name>")

Syntax: TASK.ROM.ADDR("<module_name>",<section>)

<module_name> Parameter Type: String (with quotation marks).

<section> Parameter Type: Decimal or hex or binary value.
OS Awareness Manual Windows CE4/CE5 | 57©1989-2024 Lauterbach

TASK.Y.O() Symbol option parameters

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.Y.O(<item> | autoload)

<item> Parameter Type: String (without quotation marks).
Reports symbol option parameters.

autoload Parameter Type: String (without quotation marks).
Returns the flags which components are checked by the symbol
autoloader.
OS Awareness Manual Windows CE4/CE5 | 58©1989-2024 Lauterbach

	OS Awareness Manual Windows CE4/CE5
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Manual Configuration
	Automatic Configuration
	Quick Configuration Guide
	Hooks & Internals in Windows CE

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task Context Display
	MMU Support
	Windows CE MMU Basics
	Space IDs
	MMU Declaration
	Scanning System and Processes

	Symbol Autoloader
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	Windows CE specific Menu

	Debugging Windows CE Kernel and User Processes
	Windows CE Kernel
	Downloading the Kernel
	Debugging the Kernel Startup
	Debugging the Kernel

	User Processes
	Debugging the Process
	Debugging DLLs

	Trapping Unhandled Exceptions

	Windows CE Commands
	TASK.DLL Display libraries
	TASK.Event Display events
	TASK.MMU.SCAN Scan process MMU space
	TASK.MODule Display libraries
	TASK.Mutex Display mutexes
	TASK.Option Set awareness options
	TASK.Process Display processes
	TASK.ROM.FILE Display built-in files
	TASK.ROM.MODule Display built-in modules
	TASK.Semaphore Display semaphores
	TASK.sYmbol Process/DLL symbol management
	TASK.sYmbol.DELete Unload process symbols and MMU
	TASK.sYmbol.DELeteDLL Unload DLL symbols and MMU
	TASK.sYmbol.LOAD Load process symbols and MMU
	TASK.sYmbol.LOADDLL Load DLL symbols and MMU
	TASK.sYmbol.Option Set symbol management options
	TASK.Thread Display threads
	TASK.Watch Watch processes
	TASK.Watch.ADD Add process to watch list
	TASK.Watch.DELete Remove process from watch list
	TASK.Watch.DISable Disable watch system
	TASK.Watch.DISableBP Disable process creation breakpoints
	TASK.Watch.ENable Enable watch system
	TASK.Watch.ENableBP Enable process creation breakpoints
	TASK.Watch.Option Set watch system options
	TASK.Watch.View Show watched processes
	TASK.WatchDLL Watch DLLs
	TASK.WatchDLL.ADD Add DLL to watch list
	TASK.WatchDLL.DELete Remove DLL from watch list
	TASK.WatchDLL.DISable Disable DLL watch system
	TASK.WatchDLL.DISableBP Disable DLL creation breakpoints
	TASK.WatchDLL.ENableBP Enable DLL creation breakpoints
	TASK.WatchDLL.ENable Enable DLL watch system
	TASK.WatchDLL.Option Set DLL watch system options
	TASK.WatchDLL.View Show watched DLLs

	Windows CE PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.CURRENT() ‘vmbase’ address of process
	TASK.DLL.CODEADDR() Address of code segment
	TASK.DLL.DATAADDR() Address of data segment
	TASK.LOG2PHYS() Convert virtual address to physical address
	TASK.PROC.CODEADDR() Address of code segment
	TASK.PROC.DATAADDR() Address of data segment
	TASK.PROC.SPACEID() Space ID of process
	TASK.ROM.ADDR() Section address of ROM module
	TASK.Y.O() Symbol option parameters

